
Neural quantum states from a
computational perspective

by
Sebastian Testanière Overskott

Thesis

for the degree of

Master’s of Science

Department of Computer Science
Faculty of Technology, Art and Design

Oslo Metropolitan University

August 2023

This master’s thesis is submitted under the master’s program Applied Computer
and Information Technology (ACIT), with program option Mathematical mod-
elling and Scientific Computing at the Faculty of Technology, Art and Design,
Oslo Metropolitan University The scope of the thesis is 60 credits.

© Sebastian Testanière Overskott, 2023
Neural Quantum States from a Computational Perspective
http://www.oslomet.no/
Printed: Oslo Metropolitan University

i

Abstract

The main problem of computational quantum physics is the the Curse of Dimen-
sionality, that is the exponential growth of the length of the description, needed to
specify a many-body/part quantum state, with the increase of the number of parts
the system consists of. Advances in the field on Machine Learning brought new
perspectives, and, relatively recently, the idea of Neural Quantum States (NQSs),
that are the states which can be encoded with a specific type of artificial neural
networks, the so-called Restricted Boltzmann Machines (RBMs), was proposed. It
was shown that NQSs are able to capture complex quantum states characterized
by a high degree of entanglement, while keeping the length of the state description
under control. In this thesis we consider the NQS concept from an ’operational’
point of view, by addressing such computational aspects as scaling of time and
memory size (the number of parameters needed to specify a NQS) with the size
of a quantum model. For benchmarking we use two scalable models, a completely
random Hamiltonian and an Ising chain. We demonstrate that the scaling are
essentially different for these models which result highlights an interesting link be-
tween quantum physics and Machine Learning. We also discuss different strategies
which could help to enhance the convergence, while keeping computational cost at
a minimum. Especially, we exploit the structure of the Ising Hamiltonian to speed
up the training of the network.

This thesis has resulted in a Python framework that implements Neural Quan-
tum State (NQS) as a way to approximate ground state energies for discrete quan-
tum spin systems. The framework can implement NQSs for general Hamiltonians
and Ising Hamiltonians, and trains the NQS by using a variational quantum Monte
Carlo method to approximate the energy ground state of discrete quantum spin
systems. We show that our implementation can achieve promising results with
sub-exponential growth of computational cost for the Ising model. We propose
a heuristic Nλ = K · N3

σ for finding a good number of Markov Chain Monte
Carlo (MCMC) steps, which makes the sampling independent of the system size.
The experiments done in this thesis shows that the implementation manages to
approximate the ground state energy of structured Ising Hamiltonians with sub-
exponential number of parameters.

ii

Preface

I consider my self a computer engineer first, but the world of science and physics
has always amazed and inspired me. This thesis has been a perfect marriage
between programming and physics. At times, it has left me beaten and exhausted,
but has also given me a childlike excitement when the pieces finally came together.
It’s been a wonderful journey, but now I’m glad we’re at the end.

First, I want to thank my supervisor Sergiy Denysov for providing excellent notes,
interesting discussions, for proposing this project, and having faith in my abilities
to complete its challenges. I hope you continue to inspire programmers to take a
leap into the quantum world.

My deepest gratitude goes to my co-supervisor Kristian Wold for hours upon hours
of bug searching, explaining (and re-explaining) countless topics, providing great
feedback, and meaningful conversations in general. You are way to modest and
you have been a huge inspiration for me. Without your patience and knowledge,
I would not have made it until the end.

I want to thank my fellow student Diedrik Leijenaar Oksnes for 5 years of studies,
work and collaboration.

My thanks to professor Sølve Selstø for introducing me to quantum physics and
the wonders of mathematics in programming. It has been 5 very interesting years
for me leading up to this thesis, much thanks to you.

Huge thanks to my family and friends for amazing support.

A special thanks to my amazing wife Anna Solveig Julia Testanière Overskott.
You inspired me to start my studies, and have been supporting me fully, all the
way. I could not have managed this without you. Thank you for valuable thoughts
on learning, for aiding me in exam training, and proof reading hand-ins for almost
6 years. You are as brilliant as you are beautiful.

Finally, I want to thank my two boys, Léon and Théodore, for showing me that
there are, of course, more important things in life than this thesis.

Sebastian Testanière Overskott - Oslo, August 2023

iii

Dedicated to my dad, Andrés Overskott

who saw the beginning, but not the end of this project

iv

List of Abbreviations

AG Analytical Gradient.

BM Boltzmann Machine.

FD Finite Difference.

GD Gradient Descent.

MBP Many Body Problem.

MCMC Markov Chain Monte Carlo.

ML Machine Learning.

MPS Matrix Product State.

NN Neural Network.

NQS Neural Quantum State.

QC Quantum computers.

QT Quantum Technologies.

RBM Restricted Boltzmann Machine.

v

Contents

Abstract ii

Preface iii

List of Abbreviations v

1 Introduction 1
1.1 The many body problem . 2
1.2 Machine Learning . 3
1.3 Methods of approximation . 4
1.4 An analogy . 5
1.5 Study objective . 6
1.6 Outline . 7

I Theoretical background 8

2 Quantum mechanics 9
2.1 The wave function . 9
2.2 Particle spin and qubits . 9
2.3 Hilbert spaces and some notation 10
2.4 Superposition . 11
2.5 Observables and expectation values 12
2.6 Entanglement . 13
2.7 Hamiltonian . 13

2.7.1 Matrix Hamiltonian . 13
2.7.2 Generic Hamiltonian . 14
2.7.3 The Ising model . 14

2.8 The Schrödinger equation . 15
2.9 Ground state of a quantum system 16
2.10 Methods of approximation . 16

2.10.1 Product states . 17
2.10.2 Matrix product state . 17

3 Variational method 18
3.1 Variational principle . 18
3.2 Proof . 19

vi

4 Restricted Bolztmann Machine 21
4.1 The Restricted Boltzmann Machine 21
4.2 Structure of the RBM . 22
4.3 The mathematical RBM . 23
4.4 Marginalization of hidden layers 24
4.5 Complex Parameters . 25

5 Local Energy 27
5.1 Local observables and local energies 27
5.2 Local energies with the Ising model 29

6 Quantum Monte Carlo 30
6.1 Quantum Monte Carlo . 30
6.2 Markov Chain Monte Carlo . 30
6.3 Hamming step and random walk 31
6.4 Metropolis-Hastings algorithm . 31
6.5 Standard deviation of the MCMC and choosing number of samples 32
6.6 Warm up . 33

7 Training the RBM 34
7.1 Gradient descent . 34
7.2 Adam optimization . 35
7.3 Finite difference scheme . 35
7.4 The Analytic Gradient of the RBM 36

7.4.1 Complex parameters and real valued gradients 36
7.4.2 Analytical expression for the gradients of the RBM 37

7.5 Tools for analyzing . 41
7.5.1 Relative error . 41
7.5.2 State error . 42
7.5.3 Probability error . 42

II Implementation 44

8 From theory to code 45

9 Hamiltonian classes 46
9.1 Random Hamiltonian . 47
9.2 Ising matrix Hamiltonian . 47
9.3 Tensor product Hamiltonian . 49

10 Building the RBM 50

11 Collecting probabilities from the RBM 52
11.1 Probabilities with the estimated distribution 52
11.2 Probabilities with the exact distribution 53

vii

12 Local energies 55
12.1 Matrix Hamiltonians . 55
12.2 Tensor Product Hamiltonian . 56
12.3 Study objective . 56

13 Energy estimation 58
13.1 Exact energy . 58
13.2 Estimated energy . 58

14 Optimization 60
14.1 Analytical expression for the gradients 60

14.1.1 Estimated distribution . 61
14.1.2 Gradients of the exact distribution 62

14.2 Finite Difference . 63
14.3 Adam optimiser class . 64

15 MCMC 66

16 Tools for measurements 69
16.1 Timing . 69
16.2 Error measures . 71

16.2.1 Relative error . 71
16.2.2 State error . 71
16.2.3 Probability error . 71

III Results and Discussion 73

17 Results 74
17.1 Comparison of the gradient methods 74

17.1.1 Accuracy with exact distribution 75
17.1.2 Accuracy with estimated distribution 76
17.1.3 Time comparison . 77
17.1.4 Discussion . 77

17.2 The MCMC algorithm . 78
17.2.1 Error for increasing system size 78
17.2.2 Formula for finding Nλ . 79
17.2.3 Warm up steps . 80
17.2.4 Discussion . 82

17.3 Investigating the hidden node parameter 83
17.3.1 Timing with increasing system size 83
17.3.2 How many hidden nodes do we require? 84
17.3.3 Discussion . 86

17.4 The accuracy of ground state and ground state energy 87
17.4.1 Discussion . 88

viii

IV Conclusion and future work 89

18 Conclusion 90
18.1 Conclusion . 90
18.2 Future research . 91

A Appendix 93
A.1 Source code repository . 93
A.2 List of figures . 94

References 95

ix

1 | Introduction

There is a substantial progress was made in quantum physics, both theoretical
and experimental, during the last two decades. It was boosted by the advances
made in Quantum Technologies (QT) which altogether led to what is called
now the ’Second Quantum Revolution’ [1]. The first revolution, which has hap-
pened with the establishment of quantum physics and discoveries of fundamental
quantum phenomena (such as tunneling, state superposition, and entanglement)
about a century ago, has substantially changed our view on the world we live in.
The second revolution marks the beginning of a practical use of these phenom-
ena to our advantage. Quantum computing, quantum communications, quantum
metrology, are quantum chemistry are the fields where this revolution is currently
ongoing.

During the last decade, Quantum computers (QC) changed their status from
the imaginary ’devices’ (similar to the Turing Machine at the early stage of
computer science) to the real-life computational platforms which can be accessed
remotely. QC are expected to open a new way of computing because it was shown
that they - as the imaginary devices - are able to solve some problems faster then
their classical counterparts. For example, it has been been proven that an ideal
QC is able to find a specified element in an unstructured array of N elements
in O(

√
N) steps, while the classical computer cannot do it faster then in O(N)

steps[2]. The world of cyber security trembled when it was shown that the to
crack the widely used RSA encryption algorithm could be cracked an ideal QC
in seconds instead of eons [3].

One of the key features which makes quantum computers superior with re-
spect to the classical ones is the exponential growth of the information which
can be encoded (which can be encoded into a state of a quantum computer) the
number of qubits he computer consists of. This feature creates a vast space to
store and process information by implementing such genuine quantum effects as
superposition and entanglement. While being a bliss for quantum computers, it
is a curse, the Curse of Dimensionality, for the computational quantum physics
and quantum chemistry. The is no way one could store the description of an
arbitrary state of a system of 50 qubits even on largest existing computational

1

cluster – simply because of the lack of memory.
For quantum physicists, the Curse of Dimensionality is know as the infamous

Many Body Problem (MBP). This one of the last problems that still is lack-
ing a standardised high-performance computational framework that most other
fields of science do [4]. The history of computational quantum physics can be
considered as a story of a continuous struggle against the MBP, by looking for
more efficient and sophisticated ways to compactify the descriptions of many-
body states and thus grasp more and more complex and interesting quantum
states with the same memory size. In this thesis, we will look at one of the latest
findings along this line.

1.1 The many body problem

Physics that describe the world as we perceive it, is called non-quantum physics.
It is an extremely useful tool that sits at the core of almost every creation or
discovery done in the last centuries. It can be used to describe the grand celestial
movements in space, and the invisible forces of electromagnetism in our phones.
Here’s an example: Let us say we want to describe the movement of a ball’s
movement in a room. We can then utilise its position and velocity at every point
in the space. This would require three numbers representing the movement in
the three dimensional space. For each additional ball we add, we need three
more numbers to describe the movement of all the balls. In short, the number
of variables in this "problem" are the number of dimensions times the number
of balls. k ·n, where k is the number of dimensions and n is the number of balls.

When the scale gets on the level of atoms, the laws of non-quantum physics
are not capable of accurately describing the physical phenomenons that exist at
this scale. Here, the laws of quantum physics reign. If we now look at atom sized
particles instead of balls we will need some number of variables to describe them
as before. The amazing/terrifying difference is noticeable when more particles
are added to the equation. Because of quantum properties (we will look at some
later) the complexity grows exponentially as kn instead of the linear k · n [5].
This also leads to an exponential increase in required resources, like computer
memory, and is what makes calculations of quantum systems with only a handful
of particles impossible to do accurately. Even numerical approximations struggle
when the systems are on a molecular size.

Still, this explosion in complexity is possible to harness and use to our advan-
tage. As the godfather of quantum computing, Richard Feynman said: “Nature
isn’t classical, dammit, and if you want to make a simulation of nature, you’d
better make it quantum mechanical” [6]. He foresaw a possibility to exploit

2

the complex quantum systems to our benefit. QT and especially QC has gotten
much attention lately. QC are getting bigger and better and there are predictions
they will outperform classical computers in some areas of computing [7]. The
computing power of QC is rapidly getting greater, as more and more companies
and institutions like IBM [8], Google [7] and Amazon [9] are getting engaged
in quantum information technology. This will potentially decrease processing
times, and be an energy efficient alternative to the classical super computers.
The main reason for this is the exponential increase in processing power we get
from an additional quantum bit (qubit), compared to the linear increase in the
classical realm. To store all the information in a QC with 50 qubits, we will need
to store 250 numbers on a classical platform, which is a petabyte of data! That
is, only to store the information, without performing any calculations. This is
an excellent example of the complexity of the MBP. A QC with 50-100 perfect
qubits (often called logical qubits, meaning the qubits and quantum gates have
non-impacting noise and essential infinite coherence times) is needed to make a
QC faster than today’s computers. In the current scene of QC, we use whats
called Noisy Intermediate-Scale Quantum (NISQ) computers. Today’s qubits
(often called physical qubits) are far from perfect and are susceptible for noise,
and have limited coherence times. In this environment we will need a lot more
qubits to apply quantum error correction algorithms. The goal for most manufac-
turers of QC today is to create machines with several thousands (if not millions)
of qubits.

1.2 Machine Learning

Machine Learning (ML) has had an enormous growth the last decade. It has
proven to be a solution to problems that were unsolvable earlier and given us
insight in data in a much more complex manner than traditional statistics. The
Two words in the term "machine learning" reveals some of the idea behind
its working parts. The machine is a highly dimensional, non-linear function
F (x; p1 . . . pNp) with input x and the parameters p1 . . . pNp . The learning is the
process of tuning the parameters p with a stochastic optimization algorithm, so
that it minimizes a loss function for an input, xn i.e. L = (xi)|F (xi; p)− yi| [10].

How do we create an algorithm that can distinguish images of cats from
images of dogs? Approaching this with a standard programming paradigm seems
like an insurmountable task. But we have an abundance of images of what
cats and dogs are. The process in general is to produce algorithms driven by
data. What we need is a desired outcome, and a machine that has enough
flexibility to translate the input data to the desired output. The machine is

3

just a very expressive mathematical function. This means that it has a lot of
"knobs to turn" i.e. the parameters p. The process of learning or training is
just tuning these knob so that we get as close to the desired output as we can.
By utilising already tested and proven methods for optimization (i.e. gradient
descent and more sophisticated methods), and the power of modern computers,
we can systematically turn the knobs of the machine so that it is sensitive toward
the difference between cats and dogs. In the end we understand the method for
producing such algorithms, but we have no intuition for how the final, tuned
mathematical function actually is able to distinguish cats from dogs.

One such machine that has become quite popular is the Artificial neural net-
works, more often just called Neural Network (NN). The idea of utilizing NNs,
came in the 1950-60. It was presumed the model functioned like neurons in a
brain[11] hence its name. They are usually complex connections of nested func-
tions, often with many layers. NNs has shown very good results in a broad array
of fields e.g. finance [12], cyber security [13], and recognising microorganisms
[14].

1.3 Methods of approximation

The complexity of quantum many-body systems grows exponentially and is one
of the big challenges in modern theoretical physics [15]. Already at ∼ 5 par-
ticles the distribution will look close to a normal distribution. Although it is
a daunting task, the rewards of taming the MBP are great. It is an impor-
tant problem to solve in almost all areas of QT. Luckily, we do not need to
represent (in most cases) the full capacity of a system to gain insight from it.
This means we can get a very good estimate without representing the whole
system. We will have to beware of what we are loosing in the process. In
the last decades, the increase in computational power has made it possible to
create some very good methods of approximation. This has lead to many dif-
ferent approaches of solving with each its own benefits and challenges. One
of the basic approximation of quantum states is the product state 2.10.1. It
is the most crude approximation and lack the power to express quantum phe-
nomena, but can still be relevant for some non-interacting systems. This rep-
resentation grows linearly with the number of particles in the system (∼ Nσ),
and is thus a quite cheap method computational-wise. A more sophisticated
method is the Matrix Product State (MPS) 2.10.2. Sometimes called "tensor
states", it was a very innovative approach to model many-body quantum states
when it was introduced almost two decades ago [16]. It is based on the idea
of low-rank approximations of high-dimensional tensors. The main control pa-

4

rameter is the bond degree N . Once N is fixed the MPS grows as (∼ N · Nσ).

Figure 1.1: A sketch of the MBP space, and
how far each of the methods presented in 1.3
can reach with the same, fixed value N .

The MPS is able to capture more
complex quantum states i.e. interac-
tions between the particles, but short-
ranged, meaning the particles only
interact with neighbouring particles.
Long-ranged entanglement demands
exponentially large N . Last, we have
the NQS. Also called Neural Network
Quantum States [11], it is a ML ap-
proach to solve the MBP. There’s been
many success in using neural networks
and machine learning on many-body
system [17] [18][19][20]. The NQS can
capture long-range entangled states,
possibly at a lower cost than MPS.
The main parameter is the size of the
hidden layer Nh. Once Nh is fixed, the
number of parameters (length of vec-
tor θ) scales (∼ Nh ·Nσ). The reach each method has into the space is different,
with the parameter N fix for the three methods. If figure 1.1, we see that the
product state only captures a line in the space. The MPS manages to reach
into the space, capturing more of the quantum states. Finally we see the NQS
reaching even further into the space, thus being able to reach even longer.

1.4 An analogy

The idea behind using a neural network to represent or approximate a quantum
state is somewhat analogous to how we compress digital images. Digital images
are built up of millions (usually) of pixels i.e. small squares on the computer
screen that can take on one color. If the image is just noise, that is all the
pixels take on a random colors, we would need information of all the pixels to
recreate the image. All the pixels are equally important. If we have a picture
of something more concrete, let’s say a dog, not all the pixels have the same
importance. It the dog picture we find structure. The fur of the dog will have
more or less the same color, so all the pixels representing the fur will have almost
the same value. The same applies if it’s a tree in the background, or anything else
we can recognise from noise. In an image compression procedure, this structure
is utilised to remove information from some of the pixels, and instead generate

5

the values again when needed, based on the neighbouring pixels’ values. The
image is not identical after compression, i.e. the pixels are not the same, but the
information is approximately preserved. We can still see that it is a dog.

Now here’s how we can relate a microscopic quantum system to digital images.
Nature, molecules and atoms that surround us, have a lot of structure. An
electron is equal to all other electrons in terms of e.g. mass and charge. The
same applies to neutrons, protons and all other parts that make up matter. The
repetitiveness in the particles properties creates predictable patterns. Our aim
is that the NQS will be able to find these patters and compress the state for
us. Just as a image compression algorithm does with a digital image. Almost
all real-life quantum systems have, as the dog picture, much structure. This
makes it possible in most cases to "remove" some of the information from the
system, and a bit like how we retain the important information in a compressed
digital image, we can retain the important information of a compressed quantum
system.

