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Abstract

Quantum computers show great promise, but current implementation struggles
with decoherence. In this project, I construct a set of universal qubit gates for one
qubit using a combination of dynamic magnetic fields and one static magnetic field,
the model I use has one or two qubits and is symmetric when swapping the qubits.
Moreover, I try to mitigate noise including a jump operator for amplitude damping
for one qubit, jump operators found with tomography and a randomly generated
jump operator for two using the Lindblad equation. Meanwhile, the mitigation of
noise was minimal but showed a clear trend of what the best parameters were.
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Chapter 1

Introduction

In this chapter, I will start with the problem statement and some of the motivations
for this study. With more background in what quantum computing is and some basic
ideas in the next chapter.

1.1 Problem Statement

This project aims to study the effect dynamic magnetic fields have on the spin of spin
1
2 electrons, the result of the study can also apply to other two level trapped quantum
particles. The goal of the study is to see if the use of dynamic magnetic fields is able
to improve the fidelity of quantum computers.

With this study I hope to construct several different gates with a focus on one qubit
gates including the Pauli gates, single qubit gates acting on two particles and two
qubit gates including the SWAP gate. To construct the quantum gates I use the
process of minimizing a selected cost function that optimizes the selected parameters.
A cost function is a way to measure how close something is to a target, and an
optimization to minimise this is the objective of this project. The simulation in this
project takes into account things like the time spent manipulating spin and difference
from the target gate, by varying the strength and direction of a magnetic field to
manipulate the spin of an electron, or even overlapping magnetic fields used to
manipulate the spin in different directions.

Having a cost function based on how different the effect of the magnetic fields on
the spin 1

2 particle is from a specific gate using different measurement techniques,
depends on how the simulation is being done and what parameters are to be
optimized. The landscape generated by the cost function when varying the
parameters in a noise free case, also gives interesting information about how hard
it is to get a gate that is resistant to decoherence and noise. This information can be
used to expand the simulation to take into account realistic expectations of the noise

1



and decoherence current quantum computers are expected to be subject to. The goal
from there is to see if it is possible to reduce the noise generated when manipulating
quantum particles.
So in summary the goals of this project are:

• To find out what quantum gates can be constructed using a mixture of dynamic
and static magnetic fields

• To find optimal parameters that create common gates

• To simulate exposure to noise and see if it is possible to optimize the parameters
to lessen the effect

Part of the goal of this study is to increase my understanding of quantum mechanics.
It has only been a minor part of the courses in my study, and to acquire a deeper
understanding, I needed to study the relevant parts of quantum mechanics.

1.2 Motivation

Quantum computers have several theoretical applications where they will vastly
outperform normal computers (E. K. Nielsen, 2011). E.K. Nielsen describes how
in the 1980s it was found that a well controlled quantum mechanical system
quantum computer could simulate quantum systems by Benioff (1980) and Feynman,
1982 (E. K. Nielsen, 2011). Since it is hard to have a perfect quantum computer,
they are subject to interference from noise from the environment and decoherence
as information is lost and the quantum state is destroyed leading to a wrong
result when we try to measure the qubit later. Thus current computers are noisy
intermediate-scale quantum (NISQ) computers that do not have the overwhelming
advantage quantum computers are predicted to have when the fault tolerance is
complete (Preskill, 2018). Later in 1990s, it was that several functions widely used
in cryptography could be broken by using a quantum computer, and Shor (1994)
created Shor’s algorithm to speed up factorization of integers that would break many
of currently used cryptography algorithms (M. Nielsen & Chuang, 2010). Meanwhile,
L. Grover made Grover’s algorithm that could speed up search, while not quite as
big a speed upgrade as Shor’s algorithm, searches are so prevalent that it would, if
implemented, have large effects on many systems. Shor’s and Grover’s algorithms
can, among other algorithms that could take advantage of the parallelism quantum
computing offer, lead to large reductions in the time needed to do computations on
many problems that take a long time on classical computers.
Quantum parallelism makes the quantum computer able to do many calculations
in parallel for a function using the same qubits, and while the calculations are being
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done the the qubits will interfere with each other. Using this property makes you able
to find some global property for function. This makes you able to find properties for
functions valid for all possible input states (M. Nielsen & Chuang, 2010). There are
still questions of what kind of global states can be found and how to extract them, but
for fields of computation where the parallelism shines, it can have an exponentially
lower time to compute.

While quantum computers can simulate ordinary computers and do everything
they can do, it is not expected that a quantum computer will take over the job of
classical computers in all fields. The difficulty of creating quantum computers with
many qubits means that they can do fewer individual computations that cannot
benefit from parallelism. Since there are many computations that cannot be done
using parallelism, where we are only after one ideal extracted from one input, these
computations will have to be done on classical computers even in the future. The
end result is expected to be a computer that has en extra module to do the quantum
computations only for those fields where it can offer an advantage (Johansson, 2022).

But a large limitation is that current quantum computers are often quite noisy
and even with noise correction, the progress of which was started by Shor and A.
Steane (E. K. Nielsen, 2011), there are limitations on how much manipulation of
quantum bits can be done before the noise generated lead to decoherence. Even with
the shielded environments and extreme cooling used, current quantum computers
still suffer from decoherence and interference from all kinds of environmental factors,
like ionizing radiation and scattering. So the chance of noise and the resulting
decoherence increase with time spent in quantum states.

There are several fields within quantum computing where there is limited knowledge
of how quantum manipulation can be done. This project explores if it is possible to
reduce coherence loss in quantum computing by constructing gates in ways that
reduce the interference on the quantum system, by limiting the interaction with the
system as much as possible and trying to counteract the coherence loss.

This study focuses on the time dependency of the magnetic fields, as most
manipulation of qubits in the physical world is not quite as neat as modelled without
time dependence in the Schrodinger equation. My model of a quantum system
introduces dynamics in the quantum system, by varying some of the magnetic fields
in strength with time. It is interesting to see the effect this has on how gates can be
constructed. Another example of dynamics in quantum systems is that the magnetic
pulses generated in quantum computers are not completely discrete, either full
power or no power piecewise continuous pulses in the physical world. But a pulse
varies with time, taking some time to ramp up to full strength and some time to turn
off (Personal communication, S. Selstø, 2022). By varying the magnetic pulse strength
I hope we will see how gates can be constructed, and create the effect of a gate on the

3



state that we desire after acting on the qubit with magnetic pulses for a set time.
The simulations with the time dependent Schrödinger equation and the results from
the cost function have shown that the landscape created has clearly defined minima,
but those minima are in valleys that can be harder for gradient descent to follow.
There are also a few points where there can be local minima that the gradient descent
algorithm can become trapped in. This leads to the situation where a poor starting
position can make the algorithm end up trapped and get a poorer result than desired.
This will also influence my results as I will describe in Sec. 5.1.2.
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Chapter 2

Background

In this chapter, I will give a light introduction to some parts of quantum mechanics,
mostly the ways used to simulate the behaviour of particles. Following with some
general knowledge of quantum computing and some common quantum gates.

2.1 Quantum mechanics

In the field of quantum mechanics, there know that in many situations particles
can only be in certain states. Electrons in an atom can only be in a finite number of
possible energy levels, or have a quantized number of possible states, therefore the
name quantum mechanics.
Quantum mechanics where first constructed in early 1900 with most studies after
1920 (M. Nielsen & Chuang, 2010). In 1925 Samuel Goudsmit and George Uhlenbeck
discovered that electrons had an intrinsic angular momentum or in other words
a spin of h̄

2 (Karlsson, 2022). Wolfgang Pauli came around to this idea, after first
criticizing it, he went on to create the famous Pauli Principle:

ψ(r1, r2) = ±ψ(r2, r1). (2.1)

This formula states that for identical particles there is an exchange symmetry. For two
particles that changes place the wave function is the same except for a ± sign in front
of the wave function. It is anti symmetric (or −) for fermions and symmetric (or +)
for bosons (Griffiths, 1995), where fermions are particles with half integer spin, and
bosons have integer spins.
The Stern–Gerlach experiment, as mentioned in Griffiths (1995, pp. 174–175), is
considered a prototype to the methods used to measure and prepare quantum
particles by getting a definite state. Using a quantum computer you are dependent
on actually knowing the initial state. The experiment is made by having a particle
with spin moving in an inhomogeneous magnetic field, such as two magnets spaced
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apart, where it will deflect either up or down with different strength dependent on
it’s angular momentum. Which for electrons that can only be in two states means it
will deflect into two different directions dependent on it’s state. And no matter how
many different electrons are sent into the magnetic field it will always be deflected
either up or down with the same strength.

2.1.1 Hamiltonian

The Hamiltonian is the energy operator in a quantum system and is often written
as Ĥ. It contains information about all interactions acting on the system described
by the Schrödinger equation. If it does not interact with an external system, it will
simply contain the sum of the kinetic and potential energy (Griffiths, 1995):

Ĥ = − h̄2

2m
∇2 + V (2.2)

V is the potential energy and h̄2

2m∇2 is the kinetic energy. It contains two constants,
one is h̄ is the reduced Plancks constant and comes from h

2π where h is the Plancks
constant. The other is m the mass, where the mass m depends on what kind of
particle you are working with, as the mass varies greatly. You can, by changing what
unit of measurement is used in the equation, set these constants to 1, as I do in my
implementation throughout the project.
For quantum systems in three dimension the ∇2 operator decomposes to:

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 (2.3)

The Hamiltonian is used in equations that describe how a quantum system evolves
showing the effect of the energies interacting with the quantum system. Examples
of such equations are the Schrödinger equation and the Lindblad equation used in
this project, where I use a variant of the Schrödinger equation where the Hamiltonian
only describes the spin of particles. It does not contain the kinetic energy, as I focus
on particles that are fixed in space.

2.1.2 The Schrödinger equation

The Schrödinger equation was formulated by Erwin Schrödinger in 1926 and
described in it’s original form the behaviour of a non relativistic spin less particle.
The equation was later generalized by Wolfgang Pauli in 1927 to include the spin
of non relativistic particles (‘Schrödinger equation’, 2011). It has received later
generalizations to be able to apply it to relativistic particles. But as this project does
not concern itself with relativistic particles, they are not relevant here.
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The Schrödinger equation can be used to find the probability of a particle being in a
place, the probability of how fast it moves or how likely it is to be in a certain spin
state. By solving this differential equation you get a wave function that describes
the state of the particle (Griffiths, 1995). This differential equation is easy to solve
numerically for a simplified system with one particle, with the spin as the only
degree of freedom, such as the ones I use for single qubit gates.

ih̄
d
dt

Ψ(t) = ĤΨ(t) (2.4)

In Eq. (2.4), the Schrödinger equation, Ψ is the state of the system and can represent
many things, including the probability of a particle being in a particular state.
The equation is the most general version of the Schrödinger equation and by
changing what the energy operator Ĥ from Eq. (2.2) is in the Schrödinger equation
Eq. (2.4) and what the state Ψ represents, you can change what kind of system is
being represented. Ĥ is the Hamiltonian and represents the effects influencing how
the state Ψ change with time, this is the energy operator and it describes all the
energies in the system.
The Schrödinger equation Eq. (2.4) is a partial differential equation that can be
reasonable to be numerically solved for small systems, sometimes it’s even possible
to solve it analytically. But as soon as the system it describes gets bigger it reaches a
level where it is currently impossible to numerically calculate it.

Position Schrödinger wave function

Depending on the nature of the Hamiltonian, the Schrödinger equation has many
possible forms. For a one dimensional particle that can move in space it can be:

ih̄
∂

∂t
Ψ = − h̄2

2m
∂2Ψ
∂x2 + VΨ (2.5)

The energies in the Hamiltonian Ĥ, are here the one dimensional spatial case of
Eq. (2.2). The Hamiltonian acts on Ψ the wave function, to give the Schrödinger
Eq. (2.5). This variant of the Schrödinger equation gives the position for a particle in
one dimension in space, the position on a line. To get the position in three dimension,
the ∇2 in Eq. (2.2) would be Eq. (2.3) .
For clarity you may for Eq. (2.5) include the position x and the time t, so that it is easy
to see that the one dimensional wave function Ψ = Ψ(x, t) is only dependent on
position and time.
When you take the square of the absolute value of the wave function as in the
following equation:

P(x, t) = |Ψ(x, t)|2, (2.6)
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it gives you the probability density for the possible positions, and it describes the
probability to be in a specific position the different wave functions describes. If
you do a measurement to determine the state of the particle, we say that the wave
function collapses as the state is measured. The wave function will in that case
drastically change as the act of measuring a quantum particle forces it to be in specific
state, whereas before measurement the particle was in a quantum state where it
could be in different positions with a probability described by the wave function.
So the measurement forced the particle to be in the particular state it was measured
in, reducing all other probabilities to zero (Griffiths, 1995). This effect is called the
collapse of the wave function.

As Ψ(x, t) is an solution of the Schrödinger equation, it can be said that AΨ(x, t) is
also a solution, for any complex A. The sum of the values of all possible states in the
wave is required to be 1, it must also be 1 for the integral in a continuous system as
seen in the following equation:

∫ +∞

−∞
|Ψ(x, t)|2dx = 1 (2.7)

As the wave function is a probability density describing the possible states of the
system, the particle have to be somewhere. So we must pick an A that normalizes
the value to 1. For equations where it is not possible to create an multiplicative factor
that can set it to 1, as the value is either 0 or ∞, the states cannot represent particles
and must be rejected as invalid (Griffiths, 1995). This normalization is a requirement
for all types of Schrödinger equations, and for discrete systems it is the sum of all
possible states that have to be 1.

2.1.3 Closed quantum systems

So far all the quantum systems described in this chapter have been closed quantum
systems. Closed quantum systems are used to describe all systems where we can
sufficiently isolate the systems from the environment, so that we no longer need to
concern ourselves with how interference from the environment acts on the smaller
system we study. This means that it’s enough to use a unitary operator given by the
Hamiltonian to find the end state of the system:

Ψ(t) = U(t)Ψ0, (2.8)

enabling a simple transformation of states. Especially when the Hamiltonian the
unitary is derived from is not time dependent, they are the easiest types of quantum
systems to model.
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But for some quantum systems that we cannot sufficiently isolate, like with
quantum computing, it is not sufficient to describe the behaviour of the quantum
system. Because you have to sufficiently isolate a quantum system, and must know
everything about the system and every interaction by the energies involved to be able
to treat a quantum system as closed. For quantum computers, this is an ideal that
does not exist in the physical world. But using closed quantum systems shows how
a quantum computer behaves in an ideal world.

To find if you can treat a quantum system as closed, you have to look at the small
quantum system you are interested in, and then see if you can isolate it sufficiently
from the environment. So that you no longer need to take into account interactions
with energies outside the smaller quantum system.

In this project, I only use one or two qubit quantum systems, based on spin, but I use
both closed and open systems to describe and simulate them.

2.1.4 Open quantum systems

You get an open quantum system when you want to study a smaller quantum
system, but are unable to sufficiently isolate it from its environment.

Since is very difficult to completely isolate a quantum computer and other sensitive
quantum systems, you must take the energies from the environment and their
interaction with the quantum system into account and model them. These models
are simplifications. While a model of a closed system that describes every energy
and its interaction with all particles would give a perfectly accurate model, there
are simply too many interactions to take into account all possible interactions when
talking about quantum computers. So describing the quantum system as being open
enables modelling the interactions needed to accurately reflect reality.

Open quantum systems are often modelled as being smaller quantum systems in a
bath that represents the environment (Breuer, Petruccione et al., 2002).

As seen in the Fig. 2.1 the quantum system represented by Hsys is being influenced
by its environment Henv with the interaction represented by Hint. We model the
simplified open system to try to find an equivalent solution as if we had modelled
the whole system.

A density matrix such as ρ, is a way to describe the state of a quantum system in a
more general way than the wave function. It is always ρ ≥ 0 while Tr(ρ) = 1
described in more detail in Sec. 3.4.

The figure below is inspired by Breuer, Petruccione et al. (2002) and gives an
overview of how the use of open quantum systems is viewed:

9



Henv + Hsys + Hint

HintHint

Henv

Hsys

Figure 2.1: Model of open quantum system, using a smaller quantum system Hsys

submerged in a larger quantum bath Henv, with the arrows indicating interactions
Hint

ρ(0) = ρsys ⊗ ρenv ρ(t) = U(t, 0)
[
ρsys ⊗ ρenv

]
U†(t, 0)

ρsys(0) ρsys(t) = V(t)[ρsys(0)]

unitary evolution

trenv trenv

dynamic map

(2.9)

As you can see the idea is to trace out the environment ρenv from the starting state
ρ(0), getting a simplified system ρsys(0) and create a quantum map that will reach the
same end state ρsys(t) as if we had had a closed quantum system and only traced out
the environment at the end. Finding a quantum map V that enables this is the goal
of using theory for open quantum systems. This enables the modelling of quantum
systems even without modelling the whole environment, as the number of variables
are too high to account for them all.

The equations that do this are called master equations. Even though there exist
several different master equations, in this project I only use the Lindblad Master
equation. In Sec. 2.1.5 I will explain why I chose this equation. It can be used on any
number of particles, but in my project, I used it to simulate the evolution of two qubit
states when acted upon by magnetic fields while being exposed to noise.

No hiding theorem

When talking about open quantum systems we often talk about how the information
is lost because of decoherence. But it’s more accurate to say that the information
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dissipates to the environment. This is called the no-hiding theorem, and was first
published in 2007 (Braunstein & Pati, 2007). The no hiding theorem has massive
implications for black holes and when there is information missing after quantum
systems decohere. There have even been experiments done to prove this, among
others, there was in 2011 an experiment to prove that the information is not lost, but
could instead be found in the environment as described in (Samal et al., 2011).

2.1.5 Gorini–Kossakowski–Sudarshan–Lindblad master equation

The Gorini–Kossakowski–Sudarshan–Lindblad equation, mostly called the
Lindblad equation, was published in 1976 by two different groups. (Lindblad,
1976) was published by Göran Lindblad and (Gorini et al., 1976) was published
by a group consisting of Vittorio Gorini, Andrzej Kossakowski and George
Sudarshanin (Chruściński & Pascazio, 2017). As they submitted their papers at
the same time and the publishing date only differed by months they can both be
considered the origin of the equation.

As the Schrödinger equation was not sufficient to describe open quantum systems
these two groups created a method to model influence from the environment (Gorini
et al., 1976; Lindblad, 1976). This master equation enabled a non unitary evolution
where information dissipates to the environment. It is a way to model open quantum
systems, and is the main equation used in this project.

The Lindblad master equation was chosen as the master equation to use with the
open quantum systems, because it gives a completely positive trace preserving
map (Gorini et al., 1976; Lindblad, 1976). When this map is applied to a state it will
ensure that all possible states are positive semi definite: The probability for each
state becomes p ≥ 0, ensuring there is no possibility to have a state with negative
probability. And the trace of the state stays at 1, ensuring that the state exists similarly
to the normalization in Eq. (2.7) for the Schrödinger equation. This makes the end
state reached by using the quantum maps generated by the Lindblad master equation
always physically possible states as long at it starts with a physically possible state.

I will come back to this with more detail in section 3.6.

2.2 Quantum computing

Nielsen and Chuang states how: "Quantum computation emerged in the 1980s
when P. Benioff and R. Feynman realized that the apparent exponential complexity
in simulating quantum physics could be overcome by using a sufficiently well
controlled quantum mechanical system to perform a simulation" (E. K. Nielsen, 2011).
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Quantum systems suffer from the "curse and blessing of dimensionality". The curse
is especially prevalent when exploring such systems using classical computing. The
complexity of computation increases exponentially as the number of values needed
to represent a quantum state increases exponentially with the number of particles
used, compounding this with the increased computational power required for every
additional parameter. This quickly limits how many particles it is possible to use,
and how many parameters you can optimize for. This consequently limits you to
simulating and exploring quantum systems with few particles when using classical
computing.
This is completely reversed when using a quantum computer. You can see the
blessing of dimensionality in the fact that how many particles you can simulate,
scales exponentially with how many qubits the quantum computer has. This is why
there is such interest in finding ways to get error tolerant quantum computers.

2.2.1 Qubits

A qubit is the quantum computing equivalent to a bit in normal computing. The
major problem with manipulating a qubit comes from the fact that it can suffer
from decoherence and no longer be in a state where it gives correct information
when measured. This comes from interference from the environment, and is a
major limitation that reduces how useful current quantum computers are. Many
studies in quantum computing are done to see what can be done to limit how fast
a qubit decoheres, which is why many quantum computers are operated in as low
temperature and perfect vacuum as possible to reduce how much they are affected by
their environment.
A qubit can be seen as something that is in a state where it has a certain probability to
be 0 and a certain probability to be 1 as in the equation:

ψ = α |0⟩+ β |1⟩ = α |↑⟩+ β |↓⟩ . (2.10)

The sum of these probabilities is always 1 as the qubit will always have a state when
measured as long as it exists (M. Nielsen & Chuang, 2010). When talking about spin
systems we represent the state of spin up of a particle as |↑⟩ with the state |0⟩ and
spin up |↓⟩ with the state |1⟩.
"Functional and scalable qubits must meet well-defined criteria. First, reliably
initializing each qubit into one of its two levels must be possible. Second, the
final state of each qubit must be knowable by a projective measurement that gives
the correct answer with high probability. Third, qubit manipulation must be
implementable using high-quality single- and two-qubit gates." (Vandersypen &
Eriksson, 2019, page 39)
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There are several different ways to construct qubits, the most famous are using
superconducting materials and constructed by IBM Dial (2022) and Google. In this
study we will see the effects of magnetic fields on the 1/2 spin of a fermion, where
the state of the qubit is set using the direction of the spin of the fermion.
Quantum dots is one of the possible ways to implement a two state spin as a qubit,
and can be constructed with silicon semiconductors to have a great potential to
scale if the challenges with noise from imperfections in it’s construction can be dealt
with (Vandersypen & Eriksson, 2019). But it is also possible to create qubits from
ion traps or by trapping a particle in an optical lattice as proposed in Deutsch et al.
(2000). Another possibility is to create qubits without spin, for example by using the
two lowest states of a quantum dot or having a double quantum dot and using being
in a left or right state.

