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A B S T R A C T

Pairwise preference information, which involves users expressing their preferences by comparing items,
plays a crucial role in decision-making and has recently found application in recommendation systems. In
this study, we introduce GcPp, a clustering algorithm that leverages pairwise preference data to generate
recommendations for user groups. Initially, we construct individual graphs for each user based on their
pairwise preferences and utilize a graph convolutional network to predict similarities between all pairs of
graphs. These predicted similarity scores form the foundation of our research. We then construct a new
graph where users are nodes and the edges are weighted according to the predicted similarities. Finally, we
perform clustering on the graph’s nodes (users). By evaluating various metrics, we found that employing a
similarity metric based on a convolutional neural network (SimGNN) with our proposed ground truth called
Top-K yielded the highest accuracy. The proposed approach is specifically designed for group recommendation
systems and holds significant potential for group decision-making problems. Code is available at https:
//github.com/RozaAbolghasemi/Group_Recommendation_Syatem_GcPp_clustering.
. Introduction

With the dramatic expansion of the web of things, recommendation
ystems are nowadays prevalent in our daily lives [1–3]. Recommenda-
ion systems explore the historical data represented by user information
nd preferences to decide which items might be recommended for
ew observations. Numerous recommendation algorithms have been
uggested in the last decade, however, a few of them have been
uccessfully utilized in real settings [4–6]. However, we are far from
andling the pairwise preferences problem, which is considered a
ey ingredient in modern recommendation systems [7,8]. In order to
fficiently explore pairwise preferences, more intelligent methods need
o be incorporated into the recommendation process. Clustering has
aramount importance in the exploration and analysis of data, and it
as extensive applications in data mining, information retrieval, deci-
ion making, computer graphics, bioinformatics, and Very-large-scale
ntegration (VLSI) design. For an overview of clustering techniques and
pplications, we refer the reader to [9]. Usually, clustering consists of
iscovering natural groups of similar elements in datasets. However,
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E-mail address: rozaabol@oslomet.no (R. Abolghasemi).

since the similarity can be represented using graphs, graph clustering
has gotten very attention as an important variant of data clustering.
Moreover, to have a more accurate clustering method, using an ac-
curate similarity measure is very crucial. In the learning process, a
good graph similarity function/model would be able to capture all the
hidden information of the data and predict the relationships between
the data points to be able to predict more accurate similarity scores.
Additionally, in some areas like group decision making (GDM) [10,
11] and more specifically group recommendation systems (GRS) [12],
where the pairwise preferences of the users are available, a possible
solution to find common decision/recommendation for the group, is to
first find similar users. The intuition behind this is that similar users
will likely have similar preferences, and their decisions are likely to be
more similar compared to dissimilar users.

This paper addresses the problem of group recommendation based
on graph clustering. In the proposed graph clustering, for each node,
some information like its pairwise preferences is available. Among
the conventional graph similarity methods, those based on neural
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networks were shown to be more accurate on different types of graphs.
Traditional similarity measures like Euclidean and cosine, are based
on the input vectors, and graph similarity measures like graph edit
distance (GED) [13] are based on the structure of the graph. Unlike
these traditional methods, the neural networks learn the similarity not
only based on the structure of the graph but also the attributes of the
nodes. This is very crucial and shows the power of this type of similarity
method on different types of data/graphs.

It is noteworthy that our work presents a novel approach to eval-
uating user similarity in recommender systems by shifting away from
traditional feature vector reliance to item-based pairwise preferences,
employing the GcPp algorithm and SimGNN model. This shift is moti-
vated by the limitations of conventional similarity measures based on
feature vectors, as highlighted in previous research [14–16]. Specifi-
cally, measures such as PCC, SPCC, CPCC, ACOS, MSD, Jaccard, PIP,
and NHSM are found to exhibit drawbacks in terms of accuracy and
complexity when calculating user similarity. Additionally, the advan-
tages of employing pairwise preferences over pure rating values are
discussed in [17,18], emphasizing the potential for more precise and ac-
curate recommendations. In [12,19,20], the incorporation of pairwise
preferences in group recommendation systems is examined, introducing
Matrix factorization pair-score prediction (MFP) and comparing it with
well-known approaches like BPR [21], and MPR [22]. The analysis
underscores the superiority of utilizing pairwise comparisons in GRS,
particularly when compared to single-rating data.

The main contributions of this work are listed in the following:

1. We transform users’ pairwise preferences into graphs and devise
a graph convolutional neural network (SimGNN) to assess the
similarity between each pair of user graphs. To accomplish this,
we introduce a novel metric named Top-K to associate users with
the top-k most similar items.

2. We develop the GcPp technique, an abbreviation for ‘‘Graph
Clustering based on Pairwise Preference data’’. This method
leverages the dominant set clustering algorithm to consolidate
users with the highest degrees of similarity into cohesive groups.
Specifically, we enhance the dominant set clustering algorithm
by incorporating SimGNN to gauge user similarity.

3. We evaluate the developed model using two pairwise prefer-
ences datasets, and compare SimGNN with well-known simi-
larity metrics. The results reveal the superiority of SimGNN
compared to the baseline metrics.

