
Citation: Vo, M.-Q.; Nguyen, T.;

Riegler, M.A.; Hammer, H.L. Efficient

Estimation of Generative Models

Using Tukey Depth. Algorithms 2024,

17, 120. https://doi.org/10.3390/

a17030120

Academic Editors: Sandra

Ortega-Martorell and Ivan

Olier-Caparroso

Received: 13 February 2024

Revised: 7 March 2024

Accepted: 11 March 2024

Published: 13 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Efficient Estimation of Generative Models Using Tukey Depth
Minh-Quan Vo 1, Thu Nguyen 2, Michael A. Riegler 2,3 and Hugo L. Hammer 2,3,∗

1 Department of Mathematics and Computer Science, VNUHCM—University of Science, District 5,
Ho Chi Minh City 70000, Vietnam; mqmath0000@gmail.com

2 Simula Metropolitan Center for Digital Engineering, 0167 Oslo, Norway; thu@simula.no (T.N.);
michael@simula.no (M.A.R.)

3 Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University,
0167 Oslo, Norway

* Correspondence: hugo.hammer@oslomet.no

Abstract: Generative models have recently received a lot of attention. However, a challenge with
such models is that it is usually not possible to compute the likelihood function, which makes
parameter estimation or training of the models challenging. The most commonly used alternative
strategy is called likelihood-free estimation, based on finding values of the model parameters such
that a set of selected statistics have similar values in the dataset and in samples generated from
the model. However, a challenge is how to select statistics that are efficient in estimating unknown
parameters. The most commonly used statistics are the mean vector, variances, and correlations
between variables, but they may be less relevant in estimating the unknown parameters. We suggest
utilizing Tukey depth contours (TDCs) as statistics in likelihood-free estimation. TDCs are highly
flexible and can capture almost any property of multivariate data, in addition, they seem to be as of
yet unexplored for likelihood-free estimation. We demonstrate that TDC statistics are able to estimate
the unknown parameters more efficiently than mean, variance, and correlation in likelihood-free
estimation. We further apply the TDC statistics to estimate the properties of requests to a computer
system, demonstrating their real-life applicability. The suggested method is able to efficiently find
the unknown parameters of the request distribution and quantify the estimation uncertainty.

Keywords: generative models; Tukey depth; likelihood-free estimation; computer resource management

1. Introduction

Different types of generative models are currently very popular. The most prominent
examples are, for instance, OpenAI’s GPT-4 [1], Diffusion models [2] and Generative
Adversarial Networks (GANs) [3]. A sample from a generative model is typically generated
by first drawing a random sample from some simple distribution, e.g., Gaussian, which
again is inserted into a complex deterministic function.

The most common approach to estimating the parameters of a statistical model, in-
cluding generative models, is to maximise the likelihood function with respect to the
unknown parameters. The maximum likelihood estimator has many desirable properties
such as efficiency and consistency [4]. A challenge with generative models, such as the
ones described above, is that, except for very simple cases, the likelihood function cannot
be computed, and estimation methods other than maximum likelihood estimation must be
used. Almost all such alternative “likelihood-free” or “indirect” estimation methods are
based on computing some statistics (e.g., mean and variance) of both the data and samples
generated from the generative model. Simply stated, the objective is to tune the parameters
of the generative model so that the values of the statistics for samples generated from the
model become as similar as possible to the values of the statistics in the dataset [5].

A critical part of such likelihood-free estimation methods is the selection of the statistics
used to compare the generated samples and the data. For GANs, a popular approach is

Algorithms 2024, 17, 120. https://doi.org/10.3390/a17030120 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17030120
https://doi.org/10.3390/a17030120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9429-7148
https://doi.org/10.3390/a17030120
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17030120?type=check_update&version=2

Algorithms 2024, 17, 120 2 of 16

to use a classifier to compare data and generated samples [6]. The level of confusion
when the classifier tries to separate data and generated samples is used as a measure
for the similarity between the generated samples and the data. The classifier must be
trained in tandem with the generator, using so-called adversarial training, making the
training procedure challenging. GANs are usually used for data of high dimensions,
such as images. For data of lower dimensions, the most common approach is to use the
moments of the data (mean and variance) and dependency between the variables in the
form of the correlation/covariance matrix as statistics [7]. However, a challenge is that
there might be properties of the data that are not efficiently captured by these statistics,
such as asymmetries, and that can be important for the efficient estimation of the unknown
parameters. However, it is not obvious how to select a set of statistics that are sufficiently
flexible to capture almost any property of multivariate data.

To address these issues, in this paper, we suggest using so-called Tukey depth contours
(TDCs) [8] as statistics to summarise the properties of multivariate data and generated
samples. To the best of our knowledge, TDCs have never been used in likelihood-free
estimation. Tukey depth contours are highly flexible and can capture almost any property
of multivariate data, and have proven efficient to detect events in complex multivariate
data [9]. This paper demonstrates that TDCs are also useful in likelihood-free estimation.

Tukey depth falls within the field of data depth. Data depth measures how deep
an arbitrary point is positioned in a dataset. The concept has received a lot of attention
in the statistical literature since John W. Tukey first introduced the idea of Tukey depth
and illustrated its application in ordering/ranking multivariate data [10]. It is also worth
mentioning that there are many other variations of data depth introduced and investigated
in the literature, notably Mahalanobis depth [11], convex hull peeling depth [12], Oja
depth [13], simplicial depth [14], zonoid depth [15] and spatial depth [16].

Data depth has proven to offer powerful tools in both descriptive statistical prob-
lems, such as data visualisation [17–20] and quality control [21], and in inferential ones,
such as outlier identification [22–24], estimation [25,26] and hypothesis testing [19,27–29].
In [30–33] the concept of depth was applied for classification and clustering. Depth has
also been applied to a wide range of disciplines such as economy [31,32,34], health and
biology [35,36], ecology [37] and hydrology [38], to name a few.

The main contributions of this work are the following:

• We have developed a methodology for using TDCs in likelihood-free estimation We have
not seen any research on using TDCs in likelihood-free estimation. The programming
code for the methodology and the experiments is available at https://github.com/
mqcase1004/Tukey-Depth-ABC (accessed on 10 March 2024).

