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A dataset for predicting cloud cover 
over Europe
Hanna Svennevik1, Steven A. Hicks2, Michael A. Riegler   2,3, Trude Storelvmo   1  
& Hugo L. Hammer   2,3 ✉

Clouds are important factors when projecting future climate. Unfortunately, future cloud fractional 
cover (the portion of the sky covered by clouds) is associated with significant uncertainty, making 
climate projections difficult. In this paper, we present the European Cloud Cover dataset, which can be 
used to learn statistical relations between cloud cover and other environmental variables, to potentially 
improve future climate projections. The dataset was created using a novel technique called Area 
Weighting Regridding Scheme to map satellite observations to cloud fractional cover on the same grid 
as the other variables in the dataset. Baseline experiments using autoregressive models document that 
it is possible to use the dataset to predict cloud fractional cover.

Background & Summary
Climate change is stated as one of the biggest challenges of our time, resulting in many unwanted effects. The 
UN Secretary-General António Guterres’ calls the latest IPCC Climate Report1 a ‘Code Red for Humanity’02. 
Warmer global average temperatures will result in more frequent and more intense heat waves. It will also result 
in a higher evaporation rate, causing the atmosphere to hold more vapour and increasing the risk of flooding and 
other extreme weather phenomena. Glaciers and ice sheets will melt and ocean water will expand as it warms, 
raising the sea level3,4. Recently we have witnessed a range of extreme weather phenomena, and attribution sci-
ence states that climate change is, at least partly, the cause5.

Cloud feedbacks, the response of clouds to a warmer climate, are associated with high levels of uncertainty6. 
In the current climate, clouds have a cooling effect7. Clouds interact with radiation, and it is expected that 
changes in cloud fraction cover (CFC) (the portion of the sky covered by clouds) will affect global warming, 
which will affect both climate and society, such as agriculture and solar energy production.

Numerical climate models (NCMs) solve differential equations of the physics driving the climate, including 
the atmosphere, oceans, land surface, and ice. NCMs are essential tools to predict future climate. Some variables 
can be projected well, such as temperature and pressure, while other variables, such as CFC, are associated with 
far more uncertainty6.

In this paper, we present the European Cloud Cover dataset (ECC), which can be used to potentially improve 
the projection of CFC in the future. The dataset consists of satellite observations of CFC and observations (rea-
nalysis) of air temperature (T), surface pressure (SP), and specific and relative humidity (SRH). The main appli-
cation of the dataset is as part of the following two-step statistical procedure8. First, use the ECC dataset to train 
a model that can predict CFC from T, SP, and SRH. Secondly, given projections of T, SP, and SRH from an NCM, 
insert these projections into the trained model from the previous step to project future CFC. The input variables 
used in such a procedure must satisfy that 1) historical observations are available of good quality and 2) are 
reliably projected by NCMs. The environmental variables T, SP and SRH where chosen since they satisfy these 
two requirements.

Given the high spatial and temporal resolution in the ECC dataset (latitude × longitude × time × number of 
variables = 81 ×161 × 129312 × 5) and the complexities of cloud formations, we believe that machine learning 
(ML) can be useful to predict CFC from other variables. To the best of our knowledge, this is the first dataset 
created for using ML to predict cloud formations. ML, especially deep learning (DL), has been significantly less 
used in climate research compared to other related problems like weather forecasting9,10. We believe that the 
ECC dataset can increase the interest in using ML and DL within cloud physics and climate research.
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A challenge with our suggested observation-based approach for projecting future CFC using the ECC data-
set, is that the formation of clouds are also driven by processes that are not captured by the environmental 
variables used in the ECC dataset. For example, many important physical processes are happening on a smaller 
scale. Recently NCMs are developed that integrate advanced cloud physics models as part of the climate model, 
e.g.11. However a substantial challenge is that these models are computationally too expansive to be able make 
climate projections decades into the future12. Recently attempts have been made to train ML and DL models to 
replicate the main properties of advances cloud physics models, but where the simulations are computationally 
less demanding. The approach are based on running the cloud physics models for some time period, say two 
years, and learn a ML or DL model to replicate the properties of the simulated data, see e.g.12,13. The approaches 
are promising, but are still not able to run on fully realistic scenarios and rather resort to simpler earth models 
such as the whole earth covered ocean (aqua-planet).

Overall, an observational-based approach, represented by the ECC dataset, and a simulation based approach 
using cloud physics models simulations and ML, represent two different data driven approaches to improve 
cloud parameterization in NCMs. A potential interesting application of the ECC dataset, could be to develop 
ML methods that use both sources of data.