State vector

Instead of describing each state separately as in Eq. (2.10), one can also use a state
represent qubits, by setting each value into a vector and where each value represent
the possibility to be in a specific state. For example for a one spin particle you have
two states up and down:

|↑⟩ =
[

1
0

]
, |↓⟩ =

[
0
1

]
(2.11a,b)

That when using |ψ⟩ to represent the state can be written as:

|ψ⟩ =
[

a
b

]
(2.12)

Where a = α |↑⟩ and b = β |↓⟩ while the square of the value represents the probability
to be in that specific state. A requirement for this is that the sum of the square of
values is one, so that there always exist a state:

||Ψ⟩|2 = ∑
n
|Cn |ϕn⟩|2 = 1 (2.13)

And more specifically for a single qubit we have:

||ψ⟩|2 =

∣∣∣∣∣
[

a
b

]∣∣∣∣∣
2

= |a|2 + |b|2 = 1 (2.14)

This will be the same when you have four states, where each of the four possible
states are set as one of the values in a vector.
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For example in a two particle spin system, you can have four possible spin states: up
up, up down, down up, and down down:

|↑↑⟩ =


1
0
0
0

 , |↑↓⟩ =


0
1
0
0

 (2.15a,b)

|↓↑⟩ =


0
0
1
0

 , |↓↓⟩ =


0
0
0
1

 (2.15c,d)

When these states are manipulated you will almost never end up in a situation where
any of the single values reach a 100% chance of occurring by having a value of 1 for
one state, while all other states are 0, but it can for some operations be an ideal to
strive for.
When using the state vector |ψ⟩ to represent the state like this:

ψ = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ = α |↑↑⟩+ β |↑↓⟩+ γ |↓↑⟩+ δ |↓↓⟩ (2.16)

|ψ⟩ =


a
b
c
d

 , (2.17)

the square of the absolute values represent the probability for the qubit to be in that
state. To that end for all physical situations where the particles still exists in the
described quantum system the sum of the squares of the absolute value of all possible
states must be 1 as in Eq. (2.18). Otherwise ψ no longer represents a physical situation
that can exist.

|a|2 + |b|2 + |c|2 + |d|2 = 1 (2.18)

2.2.2 Gates

While a regular computer has logical gates in its CPU to manipulate a bit between
its two states, a quantum computer has quantum gates to manipulate qubits, so that
they can be changed into any possible state. A common way to describe a one qubit
gate is by describing them as rotations on a Bloch sphere as seen in Fig. 2.2, where
the different gates are a way to move the point at a⃗ to a different point on the sphere.
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Unlike the gates in a regular computer, the quantum gates are reversible and there
will always exist a combination of gates that can get you back to the previous state.
This counts for an ideal quantum computer, where decoherence is not considered.

a⃗

x1

x2

x3

ϕ

θ

Figure 2.2: Example of a Bloch sphere by Janosh Riebesell(Riebesell, 2022)

I will in the following part I talk about different types of quantum gates, in the next
sub sections I will describe these gates further.

In an earlier smaller study it was concluded to be feasible to construct Pauli gates and
the Hadamard gate using magnetic fields (Papanikolaou, 2021). This study aims to go
further than that work to see if there are ways to create multi qubit gates and create
all Clifford gates. From there I will look at the feasibility to make high fidelity gates
with a very low amount of noise. Mostly by seeing if there are ways to reduce the
time spent subjecting the qubits to the magnetic fields, as a shorter time period and
less interaction will reduce the amount of noise generated.

The Clifford gates consists of the CNOT gate, Hadamard gate and S gate (phase shift
gate). The Pauli gates are also part of this group, as they can trivially be constructed
with these gates (M. Nielsen & Chuang, 2010). When we include the T gate that is not
part of the gates in the Clifford group, we get a universal set of gates, such that it can
approximate any gate that can be used on the qubit by only using a combination of
the gates in the universal set.

While it is possible to simulate gates efficiently using classical computing as
described in the Gottesman–Knill theorem (Aaronson & Gottesman, 2004; M. A.
Nielsen, 2002), this only hold for as long as we do not try to simulate a full universal
set of gates. The gates in the Clifford group alone can be simulated on a timescale of
O(n2) while used alone.
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Phase P and S gate

The S gate is

S =

[
1 0
0 i

]
(2.19)

The phase shift gate P in Eq. (2.20) is part of a universal set of gates when combined
with the Clifford group. But it is not a part of the Clifford set like the S gate is.

P =

[
1 0
0 eiφ

]
(2.20)

Pauli gates

Pauli matrices have the effect that if two of the same Pauli matrices are acting on each
other, the effect of the two gates will become I the identity matrix X2 = Y2 = Z2 = I.
These gates are anti commutative as ZX = iY = −XZ.

σx =

[
0 1
1 0

]
(2.21a)

σy =

[
0 −i
i 0

]
(2.21b)

σz =

[
1 0
0 −1

]
. (2.21c)

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
(2.22a)[

0 1
1 0

] [
0
1

]
=

[
1
0

]
(2.22b)

One example of the Pauli gates is the X gate also called NOT gate shown in
Eq. (2.21a). When the X gate is applied to a qubit, it will change it’s state to it’s
opposite. If it is in the |0⟩ state it will change it to the |1⟩ state and vice versa.

SWAP gate

Swap as described is a gate that swaps the position of two qubits. As seen in equation
here:
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SWAP =


1 0 0 0
0 0 1 0
0 1 0 1
0 0 0 1

 (2.23)

When looking at it’s effect we can see that the swap gate only has effect when it can
swap the position of the two qubits in different states. There is no observable effect
when the qubits is in the same state as seen in the following equation:

[SWAP]


1
0
0
0

 =


1
0
0
0

 , [SWAP]


0
1
0
0

 =


0
0
1
0

 (2.24a,b)

[SWAP]


0
0
1
0

 =


0
1
0
0

 , [SWAP]


0
0
0
1

 =


0
0
0
1

 (2.24c,d)

CNOT gate

The CNOT gate, or Controlled NOT gate, works on two qubits, and will if the first
qubit is in the state |↓⟩ swap the state of the second qubit, having the same effect as
the x Pauli gate in Eq. (2.21a).

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.25)

Hadamard gate

The Hadamard gate is a gate that can be used to set the qubit in a superposition from
a defined starting position such as |0⟩ or |1⟩. When used on the state |0⟩, you will get
the |0⟩+|1⟩√

2
state. The equation for the Hadamard gate is:

H =
1√
2

[
1 1
1 −1

]
(2.26)

The goal of this study is to construct the different gates using dynamic magnetic
fields that vary with time.
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2.2.3 Noisy Intermediate Scale Quantum

All current quantum computers are Noisy Intermediate-Scale Quantum (NISQ) and
suffers from a large error rate, limiting what current quantum computers can be used
for (Preskill, 2018). But they can be used to explore the effect of entangled particles
even while the noise limits other things it can be used for. While error free quantum
computing has the potential to achieve quantum supremacy and outperform classical
computers, there are fields where even noisy quantum computers are expected to
vastly exceed classical computers, such as the field of quantum annealing (Finnila
et al., 1994), and they enable us to simulate all natural processes. And other fields
where the advantage is more limited like Non-Polynomial(NP) hard problems, where
it is only expected to be a modest increase in the computation speed (Preskill, 2018).
For Polynomial(P) time problems there exists a polynomial of the form O = (nk)

for any n with a constant k that is greater than the time taken to solve the problem
of complexity given by n. While a NP hard problem means that it is not possible to
solve the problem deterministic in polynomial time. This means that there does not
exist a polynomial of the form O = (nk) for any n with a constant k that is greater
than the time taken to solve the problem for a problem of complexity n. Unless
P = NP which is doubted to be true, but currently not proven (Cook, 2001).

A famous example is the travelling salesman problem, an NP-Complete problem,
where the complete part of "NP complete" shows it is a subclass of NP problems.
If an answer exists, it can be proven quickly. Here the problem is the travel time
between cities and the shortest route. While such a thing can be brute forced for
a small number of cities and a limited number of roads between them. It quickly
becomes impractical to check all solutions for even with a limited number of cities.
The time to compute increases exponentially as the number of cities increases. It is
possible to approximate the solution, but it will not give an optimal answer.

Part of the problem with noise comes from the difficulty in perfectly isolating the
qubit while still allowing it to interact with other qubits to allow entanglement.
Perfect qubits are only available in a vacuum while qubits in the real world will
experience interference from the environment and even the construction of the
physical qubit can have imperfections that introduce errors (Vandersypen & Eriksson,
2019).

2.2.4 Implementation of quantum system

Any quantum system that can be set into a quantified two state, and reliably
measured, can be thought of as a spin up and spin down system. This enables the
use of several different types of quantum systems being used to construct qubits in
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quantum computers.

Electron as Quantum dot

According to Vandersypen and Eriksson: "Most textbook about spin systems focus on
electrons because The corresponding states, spin up spin down, form the prototypical
quantum bit (qubit), and rotations of the spin state constitute the simplest quantum
logic gates." (Vandersypen & Eriksson, 2019) By trapping an electron with voltage
you can create a quantum dot that can be used as the basis for a qubit. But these
electrons exist in a noisy environment that makes it too vulnerable to noise when
used alone. A study by David Weiss and Mark Saffman made in 2017 suggests that
with current techniques a fully fault tolerant quantum bit, a logical quantum bit,
might require as much as 1000 NISQ bits to perform error correction (Vandersypen &
Eriksson, 2019, as cited in). They suggest that it will be a requirement to have millions
of qubits to reach quantum supremacy.

But they propose that using silicon semiconductors can take advantage of current
knowledge in classical computing hardware to create a large number of quantum
dots and they speculate on the possibility to create chips that combine classical
computing and quantum computing on a single chip or circuit board.

Semiconductor quantum dot

New research has demonstrated over a 99% fidelity rate for silicon semiconductors,
and opening the way for using common error correction algorithms to correct for
the noise and resulting decoherence (Mills et al., 2022). These quantum dots are
currently in the 100 nm size and are theorized to allow for further scaling in quantum
computers in the future. With speed higher than trapped ions, a fidelity close to a
superconductive quantum computer, together with a recent increase in the capability
to construct quantum dots, they state that it will be possible to create large multi
qubit processors.

2.3 Quantum control landscapes

A quantum control landscape is a landscape construed by a cost function. The cost
function is a way to measure how close something is to a target. In this project
I simulate how close the effect of a Hamiltonian is to an ideal gate. In the cost
landscape the optimal solutions are the points where the cost function has either
minimal or maximum value dependent on the configuration of the cost function.
Looking at such a landscape can tell you much about how stable the different
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solutions are, but they are often costly to compute, as you have to compute for every
point in the landscape.
An important part of finding an optimal way of manipulation quantum dots are
finding maxima or minima in a quantum control landscape (A. N. Pechen & Tannor,
2011). Most methods to find the maxima use an evolutionary approach and the
gradient, as I do, another possibility is to use the first or second order Hessian matrix
to find a better point, but it is not used in this study and therefore not described.
When using an evolutionary approach, you repeat your method until a local critical
point is found. This is done because as the systems become complex with more
variables, the computing power needed becomes too high for a more throughout
search. This need for search algorithms makes it vulnerable to traps, as local minima
or maxima can appear when the Jacobian is not full rank at all points. It has been
shown that there exist traps in many types of quantum problems, this has a large
impact on a large class of studies on quantum control systems.
There are problems with proving if a system has traps or is trap free (A. Pechen &
Il’in, 2012). There has been conflicting research on whether quantum systems are
trap free or not while using numerical simulations. The question whether these
simulations are running over all possible quantum control possibilities limits the
value, and it remains hard to prove if a specific system is trap free or not.
It has been proven that there exist Landau-Zener systems that are possible to
manipulate, that are trap free. This is only possible when the physical system is not
subject to large disturbances and the laser pulse used to control the system are among
the less energetic pulses from the best pulses possible (A. Pechen & Il’in, 2012). But
the Landau-Zener systems are vulnerable to noise and decoherence, which can lead
to the creation of traps that makes an evolutionary algorithm find local maxima
instead of global.
There is research that suggests that in many systems you will in a system that is
completely noise free and with no decoherence be able to find local maxima that
correspond to the global maxima (Rabitz et al., 2004). It is noted that approximations
made in the computations can drastically alter the landscape and make these findings
inaccurate for simulations. There are also noted vulnerabilities to weak noise
and decoherence that can give rise to results that do not correspond to observed
behaviour in reality. As the noise will have an effect on the least robust solutions in
the system, and the vulnerability to finding a weak solution with algorithms. The
result, that there exists an optimal quantum control landscape, is not intuitive.
A. Pechen and Il’in (2012) contradicts earlier work and shows that care must be
taken when studying quantum control landscapes, as for many systems there are no
guarantee that it is trap free.
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Figure 2.3: Example of an uneven quantum landscape with local maxima. Reprinted
figure with permission from Pechen, A., & Il’in, N. (2012). Trap-free manipulation
in the landau-zener system. Phys. Rev. A, 86, 052117. https : / / doi . org / 10 . 1103 /
PhysRevA.86.052117. Copyright 2012 American Physical Society.
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2.4 Working with NISQ

There is research being done to work in a NISQ enviroment with algorithms that are
error tolerant, like quantum approximate optimization algorithm (QAOA). (Xue et
al., 2019) The limits of the current systems are too severe for most general problems.
"For example, to factor 2048-bit RSA integers requires 20 billion noisy qubits." (Xue
et al., 2019).
The result from Xue et al. (2019) shows that it is possible to use hybrid algorithms to
solve several numerical problems. And the result of the landscape created by the cost
function is merely flattened instead of distorted, so the results of using optimization
algorithms are valid for use with the QAOA algorithm. But as the number of gates
and the noise the system is exposed increases, the fidelity decreases exponentially.
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Chapter 3

Theory

To give some insight into what I am trying to accomplish with my study I will give an
overview of the theory behind my work.

3.1 Simulating

To understand the effect dynamic magnetic fields will have on particles, it is easier
to start by simulating how the particles will behave under different circumstances.
The Schrödinger equation and its wave function is my starting point. But to simulate
decoherence and non unitary, non reversible effects, I have to use density matrices
and a Master equation.

Since it is only possible to solve the Schrödinger equation analytically for a small
subset of simple systems, I will use a numerical approach to solve the equation.

The Hamiltonian will be used to represent the energies acting upon the particle, with
variables for the magnetic field while the Lindbladian will in addition have variables
representing the interference from the environment.

The Crank-Nicolson or Runge-Kutta based solver is used to solve the resulting
differential equation. Finally, I will be using a cost function to compare how well the
solved differential equation corresponds to a desired quantum gate.

The main purpose of these simulations is, through the use of a Gradient descent
algorithm to find out if there are parameters that for different conditions can enable
me to create any desired gate.

I will here expand upon these methods of simulation, and how the measurement of
the result is done.
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3.2 The Schrödinger Equation

The Schrödinger equation is here used in conjunction with the Crank-Nicolson solver
to find the effect of different interactions acting on the particles I simulate.

The Hamiltonian is the energy operator in the system and is often written as Ĥ as
seen in Eq. (2.2). It contains information about all interactions acting on the system
described by the Schrödinger equation and if it is not acted upon by outside energies,
it will simply contain the sum of the kinetic and potential energy (Griffiths, 1995).

3.2.1 Time dependence of the Schrödinger equation

While the Schrödinger equation can take different forms depending on what the
equation refers to. The general time dependent version of the Schrödinger equation
is written like this:

ih̄
∂

∂t
Ψ(t) = ĤΨ(t) (3.1)

For this equation, the Hamiltonian can in many cases be thought of as a matrix Ĥ that
work on the wave Ψ. The computation of Ψ then becomes the Hamiltonian operator
acting on the state of the system ψ.

Eq. (3.1) is a very general way to write the Schrödinger equation, it covers every
possible version that is time independent. As an example, you use the time
independent Schrödinger equation to describe the energies of a quantum system,
which can be written like this:

ĤΨ = EΨ (3.2)

The Eq. (3.2), the time independent Schrödinger equation, describes a stationary
system where the probability density is static. From this equation, you can see that
the eigenvalues of Ĥ give the energy levels of the system E. This requires that the
Hamiltonian is time independent: it does not vary with time but is static.

You can describe the effect of the interactions from the Hamiltonian using a
propagator U(t) seen in Eq. (2.8).

When you have a time dependent Schrödinger equation where the Hamiltonian is
time independent you can describe the effect of the interactions in the Hamiltonian
acting on the system for a period of time, using a simple propagator:

U(t) = e−iĤt/h̄, (3.3)

if you substitute this for U(t) in Eq. (2.8), you get the simple propagator:
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Ψ(t) = e−iĤt/h̄Ψ(t0) (3.4)

The simple propagator in Eq. (3.4) is only valid for a time independent Hamiltonian
as seen in Eq. (3.2), the time independent Schrödinger equation applies when the
Hamiltonian is not explicitly dependent on time, and the effect of the propagator is
only changed by how long it acts on the particle.

3.2.2 Schrödinger equation for the spin of a particle

In this study, I focus on the use of the Schrödinger equation to simulate the effect of
dynamic magnetic fields, while keeping one field at constant strength. To do so, I
have to choose a Ψ and Ĥ that make the equation represent the spin of a particle.

To make Eq. (2.4) refer to the spin of a particle, Ψ will be a state vector as described
in Sec. 2.2.1 where the square of each value in the vector represents the possibility for
the particles being in that particular state. I use Eq. (3.1), the time dependent version
of the Schrödinger equation, as the effect of the Hamiltonians I use are explicitly
dependent on time.

The Hamiltonian Ĥ represents all interactions acting on the particle, in my example
magnetic fields and interaction between particles. Details on the Hamiltonian will be
discussed in Sec. 3.3.

By using the Schrödinger equation in combination with the cost function, I hope to
get an understanding of the landscape the cost function describes and from there get
an understanding of the feasibility of different directions of this study.

Since the Schrödinger equation only can be used to simulate closed systems, density
matrices must be used to accurately simulate the effects of interference from the
environment.

3.3 The Hamiltonian

The Eq. (2.21), the Pauli matrices, can form the basis for a Hamiltonian of a one qubit
system. When creating a Hamiltonian, the Pauli matrices can be used to represent
how strong the interactions acting on a particle are in a particular direction, with each
gate being used to represent a magnetic field orthogonal to the other magnetic fields,
multiplying each Pauli matrix with the strength of the magnetic field in the direction
it represents. The constructed Hamiltonian can then be used to change the state of the
system by using it as described in the equation Eq. (2.4).

A constructed Hamiltonian can be used to represent the interactions acting on the
spin of a trapped particle with spin. This trapped spin particle can represent a one
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qubit system and can be expanded to have more particles. The energy operator in
Eq. (3.5) can be constructed so that σ represents the Pauli matrices and B is how
strongly each of those matrices acts on the system. B represents the strength of the
magnetic field in all directions, and for a particular direction, you have Bx being
the strength of the field acting in the x-direction. By varying each B, to change how
strong each magnetic field is, I hope to see how gates can be constructed and whether
they have the effect on the state as desired, after acting on the qubit for a set time.

H1 =
eh̄
2m

B(t) · σ =
eh̄
2m

(
Bx(t)σx + By(t)σy + Bz(t)σz

)
. (3.5)

The Φ in:

Φ1(t) = a(t)| ↑⟩+ b(t)| ↓⟩, (3.6)

can be talked about as the wave function.

Here it describes the state of the qubit, as the square of the absolute value to a
describes the probability of the qubit spin direction being in the up position and the
square of the absolute value to b being the probability of the particle being in the
down position. As long as the particle stays in the system the norm should always
be 1 so that |a|2 + |b|2 = 1.

Using the Hamiltonian and adding variables to it, it is possible to simulate
different interactions acting on the particles, including the magnetic fields meant to
manipulate them, and interference from other particles. However, the Hamiltonian
is not enough to describe interference from the environment, to do that you need a
more general equation that can describe an open quantum system, like the Lindblad
equation described in Sec. 3.6.

When Eq. (3.5) is solved with B(t) as sin(t) it gives:

H(t) =

[
− ϵ

2 Ω∗ sin(tω)

Ω sin(tω) ϵ
2

]
(3.7)

Where Ω = Ωx − Ωyi, t is the time while ω is the frequency change of the magnetic
fields.

Hermitian operator

To ensure that all observables are real, you must ensure that the Hamiltonian is
Hermitian. That is that the Hamiltonian H = H† or self adjoint, it can also be
written (Gerald, 2014):

⟨Ax, y⟩ = ⟨x, Ay⟩ (3.8)
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Hermicity ensures that it has real eigenvalues, so that when the Hamiltonian is used
in the Time independent Schrödinger Eq. (3.2) to find the energy values, it does so
by finding the eigenvalues. These eigenvalues have to be real to describe the energy
levels of the wave function.