1.5 Study objective

The goal of this thesis is to explore the RBM’s ability to approximate an un-
known quantum system by imitating its probability distribution. In particular,
we want to examine discrete spin systems as found in QCs, and the RBM’s
ability to learn the ground state 2.9 of these systems. The first steps are to
explore the theory and state-of-the-art methods for using ML based approaches
to solve the MBP i.e. NQSs. We are then going to derive the mathematical
expressions we need to implement these theories in code. Especially the analyt-
ical expression for the gradients of the RBM will be derived and presented. The
second step is to implement a NQS in the programming language Python along
with optimization techniques and a stochastic sampling algorithm. We will use a
Monte-Carlo algorithm as a cheaper alternative than calculating the whole wave
function explicitly. We will use this cheaper approach to estimate the systems
local energies 5.1 which can be used as an estimator for a quantum systems en-
ergy. This is a exponentially cost for generic Hamiltonians, but under strong
assumptions of the Hamiltonian we can make it linearly cheap. A Ising Model
Hamiltonian will be used for this purpose 2.7.3. Lastly, we will run experiments
with our implementation of both models. The impressive accuracy of the NQS
on real-life problem has been extensively studied [21] [11] [20] [22]. The ability
to encode many of the otherworldly quantum effect in a classical way makes the
RBM very interesting tool in quantum sciences. In this thesis we want to study
the importance and computational impact of the different "moving parts" of the

6

NQS form a computational perspective.

To summarize:

• Derive and present expression for the mathematical expressions RBM in
the computational basis 2.1.

• Create a Python module that implements RBM neural network that can
encode information of given quantum system models.

• Implement a sampling method that potentially is more efficient than brute
force calculation of the probability distribution.

• Implement two optimization algorithms: One well known from numerical
approaches Finite Difference (FD), often used for machine learning opti-
mization, and an analytical expression of the RBM that potentially is more
efficient.

• Explore performance of the RBM a physical system model and on a generic
model.

• See how the parameter space of the RBM impacts accuracy and perfor-
mance.

1.6 Outline

In part I of this thesis we will present the theory behind the MBP. Here we give
a quick introduction to relevant theory on quantum mechanics, neural networks,
stochastic sampling, and relevant error measures for performance testing. Part
II describes the implementation of the theory into code as a Python framework.
In part III we present the results of experiments done with the implemented
code, and discuss the results in context with the theory. Finally, in part IVwe
summarize and conclude the project and have a look at what can be done with
future work on this project.

7

Part I

Theoretical background

8

2 | Quantum mechanics

To get an understanding of the many body problem we need to start by looking
at its smallest components, the quantum particles. A quantum particle is an en-
tity at the atomic scale, e.g. electrons, molecules and atoms, that has quantum
properties. These quantum properties are phenomena that often baffles due to
their un-intuitive behaviour. Being everywhere at once, moving through impass-
able barriers and behaving like a particle and a wave at the same time are all
perfectly normal for a quantum particle. Throughout this thesis there will be
several encounters with quantum mechanics. For that purpose I want to intro-
duce some common notation used in the field and also introduce some important
concepts that will be referred to throughout the paper. This chapter is based on
[5] if noting else is mentioned.

2.1 The wave function

A quantum system is best described by quantum mechanics. Here, an isolated
quantum system (meaning we ignore disturbance from outside the system) can
be described by the wave function ψ. It is a description that can be used to
derive properties like position, momentum, and energy, even if, as is often is, it
is hidden from us. It also encapsulates the quantum particle’s wave-like behavior.
ψ can also be written as a complex vector of amplitudes, where each amplitude
corresponds to one particular classical state, called the state vector. Even if the
wave function contains information of all the different possible states it can take,
"looking" i.e. measuring the particle will only show us one of the states.

2.2 Particle spin and qubits

There are many entities in the quantum world, but in this project we want to
limit us to one type. Some particles show a property called spin. It is related
til angular momentum, but the import part is that it can "spin" in either of two
directions. We call these directions spin up (↑), and spin down (↓). This makes

9

spin an binary property with binary outcomes i.e we can define (↑) ≡ 0 and
(↓) ≡ 1. We already know very well from classical computing that binary values
can be used to do calculations, and the same applies to particles with spin. they
can be used to store a value of spin up or spin down. Or as we more commonly
know them, 1 and 0. When we use a particle in this way we call them quantum
bits, or qubits.

In this project, we are going to be working with representing quantum systems
that has discrete spin properties as found in quantum computers. This means a
particle and a qubit will be meaning the same thing forward. A qubit represented
by the ψ can only take the values 0 or 1 when we investigate it.

2.3 Hilbert spaces and some notation

Since the states of a quantum system exists in a vector space, they are most
often represented as vectors. In quantum mechanics these vectors are commonly
written using Dirac notation. Here, a row vector is denoted

⟨A| ≡ [A∗
0, A

∗
1, . . . , A

∗
n], (2.1)

where the ∗ operator denotes complex conjugation. And a column vector is
written

|B⟩ ≡

B0

B1

...
Bn

 (2.2)

The basis of a vector space is the collection of vector |ψn⟩so that any vector |ψ⟩
can be rewritten as a linear combination of vectors from the basis.

|ψ⟩ =
∑
i

ci |wfi⟩ (2.3)

The basis formed by a discrete spin system is dependent on the number of par-
ticles. for n qubits we will have 2n possible states that can be expressed as a
collection of all the states where each state is one of the integers ∈ (0, 2n− 1) as
shown in table 2.1. This basis is the operational basis, or sometimes called the
standard basis, is the basis we will utilize for this thesis.

The operational basis is orthogonal. This meaning it has a Krönecker product
⟨An|Bm⟩ = δnm i.e. equals 1 if states are the same and 0 otherwise. To reiterate,
the basis or state space is describing all the possible states for the quantum

10

Operational basis
0 = |0...00⟩ ≡ |0⟩
1 = |0...01⟩ ≡ |1⟩
2 = |0...10⟩ ≡ |2⟩

...
n− 1 = |1...11⟩ ≡ |2n−1⟩

Table 2.1: A table showing how we represent the basis-states for n qubits

system. The vector space of quantum mechanics is a Hilbert space. A Hilbert
space is a vector space with a well defined inner product and an outer product.
The compact nature of Dirac notation also makes it convenient to write these.
As a consequence of the orthogonal basis, the inner product is written in the
following way:

⟨A|B⟩ ≡
∑
j,i

⟨i|A∗
iBj |j⟩ =

∑
i,j

A∗
iBj ⟨i|j⟩ =

∑
i

A∗
iBi (2.4)

The outer product is a operator and is written:

|B⟩ ⟨A| ≡
∑
i,j

|i⟩Bi ⟨j|A∗
j =

∑
i,j

BiA
∗
j |i⟩ ⟨j| (2.5)

2.4 Superposition

Superposition is perhaps the most famous of the quantum properties. A few
sections ago, we explained how the system could contain information of several
states, but only one of the state would be revealed to us if we measured the
system. Superposition is the single particle ability contain information about
several (or all) classical states at once. Superposition is mathematically written
as a linear combination of the states:

|ψ⟩ = α |0⟩+ β |1⟩ (2.6)

We call α and β are the probability amplitudes of each state α and β. They differ
from regular probabilities in that they can be complex, not just real, positive
values. This property makes it possible to add quantum states with destructive
interference. This has no analogy in standard probability. One very fascinating
definition is that the probability for each of the outcomes to occur is P (0) = |α|2

and likewise with P (1) = |β|2. The absolute value squared of the amplitudes
can be interpreted as a standard probability. We therefore require then that the

11

sum of amplitudes squared is one, meaning it is normalized and preserves that a
probability never is more than 1 (it has to be in one state or the other).

|α|2 + |β|2 = 1 (2.7)

More generally we write the superposition as a sum of many states and ampli-
tudes.

|ψ⟩ =
∑
i

Ψi |ψi⟩ (2.8)

∑
i

|Ψi|2 = 1 (2.9)

Where Ψi is the complex amplitude associated with state ψi i.e. α and β from
the two-state system (2.6), and ψi is the respective state i.e. |0⟩ and |1⟩ from
the same example. When we want to get information out of the QC we need
to measure the qubits. This interference with the quantum system forces it to
"choose" one of the outcomes 1 or 0, even if it stored information about both
states at the time of measurement. This means we can never know the underlying
probability after just one measurement. We need to prepare the qubit several
times in the exactly the same way and measure again. This is repeated some
thousand times. Collecting the results of each measure, we get an probability
distribution that represent the state i.e. | |ψ⟩ |2.

2.5 Observables and expectation values

Observables are operators that act on the wave function in question. Often
denoted Ō. It serves as a method for extracting a deterministic value from a
quantum state [23]. The observable can be any information we want to gather
knowledge about, this being position, momentum or, as we are going to utilize
in plenty during this project: energy.

The expectation value, a word and propertyfrom statistics, of an observable is
denoted ⟨Ō⟩. For an unnormalized wave function, it can be found by calculating:

⟨Ō⟩ = ⟨ψ|Ō|ψ⟩
⟨ψ|ψ⟩

(2.10)

We are going to encounter this expression several times throughout this thesis.

12

2.6 Entanglement

One of the most important, if not the most important quantum property in
quantum computing, is entanglement. In short it means that we can prepare
two or more qubits in such a way that if you measure one of the entangled
qubits, the other qubits will be forced to "choose" a state at the exact same
time. Even if you didn’t measure the second qubit. This apply even if the qubits
are separated by great distances or isolated from each other in other ways. An
example of an entangled state.

|ψ⟩ = |00⟩+ |11⟩√
2

(2.11)

The equation (2.11) is one of the Bell states that are famous in quantum me-
chanics. It shows the absurdity of entanglement in a very compact and easy to
read way. Here we can see that there are two states, |00⟩ and |11⟩, that both
have the amplitude 1√

2
meaning it would be 50/50 chance to get one of the two

outcomes. If we measure the first qubit to be zero state, the other one is going
to be zero state as well. And if the first is one state, the second is one state as
well. The strange implications this shows is that is it not possible to have an
outcome of |01⟩ or |10⟩ even if the individual qubits can be either |0⟩ or |1⟩.

2.7 Hamiltonian

The total system energy, both kinetic and potential energy, and any external
forces influencing the system, are represented by the system Hamiltonian. it is
most often represented mathematically as a matrix Ĥ that fulfils certain prop-
erties. It is a hermitian operator meaning Ĥij = Ĥ∗

ji, with all of its eigenvalues
representing all possible energies the Hamiltonian system can have and the eigen-
vectors are the respective eigen-states. It is more often than not that we do not
know the complete description of the system energy, and thus the Hamiltonian.
For many physical system the Hamiltonian can be very intricate.

2.7.1 Matrix Hamiltonian

Given the notation introduced in section 2.3, expressing the Hamiltonian as a
matrix fits the mathematics very well. We can then easily use the operator on
the vectors as we will see in further sections. One drawback with the matrix
Hamiltonian representation is the its size scales exponentially with the system it
the describes. For the operational basis this is 2n where n is the number of qubits.

13

If the system described by the Hamiltonian is completely generic i.e. describing
noise, we would need this increase in size to grasp it completely. More often than
not, physical systems have a lot of structure, and as we shall see contain a lot of
zero elements in its matrix representation.

2.7.2 Generic Hamiltonian

A generic or random Hamiltonian is a Hamiltonian where all elements are drawn
from a random distribution. In this thesis they are from a normal distribution
with expectation value 0 and variance 1 N ∼ (0, 1). Solving a generic Hamil-
tonian can be used as a very strict benchmark, since it has no structure and
requires a more flexible approach than physical systems do. In other words: If
your approach is able solve the generic Hamiltonian of a given size, it can solve
a real life problem of the same size as well.

2.7.3 The Ising model

The Ising model is a model for spin systems with interacting and external forces.
It has been used to describe several phase shifting physical systems e.g. po-
larization in ferromagnets [24]. It consists of a lattice of spins (not confined
to quantum spins) which can only take on directions ↑, ↓ often represented as
{−1, 1} or as we will do in this thesis, {|0⟩ , ⟨1|}. The state of the system is the
combined spin configuration e.g. a six spin configuration (↑↓↓↑↓↑). The spins
interact with their nearest neighbour and can also be influenced by an external
field. the general Ising Hamiltonian can be written.

Ĥσi =
∑
i>j

−γi,jσiσj −
∑
i

µσi (2.12)

Where Ji,j is the interaction between neighboring spins, σ are the spins, γ is the
external force applied on each spin.

In this thesis we have looked at a more concrete Ising system as a model for
our qubits. It has no external field.

Ĥ =
n−1∑
i=1

γi,i+1 · 1(1) ⊗ 1(2) ⊗ · · · ⊗X(i) ⊗X(i+1) ⊗ · · · 1(n), (2.13)

where 1 =
[
1 0
0 1

]
is the identity matrix, X =

[
0 1
1 0

]
is the Pauli-X operator, and

γ ∈ R is a scaling factor. It can also be written as

Ĥ =
n−1∑
i=1

−γi,i+1XiXi+1, (2.14)

14

where X is the X operator acting an the whole space. This representation of the
Hamiltonian are we calling Tensor product Hamiltonian.

The Ising Hamiltonian matrix of dimensions d × d will have ∼ d number of
non-zero elements meaning of all the elements in the matrix it is only a square
root of total elements that are giving us any information. Matrix representation
of this Ising Hamiltonian is an very inefficient way to both store, access and
calculate/diagonalize. Recall that our Ising model requires γ-values numbering
n−1 where n is the system size. For a two spin system requiring only one γ-value
has a Hamiltonian matrix that look like this:

0 0 0 γ

0 0 γ 0

0 γ 0 0

γ 0 0 0

We need to store 16 values where four of them are relevant. For a slightly bigger
system where n = 3, we would need a matrix of this caliber:

0 0 0 γa 0 0 γb 0

0 0 γa 0 0 0 0 γb

0 γa 0 0 γb 0 0 0

γa 0 0 0 0 γb 0 0

0 0 γb 0 0 0 0 γa

0 0 0 γb 0 0 γa 0

γb 0 0 0 0 γa 0 0

0 γb 0 0 γa 0 0 0

Here, of the 64 elements, only 16 are relevant. The structure in these systems
are also visible in the matrix representation.

2.8 The Schrödinger equation

Like Newton’s equations govern how objects move in time at our scale, Schrödinger’s
equation does the same for atomic and subatomic particles. It has several forms,
but in this paper we will use the time independent Schrödinger equation pre-
sented as a linear algebra equation in (2.15) below.

E |ψ⟩ = Ĥ |ψ⟩ (2.15)

Where E is the energy, ψ is the wave function, and Ĥ is the system Hamiltonian.
The time independent equation describes a system that does not change in time,

15

only in space. Solving the Schrödinger equation will give us the eigenvalues
and eigenvectors of the Hamiltonian. The eigenvalues are the systems possible
energies, with eigenvectors describing its related wave function i.e.

2.9 Ground state of a quantum system

One of the many properties we find in quantum system that is not present in
classical physics, is the quantized energy levels of a quantum system. It is this
behavior that origins the "quantum" in quantum mechanics. The first level is
often called the ground state and other states excited states. Given an Hamilto-
nian Ĥ, we can find all the energy states and the corresponding wave functions
or system states by solving the Schrödinger equation. This is analytically done
by diagonalization. We can also find the expectation value for the Hamiltonian
by solving 2.16. The expectation value of the Hamiltonian is the system energy.
If we have an unnormalized wave function (or we are not sure it is normalized)
which is most often the case when choosing an ansatz we will need to normalize
it the following way.

E =
⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

(2.16)

The most interesting of these energy levels is the ground state.

Egs = min
|ψ⟩

(
⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

)
(2.17)

where Egs is the ground state energy. The ground state tells us the energy
level of the system when it is in it lowest energy configuration. Around room
temperature, the state of a molecule is very, very close to its ideal ground state.
This is very use full in fields as chemistry and material design. The ground
state is the lowest energy the system can have. All other energy levels are called
excited and there can be many of them. the ground state is also the state we
most often will find systems in. Nature is ’lazy’ and will try to contain as little
energy as possible.

2.10 Methods of approximation

This is a short section describing in some more detail the alternative quantum
system description presented in the introduction 1.3. It is meant to illustrate
some of the points made in more technical terms, without dive deep into defini-
tion.

16

2.10.1 Product states

The most crude approximation of a quantum system.

ψσ1,σ2,...,σn = ψσ1 · ψσ2 · · · · · ψσn , (2.18)

where If we use this way of representing let’s say a two spin system: two qubits.
They can be measured to be in one of four states: |00⟩ , |01⟩ , |10⟩ or|11⟩. We can

ψ =
a |0⟩+ b |1⟩√

2
⊗ c |0⟩+ d |1⟩√

2

=
ac |00⟩+ ad |01⟩+ bc |10⟩+ bd |11⟩

2
(2.19)

If we now look at a Bell state which is entangled, presented in section 2.6. The
wave function of this state is ψ = 1√

2
|00⟩+ 1√

2
|11⟩. We see that the ad amplitude

from (2.19) has to be 0. This means either a = 0 or d = 0. If a = 0, then ac

would be 0 not 1√
2
. In other words: there is no possible way to express the

entangled Bell state by using a product state notation. This is in fact a way
to think of entanglement. It is the information that cannot be expressed with
product states.

2.10.2 Matrix product state

Also known as tensor networks. Describes the quantum system by using a net-
work of interconnected tensors. [25]

ψ =
∑

i1,i2,...,iN

Ci1,i2,...,in |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |iN⟩ (2.20)

where C are pN complex numbers, p is the number of degrees of freedom for each
particle N e.g. p = 2 for qubits. And |i⟩ are complex, square matrices of order
B. The bond degree B = 1 is a product state, and B grows exponentially with
system size for a generic system. B need to be small for MPS to be computational
effective.

17

3 | Variational method

Finding the exact ground state of a quantum system by using the Schrödinger
equation is only possible in a few special cases which are all systems with some
constraints. Either in size or with complexity of interaction. This makes the
analytical approach impossible in near all real life cases, and we need to find
approximations that handles the quantum system complexity well [26]. The
variational method is one such method of approximation. Aiming to find the
best possible approximation of the ground state of a quantum system given by a
Hamiltonian and a trial wave function often called ansatz. The ansatz (German
word meaning approach) is a word used for an educated guess of what a solution
might be. In the case of the variational method, this is the trial wave function
selected to approximate the ground state. The educated guess depends on what
type of system that is in question, and can be any mathematical approach. before
the use of computers and their power, these guesses need to be more educated,
since the number of free variables would need to be constrained. Today we can
have the option for a much more flexible guess with more options for tuning, like
the RBM. The important part is that the ansatz has to be an easier beast to
tame, an thus can be calculated more efficiently than the original system. This
will in our case be to use a lot fewer parameters than the 2σ states of the system.

3.1 Variational principle

Given a wave function ψ and an Hamiltonian Ĥ with the ground state energy Egs
and its eigenfunction |ψgs⟩ i.e. Ĥ |ψgs⟩ = Egs |ψgs⟩. Any new trial wave function
φ with a lowest energy E0 that is normalized, has the same boundary conditions
, and same variables as ψ, the variational theorem applies.

E0 ≥ Egs (3.1)

For any φ we choose, it’s lowest energy E0 is always equal or higher than the
ψ ground state energy. Knowing this we can make changes to our ansatz and
calculate the ground state again and comparing it to our previous ground state.

18

If our new ground state is lower, then we know our new ansatz is closer to the
true system ground state than our old. One drawback with this method is that
we can never know how close we are to the actual Egs without calculating the
actual ground state it self.

3.2 Proof

Proof. Let Ĥ be the known but possibly complicated Hamiltonian of the sys-
tem, and φ be any ansatz. We can then suppose that φn and En are the true
eigenstates and eigenvalues of Ĥ so Ĥ |φn⟩ = En |φn⟩. We then order the energy
states in the following way E0 < E1 < · · · < En so that E0 is the ground state
energy, E1 is the energy of first excited state, and so on. With a normalized
ansatz |φ⟩, we expand the trial wave function in terms of the eigenstates of the
Hamiltonian we are looking at. We know that we can always do this, because
the eigenvstates of a Hermitian matrix, i.e. the Hamiltonian, is always a basis.
Any state in that space can be written as a linear combination of states and
amplitudes as shown in (2.8).