In our final step, we capitalized on the clusters of users, which rep-
esent groups of individuals with similar preferences. Leveraging these
lusters enabled us to generate recommendations that are not only more
ccurate but also fairer. By considering the preferences and characteris-
ics of users within each cluster, we could tailor recommendations more
recisely to the specific needs and interests of the users within those
roups. This approach enhances the overall recommendation system by
nsuring that recommendations are relevant and equitable for all users.

. Related work

This study is divided into two primary areas of focus: graph cluster-
ng and recommendation and group recommendation. In the upcoming
ections, we will delve into the existing body of research pertaining to
oth of these subjects.

.1. Graph clustering and recommendation

Sieranoja et al. [23] suggested two novel clustering networks and
raphs techniques. The first one is a direct descendant of the k-means
lgorithm and is known as the K-algorithm. Similar iterative local
ptimization is used, but the means are not necessary. In terms of both
ood local optimization capabilities and a propensity to reach a local
2

ptimum, it shares features with k-means clustering. The second one a
alled M-algorithm, iteratively enhances the K-output algorithm’s to
ncover new and superior local optima. It repeatedly separates and
erges arbitrary clusters, then uses the K-algorithm to fine-tune the

utcomes. Both algorithms can be applied to various cost functions,
hich makes them both generic. By lowering information correlation

n two ways, Liu et al. [24] presented the Dual Correlation Reduction
etwork (DCRN), a revolutionary self-supervised deep graph clustering

echnique. They specifically created a siamense network first to encrypt
amples. Then, they reduced the information correlation at the dual-
evel, enhancing the discriminative power of the resulting features by
ushing the cross-view sample correlation matrix and cross-view fea-
ure correlation matrix to resemble two identity matrices, respectively.
dditionally, they applied a propagation regularization term to the
etwork’s shallow network structure to help the network gain long-
istance information while alleviating representation collapse brought
n by over-smoothing in GCN. Liao et al. [25] put forth a new deep
inear graph attention model for attributed graph clustering (DLGAMC),
hich is made up of a similarity-preserving module and an attention-
ased aggregation module. To design the attention for aggregation,
hich does not require learning additional attention parameters, the
uthors only took advantage of cosine similarity. They also suggested
n adaptive technique to assess the smoothness of node representations,
ith intra-cluster distance and inter-cluster distance serving as the
ssential indicators in this process.

To address the challenging issue in a non-Euclidean space, Guo
t al. [26] proposed an original end-to-end graph clustering archi-
ecture with a combined strategy. They provide a new variational
raph auto-encoder algorithm based on the GCN for learning the graph
mbedding that takes into consideration the boosting effect of a joint
enerative model of the graph structure and node characteristics on
he embedding output. They developed an auxiliary distribution based
n the embedding representation to provide a self-training mechanism
hat improved the prediction of node categories and enabled the unsu-
ervised clustering mode. In order to avoid huge clusters warping the
mbedding space, each cluster’s loss contribution is also normalized.
iu et al. [27] introduced a multilayer graph contrastive clustering
etwork, which is a general and efficient autoencoder framework for
ultilayer graph clustering (MGCCN). Three modules make up the
GCCN: (1) attentiveness for better node embeddings, a mechanism

hat is used to better capture the importance of nodes and their neigh-
ors. (2) A contrastive fusion approach that effectively investigated
he consistent data in various networks. (3) A self-supervised element
hat reinforces the node embedding and clustering iteratively. A novel
nsupervised event-oriented graph clustering framework (EGC) was
roposed [28], which does not require labeled data and can perform
fficient clustering on huge datasets with little time overhead. To be
ore precise, EGC changes the textual data of social networks after

irst mining the potential relations included in social text data. By
tilizing graph structure for the depiction of complicated relations,
edia can be converted into an event-oriented graph. Secondly, EGC

eliably measures the weights of relations in event-oriented graphs
sing a keyword-based local importance method.

One of the applications of clustering is group decision making
hich can be done easier using a good clustering method. In [29,30]

he idea of dealing with large-scale decision-making problems is dis-
ussed. In [31], large-group decision-making and conflict management
re addressed. The authors propose a dynamic adaptive subgroup-to-
ubgroup conflict model that focuses on multicriteria decision-making.
hey introduce a compatibility index to quantify cognitive and interest
onflicts among experts and utilize the fuzzy c-means clustering algo-
ithm to classify experts into subgroups. The paper [32] investigates the
chievement of cluster average consensus within a finite time frame
n bidirectional networks. Through the design of distributed linear
terations using stochastic matrices that align with the network topol-
gy, the authors demonstrate the possibility of always attaining cluster