3.3.1 Spin spin interactions

When there are two or more qubits there will be an interaction between them, and
in the target system for qubits with spin, it will be a spin spin interaction. This
means that any Hamiltonian will have to account for the interaction between the two
particles as seen below with u as the strength of interaction:

H2 =
eh̄
2m

B(t) · σ ⊗ I + I ⊗ eh̄
2m

B(t) · σ + ∑
j∈{x,y,z}

ujσj ⊗ σj

=
eh̄
2m

(
Bx(t)(σx ⊗ I + I ⊗ σx + By(t)(σy ⊗ I + I ⊗ σy)

+Bz(t)(σz ⊗ I + I ⊗ σz)) + ∑
j∈{x,y,z}

ujσj ⊗ σj (3.9)

When this is solved, it gives a Hamiltonian that can show the effect of interactions
between two qubits with different strengths given by u. When e, h̄ and m are set to 1
and u is one value it gives two matrices, one for the external magnetic fields and the
other for the interactions:

H =
1
2


2Bz Bx − iBy Bx − iBy 0

Bx + iBy 0 0 Bx − iBy

Bx + iBy 0 0 Bx − iBy

0 Bx + iBy Bx + iBy 2Bz

 (3.10)

With the interactions being:

Hinter = u ·


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 (3.11)

Which combined gives:

H2 =
1
2


2Bz + 2u Bx − iBy Bx − iBy 0
Bx + iBy −2u 4u Bx − iBy

Bx + iBy 4u −2u Bx − iBy

0 Bx + iBy Bx + iBy 2Bz + 2u

 (3.12)
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For my project where as earlier B(t) is chosen as sin(t) and for brevity Ω = Ωx − Ωyi,
the Hamiltonian can be written:

H2(t) =
1
2


2ϵ + 2u Ω sin(t) Ω sin(t) 0

Ω∗ sin(t) −2u 4u Ω sin(t)
Ω∗ sin(t) 4u −2u Ω sin(t)

0 Ω∗ sin(t) Ω∗ sin(t) 2ϵ + 2u

 (3.13)

But when the material the qubits are contained in gives different strengths to the
interactions in the different directions, u is no longer only one constant repeated with
a linear multiplier in the matrix. The interactions u are instead added to the matrix
while being on the form:

u · σ ⊗ σ = uxσx ⊗ σx + uyσy ⊗ σy + uzσz ⊗ σz (3.14)

This enables the simulation of materials that have different strengths on the
interactions in different directions, at the cost of the Hamiltonian becoming more
complicated and having additional parameters:

H2(t) =
1
2


2ϵ + 2uz Ω sin(t) Ω sin(t) 2ux − 2uy

Ω∗ sin(t) −2uz 2ux + 2uy Ω sin(t)
Ω∗ sin(t) 2ux + 2uy −2uz Ω sin(t)
2ux − 2uy Ω∗ sin(t) Ω∗ sin(t) 2ϵ + 2uz

 (3.15)

Where the interactions alone are:

u · σ ⊗ σ =


uz 0 0 ux − uy

0 −uz ux + uy 0
0 ux + uy −uz 0

ux − uy 0 0 uz

 (3.16)

Because these Hamiltonians are set up symmetrical and Hermitian, so that H = H†,
I cannot distinguish between the two qubit states |↑↓⟩ |↓↑⟩, and I cannot affect the
qubits individually, removing the possibility to implement the CNOT gate without
creating a new Hamiltonian that distinguishes the effect it has on the qubits.

3.3.2 Constant pulse quantum gates

While I simulated a quantum system, I tested how the shape of the magnetic pulses
could affect the result of the Hamiltonian. Discrete pulses are not that interesting to
simulate as they can be perfectly analysed analytically.

For example, for the Hamiltonian:
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H = Bσx, (3.17)

you can use the fact it is time independent on the same form as Eq. (3.2), we can use
the simple propagator from Eq. (3.4) and expand the propagator using the power
series of the exponential function ex:

ex =
∞

∑
n=0

xn

n!
(3.18)

This can then be used to get a simpler end result:

U = e
iBσx

h̄ (3.19a)

=
inf

∑
n=0

1
n!

(
−iBσxt

h̄

)n
(3.19b)

=
inf

∑
n=0

1
(2n)!

(
−iBt

h̄

)2n
I +

inf

∑
n=0

1
(2n + 1)!

(
−iBt

h̄

)2n+1

σx (3.19c)

=
inf

∑
n=0

−1
(2n)!

(
Bt
h̄

)2n
I − i

inf

∑
n=0

−1
(2n + 1)!

(
Bt
h̄

)2n+1

σx (3.19d)

= cos
(

Bt
h̄

)
I − i sin

(
Bt
h̄

)
σx (3.19e)

Where at Eq. (3.19c) we split the even and odd number of steps in the power series,
and by rearranging Eq. (3.19c) to Eq. (3.19d) you get the power series form of sinus
and cosinus. This makes the end result the simple expression in Eq. (3.19e).

Using Eq. (3.19e) you can easily find the strength required to get the X gate, as it
only requires that the expression must be equal σx. And since the global phase does
not matter it only requires that the expression inside sinus is equal to 1 and the
expression inside cosinus is equal to 0. Using the fact that this is true for π

2 you get:

Bt
h̄

=
π

2
(3.20)

An easily solved equation, as an example for h̄ set to 1 and a time period of 2π you
get B = 1

4 . This means it is not an interesting case to simulate on one qubit, since
you can always repeat this for σy and σz, and get as shown with σx in Eq. (3.19e), a
simple expression. This is because the Hamiltonian can always be decomposed into
the interactions from the individual magnetic fields.

This is why the focus of this study was on the use of dynamic magnetic fields, to
give the system some more dynamic changes that I hoped would give a possibility
to counteract the effect of noise.
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3.3.3 Examples of quantum gates

Some commonly appearing gates, that can be simulated by my program, are the
Hadamard gate and the Swap gate.

Hadamard

The Hadamard gate is a gate commonly used to set a qubit in a superposition,
and when used in combination with the CNOT gate, it can set a pair of qubits in
a bell state. The equation is written earlier in Eq. (2.26) found in Sec. 2.2.2. When
using constant pulse it can be constructed out of the Z and Y Pauli gates used
consecutively:

H = ZY− 1
2 = Y

1
2 Z (3.21)

So it should be possible to get close even if we use the dynamic magnetic pulses for
the Ωx and Ωy direction with a static field in the ϵ direction.

Square root of SWAP

The square root of SWAP gate can in combination with single qubit gates be used to
construct the CNOT gate, and can therefore in combination with other single qubit
gates, be used to show that it is possible to have a universal set of gates.

The swap gate in Eq. (2.23) has a simple equation, while the square root of it is
slightly more complicated:

√
SWAP =


1 0 0 0
0 1+i

2
1−i

2 0
0 1−i

2
12i
2 0

0 0 0 1

 (3.22)

After starting to implement it, one of my supervisors found a paper that referenced
how it could be constructed using only interactions between qubits (Fan et al., 2005).
This is reasonable because when you look at Eq. (3.11) you can see the similarities
with Eq. (3.22).

3.4 Density Matrix

A density matrix is a matrix that can be used to describe the open quantum system,
where parameters in the matrix describe the effect the environment has on the
smaller system being modelled.
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It can be more complicated to use, which is why the start of the project focuses on the
Schrödinger equation to get an overview of what ideas are worth focusing on.
The purpose of a density matrix is to be able to show more states of the system (E. K.
Nielsen, 2011). While the Schrödinger equation can be said to be a single pure state
in the density matrix, the density matrix is an ensemble of pure states, and is used
if all information about the quantum system is not known. When working with
density matrices the diagonal gives the probability to be in a given state while the
off diagonal elements hold the quantum information about the system.

ρ = ∑
j

pj|ψj⟩⟨ψj| (3.23)

Since the density matrix is an ensemble of states as seen in Eq. (3.23), the coefficient pj

gives the probability of the quantum system represented by the density matrix being
in the state j given by ψj. If only one of the states is different to zero you have a pure
state, and then you know everything about its current state. But if you have multiple
possible states, it’s a mixed state and you may not be able to separate out every
possible state, as for each density matrix, there may be multiple possible ensembles
of states that give the same density operator (M. Nielsen & Chuang, 2010). You may
use a density matrix to represent the state instead of the state vector described in
Sec 2.2.1, but it cannot be used with the Schrödinger equation. But a density matrix
requires a master equation, the Lindblad equation described in Sec. 3.6 is an example
of such a master equation.

3.5 Quantum map, Unitary and non Unitary

A quantum map is a very general way of referring to any of the ways you can
manipulate a density matrix to another density matrix, mapping the states of one
density matrix to another. The U from Eq. (2.8) is an example of a quantum map.

3.5.1 Unitary

A unitary operator is an operator that preserves the inner product of the matrix it is
applied to. When its inverse is applied to it you get the identity matrix (Sen, 2013):

A† A = AA† = I (3.24)

When working with the Schrödinger equation and closed quantum system all the
operators U, often called a propagator, from Eq. (2.8), will be unitary. It will therefore
have an inverse operator U† that can get back to the starting point after applying the
inverse of the operator on Ψ(t) from Eq. (2.8):
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Ψ0 = U(t)†Ψ(t) (3.25)

This way we can recover the starting state Ψ0. To ensure that the propagator U
is unitary, one of the requirements is that the Hamiltonian that you propagate is
Hermitian, as described in Sec. 3.3.

3.5.2 Non unitary

In contrast to the unitary quantum maps, non unitary quantum maps cannot
guarantee that there exists a unitary operator and there is no inverse operator. So that
when you get the end state Ψ(t), there is no longer any way to recover the starting
state using the inverse U−1. As while it may exist it is no longer unitary and self-
adjoint and Eq. (3.24) is no longer valid. The inverse may not exist or may lead to
states that are not physically possible.
This is one of the drawbacks of the Lindblad equation and limits what states are easy
to get back to when using a master equation to manipulate an open quantum system.

3.6 The Lindbladian

To expand on what is written in Sec. 2.1.5 I will explain the Lindblad master equation.
While the Schrödinger Eq. (2.4) is perfectly able to describe the evolution of a
quantum system, it has great limitations when it comes to simulating interactions
from outside the system. The Lindblad master equation can be used to show how
interaction with the system has a tendency to return to its ground state. It is a general
purpose equation to simulate Markovian interactions, systems whose future state
changes only depend on what the state of the system was after it last changed.
We are interested in quantum sub systems in the whole quantum system that
is the universe, but interactions within this system can have a large impact on
how the behaviour of a subsystem we want to study. While simulating every
interaction would be impossible, simulating a subsystem with some approximations
is possible (Manzano, 2020). For my project, the subsystem is a one or two qubit
system including the noise from the environment and the tendency for particles to
fall to their ground states.
Since I am now working in an open quantum system, the state vector is no longer
enough to contain all information about this system. The Lindbladian instead uses a
density matrix as described in Sec. 3.4. This enables an ensemble of mixed states that
often arise when working with open quantum systems.
The equation is trace preserving, meaning the trace of the density matrix will always
be 1. The Lindblad equation is completely positive semi definite, so that each pure
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state in the ensemble of states in the density matrix always have has a positive or zero
percent probability of existing, guaranteeing the state is physically possible (Gorini
et al., 1976; Lindblad, 1976).

3.6.1 Lindblad master equation

The general Lindblad equation as found in Manzano (2020) here in Eq. (3.26),
describes a quantum system where there are a number of jump operators L that each
describes unwanted interactions that can lead to decoherence.

ρ̇ = −i [H, ρ(t)] + ∑
j

(
Ljρ(t)L†

j −
1
2

{
L†

j Lj, ρ(t)
})

(3.26)

The jump operator can here be used to describe many types of interactions with the
environment outside the quantum system. The density matrix is represented by ρ(t)
and the internal interactions of the system are represented by the Hamiltonian H.

3.6.2 Decay to ground state

For a Lindblad equation that only concerns itself with the chance of decay where the
state falls from |1⟩ to |0⟩ it’s possible to use:

iρ̇ = Hρ − ρH − iγ(a†aρ + ρa†a − 2aρa†) (3.27a)

ρ̇ = −i(Hρ − ρH)− γ(a†aρ + ρa†a − 2aρa†) (3.27b)

The gamma in the Lindblad equation represents how fast the particle being simulated
is likely to fall down into its ground state. Part of the project is to see if there are
ways to mitigate how fast the particle falls into the ground state and suffers from
decoherence. This decoherence can be expressed as a jump operator:

a =

[
1
0

] [
0 1

]
=

[
0 1
0 0

]
(3.28)

a†a =

[
0 0
0 1

]
(3.29)

These jump operators say something about what kind of noise is present in this
case amplitude dampening. This is a simple model of noise where a says something
about how the state tends towards |0⟩, a is representing |0⟩ ⟨1| or Eq. (3.28). While a†a
represent Eq. (3.29) in the Lindblad equation and is a way to remove value from one
state adding it to another state. In Eq. (3.27) 2aρa† is used to subtract from one state to
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add to another state in the resulting density matrix, to represent the decay towards its
ground state. Which can be expressed as the differential equation:

iρ̇ =

[
2iγρ11 − ρ01Ω + ρ10Ω∗ −ϵρ01 − iγρ01 − ρ00Ω∗ + ρ11Ω∗

ϵρ10 − iγρ10 + ρ00Ω − ρ11Ω −2iγρ11 + ρ01Ω − ρ10Ω∗

]
, (3.30)

where Ω = Ωx − Ωyi with Ωx, Ωy and ϵ as the magnetic fields placed orthogonal
with respect to each other, ρ is a matrix that starts with one value set to 1 at a time
and γ tells how fast the particle falls to zero.
An example of the four ρ matrices for one particle:

ρ00 =

[
1 0
0 0

]
, ρ01 =

[
0 1
0 0

]
, ρ10 =

[
0 0
1 0

]
, ρ11 =

[
0 0
0 1

]
(3.31)

This is every individual state of ρ with only one value of 1 with the rest zero, while
only the ρ00 and ρ11 states, the states with diagonal elements, are valid states. As only
those states have a trace of one and are Hermitian, but all states have to be used to
build the complete quantum map. The matrix ρ will for n number of particles have
each side the size of 2n, so it’s a 2n × 2n matrix, making it grow fast as the number of
particles increases.
This is a great limitation on the use of the Lindblad equation. The number of times it
must be solved, as needed for all possible values of ρ, makes the computation take
exponentially longer as the number of particles increases. The Lindblad equation
increases computational time even faster than the Schrödinger equation seen in
Sec. 3.2. This necessitates changes to keep the computation time manageable for any
implementation with more than one particle.
The Lindblad equation is trace preserving, as the trace of the density matrix should
always be 1. Making the diagonal of the matrix represent the possibility of being
measured in a given state while the off diagonal elements represents the quantum
information.

3.6.3 Lindblad on ODE form

For one particle it is possible with the Lindblad equation to write out the equation
as a 4x4 matrix, consisting of four differential equations with one for each state of ρ,
instead of having a 2x2 matrix with values of ρ as input.

ρ̇ =


0 −Ωx + iΩy Ωx + iΩy 2iγ

−Ωx − iΩy −ϵ − iγ 0 Ωx + iΩy

Ωx − iΩy 0 −ϵ − iγ −Ωx − iΩy

0 Ωx − iΩy −Ωx − iΩy −2iγ




ρ1

ρ2

ρ3

ρ4

 (3.32)
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This makes the matrix derived from the Lindblad equation solvable by the Crank-
Nicolson Sec. 3.7.1 solver using a flattened rho to get a column vector of size 4x1. I
would then solve it for all 4 possible start states of ρ, and get a quantum map. This
quantum map can then be used to compare the effect of the Lindbladian with a
desired gate, using an appropriate measurement method as discussed in Sec. 3.8.

3.6.4 Lindblad two qubits

When using the Lindblad equation on two qubits you have to compute it for all
possible variations of ρ as for one qubit as in Eq. (3.31). This leads to having 16
starting states, where only 4 are physically possible states, located on the diagonal.
The Lindblad equation itself is a 4 × 4 matrix with the Hamiltonian H in the Lindblad
Eq. (3.26) being equal to the Hamiltonian for two particles in Eq. (3.13). The four
jump operators are also in the form of 4 × 4 matrices, with the effect of the jump
operators changing with the state of the density matrix ρ.
If you want to have more granular control of the strength of the individual jump
operators, you can give each jump operator Lj a multiplier γj to control their strength
independently:

ρ̇ = −i [H, ρ(t)] + ∑
j

(
γjLjρ(t)L†

j − γj
1
2

{
L†

j Lj, ρ(t)
})

(3.33)

To simplify the calculation of the jump operators described in Eq. (3.26) and taking
the γ seen in Eq. (3.33), you can precalculate part of the equation so that the jump
operator in the anti-commutator can be written:

∑
j

1
2

{
L†

j Lj, ρ(t)
}
= ∑

j

(
1
2

γjL†
j Lj

)
ρ + ρ ∑

j

(
1
2

γjL†
j Lj

)
= Dρ + ρD, (3.34)

this way D is only calculated once for each set of jump operators.

3.6.5 Generating jump operators

In order to have a jump operator suitable for testing, it is constructive to have a
consistent way of getting traceless jump operators. I begin this process with creating
a 4 × 4 matrix with normally distributed values, with mean 0, standard deviation of 1
and using the same process for an imaginary part:

Lstep =

[
N (0, 1) N (0, 1)
N (0, 1) N (0, 1)

]
+ i

[
N (0, 1) N (0, 1)
N (0, 1) N (0, 1)

]
(3.35)

To ensure it is traceless I remove the product of the trace multiplied with the identity
matrix and divided with the dimension of the matrix d:
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L f inal = Lstep −
Tr(Lstep)I

d
(3.36)

This enables easy generation of multiple possible jump operators to simulate the
noise. Depending on the need you can create an individual jump operator or use
several for a set of jump operators.

3.7 Solving Differential Equations

Since solving the Schrödinger equation gets exponentially harder with each
additional particle simulated, solving it analytically is basically impossible for
any more complicated systems. The method used here is instead a numerical
approximation that gives a close enough result to go further with.
The equations only have to be on a differentiable form and while there are many
possible ways to solve differential equations I have used a Crank-Nicolson solver
based on Sec. 3.7.1 and a Runge Kutta solver Sec. 3.7.2.

3.7.1 Crank-Nicolson solver

The crank-Nicolson method is a numerical equation to solve Partial Differential
Equations(PDE). It uses both the forward Euler and backwards Euler to get a good
approximation and to reduce the errors. The forward Euler is explicit and requires
a large number of timesteps to be accurate, while the backwards Euler method is
implicit and more accurate for larger timesteps to solve for. It is based on a research
paper written by John Crank and Phyllis Nicolson (Crank & Nicolson, 1947).
The version in my project is a simplification that I use to solve Ordinary Differential
Equations(ODE) instead of the Partial Differential Equations(PDE) the original
version is used for.
It uses a suitable timestep dt to take a step forward:

ϕnew =

(
I +

i · dt
2

H(t + dt)
)−1

·
(

I − i · dt
2

H(t)
)

ϕold (3.37)

This is repeated until the propagation reaches the desired end time as you increment
the time for each step tnew = told + dt.

3.7.2 Runge–Kutta solver

As the time used to solve the Lindblad equation for even one particle is high with the
Crank-Nicolson solver, I use an alternative solver based on the Runge-Kutta method.
It’s a fourth order solver with an error on the scale of O(dt4) and even with bigger
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time steps it is projected to be more accurate and faster than the Crank-Nicolson
solver.

It is accurate up to the fourth order of the size of the steps and is an explicit method
dependent only on the current step and not the next step (Süli & Mayers, 2003, p. 328-
329). This makes it easier to write the algorithm and implement it.

I use the four step Runge-Kutta version where it gradually computes the next four
steps, once for the current value and time, twice for halfway to the next timestep and
lastly once at the next timestep. Always using the state got from the previous step to
calculate the next before summing it and multiplying with the size of the timestep h
and dividing by 6 before adding it to the previous state:

yn+1 = yn +
1
6
(k1 + 2k2 + 2k3 + k4)h

k1 = f (tn, yn)

k2 = f (tn +
h
2

, yn + h
k1

2
)

k3 = f (tn +
h
2

, yn + h
k2

2
)

k4 = f (tn + h, yn + hk3)

(3.38)

This gives great accuracy even while having larger timesteps and can be used to solve
any ODE.

3.8 Measuring the Fidelity of Gates

As this is a simulation I need to have some way to measure how close I am to an ideal
result; the target gates. For this, I have used some different measurement methods,
depending on what I am simulating. Starting with the norm measure, a measure that
is accurate but inflexible in regard to the global phases. When testing it gives very
uneven cost landscapes with poorer optimizations compared to using the average
gate measure. For the norm measure, a difference in phase is taken to be a difference
in distance, while global phases are not measurable for particles, including the half
spin qubit that the project focuses on, so the global phase does not matter when doing
a measure of a qubit. Therefore the norm measure requires some method to resolve
the effect of the global phase.

The average gate fidelity gives a more forgiving cost landscape, and like the channel
fidelity, it is not sensitive to differences in the global phase. It measures the difference
between two pure states.

The channel fidelity is a way to measure the difference between two quantum states
or a quantum state and a quantum map. When I use channel fidelity, I create a Choi
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matrix from a quantum map, that comes from solving the Lindblad equation with
its density matrix. This is compared to a Choi matrix created from the target state or
gate, but using a Choi matrix enables comparing two quantum maps, expanding the
scope of what you can compare using channel fidelity.

In my measurements, 0 is a perfect match and 1 is the worst possible result. I have
enforced a positive value for different results and 0 for a perfect match in this project.

3.8.1 Norm measure

When looking at the trace distance, it can, as demonstrated in M. Nielsen and Chuang
(2010), be thought of as half the euclidean distance between vectors or the 2-norm.
This is one of the methods I use to measure the difference from the target gate I want.

The norm measure gives the difference for the result of the simulation from the
particular gate I want to target. By subtracting the target gate from the result C =

A − B, and getting the euclidean norm of the result:

||C|| ≡ max
⟨u|u⟩=1

| ⟨u|C |u⟩ | (3.39)

I can say something about how different it is from the gate I want.