⟨φ|Ĥ|φ⟩ =

〈∑
n

Ψnφn

∣∣∣∣∣Ĥ
∣∣∣∣∣∑
m

Ψ∗
mφm

〉
=
∑
n,m

ΨnΨ
∗
m ⟨φn|Ĥ|φm⟩

Now we can use the fact the Ĥ is hermitian and equation (2.15) and use ⟨φ|E =

⟨φ| Ĥ and we get.

=
∑
n,m

ΨnΨ
∗
m ⟨φn|En|φm⟩

=
∑
n,m

ΨnΨ
∗
mEn ⟨φn|φm⟩

=
∑
n

|Ψn|2En,

where ⟨φn|φm⟩ is the Krönecker delta δnm and picks put n = m of the sum. We
can now rearrange by extracting terms from the summation.

⟨φ|Ĥ|φ⟩ = |Ψ0|2E0 +
∑
n>0

|Ψn|2En (3.2)

19

|Ψ0|2 = 1−
∑
n>0

|Ψn|2 (3.3)

now we combine

⟨φ|Ĥ|φ⟩ =

(
1−

∑
n>0

|Ψn|2
)
E0 +

∑
n>0

|Ψn|2En (3.4)

= E0 −
∑
n>0

|Ψn|2E0 +
∑
n>0

|Ψn|2En (3.5)

= E0 +
∑
n>0

|Ψn|2(En − E0) (3.6)

The second term can only be positive given that En ≥ E0. This shows that

⟨φ|Ĥ|φ⟩ ≥ E0, (3.7)

which was the result we wanted to prove.

So no matter what ansatz we try, we know we can never have a lower energy
than the actual wave function.

20

4 | Restricted Bolztmann Machine

In this chapter we want to present the idea behind the Restricted Boltzmann
Machine (RBM) and how it is mathematically expressed. We will also discuss
how we can utilise the RBM to create an approximation of a quantum system,
and how we use it as an ansatz with the variational method.

4.1 The Restricted Boltzmann Machine

The Boltzmann Machine (BM) is a neural network with stochastic nodes [27].
The nodes can take on one of two values, and there is a energy associated with
each configuration of neurons i.e. a state. The BM is updated stochastically by
using discrete time steps t. A lower energy configuration is emerging more often
than a high energy configuration. The collection of observed configurations when
t → inf will converge. The occurrence of each configuration in the collection is
then the probability for the configuration to be found in the BM. While the fully
connected structure makes in very capable of learning highly complex structures,
it also makes the training of the network practically very hard [21].

The challenge of training the BM inspired the use of a RBM. It differs from
the Non-restricted Boltzmann machine by eliminating the inter-layer node con-
nections i.e. no visible node is connected to another visible node and the same
with hidden layer. This make the training process easier [28] as we will see later,
while still keeping many of the BMs properties. It is a unsupervised model used
to discover hidden structures in data. The network is usually made out of two
parts: Visible layer and hidden layer. RBM belong to a class known as energy-
based models. The energy-based models differ from other NN by estimating
probability densities instead of values of the inputs. i.e. they find many points
instead of one value. This is also called a generative model and is mathematically
a function that takes a configuration as an input, and returns a probability

f(|i⟩) = P, (4.1)

where |i⟩ is a binary configuration of the visible layer.

21

RBMs can approximate any distribution in an N-dimensional space [19]. The
process of an RBM called "reconstruction" where it learns to recreate data by
passing information back and fourth between the visible and the hidden layer.
This generative property of the RBM is at the core of this method of approxi-
mating quantum ground states. We Want the RBM to act as an machine outputs
the probability when we insert a state (configuration of the visible layer) equal
to the same probability of measuring the same state in the quantum system.

Term Description
Nodes The NN building blocks that hold information.
Connections Describe how the nodes can interact with each other
Visible layer The set of nodes we encode and read information from
Hidden layer The set on nodes that allows the network its flexibility
Bias A value directly influences a specific node
Weigths A value describing the strength of a connection

Energy A term used in RBM theory related to the probability for a specific
configuration of the visible layer to appear

Parameters All the values that we change during training (biases and weigths)

Table 4.1: A glossary of commonly used terms in RBM theory

4.2 Structure of the RBM

There is only two layer in the RBM called visible layer and hidden layer as seen
in figure 4.1. In our case the visible layer representing the spin states or qubits of
a quantum system. The hidden layer provides the network with the flexibility to
express the properties of entanglement or correlation between the visible nodes
[17]. The possible values for both the visible and hidden layer is binary {0, 1}.
We do not have a output node with the RBM which are commonly found in NNs.
Instead we want to retrieve the RBM energy by looking at how the visible layer
changes "over time".
The nodes and connections in the network are influenced by a set of parameters.
these parameters are the collection of the node biases and connection weights. It
is important to point out that the RBM is an mathematical function. It is not an
actual network of nodes firing with activation functions. It is this mathematical
description we are going to provide us with the probabilities and energies. Not
actually sampling a network firing nodes.

22

σ0 σ1 . . . σn

h0 h1 h2 . . . hn

W00

W01 Wnn

c0 c1 cn

b0 b1 bn

Visible nodes
Hidden nodes

W Weights

b Visible node bias
c Hidden node bias

Figure 4.1: Visualization of the RBM network layout showing how the connection between the
visible and hidden layer is imagined. Figure by the author.

4.3 The mathematical RBM

Here we will present the mathematical foundation that is building the RBM.
Below is the equation for the probability P of finding the RBM in a state χ. A
state is a configuration of the visible and hidden layer

P (σ, h) =
1

Z
e−E(σ,h), (4.2)

where E is the energy for the state, and 1
Z

is a normalization constant described
in (4.3). This probability is a Boltzmann probability distribution, and where the
network has its name from. The term energy is commonly used in literature both
for RBMs and for Boltzmann distributions. It is worth noting that this energy
is the RBM energy, and not the energy of the quantum system we want to learn.

Z =

√∑
∀

P (4.3)

The probability E is calculated in follow way:

E(σ, h) =

Nh,Nσ∑
i,j=1

hiWijσj +

Nh∑
i=1

cihi +
Nσ∑
j=1

bjσj, (4.4)

where σ is the binary vector representing the nodes in the visible layer and h

the binary vector in the hidden layer. The χ = {σ, h} is the set of all binary
vectors. W is the weights between the visible and hidden layer. b, c are the biases
for respectively the visible and hidden layer. Nσ, Nh is the number of nodes in
each layer. An alternate way of writing this is by using matrix representations
in stead on sums:

E(σ, h) = hTWσ + cTh+ bTσ (4.5)

23

This representation is more closely related to both notation from quantum me-
chanics (vectors/(matrices) and how we will implement the framework in code.

4.4 Marginalization of hidden layers

One of the benefits the RBM gives us over a regular BM are the possibility to
trace away the hidden layer from our calculation. This is solely due to the lack
of connection internally in the hidden layer. If we look at the formula for finding
the probability of a given state in the RBM (4.2). If we want to find probability
to find a specific visible layer state σ, we only need to check all possible values
of the hidden layer h to get the probability.

P (σ) =
∑
∀h

P (σ, h) (4.6)

Where ∀h are all the possible values of vector h i.e. {0, 1}. This is the marginal-
ization, that is, one of the degrees of freedom in the density is being summed
over i.e. h. We can expand the expression for energy into separate terms for the
biases and weights.

=
1

Z

∑
∀h

e−(hTWσ+cT h+bT σ)

=
1

Z

∑
∀h

e−(hTWσ+cT h)

︸ ︷︷ ︸
Part A

eb
T σ (4.7)

A closer look at part A.

1

Z

∑
∀h

e−(hTWσ+cT h) =
1

Z

∑
∀h

e−h
TWσe−c

T h (4.8)

We know that h can only take the values {0, 1}, so we can quickly check all
possible outcomes of (4.8) by inserting.

hi = 0 ⇒
e−cihi = 1

e−hiWijσj = 1
(4.9)

hi = 1 ⇒
e−cihi = e−ci

e−hiWijσj = e−Wijσj
(4.10)

This means we can rewrite (4.2) to an expression which is not dependent on h

at all, only the weights between the visible and hidden layer and the biases.

24

P (σ) =
1

Z

Nh∏
i=1

(
1 + e−W [i]σ−ci

)
· ebT σ (4.11)

Where W [i] is the i-th row of W =

W11 W12 · · · W1Nσ

W21 W22 · · · W2Nσ

...
...

Wi1 Wi2 · · · WiNσ

WNh1 WNh2 · · · WNhNσ

Now we have an expression to find the probability for a given state to appear
from the RBM. We still don’t know what the normalization factor 1

Z
is, and

calculating it will require us to know the complete distribution of the RBM.
This is a problem for large systems, since the number of states that need to to
be checked grows exponentially.

4.5 Complex Parameters

We can treat
√
P(σ) as an amplitude Ψ(σ) of the state |ψθ⟩ =

∑
Ψ(σ) |σ⟩ of Nσ

qubits represented by the RBM. However, amplitudes we get are real and positive
since P is real and positive. Strictly positive amplitudes are not a problem in the
case that the Hamiltonian has a positive-valued ground state. However, this is
not the case for the systems we are interested in, and thus we need to generalize
this to complex amplitudes.

There are two ways to introduce complex amplitudes. First method is that
we can use a second RBM an approach called phase modulus RBM [20]. This
extra network will give us phases Φ, so that ψθ =

√
P θ
RBM1e

iΦθ , where Φθ =

− log
P θ
RBM2

2
. Where PRBM1 and PRMB2 are the probabilities retrieved from the

two RBMs. Both the RBMs are real valued, but in combination they can express
the complex space of the quantum system.The second approach is to assume
that all parameters of the RBM (biases and weights) are complex numbers. This
approach is called complex RBM. Based on the study done by Viteritti et. al.
we will go for the latter approach. It requires a fewer amount of parameters and
also have better accuracy for ground state energies [20].

We now have complex amplitudes form the RBM. We still want avoid calculat-
ing the scaling factor 1

Z
form equation (4.11), since it will require an exponential

growth in computation time. Thus we omit the scaling factor and introduce an
unnormalised but still useful as we will see, amplitude ϕ.

25

ϕ(σ) =

Nh∏
i=1

(
1 + e−W [i]σ−ci

)
· ebT σ (4.12)

26

5 | Local Energy

5.1 Local observables and local energies

As we’ve seen, the accurate energy of the RBM requires us to know the complete
probability of the system to calculate the scaling factor Z 4.3. To achieve this,
we would need all information about said distribution, and thus we would not
need to create an ansatz in the first place. We can circumvent this paradox by
estimating the energy for a local state of the RBM. Recall that a RBM encodes
a quantum state with a set of parameters |ψθ⟩. The state can be expressed as
in (2.8) of states |σ⟩ and amplitudes Ψθ. Recall, Ψθ

i =
√
P θ
i , and P θ

i is the
probability to find neurons of the visible layer in the state |i⟩. The states can be
represented as integers i = σ1 · 20+σ1 · 21+ · · ·+σNσ · 2nσ−1 where σ1, σ2, . . . , σN
(σs ∈ {0, 1}) is a binary vector specifying the state of visible neurons like the
operational basis discussed in 2.3. So we have a RBM with a certain parameter
vector θ, and we want to estimate the energy Eθ of our current NQS, |ψθ⟩.

Eθ =
⟨ψθ|Ĥ|ψθ⟩
⟨ψθ|ψθ⟩

(5.1)

⟨ψθ| =
∑
i

Ψθ∗
i ⟨i| and |ψθ⟩ =

∑
i

Ψθ
i |i⟩ (5.2)

Where Ψθ
i is the amplitude of expansion of the states in the operational basis.

This gives

Eθ =

∑
iΨ

θ
i ⟨i| Ĥ

∑
i′ Ψ

θ∗
i′ |i′⟩∑

iΨ
θ
i ⟨i|

∑
i′ Ψ

θ∗
i′ |i′⟩

(5.3)

=

∑
i

∑
i′ Ψ

θ
i ·Ψθ∗

i′ ⟨i| Ĥ |i′⟩∑
i

∑
i′ Ψ

θ
i ·Ψθ∗

i′ ⟨i|i′⟩
(5.4)

Recall, ⟨i|i′⟩ = δii′ is the Kronecker product i.e. is 1 if i = i′ and 0 otherwise

27

=

∑
i

∑
i′ Ψ

θ
i ·Ψθ∗

i′ ·
Ψθ

i

Ψθ
i
⟨i|H |i′⟩∑

i |Ψθ
i |2

(5.5)

=
|Ψθ

i |2∑
i |Ψθ

i |2
∑
i

·Ψ
θ
i′

Ψθ
i

⟨i|Ĥ|i′⟩ (5.6)

Recall the amplitude absolute valued squared is interpreted as the probability
for that state to be found |Ψθ

i |2 = P θ
i

∑
i

P θ
i ·

(∑
i′

⟨i|H |i′⟩ · Ψ
θ
i′

Ψθ
i

)
(5.7)

We then have an expression for the energy based on the probability for a state
and its local energy,

Eθ =
∑
i

P θ
i · εθi (5.8)

where εθi is the local energy of the state |i⟩,

εθi =
∑
i′

⟨i|H|i′⟩ Ψ
θ
i′

Ψθ
i

(5.9)

The factors 1
Z

terms found in cancel out from the fraction because they are a
common factor, we can use a quantity we can obtain from (4.12).

εθi =
∑
i′

⟨i|H|i′⟩ ϕ
θ
i′

ϕθi
(5.10)

We can’t calculate P θ
i itself without summing over all states which is expo-

nential. Therefore, the summation (5.8) is a problem. This is solved with a
MCMC 6.1 procedure. Let’s introduce ε̂i

ε̂i = εj, where |j⟩ ∼ PNQS(j) (5.11)

Meaning ε̂i is the local energy of a state |j⟩ which is generated by the probability
distribution of the NQS. Finally, we estimate the energy from the sample states
by averaging.

Eθ ≃
1

nλ

∑
i=1

ε̂θi , (5.12)

where nλ is the number of samples retrieved form the MCMC procedure. If the
state for the lowest energy for the NQS, |E0⟩ is localized over a few neighbouring

28

states from the set {|i⟩}, then the sampling is very efficient, because the energy
can be efficiently estimated bu just these few relevant states. This again meaning
we need a lot fewer samples than the size of the Hilbert space. if not, then it isn’t
practical since we have to consider a exponential growing part of the Hamiltonian.

5.2 Local energies with the Ising model

Let’s introduce the local energies of the sparse Hamiltonian in section 2.7.3. The
power of MCMC sampling really shines when the Hamiltonian describing the
system is focused on a few states. Instead of considering the whole Hilbert space
of the system, we can use a more efficient way to calculate the energies needed.
Recall the Ising Hamiltonian introduced in in equation (2.14).

ε(σ) =
∑
σ

⟨σ|Ĥ|σ′⟩ Ψ(σ′)

Ψ(σ)
=

n−1∑
i=1

γi
Ψ(µi)

Ψ(σ)
(5.13)

where µi is the same state as σ except the values on index i and i+1 are flipped
i.e. i = 2, σ = [01101] ⇒ µ2 = [01011]. µi = |σ1, σ2, . . . , σ̄i, σ̄i+1, . . . , σn⟩ This
means we can "skip" most of the elements that would be present in the matrix
Hamiltonian, and save precious computational time and power.

29

6 | Quantum Monte Carlo

In real life many-body problems, most of the distribution contributes little or
nothing to the total probability. The amount of "emptiness" grows exponentially
with the increase of dimensions. Let’s say you have a one dimensional distribution
where only 10% is contribution to the total in a significant way. In two dimensions
the same distribution will probably only ∼ 1% contribute. For three dimensions
∼0.1% and so on. This is a property we can exploit by sampling the system.
By having denser sampling in the areas that contribute more to the distribution,
and less inn areas that contribute less, we can get better accuracy with much
less samples. Chapter is based on [29] and [30]

6.1 Quantum Monte Carlo

Quantum Monte Carlo is the name of the group of approximation methods used
to solve complex quantum systems by using Monte Carlo methods. As Monte
Carlo once was the world capital of hazard games and gambling, the name is
being used due to the stochastic nature of the methods. The target is to produce
samples efficiently from an unnormalized probability distribution. We want to
create a chain of samples of state from the target distribution i.e. |ψ|2, so that the
probability of one state to appear in the chain is the same as the probability for
that state to be measured in the quantum system. There are several approaches
to how to achieve this, and in this chapter we will present one that is used
togehter with the variational method 3.1 in our implementation and training of
the NQS.

6.2 Markov Chain Monte Carlo

The MCMC is the name of a group sampling algorithms that samples from a
probability distribution. They provide a straightforward way to simulate values
from any known distribution and use the same samples for other tasks. More
specifically it samples over Markov Random fields. In short, a Markov random

30

field is a space where the probability to move from a point to the next is only
dependent on the point you are on. If we store every point we visit we will create
a Markov chain. If we were to collect infinitely many points, the distribution of
the points in the chain will converge to the probability distribution that were
sampled. The RBM is a probabilistic undirected graphical model and thus a
Markov random field [28].

6.3 Hamming step and random walk

A Hamming distance is in general a metric for comparing two equal-length data
strings, by quantifying the element-wise deviation between them [31]. In the case
of binary strings or arrays, as we are using in this project, the Hamming distance
H between two binary string of same length, A and B, can be calculated the
following way.

H =
∑
i

|Ai −Bi| (6.1)

Where i is the index in the string or array. We have to perform a random walk
over the set of operational states, {|i⟩}. The walk in random walk is done by
taking steps in the distribution landscape. A step is a move from one state to
the next. In the case of the RBM. To move in our landscape, we are going to
take Hamming steps. This is done by moving the state by a Hamming distance
of 1, i.e. "flipping" the value of a randomly chosen node in the visible layer e.g.
|01101⟩ → |01001⟩. When a new state is reached, we need to check if the new
sample is going to be collected in our Distribution chain or not.

6.4 Metropolis-Hastings algorithm

Metropolis-Hasting is a subgroup of MCMC algorithms. It describes how we
select our next entry in our state-collection while doing a random walk to en-
sure that the resulting samples aproximates the target ditribution. Here we will
present the algorithm as it is used in this project, i.e. not the most general one.

P (i→ i′) = min

(
1,
P (i′)

P (i)

)
(6.2)

where P is the probability to accept the new state |i′⟩ coming from state |i⟩, P (i′)
is the probability that the RBM is state |i′⟩, and P (i) is the RBM probability to
be in state |i⟩ given the same set of parameters for the RBM.

The Metropolis-Hasting Algorithm can be then summarized in the following
steps:

31

1. Generate a random state σt where t = 0 and add it to the chain D(t) = σt.

2. Take a hamming step in the distribution landscape and find a new state
σt+1

3. Compute the quantity R = P (σt+1)
P (D(t))

.

4. Draw a uniformly distributed random number η ∈ [0, 1).

5. If R > η, accept the new states, i.e. D(t + 1) = σt+1. Otherwise, the
following state in the chain stays the current one: D(t+ 1) = σt.

6. Increase t by one and repeat form step 2. When the number of desired
samples are collected, the algorithm is done.

If we let nλ → ∞, the collection of samples will approximate the target
distribution.

6.5 Standard deviation of the MCMC and choos-

ing number of samples

The collected samples from the MCMC algorithm can be used as an estimator
x̂.

x̂ =
1

nλ

nλ∑
i

xi, (6.3)

where nσ is the number of samples in the collection, and λ are the collection of
samples. The variance of the estimator V (x̂9 will then be

V (x̂) =
1

nλ

nλ∑
i

V (xi), (6.4)

and the standard deviation std(x̂)

std(x̂) =
1
√
nλ

nλ∑
i

√
V (xi) (6.5)

The standard deviation or error of the estimation is only dependent on the num-
ber of samples, and an 4 time increase in nλ will give a halving of the MCMC
error.