The main contributions of this paper are as following: (i) We present a publicly available dataset that can be 
used to predict CFC, (ii) we present the Area Weighting Regridding Scheme (AWRS), a new technique to bring 
satellite observations and the other observations on the same geographical grid, (iii) we present a set of baseline 
experiments using autoregressive regression models that aim to show how the dataset can be used to predict 
CFC from T, SP, and SRH and (iv) we outline future applications and interesting research questions using the 
dataset.

Methods
The ECC dataset consists of hourly data on a 0.25° uniform grid resolution from April 2004 to December 2018 
and is comprised of the five variables; T, SP, SRH, and CFC. T and SP were chosen because they are reliable and 
fundamental meteorological variables. SRH because they are essential in cloud formation. The variables were all 
retrieved from the surface or the closest pressure level (1000hPa).

The ECC dataset used two sources of data. The first source is the 5th Generation Reanalysis data (ERA5) 
from the European Centre for Medium-Range Weather Forecasts14. Reanalysis is as close to observations as one 
can get while still obtaining complete and coherent data in both space and time. It is produced using a forecast 
model to assimilate observations. Data assimilation takes observations as input and tries to make an accurate 
estimate of the state of the system that is as consistent as possible with the available observations at all times. 
This includes observations retrieved from satellites, ships, buoys, airplanes, and ground-based stations. There 
are multiple global reanalysis datasets available, and they are all different. It depends on the forecast assimilation 
system used and observations assimilated15. ERA5 was elected because of its fine resolution and recent release 
date of January 2020.

The second source is METeosat Second Generation (MSG) cloud mask from the European Organisation for 
the Exploitation of Meteorological Satellites (EUMETSAT)16. Several candidate satellites were considered before 
arriving at the combination of datasets presented in this paper. Spatiotemporal consistency and resolution were 
given top priority to provide the best dataset to train models that can predict CFC from the other variables. 
The variable cloud mask is provided by many satellites, bringing valuable information in itself, but also for the 
retrieval of other variables restricted to cloud-free conditions, such as humidity. The MSG satellite is in a geosta-
tionary orbit and has an exceptional temporal resolution, with scans every 15 minutes. Knowing that the average 
lifetime of a cloud is approximately 60 minutes or less, the selected data set was found to be the most suitable for 
the purpose of the dataset17.

The geographical domain is between 30° and 50° latitude (degrees north), and −15° and 25° longitude 
(degrees east) covering Central Europe and North Africa as shown in Fig. 1. The dimensions of the grid is 
81 × 161 pixels.

Precipitation formation and cloud optical thickness (the degree to which the cloud prevents light from pass-
ing through) is affected by changes on a microphysical level (particles forming a cloud). However, they are 
undeniably closely related to the macrophysical (unit) properties of clouds as well. Imagine precipitation without 
a cloud fractional cover. Reliable estimates of large-scale variables are available from using reanalyses or other 

Fig. 1  Domain of the ECC dataset.
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climate models. Restricting the focus here to the macrophysical aspects of clouds makes it reasonable to choose 
these as features, thereby ensuring that it is possible to build usable applications of projecting future CFC from 
NCM as described in the Introduction.

Area Weighting Regridding Scheme (AWRS).  This section provides a detailed description of the nec-
essary data processing done for the compilation of ECC, transforming clouds masks provided in space-view to 
cloud fractions on a uniform grid. EUMETSAT doesn not provide suitable software to tackle this particular task 
(personal communication with EUMETSAT staff). Therefore, to build the dataset, we developed a new regridding 
scheme, named “Area Weighting Regridding Scheme” (AWRS). Common schemes for solving similar tasks are 
mean, nearest neighbor or area weighting. We chose an area-weighted scheme since the distance between the 
satellite observations varied, and therefore the areas associated with each cloud satellite observation.

Let the subscripts denote the dataset pertaining to a particular grid, gridMSG refers to the space-view grid 
of the MSG and gridECC refers to the uniform grid originating from ERA5. GridECC is identical to gridERA5. 
Figure 2 shows a section of the real data, and gives an overview of the regridding problem. The filled circular 
points in gray, pink, purple, yellow, green and blue, show the geographic locations where MSG cloud informa-
tion is available. The cloud information in these locations is available as zero or one for every time point, where 
one denotes that clouds were present and zero that clouds were not present. The dense black rectangle shows 
a pixel in gridECC, and the aim of the regridding method is to compute the CFC in each ECC pixel from the 
MSG cloud information. A challenge is that the horizontal and vertical distances between the circular points 
are not constant, but are increasing with increasing distance from nadir point. This means that a circular point 
with larger distances to its neighbors should contribute more to the CFC in the ECC pixel compared to a circular 
point with shorter distances to its neighbors. However, since we only know the cloud information in the circular 
points, the level of contribution relative to each other is not known. One natural solution is to compute a par-
tition of the geographic area with one satellite observation in each part of the partition. The parts would then 
be trapezoid shapes with the longest side away from the nadir point. The trapezoid shapes are on the spherical 
earth surface, and to the best of our knowledge an analytic solution for the area of a trapezoid shape on a spher-
ical surface does not exists. However, for a rectangle an analytic solution exists, and therefore we approximated 
the trapezoid shapes to rectangles. As shown in Fig. 2, the distances between the satellite observations did not 
change much, and the rectangle approximation was good, i.e. the size of a computed rectangle represented well 
how much the associated satellite observation within the rectangle contributed to the computed CFC for the 
associated ECC rectangle.