To resolve the fact that the norm measure does not ignore the global phase I use a
little trick, and change the matrix to match the phase of one of the elements in the
target gate, selecting an element that is non zero (Personal Communication, K. Wold,
2022). This way the difference in the global phase is found by getting the angel of
one element in the quantum map I measure, an angle from an element with the same
placement in the target gate:

ω = −iϕ + iθ (3.40)

Where ϕ is the phase of the element in the quantum map and θ is the phase of the
element from the target gate. This is then used to match the global phase for the
quantum map created and the target gate:

Unew = eωUold (3.41)

For better accuracy, it might have been better to use the average phase of all elements,
but I swapped to Average gate fidelity described below, a method known to ignore
the global phase.
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3.8.2 Average gate fidelity

After testing with the norm measure Eq. (3.39), it showed a quite complicated cost
landscape, so I decided to look at alternative ways to measure the difference from the
target gate, to see if it was possible to find a measure that made it easier for gradient
descent to do a search.
The average gate fidelity is taken from the quantum fidelity measure:

F(ρ, σ) =

(
Tr

[√√
ρσ

√
ρ

])2

, (3.42)

and derived as described in (Magesan et al., 2011) to get:

Favg = ∑
i

(
Tr[Ki]Tr[K†

i ]
)
+ d

d2 + d
(3.43)

Where d is the dimension of the matrix and Ki is the i’th possible Kraus-operator K.
Kraus-operators are unitary operators, that map a pure state to another pure state
while, being a completely positive and trace preserving operation as described in
Sec. 3.5.1. The Kraus representation of the linear super operator T working on the
state ρ can be written as (Magesan et al., 2011):

T(ρ) = ∑
n

KnρK†
n (3.44)

Since the Kraus operators in Eq. (3.44) are completely positive and trace preserving it
leads to the Kraus operators having the trait:

∑
n

K†
nKn = Î, (3.45)

this means that the sum of the multiplication of all complex conjugated Kraus
operators with its corresponding Kraus operator gives the identity operator (Hellwig
& Kraus, 1969; Magesan et al., 2011).
What I use in my project is a special occurrence, that can be used when only
measuring on one pure state, so that there is only one unitary Kraus operator, instead
of the more general method that can be used on quantum maps.
And since I only use this measure on one pure state, I can set Ki = U†UGate and get
the equation:

F =
|Tr[U†UGate]|2 + d

d2 + d
(3.46)

With U as the result of the simulation and UGate as the target. This is simpler to
implement than the full equation and works well to find the fidelity on pure states,
and is only a minor adjustment to get the infidelity:

39



IF = 1 − F, (3.47)

The result, as seen in Eq. (3.46) is that by using the trace of the unitary created and a
target gate and squaring the result, it is possible to get the fidelity with a high degree
of accuracy.
Preliminary testing showed a smoother cost landscape and less local minima, when
using this method to measure the difference from a quantum gate. It is expected to
be a little easier to find good alternatives using gradient descent, which is described
in 3.9.

3.8.3 Channel fidelity with Choi matrix measure

Given that the Lindbladian Sec. 3.6 used in my project are not directly comparable
to a target gate, so I have to use a different method to compare them. As doing a
comparison using Choi matrices with channel fidelity is easier than using Kraus
operators, it also enables comparing two open quantum maps instead of the limit of
at most one open quantum map that channel fidelity has by itself.
I create a Choi matrix from the solution of the Lindblad equation, with result that
the Choi matrix has more dimensions than the gate the lindbladian is compared to.
While the gate has the dimensions d × d, the Choi matrix created by the lindbladian
has d2 × d2. To do the comparison I have to create a Choi matrix from the target gate,
so that I compare two Choi matrices and can measure the difference.
The channel fidelity is a way to do this kind of measure. It is done by taking the
tensor product of UρU† with ρ. Where U is the gate to target and ρ is a square matrix
with one value of one and the rest 0. Iterating this over every possible value for ρ

summing them and dividing by d2 (Magesan et al., 2011):

χ = ∑
i

UρU† ⊗ ρ

d2 (3.48)

This is then compared to the effect of the Lindblad using channel fidelity.
This is less accurate than both average gate fidelity and norm measure, but it is
capable of measuring the non-unitary quantum map created by the Lindbladian.
It is, like the Average gate fidelity, also based on Eq. (3.42), but used in its full form,
where rho is set to the Choi matrix χ from Eq. (3.48) and is a quantum state, while σ is
a Choi matrix created from a quantum map that you want to compare to.
Using a Choi matrix had the advantage that finding the state fidelity of a Choi matrix
is the same as finding the fidelity of the quantum channel:

Fqc(T1, T2) = Fqs(χ1, χ2) (3.49)
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Enabling the use of the channel fidelity to measure the fidelity of the quantum state,
even in cases where both T1 and T2 are quantum maps.

This process gives the channel fidelity F, that for a one particle system, without other
modifications will a value in the domain [0.25, 1], and more generally in the interval[

1
2n , 1

]
. Because the measurement used in this project is the infidelity, that is Eq. (3.47)

as a measure of how close the result is to the target gate I have the interval
[
0, 1 − 1

2n

]
.

3.9 Gradient Descent

Gradient descent is a well known optimization algorithm to find local minima
for a function. It does this by taking the partial derivative for each variable before
multiplying it with a learning rate to set how large step each iteration of the
algorithm takes.

Due to the limits of gradient descent, when it comes to local minima, I have taken
some steps to reduce the run time of using the algorithm, to be able to look at
alternative start points. One of the things I did to reduce the run time, was to stop
iterating when the difference was too small to matter, or when the starting point was
so bad it was unlikely to reach a minima.

Gradient descent works by taking the derivatives of the variables in the vector x⃗
using the ∇ and its derivation operators to get all the partial derivatives. When
placing all these derivatives together in a vector, you get the gradient, hence the name
of the algorithm. By subtracting the gradient multiplied by a learning rate as below
you can use gradient descent to find a minima, while adding the gradient can be used
to find maxima for the function.

x⃗n+1 = x⃗n − µ∇Q(x) (3.50)

The learning rate µ influences how fast it can converge to a result and how good that
result is.

3.9.1 Randomized start points

Given the many observed local minima in the cost landscape, it has sometimes been
a challenge to find the global minima. This requires either a good starting point or
many runs.

To simplify the way forward, I have created code that runs many iterations with
gradient descent with random start parameters and with fewer steps in the gradient
descent algorithm, throwing out the worst ones as early as possible. While looking
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closer at the best ones with longer runs of the optimization algorithm, to find good
minima close to the global minima.

3.9.2 Momentum

Having momentum in the gradient descent algorithm makes you retain some of
the earlier direction and can help the algorithm better follow a "valley" in the cost
landscape.
Gradient descent have problems when used on landscapes with large differences
in values with small differences in parameters. Using momentum is an attempt to
smooth out its tendency to jump back and forth, when as an example if it is trapped
in a "valley" with high values on both sides. When a path down is in a valley, the
algorithm has a tendency to jump between the sides of the valley towards the lower
value, greatly increasing the time to reach the bottom. So the momentum is a way to
make it keep going in a direction, smoothing out the path and giving the algorithm a
way to get out of smaller local minima. It does this by remembering the earlier steps
and multiplying by a variable β that can be a constant or be modified depending on
the need. Thereafter the new gradient has to be multiplied by 1 minus β:

∇Q(x)total = β∇Q(x)old + (1 − β)∇Q(x)new (3.51)

With this momentum the steps are keeping some momentum from earlier steps,
enabling it to be smoother if in a "valley" or to get into and out of smaller local
minima.

3.9.3 Adam-stochastic gradient

The Adam algorithm is a variant of Gradient Descent based on AdaGrad and
RMSProp, two different variants that are good with sparse gradients and non
stationary object respectively (Kingma & Ba, 2014).
Adam is an algorithm that modifies gradient descent to use different learning rates
for the different parameters, and with this increases the computational efficiency
and increase accuracy. "The method computes individual adaptive learning
rates for different parameters from estimates of first and second moments of the
gradients" (Kingma & Ba, 2014, p. 1). This reduces and can even remove the need to
adjust the learning rate while using the algorithm, simplifying its implementation.
The fact that the learning rate is adjusted for each parameter individually, is a great
boon when dealing with landscapes that are uneven or have saddle points.
Using the Adam algorithm can make it easier and faster to get a good result,
especially in a cost landscape as complicated as here, where there in some directions
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are large differences and minor in others, and many local minima.
I have mostly used the default parameters recommended, but there are several
hyperparameters, including the learning rate, that can be tuned to optimize the
algorithm for a specific problem.
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Chapter 4

Method

I will in this chapter go through some of the methods used in the code of the
project, and write with more detail about how I implement the theories described in
Chapter 3. After this I will describe the approach I used in this study.

4.1 Solving differential equations

To solve the Schrödinger equation described in Sec. 3.2 and Lindblad equations in
Sec. 3.6 I use numerical approximation to reach a solution. These calculations will
simulate how a real quantum system behaves, with the accuracy to reality depending
on how accurate the Hamiltonians used describes the energies involved in a real
system and the accuracy of the solvers used.

4.1.1 Numerical implementation

Implementing tools for simulation, like those used in this project, is a laborious
process. To conduct the simulations of the quantum system in my project, I
implemented the code in the script language Matlab. For compiling I’m using Matlab
versions R2022a and R2022b. A link to the repository with code is in the appendix.

I have strived to make several classes and functions as generic as possible, in order to
more easily allow expanding what type of Hamiltonians can be used and simplify the
addition of different measures and methods to solve the differential equations.

Part of this is using object oriented programming, with inheritance to guarantee the
behaviour of the subclasses, and simplifying the program structure so that you just
have to implement the required behaviour, while the program will handle the details.

I have used an enum, a common object oriented construct for linking a name to
a number of constants. It keeps track of all possible differential equation solvers,
and makes it easy to add and implement additional ones. But there are limits to
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the checks that the solver can do, to check that it is appropriate for the type of
Hamiltonian or Lindbladian used. Expanding the program to include a setting for
each solver to identify the appropriate solver method for a Hamiltonian, is left for
future users. So when you add a new Hamiltonian, you have to make sure it has a
valid default solver and caution users of the program to not change the solver unless
they know what they are doing.

4.1.2 Representing gates

To represent the gates I use class files that inherit from the interface Lst. 4.1. The
abstract rotate function is used for counteracting the effect of the global phase by
setting the phase of the state to be compared so that the phase of the input state is
equal to the phase of the gate.

1 classdef (Abstract) GateInterface

2 methods(Abstract , Static)

3 rotate = rotation(U)

4 end

5

6 properties(Abstract , Constant)

7 gate

8 Psi0

9 end

10 end

Listing 4.1: Interface for a Gate

This GateInterface, is a simple interface containing only one abstract method rotate

↪→ and some abstract constant properties. The method is used to enable a function
that will rotate the phase of a matrix input to match the global phase of the gate.
Some gates do not have values different from 0 in all positions, which means that
the 0 element does not have a phase, therefore which value to match the phase for,
changes for different gates. This is only required by functions that use the Norm
measure described in Sec. 3.8.1, as it is the only solver I use that requires correction
for the global phase of the gate and quantum map.
The constant gate and Psi0 are properties that will not change after I create the gate
class, requiring that each gate will have a class to represent it with its own descriptive
class name. The gate is simply the gate on matrix form, while Psi0 is an identity
matrix that was created to match the size of the gate so that each column represents
one of the possible start states. Where each start state is solved, and then combined to
create a quantum map.
This enables each gate to be a simple class with only a few values and makes adding,
doing simulations and optimizations on new Gates easy to accomplish.
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Time settings

I use the class TimeOptions to keep track of the time variables. It is a very simple
construction that only contains some default values, with the addendum that all
values must be real.

1 classdef TimeOptions

2 properties

3 Tstart double;

4 Tpulse double;

5 Tsize double {mustBeGreaterThan(Tsize ,0)};

6 end

7

8

9 methods

10 function Time = TimeOptions(options)

11 arguments

12 options.Tstart (1,1) double = 0;

13 options.Tpulse (1,1) double = 2*pi;

14 options.Tsize (1,1) double = 1000;

15 end

16

17 Time.Tstart = options.Tstart;

18 Time.Tpulse = options.Tpulse;

19 Time.Tsize = options.Tsize;

20 end

21 end

22 end

Listing 4.2: Class for time settings

Tpulse is the size of the pulse. Tstart is the start point, if you want to start the pulse
at some other point than the default 0. Tsize is the number of timesteps used when
solving the Hamiltonian, which contains an instance of the TimeOptions class.

4.1.3 Hamiltonian and Lindbladian

The Hamiltonian and Lindbladian are based on the theory described in Sec. 3.3 and
Sec. 3.6 respectively, they use an interface such as Lst. 4.3 and Lst. 4.8.

1 classdef (Abstract) HamiltonianInterface

2

3 properties(Abstract , Constant , GetAccess=public)

4 matrixSize int8 {mustBePositive}

5 end

Listing 4.3: Interface for a Hamiltonian
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Having the matrix size available, makes several steps in the solving easier, especially
when there is a mismatch between the matrix size of the Hamiltonian and the Gate it is
compared to.

10 properties(Access=public)

11 Parameters double {mustBeReal}

12 Measure Measure = Measure.AvgFidelity;

13 Solver HamiltSettings.Solvers = HamiltSettings.Solvers.

↪→ Crank_Nicolson;

14 Time TimeOptions

15 end

Listing 4.4: Interface for a Hamiltonian

The Parameters are the variable that are to be optimized, with a default requirement
only that they are real numbers. For Measure and Solver the default values work
with most Hamiltonians, while the HamiltSettings.Solvers.Crank_Nicolson solver only
works for Hamiltonians acting on state vectors and the measure Measure.AvgFidelity

↪→ is working on any pure state that gives a matrix the same size at the target gate.
TimeOptions contains all settings regarding the time, and modifications of the output
should use the dependent properties.

17 properties(Dependent)

18 TimeStep double

19 TimeVector (1,:) double

20 Period double

21 end

22

23

24 methods(Abstract)

25 createHamiltonian(this)

26 end

Listing 4.5: Interface for a Hamiltonian

These dependent variables enable us to modify the behaviour of the TimeVecor and
the timesteps and their sizes. Moreover, the abstract method createHamiltonian(this)

↪→ is used to create a function handle that takes the time and outputs the state of the
Hamiltonian at the given time.

28 methods

29

30 % Get functions for dependent variabels

31 function TimeStep = get.TimeStep(this)

32 arguments

33 this Hamiltonians.Interfaces.HamiltonianInterface

34 end

35
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36 TimeStep = this.Period/this.Time.Tsize;

37 end

38

39 function TimeVector = get.TimeVector(this)

40 arguments

41 this Hamiltonians.Interfaces.HamiltonianInterface

42 end

43

44 TimeStart = this.Time.Tstart;

45 TimeEnd = this.Period + this.Time.Tstart;

46

47

48 TimeVector = (TimeStart):this.TimeStep :( TimeEnd);

49 TimeVector(end) = [];

50 end

51

52

53

54 function this = set.Time(this , Time)

55 % Set the TimeOptions used by this hamiltonian

56 arguments

57 this Hamiltonians.Interfaces.HamiltonianInterface

58 Time TimeOptions

59 end

60

61 this.Time = Time;

62

63 end

Listing 4.6: Interface for a Hamiltonian

The function for the dependent variable TimeStep uses a normal get function get.Period

↪→ (this) found in Lst. 4.7, that itself uses the custom function periodGet, that can be
overridden by a subclass.

The get function get.TimeVector(this) for the dependent variable TimeVector uses the
get function get.Period(this), found in Lst. 4.7 below. It uses the values in an instance
of the class TimeOptions and the dependent variable Period, to create a vector with the
number of timesteps set in the TimeOptions modified for alternate start times. The use
of a custom function in the get function is necessary as you cannot override a set or
get function, but methods they call can be overridden.

By comparison set.Time(this,Time) is a simple method, that just validates that it is a
subclass that attempts to set the Time variable to a valid TimeOptions.

65 % Get function for dependent variable linking to protected

↪→ function

66 function Period = get.Period(this)

49



67 Period = this.periodGet;

68 end

69

70 % set function that links to custom validation that can be

71 % overridden

72 function this = set.Parameters(this , para)

73 arguments

74 this Hamiltonians.Interfaces.HamiltonianInterface

75 para

76 end

77 test = this.parameterValidate(para);

78

79 this.Parameters = test;

80 end

81 end

82

83 methods(Access=protected)

84 % Default parameter validation for set function

85 function valid = parameterValidate(this ,para)

86 arguments

87 this

88 para (1,3) double {mustBeReal}

89 end

90 valid = para;

91 end

92

93

94 % Default get function for period

95 function Period = periodGet(this)

96 arguments

97 this Hamiltonians.Interfaces.HamiltonianInterface

98 end

99

100 Period = this.Time.Tpulse;

101 end

102 end

Listing 4.7: Interface for a Hamiltonian

For the method get.Period(this) it simply calls the custom protected function
periodGet, this function for the most basic cases just returns the Tpulse variable stored
in the Time variable. But it can be overridden if you need to include time before or
after the time set for the pulse, for instance when using ramp on or off, as described
later in Sec. 5.3.2.

A custom validation function also exists for the set function of the variable Parameters

↪→ . It has the set function set.Parameters(this, para) that uses the custom overridable
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protected function parameterValidate(para). As set and get functions cannot be
overridden, it enables subclasses to override the validation of parameters and
customize what time domain is used.
This makes creating new Hamiltonians easy as only the code to construct it from the
parameters with createHamiltonian(this) is needed. To have more control of what time
to use you have the option to override the timeVector if the effect of a Hamiltonian
has an offset in time, the energies involved are not applied simultaneously or the
effect of the Hamiltonian stretches outside the size given in Tpulse. In addition, the
validation function parameterValidate can be overridden to have custom validation of
the parameters, as the default only takes a vector with three values.
As seen in Fig. 4.1 the extension of the interfaces gives an easy way to build
additional Hamiltonians extending HamiltonianInterface that can refer to completely
different energies as long as it is still hermitian, so that the unitary it can create still
exists as described in Sec. 3.5.1. More complex operators as described in Sec. 3.6 must
use the LindbladInterface.

Hamiltonians

Interfaces

<<Interface>>
HamiltonianInterface

+ matrixSize:int8
+ parameters:double
+ Measure:Measure
+ Solver:Solver
+ Time:Timeoptions
/ TimeStep: double
/ TimeVecor: (1,:) double
/ Period: double

+ createHamiltonian:function_handle
# validateParameters(double):double

<<Interface>>
LindbladInterface

+ rhoSize:double
+ Gamma:double

Extends

SimpleHamiltonian

+ phase:double    

+ createHamiltonian:function_handle

Extends

Extends

LindbladRhoTwo

+ createHamiltonian: function_handle
+ Interaction: function_handle
# validateParameters(double):double

Figure 4.1: Class diagram of a Hamiltonian and a Lindbladian with interfaces, the
example classes SimpleHamiltonian and LindbladRhoTwo inherit from their respective
interfaces HamiltonianInterface and its subclass LindbadInterface
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1 classdef (Abstract) LindbladInterface < Hamiltonians.Interfaces.

↪→ HamiltonianInterface

2

3 properties(Abstract , Constant , GetAccess=public)

4 rhoSize int8 {mustBePositive}

5 end

6

7 properties(Access=public)

8 Gamma double {mustBeReal} = 0;

9 end

10

11 methods

12 function this = LindbladInterface(options)

13 arguments

14 options.Measure Measure = Measure.ChoiFidelity;

15 options.Gamma double = 0;

16

17 end

18

19 this.Measure = options.Measure;

20 this.Gamma = options.Gamma;

21 end

22

23

24 function this = set.Gamma(this , Gamma)

25 % Set the lambda used by this hamiltonian

26 arguments

27 this Hamiltonians.Interfaces.LindbladInterface

28 Gamma (1,1) double {mustBeReal}

29 end

30

31 this.Gamma = Gamma;

32 end

33 end

34 end

Listing 4.8: Interface for a Lindbladian

As the LindbladInterface inherits from the HamiltonianInterface as seen in Lst. 4.3. It
may be much simpler, and only requires the additional parameter for rhoSize, and
comes with a default constructor that changes the measure to use Choi fidelity. The
optional parameter Gamma is used to modify how strongly the jump operators act on
the qubits.
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Example Hamiltonian

A straight forward implementation of the HamiltonianInterface seen in Lst. 4.3 is the
class SimpleHamiltonian:

1 classdef SimpleHamiltonian < Hamiltonians.Interfaces.

↪→ HamiltonianInterface

2 properties

3 Phase double {mustBeReal}

4 end

5

6 properties(Constant)

7 matrixSize = 2;

8 end

9

10

11 methods

12 function this = SimpleHamiltonian(options)

13 % A simple hamiltonian , of the form:

14 % H = [-epsilon /2 omega*sin(t*Phase)

15 % conj(omega)*sin(t*Phase) epsilon /2]

16 %

17 % Takes the optional name value parameters Time and Phase

18 %

19 % Time is the TimeOptions used by this hamiltonian

20 %

21 % Phase is the Phase used by this hamiltonian to shift the

22 % frequency the magnetic fields x and y oscillates

23

24 % Input validation and default values

25 arguments

26 options.Time TimeOptions = TimeOptions;

27 options.Phase double {mustBeNonzero} = 1;

28 options.Parameters (1,3) double {mustBeReal} = zeros (1,3)

↪→ ;

29 end

30

31 this.Time = options.Time;

32 this.Phase = options.Phase;

33 this.Parameters = options.Parameters;

34 end

Listing 4.9: A Hamiltonian for one qubit

It contains an additional optional parameter Phase as seen in Eq. (3.7). This is used
if you want to change how fast you move in the sinus cycle, as it multiplies the
time t as seen in Lst. 4.10 thereby changing the frequency of the sinus cycle. The
result of running a simulation, after changing the frequency, will change and be
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harder to physically implement, if the sinus cycle does not end with a difference
from its starting time, given in TimeOptions, of n · 2π for n ∈ N. The only other
variable it contains is an implementation of the matrixSize, a mandatory variable that
tells the rest of the program the size of the Hamiltonian created with the function
createHamiltonian shown in Lst. 4.10 below.