32

6.6 Warm up

One nice thing about the MCMC algorithm is that it converges form any staring
point in the distribution if the number of samples is big enough. Downside is
that it does require a number of samples that are not a representation of the
distribution before it actually begins converging. A normal practice is to throw
away some of the first samples of the sample walk i.e. not collect them for
the final distribution. This is called the thermalization, burn in steps, or later
preferred, warm up period [32] of the algorithm. There is no obvious way in
knowing how many steps the warm up should last, and is a subject of trial and
error. After some experimenting we chose set the number of warm up steps to
be 10/Nsampels, a tenth of the number we want to samples. Since the number
of samples needed scales with system size, the warm up steps scales with this as
well.

33

7 | Training the RBM

The RBM, as most neural networks require training. Training is the process of
adjusting the models parameters so that the model performs as desired. The
generative properties of the RBM in combination with the variational method
makes defining the training in one of the three traditional umbrella terms for
machine learning: Supervised, unsupervised and reinforcement

This is done by choosing an objective function. Also often called loss function
it’s functions as a measure of how well the model performs. A lower output of
the loss function means the model is performing better. Then the parameters are
adjusted in an iterative manner, so that the objective score is as low as possible.
In this project we have utilized gradient descent to perform the training.

7.1 Gradient descent

Gradient Descent (GD) also knows as steepest descent is an optimization tech-
nique for finding minimum (or optimum) of a function f(x) that is differentiable
in an neighborhood around x, where x can be a many variable vector. For each
time step n, we can intuitively see that a movement f(xn) → f(xn+1) in the
direction where the gradient is lowest will lead to f(xn+1) ≤ f(xn). Note that
this is only true when each step is short enough so that we overshoot

xn+1 = xn − η · ∇xf(xn) (7.1)

∇xf(xn) are the gradients of f w.r.t. x. The parameter η is often called learning
rate. The learning rate adjust how long (or short) each step will be. It is most
often used in the 0.001 − 0.1 range, although others can be used. A too low
value will lead to slow convergence toward an minimum. While a too high value
will lead the algorithm to "jump" over minimum, and also not converge correctly.
Changing the sign of η will lead to an steepest ascent method, that find maxima.
GD is relatively easy to understand and implement. Still. it is a powerful tool
when the grandient landscape is "easily traversable" meaning the gradient is not
close to 0 in most on the space. Downsides with the gradient decent method

34

is that it is somewhat naive, can take long to converge, and is easily stuck in
local minimum. To improve performance improved variants of GD algorithm like
Adam 7.2 can be used.

7.2 Adam optimization

Adam is a stochastic gradient descent algorithm to add momentum to the often
called "vanilla" gradient descent (7.1) proposed by Kinga & Ba [33]. It uses the
moving averages of the gradients to dynamically adjust the individual gradient
step size. This leads to faster convergence and also helps with avoiding local
minima.

Algorithm 1 Adaptive Movement Estimation algorithm (Adam), from [33]
Require: γ : Learning rate
Require: β1, β2 ∈ [0, 1) : Exponential decay rates for the moment estimates
Require: f(θ) : Stochastic objective function with parameters θ
Require: θ0 : Parameter vector to be optimized
m0 ← 0 moment 1
v0 ← 0 moment 2
t← 0 time step
while θt not convergent do

t← (t+ 1) Increase time step
gt ← ∇θft(θt−1) Find the gradients
mt ← β1 ·mt−1 + (1− β1) · gt Updating moment 1 using gt and β1
vt ← β2 · vt−1 + (1− β2) · g2t Updating moment 2 using gt-squared and β2
m̂t ← mt/(1− βt1) Bias corrected estimate 1
v̂t ← vt/(1− βt2) Bias corrected estimate 2
θt ← θt−1 − γ · m̂t/(

√
v̂t + ϵ) Update the parameters

end while
return θt

From literature we will use the standard parameters β1 = 0.9, β2 = 0.999 in
this project.

7.3 Finite difference scheme

Finite difference is a numerical differentiation method for estimation gradients
[34]. It comes in many flavors in accuracy and complexity and is a tried and
true method for approximating gradients. It is based on the definition of the
derivative,

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

(7.2)

where f(x) is the function to be evaluated and x is the point where f(x) is
evaluated. When the difference h approaches zero, the result is the derivative of

35

f at point (x). Since most of real life problems cant be evaluated analytically
this way, we can use FD to estimate the derivative. This approach is instead of
having h reaching 0, we let h be a small enough number for the approximation
to be sufficiently accurate.

f ′(x) ≈ f(x+ h)− f(x)
h

(7.3)

There are improvements to this one-point method. The FD scheme we are using
in this project is a two-point method (7.4). Meaning we average the gradient over
two points instead of one. The error in this method is scaling with 1

h2
instead of

1
h

as in (7.3) meaning we get a much faster convergence for the same value choice
of h.

f ′(x) ≈ f(x+ h)− f(x− h)
2h

(7.4)

7.4 The Analytic Gradient of the RBM

We use the RBM to encodes a state φθ(σ) that we hope will match a unknown
wave function ψ(σ). This trial wave function φ (the RBM) is parameterized
with parameter set θ = {ν1, ν2, ..., νm}, i.e. weights and biases. The states
σ = σ1, σ2, .., σn. is all possible configurations of the visible layer of the RBM.
The parameters are in general initially a set of random numbers and the likeness
between the ansatz and the target wave function is most definitely poor. We have
seen in section 3.1, the variational method tells us that E(θ) ≥ Egs. Thus our
goal is to find the set of parameters θ that minimizes E(θ) as much as achievable.
To tune these parameters and train the RBMwe can use gradient decent over the
parameter space:

θt+1 = θt − η · ∇θE(θt) (7.5)

Where ∇θE(θ) = {∇θ1E(θ),∇θ2E(θ), ...,∇θmE(θ)} is the vector of gradients for
all the parameters. The gradients can be found by using numerical methods as
discussed in section 7.3, but the mathematical nature of the RBM makes it natu-
ral to find and use the analytical gradient as well. Before we show the derivation
of the expression for the RBM gradient, we will quickly discuss handling the
complex valued θ in the gradients.

7.4.1 Complex parameters and real valued gradients

Since quantum systems are described with complex amplitudes, we will need to
also be parameterizing the RBM with complex parameters θ = {W , b, c} ∈ C.

36

If we were to operate with complex parameters θ we would need to take into
account that there is no "straightforward" derivative with respect to complex
arguments.one would have to use Writinger derivatives

∂f

∂θ
=

1

2

(
∂f

∂θR
− i ∂f

∂θI

)
(7.6)

∂f

∂θ∗
=

1

2

(
∂f

∂θR
+ i

∂f

∂θI

)
(7.7)

Where θ = θR + iθI . In the end we would have to handle everything with real
parameters in implementation. We can instead splitt the parameter vector θ into
its real and imaginary parts θ = ν1, ν2, ..., where ν1 = Re(θ1), ν2 = Im(θ1). This
will double the amount of parameters, but keep everything real for derivations.
A drawback is that we need to pay extra attention during implementation. We
need to recombine and separate the lists of real and imaginary parameters as
complex number in other to do calculation correctly.

7.4.2 Analytical expression for the gradients of the RBM

Finding an analytical gradient of the RBM will hopefully let us evaluate the
gradient faster and more precisely for each step in the gradient descent method
than FD. We have an ansatz which we can write as an linear combination of all
the states and their respective amplitude/probability.

|ψθ⟩ =
∑

ψ(σ) |σ⟩ (7.8)

where the probability ψ is calculated with (4.11). Looking at the gradient decent
of the parameters 7.5 we can rewrite the energy E(θ) as a expectation value 2.5,
and we can find the gradients.

∇θE(θ) =
∂

∂θ

(
⟨ψθ|Ĥ|ψθ⟩
⟨ψθ|ψθ⟩

)
(7.9)

=

Part A

∂

∂θ
(⟨ψθ|Ĥ|ψθ⟩) ⟨ψθ|ψθ⟩

⟨ψθ|ψθ⟩2
−
⟨ψθ|Ĥ|ψθ⟩

Part B

∂

∂θ
(⟨ψθ|ψθ⟩)

⟨ψθ|ψθ⟩2
(7.10)

We now look at part A.

37

Part A

∂

∂θ
(⟨ψθ|Ĥ|ψθ⟩) = ⟨

∂ψθ
∂θ
|Ĥ|ψθ⟩+ ⟨ψθ|Ĥ|

∂ψθ
∂θ
⟩ (7.11)

=
∑
σ

[
⟨σ|∂ψ

∗
θ(σ)

∂νj
Ĥ|ψθ⟩+ ⟨ψθ|

∂ψθ(σ)

∂θ
Ĥ|σ⟩

]
(7.12)

We use the linear expansion from (7.8). Next, we look at part B

Part B

∂

∂νj
⟨ψθ|ψθ⟩ =

∑
σ

[
∂ψ∗

θ(σ)

∂νj
⟨σ|ψθ⟩+

∂ψθ(σ)

∂νj
⟨ψθ|σ⟩

]
(7.13)

=
∑
σ

∂

∂νj
|ψθ(σ)|2 (7.14)

=
∂

∂νj

(∑
σ

|ψθ(σ)|2
)

(7.15)

Part A∑
σ

[
⟨σ|∂ψ

∗
θ(σ)

∂νj
Ĥ|ψθ⟩+ ⟨ψθ|

∂ψθ(σ)

∂νj
Ĥ|σ⟩

]
⟨ψθ|ψθ⟩

− (7.16)

Part B∑
σ ⟨ψθ|Ĥ|ψθ⟩

∂

∂νj

(∑
σ

|ψθ(σ)|2
)

| ⟨ψθ|ψθ⟩ |2
(7.17)

We continue with part A. To easier rewrite the expression as expectation values
further on, let’s introduce:

∂

∂νj
ψθ(σ) = ωjθ(σ)ψθ(σ) (7.18)

where, ωjθ(σ) =
1

ψθ(σ)

∂

∂νj
ψθ(σ) (7.19)

38

Part A∑
σ

[
⟨σ|ωj∗θ (σ)ψ∗

θ(σ)Ĥ|ψθ⟩+ ⟨ψθ|ω
j
θ(σ)ψθ(σ)Ĥ|σ⟩

]
⟨ψθ|ψθ⟩

(7.20)

We can rewrite ω as a matrix

Ωj
θ =

ωjθ(00...0) 0 0 0

0 ωjθ(00...1) 0 0

0 0
. . . 0

0 0 0 ωjθ(11...1)

 (7.21)

Part A can be simplified to a very compact expression the following way.

Part A∑
σ

[
⟨σ|Ωj∗

θ (σ)ψ
∗
θ(σ)Ĥ|ψθ⟩+ ⟨ψθ|Ω

j
θ(σ)ψθ(σ)Ĥ|σ⟩

]
⟨ψθ|ψθ⟩

(7.22)

=
⟨ψθ|Ωj∗

θ Ĥ + ĤΩj
θ|ψθ⟩

⟨ψθ|ψθ⟩
(7.23)

Note that the matrix
∑j

θ = |Ω
j∗
θ Ĥ+ ĤΩj

θ| is hermitian. Therefore part A is real.
It is easy to check.

⟨ψθ|Ωj∗
θ Ĥ + ĤΩj

θ|ψθ⟩ (7.24)

With a sligth abuse of notation : (7.25)

= 2Re ⟨ψθ|ĤΩj∗
θ |ψθ⟩ (7.26)

= 2Re ⟨ĤΩj∗
θ ⟩ (7.27)

Now, again we look at part B.

Part B∑
σ

⟨ψθ|Ĥ|ψθ⟩
∂

∂νj

(∑
σ

|ψθ(σ)|2
)

| ⟨ψθ|ψθ⟩ |2
(7.28)

⟨ψθ|Ĥ|ψθ⟩
⟨ψθ|ψθ⟩︸ ︷︷ ︸
= ⟨Eθ⟩

∑
σ

[
∂ψ∗

θ (σ)

∂νj
ψθ(σ) +

∂ψ
(
θσ)

∂νj
ψ∗
θ(σ)

]
⟨ψθ|ψθ⟩︸ ︷︷ ︸

We derive further

(7.29)

39

∑
σ

[
1
ψ∗
θσ

∂ψ∗
θ (σ)

∂νj
ψθ(σ)ψ

∗
θ(σ) +

1
ψθσ

∂ψθ(σ)
∂νj

ψ∗
θ(σ)ψθ(σ)

]
⟨ψθ|ψθ⟩

(7.30)

=

[
ωj∗θ |ψθ(σ)|2 + ωjθ|ψθ(σ)

]
⟨ψσ|ψσ⟩

(7.31)

=
|ψθ(σ)|2

[
ωj∗θ (σ) + ωjθ(σ)

]
⟨ψσ|ψσ⟩

(7.32)

=
⟨ψθ|Ωj∗

θ + Ωj
θ|ψθ⟩

⟨ψσ|ψσ⟩
(7.33)

=
⟨ψθ|2Re(Ωj

θ)|ψθ⟩
⟨ψσ)|ψσ⟩

(7.34)

= 2Re(⟨Ωj
θ⟩) (7.35)

We can show that the gradient of a given parameter j can be calculated the
follow way:

gj =
∂Eθ
∂θj

= 2Re
[
⟨ĤΩj∗

θ ⟩ − ⟨Ĥ⟩ ⟨Ω
j∗
θ ⟩
]

(7.36)

We need to estimate the energy Eθ as discussed earlier by using the local energies
based on the MCMC sampling. We can find the expectation values for ⟨Ω⟩ and
⟨Ĥ⟩ = E by using the local operators. 5.1

gj ≈
1

λ

∑
i

ε̂(σi)Ω
j∗
θ (σi)−

1

λ

(∑
i

ε̂(σi)

)(∑
i

Ωj
θ(σi)

)

gj ≈ 2Re

[
1

λ

λ∑
j=1

ε̂(σi)
(
Ωj∗
θ − Ω

j∗
θ

)]
, (7.37)

where λ are the number of samples , and Ω
j

θ is the average...

Ω
j

θ =
λ∑
j=1

Ωj
θ(σi) (7.38)

Note that everything is complex, including local energies eL(σ) in the general
case. Once all derivative gj are estimated, we can perform one step of gradient
descent.

Other NQS studies using a RBM operates with basis {-1, 1} [11][20], while
we utilise the operational basis. This makes the expressions for the parameter

40

gradients different from the one presented in the previous mentioned papers.
Let’s introduce logarithmic derivatives:

Ωj
θ(σ) =

1

ψθ(σ)
·
∂ψθj(σ)

∂θj
(7.39)

Recall that θ =W , b, c i.e. all weights and biases in the RBM. We then use our
ansatz (4.11) as our parameterised trial wave function φθ(σ). We can then look
at the derivative for each of visible bias, hidden bias, and weights. Let’s start
with the visible biases. The logaritmic derivative derivative then gives us

gbj =
1

ψθ(σ)

∂ψθ(σ)

∂bj
= −σ (7.40)

Next we consider hidden biases c

gcj = −
e−W [i]σ−cj

1 + e−W [i]σ−cj
(7.41)

And last the weights

gWij
= −σj

e−W [i]σ−cj

1 + e−W [i]σ−cj
(7.42)

With these three expression we can evaluate the gradients for all parameters

7.5 Tools for analyzing

To analyse the effectiveness of our implementation we are going to need some
measures for comarison. This section will introduce the error measures used in
the experiments with the module.

7.5.1 Relative error

The relative error is a way to measure the error of solutions for different sized
problems in a comparable way. It is used for investigating the precision of a
NQS of different sizes with success in previous work [11]. Let the true value of a
quantity be x and the measured or inferred value x0. Then the relative error δx
is defined by

δx =
∆x

x
=

∣∣∣∣x0 − xx

∣∣∣∣ (7.43)

where ∆x is the absolute error. The relative error is expressed as a percentage.
We find the relative error ϵrel between two energies the following way.

41

ϵrel =

∣∣∣∣ENQS(θ)− EexactEexact

∣∣∣∣ (7.44)

Where ENQS(θ) is the NQS energy at the current configuration of parameters,
Eexact is the actual ground state energy calculated with diagonalization, a nu-
merically precise method, but slow for large quantum systems.

7.5.2 State error

As a measure of the similarities between two states we can use fidelity. For pure
states as we are working with, fidelity can be calculated by taking the inner
product of two different states F = ⟨ψ|φ⟩. In our case this will be the RBM
wave function and the ground state of the target Hamiltonian. We can find the
state error ϵfid as shown

ϵfid = 1− ⟨ψ|φθ⟩ , (7.45)

where ψ is the Hamiltonian ground state eigenstate, and φθ is the RBM. If they
are completly overlapping i.e. the same state, then ⟨ψ|φθ⟩ = 1 so ϵfid = 0. If the
are orthogonal i.e. no overlap, then ⟨ψ|φθ⟩ = 0 and ϵfid = 1. We can then say
something about how close the RBM is to the actual ground state in percentage
by the fidelity, expressed in a similar way than other errors we are using in this
project.

Since the Ising model we use has degeneracy, i.e. it has two states with the
same energy, we need to modify (7.45) to consider both ground states.

ϵfid = 1−
√
| ⟨ψ|φaθ⟩ |2 + | ⟨ψ|φbθ⟩ |2, (7.46)

where φaθ and φbθ are the two states with the same energy. This makes the error
of the Ising system behave as with the non-degenerate states we have with the
random Hamiltonian.

7.5.3 Probability error

Another property we are going to investigate is the MCMC algorithms accuracy
of representing a state. Here we don’t have complex quantum states as in the
fidelity error, but probability distribution. These can be compared by using the
sum of error between each state probability. Since the probabilities we are using
always are normalized to 1, we can use this quite simple error measure ϵprob

ϵprob =

∑
|P (φ)− P (ψ)|

2
, (7.47)

42

where, P (φ) is the probability distribution for the RBM, and P (ψ) is the prob-
ability distribution of the target Hamiltonian. A ϵprob of 1 will mean the distri-
butions have no overlap, while a ϵprob of 0 will mean they are identical.

43

Part II

Implementation

44

8 | From theory to code

In this chapter we will present the how the theory is implemented in code. For
clarity we have put the name of attributes, methods/functions, parameters/ar-
guments and classes will be written in verbose text. For the sake of clarity
and avoid misunderstanding we will refer to function parameters as arguments.
This is to let the word parameters only be used for the Restricted Boltzmann
Machine (RBM) parameters. Code snippets will be presented as listings. A
major part of this project is to investigate the computational aspects of using
an RBM to solve for the ground state of a system described by a Hamilto-
nian. Since there are few readily available frameworks to realize this apart from
traditional approaches, much of the project has been spent on implementing,
testing and running experiments on the framework we developed during this
thesis. The artifact from this process is a Python/Numpy module for creating
RBMs, sampling these with an Markov Chain Monte Carlo (MCMC) scheme,
training the RBM with different methods, and estimating ground states and
ground state energies of some different styles of Hamiltonians. The framework
is organized as a small module consisting of two file nqs.py and utils.py. It is
written object oriented to be easy in use, and make possible future expansions
to the module more convenient. The implementation is done in Python with the
Numpy library as basis for fast calculation. Since much of the Numpy library
is written in the programming language C, it is faster than many of Pythons
built in operations for arithmetic and loops [35]. The complete module used
to produce the results found in this thesis can be found at github repository
https://github.com/Overskott/Master-Thesis-Project.git

45

https://github.com/Overskott/Master-Thesis-Project.git

9 | Hamiltonian classes

There are different Hamiltonians we use in this project that have different struc-
tures and also requires different method of calculation. These are random matrix
Hamiltonian, Ising matrix Hamiltonian, and the Ising tensor product Hamilto-
nian, as presented in section 2.7. Note, the tensor product Hamiltonian is named
reduced Ising Hamiltonian in the code. They are implemented as three classes
that inherit from a parent Hamiltonian class. This parent class again inherits
from the ndarray class found in Numpy’s libraries to effectively handle array
operations which are plentiful. This is done by not directly inheriting ndarray,
but by inheriting from
numpy.lib.mixins.NDArrayOperatorsMixin instead. This "magic sentence"
allows for an more relaxed code since it takes care of handling all array op-
erations i.e. addition, multiplication, transposing etc. This would need to be
implemented manually for a ndarray inheritance to work properly [36]. Still, we
need to implement some array-like methods to handle iterations 9.0.1.