• We demonstrate that the suggested methodology can efficiently estimate the unknown
parameters of the model and performs better than using the common statistics mean,
variance and correlations between variables.

• We demonstrate the methodology’s real-life applicability by using it to estimate the
properties of requests to a computer system.

The paper is organised as follows. In Section 2, likelihood-free estimation and espe-
cially the method Approximate Bayesian Computing (ABC) is introduced. In Section 3,
the concepts of depth, Tukey depth, and TDCs are introduced. Section 4 describes our
suggested method for likelihood-free estimation based on TDCs. The method is evaluated
in synthetic and real-life examples in Sections 5 and 6, respectively.

2. Approximate Bayesian Computing

Let X represent a p-dimensional random vector with probability distribution P(x|θ)
and with unknown parameters θ. Furthermore, let P(θ) denote the prior distribution
for unknown parameters. Given a set of observations (or a dataset) x = x1, . . . , xn, the
most common approach to estimate the unknown parameters is to compute the posterior
distribution using Bayes theorem

https://github.com/mqcase1004/Tukey-Depth-ABC
https://github.com/mqcase1004/Tukey-Depth-ABC

Algorithms 2024, 17, 120 3 of 16

P(θ|x) ∝ P(x|θ)P(θ), (1)

where P(x|θ) is the likelihood function for the observations. However, if the likelihood
function cannot be computed, the posterior distribution cannot be computed. If it, on the
other hand, is possible to generate samples from the likelihood function, ABC algorithms
can be used to generate samples from an approximation of the posterior, which again can
be used to analyse properties of the posterior distribution.

The ABC method is based on the principle that two datasets which are close in terms
of summary statistics are likely to have been generated by similar parameters. The idea is
as follows: We want to learn about the values of the parameters θ that could have generated
our observed data, x. So, we generate data x̃ from our model using parameters θ̃ drawn
from the prior distribution. If x̃ is “close enough” to our observed data, x, we reason that
θ̃ could be a plausible value of the true parameters. This is the core idea behind ABC.
The term “close enough” in this context refers to how similar x̃ to the observed data. It is,
however, usually challenging to compare every single data point in x and x̃. We therefore
use a set of statistics and compute it for the observations, S(x) = S1(x), . . . , Sk(x), and for
the generated samples S(x̃), and measure the distance using some metric ρ. We control
how strict or lenient we are in accepting θ̃ as plausible through the use of some threshold
ϵ. If we set ϵ to be very small, we only accept θ̃ if the generated data is extremely close
to our observed data. On the contrary, a larger ϵ makes us more lenient. However, there
is a trade-off. The smaller the ϵ, the more accurate the approximation of the posterior
distribution becomes, but it is also more difficult (i.e., more computationally expensive) to
find acceptable θ̃’s. Conversely, a larger ϵ makes the algorithm faster, but the approximation
of the posterior is coarser. Hence, the choice of ϵ is crucial in ABC methods, and there is
ongoing research on automated and adaptive ways to choose this threshold. The use of
summary statistics and a metric ρ in the ABC is a practical way to approximate the Bayesian
posterior distribution, providing a way to carry out Bayesian analysis when the likelihood
function is not available or is too computationally expensive to use directly.

The simplest and most commonly used ABC algorithm is the rejection algorithm.
Each iteration of the rejection algorithm consists of three steps. First, a sample θ̃ is gen-
erated from the prior distribution. Second, a random sample x̃ = x̃1, . . . , x̃n is generated
from the likelihood function using parameter values θ̃, P(x̃|θ̃). Finally, if the distance
between the S(x) and S(x̃) is less than some chosen threshold ϵ using some suitable met-
ric ρ, ρ(S(x), S(x̃)) < ϵ, then θ̃ is accepted as an approximate sample from the posterior
distribution. The complete algorithm is shown in Algorithm 1.

Algorithm 1 ABC rejection sampling.
Input:
N // Number of iteration
x = x1, x2, . . . , xn // Dataset
S = S1, . . . , Sk // Statistics (e.g., mean, variance, covariance)
ρ(·, ·) // Metric (e.g., Euclidian distance)
ϵ // Threshold
θ̂ = ∅ // The set of accepted approximate posterior samples
Method:

1: for n ∈ 1, 2, . . . , N do
2: θ̃ ← P(θ) // Sample from prior distribution
3: x̃ = x̃1, . . . , x̃n ← P(x|θ̃) // Sample from generative model
4: if ρ(S(x), S(x̃)) < ϵ then
5: θ̂ ← θ̂ ∪ θ̃ // Add the accepted proposal θ̃ to the set of accepted samples θ̂
6: end if
7: end for
8: return θ̂

Algorithms 2024, 17, 120 4 of 16

See e.g., Ref. [7] for a mathematical explanation of why the method is able to generate
samples from an approximation of the posterior distribution as well as extensions of the
algorithm using, for instance Markov Chain Monte Carlo (MCMC) [39] or Sequential Monte
Carlo (SMC) [40].

In contrast to the rejection sampling algorithm, MCMC and SMC propose new val-
ues for the unknown parameters, θ̃, by conditioning on the last accepted samples. In
ABC MCMC, the most common is to generate proposals from a random walk process. Fur-
ther, new values data are generated x̃ ∼ P(· | θ̃). The simultaneous proposal of θ̃ and x̃ is
either accepted or rejected using the common Metropolis–Hastings acceptance probability.
A beautiful and necessary property of the ABC MCMC algorithm is that by making such
simultaneous proposals, the intractable target distribution P will not be part of the computa-
tion of the Metropolis–Hastings acceptance probability. This is in contrast to the standard.

The SMC algorithm is initiated by generating many samples, or particles, from
the prior distribution of the unknown parameters. The samples are further sequen-
tially perturbed and filtered to gradually become approximate samples from the desired
posterior distribution.

3. Tukey Depth

To simplify notation, in this section, we avoid references to the parameters θ of the
probability distribution. For a point x ∈ Rp, let D(x, P) denote the depth function of x
with respect to the probability distribution P. A high value of the depth function refers
to a central point of the probability distribution, and a low value of the depth function
refers to an outlying point. A general depth function is defined by satisfying the natural
requirements of affine invariance, maximality at the centre, monotonicity relative to the
deepest point, and vanishing at infinity [41].