The constructor then does some simple validation of the given parameters and
provides a default if they are not provided.

36 function H = createHamiltonian(this)

37 % Creates a Hamiltonian with the parameters provided and the

38 % values stored in this instance of the class

39 %

40 % parameters must be in the form of a (1,3) double vector ,

↪→ with

41 % real numbers. It contain epsilon , omegaX and omegaY.

42 %

43

44

45 % Input validation

46 arguments

47 this Hamiltonians.SimpleHamiltonian

48 end

49

50 epsilon = this.Parameters (1,1);

51 omegaX = this.Parameters (1,2);

52 omegaY = this.Parameters (1,3);

53 phase = this.Phase;

54 omega = omegaX + 1i*omegaY;

55

56 % % Setup parameters

57 % B1 = @(t) 2* omegaX*sin(Phase*t);

58 % B2 = @(t) -2*omegaY*sin(Phase*t);

59 % B3 = @(t) -epsilon;

60 %

61 % % Creating the hamiltonian

62 % H = this.pauliRotations(B1 ,B2 ,B3);

63 H = @(t) [-epsilon /2 omega*sin(t*phase);...

64 conj(omega)*sin(t*phase) epsilon /2];

65

66 end

67

68

69

70 function this = set.Phase(this , Phase)

71 % Set the Phase used by this hamiltonian

72 arguments
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73 this Hamiltonians.SimpleHamiltonian

74 Phase (1,1) double {mustBeReal}

75 end

76

77 this.Phase = Phase;

78 end

79

80 end

81 end

Listing 4.10: A Hamiltonian for one qubit

createHamiltonian is the main function of the class. It takes the provided parameters
and uses them to create a Hamiltonian returned as a function handle. This function
handle will take the time parameter t and return the state of the Hamiltonian at that
time.
set.Phase(this,Phase) is simply a small validation when setting the phase in an
instance of the class.

Example Lindbladian

An example of an implementation of the interface LindbladInterface is the class
LindbladRhoOne found below in Lst. 4.11. It is an implementation of Eq. (3.30), the
decay to ground state for one qubit.

1 classdef LindbladRhoOne < Hamiltonians.Interfaces.LindbladInterface

2 properties(Constant)

3 matrixSize = 2;

4 rhoSize = 2;

5 end

6

7

8 methods

9 function this = LindbladRhoOne(options)

10 % A matrix derived from the lindblad equation

11 % Takes the optional name value parameters Rho , Time and

↪→ Gamma

12 %

13 % Time is the TimeOptions used by this hamiltonian

14 %

15 % Gamma is an optional parameter with default value of 0. It

16 % scales how large the effect reducing the state of the

↪→ system

17 % towards basis state [1;0], it is the interference

↪→ experienced

18 % by the system.

19
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20 % Input validation and default values

21 arguments

22 options.Time TimeOptions = TimeOptions;

23 options.Gamma double {mustBeReal} = 0;

24 options.Parameters (1,3) double {mustBeReal} = ones (1,3);

25 options.Measure = Measure.ChoiFidelity;

26 options.Solver = HamiltSettings.Solvers.Runge_Kutta_Rho;

27 end

28 this.Time = options.Time;

29 this.Gamma = options.Gamma;

30 this.Parameters = options.Parameters;

31 this.Measure = options.Measure;

32 this.Solver = options.Solver;

33 end

34

35 function lindblad = createHamiltonian(this)

36 % Creates a Hamiltonian with the parameters provided and the

37 % values stored in this instance of the class

38 %

39 % parameters must be in the form of a (1,3) double vector ,

↪→ with

40 % real numbers. It contain epsilon , omegaX and omegaY.

41 %

42

43

44

45 % Input validation

46 arguments

47 this Hamiltonians.Interfaces.LindbladInterface

48 end

49

50 epsilon = this.Parameters (1,1);

51 omegaX = this.Parameters (1,2);

52 omegaY = this.Parameters (1,3);

53 Gamma = this.Gamma;

54 % rho = sparse (2,2);

55 % rho(this.Rho) = 1;

56

57 % Setup parameters

58 B1 = @(t) omegaX*sin(t);

59 B2 = @(t) 1i*omegaY*sin(t);

60 Omega = @(t) B1(t)+B2(t);

61

62

63 % Creating hamiltonian

64 H = @(t) [-epsilon /2 Omega(t); conj(Omega(t)) epsilon /2];

65 a = [1; 0]*[0 1];

56



66 A = a’*a;

67

68 % creatin components of the Lindbladian

69 lindblad = @(t,rho) -1i*(H(t)*rho - rho*H(t))...

70 -Gamma *(A*rho + rho*A -2.*a*rho*a’);

71 end

72

73

74 end

75 end

Listing 4.11: A Lindbladian for one qubit

For properties, it only implements the two mandatory abstract properties of its
superclass matrixSize and rhoSize.
Most of the work for the class is done in the method createHamiltonian, where a
regular Hamiltonian dependent on time t is created as seen described in Sec. 3.3.
This Hamiltonian is used with rho and the jump operators modified by Gamma as seen
in the Lindblad Eq. (3.26), in this specific case Eq. (3.27) both described in Sec. 3.6.
createHamiltonian creates a function handle that takes a state rho and time t to return
the state of the Lindbladian for a given time t and ρ.

4.1.4 Implementing noise

To ensure the noise behaves in a predictable manner, I created a class that contains
the needed methods to prepare the noise. In the constructor, it takes sub-classes to
the abstract class Lst. 4.12. It only contains a few abstract methods that declare how
to access the jump operators, some precalculated values from the jump operators
as seen in Eq. (3.34), and the individual gamma values that describe how strong the
different jump operators are in relation to each other.

1 classdef(Abstract) TwoParticleNoiseInterface

2 methods(Abstract)

3 getL

4 getD

5 getGamma

6 end

7 end

Listing 4.12: Abstract class for the value of jump operators in a two qubit Lindblad
equation

The values from subclasses that inherit from Lst. 4.12 are then used in Lst. 4.13. It
calculates the effect of the jump operator using the precalculated value of this.D with
a provided rho, to find the effect of the jump operators for a given rho, and it gives the
effect of all jump operators seen in Eq. (3.26).
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1 classdef LindbladNoise

2 % Class with methods to construct a two particle noise with some pre

3 % calculated values , for a noise source specified during

↪→ construction

4 properties(SetAccess = immutable)

5 L (4,4,4) double

6 D (4,4) double

7 Gamma (4,1) double

8 end

9

10

11 methods(Access = public)

12 function this = LindbladNoise(NoiseType)

13 % Constructor that takes the noise from the noise class and

14 % saves some pre calculated output for later use

15 arguments

16 NoiseType LindbladNoise.TwoParticleNoiseInterface

17 end

18 this.L = NoiseType.getL;

19 this.D = NoiseType.getD;

20 this.Gamma = NoiseType.getGamma;

21 end

22

23 function noise = getNoise(this , rho)

24 %Returns the noise for a given rho

25

26 arguments

27 this LindbladNoise.LindbladNoise

28 rho(4,4) double

29 end

30

31 L_sum = zeros (4,4);

32

33 for n = 1:4

34 L_n = this.L(:,:,n);

35 gamma_n = this.Gamma(n);

36 L_sum = L_sum + gamma_n .* L_n * rho * L_n ’;

37

38 end

39

40 noise = this.D*rho+rho*this.D - 2*L_sum;

41 end

42 end

43

44 end

Listing 4.13: Class for jump operators for a two qubit Lindbladian
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Some subclasses to Lst. 4.12 are Lst. 4.14, containing noise captured with tomography
in a real quantum computer (Samach et al., 2022). While Lst. 4.15 is an example of
randomly generated noise created in my program using Lst. 4.16.

1 classdef TomographyNoise < LindbladNoise.TwoParticleNoiseInterface

2 % Class for noise levels extracted from the research paper Lindblad

3 % Tomography of a Superconducting Quantum Processor , as jump

↪→ operators

4 % and their weights

5 properties(Constant)

6 L1 = [ 0.501+0.001i 0.000+0.001i -0.0002+0.002i -0.002+0.000i;

7 0.000 -0.001i 0.499 -0.001i -0.001+0.001i -0.002+0.002i;

8 -0.001 -0.001i 0.001 -0.001i -0.499+0.000i 0.000+0.001i;

9 0.002+0.000i -0.001 -0.001i 0.000+0.000i -0.501+0.000i];

10 L2 = [0.448 -0.001i 0.109+0.246i 0.001 -0.002i 0.002 -0.002i;

11 0.061 -0.125i -0.451+0.002i -0.001+0.002i 0.002+0.005i;

12 -0.003 -0.002i -0.003+0.001i 0.454+0.001i 0.109+0.249i;

13 -0.004+0.001i 0.000+0.002i 0.064 -0.131i -0.451 -0.002i];

14 L3 = [ -0.072+0.161i 0.639 -0.031i -0.003 -0.001i 0.007+0.00i;

15 0.114+0.039i 0.072 -0.161i -0.001+0.001i -0.005 -0.001i;

16 0.002+0.003i 0.001+0.002i -0.071+0.162i 0.655 -0.044i;

17 0.002 -0.003i -0.001 -0.002i 0.134+0.035i 0.071 -0.163i]

18 L4 = [ 0.004+0.000i -0.001 -0.003i 0.000 -0.703i -0.003+0.00i;

19 0.000 -0.001i 0.000 -0.002i -0.004 -0.002i 0.000 -0.703i;

20 0.001+0.078i 0.002+0.001i 0.000+0.002i -0.002 -0.003i;

21 0.000 -0.001i -0.001+0.079i 0.000 -0.001i -0.004+0.000i];

22 gamma1 = 0.071;

23 gamma2 = 0.097;

24 gamma3 = 0.042;

25 gamma4 = 0.055;

26 end

27

28 methods(Static)

29 function L = getL

30 L = cat(3, LindbladNoise.TomographyNoise.L1 ,...

31 LindbladNoise.TomographyNoise.L2 ,...

32 LindbladNoise.TomographyNoise.L3 ,...

33 LindbladNoise.TomographyNoise.L4);

34 end

35

36 function D = getD

37 D = LindbladNoise.TomographyNoise.gamma1*LindbladNoise.

↪→ TomographyNoise.L1 ’* LindbladNoise.TomographyNoise.L1 +...

38 LindbladNoise.TomographyNoise.gamma2*LindbladNoise.

↪→ TomographyNoise.L2 ’* LindbladNoise.TomographyNoise.L2 +...

39 LindbladNoise.TomographyNoise.gamma3*LindbladNoise.

↪→ TomographyNoise.L3 ’* LindbladNoise.TomographyNoise.L3 +...
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40 LindbladNoise.TomographyNoise.gamma4*LindbladNoise.

↪→ TomographyNoise.L4 ’* LindbladNoise.TomographyNoise.L4;

41 end

42

43 function Gamma = getGamma

44 Gamma = [LindbladNoise.TomographyNoise.gamma1 ,...

45 LindbladNoise.TomographyNoise.gamma2 ,...

46 LindbladNoise.TomographyNoise.gamma3 ,...

47 LindbladNoise.TomographyNoise.gamma4 ];

48 end

49 end

50 end

Listing 4.14: Jump operators created by tomography

1 classdef GeneratedNoiseTraceless < LindbladNoise.

↪→ TwoParticleNoiseInterface

2 % A noise generated using the GenerateRandomNoise script using

↪→ default

3 % parameters

4 properties(Constant)

5 L = [0.0452220476344547 + 0.389719909673081i...

6 -0.996094096614954 - 0.409057845790514i...

7 0.176601628617548 + 1.00038318883897i...

8 1.81692224917996 - 2.13346755941796i;...

9

10 0.867232157629573 - 0.0595506104590645i...

11 0.0602519096772833 - 0.906304239609380i...

12 0.755179935677488 - 0.801329298311214i...

13 -0.123833350279246 + 0.403977280549421i;...

14

15 0.975986463472540 - 0.661011014460339i...

16 -1.29744747716739 - 0.284902829463087i...

17 -0.00803401840821616 + 0.467350598527234i...

18 -1.11060135506064 - 0.958499409348658i;...

19

20 0.337390252379212 + 0.305950915068987i...

21 0.917388589145936 - 0.0647868558912201i...

22 1.84438963700050 + 0.273804791937703i...

23 -0.0974399389035219 + 0.0492337314090649i]

24 Gamma = 1;

25 end

26

27 methods(Static)

28 function L = getL

29 % The jump operators , using repmat to replicate the L to

↪→ return

30 % a 4x4x4 matrix to simulate four independent noises
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31 L = repmat(LindbladNoise.GeneratedNoiseTraceless.L,1,1,4);

32 end

33

34 function D = getD

35 % Pre calculates the state independent noise , multiplies the

↪→ D

36 % value to get same effect as four independents noises

37 tmp = LindbladNoise.GeneratedNoiseTraceless.Gamma ...

38 *LindbladNoise.GeneratedNoiseTraceless.L’...

39 *LindbladNoise.GeneratedNoiseTraceless.L;

40 D = tmp *4;

41 end

42

43 function Gamma = getGamma

44 Gamma = repmat(LindbladNoise.GeneratedNoiseTraceless.Gamma ,

↪→ 4,1);

45 end

46 end

47

48 end

Listing 4.15: Jump operators created randomly

These simple classes could be streamlined to inherit getL and getD from an abstract
superclass, but as there are only two in use, it was not seen as a priority.

1 function noise = GenerateRandomNoise(options)

2 % Function to generate random traceless noise with optional random seed

↪→ and

3 % size of the noise

4 arguments

5 options.Seed = 42;

6 options.MatrixSize = 4;

7 end

8

9 % initialize variables

10 seed = options.Seed;

11 matrixSize = options.MatrixSize;

12

13 % set the random number generator

14 s = rng(seed);

15

16 % Create random noise

17 L = randn(matrixSize) + 1i*randn(matrixSize);

18

19 % Make the noise traceless and return it
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20 noise = L - trace(L)*eye(matrixSize)/matrixSize;

Listing 4.16: Creating random jump operators

In Sec. 3.6.5 I discussed how to create a randomly generated traceless noise. To
generate the jump operators in Lst.4.15 I used a normally distributed random noise
for each value. Then by creating a 4 × 4 matrix and a random seed to guarantee
replicability of the creation of the jump operators, mirroring what is described in
Eq. (3.35). Finally, I removed the trace by using the procedure in Eq. (3.36) and I
removed the sum of the trace divided by the matrix dimension.
This then gives one jump operator, this procedure can be repeated to get any number
of jump operators for a two qubit system, or can be used as a single jump operator.

4.1.5 Solvers

There are several possible solvers, and to keep track of all of them I’ve been using
an enum, linking the name of the method to the method itself. This makes it easier
to give the Hamiltonian class the appropriate function to solve itself. This enables
easy addition of more solve methods as it only needs to be added to the enum and
implement the appropriate interface.

SolveFunk

<<Function>>

Rho_Runge_Kutta(double(:,:),LindbladInterface): double(:,:)

<<Function>>

Crank_Nicolson(double(:,:), HamiltonianInterface): double(:,:)

<<Function>>

Crank_NicolsonWithSteps(double(:,:), HamiltonianInterface): double(:,:)

<<Enumeration>>
Solvers

+ solver:function_handle

Figure 4.2: Class diagram of the solvers in the enum

This enables ease of use of different solvers using the same files and the same
functions. The solvers must only be called to solve a specific Hamiltonian that
it is compatible with, as there is no compatibility check, otherwise, unexpected
behaviour may occur. All functions take two parameters: A state to propagate and
what Hamiltonian to simulate. These functions are called each time a position is to be
evaluated, and are stored in the Hamiltonian class.

1 classdef Solvers
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2 % Enum to hold all solvers in project

3 properties

4 solver function_handle

5 end

6

7 methods

8 function con = Solvers(solver)

9 con.solver = solver;

10 end

11 end

12

13 enumeration

14 Crank_Nicolson(@(psi ,hamilt) SolveFunk.Crank_Nicolson(psi ,hamilt

↪→ ))

15 Crank_Nicolson_with_steps (...

16 @(psi ,hamilt) SolveFunk.Crank_NicolsonWithSteps(psi ,hamilt))

17 Runge_Kutta(@(rho , hamilt) SolveFunk.Runge_Kutta(rho , hamilt))

18 Runge_Kutta_Rho(@(rho , hamilt) SolveFunk.Rho_Runge_Kutta(rho ,

↪→ hamilt))

19 end

20 end

Listing 4.17: Enum of all solvers

It is important to make sure that the solving functions are compatible with the
Hamiltonian they are used to solve. Most Lindblad equations can not be solved the
same way as a Hamiltonian, because most have a square matrix ρ instead of an array
Ψ to show the states.

The Crank-Nicolson solver

The Crank-Nicolson solver is here used to solve the differential equation that is
created when using the chosen Hamiltonian in the Schrödinger equation.

1 function [Solution] = Crank_Nicolson(Psi , Hamiltonian)

2 % Solves the schrödinger equation with Crank Nicolson for a specified

3 % Hamiltonian and startvalues Psi.

4

5

6 % Input validation

7 arguments

8 Psi (:,1) double

9 Hamiltonian Hamiltonians.Interfaces.HamiltonianInterface;

10 end

11

12 % Get parameterized hamiltonian

13 H = Hamiltonian.createHamiltonian;
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14

15 % Set timelength

16 dt = Hamiltonian.TimeStep;

17 tVector = Hamiltonian.TimeVector;

18

19 % Find sizes

20 leng = length(tVector);

21 psiHeight = size(Psi ,1);

22

23

24 % Crank Nicolson solver

25 I = eye(psiHeight);

26 Phi = @(t,y) (I + 1i*dt/2*H(t+dt))^(-1) * (I - 1i*dt/2*H(t))*y;

27

28 for n = 1:leng

29 Psi = Phi(tVector(n),Psi);

30 end

31

32 Solution = Psi;

Listing 4.18: Crank-Nicolson solver

The solver based on Crank-Nicolson that is used here is dependent on two
parameters t time and y the state of the system, dt is the size of the time steps and
the Hamiltonian H is dependent on time, while I is an identity matrix the same size
as the Hamiltonian. It will go through all the timesteps in the dependent property
TimeSteps found in the HamiltonianInterface in Lst. 4.5. For each timestep, it will use
the Crank-Nicolson solver in the function Phi to propagate the state Psi to its new
value at time t. This new state Psi is then used for the next step which is propagated
by the effect of the Hamiltonian to its next value at a new point in time. psiHeight
↪→ will in most cases be the Hilbert dimension of the quantum system 2n, it will for
example in a one qubit system be 2, therefore Psi will in that case be a 2x1 matrix, and
is the end state of the system with each value representing the probability density
for a different state. Here Psi(1) is used to get the probability, by taking the square
of the absolute value of it as the probability for up, and the square of the absolute
value of Psi(2) as down, after the system has been transformed by the dynamics of
the Hamiltonian, as described in Sec. 2.2.1.

Crank-Nicolson with steps

This is the same function as Lst. 4.18 but keeping every step of Psi and returning all of
them.

1 for n = 1:leng

2 Psi = Phi(tVector(n),Psi);
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3 Y(:,n) = Psi;

4 end

5

6 Solution = Y;

Listing 4.19: Cranc Nicolson solver with steps

The solution will be the states Y(1, end) and Y(2, end), while Y contains all steps to see
the evolution of the state with time. The evolution of Y(1, :) and Y(2, :) enables you
to see how the probability for each state evolves with time, thereby giving a better
view of how the state is propagated by the Hamiltonian.

Runge Kutta Rho

Rho_Runge_kutta is based on the theory described in Sec. 3.7.2 is of fourth order so it
should be as accurate as Crank-Nicolson, even with larger time steps, enabling faster
calculations to find a solution.

1 function [Solution] = Rho_Runge_Kutta(Rho , Hamiltonian)

2 % Solves the schrödinger equation with the Runge Kutta method for a

3 % specified Hamiltonian and a given startvalue Rho.

4

5

6 % Input validation

7 arguments

8 Rho (:,:) double

9 Hamiltonian Hamiltonians.Interfaces.LindbladInterface;

10 end

11

12

13 % Function for step in Runge Kutta

14 function step = rk_algorithm(t, rho)

15 k1 = H(t, rho);

16

17 rho2 = rho+dt*k1/2;

18 k2 = H(t+dt/2, rho2);

19

20 rho3 = rho+dt*k2/2;

21 k3 = H(t+dt/2, rho3);

22

23 rho4 = rho+dt*k3;

24 k4 = H(t+dt , rho4);

25

26 step = rho + 1/6*( k1 + 2*k2 + 2*k3 + k4)*dt;

27 end

28

29 % Get parameterized hamiltonian
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30 H = Hamiltonian.createHamiltonian;

31

32

33 % Set timelength

34 dt = Hamiltonian.TimeStep;

35 tVector = Hamiltonian.TimeVector;

36

37 % Find sizes

38 leng = length(tVector);

39

40 for n = 1:leng

41 Rho = rk_algorithm(tVector(n),Rho);

42 end

43 Solution = Rho;

44 end

Listing 4.20: Runge-Kutta solver for rho

Runge Kutta takes as input to the function a square matrix Rho, an initial density
matrix, to evolve for and a Hamiltonian based on the Lindblad equation described in
Sec. 3.6 with the energies in the system, and extracts a vector with the time steps after
creating a function handle with Hamiltonian.createHamiltonian. The algorithm makes k2

↪→ , k3, k4 based on the previous k starting with k1, and combines it with the initial
state Rho. The result of using the completed algorithm gives the evolution of Rho after
one timestep, and is repeated for all timesteps, using the result of the previous step
as input in the next until it reaches the end state, after having simulated the effect of
the Hamiltonian working on the state Rho for a period of time, defined by the timesteps
given in Hamiltonian.TimeVector.