24 def __getitem__(self, key):
25 return self.values[key]
26

27 def __setitem__(self, key, value):
28 self.values[key] = value
29

30 def __array__(self):
31 return self.values

Listing 9.0.1: Methods to make iteration operations available for the Hamiltonian class

The parent class Hamiltonian is intended as an abstract class, and is not of
any use if instantiated. It merely provides the practicality for our other Hamil-
tonian’s to be recognised as separate classes and still have (from our experi-
ments) all of Numpy’s array functionality. In the code the three sub-classes are
RandomHamiltonian, IsingHamiltonian and, ReducedIsingHamiltonian.

46

9.1 Random Hamiltonian

To make sure that we are working with a valid Hamiltonian as discussed in 2.7,
we made an method for creating and returning a Hamiltonian as ndarray. The
returned array is made by combining two square matrices of elements from a
normal distribution with mean 0 and variance 1. One with real values and the
other with complex values. This gives us H in line 12 in listing 9.1.1. By adding
this matrix with its own daggered i.e. complex conjugated and transposed as
seen in line 13, we have a valid Hamiltonian since it is hermitian Ĥ ← H +H†,
which is then returned.

1 import numpy as np
2 import random
3

4

5 def random_hamiltonian(n: int):
6 """
7 Generate and returns a random hamiltonian matrix with

dimensions n^2 x n^2.↪→

8

9 :param n: The number of qubits in the system of the
Hamiltonian matrix.↪→

10 :return H: Hamiltonian matrix with random elements.

Listing 9.1.1: Method for creating a valid Hamiltonian matrix with normal distributed random
elements

9.2 Ising matrix Hamiltonian

This is the first of two ways we can represent the Ising model Hamiltonian. It rep-
resents the Hamiltonian as a matrix. To create an instance on the IsingHamiltonian
you need to pass either the size of your system size n or an array of scaling val-
ues γ as described in (2.13). We will now look at code listing 9.2.1. If n is
provided, the gamma array is randomly generated from a normal distribution in
line 42. When the array of gamma values gamma_array is provided, these values
are used for the construction of the matrix. <more when we are sure of which
Ising model to use>

47

27 """
28 return np.random.normal(size=n-1, loc=sigma, scale=mu)
29

30

31 def random_ising_hamiltonian(n: int = None, gamma_array:
np.ndarray = None):↪→

32 """
33 Generate a random Ising Hamiltonian matrix of size n^2 x n^2

with random gamma values. Only provide one↪→

34 of the parameters n or gamma_array.
35 :param n: Number of qubits in the system.
36 :param gamma_array: The gamma values to use for the Ising

Hamiltonian.↪→

37

38 :return: The Ising Hamiltonian matrix.
39 """
40 if gamma_array is None:
41 n = n
42 gamma = np.random.normal(0, 1, n - 1)
43 else:
44 n = len(gamma_array) + 1
45 gamma = gamma_array
46

47 # gamma = np.zeros(n-1) - 1
48 I = np.array([[1, 0], [0, 1]])
49 X = np.array([[0, 1], [1, 0]])
50 XX = np.kron(X, X)
51

52 H = 0
53 for i in range(n - 1):
54 h = None
55 if i != 0:
56 h = I
57

58 for j in range(i - 1):
59 h = np.kron(h, I)
60

61 if h is None:
62 h = XX
63 else:
64 h = np.kron(h, XX)
65

66 for j in range(i + 2, n):

Listing 9.2.1: Code for creating a Ising Hamiltonian in matrix form.

48

9.3 Tensor product Hamiltonian

The last and in many ways most important Hamiltonian in this project is the
tensor Ising Hamiltonian 2.7.3. It is mathematically identical with the Ising
Hamiltonian, but in implementation it is represented just with the gamma-values
γ. We can utilise this more compact representation to do calculations faster than
the matrix representation as we will discuss in the implementation of the local
energies of this Hamiltonian in section. 12.3.1 This Hamiltonian is an array of
the n−1 gamma values needed to calculate the local energies as shown in (5.13).
The class itself just contains the optional gamma array argument gamma. If no
gamma is provided, it requires the argument n to be provided. This will instantiate
the ReducedIsingHamiltonian with a gamma array of normal distributed values
with mean 0 and variance 1. The length of this array will be n− 1.

49

10 | Building the RBM

The core of this project is to explore the RBM ansatz ability to express prop-
erties of some quantum systems described by a selection of Hamiltonians, more
precisely the ground state of Ising-like systems. We implement this a s a class to
be able to efficiently create multiple instances of different configurations of net-
works (layer size, parameters, distribution, etc.). We need to implement some,
but in fact not every part of the mathematical description in section 4.3 is needed
to be a part of the RBM.

Table 10.1: Parts of the RBM

Description Symbol Attribute
Number of visible neurons Nσ visible_size
Number of hidden neurons Nh hidden_size
Vector of the visible layer σ = σ1, σ2, . . . , σNσ ∈ {0, 1} N/A
Vector of the hidden layer h = h1, h2, . . . , hNh

∈ {0, 1} N/A
The complete RBM state χ = {σ, h} N/A
The visible layer biases b b_r+b_i
The hidden layer biases c c_r+c_i
The weights W W_r+W_i
The complete parameter vector θ = {b, c,W} params

Table 10.2: Table showing the notation of different parts of the RBM with mathematical
symbols and with attribute names. Note that the weights and biases are complex and therefore
consist of two parts in the implementation

The RBM implementation does not actually need to contain neither the visible
nor the hidden neurons. The hidden neurons are traced away, and the visible
layer is only provided when calculating probabilities for a given state. On the
other hand, the implementation also contains some parts that are not normally
present in a RBM. A keen eye will notice while looking at the code that the RBM

class has the attributes hamiltonian, adam, walker_steps in addition to the
attributes we have been discussing earlier. The addition of these attributes to
the RBM class lets us keep the code more compact and also contain all functions for
calculating energies, probabilities, etc. inside the RBM class. When a instance of
the RBM class is initialized, it’s parameters is generated from a normal distribution

50

as we can see in code listings 10.0.1. As discussed in section 7.4.1, the imaginary
and the real parts of the parameters are stored as separate real valued arrays.
In table 10.2, we have provided an easy access "translation" between the Neural
Network (NN) jargon, the mathematical symbols, and the respective attribute
name in the RBM class.

62 self.b_r = np.random.normal(0, 1/scale,
(self.visible_size, 1)) # Visible layer bias #↪→

63 self.b_i = np.random.normal(0, 1/scale,
(self.visible_size, 1)) # Visible layer bias #↪→

64

65 self.c_r = np.random.normal(0, 1/scale, (1,
self.hidden_size)) # Hidden layer bias↪→

66 self.c_i = np.random.normal(0, 1/scale, (1,
self.hidden_size)) # Hidden layer bias↪→

67

68 self.W_r = np.random.normal(0, 1/scale,
(self.visible_size, self.hidden_size)) # s - h
weights

↪→

↪→

69 self.W_i = np.random.normal(0, 1/scale,
(self.visible_size, self.hidden_size)) # s - h
weights

↪→

↪→

70

71 self.params = [self.b_r, self.b_i, self.c_r, self.c_i,
self.W_r, self.W_i]↪→

Listing 10.0.1: The implementations of complex parameters as attributes in the RBM class

All the imaginary and real biases and weights are then stores in the params

attribute. Note that the params is a list containing the different Numpy ndarray

as elements. The arrays keep this dimensions so params is not a single vector
array with all parameters, but have a more complex structure.

51

11 | Collecting probabilities from
the RBM

We want to be able to test the RBM with both training on a target distribu-
tion which is exact and a distribution that is estimated. The exact distribution
requires us to sample over all states σ and is an inefficient approach when the
system grows since the number of states increases exponentially 2n. This will not
show us any speed up compared to diagonalization, but it is practical to bench-
mark using this as well. The estimated distribution is where the RBM shows its
strengths. The MCMC sampling will hopefully give us a speed up with the cost
of loss of accuracy.

11.1 Probabilities with the estimated distribution

As we’ve seen, the scaling factor 1
z

require us to normalize over all states. In huge
Hilbert spaces this is a problem. We therefore want to calculate the unnormalized
amplitude for any state. We now will present method unnormalized_amplitude

11.1.1 that realizes equation (4.12) and is without the computational heavy scal-
ing factor Z.

137 def unnormalized_amplitude(self, state):
138 Wstate = np.matmul(state, self.W_r) + 1j * np.matmul(state,

self.W_i)↪→

139 exponent = Wstate + self.c_r + 1j * self.c_i
140 A = np.exp(-exponent)
141 A = np.prod(1 + A, axis=1, keepdims=True)
142 A = A * np.exp(-np.matmul(state, self.b_r) - 1j *

np.matmul(state, self.b_i))↪→

143 return A

Listing 11.1.1: Methods to make iteration operations available for the Hamiltonian class

The method takes a ndarray as argument, and returns the P for that state.
In line 138 we calculate the W [i] vector, i.e. extracting the i-th row of W , by

52

using Numpys matrix multiplication function matmul(). Note that we need to
make the new matrix complex by creating two separate matrices for the real
and imaginary part, W_r and W_i, and add them together. In line 139-40 we
create the exponential expression. In line 141 we utilise Numpy’s prod function
to find the column-wise product. This "probability" by itself is not giving us any
information but as will be shown later has an important use. The "probability" is
then simply calculated by taking the absolute value squared of the unnormalized
amplitude 11.1.2.

145 def unnormalized_probability(self, state):
146 return np.abs(self.unnormalized_amplitude(state))**2

Listing 11.1.2: Merhod for returning the unnormalised probability

11.2 Probabilities with the exact distribution

To calculate the exact distribution of the RBM we need to calculate the proba-
bility of every single possible state the RBM can take i.e. the entire operational
basis from 2.1 into calculation. This is done by creating a list of numpy.array by
converting all integers from 0 to 2Nσ to binary numbers represented as an array
with the method get_all_states() 11.2.1.

79 def get_all_states(self):
80 """
81 Generates all possible states of the RBM and returns them as

a numpy array.↪→

82 :return: Distribution of all possible states as numpy array.
83 """
84 all_states_list = []
85

86 for i in range(2 ** self.visible_size):
87 state = utils.numberToBase(i, 2, self.visible_size)
88 all_states_list.append(state)
89

90 return np.array(all_states_list)

Listing 11.2.1: Methods to make iteration operations available for the Hamiltonian class

When this exact distribution is created, we can use the returned values for the
unnormalized_amplitude method presented in 11.1.1 to calculate the normal-
ization factor Z as shown in 11.2.2.

53

121 def normalized_amplitude(self, state):
122 """
123

124 :param state:
125 :return:
126 """
127 # Normalized amplitude_old
128 Z =

np.sqrt(np.sum(np.abs(self.unnormalized_amplitude(self.all_states))
** 2))

↪→

↪→

129 return self.unnormalized_amplitude(state) / Z

Listing 11.2.2: Tthe method for calculating the normalized amplitude

The actual probability for this state to appear in the RBM is then simply the
absolute value squared of the amplitude as shown in listings 11.2.3.

131 def probability(self, state: np.ndarray) -> float:
132 """
133 Calculates and returns the probability of finding the RBM in

the given state↪→

134 """
135 return np.abs(self.normalized_amplitude(state)) ** 2

Listing 11.2.3: Methods to make iteration operations available for the Hamiltonian class

For future reference we will show the wave_function() method that returns
the normalized amplitude for every state in the RBM distribution in listings
11.2.4.

92 def wave_function(self):
93 """
94 Calculates the wave function of the RBM by sampling over all

states.↪→

95 :return: the wave function of the RBM.
96 """
97 return self.normalized_amplitude(self.all_states)

Listing 11.2.4: Method for returning the RBM wave function i.e. all the amplitudes for all the
states

54

12 | Local energies

12.1 Matrix Hamiltonians

One of the benefits of using the matrix Hamiltonian representation in imple-
mentation, is the natural interaction with Numpy. We can benefit from the fast
calculations by using matrix multiplication instead of the slower approach of util-
ising loops to calculate sums. In listing 12.1.1 we present how the important local
energy is calculated when the Hamiltonian is defined as a matrix as presented in
5.1. The method local_energy takes an array of states, state, typically from
a MCMC distribution, but the full state space of the system is an option as well
(although inefficient). The for loop iterates over all the W [i] i.e. the columns of
the Hamiltonian.

148 def local_energy(self, state):
149 batch_size = state.shape[0]
150 E = np.zeros((batch_size, 1), dtype=np.complex128)
151 a1 = self.unnormalized_amplitude(state)
152

153 powers = np.array([2 ** i for i in
reversed(range(self.visible_size))]).reshape(1, -1)↪→

154 state_indices = np.sum(state * powers, axis=1)
155 for i in range(2 ** self.visible_size):
156 state_prime = np.array(utils.numberToBase(i, 2,

self.visible_size)).reshape(1, -1)↪→

157 a2 = self.unnormalized_amplitude(state_prime)
158

159 h_slice = (self.hamiltonian[state_indices,
i]).reshape(-1, 1)↪→

160 E += (h_slice / a1) * a2
161

162 return E

Listing 12.1.1: The method for calculating local energies with a matrix Hamiltonian

It then returns the energy E as an array of all the energies associated with each

55

of the states in the argument state. An important drawback with this method
can be seen in line 155 in listing 12.1.1. We need to iterate over all the 2Nσ states
to achieve the local energy. This is the big weakness of calculating local energies
for generic Hamiltonians. Even though we use a relative low number of local
states, will each evaluation be exponentially expensive because of this.

12.2 Tensor Product Hamiltonian

12.3 Study objective

As discussed in 2.7.3, the implementation of the tensor product Hamiltonian in
IsingHamiltonianReduced class, allows us to abuse the structure of the Ising
model to make more efficient calculations of the local energies and circumvent
the exponential growth of the generic Hamiltonian. This thus require another
implementation than the methods constructed for solving matrix Hamiltonians
that implements the knowledge of said structure. We want to realize equation
(5.13) to find the local energies. The code for this can be found in listings 12.3.1.
The method ising_local_energy() takes an array of states states as input
argument. The subroutine _create_mu generates the

56

165 def ising_local_energy(self, states: np.ndarray):
166 gamma = self.hamiltonian
167 p_i = self.unnormalized_amplitude(states)
168

169 def _create_mu(state, index):
170 mu = state.copy()
171 mu[:, index] = 1 - state[:, index]
172

173 if index == self.visible_size-1:
174 pass
175 else:
176 mu[:, index+1] = 1 - state[:, index+1]
177 return mu
178

179 def _local_index_energy(gamma_values, index):
180 mu_i = _create_mu(states, index)
181

182 p_j = self.unnormalized_amplitude(mu_i)
183

184 return gamma_values * p_j / p_i
185

186 local_energy = sum([_local_index_energy(g, j) for (j, g) in
enumerate(gamma)])↪→

187

188 return np.asarray(local_energy)

Listing 12.3.1: The method for calculating local energies with a tensor Hamiltonian

57

13 | Energy estimation

13.1 Exact energy

To extract the exact energy (and thus be able to get the exact probability (4.2)),
we need to brute force calculate amplitudes of all states with wave_function()

from 11.2.4 as shown in listings 13.1.1 to get the expectation value ⟨Ĥ⟩. The ben-
efit is that the implementation can then be done by calculation the expectation
value of the energy with expression (2.16).

190 def exact_energy(self):
191 wave_function = self.wave_function()
192 E = wave_function.conj().T @ self.hamiltonian @ wave_function
193 return E.real

Listing 13.1.1: Calculating the exact energy for the RBM

Even though this approach offers no computational improvements of doing this
compared to e.g. diagonalization, it is important to access for comparison and
error estimation.

13.2 Estimated energy

Contrary to the previous section, here he estimation of the energy is done by
estimating the probability distribution by using a MCMC algorithm 6.1. We
utilize this representation of the underlying distribution as the state argument
for the local energy calculations as presented in 12. This estimation will have an
error, as discussed in section 6.5.

58

195 def estimate_energy(self):
196 walker = Walker(self.visible_size, self.walker_steps)
197 sampled_states = walker(self.probability, self.walker_steps)
198

199 if type(self.hamiltonian) is IsingHamiltonianReduced:
200 return

np.mean(self.ising_local_energy(sampled_states)).real↪→

201 else:
202 return np.mean(self.local_energy(sampled_states)).real

Listing 13.2.1: Method for estimating the RBM energy with the use of MCMC sampling

The estimate_energy method in listing 13.2.1 initialises a Walker which is used
to estimate the distribution. It hen checks the type of Hamiltonian class the
RBM is initialized with, and chooses the correct solver for local energy.

59

14 | Optimization

14.1 Analytical expression for the gradients

In this section we want to explain how the expression to find the analytical gra-
dients using MCMC sampling (7.37) is implemented. If we dissect the expression
and look at the gradient matrix Ω defined in (7.21). It is a matrix with all the
gradient for each state on the diagonal. To create it we will need to calculate
the gradients for visible layer biases, hidden layer biases and weights separately.

242 def b_grad(self, state):
243 return -state
244

245 def c_grad(self, state):
246 exponent = np.matmul(state, self.W_r) + 1j * np.matmul(state,

self.W_i)↪→

247 exponent += self.c_r + 1j * self.c_i
248 A = -np.exp(-exponent) / (1 + np.exp(-exponent))
249 return A
250

251 def W_grad(self, state):
252 batch_size = state.shape[0]
253 A = self.c_grad(state)
254 # batch-wise outer product between c_grad and state
255 A = np.einsum('ij,ik->ijk', state, A).reshape(batch_size, -1)
256 return A

Listing 14.1.1: Methods for finding gradients for b, c, and W

The code in listings 14.1.1 is a quite straightforward implementation of the equa-
tions (7.40), (7.41), and (7.42) with the use of Numpys matrix multiplication.
There is some not-so-clear code on Line 255. There the np.einsum('ij,ik->ijk', state, A)

is the Einstein summation of the two matrices A and state. Each of being two-
dimensional but with differ in the size of the dimensions. This piece of code
forces Numpy to correctly construct the W-gradient matrix.

When the gradients are calculated, we combine them go get our Ω. this is done

60

in two ways. The omega method in listing 14.1.2 creates Ω as an diagonal matrix
that can be used with matrix operations in exact_distribution gradients

14.1.5.

217 def omega(self, states):
218 omega_list = []
219

220 b_grad = self.b_grad(states).T
221 c_grad = self.c_grad(states).T
222 W_grad = self.W_grad(states).T
223

224 A = self._diag(b_grad)
225 omega_list.extend([A, 1j * A])
226

227 A = self._diag(c_grad)
228 omega_list.extend([A, 1j * A])
229

230 A = self._diag(W_grad)
231 omega_list.extend([A, 1j * A])
232

233 return omega_list

Listing 14.1.2: Omega

The omega_estimate method 14.1.3 return the Ω as a list of gradients in-
stead of a diagonal matrix. The omega returned by this method is used in the
Estimated distribution method to find the gradients.