verage consensus in bidirectional networks that have cluster-spanning
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trees. A clustering- and maximum consensus-based model with lin-
guistic distribution is proposed for social network large-scale group
decision making (SNLGDM) problems [33]. The model utilizes social
network analysis (SNA) to determine the weights of decision groups
and reduce the dimension of large-scale decision matrices. It involves
the division of large-scale decision makers (DMs) into independent
sub-groups based on trust relationships [34]. Linguistic distribution
(LD) assessments are used to represent the preference relation of sub-
groups [35]. A maximum consensus-based method is then employed to
generate comprehensive weights for the sub-groups by maximizing the
level of consensus between sub-groups and the collective matrix [36].
The final ranking of alternatives is obtained based on the collective
preference relation [37]. The proposed model is verified through nu-
merical examples, coefficient analysis, and comparative analysis. The
paper in [38] proposes an expert clustering and information fusion
method for large group decision-making (LGDM) problems with double
information and heterogeneous experts. It introduces an optimization
model to derive criteria weights of experts based on the minimiza-
tion of deviation between double information. It presents a double
clustering method that combines the similarity degrees of experts’
fuzzy preference relations and their criteria weights to classify large-
scale experts into clusters. A clustering validity index is introduced to
objectively determine the clustering threshold, ensuring the rationality
of the clustering results.

In addition to clustering, graphs have been utilized in various ways
to generate effective recommendations. In the work by Chen et al. [39]
a method named SR-HetGNN is introduced that is a novel session
recommendation method. SR-HetGNN leverages a heterogeneous graph
neural network (HetGNN) to enhance session-based recommendation
systems. Also, [40] introduces Mandari, a novel approach that lever-
ages a Multi-Modal Temporal Knowledge Graph for Next-POI recom-
mendation. It addresses the challenges of modeling implicit associations
in multi-modal data and capturing variations in user preferences over
time intervals. A method named Satori [41] has been introduced that
leverages a user interaction graph to capture relationships between
users, items, and categories and utilizes a graph attention network to
extract auxiliary features. Additionally, it adopts a self-attention mech-
anism to model user intention and preference, combining them to form
a hybrid user representation. The framework in [42] employs multitask
training to optimize the model with auxiliary tasks. It aims to enhance
cross-domain recommendation performance through adaptive learning
and graph-based techniques. To see how deep learning models offer
effective recommendations we refer the reader to [43,44]. The survey
extensively examines recent studies on serendipitous recommendations,
particularly concentrating on deep learning recommendation models.
It categorizes these models based on their integration of serendipity
objectives at different stages of the recommendation process.

2.2. Group recommendation

Utilizing pairwise preference data within Group Recommender Sys-
tems (GRS) significantly enhances the precision of item recommenda-
tions, as it provides detailed insights into users’ preferences (see [10,
12]). A method known as MFP, introduced by [12], predicts personal-
ized item scores based on such pairwise preference data. In developing
the GRS, the study incorporates users’ personality traits, specifically
assertiveness, and cooperativeness, which closely resemble real-world
decision-making scenarios. Furthermore, the application of an opinion
dynamics model aids in achieving consensus within the system. In [10],
a novel approach grounded in entropy is presented for the prediction
of missing data within pairwise preference datasets. This method excels
by capitalizing on user and item similarity for prediction, even when
confronted with exceptionally sparse datasets, surpassing traditional
methods that may yield no results in such scenarios. The principal
domain of application for this innovative concept lies within Group
3

Recommender Systems and Group DecisionMaking challenges.
Deep learning plays a pivotal role in both Recommendation sys-
tems and Group Recommender Systems (GRS) methods, as evident in
recent works [45–47]. In the context of GRS, an innovative approach
employing a Graph Attention Network (GAT) is presented in [48]. This
method initially clusters users based on movie genre preferences and
user similarities. Subsequently, it employs GAT to predict users’ movie
ratings by considering their preferences and group relationships. Addi-
tionally, Wu et al. [49] propose a GRS tailored for network document
resource exploration, leveraging knowledge graphs and LSTM within
edge computing. This approach effectively addresses issues related to
information overload and resource tracking. Ait et al. [50] introduced a
distributed group recommendation system built on Apache Spark. This
system employs a novel recommendation method, dimension reduction
techniques, and supervised and unsupervised learning to address the
curse of the dimensionality problem, identify user groups, and enhance
prediction quality. Ali-Yari et al. [51] dealt with the concern related to
the uncertainty and ambiguity surrounding a tourist’s group member-
ship in group tourism. They developed a group recommendation system
that incorporates uncertainty modeling using Bayesian networks, Pear-
son similarity factors, and SOM clustering. It models uncertainties and
estimates tourism preferences for each group, reducing the impact of in-
sufficient user information. The system also suggests tourist attractions
and optimal routes via Google Maps for each user group, enhancing the
recommendation experience. In order to reduce the clustering cost in
group recommendation, Seo et al. [52] introduced a GRS based on the
genre preferences of users. They established a genre preference vector
and employed it for group clustering, resulting in more efficient time
complexity due to the smaller number of genres compared to items.
Furthermore, they introduced a novel item preference mechanism,
incorporating genre weights to further refine user preferences.

2.3. Discussions

In this section, we provide a summary of the limitations and
strengths of the related works, which can be found in the Tables 1 and
2.