4.1.6 Solving for all basis states

When you solve a Hamiltonian or a Lindbladian, you want to solve it for all possible
basis states, which for a Hamiltonian is a state vector described in Sec. 2.2.1. You
solve for all possible basis states by solving for a state vector starting in each state,
and combine the solution for the different basis states to recreate the whole unitary
matrix. It is the same for a Lindbladian, but as it uses a density matrix for the basis
states as discussed in Sec. 3.4, it must be solved for all possible basis states in the
density matrix, to capture all of the effects the energies of the Lindbladian have on
the state given in the density matrix. For a given Hamiltonian I can find the solution for
all given start values in Psi0 using:

1 function U = SolveForStartValue(Hamiltonian , Psi0)

2 % Solves a Hamiltonian for all inputs in Psi. Where Psi0 is all possible

3 % states as column vectors in a matrix format
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4 arguments

5 Hamiltonian Hamiltonians.Interfaces.HamiltonianInterface

6 Psi0 double

7 end

8

9 % Setup matrices

10 Hsize = Hamiltonian.matrixSize;

11 index = size(Psi0 , 2);

12 U = zeros(Hsize ,index);

13

14 % Getting the solution for the start positions

15 for n = 1: index

16 [Psi] = UseSolver(Psi0(:,n), Hamiltonian);

17 U(:,n) = Psi;

18 end

19 end

Listing 4.21: Solving for all psi values for a given gate

Lst. 4.21 uses a solver from the enum in Lst. 4.17 inside the function UseSolver, a
simple function that only uses the included differential equation solver.

Psi0 is given as input and can be a column vector or a square matrix, where each
column in the matrix is a possible start state for the Hamiltonian. To be a valid state
the column has to be the same height as the Hamiltonian.

4.2 Implementing the Measure

In this project, I have three different ways to measure the difference between
the effect a Hamiltonian has on possible states and an ideal gate or the effect a
Lindbladian has on the possible states and an ideal gate.

4.2.1 Norm measure

This is the implementation of the norm measure discussed in Sec. 3.8.1.

1 % Compare distance for a gate U with a given gate

2

3 % Start positions

4 Psi0 = Gate.Psi0;

5

6 % Setup target gate

7 targetGate = Gate.gate;

8

9

10 % Solve with startvalues in Psi0
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11 U = SolveForStartValue(Hamiltonian , Psi0);

12

13 % Rotate to reduce effect of global phase

14 U = Gate.rotation(U);

15

16 % Measuring distance

17 Diff = norm(U-targetGate);

Listing 4.22: Gate comparison in Matlab

When measuring the effect a one qubit Hamiltonian has on a state, I solve the
Schrödinger equation twice, once for each basis state, to create the unitary propagator
by combing the solutions in U. This propagator shows the effect the Hamiltonian has
on one qubit, and is then compared to the effect of a gate. Gate.rotation(U) from the
GateInterface in Lst. 4.1 is used to change the phase of the unitary matrix, so that it
has the same global phase as the gate it is compared, as described in Sec. 3.8.1. After
this, the target gate is subtracted from the unitary matrix and the euclidean norm is
extracted from the difference between them. It will reach a value up to 2 for different
gates and the value 0 for gates with identical effects on the particles.
The Matlab implementation of the norm for matrices, is given by the largest singular
value decomposition, and it is also called the 2-norm.

1 gate = [0 1;1 0];

Listing 4.23: X gate in Matlab

The above is an example of a target gate in Matlab, here the x gate as seen in
Eq. (2.21a).

Accuracy

As the norm measures the difference between the target gate and the created
quantum map, it is as good as the machine precision in your simulation program.
This means it can get as low as 0 for identical gates, but is limited to 10−15 for any
case where you do not end up with a zero matrix after subtracting the matrices.
The norm measure can be accurate up to the machine precision of the simulations.
This can for some gates, have an error with size of 10−15. The measurement will be in
the interval [0, 2], with 0 being perfect match. A problem is that a global phase of the
solution can distort how accurate it is, but by changing the phase of all elements, so
that one of the elements matches the target gate, the effect can be reduced.

4.2.2 Average gate fidelity

The implementation of the average gate fidelity measurement method, which is
discussed in Sec. 3.8.2.
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16 % Compare distance for a gate U with a given gate

17

18 % Start positions

19 Psi0 = Gate.Psi0;

20 index = double(Hamiltonian.matrixSize);

21

22

23 % Solving the shrödinger equation

24 U = SolveForStartValue(Hamiltonian , Psi0);

25

26 % loading the gate matrix

27 targetGate = Gate.gate;

28

29 % Average fidelity

30 Diff = 1-(abs(trace(U’* targetGate))^2 +index)/(index^2 +index);

Listing 4.24: Average gate fidelity

I use the Psi0 from the gate to get a matrix with all basis states as described in
Sec. 4.1.6, I take individual array slices of the matrix to get all the basis states of the
qubit. Then as in Sec. 4.2.1, I solve the Schrödinger equation with the Hamiltonian for
all the basis states of the qubit, using the function SolveForStartValu found in Lst. 4.21,
where all the solutions are combined to the propagator U. Then I use the average gate
fidelity as discussed in Sec. 3.8.2, to find the fidelity. Thereafter I return the infidelity
by subtracting the fidelity from 1. The value of the measure will be in the interval
[0, 1], with 1 for perfect fidelity, but since I use infidelity as a measurement for the cost
function I have 1 − f idelity.
When I used this measure it gave smoother cost landscapes than when using the
norm to measure the difference. Therefore the measurement I focused on using for
the Hamiltonians, was the average gate fidelity.

Accuracy

The average gate fidelity is an accurate method to find the difference between two
quantum states. It can for normal use have an error of 10−13, but when comparing
a one particle Hadamard gate with itself it can get as low as 3.3307 · 10−16. The
measurement method uses matrix multiplication, so it can only be completely
accurate for some gates with integer values, but it gets close enough for the purpose
of my project.

4.2.3 Channel fidelity with Choi matrix

This is the implementation of the channel fidelity for a Choi matrix, discussed in
Sec. 3.8.3.
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1 function Diff = ChoiMatrixMeasure(Lindbladian , Gate)

2 % Compares the difference of a Lindbladian with a given gate using a

↪→ Choi

3 % matrix and returns the fidelity

4

5 arguments

6 Lindbladian Hamiltonians.Interfaces.HamiltonianInterface

7 Gate Gates.GateInterface

8 end

9

10 % Extract gate

11 targetGate = Gate.gate;

12

13 % Get matrix size from gate

14 index = size(targetGate , 2);

15

16 % Setup values

17 matrixSize = index ^2;

18 scale = 1/index;

19

20

21 % initialize matrix

22 ChoiPart = zeros(index , index , matrixSize , matrixSize);

23 targetPart = zeros(index , index , matrixSize , matrixSize);

24

25 % Solve for all rho values

26 for n = 1:index

27 for m = 1: index

28 if(n>m)

29 % Use the fact the parts are symmetrical around the

30 % diagonal to reduce runtime with the upper triangular

31 % matrix to fill in the lower triangular

32 Rho = sparse(m, n, 1, index , index);

33 lindbladSolution = SolveFunk.SolveForRho(Lindbladian ,

↪→ Rho , index);

34 part = kron(lindbladSolution , Rho);

35 ChoiPart(m,n,:,:) = part;

36 ChoiPart(n,m,:,:) = ctranspose(part);

37

38 tPart = kron(targetGate*Rho*targetGate ’, Rho);

39 targetPart(m,n,:,:) = tPart;

40 targetPart(n,m,:,:) = ctranspose(tPart);

41 elseif(n==m)

42 % Adding the diagonal parts directly

43 Rho = sparse(m, n, 1, index , index);

44 lindbladSolution = SolveFunk.SolveForRho(Lindbladian ,

↪→ Rho , index);
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45 ChoiPart(m,n,:,:) = kron(lindbladSolution , Rho);

46

47 targetPart(m,n,:,:) = kron(targetGate*Rho*targetGate ’,

↪→ Rho);

48 end

49 end

50 end

51

52 % Sums and reduces the parts of the choi matrix

53 Choi = sum(ChoiPart , [1, 2]);

54 Choi = squeeze(Choi);

55 Choi = (Choi.* scale);

56 sqrChoi = sqrtm(Choi);

57

58 % Sums and reduces the kron products of the target gate

59 TargetChoi = sum(targetPart ,[1, 2]);

60 TargetChoi = squeeze(TargetChoi);

61 TargetChoi = TargetChoi .* scale;

62

63 content = sqrtm(sqrChoi*TargetChoi*sqrChoi);

64

65

66 % Finds fidelity

67 Diff = abs(trace(content)^2);

68

69 end

Listing 4.25: Calculating channel fidelity with Choi matrix

To try and reduce the amount of computations that are needed, I took advantage
of the fact that the Lindbladians I use are Hermitian, the Hermitian is discussed in
Sec. 3.3. This enables only computing the upper triangular part of the matrix, and
placing the conjugate of the elements above the diagonal in the lower triangular part
of the matrix. This could reduce the time needed to solve the Lindblad equation, as
for a 2 qubit Lindbladian the Runge-Kutta solver would have to be used 16 times. But
with this optimization, it would only need to be used 10 times.

Accuracy

Channel fidelity suffers more from inaccuracy than the other measurement types
used in the project, as it computes the matrix square root. This inaccuracy means
that the best possible measurements will have an error of at least 10−8, no matter
what method is used, as long as the datatype double is used, and default precision
computations are used.

71



4.2.4 Tautological gates and benchmark accuracy

To have an indication of the accuracy of the simulation, I have in some cases used
tautological gates as the target gates. The name comes from its self referencing nature,
as I construct it by using a Hamiltonian I created, with set parameters, and then use it
as a target gate and compare it to the effect of the Hamiltonian.

The tautological gates in this project are constructed by running a Hamiltonian
with all input parameters set to 1. This is then used and compared with itself to see
how good this measurement is when I compare the result of the measurement with
different measurement methods. While it is not a gate realistically used, it can give a
good indication of where to start looking. But I still have the added burden of finding
a good minima with gradient descent for a gate that is actually used. It guarantees
that a solution exists when optimizing using an optimization algorithm. By giving an
indication of how hard it is to search for all the possible solutions, it will also see how
often gradient descent has a tendency to get stuck in local minima.

For creating a one qubit tautological gate I use Eq. (3.7) setting all input parameters,
(ϵ, Ωx, Ωy) to one. Meanwhile, for the two qubit tautological gate, I used Eq. (3.12)
setting (ϵ, Ωx, Ωy, u) to one.

4.3 Gradient descent

I use a variant of gradient descent called the Adam solver described in 3.9.3, with my
implementation as follows:

23 arguments

24 Hamiltonian Hamiltonians.Interfaces.HamiltonianInterface

25 Gate Gates.GateInterface

26

27 options.learning double = 1e-3;

28 options.Beta1 double {mustBeInRange(options.Beta1 ,0,1,"exclude -upper

↪→ ")} = 0.9;

29 options.Beta2 double {mustBeInRange(options.Beta2 ,0,1,"exclude -upper

↪→ ")} = 0.999;

30 options.epsilon double {mustBePositive} = 1e-8;

31 options.minDiff double {mustBePositive} = 1e-6;

32 options.maxIter = 1000;

33 end

34

35 % setting initial values

36 learning = options.learning;

37 Beta1 = options.Beta1;

38 Beta2 = options.Beta2;

39 epsilon = options.epsilon;
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40 cutoff = Hamiltonian.Measure.cutoff;

41 minDiff = options.minDiff;

42 last = MeasureDiffGeneral(Hamiltonian , Gate=Gate);

43

44

45 % Max intervals

46 maxIt = options.maxIter;

47

48 % Initialise momentum vector

49 para = Hamiltonian.Parameters;

50 leng = length(para);

51 M = zeros(1,leng);

52 V = zeros(1,leng);

Listing 4.26: Adam solver

The algorithm has two required parameters, Hamiltonian and Gate the Hamiltonian to
solve for and the target gate. It has some optional parameters: learning the learning
rate, Beta1 and Beta2 used for calculating the moment and second moment, epsilon a
small value with the default recommended value to be 10−8, a minDiff that denotes
the minimum required difference after 100 iterations and finally maxIter to denote the
maximum number of iterations. From the Measure to the Hamiltonian it extracts a cutoff

↪→ that is set based on the measurement used, this cutoff stops the gradient descent if
the infidelity is more than halfway of the maximum after a hundred steps. As it may
take a long time to get to a minima and as the runtime of the program is already high,
I decided to focus on the start points closer to a local minima.

54 for iter = 1: maxIt

55 grads = CalculateGradients(Hamiltonian , Gate);

56 M = Beta1*M + (1-Beta1)*grads;

57 V = Beta2*V + (1-Beta2)*grads .^2;

58

59 % Compute bias -corrected first and second moment estimate

60 M_bias = M./(1- Beta1^iter);

61 U_bias = V./(1- Beta2^iter);

62

63

64 para = para - learning .* M_bias ./( sqrt(U_bias)+epsilon);

65

66

67 Hamiltonian.Parameters = para;

Listing 4.27: Adam solver

Here is the algorithm itself, starting with calculating M used for the first moment and V

for the second. The bias corrections M_bias and U_bias is used to counteract the fact the
algorithm is dominated by the starting values of the momentum M and V that are zero.
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69 if mod(iter ,100) == 0

70 test = MeasureDiffGeneral(Hamiltonian , Gate=Gate)

71 if(test > cutoff || abs(test -last) < minDiff)

72 disp(iter)

73 break

74 else

75 last = test;

76 end

77 end

78 end

79

80

81 distance = MeasureDiffGeneral(Hamiltonian , Gate=Gate);

Listing 4.28: Adam solver

Here are the early stop conditions. They trigger every hundred iterations and stop the
optimization if the difference in measurement from the last test, a hundred iterations
ago, is less than the minDiff, or if the value is higher than the cutoff.

1 % Validate input

2 arguments

3 Hamiltonian Hamiltonians.Interfaces.HamiltonianInterface

4 Gate Gates.GateInterface

5 options.h(1,1) double = 1e-3;

6 end

7

8 h = options.h;

9

10 % Extract parameters

11 para = Hamiltonian.Parameters;

12

13 % initialize vector

14 vectorLength = length(para);

15 Gradients = zeros(1, vectorLength);

16

17 % For each parameter , find it’s gradient with middle finite

18 % difference scheme

19 for n = 1: vectorLength

20 [plussVector , minusVector] = CalculateVectors(para , h, n);

21 Hamiltonian.Parameters = plussVector;

22 Hpluss = MeasureDiffGeneral(Hamiltonian , Gate=Gate);

23

24 Hamiltonian.Parameters = minusVector;

25 Hminus = MeasureDiffGeneral(Hamiltonian , Gate=Gate);

26

27 Gradients(n) = (Hpluss - Hminus)/(2*h);

28 end
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29 end

Listing 4.29: Midpoint approximation for all possible parameters

This function uses the midpoint approximation to differentiate and a small sub
function to setup the parameters that are to be differentiated.

It can also take an optional scalar h that describes how big the difference used in the
final difference method should be.

11 % Sets up vectors

12 plusVector = parameters;

13 plusVector(location) = plusVector(location) + h;

14

15 minusVector = parameters;

16 minusVector(location) = minusVector(location) - h;

17 end

Listing 4.30: Adding and subtracting the value h from the parameter to use in the
midpoint approximation

Lst. 4.30 is a small script that only prepares the parameters by adding and subtracting
the small value h on the chosen parameter location in the vector.

4.4 Experiments

To test my program and work towards a result I started simple, before expanding
to using the Lindblad equation as described in Sec. 3.6. First I ran tests on one qubit
gates before using two qubit gates with interactions.

4.4.1 One qubit gates

I started the project by constructing some known gates and trying to optimize the
simple one qubit Hamiltonians with gradient descent. I worked to understand the
influence of the parameters before expanding the project. The first gates used as
targets were the X gate and Hadamard gate.

Hadamard

Optimizing for the Hadamard gate was difficult with my program, it was too
dependent on the starting position for me to be sure that I had a good global minima.
So most of the testing ended up being done with tautological gates.
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Tautological gate

Even with a large number of random start points, I only got a few good approxim-
ations for the Hadamard gate. These could have an infidelity of 10−5 a reasonably
good result, but not the theoretical best that the average gate fidelity measurement
described in Sec. 3.8.2 could have. So, to be certain of my test, I started using tautolo-
gical gates. I constructed gates by entering known parameters, most often by setting
all parameters to 1, and seeing how good the program was to get back to these points
with minor changes in parameters using gradient descent.

This gave me a good idea of how good the gradient descent algorithm was for
finding minima and was a starting point where I could look at more realistic gates
if I found a method that showed promising testing results.

4.4.2 Lindblad with noise

To see how a quantum system exposed to noise behaved, I started with the Lindblad
equation for the state |1⟩ falling to |0⟩ as described in Sec. 3.6.2. It was done by
increasing the γ value, changing how fast it falls to its ground state, while for several
points in an interval, I ran the Adam algorithm to see how much optimizing the
parameters could help in counteracting the effect of the noise. This difference would
then show how good the use of dynamic magnetic fields would be for mitigating
this source of noise. As the Lindblad equation is more complicated and has to be
computed for more states to get the full quantum map, efforts were made to optimize
this.

To ensure a good overview of the optimization using the Lindblad equation, I set a
tautological gate as the target. Thereby being able to always start at the most optimal
parameters before applying noise.

4.4.3 Two qubit gates

For two qubits I started adding the interaction between the qubits into the
Hamiltonian, as described in Sec. 3.3.1, to see how that affected the optimal
parameters and cost landscape. The strength of the interaction added another
parameter in combination with the larger size of the Hamiltonian, which had double
the size and four times the number of elements in each matrix, which increased the
time it took to run gradient descent.
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Hadamard

I started with the Hadamard gate on two qubits simultaneously the H ⊗ H gate, but
the effort to get a reasonably good local minima made it apparent that I would need
another algorithm to give a better start position to the gradient descent algorithm.
Moreover, testing by allowing the interaction between qubits to have different effects
in different directions, massively increased the time used with gradient descent, as
it increased the needed parameters from four to six. A double Hadamard gate was
chosen as a starting point, to see how adding interaction between the parameters
affected how well the Adam optimizer was able to find a good minima.

Tautological gate

As with one qubit gates, when you use a tautological gate, it is easier to know if
you have a good starting point, when the gate is created using known starting
values. The additional parameter increases the difficulty of finding good minima, but
having a starting point makes gradient descent better able to get back to the optimal
parameters as long as it starts close enough. Tautological gates also guarantee that the
solution actually can exist. This enables focusing on whether it is possible to mitigate
the effect of noise, while for the gates I use it may be uncertain if it is even possible to
recreate the gate with the Hamiltonians I use.

Lindblad with noise

The main focus of this study, is the use of the Lindblad equation, here for two
qubits with two different jump operators. One came from a Lindblad tomography
of a superconducting quantum computer (Samach et al., 2022), and the other was
randomly generated with Lst. 4.16.

For all of these different jump operators I started with a baseline of no optimization
and a value of zero for γ the strength of the jump operators. And as I increased the
value of γ I tried to use gradient descent to find better parameters and compared the
effect of this with unoptimized parameters.

The jump operators found with tomography are:
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L1 =


0.501 + 0.001i 0.000 + 0.001i −0.0002 + 0.002i −0.002 + 0.000i
0.000 − 0.001i 0.499 − 0.001i −0.001 + 0.001i −0.002 + 0.002i
−0.001 − 0.001i 0.001 − 0.001i −0.499 + 0.000i 0.000 + 0.001i
0.002 + 0.000i −0.001 − 0.001i 0.000 + 0.000i −0.501 + 0.000i

 (4.1)

L2 =


0.448 − 0.001i 0.109 + 0.246i 0.001 − 0.002i 0.002 − 0.002i
0.061 − 0.125i −0.451 + 0.002i −0.001 + 0.002i 0.002 + 0.005i
−0.003 − 0.002i −0.003 + 0.001i 0.454 + 0.001i 0.109 + 0.249i
−0.004 + 0.001i 0.000 + 0.002i 0.064 − 0.131i −0.451 − 0.002i

 (4.2)

L3 =


−0.072 + 0.161i 0.639 − 0.031i −0.003 − 0.001i 0.007 + 0.00i
0.114 + 0.039i 0.072 − 0.161i −0.001 + 0.001i −0.005 − 0.001i
0.002 + 0.003i 0.001 + 0.002i −0.071 + 0.162i 0.655 − 0.044i
0.002 − 0.003i −0.001 − 0.002i 0.134 + 0.035i 0.071 − 0.163i

 (4.3)

L4 =


0.004 + 0.000i −0.001 − 0.003i 0.000 − 0.703i −0.003 + 0.00i
0.000 − 0.001i 0.000 − 0.002i −0.004 − 0.002i 0.000 − 0.703i
0.001 + 0.078i 0.002 + 0.001i 0.000 + 0.002i −0.002 − 0.003i
0.000 − 0.001i −0.001 + 0.079i 0.000 − 0.001i −0.004 + 0.000i

 , (4.4)

and additionally have values for γj:

γ1 = 0.071 (4.5)

γ2 = 0.097 (4.6)

γ3 = 0.042 (4.7)

γ4 = 0.055 (4.8)

(4.9)

These small γj values reduce how much impact the different jump operators have
and modify how large effect they have in comparison to each other.
The jump operator I constructed is:

L =


0.0452 + 0.3897i −0.9961 − 0.4091i 0.1766 + 1.0004i 1.8169 − 2.1335i
0.8672 − 0.0596i 0.0603 − 0.9063i 0.7552 − 0.8013i −0.1238 + 0.4040i
0.9756 − 0.6610i −1.2974 − 0.2849i −0.0080 + 0.4674i −1.1106 − 0.9585i
0.3374 + 0.3060i 0.9174 − 0.0648i 1.8444 + 0.2738i −0.0974 + 0.0492i


(4.10)

and created by running Lst. 4.16 with the default parameters, random seed 42 and
dimension of the jump operators 4.
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Chapter 5

Results

This chapter will describe the results found by running simulations of different
Hamiltonians and Lindbladians. I start by explaining how I did optimization,
followed by some details about changes in the cost landscapes for different measures.
After that I will describe the result of different optimizations, and end the chapter
with optimizations using the Lindblad equation, to see how the effect of noise could
be reduced.