The CFC for a given pixel in GridECC, at some given time point, is computed as the area weighted average 
over the cloud information for each rectangle. More specifically, let N refer to the number of MSG rectangles that 
are within or partly within the ECC rectangle, and let m i N, 1, 2, ,i ∈ …  refer to if there were cloud or not in 
the circular point within rectangle i. Further, let ∈ …a i N, 1, 2, ,i  refer to the area of the part of the MSG rec-
tangle i that is within the ECC rectangle. The area weighted CFC are then computed as the weighed average

∑=
=

CFC
A

a m1
(1)

ECC
i

N

i i
0

where A refers to the total area A ai
N

i0= ∑ = . For the sake of simplicity, the corner pixels, shown in gray in Fig. 2, 
were omitted from the calculations of cloud fraction.

Missing Data.  Missing values are inevitable when working with observational data. Sensors occasionally fail 
to collect measurements, resulting in loss of data. This can either be individual pixels or entire disks. Contributing 
NaN pixels are counted and stored for future use in ECC. Missing timesteps result in missing disks. When avail-
able, the closest time step within the previous and trailing 45 minutes was used to fill the gap. A summary of 
missing timesteps per month in the dataset is provided in Fig. 3. Aggregation of missing timesteps per month 
is presented in Fig. 4. The plot is meant to illustrate any seasonal biases. The months of 2004 prior to the time at 
which the satellite became operational are not included in the statistics of missing values.

Fig. 2  Example showing the contributing pixels to the remapping of pixel (25,45). The pixels from the satellite 
are classified into corner (grey), center (pink), right (purple), left (yellow), lower (green), and upper (blue) 
boundary. The dense black line is the pixel in gridECC, and the other pixels show the contributing pixels from 
gridMSG.

https://doi.org/10.1038/s41597-024-03062-0


4Scientific Data |          (2024) 11:245  | https://doi.org/10.1038/s41597-024-03062-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

METeosat provides a two-satellite system, and occasionally both the standby and the operational sensors 
scan at the same time. In cases of technical failures, the standby scan is used. The scans are done from a different 
nominal position. However, the coordinate systems remain the same since the standby scan is rectified to the 
position of the operational satellite before the product is released (personal communication EUMETSAT staff). 
Comparing simultaneous measurements for the operational and the standby METeosat satellites, it becomes 
clear that they are dissimilar. However, this does not occur very frequently, and we have thus not attempted to 
quantify the magnitude of the parallax to correct for the bias this may introduce.

Data Records
The ECC dataset and the code to create the dataset are available from the Open Science Framework18. An over-
view of the data records in the ECC dataset is shown in Table 1. The dataset is divided into files where each file 
consists of data for one variable over one month. The files are in the Network Common Data Form. The file nam-
ing convention is 20YY_MM_X.nc, where YY, MM and X, refer to year, month and type of variable, respectively. 
With X equal to q, r, sp, t2m and tcc, the file consists of measurements of specific humidity, relative humidity, 
air pressure, temperature two meters above surface level and cloud fractional cover, respectively. The variable 
tcc is available from April 2004 to December 2018, while the other variables are available from January 2004 to 
December 2018. The dataset thus consists of 297 files in total.

Figure 5 shows the spatially averaged monthly mean values for all variables over the period with collected 
data. Seasonal effects and differences between land and sea are evident among all variables. For temperature and 
relative humidity, a more pronounced seasonal cycle over land, compared to the sea, is evident. The remaining 
variables appear to have a small shift towards higher values over the sea. This is expected because the pressure 
decrease with altitude, the sea has a high heat capacity (ability to retain heat), and is a source of humidity.

The linear correlation coefficients from pairs of cloud cover and the environmental variables T, P, SRH are 
shown in Fig. 6. Correlation describes how strongly a pair of variables are linearly related. A positive (negative)  
correlation represents a positive (negative) association between variables. Overall, we observe fairly strong 

Fig. 3  A heatmap summarising missing hours per month for all years.