3. Method design

3.1. Principle

Within this section, we elucidate the proposed approach, which
encompasses two main steps including GcPp clustering and group
recommendation subsequent to data preprocessing. Fig. 1 indicates the
logical diagram of the proposed method. During the data preprocessing
phase, the data is transformed into a standardized format as follows: if
expert 𝑢 expresses a preference for item 𝑖 over item 𝑗, the corresponding
pairwise preference 𝑝(𝑢)𝑖𝑗 is assigned a value of 1. Conversely, if the
two items are considered equally preferred, the preference value 𝑝(𝑢)𝑖𝑗
is set to 0.5. In cases where expert 𝑢 does not prefer item 𝑖 over item
𝑗, the pairwise preference value 𝑝(𝑢)𝑖𝑗 is 0. In the subsequent sections,
we provide comprehensive explanations of both the GcPp clustering
approach and the proposed group recommendation system, delving into
their intricacies and details.

3.2. Clustering

In this section, we present a detailed description of the GcPp (graph
clustering pairwise preference) method. An overview of the proposed
approach is depicted in Fig. 2, and the pseudo-code implementation can
be found in Section 3.2.5. The method encompasses four main phases
as follows:

• The dataset, comprising pairwise preferences of users, is trans-
formed into graphs, as described in Section 3.2.1 and illustrated
in Fig. 2 (part a).
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Table 1
Merits and limits of the related works in graph clustering.

Paper Merit Limit

Sami et al. [23] Introducing two cost functions and two clustering methods
that can be applied with various cost functions. Notably, the
M-algorithm outperforms eight other state-of-the-art methods.

The M-algorithm incurs a high computational cost because it
involves the repetitive merging and splitting of random
clusters.

Liu et al. [24] The suggested DCRN aims to diminish information
correlation at sample and feature levels, a crucial aspect in
preventing representation collapse, ultimately leading to
improved clustering outcomes.

The method’s computational complexity and scalability for
larger graphs require further exploration for practical use
cases.

Liao et al. [25] Decreasing the attention parameters within GCN, which
involves incorporating a nonlinear attention mechanism that
includes both attribute information similarity and the local
graph structure.

The node pair selection process for the introduced
similarity-preserved module requires improvement.

Guo et al. [26] The paper’s innovative end-to-end graph clustering approach
effectively integrates embedding and clustering, enhancing
the accuracy of unsupervised clustering tasks.

The paper does not account for unknown prior knowledge of
clusters, leaving potential room for improvement in handling
real-world applications where such information may be
valuable.

Liu et al. [27] The paper introduces MGCCN, an innovative autoencoder
framework for multilayer graph clustering, surpassing
existing methods in handling complex network frameworks,
often limited to multiview attributes or multiple networks.

The MGCCN framework, while effective, may face scalability
challenges with extremely large or high-dimensional datasets,
requiring careful consideration for practical use.

Hu et al. [28] EGC effectively converts social text data into an
event-oriented graph, delivering high-quality clustering
performance, rapid query times, and eliminating the need for
labeled data, facilitating timely public opinion analysis on
social media.

The paper may face challenges in optimizing the
event-oriented graph generation for a more lightweight
representation of social text data and improving the
execution time of the graph clustering algorithm.

Morente et al. [29] The paper introduces an innovative GDM method that
effectively reduces information overload by clustering a large
set of alternatives into manageable groups for expert
discussions and decision-making.

This method’s effectiveness may depend on the quality of
clustering, and it may not fully address the challenges of
handling extremely complex decision environments with
diverse alternatives.

Ding et al. [30] The paper defines and categorizes Large Scale Decision
Making (LSDM) frameworks, offering insights into managing
complex decision processes involving diverse stakeholders.

It primarily focuses on theoretical models and future research
directions, potentially requiring practical implementation and
validation of LSDM solutions for real-world applicability.

Tang et al. [31] The paper introduces a dynamic conflict resolution model for
large-scale group decision-making, enhancing our
understanding of conflict management in complex decision
contexts.

Further research is needed to assess the model’s applicability
in diverse settings like social networks and its adaptability to
alternative opinion representation methods.

Shang et al. [32] The paper provides insights into achieving finite-time cluster
average consensus on bidirectional networks with
cluster-spanning trees, offering valuable guidance for
noise-free scenarios.

The study does not address directed networks or
communication noises, common in practical applications, and
further research is needed to adapt the results to these
scenarios and explore delay robustness.
Table 2
Merits and limits of the related works in group recommendation systems.

Paper Merit Limit

Roza et al. [12] Attaining highly precise and equitable GRS by leveraging
detailed information from pairwise preference data,
incorporating user personalities, and employing opinion
dynamics to reach consensus.

For users, the process of completing the TKI test to unveil
their personality traits can be time-consuming, and turning
to user their social media content may present a feasible
alternative.

Roza et al. [10] An entropy-based method excels at estimating missing values
in pairwise preference data for GRS and GDM, using user
and item similarity, making it stand out from conventional
methods that struggle with sparse datasets.

Like other methods, the overall model fitting, when
minimizing the cross-entropy loss function, tends to produce
larger errors as the problem’s dimension, specifically the
number of alternatives, increases.

Liao et al. [48] Utilizing GAT (Graph Attention Network), clustering based
on movie genre preferences and user similarities leads to
significantly improved recommendation accuracy in GRS.

High time complexity due to the nature of the deep learning
techniques.