Given a set of points P and a point x in k-dimensional space, the Tukey depth of
x with respect to the set P is the smallest number of points in any closed halfspace that
contains x. This leads us to the following definition.

Definition 1 (Tukey depth). Let S refer to the set of all unit vectors in Rp. Tukey depth is the
minimum probability mass carried by any closed halfspace containing the point

D(x, P) = inf
u∈S

P
(

uTX ≤ uTx
)

. (2)

Next, given α > 0, we will define α-depth region, contour, directional quantile, and
directional quantile halfspace with respect to Tukey depth.

Definition 2 (α-depth region, contour). Given α > 0, the α-depth region with respect to Tukey
depth, denoted by R(α), is defined as the set of points with depth at least α

R(α) = {x ∈ Rp : D(x, P) ≥ α}. (3)

The boundary of R(α) is referred to as the α-depth contour or Tukey depth contour (TDC).

Note that the α-depth regions are closed, convex, and nested for increasing α.

Definition 3 (Directional quantile). For any unit directional vector u ∈ S , define the (α-depth)
directional quantile as

Q(α, uTX) = F−1
uT X(α), (4)

where F−1
uT X(x) refers to the inverse of the univariate cumulative distribution function of the

projection of X on u.

Algorithms 2024, 17, 120 5 of 16

Definition 4 (Directional quantile halfspace). The (α-depth) directional quantile halfspace with
respect to some directional vector u ∈ S is defined as

H(α, u) =
{

x ∈ Rp : uTx ≥ Q(α, uTX)
}

, (5)

which is bounded away from the origin at distance Q(α, uTX) by the hyperplane with normal
vector u.

Consequently, we always have P(X ∈ H(α, u)) = 1− α for any u ∈ S . We now finish
this section by noting that the estimation procedures in this paper build on the following
theorem from [8].

Theorem 1. The α-depth region in (3) equals the directional quantile envelope

D(α) =
⋂

u∈S
H(α, u). (6)

Estimating α-Depth Region from Observations

Let X = X1, . . . , Xn represent a random sample from the distribution of X. Suppose
that we want to use the random sample to estimate the α-depth region for some α > 0.
In this paper, we suggest doing this by approximating Equation (6) using a finite num-
ber of directional vectors ui, i ∈ 1, . . . , nu from S . Furthermore, following (4), we also
note that the directional quantile corresponding to each directional vector ui, denoted by
Q̂i(α, X), can be approximated from the random sample X by computing the α-quantile of
uT

i X1, . . . , uT
i Xn. We then obtain the following estimate of the α-depth region

D̂n(α) =
nu⋂

i=1

Ĥ(α, ui), (7)

where the halfspaces are defined from the directional quantile estimates

Ĥn(α, ui) =
{

x ∈ Rp : uT
i x ≥ Q̂i(α, X)

}
. (8)

The middle and left panels of Figures 1 and 2 show a set of approximated halfspaces
as well as the resulting α-depth regions being the open space in the middle within all the
halfspaces. The TDC is given as the border of this open space.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 1. Scatter plot of a sample of size n = 100 generated from h(x) with θ = 0.3. Tukey depth
contours with α = 0.05 and α = 0.1 are visualised as blue lines in the last two plots, respectively.

Algorithms 2024, 17, 120 6 of 16

−3 −2 −1 0 1 2 3
−

3
−

2
−

1
0

1
2

3
−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 2. Scatter plot of a sample of size n = 250 generated from h(x) with θ = 0.3. Tukey depth
contours with α = 0.05 and α = 0.1 are visualised as blue lines in the last two plots, respectively.

4. ABC Based on Tukey Depth Statistics

As pointed out in the introduction, TDCs are highly flexible and able to capture almost
any property of a multivariate sample. Therefore, they are appealing to use as statistics in
ABC to efficiently compare the level of difference in properties between the observations
and the generated samples from the model.

An open question is how to compare the difference between the Tukey depth contours
of the observations and the generated samples. One natural and powerful metric is Inter-
section over Union (IoU) [42], which is highly popular for comparing segments in image
analysis. However, in this paper we use the computationally simpler alternative of comput-
ing the difference between the contours in the directions defined by ui, i ∈ 1, . . . , nu. This
is illustrated in Figure 3. The red and blue lines show an illustration of a TDC computed
from a set of observations and generated samples for nu = 6. The regions within the lines
are the α-depth regions. The green arrows show the difference between the TDCs along the
directions ui, i ∈ 1, . . . , 6.

Figure 3. Illustration of the method used to measure the difference between the TDCs of the
observations and the generated samples. The green arrows represent the measured distances between
the TDCs.

As a comparison, IoU is computed by dividing the area of the intersection of the two
Tukey depth regions by the area of the union of the two regions.

Further, it is possible to compare the TDCs of the observations and generated sam-
ples for multiple values of α, i.e., multiple TDCs. The resulting ABC rejection sampling
algorithm using TDCs as statistics is shown in Algorithm 2.

Algorithms 2024, 17, 120 7 of 16

Algorithm 2 ABC rejection sampling using TDC statistics.
Input:
N // Number of iteration
x = x1, x2, . . . , xn // Dataset
α1, . . . , αk // α’s used to define TDCs
ϵ // Threshold
θ̂ = ∅ // The set of accepted approximate posterior samples
Method:

1: for n ∈ 1, 2, . . . , N do
2: θ̃ ← P(θ) // Sample from prior distribution
3: x̃ = x̃1, . . . , x̃n ← P(x|θ̃) // Sample from generative model
4: ρ← ∑k

j=1 ∑nu
i=1

∣∣∣Q̂i(αj, X)− Q̂i(αj, X̃)
∣∣∣

5: if ρ < ϵ then
6: θ̂ ← θ̂ ∪ θ̃ // Add the accepted proposal θ̃ to the set of accepted samples θ̂
7: end if
8: end for
9: return θ̂

Specifically, line 4 in the algorithm measures the difference between a TDC computed
from the observations and a TDC computed from generated samples.

5. Synthetic Experiments

As mentioned in the introduction, the mean vector and covariance matrix are the most
commonly used statistics in likelihood free estimation such as ABC. In this section we
demonstrate how the use of Tukey depth statistics results in more flexible and effective
ABC parameter estimation compared to using the mean vector and covariance matrix.