204 def omega_estimate(self, states):
205 omega_list = []
206

207 b_grad = self.b_grad(states)
208 c_grad = self.c_grad(states)
209 W_grad = self.W_grad(states)
210

211 omega_list.extend([b_grad, 1j * b_grad])
212 omega_list.extend([c_grad, 1j * c_grad])
213 omega_list.extend([W_grad, 1j * W_grad])
214

215 return omega_list

Listing 14.1.3: Omega estimated values

14.1.1 Estimated distribution

61

315 def estimate_distribution_grad(self):
316 walker = Walker(self.visible_size, self.walker_steps)
317 states = walker(self.unnormalized_probability,

self.walker_steps)↪→

318 omega_list = self.omega_estimate(states)
319

320 if type(self.hamiltonian) is IsingHamiltonianReduced:
321 local_energies = self.ising_local_energy(states)
322 else:
323 local_energies = self.local_energy(states)
324

325 grad_list = []
326

327 for omega in omega_list:
328 omega_bar = np.mean(omega, axis=0)
329 grad = np.mean(np.conj(local_energies)*(omega -

omega_bar), axis=0).real * 2↪→

330 grad_list.append(grad)
331

332 return grad_list

Listing 14.1.4: Estimation of gradients with estimated distribution

14.1.2 Gradients of the exact distribution

Since we have derived the expression for the analytical gradient (7.36), we can
calculate it directly when we utilize the complete distribution of the system. We
can access the omega value Ω from the RBM as seen in line 295 in listing 14.1.5

62

292 def exact_distribution_grad(self):
293 grad_list = []
294 H = self.hamiltonian
295 omega = self.omega(self.all_states)
296 wf = self.wave_function()
297

298 # loop over b, c and W
299 for i, O in enumerate(omega):
300 EO = wf.conj().T @ H @ O @ wf
301 E = wf.conj().T @ H @ wf
302 O = wf.conj().T @ O @ wf
303 grad = 2 * (EO - E * O)
304 # reshape according to b, c or W
305 if i == 0 or i == 1:
306 grad = grad.reshape(-1, 1)
307 elif i == 2 or i == 3:
308 grad = grad.reshape(1, -1)
309 else:
310 grad = grad.reshape(self.visible_size,

self.hidden_size)↪→

311

312 grad_list.append(grad.real)
313 return grad_list

Listing 14.1.5: Estimation of gradients with exact distribution

14.2 Finite Difference

The finite difference method is implemented by nested for-loops. Looking at
listing 14.2.1 we see that it first checks if it is going to use an exact or estimated
probability distribution in line 260-265. If walker_steps for the instance of RBM
is set to 0, the FD will utilise the exact distribution and initialise a small h value
on line 265. for the exact distribution, the value of h is not so crucial since the
error in the probability distribution is 0. If the RBM instance is initialised with a
number of walker_steps> 0, the estimated distribution is used, and the h value
is set relative to the number of steps as discussed in section 6.5. This makes the
code more reusable for several function we want to find the gradients to i.e. the
exact energy calculation or the estimated energy calculation 13.1.

63

258 def finite_grad(self):
259

260 if self.walker_steps == 0:
261 func = self.exact_energy
262 h = 10e-4
263 else:
264 func = self.estimate_energy
265 h = 3 / np.sqrt(self.walker_steps)
266

267 grad_list = []
268 for param in self.params:
269 grad_array = np.zeros(param.shape)
270 for i in range(param.shape[0]):
271 for j in range(param.shape[1]):
272 param[i, j] += h
273 E1 = func()
274 param[i, j] -= 2 * h
275 E2 = func()
276 param[i, j] += h
277 grad = (E1 - E2) / (2 * h)
278 grad_array[i, j] = grad
279

280 grad_list.append(grad_array)
281

282 return grad_list

Listing 14.2.1: The implementation of the FD method

We now look at the for-loop at line 268. Recall that the params attribute is a
list of ndarray of different dimensions i.e. weights and biases of the RBM. The
first loop iterates over each of the ndarray and creates a new, empty ndarray

of same dimensions, grad_array on line 269. The next loop in line 270 runs
through every row of the grad_array

14.3 Adam optimiser class

Here we present the implementation of the Adam optimizer introduced in section
7.2 The Adam optimizer algorithm keeps the running average of the gradient, and
stores information about all previous steps. We also want to use Adan on both
Finite Difference (FD) and Analytical Gradient (AG). This motivates the Adam
optimiser to be implemented as an separate class where the steps are stored and
can take any gradient as input. The step() method takes a list of gradients
received either from a finite difference gradient or an analytical gradient. As

64

seen in listing 14.3.1 at line 11 and 12 the time step t is increased for each call of
Adam.step(). The time step is used in line 20 and 21 to average the movements
before returning the optimized list of gradients in line 24.

1 class Adam:
2 def __init__(self, beta1=0.9, beta2=0.999, eps=1e-8):
3 self.beta1 = beta1
4 self.beta2 = beta2
5 self.eps = eps
6 self.t = 0
7 self.m = None
8 self.v = None
9

10 def step(self, grad_list):
11 self.t += 1
12 if self.t == 1:
13 self.m = [np.zeros_like(grad) for grad in grad_list]
14 self.v = [np.zeros_like(grad) for grad in grad_list]
15

16 mod_grad_list = []
17 for i, grad in enumerate(grad_list):
18 self.m[i] = self.beta1 * self.m[i] + (1 - self.beta1)

* grad↪→

19 self.v[i] = self.beta2 * self.v[i] + (1 - self.beta2)
* grad ** 2↪→

20 m_hat = self.m[i] / (1 - self.beta1 ** self.t)
21 v_hat = self.v[i] / (1 - self.beta2 ** self.t)
22 mod_grad_list.append(m_hat / (np.sqrt(v_hat) +

self.eps))↪→

23

24 return mod_grad_list

Listing 14.3.1: The code realizing the Adam optimizer 1

65

15 | MCMC

Here we will explain the implementation of the Metropolis-hasting algorithm
from section 6.4. We created a Walker class to handle the collection and stor-
age of the MCMC algorithm. This lets us keep all relevant attributes together
and not clutter our NQS class. As seen in listing 15.0.1, the Walker requires two
arguments, the visible layer size visible_size, and the number of samples to
be collected or steps in the random walk, steps. The other attributes are gen-
erated on initialization. current_state, and next_state represents |i⟩ and |i′⟩
respectively, from section 6.4. The walk_result list is where the distribution of
states collected by the random walk is stored.

1 class Walker(object):
2

3 def __init__(self,
4 visible_size: int,
5 steps: int,
6):
7

8 self.steps = steps
9 self.burn_in = self.steps // 10

10 self.current_state = np.random.randint(0, 2,
visible_size)↪→

11 self.next_state = copy.deepcopy(self.current_state)
12 self.walk_results = []

Listing 15.0.1: The init method for the Walker class

66

14 def __call__(self, function, num_steps):
15

16 self.estimate_distribution(function)
17 return self.get_history()
18

19 def get_history(self):
20 return np.asarray(self.walk_results)
21

22 def clear_history(self):
23 self.walk_results = []

Listing 15.0.2: The init method for the Walker class

The method for creating and returning a MCMC distribution is __call__ method
of the Walker class. It takes function and num_steps to be passed on to it’s
sub-routines. It executes and accesses the methods and attributes for populating
and returning the walk_results list. Details can been seen in listing 15.0.2.

25 def estimate_distribution(self, function, burn_in=True) ->
None:↪→

26 self.clear_history()
27

28 if burn_in:
29 self.burn_in_walk(function)
30

31 self.random_walk(function)

Listing 15.0.3: The init method for the Walker class

The estimate_distribution 15.0.3 method called by __call__ clears the walk_result
list and adds the optional argument burn_in for executing the algorithm with or
without the warm up period. In this project we always use the warm up period.

67

33 def random_walk(self, function):
34

35 for i in range(self.steps):
36 self.next_state =

utils.hamming_steps(self.current_state)↪→

37 self.walk_results.append(self.current_state)
38

39 if self.acceptance_criterion(function):
40 self.current_state =

copy.deepcopy(self.next_state)↪→

41

42 else:
43 self.next_state =

copy.deepcopy(self.current_state)↪→

Listing 15.0.4: The init method for the Walker class

The walk_result list is populated in the random_walk method 15.0.4. It iterates
for the number of steps given in the initialization of the Walker, and accepts ei-
ther current_state or next_state. This is done in the acceptance_criterion15.0.5
which realises the Metropolis-Hastings algorithm (6.2) .

54 def acceptance_criterion(self, function) -> bool:
55 u = np.random.uniform(0, 1)
56 new_score = function(self.next_state)
57 old_score = function(self.current_state)
58

59 score = new_score / old_score > u
60

61 return score

Listing 15.0.5: The method realizing the Metropolis-Hastings algorithm.

It takes an argument function which is the function that calculates the proba-
bility for a given state of the RBM. In this module the functions will be either
probability, or unnormalized_probability. First we draw a random number
between 0 and 1 from an uniform distribution u. Then we calculate the prob-
ability for each state on line 56-57. Lastly we see if the ratio new_score and
old_score is bigger than u, if it is we return boolean value True.

68

16 | Tools for measurements

Here is an brief presentation of the tools we have utilized for error and time
measurements in the experiments presented in 17.

16.1 Timing

To collect the processing time of different functions, we created the decorator
method timing. It takes a function as an argument.

69

73 def timing(f):
74 """
75 Decorator for timing functions based on the following

example:↪→

76 https://stackoverflow.com/questions/1622943/time
it-versus-timing-decorator.↪→

77

78 Also adds a run_time attribute to the function decorated.
run_time can be↪→

79 accessed as f.run_time.
80

81 :param f: The function to time
82 :return:
83 """
84

85 from functools import wraps
86 from time import time
87

88 @wraps(f)
89 def wrap(*args, **kw):
90 ts = time()
91 result = f(*args, **kw)
92 te = time()
93 wrap.run_time = te - ts # Add the run_time attribute to

the function decorated.↪→

94 print(f"func:{f.__name__} args:[{args}, {kw}] took:
{te-ts} sec")↪→

95 return result
96 return wrap

Listing 16.1.1: Decorator for timing functions

It calculates the time the function f takes to run in milliseconds. When the
process finished it prints to console the time taken together with the process id
and its arguments. It also creates an attribute run_time and attaches it to the
function f. This attribute can then later be accessed by calling <f>.run_time,
where <f> is the name of the function passed as argument.

70

16.2 Error measures

This section present the implementation of the error measures from section 7.5.

16.2.1 Relative error

174 def relative_error(true_value, approx_value):
175 """
176 Calculate the relative error between the true and approximate

value.↪→

177

178 :param true_value: The true value
179 :param approx_value: The approximate value
180

181 :return: The relative error
182 """
183 return np.abs((true_value - approx_value) / true_value)

Listing 16.2.1: Implementation of relative error measure presented in 7.5.3

16.2.2 State error

186 def prob_error(true_value, approx_value):
187 """
188 Calculate the relative error between the true and approximate

value.↪→

189

190 :param true_value: The true value
191 :param approx_value: The approximate value
192

193 :return: The relative error
194 """
195 return np.sum(abs(true_value - approx_value))/2

Listing 16.2.2: Implementation of state error measure presented in 7.5.3

16.2.3 Probability error

71

198 def state_error(true_state, approx_state):
199 """
200 Calculate the 1-fidelity error between the true and

approximate state.↪→

201

202 :param true_state: The true state
203 :param approx_state: The approximate state
204

205 :return: The state error
206 """
207 return 1 - (np.abs(true_state.T.conj() @ approx_state))

Listing 16.2.3: Implementation of probability error measure presented in 7.5.3

72

Part III

Results and Discussion

73

17 | Results

As described in the project objective, investigating how the implementation per-
forms and how its different components affect the accuracy is the main part
on this thesis. In this chapter we will present the experiments done with the
Python module, the arguments and their results along with some commentary
and discussion. The main arguments for each experiment will be presented in
the figure caption. In the end of each section of this chapter we will have a more
in depth discussion of the findings. First, we look at the two gradient methods
presented in section 7.3 and 7.4. Second, we will investigate the Markov Chain
Monte Carlo (MCMC) sampling algorithm from section 6.4. Then, the impact of
the visible and hidden layer of the Restricted Boltzmann Machine (RBM) 4.1 is
tested. Lastly the implementation’s accuracy to find ground states and ground
state energies will be presented. The overall goal is to find evidence supporting
that the RBM has the flexibility to estimate larger quantum systems, that it is a
potential faster approach than brute force solving i.e. diagonalization for bigger
systems, and find patterns that can motivate the argument setting for optimal
performance and results. All experiments in this thesis are performed using an
Windows 10 desktop computer equipped with a AMD Ryzen 7 3700X and 16
GB RAM.

17.1 Comparison of the gradient methods

Here, we want to investigate our Analytical Gradient (AG) (7.37). It is inter-
esting to see if it benefits us in terms of timing, accuracy and tuning of the
arguments. To do this we compare it with the Finite Difference (FD) scheme
(7.4). Since we know FD with the right tuning of the h parameter, will achieve
good results it serves as a excellent benchmark to see if the Analytical Gradient
(AG) performs as good or hopefully better. This section presents some findings
when training the RBM with FD and AG. We will have a look at how the two
gradient schemes compare in accuracy, the impact of the MCMC sampling, and
the time differences.

74

17.1.1 Accuracy with exact distribution

First we want to see the schemes’ performance on an exact distribution i.e.
calculating the probability for all states of the RBM as described in section 11.2.
By using the exact distribution we will not introduce any error generated by the
MCMC estimation. The Hamiltonian used is the generic random Hamiltonian
9.1.1.

0 100 200 300 400 500
Gradiend steps

20

15

10

5

0

En
er

gy

h=1
h=0.5
h=0.1
h=0.01
AG
True GS

Figure 17.1: Energy during training with gradient decent
done by both finite difference and analytical against the
exact ground state energy. The FD scheme is run with a
decreasing size of h value. Visible nodes: 5, hidden nodes:
10, gradient decent steps: 500, Hamiltonian: random.

In figure 17.1 we see the ef-
fect of the FD parameter h as
presented in (7.4). We start
by setting h to a big value, 1,
and then we plot the results
of training. We decrease h

several times and see how the
accuracy of the energy con-
verges to the analytical gradi-
ent (purple dashed curve). As
we can see, the finite differ-
ence is very close when h = 0.1

(green curve) for this system
configuration. For h = 0.01

(red curve) there is no visual
difference in this plot.

75

17.1.2 Accuracy with estimated distribution

Next we want to compare the two gradients while sampling from the RBM with
the MCMC algorithm. In contrast to experiment 17.1.1, the size of parameter
h in FD is dependent on the accuracy of the sampled distribution. In MCMC,
the error of the estimated quantities goes as 1/

√
nλ (6.5). If the true value

of the energy is Egs, the sampled value is likely somewhere in the interval [(1−
1/
√
nλ)Egs, (1+1/

√
nλ)Egs]. When using FD, we calculate the difference between

energies very close to each other in parameter space, to find the slope. The
smaller h is, the smaller the difference between Egs’s associated with sampling.
The estimated gradient could be influenced mainly by noise if the h is too small
i.e. smaller than the interval [(1 − 1/

√
nλ)Egs, (1 + 1/

√
nλ)Egs]. Another way

to look at this is that the number of samples are not high enough. The exact
point where this crossover happens is hard to define, but we have achieved good
results with the use of h = 1/

√
nλ as a default size for h in our experiments.

0 100 200 300 400 500
Gradiend steps

12

10

8

6

4

En
er

gy

FD
AN
True GS

(a) 100 MCMC steps

0 100 200 300 400 500
Gradiend steps

13

12

11

10

9

8

7

6

En
er

gy

FD
AN
True GS

(b) 250 MCMC steps

0 100 200 300 400 500
Gradiend steps

13

12

11

10

9

8

7

6

En
er

gy

FD
AN
True GS

(c) 500 MCMC steps

0 100 200 300 400 500
Gradiend steps

13

12

11

10

9

8

7

6

5

En
er

gy

FD
AN
True GS

(d) 1000 MCMC steps

Figure 17.2: Graphs showing the energy during training with finite difference (FD) and analytic
gradient (AN) of an RBM with 4 visible nodes, 8 hidden nodes, learning rate 0.01, and a random
Hamiltonian as the target ground state energy. The number of MCMC steps are increased:
Figure 17.2a has the lowest, and 17.2d has the most.

We can see that both the gradient methods struggle to find the ground state

76

energy for lower numbers of steps collected by the MCMC algorithm in 17.2a,
17.2b, and 17.2c. In figure 17.2d the AG gets desirably close to the ground state.
When the number of samples are low, we can also see the fluctuations in that the
trajectory are much larger for both gradient methods . With a 1000 collected
samples in each step, the curve are much smoother, especially for the AG.

17.1.3 Time comparison

Last in this section of experiments, we wanted to see how the two gradient
schemes compared in timing. It is the same type of setup as in 17.1.2, with the
same increasing numbers of MCMC steps, where each training is timed.

200 400 600 800 1000
MCMC steps

102

103

104

Ti
m

e
(s

)

FD
AN

(a) Training time with increasing MCMC steps

20 40 60 80 100 120 140 160
Number of parameters

101

102

103

Ti
m

e
(s

)

FD
AN

(b) Training time with increasing parameteres

Figure 17.3: Timing of the two gradient approaches. 17.3a is run with an fixed set of parameters
(visible node = 5, hidden nodes = 5), and increasing the number of collected MCMC steps.
17.3b is run with . both experiments is run with a random Hamiltonian

In figure 17.3a we can see a difference between the two methods on the scale of
103 when we increase the sample size. The same happens when we increase the
sizes of the visible layer and hidden layer as shown in figure 17.3b. The FD took
1000 times longer than Analytical Gradient to train the RBM. Still, it seems
that they are somewhat proportional.

17.1.4 Discussion

After running several experiments we can confidently say that the AG is beneficial
over FD for training the RBM. We have confirmed that it indeed finds the true
gradient from the experiment in section 17.1.1. By construction, we know FD
approximates the gradient of the energy when using a small enough h-value.
Since FD converges toward the AG when we decrease h, we know that the AG
finds the correct gradient. The experiment in section 17.1.2 shows us that AG
achieves better results with fewer samples from the MCMC algorithm. In figure

77

17.2d we see that the analytical gradient is converging much better than the FD
using the same amount of samples. This increase in performance can be explained
by a weakness in the FD method as explained in 17.1.2. When calculating the
difference between two nearly equal quantities, the difference may be dominated
by mainly the error or noise of these quantities. This results in the FD finding
gradients based on the noise, not the actual gradient, and poor optimization. By
looking at the mathematical form of the AG, 7.36, we see that the equation is
not affected by the problem of difference between to nearly equal quantities. As
for computational cost i.e. timing, we can see in section 17.1.3 that although we
have exponential cost for both gradient schemes, the AG is close to 103 times
faster. The FD needs to evaluate the RBM and produce MCMC samples two
times for each parameter, while the AG evaluates the RBM simply once, and
the whole gradient can be derived from the results of this single batch of MCMC
samples. This gives the AG a superior scaling property.

17.2 The MCMC algorithm

A very important piece of the NQS is the MCMC sampling algorithm. It is used
to extract the important probability distributions from the RBM. The probability
distributions are used to calculate the local energies, that in turn are used in the
gradients and training. The error of the sampled distributions will influence the
results, so it is important to have enough steps as described in 6.5. Although
important, it is not clear from literature what the number of samples should
be to achieve desired accuracy for a given system size. First, we present some
result testing how different numbers of samples, Nσ, impact state error 7.5.2 on a
random RBM. Second, we propose a formula for calculating the needed number of
steps for increasing system sizes that seems to keep the error somewhat constant
for different system sizes. Last in the section, we will have a quick look at how
the warm up step affects the MCMC distribution ϵprob

17.2.1 Error for increasing system size

We have seen that the MCMC algorithms achieves good results given enough
samples. Here we want to investigate how many samples are required in relation
to the target distribution size.