Wu et al. [49] By employing a knowledge graph and LSTM within edge
computing for GRS, it effectively addresses the challenges of
information overload and resource tracking.

High time complexity due to the nature of the deep learning
techniques.

Badr et al. [50] A distributed GRS, built on Apache Spark, capable of
managing large-scale data and addressing sparsity issues.

The absence of social relationship interactions to boost the
performance of the architectures.

Ali et al. [51] Modeling uncertainties reduces the impact of limited user
information and enhances the recommendation experience by
suggesting tourist attractions and optimal routes through
Google Maps.

The proposed SOM-based method is not compared with other
clustering methods.

Seo et al. [52] Reduced clustering cost and enhanced time efficiency are
achieved by clustering based on user genre preferences
rather than item ratings.

It appears that all movies (items) sharing the same genre are
assigned an equal weight (score), which could pose
challenges when recommending a subset of items from a
pool with the same genre.
4
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Fig. 1. Logical diagram of the process of the proposed method.

• The similarity between users (graphs of items) is predicted using
the graph convolutional network called SimGNN [53], as depicted
in Fig. 2 (part b) and described in Section 3.2.1.

• A graph is constructed with users represented as nodes, and the
predicted similarity score between each pair of users is assigned
as the weight of the corresponding edge, as shown in Fig. 2 (part
c).

• The ‘‘Dominant-set’’ algorithm [54] is employed as a graph clus-
tering method to group the users based on their relationships.
This algorithm partitions the user graph into distinct clusters by
identifying dominant sets of nodes. The process of clustering is
depicted in Fig. 2 (part d), and you can find detailed explanations
in Section 3.2.3.

In the final phase, we conducted an evaluation of our clustering ap-
proach using various metrics. In the subsequent sections, we will
elaborate on the details of predicting similarity between pairs of graphs
and the process of clustering a graph. This will provide a comprehen-
sive understanding of how the similarity prediction and clustering steps
were executed, allowing for a more in-depth analysis of our approach.

3.2.1. Similarity of graphs
In this section, we will outline our approach for predicting the

similarity scores among users. Based on our datasets, which are de-
scribed in Section 4.1, pairwise preferences on items are available for
each user. This means that users have compared every pair of items
and indicated their preferences. Specifically, we assign 𝑝(𝑢)𝑖𝑗 = 1 if
user 𝑢 prefers item 𝑖 over item 𝑗, and 𝑝(𝑢)𝑖𝑗 = 0 otherwise. To capture
these preferences, we convert the pairwise preferences into graphs
for each user (refer to Fig. 2, part a). In these graphs, the items are
represented as nodes, and a directed edge exists between two nodes
if and only if 𝑝(𝑢)𝑖𝑗 = 1. Each graph represents the preferences of a
specific user. We utilize these graphs to predict the similarity among
users. Consequently, predicting the similarity between pairs of users
5

is transformed into predicting the similarity scores between pairs of
graphs. In this study, we adopt the concept of ‘‘a neural network
approach to fast graph similarity computation (SimGNN)’’ introduced
in [53]. An overview of this approach is depicted in Fig. 2 (part b).
The SimGNN model employs a learnable embedding function based on
graph convolutional networks (GCN) to generate an embedding vector
for each graph, which serves as a condensed representation of the
graph. Furthermore, the model incorporates a novel attention mecha-
nism to highlight the significant nodes based on a specific similarity
metric. This attention mechanism aims to emphasize the nodes that
contribute most to the overall similarity computation. Additionally, a
pairwise node comparison method is devised to enhance the graph-level
embeddings by incorporating detailed node-level information. Finally,
fully-connected neural networks are employed to predict the similarity
scores. These networks leverage the graph-level embeddings and the
fine-grained node-level information to estimate the similarity between
pairs of graphs.

3.2.2. Top-K similarity
As SimGNN is a learning algorithm, it requires similarity scores

for each pair of graphs as ground truth. To address this, we used
the Top-k method which is introduced in this section. As previously
mentioned, in our algorithm, each user corresponds to a graph. Thus,
the similarity among users can be leveraged as the similarity between
their corresponding graphs. To achieve this, we utilize the pairwise
preferences of the users as follows: for each user, we arrange the items
in descending order of preference based on personalized item scores
calculated using the following equation:

𝑣(𝑢)𝑖 =

∑

𝑗∈𝐼⧵{𝑖} 𝑝
(𝑢)
𝑖𝑗

|𝐼|
. (1)

Here, 𝑣(𝑢)𝑖 represents the personalized item score of user 𝑢 on item
𝑖. This score quantifies the degree of preference that user 𝑢 has for
item 𝑖 relative to all other items in the set 𝐼 (refer to [12] for more
details). Using these personalized item scores, we sorted the items for
each user and selected the top-k items with the highest scores as their
most preferred items. Consequently, the Top-K similarity score between
every pair of users is computed as follows:

𝑆(𝑇 𝑜𝑝−𝐾)
𝑢𝑖 ,𝑢𝑗

=
|

|

|

𝑢(𝑇 𝑜𝑝−𝐾)
𝑖 ∩ 𝑢(𝑇 𝑜𝑝−𝐾)

𝑗
|

|

|

𝐾
(2)

where 𝑢𝑇 𝑜𝑝−𝐾𝑖 represents the set of K-most preferred items for user
𝑢𝑖. The Top-K similarity scores, derived from the personalized item
scores, serve as the ground truth for training the SimGNN model. By
using these scores, the SimGNN model is incentivized to assign higher
similarity scores to users whose top preferred items exhibit greater
similarity. In other words, the training process encourages the SimGNN
model to capture and reinforce the similarity patterns among users
whose not only their pairwise preferences are similar, but also the top
preferred items align closely with each other.