We consider the problem of estimating the mixture parameter θ ∈ [0, 1] of the mix-
ture distribution

P(x|θ) = θ f (x) + (1− θ)g(x), −∞ < x < ∞. (9)

The distribution f (x) refers to a bivariate distribution with standard normal marginal
distributions and dependency given by the Gumbel copula with γ = 2. The distribution
g(x) is equal to f (x) except that the dependency is by the Clayton copula with γ = 2.13. A
short introduction to copulas and details on the Gumbel and Clayton copulas are given in
Appendix A. Figure 4 shows contour plots of the distributions f (x) and g(x).

x1

x 2

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

0.00

0.05

0.10

0.15

0.20

0.25

x1

x 2

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

0.00

0.05

0.10

0.15

0.20

0.25

Figure 4. Contour plots of f (x) (left) and g(x) (right).

Even though the two distributions look quite different, they have the same marginal
expectations, variances and correlations.

In order to estimate the mixture parameter θ using ABC, it is essential that we can gen-
erate samples from the mixture distribution P(x|θ), as given in Equation (9). The mixture
parameter θ controls the portion of samples that should be generated from f (x) and g(x).

Algorithms 2024, 17, 120 8 of 16

Therefore, to generate a sample, first, a random number η is drawn from the uniform
distribution on [0, 1]. If η < θ, the sample is drawn from f (x) else, the sample is
drawn from g(x).

Since the mean, variance, and correlation are identical for f (x) and g(x), it is naturally
impossible to estimate the portions of the samples that were drawn from each of the two
distributions using these statistics in likelihood-free estimation. In terms of these statistics,
the distributions f (x) and g(x) are identical. However, we will demonstrate that, rather
than using TDCs as statistics, the mixture parameter can be estimated.

We used the uniform distribution on [0, 1] as a prior distribution for θ. Given the obser-
vation x = (x1, . . . , xn), the resulting posterior distribution becomes as given by Equation (1).

Let θ̂ = θ̂1, . . . , θ̂m represent samples from an approximation to the posterior distribu-
tion using ABC. To evaluate the quality of the approximation, we suggest comparing true
posterior probabilities

PJ = P(θ ∈ J) =
∫

J
P(θ|x)dx (10)

with approximations based on the samples

P̂J = P̂(θ ∈ J) =
1
m

m

∑
i=1

I
(

θ̂i ∈ J
)

, (11)

where J refers to some sub-interval of [0, 1] and I(·) the indicator function. In the experi-
ments, we used ten different intervals J.

5.1. Experiment

We started by generating 30 synthetic datasets of size n = 100 and size n = 250 from
P(x|θ) with θ = 0.3. The left panel of Figures 1 and 2 shows an example of such a dataset
for n = 100 and n = 250, respectively. The middle and right panels show the halfspaces
and resulting TDC as the inner border of all the halfspaces for α = 0.05 and 0.1, respectively.
Since θ = 0.3, on average 30% and 70% of the samples were generated from f (x) and g(x),
respectively. Since most of the samples are generated from g(x), the data are slightly spread
in the upper right part according to the property of g(x), as shown in Figure 4.

For each of the synthetic datasets, we used the ABC rejection algorithm to estimate the
posterior probabilities in Equation (10). As discussed above, the quality of the approxima-
tion to the true posterior distribution depends on the statistics used in the ABC algorithm.
Therefore, we compared the following four sets of statistics.

1. TDC with α = 0.05
2. TDC with α = 0.4
3. Multiple TDCs for α = 0.05, 0.1, 0.2 and 0.4
4. Common statistics (mean and covariance matrix)

For each simulation of the ABC rejection algorithm (Algorithms 1 and 2), a total of
N = 105 iterations were run, and the 1% of the θ̃ samples with the smallest distance, ρ, were
accepted and added to θ̂ (code line 5 in Algorithm 1 and code line 6 in Algorithm 2). All
experiments, including the generation of the synthetic datasets, were repeated five times
to remove any noticeable Monte Carlo error in the results. In all experiments, nu = 10
directional vectors were used, but new vectors were generated for each independent run to
ensure that the results did not depend on any specific choices of directional vectors.

The performance for a set of summary statistics in the ABC algorithm to approximate
the true posterior probabilities was measured by the average mean absolute errors (AMAEs)

AMAE =
1

30 · 5
30

∑
i=1

5

∑
k=1
|P̂J,i,k − PJ,i|, (12)

where the sums go over the 30 datasets and five Monte Carlo repetitions. PJ,i and P̂J,i,k refer
to the true posterior probability and its k-th Monte Carlo estimate, respectively.

Algorithms 2024, 17, 120 9 of 16

The computations were run using the EasyABC package in R [43]. More specifically we
used EasyABC to run the rejection algorithm.

5.2. Results

Tables 1 and 2 show AMAE for each of the ten intervals and, on average, for the four
different sets of statistics for datasets of sizes n = 100 and n = 250, respectively, rounded
to three decimal places. We see for both cases that using TDC statistics clearly performs
better than using the common statistics in estimating the true posterior probabilities of
the mixture parameter. This was also confirmed by statistical tests. We further see that
the three sets of statistics based on TDC perform about equally well, and statistical tests
did not reveal any difference in performance between them. We see that AMAE is higher
for some intervals for n = 250 compared n = 100, and it might be surprising that the
AMAE increases with dataset size. The explanation is that with increasing dataset size,
the posterior distribution will be sharper around the true parameter values, and therefore,
the probability for some of the intervals (or part of them) becomes very small, making the
estimation of the true posterior probabilities more challenging.

Table 1. Performance of four summary statistics choices via AMAE when n = 100.

Interval TDC (α = 0.05) TDC (α = 0.4) Multiple TDCs Common Stats

(0.2, 0.8) 0.185 0.192 0.188 0.225
(0.3, 0.7) 0.208 0.205 0.211 0.237
(0.4, 0.6) 0.140 0.132 0.133 0.140
(0.1, 0.3) 0.155 0.132 0.143 0.206
(0.3, 0.5) 0.159 0.153 0.160 0.185
(0.5, 0.7) 0.102 0.098 0.106 0.117
(0.7, 0.9) 0.100 0.096 0.107 0.181
(0.1, 0.4) 0.183 0.181 0.185 0.282
(0.6, 0.9) 0.146 0.149 0.147 0.237
(0.4, 0.5) 0.082 0.080 0.081 0.091

Average 0.146 0.142 0.146 0.190

Table 2. Performance of four summary statistics choices via AMAE when n = 250.