102 103 104 105

MCMC steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pr
ob

Visible nodes
2
5
9
12

Figure 17.4: ϵprob for increasing Nλ of an random RBM
with different system size (visible nodes)

In figure 17.4 we can see the
probability error presented in
section 6.5. The plot show
very similar trends for all sys-

78

tem sized. When the sample
size is low, we have a huge er-
ror between the estimated and
target probability. When the
number of samples is ∼ 103,
the error is very low for all of
the system sizes tested. This
is not surprising, but it is ob-
vious that bigger systems re-
quire a larger amount of sam-
ples.

17.2.2 Formula for finding Nλ

To test this further, we experimented with different formulas for deciding the
number of samples to be included based on the system size. Through trial and
error (as literature suggests), we landed on this formula for calculating necessary
MCMC samples that seems to scale well with an increasing system size. Nλ =

K ·Np
σ . Figure 17.5 presents the result of testing this formula with two different

choices of K and p. Each parameter configuration is run 10 times.

79

2 4 6 8 10 12 14
System size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
pr

ob
N = 10N2

N = 10N3

N = 100N3

N = 100N4

Figure 17.5: ϵprob averages over 10 runs with increasing system size with polynomial increase
in MCMC samples Nλ related to the system size Nσ.

We can see that the polynomial increase in MCMC steps gives us a quite con-
sistent accuracy for system sizes between 2 and 14 qubits. The ϵprob does not
increase in any significant manner.

17.2.3 Warm up steps

In this section we look at how the number of collected steps, and the warm up
steps affect the accuracy of the estimated distribution as discussed in 6.6. We
will see how the inclusion of warm up steps affect the accuracy of the MCMC
probability. Again, literature does not provide a definite number for this, but
leaves it to trial and error.

We sample the same random RBM with increasing number of collected sam-
ples, both with and without the warm up steps. In figure 17.2.3 we visualize
this with a toy setup. A RBM estimating a 5 qubit system (visible size 5) with
a hidden layer size of 10 for a Ising model Hamiltonian. We run the MCMC
algorithm 6.4 with 100 steps: One time with warm up steps 17.6a, and one time
without warm up steps 17.6b. After that we do the same setup but with 1000
collected steps (still 10 warm up steps).

80

0 5 10 15 20 25 30
State

0.0

0.2

0.4

0.6

0.8
Pr

ob
ab

ilit
y

Exact
MCMC

(a) 100 MCMC steps, 10 warm up steps

0 5 10 15 20 25 30
State

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

Exact
MCMC

(b) 100 MCMC steps, no warm up

0 5 10 15 20 25 30
State

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

Exact
MCMC

(c) 1000 MCMC steps, 10 warm up steps

0 5 10 15 20 25 30
State

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

Exact
MCMC

(d) 1000 MCMC steps, no warm up

Figure 17.6: Histograms showing how the probability distribution for the RBM and the one
found by the MCMC algorithms overlap. Parameters: visible nodes = 5, hidden nodes = 5,
walker and warm up steps below each figure.

The left columns shows the sampling with warm up, and the right column without
warm up steps. We can see in figure 17.6a that the inclusion of warm up steps
aids the sampled distribution to follow the target distribution compared to figure
17.6b which has no warm up steps. We can see that some samples (i.e. 15, 29
and 30) are included although they are not a part of the target distribution.
When we increase the number of samples, the estimated distributions, both with
our without warm up steps, look more alike. At 1000 samples, the impact of the
warm up steps has little to no impact.

To further investigate the effect of the warm up steps, we did several runs
sampling different sized systems and calculated the average error over multiple
runs. The number of warm up samples is Nλ/10. In figure 17.7 we can see that
there is a difference in accuracy between MCMC estimated distributions with or
without warm up steps.

81

6 7 8 9 10 11 12
System size

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

pr
ob

N /10 warm up steps
0 warm up steps

Figure 17.7: ϵprob averages over 50 runs with increasing system size with polynomial increase in
MCMC samples Nλ related to the system size Nσ as 100N3

σ , and warm up steps being Nσ/10.

The distribution collected with nλ/10 warm up steps has a slightly better ϵprob ∼
0.01 error than the distributions collected without warm up steps. This is sig-
nificant in cases where low error is important.

17.2.4 Discussion

The systems we sample grows exponentially in size, and we want to beat this
complexity. It is generally agreed upon in literature that the number of samples
required is a art of trial and error. We propose a formula for calculating the
number of required steps

Nλ = K ·Np
σ (17.1)

where K and p are constants to be tuned for desired accuracy, and Nσ is the
system size i.e. number of qubits. As figure 17.5 shows, this approach yields
good results for increasing system sizes. The size of the variable K is more
important for achieving low errors for small systems, but becomes negligible
for larger systems. For p = 3, we cannot see the error increase over the span
of a system of 2 to 14 qubits. Due to the increased number of Nλ, the same
stability applies to p = 4, but with an overall lower error. We should probably
see even lower errors with higher p values, but higher p values will also add
a computational cost. Tuning p is a matter of desired accuracy, but we see
that p = 3 is the lowest value that keeps the error consistent across different
system sizes. We suggest keeping p = 3 and instead increasing K to achieve

82

desired accuracy, thus avoiding an overestimating of the number of Nλ for larger
systems.

Formula (17.1) can provide a good staring ground that scales well with the op-
erational basis. It grows polynomial O(Np), which beats the exponential O(2N)
for the system. We have to keep in mind that these experiments are done on
a random RBM, that is an RBM with randomly generated biases and weights.
It is not obvious that this formula generalizes for the case where the RBM is
trained on any Hamiltonian. Still, experiments run with this formula like the
one in 17.4, shows good results in training.

The warm up steps experiments in 17.2.3 shows that the warm up steps
do matter, although on a small scale. Used in combination with the system size
scaling (17.1), we see that when choosing Nλ/10 as the number of warm up steps,
the distribution beats the error of the non-warm up distribution by ϵprob ∼ 0.01.

17.3 Investigating the hidden node parameter

In this section we will see how the main parameter of the RBM, the hidden layer
size Nh, is affecting the RBM’s ability to grasp quantum states. One of the set-
tings that are some what brushed over in literature, is the effect of the size of the
hidden layer on the models accuracy i.e. how many hidden nodes are required
to achieve a good approximation of the ground state energy. The hidden layer
is what gives the RBM its expressiveness and flexibility to grasp the intricate
quantum systems. As we have shown in 17.3.1, the hidden layer size does con-
tribute to computational time in a linear fashion. We want to investigate how
small hidden layer size we can use to reduce computation time while still main-
taining good results for the random Hamiltonian, that has very many degrees of
freedom, and the Ising model which has less freedom and more structure. We
also will investigate the computational impact for both the hidden and visible
layer on the matrix Hamiltonian 2.7.1 and the tensor product Hamiltonian 2.7.3

17.3.1 Timing with increasing system size

As discussed earlier, one of the main ideas behind using the RBM as an ansatz for
a complex Many Body Problem (MBP) is its ability to extract structures from
the problem. Here we will compare the Ising model Hamiltonian represented as a
sum of tensor products and general Hamiltonian as a matrix. We have measured
training time of both Hamiltonians in two settings. The first where we increase
the number of hidden nodes in the RBM while maintaining the same number of
visible nodes, and the second where we increase the visible nodes and keep the

83

hidden nodes fixed.

100 200 300 400 500 600 700
Number of parameters

2.5

3.0

3.5

4.0

4.5
Ti

m
e

(s
)

 Ising Hamiltonian
Matrix
Reduced

(a) 20 to 200 Hidden nodes

40 60 80 100 120 140 160 180 200
Number of parameters

0

1

2

3

4

Ti
m

e
(s

)

 Ising Hamiltonian
Matrix
Reduced

(b) 2 to 10 visible nodes

Figure 17.8: Speed comparison of training a RBM with the two Ising model representation.
Training is done with 100 gradient decent steps and with 1000 MCMC steps. In figure 17.8a
the visible layer is fixed to 6 nodes and the hidden layer size is increased from 20 to 200. In
figure 17.8b the hidden layer is fixed to 16 nodes, and the visible layer is increased from 2 to
10 nodes.

In figure 17.8a we see that the time for the two Hamiltonians increase in a propor-
tional and linear manner. In figure 17.8b we can see that the two representations
are very similar for small (nodes < 6) systems. For bigger (6 < nodes) systems
we see the exponential increase in time for the matrix representation, while the
tensor product Hamiltonian is linear, and barely increases at all on this scale.

17.3.2 How many hidden nodes do we require?

Here we want to restrict the RBM to have as few hidden nodes as possible, but
still reach the ground state energy after training. We ran the experiments first
with a visible layer size of 4 then a visible layer size of 5 representing a system
size of 4 and 5 respectively. We then ran three training runs of the RBM with
a hidden layer size of 1, 2 and 3. The plots in figure 17.9a and 17.9b show the
relative error 7.44 vs. steps in the gradient descent.

84

0 100 200 300 400 500
Gradient steps

0.0

0.2

0.4

0.6

0.8

1.0
re

l

Hidden layer size = 1
Hidden layer size = 2
Hidden layer size = 3

(a) System size 4

0 100 200 300 400 500
Gradient steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
l

Hidden layer size = 1
Hidden layer size = 2
Hidden layer size = 3

(b) System size 5

Figure 17.9: Ising tensor product Hamiltonian with increasing hidden layer size. MCMC steps:
100N3

σ

For a system size of 4, only 1 hidden node is required to find an energy with an
error ϵrel < 0.01 to the true ground state. For a system of 5 qubits, 2 hidden
nodes are needed for the same accuracy. Then we repeated the experiment for
a generic matrix Hamiltonian of size 4 and 5. Here we needed to increase the
hidden nodes to 2, 4 and 6 to be able to find the ground state energy as seen in
figures 17.10a and 17.10b.

0 200 400 600 800 1000
Gradient steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
l

Hidden layer size = 2
Hidden layer size = 4
Hidden layer size = 6

(a) System size 4

0 200 400 600 800 1000
Gradient steps

0.0

0.2

0.4

0.6

0.8

1.0

re
l

Hidden layer size = 2
Hidden layer size = 4
Hidden layer size = 6

(b) System size 5

Figure 17.10: Random Hamiltonian with increasing hidden layer size. MCMC steps: 100N3
σ

We can see that even with twice as many hidden nodes, the RBM has more
difficulties expressing the ground state energy. In both figure 17.10a and 17.10b
we can see that the ground state is found at 6 hidden nodes. Still, the bigger
system in 17.10b needs almost twice as many training steps to achieve the ground
state.

Last in this section we want to see how the hidden layer size scale with
different Hamiltonians representations. This is done by creating a tensor product

85

Hamiltonian (Ising) and generic Hamiltonian (Random) with visible size 2. Then
wee see if it can solve it with 1 hidden node with 0.01 relative error, ϵrel. If 1
hidden node is enough, we increase the visible size to 2 nodes. Then we again
try to solve it with 2 hidden nodes. If we can’t get a ϵrel < 0.01, we increase the
number of hidden nodes by 1 and try to solve again. If we achieve the target
accuracy, we increase the system size by 1. This is repeated for a range system
sizes from 2 to 8.

2 3 4 5 6 7 8
System size

0

5

10

15

20

Hi
dd

en
 n

od
es

 re
qu

ire
d

Random
Ising

(a) Hidden nodes required for ϵrel < 0.01 with increas-
ing system size.

2 3 4 5 6 7 8 9
System size

1

2

3

4

5

6

7

8

Hi
dd

en
 n

od
es

Average hidden layer size

(b) The average hidden layer size needed to achieve
ϵrel < 0.01 plotted with the spread over 10 runs.

Figure 17.11: Plots showing how many hidden nodes are required for ϵrel < 0.01 for random
(blue) and Ising (orange) Hamiltonian

In figure 17.11a we can again see the exponential growth for the generic Hamil-
tonian, as we have seen in figure 17.8b. Although they do not use the same
measure, we can see the quickly escalating computational complexity if we don’t
abuse structure. Here we see that the required hidden size to get an ϵrel < 0.01

is growing exponentially for the random Hamiltonian.

17.3.3 Discussion

The true power of the RBM can be seen in section 17.3.1, from figure 17.8b
where we increase the system size the RBM. If it used with a matrix Hamilto-
nian i.e. a non-compressible Hamiltonian, we see the exponential growth that
is expected for quantum systems. When we look at the results in figure 17.8b,
we see a huge difference in growth between the matrix Hamiltonian and ten-
sor product Hamiltonian (reduced Hamiltonian). While the matrix Hamiltonian
training time grows exponentially, the tensor product Hamiltonian training grows
sub-exponentially for the system size range we present here. This is strong ev-
idence for a huge speed when using the tensor product structure of the Ising
Hamiltonian, especially for larger systems.

In section 17.3.2 we see that the number of hidden nodes required to train

86

RBM well, i.e. get close to the true ground state, is scaling much slower for the
random Hamiltonian than that for the Ising Hamiltonian. This is to be expected
since the random Hamiltonian has more degrees of freedom and thus require a
greater expressiveness from the RBM. We know that an Ising Hamiltonian has
only linearly many degrees of freedom as opposed to exponentially many for the
random Hamiltonian. However, it is not immediately obvious that a RBM can
use this structure to find more efficient representations of the ground state. Even
so, from the results we see that the RBM requires much fewer hidden nodes to
learn the Ising Hamiltonian than the random Hamiltonian. This shows that the
RBM is able to discover smarter ways to compress and represent the Ising model.

17.4 The accuracy of ground state and ground

state energy

With all the computational arguments investigated, it is natural to check the
results they give when finding the ground state energy of a system. This bench-
mark will tell us if our implementation holds up to the claim of being able to
approximate quantum systems. The training is done by using the variational
principle to find the lowest energy. The measure of accuracy in this case is the
difference between the RBM energy and the actual Hamiltonian ground state,
the relative error ϵrel 7.5.1. This is an obvious measure to check how our model
perform, given the importance of ground state energies in quantum physics. An-
other aspect we want to investigate is that although a solution is good in terms
of energy, which was optimized, we do not have a guarantee that the state we
find is close to the actual ground state energy. Two states can have very close
energies and not be the same state i.e. Eθ ≃ Egs ≠⇒ ψθ ≃ ψgs. Given that
the state configuration is often as important as the energy, it is interesting to see
how the RBM state compares to that of the ground state. By using a state error
as described in equation (7.45) for the random Hamiltonian, and (7.46) for the
Ising Hamiltonian. we can compare states to get a second measure of error.

87

100 101 102

Training steps

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

rel

fid

(a) Ising Hamiltonian. Visible nodes: 6, hidden Nodes:
6, MCMC steps: 21600, warm up step: 2160. termi-
nated ad ϵrel < 0.05

100 101 102 103

Training steps

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

rel

fid

(b) Random Hamiltonian, Visible nodes: 6, hidden
Nodes: 18, MCMC steps: 21600, warm up step: 2160.
No termination, gradient steps: 300

Figure 17.12: Relationship between the relative error of the energy and state error while
training for two different Hamiltonians

The energy converges very well for both the Ising Hamiltonian, and the random
Hamiltonian. This means our implementation works and that the parameter
setting we suggest yields good results. Also, we see that the energy is "guiding"
the state fidelity error towards zero. The ϵfid is weaving around the ϵrel toward
the optimal solution.

17.4.1 Discussion

The RBM initialised with parameters found after experiments 17.2 and 17.3.2
and trained with the gradient that showed best performance in 17.1 manages to
find the ground state energy with ∼ 0 relative error. This shows that our im-
plementation can indeed find a very good approximation of the quantum system
described by the Hamiltonian, both for the more structured Ising model and for
the generic Hamiltonian. Another interesting find is that the ground state seems
to converge as well as the energy. This means that the error of the energy is
a good proxy for the error of the state, at least for the discrete spin system we
have studied. This is a very desirable result, although not obvious from training
the RBM with the target of minimizing energy only. This is not the case when
using a RBM to approximate the ground state of electron systems in space [37].
Another observation is that the optimizer hits plateaus during training in figure
17.9a and 17.12a, but manages to break free from these. This is a desired prop-
erty, since the training is less prone to get stuck. Our theory is that the Adam
optimizer is aiding the gradients when plateaus are met, and the momentum this
algorithm adds lets the optimiser escape the plateaus.

88

Part IV

Conclusion and future work

89

18 | Conclusion

18.1 Conclusion

This thesis has resulted in a Python framework that implements Neural Quantum
State (NQS) as a way to approximate ground state energies for discrete quantum
spin systems. We have shown that our implementation of a Restricted Boltzmann
Machine (RBM), trained by the use of a quantum Monte Carlo algorithm can
achieve promising results with sub-exponential growth of computational cost.
The Analytical Gradient derived in this thesis is shown to give the true gradient
and is 103 faster to use than a traditional Finite Difference scheme. We have
investigated several of the parameters for the RBM and the Markov Chain Monte
Carlo (MCMC) algorithm, and their impact on accuracy and speed. We propose
a function for finding good values for the number of samples in the MCMC
distribution based on system size. The experiments done in this thesis show that
the RBM manages to find the ground state energy of structured Hamiltonian
with sub-exponential number of parameters. The experiments show also that
the quantum Monte Carlo algorithm used, has a linear growth in computational
time when solving a structured Hamiltonian.

The analytical gradient

The analytical gradient for the RBM in the operational basis 7.36, derived and
used in this thesis, is shown to be correct and to outperform a numerical gradient
scheme (Finite Difference). Compared to the FD, it converges better with the
same amount of MCMC samples and runs 103 times faster. It also achieves to
train the RBM for the random Hamiltonian, and the Ising Hamiltonian for all
cases we tested.

A proposed formula for the number MCMC steps

As a solution to find the required number sampling steps, we propose a formula
as an aid for a good staring point. Recognised as an art of trial and error, finding
the desired number of MCMC steps can be time-consuming. Our experiments

90

show that the formula Nλ = K ·Np
σ gives a consistent accuracy across different

system sizes when p = 3. The warm up steps used in combination with the
system size scaling formula, can be set to Nσ/10 and gives an improvement of
∼ 0.01 accuracy.

Importance of hidden layer size

We found that our Ising model (2.14) has a non-exponential growth in the number
of hidden nodes required to find the true ground state a Hamiltonian. This
shows that the RBM effectively manages to compress the system space, and find
its structure. This is not the case with the generic Hamiltonian that requires
an exponential growth in hidden nodes. It cannot be different, otherwise all
quantum states can be effectively "squeezed" into classical states, and this is
not possible. This knowledge of the required hidden nodes can be used as a
well-educated guess for initializing much bigger systems.

Training and accuracy

Solving for the ground state with the use of the parameter setting we found, shows
us that the method achieves very good results. It finds the ground state energy
for both the random Hamiltonian and the Ising Hamiltonian. We also see that
when trained to minimize energy, the RBM manages to find the ground state.
Additionally, it is robust against plateaus and local minima during training.

18.2 Future research

A natural next step for future work is to use the parameter setting we have
found to run a simulation of a much larger system: typically one that would
be impossible to solve on a reasonable sized classical computer due to memory
requirements i.e. ∼ 20 qubits. Based on our test, our implementation should
be able to find the ground state of such a system in reasonable time. Since the
computers we had access to during this thesis is not of the high performing kind,
this test was postponed.

Implement support for parallel processing would speed up the processing
time for the module. Now all calculations are done on one thread, and this is not
optimal on today’s multi-core processors. This could be especially beneficial for
the computation times when generating the samples with the MCMC algorithm.
Instead of using one walker gathering the whole sample distribution, we could
let several walkers collect a smaller sample size and then combine them.

91

Adding support for new Hamiltonians would be another way to expand the
module. While the toy-like Hamiltonians used in this thesis are good for bench-
marking, Hamiltonians that describe real-life problem would be interesting and
useful. A low hanging fruit is a more interesting Ising model that can describe
real-life spin systems e.g. ferromagnets.