3.2.3. Clustering of graphs
Once we have predicted the similarity scores for pairs of users, our

next step is to cluster the users based on these scores. The clustering
method employed in this study is based on the concept of a ‘‘Dominant
set’’. This approach, initially introduced by Pavan et al. [54], was
later utilized by Hung et al. [55] for detecting F-formations in social
environments, and by Yazidi et al. [56] for identifying unreliable
sensors.

In the context of graph clustering, a dominant set refers to a
maximal clique within an edge-weighted graph. By leveraging the
dominant set algorithm, we aim to identify cohesive groups of users
who exhibit similar preferences based on the obtained similarity scores.
In the following, we will delve into the details of how the dominant set
algorithm is applied for graph clustering.
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Fig. 2. General overview of the proposed GcPp method containing four main steps. a. converting the training data including pairwise preferences to graphs. b. predicting similarity
between every pair of users (graphs) using SimGNN. c. graph of users, nodes are users, and edges are weighted by the similarity of pair of nodes. 4. clustering the users with
Dominant set clustering.
We aim to cluster the data (users), using an undirected edge-
weighted graph without self-loops. This graph, denoted as 𝐺 = (𝑉 ,𝐸,
𝑤), consists of a set of vertices 𝑉 , a set of edges 𝐸, and a positive edge
weight function 𝑤. In this context, the vertices correspond to the users,
6

and the graph is assumed to be fully connected. However, the edges
have varying weights that reflect the affinity between pairs of nodes.

To quantify the affinity, we utilize the predicted similarity scores
between each pair of users (see Section 3.2.1) as the edge weights. This
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relationship is captured by a weighted affinity matrix 𝐴, where each
lement 𝑎𝑖𝑗 represents the weight 𝑤(𝑖, 𝑗). When considering a subset 𝑆
f vertices in graph 𝐺, we can assess the average weighted degree of a
ertex 𝑖 ∈ 𝑆 as follows:

𝑆 (𝑖) =
1
|𝑆|

∑

𝑗∈𝑆
𝑎𝑖𝑗 . (3)

The relative affinity between node 𝑗 ∉ 𝑆 and 𝑖 can be expressed as
follows:

𝜙𝑆 (𝑖, 𝑗) = 𝑎𝑖𝑗 − 𝑘𝑆 (𝑖). (4)

It should be noted that for all 𝑖, 𝑗 ∈ 𝑉 if 𝑖 ≠ 𝑗, then 𝜙𝑖(𝑖, 𝑗) = 𝑎𝑖𝑗 ,
and 𝜙𝑆 (𝑖, 𝑗) can be either positive or negative. Ultimately, the weight
of each node 𝑖 with respect to a set 𝑆 is defined recursively as follows:

𝑆 (𝑖) =
{

1, 𝑖𝑓 |𝑆| = 1
∑

𝑗∈𝑆⧵{𝑖} 𝜙𝑆⧵{𝑖}(𝑗, 𝑖)𝑤𝑆⧵{𝑖}(𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (5)

According to this definition, 𝑤𝑆 (𝑖) represents the overall relative
affinity (similarity) between node 𝑖 and the other vertices in set 𝑆,
weighted by the overall affinity of the vertices in 𝑆 𝑖. Thus, the
following conditions establish the relationship between the internal
nodes (in set 𝑆) and the external nodes (not in set 𝑆) of a dominant
set 𝑆:

𝑤𝑆 (𝑖) > 0,∀𝑖 ∈ 𝑆 (6)

𝑤𝑆∪{𝑖}(𝑖) < 0,∀𝑖 ∉ 𝑆 (7)

3.2.4. Extracting dominating sets with replicator dynamics
The theory of replicator dynamics is attributed to the influential

work of Taylor and Jonker [57] for modeling biological processes in
population genetics. Replicator dynamics models a game of a popu-
lation of competing agents where each agent possesses 𝑁 strategies
𝑎1, 𝑎2,… , 𝑎𝑁 . The global state of the population is described by 𝑥 =
(𝑥1(𝑡),… , 𝑥𝑁 (𝑡)) with the constraint that ∑𝑖 𝑥𝑖 = 1. For each 1 ≤ 𝑖 ≤ 𝑁 ,
𝑥𝑖(𝑡) denotes the proportion of the population using strategy 𝑎𝑖 at time
𝑡. According to Taylor and Jonker [57], the agents encounter each other
randomly. The random encounters yield a change in the fitness function
according to a payoff matrix. The payoff matrix describes the utility
𝐴𝑖𝑗 of a player playing strategy 𝑖 against a player playing strategy 𝑗.
The replicator dynamics describes the evolution of the frequencies of
strategies in a population. To each 𝑥𝑖 we attach a payoff function 𝑓𝑖.
𝑓𝑖 is given by (𝐴𝑥)𝑖 which is the expected payoff of strategy 𝑎𝑖 from
a single interaction with a random individual in the large population.
More precisely, the expected payoff 𝑓𝑖 is written as (𝐴𝑥)𝑖 =