5.1 Optimizing For a Gate

I started my project by optimizing with gradient descent for a given gate, starting
with the X gate and Hadamard gate for one qubit. I found that it was possible to
optimize the parameters to get close to the ideal gate, often on the scale of 10−5 from
a perfect recreation of the target gate. I also found that gradient descent was very
dependent on the start point and could get stuck in local minima. But the test did
prove that dynamical magnetic fields could be used to create the Pauli gates and the
Hadamard gate. This made the idea that magnetic fields could possibly have an effect
on reducing the impact of noise feasible to test.

5.1.1 Target gates

When testing the effect of different Hamiltonians and Lindbladians I needed to have
a target to compare it to. As the quantum map created by using a Hamiltonian or
Lindbladian does not give insight on its own, the goal of the project is to reduce the
effect noise has on a qubit. In order to have something to compare it to, I used either
ideal gates that perfectly show how a known gate should be, or tautological gates,
gates created with known parameters by my model.
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Tautological vs. universal set of gates

In order to enable rapid testing and have a target with completely known parameters,
I have created some tautological gates, that are created by setting the parameters of a
Hamiltonian and reading the quantum map that emerges as the target gate.

This enables rapid testing and simplifies the running of gradient descent by ensuring
I can always start arbitrarily close to the end goal. While it does not give a complete
picture, it enables rapid testing of different solutions without being dependent on
that the minima found by my program are good enough and completely correct.
It also gave me a chance to see how good the gradient descent algorithms were,
as I knew the optimal parameters, and could test how good the optimizer was at
rediscovering the parameters for a gate.

This could then be transferred to use on arbitrary gates to verify that the tautological
gate gave a good enough result even while having a gate from a universal set
of gates. While the tautological gate is not something that is used in a quantum
computer it is possible to reach the state created by it using a combination of gates
from a universal set of gates, as a universal set of gates can approximate any gate that
can be used on the qubit, only by using a combination of the gates in the universal
set.

One qubit gate

I focused mostly on two gates, the Hadamard gate used to set the qubit in a
superposition found in Eq (2.26) and a tautological gate for testing purposes. The
tautological gate was constructed by using Eq. (3.7) and setting all input parameters
(ϵ, Ωx, Ωy) to one, and then solving it with the Crank-Nicolson solver described in
Sec. 3.7.1, for the two starting state. The effect of the Hamiltonian then becomes:

Taut =

[
0.6585 + 0.7472i −0.0634 − 0.0634i
0.0634 − 0.0634i 0.6585 − 0.7472i

]
(5.1)

I did tests with other known gates, including the X gate, to ensure that the program
could work as intended, but the main focus was on the two mentioned gates.

Two qubit gate

For two gates I started with the swap gate, but later I found a research paper that
stated that one could construct any quantum circuit using three (SWAP)α and six
single qubit gates (Fan et al., 2005). As they could find (SWAP)α using only exchange
interactions it is therefore now clear that SWAP and

√
SWAP could be found using

only interactions while the strength of the magnetic fields are set to 0. This simplified
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Figure 5.1: Cost landscape of tautological gate, varying ϵ and Ωx with Ωy
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how hard it was to find the gates, and quick tests showed that my program could
recreate this result with the effect of SWAP being repeated in constant intervals as
seen in Fig 5.2. The effect of a SWAP gate is repeated while varying u for specific ϵ

values including ϵ = 0 in Eq. (3.13).

Figure 5.2: Cost landscape of SWAP gate varying ϵ and u with the other parameters
set to 0

Figure 5.3: Cost landscape of SWAP gate varying ϵ and u with the other parameters
set to 0

I attempted to optimize for a randomly generated gate, but the results were not
promising. When using a Hamiltonian with six parameters, ϵ, Ωx, Ωy, uz, ux, uy as
described in Eq. (3.15) the best result where an infidelity of 5.56 · 10−02 described in
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Tab 5.1. It showed poor results after 600 runs of the Adam optimizer with Average
gate fidelity used as the measure, with random start parameters in the interval (0, 10).
Only 3 of the attempts to optimize the parameter values got an infidelity below 0.1.

Variable Value

ϵ 4.07

Ωx 1.33

Ωy 9.93

Uz 2.20 · 10−1

Ux 1.26

Uy 3.54

Infidelity 5.56 · 10−2

Table 5.1: Lowest infidelity found with Adam optimizer from random start points for
a two qubit randomly generated gate

This poor performance in finding a good local minima when using the Adam
optimizer for six parameters, made it impractical to use when the parameters were
not known, and it greatly expanded the amount of parameter space to explore. It was
therefore not the method of choice to use when starting with the Lindblad equations.
The results gave me the incentive to start using gates where I knew what parameters
are the optimal ones, leading to the creation of the tautological gates. Test with a
double Hadamard gate on two qubits gave better results, so it was used early on
before the focus moved to the tautological gates for testing.

The tautological gates gave me a better starting point, without having to search for
a minima when I was planning to add noise using jump operators in the Lindblad
equation. It was the main target when optimizing for two qubits, removing the long
period of optimization needed to get a good starting point. The tautological gate
created for two qubits using only parameter values of 1 ended up being:


0.1367 + 0.5048i −0.4951 + 0.0657i −0.4951 + 0.0657i 0.0002 − 0.4770i
0.0657 + 0.4952i 0.5230 − 0.0011i −0.47701 + 0.0012i −0.0661 + 0.4950i
0.0657 + 0.4952i −0.4770 + 0.0012i 0.5230 − 0.0011i −0.0661 + 0.4950i
−0.0002 + 0.4770i 0.4951 + 0.0661i 0.4951 + 0.0661i 0.1370 − 0.5048i

 ,

(5.2)

all work using the Lindblad equation ended up being done on this tautological gate.
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5.1.2 Gradient descent

There were 35
800 runs with the Adam optimizer that were below 0.1, but only where

only 4
800 results that had an infidelity below 0.01. This was when using random

parameters in the interval (0, 10), using the Adam variant of gradient descent
when optimizing over double Hadamard gate and having a Hamiltonian with
6 parameters. The parameters were ϵ, Ωx, Ωy and three interaction parameters
uz, ux, uy, one for each direction. This shows that gradient descent is extremely
dependent on its start point when finding minima, here with the measure Average
gate fidelity, but both the Channel fidelity and especially the Norm measure showed
the same tendencies. For a better fit, another algorithm should be used to get the start
points, so that gradient descent can be used in situations where It is not required to
find the minima by itself. It will often get stuck in the many local minima before a
good result is found. While there can be some connection between the local minima
there are often many more local minima where the gradient descent can get stuck
than there are good minima that can be used to construct a desired gate.

When creating cost landscapes for a non-uniform quantum map Sec. 3.6 gradient
descent gave good smooth evolution of the parameters as the γ value that signifies
the strength of noise increased, even as the infidelity grew toward 1 with increasing γ

from it’s starting value of 0. This shows that as long as you have a good start point
the gradient descent algorithm gives a good way to optimize for disturbances. So
that when you optimize to counteract changing circumstances, like the occurrence
of noise, you have a good point to start, but that start point may no longer have the
optimal parameters.

5.2 Cost Landscapes Hamiltonian

As a way to get a general overview of how difficult it is to optimize the parameters
and the effect different parameters had, I created cost landscapes using the different
cost functions described in section Sec. 3.8. This section covers cost landscapes for
Hamiltonians and does not concern itself with noise, still, the knowledge from these
attempts made further work easier.

The landscapes were constructed by freezing all except two parameters and thus
showing the effect the combination of these two parameters had on the cost of the
function, taken in the form of the infidelity.
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5.2.1 Measure difference

The different measures had some effect on how easy it was to reach a good minima
when using gradient descent. There were significant differences in how easy it was
for gradient descent to find minima for the different measures, as I will describe in
the following sections.

Norm measure

While the initial measure used, the norm measure Sec. 4.2.1, was easy to implement
it suffered from differences in global phases, and numerical instability. These global
phases are irrelevant when you measure gates, as they cannot be detected when
doing a measurement. I attempted to correct for differences in the global phase, by
targeting one value of the matrix U and synchronising that to a single value at the
same place in the target gate, so that at least some of it was in the correct phase. This
could be improved if I chose another element of the matrix to synchronize with, or if
I had taken the average of the difference in phase so that the global phase difference
would have been the smallest possible value for all elements instead of eliminating
the phase difference for one element. The norm measure is made by finding the
maximum singular value, this can make it more unstable as using any maximum
value functions makes the measure more prone to having non-convex landscapes.

Figure 5.4: Norm measure for a tautological gate created with 1 as parameters while
varying the ϵ and Ωx parameters, with Ωy locked to 1

As seen in Fig. 5.4 the measure gives a highly non-convex cost landscape that can
have numerical instability, the non-convex landscape is caused partly by phase
differences. My method to eliminate the difference in the global phase could be
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improved by using an average of the phase difference or some other method instead
of the current where I select one element. This has made it even harder to get a good
result using gradient descent and its derived methods.

Average gate fidelity

Average gate fidelity(AVG) described in Sec. 4.2.2 does not concern itself with
difference in the global phase, instead, it shows the average difference whereas
the norm measure shown in Sec. 4.2.1 uses the largest singular value. This leads to
AVG giving a smoother plot as seen in figure Fig. 5.5, with an example zoomed in
Fig. 5.6, showing the difference for the Hadamard gate. These figures show some of
the additional non-convexity the norm measure gives compared to the average gate
measure.

Figure 5.5: Cost landscape showing the same case as Fig. 5.4, but using Average Gate
Fidelity instead of the norm to measure the difference

While it is still not easy to find global minima, the cost landscape is smoother and
some local minima are closer to the global minima. When changing the phase to
match phases for the norm measure, is focused on one element, the phase of the
chosen element may be different than the global phase and it may increase the phase
difference for another element. But finding the best phase by taking a global average
was deemed not worthwhile when the average gate fidelity had broader use and was
insensitive to the global phase difference.

The cost landscape is more convex, but still highly non-convex. Even though it is
easier to find a good local minima, the landscape is still non-convex with many local
minima and is difficult to search. But as you can see in Fig. 5.6 there is numerical
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Figure 5.6: Zoomed in version of Hadamard gate with the ϵ parameter locked at
2.421, comparing the norm measure and the average gate measure, both scaled to 1

Figure 5.7: Cost landscape of the Hadamard gate with ϵ locked to 2.421, and with
two different measures, comparing the norm measure and the average gate measure,
norm scaled to 1
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Figure 5.8: Cost landscape of a Tautological gate gate with ϵ locked to 1, and with
two different measures, comparing the norm measure and the average gate measure,
norm scaled to 1

Figure 5.9: 2-D plot of a Tautological gate gate with ϵ locked to 1, and with two
different measures, comparing the norm measure and the average gate measure,
norm scaled to 1
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instability, as the uneven spikes in the figure using the norm, are only an artefact of
the resolution I used to plot the room. But it may have an effect on how effective a
gradient descent algorithm is. While many of the minima found can be equal to the
global minima or close, any 3d plot only sees the effect of varying two parameters. It
will therefore not show any minima that depend on a change in any other parameter
that is set to be constant for the plot. This makes it harder to get an overview of how
many good local minima exist, but from the behaviour of the Adam algorithm, it
seems like there are many more local minima that exist than there are global minima
or local minima that are close to the global minima.
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5.3 One Qubit

Even for one particle, the cost landscape can be quite complicated. But for many
gates, it regularly repeats itself as the strength of the parameters increases, as seen
in Fig. 5.10. This gives the possibility that a one qubit Hamiltonian, is less dependent
on the start parameters than a two qubit Hamiltonian, as long as you avoid some of
the poor start points.

Figure 5.10: Difference from the Hadamard gate varying the ϵ and Ωy parameters
with Ωx parameter set to 0

Hadamard gate

The Hadamard gate required many runs with gradient descent, to get parameters
that enabled a low infidelity. The best result was an infidelity of 1.5349 · 10−9 when
using the parameters in Tab 5.2 and measuring with the Average gate fidelity. The
Hadamard gate had a complicated cost landscape despite the fact that it is only using
one qubit. As seen in Fig. 5.11 it seems like it has several global minima and many
more local minima that can easily trap gradient descent.

For the Hadamard gate the most optimal parameters I could find with the Adam
optimizer are seen in Tab. 5.2, I used the Adam optimizer with 400 different random
staring parameters in the interval (−5, 5). The best set of parameters gave the
infidelity 1.5349 · 10−9, a very small value that approaches zero. While the theoretical
infidelity with average gate fidelity is 10−13, it is close enough that machine precision
may limit it from getting better results while using my code.

There seems to be one optimal value for Ωx consistently in the domain D :
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Figure 5.11: Cost landscape for a Hamiltonian with respect to the Hadamard gate,
with static Ωx set to 0 varying ϵ and Ωy, with a version seen from above

Variable Value

ϵ 2.4210

Ωx 0

Ωy −1.6971

Infidelity 1.5349 · 10−9

Table 5.2: Optimized variables found for the Hadamard gate using Adam optimizer

(−3, 3), which I used in these plots as seen in Fig. 5.12, while for ϵ and Ωy there is a
dependence on each other.

X gate

As the X gate is only dependent on the magnetic field in the X-direction it is much
easier to optimize over this gate. Unless disturbed, the only parameter that should
not be 0 is the strength of Ωx. This drastically reduces runtime and the possible
number of local minima, at least when using discrete pulses or ramp on and off
effects on the discrete pulses as described below in Sec. 5.3.2.
When using dynamic magnetic pulses it was not that simple, as I used an optical
cycle of length 2π with the dynamic magnetic field strength dependent on sin(x),
which in testing was seen to have no effect when used alone. This led to me look into
the effect of the sinus pulse:

∫ 2π

0
Ωx sin(t)dt =

∫ 2π

0
Ωy sin(t)dt = 0, (5.3)
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Figure 5.12: Cost landscape for a Hamiltonian with respect to the Hadamard gate,
with static Ωy set to −1.6971 varying ϵ and Ωx

Figure 5.13: Cost landscape for a Hamiltonian with respect to the Hadamard gate,
with static ϵ set to 2.4210 varying Ωx and Ωy
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Figure 5.14: Strength of the sinus pulse in the interval [0, 2π]

ϵ 2.4610

Ωx 0

Ωy 5.0179

Infidelity 1.9526 · 10−04

Table 5.3: Best parameters and infidelity found with Adam optimizer for the X-gate

valid for any Ωx or Ωy. It means that for a dynamic magnetic field in a single
direction, that contains a whole cycle, here 2π, integrates to zero. I decided to look
more into how the strength of the magnet field was distributed. This led to the
discovery that the symmetry given by:

sin ϕ = − sin ϕ + π (5.4)

means that the Hamiltonian has one effect in the time period [0, π] and the opposite
effect in the interval [π, 2π], as you can also see in Fig. 5.14. This symmetry means it
will counteract itself as long as all energies involved follow the strength of the sinus
pulse.
After 200 iterations of the Adam optimizer with three random parameters, in the
interval (0, 10) using a uniform random number generator, I got 2 results lower than
10−3, and 10 lower than 10−1 with the best infidelity and the parameters belonging to
it in Tab 5.3.
You can in Fig. 5.15 see how there seem to be repeating minima where the values of ϵ

and Ωy seem to have a consistent ratio, and any of these minima is close to the global
minima. With the lowest infidelity found being in Tab. 5.4
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ϵ −3.4716

Ωx 0

Ωy −2.0669

Infidelity 6.0603 · 10−6

Table 5.4: Lowest infidelity found in a plot by only manipulating ϵ and Ωy

Figure 5.15: Cost landscape for the X gate, varying the ϵ and Omegay with the Ωx

parameter set to 0

The fact that this is lower than what the gradient descent algorithms found, confirms
that starting from a random point in non-convex landscapes such as this, is not very
good and that I may have used a too low a maximum number of iterations or been
too strict with stopping, if the difference after 100 iterations was less than 10−6. But
the use of the Adam algorithm may improve many of the local minima found in the
plot if used as the starting point.

5.3.1 T gate

To see what gates I could create, I did a small optimization for the T gate:

T =

[
1 0
0 ei π

4

]
(5.5)

It is one of the gates needed in addition to the Clifford gates(Hadamard, CNOT, S
gate) to form a universal set of gates. As T =

√
S, it is trivial to construct the S gate

from the T gate. When optimizing with the Adam solver from 40 different random
start points in the interval (0, 10), I got a good optimization with an infidelity of only
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Figure 5.16: Infidelity for the S and T gates, varying ϵ with Ωx = 0 and Ωy = 0

6.30 · 10−5 with parameters shown in Tab. 5.5.

ϵ 6.96

Ωx 6.07

Ωy 0.87

Infidelity 6.30 · 10−5

Table 5.5: Lowest infidelity found in a plot with Adam optimizer for the T gate

Combined with the fact that they can be constructed using only ϵ as seen in Fig. 5.16,
it may be one of the easier gates to construct. It only needs the static magnetic field
from the ϵ which means that it even may be solved analytically.

5.3.2 Smooth and discrete pulses

As both magnetic pulses and laser beams have a little ramp on and ramp off effect,
I did some testing to see what effect this had on the parameters required for optimal
parameters. The Hamiltonian I used to simulate this ramp on and off was:

H =
2B · σ

exp
(
s
(
|t − tmid| − tpulse

))
+ 1

(5.6)

Where t is the time, tpulse is the time a constant pulse would run, tmid is the halfway
time of all the time used when all the time used is greater than tpulse to capture the
tail and the head of the effect, and the s is the scale that states how sharply it ramps
on and off. The time t will include a larger domain than tpulse to capture the whole

95



smoothed out pulse, as when the scale s decreases it spreads out in time. When σ is
expanded to its constitute forms it gives the Hamiltonian:

H =
2

exp
(
s
(
|t − tmid| − tpulse

))
+ 1

·
[

Bz Bx + iBy

Bx − iBy −Bz

]
(5.7)

When s → ∞ the pulse becomes indistinguishable from a rectangular pulse.
As I did some tests I expanded the period used to measure the time in order to
include the full effects of the pulse as seen in the ramp on and off in Fig 5.17, with a
constant pulse for reference. I ended up using 2 times the time period and, as most
tests were set to use 2π as the period used for the target pulse, I included the effects
from acting in a time period π before and after, for a total time period of 4π.
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Figure 5.17: An example of several pulses with ramp on and off, for different values
of scale

While having a ramp on and ramp off effect did change the result, compared to the
rectangular pulses the difference was minor for any of the tests. Even with the scale
variable s set to 1 a very rounded pulse, the result was only a 2.13 · 10−8 difference
from a pure discrete pulse, using the Average gate fidelity measure.
Moreover, for the X gate with Ωx = 1

4 , Ωz = 0 Ωy = 0 as described in Sec. 3.3.2, and
the scale s set to 5 gives an infidelity of 9.06 · 10−13. This is an excellent result, that
may even have an infidelity of 0, but it is limited by the machine precision, and this
result is so close to the effect of discrete pulses that it is not interesting for this project.
As these results were obtained without changing any parameters compared to the
discrete pulses used to set up the test gates, I decided to focus on other possible
solutions since the difference from discrete pulses was so small.
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For comparison, I did some tests with an even larger time period, to capture the low
effect when the pulse is the most spread out, for instance when s is set to 1, I did tests
that had a time period of 6π. Increasing the time period increased the infidelity but
adjusting the pulse length to aim for by only −0.0851 such that tpulse = 2π − 0.0851,
less than a 2% difference, gave an infidelity of 4 · 10−8, this for the Xgate measured
using the average gate fidelity. This shows that a minor adjustment in strength or
length of the magnetic pulse would be enough to counteract the effects of a ramp on
and off effect of the magnetic pulses.

5.4 Two qubits

When there are two qubits they can interfere with each other and when you look at
the cost landscape for a two qubit Hamiltonian there are many local minima. This
made tests take longer and the process of finding the minima became very dependent
on the starting point, as the uneven landscape makes the gradient descent algorithm
get stuck in the local minima since they are so large and often have areas of high
infidelity between them and the global minima.

Square root of SWAP

After testing we found a research paper that found that the swap gate could be found
analytically using only exchange interactions (Fan et al., 2005). It showed that they
could find (SWAP)α for any α by only adjusting the strength of interaction. This
reduced the value of using the SWAP gate to test with, but enabled us to confirm
that my model showed the expected result of enabling the square root of SWAP gate
trough only interactions between qubits in our system, this naturally extends to the
normal SWAP gate.
Moreover, as expected the effect of the interaction is very periodic, as imposing an
additional

√
SWAP gets you the SWAP state, and imposing

√
SWAP twice more for

four times total gets you back to the initial state, as you can see in Fig. 5.18. When
compared to the SWAP gate seen in Fig. 5.3 the difference is minimal except for
a minor difference in u the cost landscapes are identical. This can also be seen in
Fig. 5.19, where only the parameter u is modified and all other parameters are set
to 0. The only difference is in the phase of the resulting sine curve, these repeating
patterns would also exist for all versions of

√
SWAP

α
.