The RBM is only one of many Neural Quantum States that are studied
these days. Implementing other Neural Network ansatzes and more sophisticated
ansatzes like Fermi-net [38], recurrent neural networks [39], and transformer
networks [40] will make the module a platform for comparing ansatzes.

92

A | Appendix

A.1 Source code repository

The module created and used in this project can be found in the Github reposi-
tory https://github.com/Overskott/Master-Thesis-Project.git.

93

https://github.com/Overskott/Master-Thesis-Project.git

A.2 List of figures

1.1 A sketch of the MBP space, and how far each of the methods
presented in 1.3 can reach with the same, fixed value N 5

4.1 Visualization of the RBM network layout showing how the con-
nection between the visible and hidden layer is imagined. Figure
by the author. 23

17.1 Energy during training with gradient decent done by both finite
difference and analytical against the exact ground state energy.
The FD scheme is run with a decreasing size of h value. Visible
nodes: 5, hidden nodes: 10, gradient decent steps: 500, Hamilto-
nian: random. 75

17.2 Graphs showing the energy during training with finite difference
(FD) and analytic gradient (AN) of an RBM with 4 visible nodes,
8 hidden nodes, learning rate 0.01, and a random Hamiltonian as
the target ground state energy. The number of MCMC steps are
increased: Figure 17.2a has the lowest, and 17.2d has the most. . 76

17.3 Timing of the two gradient approaches. 17.3a is run with an fixed
set of parameters (visible node = 5, hidden nodes = 5), and in-
creasing the number of collected MCMC steps. 17.3b is run with
. both experiments is run with a random Hamiltonian 77

17.4 ϵprob for increasing Nλ of an random RBM with different system
size (visible nodes) . 78

17.5 ϵprob averages over 10 runs with increasing system size with poly-
nomial increase in MCMC samples Nλ related to the system size
Nσ. 80

17.6 Histograms showing how the probability distribution for the RBM
and the one found by the MCMC algorithms overlap. Parameters:
visible nodes = 5, hidden nodes = 5, walker and warm up steps
below each figure. 81

94

17.7 ϵprob averages over 50 runs with increasing system size with poly-
nomial increase in MCMC samples Nλ related to the system size
Nσ as 100N3

σ , and warm up steps being Nσ/10. 82
17.8 Speed comparison of training a RBM with the two Ising model

representation. Training is done with 100 gradient decent steps
and with 1000 MCMC steps. In figure 17.8a the visible layer is
fixed to 6 nodes and the hidden layer size is increased from 20 to
200. In figure 17.8b the hidden layer is fixed to 16 nodes, and the
visible layer is increased from 2 to 10 nodes. 84

17.9 Ising tensor product Hamiltonian with increasing hidden layer
size. MCMC steps: 100N3

σ . 85
17.10Random Hamiltonian with increasing hidden layer size. MCMC

steps: 100N3
σ . 85

17.11Plots showing how many hidden nodes are required for ϵrel < 0.01

for random (blue) and Ising (orange) Hamiltonian 86
17.12Relationship between the relative error of the energy and state

error while training for two different Hamiltonians 88

95

Bibliography

[1] Matteo Atzori and Roberta Sessoli. “The Second Quantum Revolution:
Role and Challenges of Molecular Chemistry.” In: Journal of the American
Chemical Society (2019).

[2] Lov K. Grover. A fast quantum mechanical algorithm for database search.
1996. arXiv: quant-ph/9605043 [quant-ph].

[3] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer”. In: SIAM Journal on Com-
puting 26.5 (Oct. 1997), pp. 1484–1509. doi: 10.1137/s0097539795293172.
url: https://doi.org/10.1137%2Fs0097539795293172.

[4] Roger Melko et al. “Restricted Boltzmann machines in quantum physics”.
In: Nature Physics 15 (June 2019). doi: 10.1038/s41567-019-0545-1.

[5] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information: 10th Anniversary Edition. Cambridge University Press,
2010. doi: 10.1017/CBO9780511976667.

[6] Tom Siegfried. In honor of his centennial, the Top 10 Feynman quota-
tions. (version: 2018-05-11). eprint: https://www.sciencenews.org/

blog/context/top- 10- richard- feynman- quotations. url: https:
//www.sciencenews.org/blog/context/top-10-richard-feynman-

quotations (visited on 07/26/2023).

[7] Frank Arute et al. “Quantum supremacy using a programmable supercon-
ducting processor”. In: Nature 574.7779 (2019), pp. 505–510. doi: t.

[8] Robin Harper and Steven T. Flammia. “Fault-Tolerant Logical Gates in
the IBM Quantum Experience”. In: Phys. Rev. Lett. 122 (8 Feb. 2019),
p. 080504. doi: 10.1103/PhysRevLett.122.080504. url: https://

link.aps.org/doi/10.1103/PhysRevLett.122.080504.

[9] Jordan Sullivan and Matthew Beach. Amazon Braket launches IonQ Aria
with built-in error mitigation. 2023. url: https://aws.amazon.com/

blogs/quantum- computing/amazon- braket- launches- ionq- aria-

with-built-in-error-mitigation/ (visited on 07/29/2023).

96

https://arxiv.org/abs/quant-ph/9605043
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.1137%2Fs0097539795293172
https://doi.org/10.1038/s41567-019-0545-1
https://doi.org/10.1017/CBO9780511976667
https://www.sciencenews.org/blog/context/top-10-richard-feynman-quotations
https://www.sciencenews.org/blog/context/top-10-richard-feynman-quotations
https://www.sciencenews.org/blog/context/top-10-richard-feynman-quotations
https://www.sciencenews.org/blog/context/top-10-richard-feynman-quotations
https://www.sciencenews.org/blog/context/top-10-richard-feynman-quotations
https://doi.org/t
https://doi.org/10.1103/PhysRevLett.122.080504
https://link.aps.org/doi/10.1103/PhysRevLett.122.080504
https://link.aps.org/doi/10.1103/PhysRevLett.122.080504
https://aws.amazon.com/blogs/quantum-computing/amazon-braket-launches-ionq-aria-with-built-in-error-mitigation/
https://aws.amazon.com/blogs/quantum-computing/amazon-braket-launches-ionq-aria-with-built-in-error-mitigation/
https://aws.amazon.com/blogs/quantum-computing/amazon-braket-launches-ionq-aria-with-built-in-error-mitigation/

[10] Giuseppe Carleo. Neural-Network Quantum States. A Lecture for the Ma-
chine Learning and Many-Body Physics workshop. June 2017.

[11] Giuseppe Carleo and Matthias Troyer. “Solving the quantum many-body
problem with artificial neural networks”. In: Science 355.6325 (Feb. 2017),
pp. 602–606. doi: 10.1126/science.aag2302. url: https://doi.org/
10.1126%5C%2Fscience.aag2302.

[12] Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer.
Deep Learning for Financial Applications : A Survey. 2020. arXiv: 2002.
05786 [q-fin.ST].

[13] Prajoy Podder et al. Artificial Neural Network for Cybersecurity: A Com-
prehensive Review. 2021. arXiv: 2107.01185 [cs.CR].

[14] Jinghua Zhang et al. Applications of Artificial Neural Networks in Mi-
croorganism Image Analysis: A Comprehensive Review from Conventional
Multilayer Perceptron to Popular Convolutional Neural Network and Po-
tential Visual Transformer. 2022. arXiv: 2108.00358 [cs.CV].

[15] Marco Tavora. Neural quantum states. Aug. 2020. url: https://towardsdatascience.
com/neural-quantum-states-4793fdf67b13.

[16] D. Perez-Garcia et al. Matrix Product State Representations. 2007. arXiv:
quant-ph/0608197 [quant-ph].

[17] Yusuke Nomura et al. “Restricted Boltzmann machine learning for solving
strongly correlated quantum systems”. In: Physical Review B 96.20 (Nov.
2017). doi: 10.1103/physrevb.96.205152. url: https://doi.org/10.
1103%5C%2Fphysrevb.96.205152.

[18] Giacomo Torlai and Roger G. Melko. “Latent Space Purification via Neural
Density Operators”. In: Phys. Rev. Lett. 120 (24 June 2018), p. 240503. doi:
10.1103/PhysRevLett.120.240503. url: https://link.aps.org/doi/
10.1103/PhysRevLett.120.240503.

[19] A. Decelle, G. Fissore, and C. Furtlehner. “Spectral dynamics of learning
in restricted Boltzmann machines”. In: EPL (Europhysics Letters) 119.6
(Sept. 2017), p. 60001. doi: 10.1209/0295-5075/119/60001. url: https:
//doi.org/10.1209%5C%2F0295-5075%5C%2F119%5C%2F60001.

[20] Luciano Loris Viteritti, Francesco Ferrari, and Federico Becca. “Accuracy
of restricted Boltzmann machines for the one-dimensional J_1-J_2 Heisen-
berg model”. In: SciPost Physics 12.5 (Apr. 2022). doi: 10.21468/scipostphys.
12.5.166. url: https://doi.org/10.21468%5C%2Fscipostphys.12.5.
166.

97

https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126%5C%2Fscience.aag2302
https://doi.org/10.1126%5C%2Fscience.aag2302
https://arxiv.org/abs/2002.05786
https://arxiv.org/abs/2002.05786
https://arxiv.org/abs/2107.01185
https://arxiv.org/abs/2108.00358
https://towardsdatascience.com/neural-quantum-states-4793fdf67b13
https://towardsdatascience.com/neural-quantum-states-4793fdf67b13
https://arxiv.org/abs/quant-ph/0608197
https://doi.org/10.1103/physrevb.96.205152
https://doi.org/10.1103%5C%2Fphysrevb.96.205152
https://doi.org/10.1103%5C%2Fphysrevb.96.205152
https://doi.org/10.1103/PhysRevLett.120.240503
https://link.aps.org/doi/10.1103/PhysRevLett.120.240503
https://link.aps.org/doi/10.1103/PhysRevLett.120.240503
https://doi.org/10.1209/0295-5075/119/60001
https://doi.org/10.1209%5C%2F0295-5075%5C%2F119%5C%2F60001
https://doi.org/10.1209%5C%2F0295-5075%5C%2F119%5C%2F60001
https://doi.org/10.21468/scipostphys.12.5.166
https://doi.org/10.21468/scipostphys.12.5.166
https://doi.org/10.21468%5C%2Fscipostphys.12.5.166
https://doi.org/10.21468%5C%2Fscipostphys.12.5.166

[21] Zhih-Ahn Jia et al. “Quantum Neural Network States: A Brief Review
of Methods and Applications”. In: Advanced Quantum Technologies 2.7-8
(Apr. 2019), p. 1800077. doi: 10.1002/qute.201800077. url: https:
//doi.org/10.1002%5C%2Fqute.201800077.

[22] Dong-Ling Deng, Xiaopeng Li, and S. Das Sarma. “Quantum Entanglement
in Neural Network States”. In: Phys. Rev. X 7 (2 May 2017), p. 021021.
doi: 10.1103/PhysRevX.7.021021. url: https://link.aps.org/doi/
10.1103/PhysRevX.7.021021.

[23] Kristian Wold. Parameterized quantum circuits for machine learning. Dec.
2021. url: http://urn.nb.no/URN:NBN:no-92142.

[24] Ashkan Shekaari and Mahmoud Jafari. Theory and Simulation of the Ising
Model. 2021. arXiv: 2105.00841 [cond-mat.stat-mech].

[25] Román Orús. “A practical introduction to tensor networks: Matrix product
states and projected entangled pair states”. In: Annals of Physics 349 (Oct.
2014), pp. 117–158. doi: 10.1016/j.aop.2014.06.013. url: https:
//doi.org/10.1016%5C%2Fj.aop.2014.06.013.

[26] Donald D. Fitts. “Principles of Quantum Mechanics: As Applied to Chem-
istry and Chemical Physics”. In: 1999.

[27] Guido Montufar. Restricted Boltzmann Machines: Introduction and Re-
view. 2018. doi: 10.48550/ARXIV.1806.07066. url: https://arxiv.
org/abs/1806.07066.

[28] Asja Fischer and Christian Igel. “An Introduction to Restricted Boltzmann
Machines”. In: Progress in Pattern Recognition, Image Analysis, Computer
Vision, and Applications. Ed. by Luis Alvarez et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 14–36. isbn: 978-3-642-33275-3.

[29] Joshua S. Speagle. A Conceptual Introduction to Markov Chain Monte
Carlo Methods. 2020. arXiv: 1909.12313 [stat.OT].

[30] Giuseppe Carleo. Machine learning methods for many body problems. Lec-
tures for the Advanced School on Quantum Science and Quantum technol-
ogy. Sept. 2017.

[31] Tian-Cheng Yi, Richard T. Scalettar, and Rubem Mondaini. “Hamming
distance and the onset of quantum criticality”. In: Physical Review B 106.20
(Nov. 2022). doi: 10.1103/physrevb.106.205113. url: https://doi.
org/10.1103%2Fphysrevb.106.205113.

98

https://doi.org/10.1002/qute.201800077
https://doi.org/10.1002%5C%2Fqute.201800077
https://doi.org/10.1002%5C%2Fqute.201800077
https://doi.org/10.1103/PhysRevX.7.021021
https://link.aps.org/doi/10.1103/PhysRevX.7.021021
https://link.aps.org/doi/10.1103/PhysRevX.7.021021
http://urn.nb.no/URN:NBN:no-92142
https://arxiv.org/abs/2105.00841
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016%5C%2Fj.aop.2014.06.013
https://doi.org/10.1016%5C%2Fj.aop.2014.06.013
https://doi.org/10.48550/ARXIV.1806.07066
https://arxiv.org/abs/1806.07066
https://arxiv.org/abs/1806.07066
https://arxiv.org/abs/1909.12313
https://doi.org/10.1103/physrevb.106.205113
https://doi.org/10.1103%2Fphysrevb.106.205113
https://doi.org/10.1103%2Fphysrevb.106.205113

[32] Andrew Gelman. Burn-in for MCMC, why we prefer the term warm-up.
2017. url: https://statmodeling.stat.columbia.edu/2017/12/

15/burn- vs- warm- iterative- simulation- algorithms/ (visited on
07/19/2023).

[33] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2014. doi: 10.48550/ARXIV.1412.6980. url: https://arxiv.
org/abs/1412.6980.

[34] J. W. Thomas. Numerical Partial Differential Equations: Finite Difference
Methods. Springer New York, 1995. doi: 10.1007/978-1-4899-7278-1.
url: https://doi.org/10.1007/978-1-4899-7278-1.

[35] Gajjar Deep. Prove Numpy Is Faster Than Normal List (python). 2022.
url: https://www.algorithmtech.tech/2022/01/prove-numpy-is-
faster-than-normal-list.html (visited on 07/01/2023).

[36] Numpy.org. numpy.lib.mixins.NDArrayOperatorsMixin. 2023. url: https:
//numpy.org/doc/stable/reference/generated/numpy.lib.mixins.

NDArrayOperatorsMixin.html (visited on 06/28/2023).

[37] Even Marius Nordhagen. Studies of Quantum Dots Using Machine Learn-
ing. Mar. 2020. url: https://www.duo.uio.no/handle/10852/73753.

[38] David Pfau et al. Ferminet: Quantum Physics and chemistry from first
principles. Oct. 2020. url: https://www.deepmind.com/blog/ferminet-
quantum-physics-and-chemistry-from-first-principles.

[39] IBM. What are recurrent neural networks? url: https://www.ibm.com/
topics/recurrent-neural-networks.

[40] Yuan-Hang Zhang and Massimiliano Di Ventra. “Transformer quantum
state: A multipurpose model for quantum many-body problems”. In: Phys-
ical Review B 107.7 (Feb. 2023). doi: 10.1103/physrevb.107.075147.
url: https://doi.org/10.1103%2Fphysrevb.107.075147.

99

https://statmodeling.stat.columbia.edu/2017/12/15/burn-vs-warm-iterative-simulation-algorithms/
https://statmodeling.stat.columbia.edu/2017/12/15/burn-vs-warm-iterative-simulation-algorithms/
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-1-4899-7278-1
https://doi.org/10.1007/978-1-4899-7278-1
https://www.algorithmtech.tech/2022/01/prove-numpy-is-faster-than-normal-list.html
https://www.algorithmtech.tech/2022/01/prove-numpy-is-faster-than-normal-list.html
https://numpy.org/doc/stable/reference/generated/numpy.lib.mixins.NDArrayOperatorsMixin.html
https://numpy.org/doc/stable/reference/generated/numpy.lib.mixins.NDArrayOperatorsMixin.html
https://numpy.org/doc/stable/reference/generated/numpy.lib.mixins.NDArrayOperatorsMixin.html
https://www.duo.uio.no/handle/10852/73753
https://www.deepmind.com/blog/ferminet-quantum-physics-and-chemistry-from-first-principles
https://www.deepmind.com/blog/ferminet-quantum-physics-and-chemistry-from-first-principles
https://www.ibm.com/topics/recurrent-neural-networks
https://www.ibm.com/topics/recurrent-neural-networks
https://doi.org/10.1103/physrevb.107.075147
https://doi.org/10.1103%2Fphysrevb.107.075147

	Abstract
	Preface
	List of Abbreviations
	Introduction
	The many body problem
	Machine Learning
	Methods of approximation
	An analogy
	Study objective
	Outline

	I Theoretical background
	Quantum mechanics
	The wave function
	Particle spin and qubits
	Hilbert spaces and some notation
	Superposition
	Observables and expectation values
	Entanglement
	Hamiltonian
	Matrix Hamiltonian
	Generic Hamiltonian
	The Ising model

	The Schrödinger equation
	Ground state of a quantum system
	Methods of approximation
	Product states
	Matrix product state

	Variational method
	Variational principle
	Proof

	Restricted Bolztmann Machine
	The Restricted Boltzmann Machine
	Structure of the RBM
	The mathematical RBM
	Marginalization of hidden layers
	Complex Parameters

	Local Energy
	Local observables and local energies
	Local energies with the Ising model

	Quantum Monte Carlo
	Quantum Monte Carlo
	Markov Chain Monte Carlo
	Hamming step and random walk
	Metropolis-Hastings algorithm
	Standard deviation of the MCMC and choosing number of samples
	Warm up

	Training the RBM
	Gradient descent
	Adam optimization
	Finite difference scheme
	The Analytic Gradient of the RBM
	Complex parameters and real valued gradients
	Analytical expression for the gradients of the RBM

	Tools for analyzing
	Relative error
	State error
	Probability error

	II Implementation
	From theory to code
	Hamiltonian classes
	Random Hamiltonian
	Ising matrix Hamiltonian
	Tensor product Hamiltonian

	Building the RBM
	Collecting probabilities from the RBM
	Probabilities with the estimated distribution
	Probabilities with the exact distribution

	Local energies
	Matrix Hamiltonians
	Tensor Product Hamiltonian
	Study objective

	Energy estimation
	Exact energy
	Estimated energy

	Optimization
	Analytical expression for the gradients
	Estimated distribution
	Gradients of the exact distribution

	Finite Difference
	Adam optimiser class

	MCMC
	Tools for measurements
	Timing
	Error measures
	Relative error
	State error
	Probability error

	III Results and Discussion
	Results
	Comparison of the gradient methods
	Accuracy with exact distribution
	Accuracy with estimated distribution
	Time comparison
	Discussion

	The MCMC algorithm
	Error for increasing system size
	Formula for finding N
	Warm up steps
	Discussion

	Investigating the hidden node parameter
	Timing with increasing system size
	How many hidden nodes do we require?
	Discussion

	The accuracy of ground state and ground state energy
	Discussion

	IV Conclusion and future work
	Conclusion
	Conclusion
	Future research

	Appendix
	Source code repository
	A.2 List of figures

	References