∑

𝑗 𝑎𝑖𝑗𝑥𝑗 , the
average payoff of the population as a whole can be written as 𝑥𝑇𝐴𝑥 =
∑

𝑖
∑

𝑗 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 . The frequency of each strategy is changed according to
the difference between its expected payoff and the average payoff of
the population. In formal terms, this is given by:
𝑑𝑥𝑖
𝑑𝑡

= 𝑥𝑖(𝑓𝑖 − 𝑓 ) (8)

The ratio of 𝑑𝑥𝑖
𝑑𝑡 and 𝑥𝑖 is called the relative growth success rate of

the population. Based on the above expressions, we can present in more
detail the replicator dynamics equation given by (Eq. (8)) as:
𝑑𝑥𝑖
𝑑𝑡

= 𝑥𝑖(𝑡)[(𝐴𝑥(𝑡))𝑖 − 𝑥(𝑡)𝑇𝐴𝑥(𝑡)], 𝑖 = 1,… , 𝑁. (9)

The theory of replicator dynamics has found a large set of applica-
tions in graph theory, including finding dominant sets [58,59], solving
the maximum clique problem [60,61], reinforcement learning [62],
resource allocation problems [63], to mention a few. We shall present
a well-known theorem from the theory of replicator dynamics [57].

Theorem 1. Let 𝐴 be a nonnegative, real-valued symmetric 𝑛 ⋅ 𝑛 ma-
trix. Then the function 𝑥(𝑡)𝑇𝐴𝑥(𝑡) increases with increasing 𝑡 along any
nonstationary trajectory 𝑥(𝑡) under continuous-time replicator dynamics.
7

Furthermore, any such trajectory converges towards a stationary point 𝑥∗.
Finally, a vector 𝑥∗ ∈ 𝑆𝑛 is asymptotically stable if and only if 𝑥∗ is a
strict local maximizer of 𝑥𝑇𝐴𝑥 in the simplex 𝑆𝑁 given by ∑𝑁

𝑖 𝑥𝑖 = 1,
𝑥𝑖 ≥ 0, 𝑖 = 1,… , 𝑁 .

3.2.5. Pseudo code for GcPp method

Algorithm 1 GcPp

1: Input: 𝑈 = {𝑢1 , 𝑢2 ,… , 𝑢𝑛}: the set of 𝑛 users where 𝑢𝑢 =

⎡

⎢

⎢

⎢

⎣

𝑝(𝑢𝑛 )11 ... 𝑝(𝑢𝑛 )1𝑚
... ... ...

𝑝(𝑢𝑛 )𝑚1 ... 𝑝(𝑢𝑛 )𝑚𝑚

⎤

⎥

⎥

⎥

⎦

is a matrix

containing pairwise preference scores of user 𝑢 on 𝑚 items.
2: Output: 𝐶 =

{

𝑐1 , 𝑐2 , ..., 𝑐𝑇 ∣ 𝑐𝑡 ⊂ 𝑈
}

: the set of all clusters of users.
3: for each 𝑢𝑖 in 𝑈 do
4: 𝑔𝑖 ← 𝑔𝑟𝑎𝑝ℎ(𝑢𝑖);
5: end for
6: for every 𝑢𝑖 and 𝑢𝑗 in 𝑈 do
7: 𝑆(𝑇 𝑜𝑝−𝐾)

𝑢𝑖 ,𝑢𝑗 ← Top-K(𝑢𝑖 , 𝑢𝑗 );

8: 𝑤𝑖𝑗 ← 𝑆𝑖𝑚𝐺𝑁𝑁(𝑔𝑖 , 𝑔𝑗 , 𝑆
(𝑇 𝑜𝑝−𝐾)
𝑢𝑖 ,𝑢𝑗 );

9: end for
10: {Graph G=(V, E, w), maximum number of clusters is T}
11: 𝑉 ← 𝑈 {users as nodes of graph}
12: 𝐶 ∶= ∅
13: 𝑡 ∶= 0
14: while 𝑉 ≠ ∅ and 𝑡 < 𝑇 do
15: 𝑐𝑡 = 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡_𝑠𝑒𝑡(𝐺)
16: 𝐶 ← 𝐶 ∪ 𝑐𝑡
7: 𝑉 ← 𝑉 ⧵ 𝑐𝑡
8: 𝑡 ← 𝑡 + 1
9: end while
0: return 𝐶