Interval TDC (α = 0.05) TDC (α = 0.4) Multiple TDCs Common Stats

(0.2, 0.8) 0.241 0.203 0.201 0.270
(0.3, 0.7) 0.225 0.212 0.219 0.266
(0.4, 0.6) 0.152 0.157 0.166 0.181
(0.1, 0.3) 0.211 0.218 0.207 0.264
(0.3, 0.5) 0.226 0.218 0.215 0.280
(0.5, 0.7) 0.109 0.113 0.134 0.162
(0.7, 0.9) 0.054 0.048 0.063 0.177
(0.1, 0.4) 0.265 0.270 0.286 0.422
(0.6, 0.9) 0.106 0.101 0.128 0.262
(0.4, 0.5) 0.108 0.104 0.108 0.120

Average 0.170 0.164 0.173 0.240

6. Real-Life Experiments

The CPU (or GPU) processor of a computer system will over time typically receive
tasks of varying sizes, and the rate of received tasks typically vary with time. For example,
that more tasks will be received during office hours compared to other times of the day.

Algorithms 2024, 17, 120 10 of 16

In this section, we consider the problem of estimating the statistical properties of these
request patterns to the CPU processor using the computer system’s historical CPU usage.
The statistical distributions characterising the request patterns are formulated below. It is
usually only possible to observe the average CPU usage in disjoint time intervals of the day
(e.g., ten-minute intervals), and it turns out that it is impossible to evaluate the likelihood
function for the underlying request patterns [44]. Likelihood-free estimation is, therefore,
the best option to estimate the underlying request patterns.

We will demonstrate how ABC with TDC statistics can be used to estimate unknown
request patterns.

6.1. Data Generating Model
6.1.1. Notation

Assume that our CPU consumption data are collected on D working days. Since the
data are only observed discretely over each day, we first let the time be measured in days
and divide each day into T disjoint sub-intervals δ1, . . . , δT which are of the same length
and separated by (T + 1) time points

0 = τ0 < τ1 < · · · < τT = 1.

Let ydt denote the average CPU consumption in time interval δt on day d and let
yd(τ) denote the exact CPU consumption at some time τ ∈ [0, 1] on day d. Recall from the
discussions above that yd(τ) is unobservable.

Furthermore, assuming that there are Nd requests to the CPU processor on the day d,
we denote the arrival times for each of these requests as ad1, . . . , adNd

, and denote the size
(CPU processing time) of these requests as sd1, . . . , sdNd

, respectively. We assume that an
infinite number of CPU cores are available (thus no queueing of tasks), and therefore the
departure times for the requests are hdn = adn + sdn, n ∈ 1, . . . , Nd.

6.1.2. Statistical Queuing Model

We assume that the arrival times are independent outcomes from a Beta distribution

ad1, . . . , adNd

i.i.d.∼ Beta(ϕ, β), d = 1, . . . , D. (13)

Different choices of the shape parameters α and β yield different circumstances. For
instance, if both of the shape parameters are high, e.g., ϕ = β = 20, almost all arrivals
(CPU requests) will take place within a short time period in the middle of the day (e.g.,
office hours). On the other hand, if ϕ = β = 1, the arrivals will be uniformly distributed
throughout the day. Figure 5 shows the beta distribution under these two parametric
choices. For more details about the Beta distribution, see e.g., [14].

0
1

2
3

4
5

Beta distribution, φ = 20, β = 20

arrival time

de
ns

ity

2 am 6 am 10 am 2 pm 6 pm 10 pm

0
1

2
3

4
5

Beta distribution, φ = 1, β = 1

arrival time

de
ns

ity

2 am 6 am 10 am 2 pm 6 pm 10 pm

Figure 5. Beta distributions with different shape parameters.

Algorithms 2024, 17, 120 11 of 16

Further, we assume that the sizes (CPU processing time) for each request are indepen-
dent outcomes from an exponential distribution with rate λ

sd1, . . . , sdNd

i.i.d.∼ Exp(λ), d = 1, . . . , D. (14)

The expected CPU processing time is therefore 1/λ.
Consequently, the current CPU consumption at some time τ ∈ [0, 1] on day d is given

by the requested tasks that are not yet finished.

yd(τ) =
Nd

∑
n=1

I(adn < τ < hdn). (15)

It follows that the average CPU consumption for a given time interval is

ydt =
1

τt − τt−1

∫ τt

τt−1

yd(τ) dτ. (16)

Figure 6 shows an example of a generated ydt for one day using ϕ = 6, β = 4, λ = 10,
T = 144 and Nd = 20.

0
1

2
3

4
5

6

Time of day

y 1
t

2 am 6 am 10 am 2 pm 6 pm 10 pm

Figure 6. Example plot of the synthetic data y1t.

The resulting distributions for arrival and processing times are shown in Figure 7. We
observe that the CPU usage is zero during the first part of the day since the probability
of receiving requests is very small, as shown in the left panel of Figure 7. As soon as the
requests are received, the CPU load increases. When the rate of request decreases, the CPU
usage also gradually decreases.

0
1

2
3

4
5

Beta distribution, φ = 6, β = 4

arrival time

de
ns

ity

2 am 6 am 10 am 2 pm 6 pm 10 pm 0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Exponential distribution, λ = 10

processing time (day)

de
ns

ity

Figure 7. Left panel: Beta distribution with shape parameters ϕ = 6 and β = 4. Right panel:
Exponential distribution with rate λ = 10.

6.2. Experiments and Results

Given observations ydt, d = 1, . . . , D, t = 1, . . . , T, we consider the problem of esti-
mating the parameters ϕ, β and λ of the beta and exponential distributions formulated

Algorithms 2024, 17, 120 12 of 16

above. In [44], Hammer et al. presented the resulting likelihood functions and explained
why it is not possible to compute them. We, therefore, resort to ABC to estimate the
parameters, and below we explain the summary statistics used.