Hadamard on two particles

The double Hadamard gate was one of the first gates that was used on two qubits
simultaneously, it was chosen for the fact that I knew of one local minima. It could
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Figure 5.18: Cost landscape of SWAP gate varying ϵ and u with the other parameters
set to 0

Figure 5.19: SWAP and
√

SWAP varying only u, the rest of the parameters set to 0

be used to see how good my optimization algorithm Adam was to find the global
minima or a value close to it, when adding an additional parameter in the interaction
parameter u. When running Hadamard on two qubits simultaneously with them
interfering with each other, you can see that for some of the parameters, the optimal
strength repeats periodically for some of the parameters, including for the interaction
parameter u. I did some tests using interaction parameters that were different for
each direction using the Hamiltonian from Eq. (3.15). But it did not seem to provide
any advantage over using just one interaction parameter when using the Adam
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optimizer with the Hamiltonian from Eq. (3.13), both Hamiltonians are described in
Sec .3.3.1. While it is possible to set the interaction parameters u to 0 and use the same
parameters as for the one qubit case, the optimization from random starting points
was not able to find this point, instead, it found other minima. As the computational
time needed to optimize over six parameters, with three interaction parameters, was
significantly longer than for four parameters with only one interaction parameter, it
was decided to only use four parameters to easier optimize the parameters with the
Adam algorithm.

Variable Value

ϵ 4.11

Ωx 5.60 · 10−1

Ωy 9.09

u 5.00 · 10−1

Infidelity 6.74 · 10−3

Table 5.6: Best result found with Adam optimizer from random start points for a
double Hadamard gate for a four parameter Hamiltonian with interactions

For four parameters the best result where an infidelity of 6.74 · 10−3 described in
Tab 5.6. It showed poor results after 600 runs of the Adam optimizer with Average
gate fidelity used as a measure, with random start parameters in the interval (0, 10).
Where only 14 of the attempts to optimize the parameter values got an infidelity
below 0.1.

Fig. 5.20 shows how the parameters mirror around 0 for ϵ, but for these parameters
there are none other valid values for the combination of ϵ and the interaction u. The
result would have been even better if I had taken the parameters from the one qubit
Hamiltonian in Tab. 5.2 and set the interaction parameter to zero. In this case, the
interaction parameter u showed the expected cyclical behaviour as found for SWAP
and

√
SWAP described in Sec. 5.4.

Tautological gate

For testing purposes, I created a tautological gate, by using 106 time steps and setting
all parameters to 1. I solved the Schrödinger equation with a Hamiltonian, which
had all parameters set to 1, with the average gate fidelity to measure and the Crank-
Nicolson solver to solve the differential equation. I used the resulting unitary matrix
as a target gate. By doing this I could be certain that I knew what kind of parameters
were guaranteed to give the right gate. It made it far easier to do many tests, as I
could give gradient descent as good a start point as I wanted, so I could see how
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Figure 5.20: Cost landscape for a double Hadamard gate on two qubits, varying ϵ and
u with Ωx = 0.5598 and Ωy = 9.0934, measured with average gate fidelity

effective it was to get back to the ideal point.

5.5 Lindblad optimization

Part of the goal of the project was to find if the use of dynamic magnetic fields had
any effect when trying to combat noise. In the following subsections, I will look at
the result of optimizing for three different dissipative jump operators. An Amplitude
dampening jump operator, a randomly generated jump operator that is traceless
and a jump operator found with tomography in Samach et al. (2022). To simplify
my optimization I used a tautological gate generated with a Hamiltonian having all
parameters be set to one as mentioned in Sec. 5.4.

5.5.1 Single qubit Lindblad with Amplitude damping

By using the Lindblad Eq. (3.27) from Sec. 3.6.2 I can simulate the effect of the qubit
falling from its |1⟩ position to it’s |0⟩ position.
In Fig. 5.21, when comparing to the target tautological gate, the difference in infidelity
between the optimized and unoptimized parameters is too small to be visible. The
figure shows the infidelity when optimizing from the ideal parameters for γ = 0
where ϵ, Ωx, Ωy are all set to 1, γ is increased until γ = 1. It may have been enough
to stop at a lower value, as the infidelity reaches saturation at around 0.6, with a
logarithmic growth of the infidelity, increasing rapidly for low γ values and flattening
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Figure 5.21: A Lindblad system called LambdaOne in my code, showing the
difference from the ideal tautological gate as gamma increases

out as it approaches the maximal infidelity of 0.75 when γ → ∞. It is only by looking
at the difference between having optimized and unoptimized parameters in Fig. 5.22
that you see a difference. But this is only a difference on the scale of 10−4, a small
value that is close to the error in the simulation. All the optimizations, when using
the tautological gate, start with the ideal parameters used to create the gate with a
Hamiltonian based on Eq. (3.7), this shows an infidelity of 1.1159 · 10−7. This is about
the expected numerical error when using the Channel fidelity with Choi matrices,
thus being an acceptable starting point.
But Fig. 5.23 shows that the optimal values of the parameters have a smooth moving
trend until the infidelity reached saturation with a strength of the noise; γ around 0.8
where ϵ the strength of the field in the Z direction flattens.
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Figure 5.22: LambdaOne difference between optimized and reference result as
gamma increases
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Figure 5.23: LambdaOne the value of the optimized parameters as gamma increases,
the changes to x and y parameters overlap
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5.5.2 Optimization for Lindblad with tomography jump operator

When trying to mitigate noise for a two qubit Lindbladian, the first jump operators
I used were found using tomography in Samach et al., 2022. But mitigating this
was even harder than mitigating the amplitude dampening for a single qubit. The
jump operators are smaller, so each with γj ≤ 0.1, requires ten times the γ value to
reach the same effect as the amplitude dampening and the randomly generated jump
operators I use later.

In all figures I use a tautological gate created with a Hamiltonian so that all four
parameters ϵ, Ωx, Ωy, u are set to one. This is also the start point for when I optimize
when γ increases.

For Fig. 5.24 you can see how the infidelity increases logarithmic, fast at the start
and then more slowly approaching the maximum of the measurement as gamma
increases. Starting at γ = 0 for no noise, with the infidelity rapidly increasing, before
flattening out as the effect of the noise is set toγ = 7 and slowly approaching the
maximum infidelity of the measure 1 − 1

24 = 0.9375 as γ → ∞. The small dip in
infidelity in the span 0 − 1 is on the scale of 10−6 and may simply be errors from
using the channel fidelity and Choi matrices, as both the optimized and the starting
parameter values give smaller infidelity there, the value is simply too small to be
certain.

Figure 5.24: The measure for the difference from an ideal tautological gate created
with 1 as parameters and using the jump operators from the tomography, showing
the plot for optimized parameters and for unoptimized reference parameters

As seen in Fig. 5.25 the difference between the optimized parameters and unoptim-
ized parameters increases as gamma increases, but it never exceeds 3 · 10−5. This
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Figure 5.25: The difference between using optimized parameters and non optimized
parameters on the infidelity compared to a tautological target gate, for a given
gamma. Using jump operators from the tomography

makes the effect of the optimization rather uncertain. There is a correlation with
Fig. 5.24 as the effect increases until the infidelity reaches saturation at a γ value of
around 7. But these measurement values are so small that they cannot say anything
definite. I used different solvers for the Lindblad equation and the Hamiltonian used
to construct the target gate. I cannot dismiss the possibility that a part of the differ-
ence in infidelity when optimizing, can come from using different solvers. Using dif-
ferent solvers can change what parameters are optimal, but reducing the size of the
time steps used in the solvers mentioned in Sec. 3.8 should theoretically reduce this
error, as it becomes infinitely small.
As these results are so small it is hard to be certain it is not caused by random noise,
but they are still an indication that it can be interesting to look closer at these jump
operators using a method with fewer numerical errors. As the channel fidelity on the
Choi matrix has shown in tests a measurement error of up to 10−7 when measuring
two identical matrices. Some of this error comes from taking the matrix square root,
it may need a higher precision than the 64-bit double precision used by default in
MATLAB.
The interesting part is that the change in optimal parameter values has a stable
change with increasing gamma γ as seen in Fig. 5.26. But the effect is so small it may
be only numerical errors.
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Figure 5.26: The evolution of the ideal parameters with increasing gamma. Using
the jump operators from the tomography and the tautological gate created using 1
as parameters as target gate
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5.5.3 Optimization for Lindblad with random jump operator

When I tried to use a randomly generated jump operator, created by the code in
Lst. 4.16, the implementation of the method described in Sec. 3.6.5, gave me the jump
operators in Eq. (4.10). I optimized the parameters for different γ values. This may be
one of the easier jump operators to optimize since it may be less dominated by single
qubit noise. In all figures I use a tautological gate created with a Hamiltonian so that
all four parameters ϵ, Ωx, Ωy, u are set to one. This is also the starting point for when I
optimize when γ increases.

In Fig. 5.27 you can see how the infidelity increases logarithmic, fast at the start
and then more slowly approaching the maximum of the measurement as gamma
increases. Starting at γ = 0 for no noise, with the infidelity rapidly increasing, before
flattening out as γ = 0.02 and slowly approaching the maximum infidelity of the
measure 1 − 1

24 = 0.9375 as γ → ∞. Compared to Fig. 5.24 in Sec. 5.5.2 the gamma
values are much smaller, this is because the jump operators for the tomography have
a prefactor that reduces the effect of these jump operators.

Figure 5.27: The measure for difference from an ideal tautological gate created with
1 as parameters and using random jump operators, showing both optimized and the
original reference parameters

When optimizing parameters there is a significant difference when using a randomly
generated jump operator, as seen in Fig. 5.28. Reaching a scale of 10−4 it is noticeable,
but this may not be significant in a real quantum computer.

As you can see in Fig. 5.27 and keeping in mind Fig. 5.28 the difference is largest
when the gamma value increases and the effect of the noise makes the infidelity
of the Lindblad equation, compared to the target gate, larger. In this case, a gate
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Figure 5.28: The difference between using optimized parameters and non optimized
parameters on the infidelity comparing to a tautological target gate, for a given
gamma. Using randomly generated jump operators

is constructed by finding the results of a Hamiltonian with a value of 1 for all
parameters. The effect of the optimization decreases as it reaches a saturation point
where the noise is so large that no changing of the parameters can compensate at
larger γ values.
The fact that the parameters in Fig. 5.29 do not have a monotonic change while
gamma increases, gives rise to some concern over how stable these optimized points
are. But the change in parameters is so large as to be on the scale of 10%, this makes it
more certain that the effects are real.
The fact that the parameters only begin to become unstable after γ reaches a value
around 0.15 and the effect of the optimization is reduced, gives hope that the
instability is only because the infidelity starts to become saturated around that point.
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Figure 5.29: The evolution of the ideal parameters with increasing gamma. Using
the random traceless jump operators and the tautological gate created using 1 as
parameters as target gate
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Chapter 6

Discussion

In this chapter I will discuss the results found in the previous chapter 5, noting some
limitations. Though the results found may have limited effect, the trend of the effect
does hint that some effect is existing.

6.1 Unitary maps

The cost landscapes were non-convex and hard to search using a gradient descent
based algorithm such as the Adam optimizer. This made it harder to find good
starting points, compared to using discrete magnetic pulses where for simple
systems, such as a single qubit gate, it is possible to solve the Schrödinger equation
or even the Lindblad equation analytically. The non-convex cost landscape made
it harder to find start points to explore from, when not using the tautological gates.
The tautological gates gave a good point to start when working with dynamic
magnetic fields, they are only used to see the behaviour of a quantum system when
manipulated with dynamic magnetic fields while optimising the parameters. While
working with such uneven cost landscapes with unknown minima, a tautological
gate guarantees that a solution does exist, and gives you a good starting point for
optimization when exposing the qubit to disturbances given by the jump operators.
You still need a good starting point for the gates you want to use, if you want to
apply what you found when optimizing for the tautological gates in a quantum
computer, as what is found with the tautological gates only gives information about
what is possible and the effects may vary for different gates.

6.2 Constructing gates

As I can construct the Hadamard gate as seen in Sec. 5.3 and both the T gate and S
gate as seen in Sec. 5.3.1, I can construct a universal set of gates for one qubit (M.
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Nielsen & Chuang, 2010). The need for the CNOT gate for a completely universal
set of gates limits me. The CNOT can be constructed by the

√
SWAP gate, in

combination with single qubit gates. The Hamiltonian I use, cannot discriminate
between the qubits, therefore it cannot use a single qubit gate on only one qubit when
working with two qubits. This means that it cannot be used to construct a universal
set of gates for any number of qubits. Creating a Hamiltonian that can discriminate
between qubits would expand the gates I can create to any arbitrary qubit gate.

This means that using dynamic magnetic fields for the Ωx and Ωy fields and a static
ϵ, can be used to create any arbitrary qubit gate, as long as you have sets of three
individual magnetic fields for each qubit.

6.3 Ramp On and Ramp Off

The effect of using ramp on and ramp off, was so minor that it may not be worth
focusing on. A real world laser may have different rates of turning on and off or the
ramp on and off effect may not be symmetrical, it may have some gain in fidelity
if you optimize for that effect. But it may only be applicable if you interact with a
qubit with more than one laser at a time, as the fluctuation of a single laser may be
counteracted by adjusting how long or how strong the pulses are.

It may be more interesting to see if differently shaped magnetic pulses would have an
effect if their overlap were not complete.

6.4 Lindblad optimization

When using the Lindblad equation, it seems like there is a small but consistent effect
of optimizing over the parameters when the simulated system is exposed to noise.
This was only significant when using the generated random noise. But the effect was
significant enough that it can be worth looking into this with a simulator that can
have lower numerical errors. While the effect on a real quantum computer is limited
this can be a part of the work to reduce the impact of noise. Even if the impact of
noise reduction from dynamic magnetic fields is too small on its own.

6.4.1 Limitations

While there are simulations for four different sources of noise, the effect of the
optimization for the noise from a tomography of a quantum computer and the
amplitude dampening on a single qubit very limited effect. At some points the
effect is so small it is hard to tell if it is caused by numerical errors or if it is an actual

112



effect. The largest improvement found was on the scale of 10−4, a value that may be
significant but has a negligible effect when used alone, so at most these results can be
used to supplement other solutions.

Amplitude damping

The optimization on a single qubit was on the edge between being insignificant and
significant, making the result rather uncertain. The evolution of the parameters gives,
as with the other types of noise, an indication that the effect may exist. But it is too
small to be certain of the result.

Tomography noise

For the tomography noise, it may be the case that it is dominated by the noise on a
single qubit. This makes it quite uncorrelated and harder to mitigate, therefore it is
reducing the possibility that it is possible to mitigate it with dynamic magnetic fields.
But as this is a noise that was measured with tomography, it is known to have existed
in a quantum computer at some point. As this was the case where the mitigation was
the smallest, being at the scale of 10−5 its limited effect is disappointing.

Generated noise

The randomly generated noise was less dominated by single qubit noise, compared
to the noise captured with tomography. Maybe this means that it is possible to get
a better optimization for this noise source. I only use one jump operator for the
randomly generated noise, it may therefore have been easier to correct for the effect
of this noise, but it was still such a small improvement that it may be of limited use to
reduce the noise experienced by the qubit.
There is a hint of an effect for the randomly generated traceless noise, but the result
of optimizing for a randomly generated noise seems to have a limited effect when
optimizing while using dynamic magnetic fields to counteract noise.
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Chapter 7

Summary and Conclusions

This chapter starts with a small summary to refresh how the study was done and
what was found. After this, I will come to a conclusion on what has been achieved
and how useful it is, before ending with future work that can be done.

7.1 Summary

This project started with optimizing and finding parameters for single qubit gates
using a dynamic magnetic field in the x and y direction and a static magnetic field
in the z direction. To measure how good my simulation was to approximate the
different gates, I used several measurement methods. I started with a norm measure,
but because it gave problems to my optimization algorithm I swapped to average
gate fidelity based on the quantum fidelity measure. Meanwhile, when measuring
the simulations using the Lindblad equation I used Choi matrices to simplify the
measurement process. The Lindblad equation was added to be able to simulate open
quantum systems, and thereby be able to simulate the effect of noise.

The use of dynamic Hamiltonian and Lindbladian made it necessary to solve a time
dependent differential equation. The method used is a Crank-Nicolson based solver
that I used for Hamiltonians, and one version of the Lindblad equation, while the
other versions of the Lindblad equation use a solver based on Runge-Kutta.

The code I created is with the use of the Lindblad master equation able to simulate
three different types of noise in an open quantum system, by using jump operators
to describe the different types of noise: amplitude damping, noise found with
tomography, and a randomly generated noise. The program is created to be easy to
expand, simplifying the method to add additional types of jump operators.

As I found a good approximation for the Hadamard gate, on one qubit with dynamic
magnetic fields, I started to expand to two qubit gates, starting with a double
Hadamard gate and the SWAP gate. This gave larger problems when I optimized the
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parameters for the Hadamard gate, as the additional interaction parameter u made
the optimization take longer with poorer results. In an attempt to get better infidelity,
I tried dividing the interaction parameter into three, with a different interaction
strength in all three directions. These additional parameters gave a slightly lower
infidelity, but optimizing for six parameters greatly increased the time needed to
perform the optimization, since it still had trouble with local minima, I decided to
use another target when working with noise.

The choice was made to use tautological gates, gates constructed with known
parameters, in an attempt to counteract the effect of noise. This was done both to
have a good starting point to optimize when I tried to counteract the noise given by
the Lindblad equation, and to make sure that there actually existed parameters that
were guaranteed to give the best possible infidelity. While finding a good minima for
the double Hadamard gate would be good, and may be possible, the primary focus
for my study was on the possibility of mitigating the impact of noise.

7.2 Conclusion

The first takeaway of this study is that dynamic magnetic fields can be used to
construct a set of universal quantum gates. This can then be used to create any
arbitrary quantum gate. But the use of dynamic magnetic fields is not enough to
meaningfully reduce noise as introduced by jump operators inducing non unitary
evolution. The results have shown minimal improvements when counteracting
the effects of noise. The noise reduction is on the border of being significant while
the effect is too small for practical use, especially when the effect of optimizing
parameters had the largest effect when the infidelity was too high already for any
practical purpose.

During this project, I explored several different ways to measure the fidelity between
two quantum maps. I found that the norm measure could be numerically unstable,
creating difficult cost landscapes. To reduce the possibility that the measurement
method introduced additional difficulty I tried average gate fidelity. It gave a more
forgiving cost landscape to optimize in, similar to the channel fidelity I use for the
Lindblad equation, since the average gate fidelity is based on the channel fidelity.

Even though the result of the optimization was minimal, I feel that this project
has greatly increased my knowledge of quantum mechanics, outside of the single
quantum information technology course in my studies. This project has given me
knowledge with a focus on spin interactions, open quantum systems and the use
of the Lindblad master equation. The need for density matrices and the use of Choi
matrices when used to measure the difference between a quantum map and a target
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gate, took a while to understand, but gave insight into different ways of representing
a quantum state and quantum maps. Kraus operators were never directly used, but
instead simplified away for one of the measurement methods or simply not chosen as
the implementation of Choi matrices was seen as easier to implement.

During this project, I created a general code framework, that can be used to rapidly
create new Hamiltonians or Lindbladians and test how easily the Adam algorithm
can optimize the parameters. When using new Lindbladians I can rapidly test how
different forms of magnetic fields behave, when exposed to many types of noise. The
code is able to quickly solve dynamic equations, which are in the form of differential
equations. It is useful, because when you want to see the effect of a Hamiltonian, you
have to solve a differential equation which may need many timesteps to be accurate,
as the equation is dynamic and therefore different for each timestep.

The spin interactions this project models are able to be generalized to any two level
quantum system. The method used to construct a qubit does not matter, but the
implementation may change what tools are available to manipulate the qubit.

7.3 Future work

The smooth evolution of the optimal parameters suggests that a more detailed future
study, of what effects have the largest impact on reducing noise, might be interesting.
Because the effect found in this study is so small when used on its own when
mitigating noise, it will need confirmation with a setup less sensitive to machine
errors than the one used here. As it is unclear whether it is possible to counteract non
unitary noise using unitary interactions.

A topic that can be studied in more detail is how the dynamic magnetic field affects
the construction of a double Hadamard gate on two qubits, while setting a non-zero
constant interaction parameter. It can be trivially constructed without interaction
between the parameters, so the interesting part is if you can counteract the effect of
the interaction only using the dynamic magnetic fields.

Another possibility is to try another type of noise, having magnetic fields acting on
two qubits, that interact with each other, and tracing out the second one when you
measure it. This gives rise to a different type of noise than the jump operators in the
Lindblad equation. This new noise will be non-Markovian, containing the memory of
earlier interactions.

To reduce the time needed to find the gradient, the code can be modified to use other
methods than the finite difference method to find the gradient, for example finding it
analytically or with auto differentiation. The time taken to find the gradient limited
how much I could use the Adam optimizer to find minima.
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There was never a goal that the Hamiltonian should be an exchange symmetrical
model, the Hamiltonian is more restrictive than needed. The code I produced can
in a future project be easily extended with different Hamiltonians and Lindbladians
that can discriminate between the qubits being manipulated, choosing which one to
manipulate.
A project with broader prospects may instead be to study the effect of pulses closer to
the magnetic or laser pulses in use in the systems of today, and from there change
them to experiment with the shape and overlap of the pulses and see if that has a
greater effect. This way, you may see the effect of manipulating the pulses in use in
the quantum computers of today.
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Appendix A

Code

A.1 Repository

The code repository used is located at: https://github.com/DiedrikL/Master-Project-
Semester-1
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