Fig. 4  A barplot showing the monthly sum of missing values. This excludes the contribution from the period of 
2004 before the satellite was operational.

Property Quantity

Geographic area (degrees) (30,50) north, (−15,25) east

Geographic resolution (degrees) 0.25

Grid size (latitide × longitude) (81 × 161)

Recording time span April 2004–December 2018

Temporal resolution Hourly

Table 1.  Overview of the data records in ECC dataset.
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correlations between the environmental variables and cloud fractional cover, indicating that it should be possible 
to predict cloud fractional cover from the environmental variables. However, note that there are strong spatial 
variations in the correlations and especially between land and sea. Over land relative humidity is dominated by a 
positive correlation with cloud cover, which means that higher relative humidity is associated with more clouds. 
However, in some parts of Africa and the sea in the eastern Mediterranean, the correlation is negative. The image 
of the surface pressure is remarkably similar, showing a similar pattern but with opposite signs. The negative sign 
seems reasonable since high pressure is often associated with sinking motions in the atmosphere and clouds are 
formed by rising motions. Specific humidity shows a clear shift at longitudinal degree 10. The land area in the 

Fig. 5  Spatially averaged monthly values. Filters are applied for land and sea.

Fig. 6  Contour plot showing the correlation coefficient between environmental variables and cloud fractional 
cover.
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west shows a positive correlation with cloud cover, while the eastern part shows a negative correlation. In most 
locations, the temperature is negatively correlated with cloud cover except in parts of the Alps, the north coast of 
France, and North Africa. This seems reasonable since warmer air can retain more vapour.

Technical Validation
We first evaluated the validity of the developed AWRS method, by comparing it with the Climate Data Operator 
(CDO)19. CDO provides functionality to compute grid areas of a uniform grid. We verified that our AWRS and 
the CDO methods produced the same results on a uniform grid.

However, in contrast to our developed AWRS method, CDO cannot be used on a non-uniform grid, i.e., that 
the different grid cells are of different sizes, which was required to produce the ECC dataset.

We further evaluated the validity of the dataset, by testing if it was possible to use the dataset to predict CFC 
from the environmental variables. We trained autoregressive multiple regression models for each geographic 
grid cell to predict CFC from the environmental variables;

∑β β β β β α ε= + + + + + +
=

−CFC T SP RH SH CFC
(2)

t t t t t
h

L

h t h t0 1 2 3 4
1

where CFC T SP RH, , ,t t t t and SHt refer to cloud fractional cover, temperature, surface pressure and relative and 
specific humidity at time t, respectively. A separated model was trained in each geographic grid cell due to the 
strong variations in the dependency between the variables spatially, as shown in Fig. 6. The time period 2004 to 
2013 was used to estimate the unknown parameters in the model (the β’s and α’s). The period 2014 to 2018 was 
used to evaluate the models’ ability to predict CFC one hour into the future. Prediction error was measured 
using mean absolute error (MAE).

The results are shown in Table 2. The results show that it is possible to predict CFC from the environmental 
variables with a fairly small error. We further see that if the autoregressive part or the environmental variables 
are removed from the model (i.e. setting β β= = =� 01 4  or � 0L1α α= = = ), the prediction perfor-
mance drops significantly.

Usage Notes
The ECC dataset can be used to potentially improve the projection of future CFC. The dataset is mainly aimed 
for researchers and stakeholders working on applications where the projections of future CFC is important, such 
as agriculture and solar energy production.

We further think that the dataset can be interesting for ML researchers and professionals. The relation CFC 
and the environmental variables in the ECC dataset are complex with strong spatial and temporal dependencies 
and rapid changes, placing high demand on the ML methods and may open up for the development of new 
and better ML methods. We believe that DL-based methods can be useful, but we are only aware of one paper 
that has used the ECC dataset and DL to predict CFC20. Furthermore, using interpretation techniques, such as 
Explainable Artificial Intelligence21, new insight about cloud formation processes may be gained.

For the task of predicting CFC, metrics such as MAE or root mean squared error (RMSE) are appropriate. 
Regardless of the application, multiple metrics should always be reported for a full evaluation of an algorithm. 
For classification tasks (such as predicting clear sky or not), we recommend using standard classification met-
rics for either a binary or multi-class use case22. This includes metrics such as precision, recall, F1-score, and 
Matthews correlation coefficient.

Code availability
The Github repository (https://github.com/simula/european-cloud-cover.git) contains code to create the data set, 
load the data and to run the technical validation described in the previous section.
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