For each day d, we suggest the following three statistics

S1d :=
1
T

T

∑
t=1

ydt, (17)

S2d :=
T

∑
t=1

t ·
(

ydt

∑T
t=1 ydt

)
, (18)

S3d :=
T

∑
t=1

t2

(
ydt

∑T
t=1 ydt

)
−
[

T

∑
t=1

t ·
(

ydt

∑T
t=1 ydt

)]2

. (19)

The reasons for these choices of statistics are as follows. S1d is the mean CPU con-
sumption on day d, and is directly related to the expected sizes of the tasks, λ, since the
number of tasks per day is assumed to be known. Next, S2d is the mean time of the day
when tasks are received, that is, are the tasks mainly received early on the day or later in
the day. This is directly related to the expectation of the Beta distribution in Equation (13).
Finally, S3d is the variance in when the tasks are received, i.e., whether they are all received
in a small time interval or more evenly spread throughout the day. This statistic is directly
related to the variance of the Beta distribution. In summary, these three statistics should be
able to capture the main properties of the data to efficiently estimate the three unknown
parameters ϕ, β, and λ.

Computing the three statistics for D days results in a total of 3D statistics.

S1 := (S11, . . . , S1D), S2 := (S21, . . . , S2D), S3 := (S31, . . . , S3D). (20)

Recall from the last passage of Section 4 that the Tukey depth contours are especially
useful to reduce the high dimensionality of the set of summary statistics. Therefore, to
sufficiently extract the main properties of the 3D-dimensional distribution of (S1, S2, S3),
we estimate the Tukey depth contours of the distribution of the statistics over the D days.
In other words, we use (S1, S2, S3) as X in the method in Section 4. As an alternative, we
could simply compute the average of the statistics over all the D = 40 each day, but given
that the statistics are not sufficient [4] for the unknown parameters, computing the Tukey
depth contours will be able to provide us with more information, which again will improve
the estimation of the unknown parameters.

We assumed that the CPU usage times were observed for D = 40 days and that the
observations were the average CPU usage in T = 144 disjoint time intervals per day, i.e.,
10 min intervals. Finally, we assumed that the number of tasks per day was Nd = 20 for
d = 1, . . . , 40.

In addition, we assumed that the true values of the unknown parameters were ϕ = 6
and β = 4 so that almost all arrivals (CPU requests) will take place from 5 a.m. to 10 p.m.,
as shown in the left panel of Figure 7. The processing time for each request was assumed
to follow the exponential distribution with rate λ = 10, as shown in the right panel of
Figure 7. These parameter values were used to generate a synthetic dataset, and the aim
was to use the ABC rejection algorithm with TDC statistics, as described above, to estimate
the parameter values used to generate the synthetic dataset.

We used uniform prior distributions for the three parameters ϕ, β and λ on the
supports (3, 8), (2, 7), and (3, 40), respectively. We used nu = 10 directional vectors to
compute the TDCs. We used TDC statistics for α = 0.05. In the ABC rejection algorithm,
we generated 105 samples and kept the 1% of samples with the smallest distance ρ in
Algorithm 2.

Figure 8 shows histograms of the resulting posterior samples of ϕ, β, and λ.

Algorithms 2024, 17, 120 13 of 16

φ

F
re

qu
en

cy

3 4 5 6 7 8

0
50

10
0

15
0

20
0

25
0

β

F
re

qu
en

cy

2 3 4 5 6 7

0
50

10
0

15
0

λ

F
re

qu
en

cy

7 8 9 10 11 12 13

0
50

10
0

15
0

Figure 8. Histograms of approximate posterior samples for the parameters.

We see that we are able to estimate the unknown parameters and that the true values
of the parameters (which were used to generate the synthetic data) are centrally positioned
in each histogram. We further see that the histograms are quite wide, demonstrating that
the problem of estimating the underlying request patterns from observed CPU usage is a
challenging task.

7. Closing Remarks

A fundamental challenge in likelihood free estimation is how to select statistics that
are able to capture the properties of the data that are important for efficient estimation
of the unknown model parameter values. The optimal choice is to choose the sufficient
statistics for the unknown parameters, but they are rarely known for generative models.

In this paper, we have developed a framework for efficiently using TDC statistics in
likelihood-free estimation. To the best of our knowledge, TDCs have not been used for
likelihood-free estimation before. TDCs are highly flexible and able to capture almost any
properties of the data. The experiments show that the TDC statistics are more efficient than
the more commonly used statistics mean vector, variances and correlations in estimating
the mixture parameter of a mixture distribution. TDCs are further used to estimate request
patterns to a computer system.

A potential improvement of the suggested method is to use a better metric for compar-
ing the TDCs for the dataset and generated sample, for example, using IoU as suggested in
Section 4. Another interesting direction for future work is to use TDCs in combination with
other likelihood-free estimation techniques such as ABC MCMC, ABC Sequential Monte
Carlo or auxiliary model techniques [7].

Author Contributions: Conceptualisation, H.L.H.; methodology, M.-Q.V., M.A.R. and H.L.H.; soft-
ware, M.-Q.V.; validation, M.-Q.V. and H.L.H.; formal analysis, M.-Q.V. and H.L.H.; investigation,
M.-Q.V. and H.L.H.; writing—original draft preparation, M.-Q.V. and H.L.H.; writing—review and
editing, M.-Q.V., T.N., M.A.R. and H.L.H.; visualisation, M.-Q.V.; supervision, T.N., M.A.R. and
H.L.H.; project administration, H.L.H. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets generated and/or analysed during the current study
are available in the Tukey-Depth-ABC repository, persistent link: https://github.com/mqcase1004/
Tukey-Depth-ABC (accessed on 10 March 2024).

Acknowledgments: The research presented in this paper has benefited from the Experimental
Infrastructure for Exploration of Exascale Computing (eX3), which is financially supported by the
Research Council of Norway under contract 270053.

Conflicts of Interest: The authors declare no conflicts of interest.

https://github.com/mqcase1004/Tukey-Depth-ABC
https://github.com/mqcase1004/Tukey-Depth-ABC

Algorithms 2024, 17, 120 14 of 16

Abbreviations
The following abbreviations are used in this manuscript:

TDC Tukey depth contour
ABC Approximate Bayesian Computing
GAN Generative Adversarial Network

Appendix A. Copulas

If we are in the situation where we do know about the marginal distributions but
relatively little about the joint distribution, and want to build a simulation model, then the
copula is a useful method to deriving such a joint distributions respecting all those given
marginal distributions. Here we present some basic ideas about copulas and introduce the
two copulas that we used in this paper. For further details on the topic, we refer the reader
to [45,46].

Definition A1. A p-dimensional copula C : [0, 1]p → [0, 1] is a function which is a cumulative
distribution function with uniform marginals.

The following result due to Sklar (1959) says that one can always express any distribu-
tion function in terms of a copula of its margins.

Theorem A1 (Sklar’s theorem). Consider a p-dimensional cdf F with marginals F1, . . . , Fp. There
exists a copula C, such that

F(x1, . . . , xp) = C(F1(x1), . . . , Fp(xp)) (A1)

for all xi in [−∞, ∞], i = 1, . . . , p. If Fi is continuous for all i = 1, . . . , p then C is unique;
otherwise C is uniquely determined only on Ran F1× · · · ×Ran Fp, where Ran Fi denotes the range
of the cdf F.

In our work, we make use of the following two bivariate copulas. The bivariate
Gumbel copula or Gumbel-Hougaard copula is given in the following form:

Cγ(u1, u2) = exp
{
−[(− ln u1)

γ + (− ln u2)
γ]

1
γ

}
,

where γ ∈ [1, ∞). The Clayton copula is given by

Cγ(u1, u2) =
(

max{u−γ
1 + u−γ

2 − 1, 0}
)− 1

γ ,

where γ ∈ [−1, ∞) \ {0}.

References
1. Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.;

et al. GPT-4 Technical Report. arXiv 2023, arXiv:cs.CL/2303.08774.
2. Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840–6851.
3. Aggarwal, A.; Mittal, M.; Battineni, G. Generative adversarial network: An overview of theory and applications. Int. J. Inf.

Manag. Data Insights 2021, 1, 100004. [CrossRef]
4. Casella, G.; Berger, R.L. Statistical Inference; Cengage Learning: Boston, MA, USA, 2021.
5. Lintusaari, J.; Vuollekoski, H.; Kangasraasio, A.; Skytén, K.; Jarvenpaa, M.; Marttinen, P.; Gutmann, M.U.; Vehtari, A.; Corander,

J.; Kaski, S. Elfi: Engine for likelihood-free inference. J. Mach. Learn. Res. 2018, 19, 1–7.
6. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

networks. Commun. ACM 2020, 63, 139–144. [CrossRef]
7. Beaumont, M.A. Approximate bayesian computation. Annu. Rev. Stat. Its Appl. 2019, 6, 379–403. [CrossRef]
8. Kong, L.; Mizera, I. Quantile tomography: Using quantiles with multivariate data. Stat. Sin. 2012, 22, 1589–1610. [CrossRef]

http://doi.org/10.1016/j.jjimei.2020.100004
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1146/annurev-statistics-030718-105212
http://dx.doi.org/10.5705/ss.2010.224

Algorithms 2024, 17, 120 15 of 16

9. Hammer, H.L.; Yazidi, A.; Rue, H. Estimating Tukey depth using incremental quantile estimators. Pattern Recognit. 2022,
122, 108339. [CrossRef]

10. Tukey, J.W. Mathematics and the Picturing of Data. In Proceedings of the International Congress of Mathematicians, Vancouver,
BC, Canada, 21–29 August 1975.

11. Mahalanobis, P.C. On the generalized distance in statistics. In Proceedings of the National Institute of Sciences of India; National
Institute of Sciences of India: Prayagraj, India, 1936.

12. Barnett, V. The ordering of multivariate data. J. R. Stat. Soc. Ser. A 1976, 139, 318. [CrossRef]
13. Oja, H. Descriptive statistics for multivariate distributions. Stat. Probab. Lett. 1983, 1, 327–332. [CrossRef]
14. Liu, R.Y. On a Notion of Data Depth Based on Random Simplices. Ann. Stat. 1990, 18, 405–414. [CrossRef]
15. Koshevoy, G.; Mosler, K. Zonoid trimming for multivariate distributions. Ann. Stat. 1997, 25, 1998–2017. [CrossRef]
16. Vardi, Y.; Zhang, C.H. The multivariate L1-median and associated data depth. Proc. Natl. Acad. Sci. USA 2000, 97, 1423–1426.

[CrossRef] [PubMed]
17. Rousseeuw, P.J.; Ruts, I. Algorithm AS 307: Bivariate Location Depth. J. R. Stat. Soc. Ser. C 1996, 45, 516. [CrossRef]
18. Peter J. Rousseeuw, I.R.; Tukey, J.W. The Bagplot: A Bivariate Boxplot. Am. Stat. 1999, 53, 382–387.
19. Liu, R.Y.; Parelius, J.M.; Singh, K. Multivariate analysis by data depth: Descriptive statistics, graphics and inference, (with

discussion and a rejoinder by Liu and Singh). Ann. Stat. 1999, 27, 783–858. [CrossRef]
20. Buttarazzi, D.; Pandolfo, G.; Porzio, G.C. A boxplot for circular data. Biometrics 2018, 74, 1492–1501. [CrossRef]
21. Liu, R.Y.; Singh, K. A quality index based on data depth and multivariate rank tests. J. Am. Stat. Assoc. 1993, 88, 252.
22. Becker, C.; Gather, U. The masking breakdown point of multivariate outlier identification rules. J. Am. Stat. Assoc. 1999, 94, 947.

[CrossRef]
23. Serfling, R. Depth functions in nonparametric multivariate inference. In DIMACS Series in Discrete Mathematics and Theoretical

Computer Science ; American Mathematical Society: Providence, RI, USA, 2006; pp. 1–16.
24. Zhang, J. Some extensions of tukey’s depth function. J. Multivar. Anal. 2002, 82, 134–165. [CrossRef]
25. Yeh, A.B.; Singh, K. Balanced confidence regions based on Tukey’s depth and the bootstrap. J. R. Stat. Soc. Ser. B (Methodol.) 1997,

59, 639–652. [CrossRef]
26. Fraiman, R.; Liu, R.Y.; Meloche, J. Multivariate density estimation by probing depth. In Institute of Mathematical Statistics

Lecture Notes—Monograph Series; Lecture Notes-Monograph Series; Institute of Mathematical Statistics: Hayward, CA, USA, 1997;
pp. 415–430.

27. Brown, B.M.; Hettmansperger, T.P. An affine invariant bivariate version of the sign test. J. R. Stat. Soc. 1989, 51, 117–125.
[CrossRef]

28. Hettmansperger, T.P.; Oja, H. Affine invariant multivariate multisample sign tests. J. R. Stat. Soc. Ser. B (Methodol.) 1994,
56, 235–249. [CrossRef]

29. Li, J.; Liu, R.Y. New Nonparametric Tests of Multivariate Locations and Scales Using Data Depth. Stat. Sci. 2004, 19, 686–696.
[CrossRef]

30. Li, J.; Cuesta-Albertos, J.A.; Liu, R.Y. DD-classifier: Nonparametric classification procedure based on DD-plot. J. Am. Stat. Assoc.
2012, 107, 737–753. [CrossRef]

31. Kim, S.; Mun, B.M.; Bae, S.J. Data depth based support vector machines for predicting corporate bankruptcy. Appl. Intell. 2018,
48, 791–804. [CrossRef]

32. Hubert, M.; Rousseeuw, P.; Segaert, P. Multivariate and functional classification using depth and distance. Adv. Data Anal. Classif.
2017, 11, 445–466. [CrossRef]

33. Jörnsten, R. Clustering and classification based on the L1 data depth. J. Multivar. Anal. 2004, 90, 67–89. [CrossRef]
34. Kosiorowski, D.; Zawadzki, Z. DepthProc an R package for robust exploration of multidimensional economic phenomena. arXiv

2014, arXiv:1408.4542.
35. Williams, B.; Toussaint, M.; Storkey, A.J. Modelling motion primitives and their timing in biologically executed movements.

In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–10 December 2008;
pp. 1609–1616.

36. Hubert, M.; Rousseeuw, P.J.; Segaert, P. Multivariate functional outlier detection. Stat. Methods Appl. 2015, 24, 177–202. [CrossRef]
37. Cerdeira, J.O.; Monteiro-Henriques, T.; Martins, M.J.; Silva, P.C.; Alagador, D.; Franco, A.M.; Campagnolo, M.L.; Arsénio, P.;

Aguiar, F.C.; Cabeza, M. Revisiting niche fundamentals with Tukey depth. Methods Ecol. Evol. 2018, 9, 2349–2361. [CrossRef]
38. Chebana, F.; Ouarda, T.B. Depth-based multivariate descriptive statistics with hydrological applications. J. Geophys. Res. Atmos.

2011, 116, D10. [CrossRef]
39. Marjoram, P.; Molitor, J.; Plagnol, V.; Tavaré, S. Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 2003,

100, 15324–15328. [CrossRef] [PubMed]
40. Beaumont, M.A.; Cornuet, J.M.; Marin, J.M.; Robert, C.P. Adaptive approximate Bayesian computation. Biometrika 2009,

96, 983–990. [CrossRef]
41. Mosler, K. Depth statistics. In Robustness and Complex Data Structures; Springer: Berlin/Heidelberg, Germany, 2013; pp. 17–34.
42. Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey.

IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [CrossRef]

http://dx.doi.org/10.1016/j.patcog.2021.108339
http://dx.doi.org/10.2307/2344839
http://dx.doi.org/10.1016/0167-7152(83)90054-8
http://dx.doi.org/10.1214/aos/1176347507
http://dx.doi.org/10.1214/aos/1069362382
http://dx.doi.org/10.1073/pnas.97.4.1423
http://www.ncbi.nlm.nih.gov/pubmed/10677477
http://dx.doi.org/10.2307/2986073
http://dx.doi.org/10.1214/aos/1018031260
http://dx.doi.org/10.1111/biom.12889
http://dx.doi.org/10.1080/01621459.1999.10474199
http://dx.doi.org/10.1006/jmva.2001.2011
http://dx.doi.org/10.1111/1467-9868.00088
http://dx.doi.org/10.1111/j.2517-6161.1989.tb01753.x
http://dx.doi.org/10.1111/j.2517-6161.1994.tb01974.x
http://dx.doi.org/10.1214/088342304000000594
http://dx.doi.org/10.1080/01621459.2012.688462
http://dx.doi.org/10.1007/s10489-017-1011-3
http://dx.doi.org/10.1007/s11634-016-0269-3
http://dx.doi.org/10.1016/j.jmva.2004.02.013
http://dx.doi.org/10.1007/s10260-015-0297-8
http://dx.doi.org/10.1111/2041-210X.13074
http://dx.doi.org/10.1029/2010JD015338
http://dx.doi.org/10.1073/pnas.0306899100
http://www.ncbi.nlm.nih.gov/pubmed/14663152
http://dx.doi.org/10.1093/biomet/asp052
http://dx.doi.org/10.1109/TPAMI.2021.3059968

Algorithms 2024, 17, 120 16 of 16

43. Jabot, F.; Faure, T.; Dumoulin, N. EasyABC: Performing efficient approximate Bayesian computation sampling schemes using R.
Methods Ecol. Evol. 2013, 4, 684–687. [CrossRef]

44. Hammer, H.L.; Yazidi, A.; Bratterud, A.; Haugerud, H.; Feng, B. A Queue Model for Reliable Forecasting of Future CPU
Consumption. Mob. Netw. Appl. 2017, 23, 840–853. [CrossRef]

45. Hofert, M.; Kojadinovic, I.; Mächler, M.; Yan, J. Elements of Copula Modeling with R; Springer International Publishing:
Berlin/Heidelberg, Germany, 2018.

46. Joe, H. Dependence Modeling with Copulas; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1111/2041-210X.12050
http://dx.doi.org/10.1007/s11036-017-0880-3

	Introduction
	Approximate Bayesian Computing
	Tukey Depth
	ABC Based on Tukey Depth Statistics
	Synthetic Experiments
	Experiment
	Results

	Real-Life Experiments
	Data Generating Model
	Notation
	Statistical Queuing Model

	Experiments and Results

	Closing Remarks
	Copulas
	References