A pseudocode for the proposed GcPp method is provided in Al-
gorithm 1. This algorithm outlines the steps involved in clustering
the users in 𝑈 based on their pairwise preferences. In the algorithm,
we start by converting the pairwise preference scores of each user 𝑢𝑖
into a graph 𝑔𝑖 (see Section 3.2.1). Then, we use the Top-K method
to calculate similarity scores between pairs of users and incorporate
them into SimGNN as inputs (see Sections 3.2.1 and 3.2.2). SimGNN
predicts the similarity scores, which are then used as weights (𝑤𝑖𝑗)
for the edges of a graph 𝐺, where the nodes 𝑉 represent the users
𝑈 . The algorithm proceeds with a while-loop, where in each iteration,
the dominant set of nodes in 𝐺 is determined and assigned to a new
cluster. These nodes are then removed from the set of remaining nodes
in 𝐺. The loop continues until the clustering algorithm cannot find any
dominant sets among the remaining nodes. The pseudo-code provides a
comprehensive representation of the GcPp method, showcasing the pro-
cess of converting pairwise preferences to graphs, predicting similarity
scores with SimGNN, constructing the weighted graph, and iteratively
clustering the users based on dominant sets.

3.3. Group recommendation

In this section, we provide a detailed explanation of how we utilize
the proposed GcPp clustering algorithm to offer effective recommen-
dations for groups of users. The core concept of our proposed group
recommendation system (GRS) is centered around the notion of max-
imizing fairness and accuracy when recommending items to a group
of users. Unlike conventional GRS methods that often rely on random
user selections within the groups, resulting in varying preferences and
limited accuracy and fairness, we harness the power of our GcPp
clustering algorithm to form groups of similar users. By leveraging
the pairwise preferences and Top-K preferred items of users, we can
establish a sense of similarity based on shared opinions regarding
item scores. Consequently, the recommended items are expected to
be appealing to the majority of group members, leading to higher
levels of accuracy and fairness. Our proposed GRS comprises several
key steps, namely: 1. personalized item score calculation, 2. group
aggregation, and 3. group recommendation. Below, we provide a more

comprehensive explanation of each step:
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• In the initial stage, it is essential to determine the preferences of
each user towards individual items. To achieve this, we calculate
personalized item scores for every user using (1). However, if
the dataset already includes user scores on items, this step can
be skipped, and the existing scores can be directly utilized as
personalized item scores.

• In this stage, we aim to determine the overall scores of items
based on the preferences of users within each group. It is worth
noting that our groups are created by clustering users using
the GcPp method. Specifically, if 𝐶 =

{

𝑐1, 𝑐2,… , 𝑐𝑇 ∣ 𝑐𝑡 ⊂ 𝑈
}

represents all the clusters obtained from the GcPp method, then
𝐺 =

{

𝑔1, 𝑔2,… , 𝑔𝑇 ∣ 𝑔𝑡 ⊂ 𝑈
}

will represent all the corresponding
groups where 𝑔𝑡 is equal to 𝑐𝑡. Among various methods available
for group aggregation, this paper focuses on two approaches:
average and approval voting. The average group score for each
item 𝑖 in the group 𝑔𝑡 denoted by (𝑣(𝑔𝑡)𝑖 ) is calculated by taking the
average of the personalized item scores (1) of all users 𝑢 within
that group. This provides a measure of the collective preference
for each item within the group.

𝑣(𝑔𝑡)𝑖 =

∑

𝑢∈𝑔𝑡 𝑣
(𝑢)
𝑖

|

|

𝑔𝑡||
(10)

In approval voting, which is a majority-based aggregation method
[64], the group score for an item is determined by counting the
number of users who approve of it. We use the following equation
to calculate the group score for each item:

𝑣(𝑔𝑡)𝑖 =

∑

𝑢∈𝑔𝑡 𝐼
(𝑢)
𝑖

|

|

𝑔𝑡||
(11)

Here, 𝐼 (𝑢)𝑖 = 1 if the individual user’s score 𝑣(𝑢)𝑖 is above the
threshold (𝑣(𝑢)𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), and 𝐼 (𝑢)𝑖 = 0 otherwise. In our
experiments, we found that using a threshold of 0.4 produced
better results.
Based on the superior performance observed during the evalua-
tion phase, we have chosen Average as the primary approach for
aggregating group preferences in our system.

• During the group recommendation phase, we arrange the group
scores 𝑣(𝑔𝑡)𝑖 for all items in descending order and provide rec-
ommendations to each group 𝑔𝑡 based on the top-ranked items.
To assess the performance of our group recommendation system,
we evaluate it using various metrics including precision, recall,
F1-score, and fairness.

4. Performance evaluation

4.1. Datasets

For this paper, we utilized two pairwise preference datasets to
support our research and analysis. The details of these datasets are
provided below:

• The food datasets used in this study were gathered through an
online experiment called Consens@OsloMet, conducted at Oslo
Metropolitan University in Norway. The primary objective of the
experiment was to investigate how groups can achieve consen-
sus or general agreement when presented with multiple food
choices, including Chinese, French, Turkish, Italian, Japanese,
and Mexican cuisines. The experiment was officially registered
and approved by the Norwegian Centre for Research Data (NSD)
with reference number 631862. The dataset consists of four trials,
with five users providing their pairwise preferences for six differ-
ent dishes in each trial. In this research, each user and experiment
were treated as distinct individuals, resulting in a dataset that
encompasses the pairwise preferences of 20 users across the six
8

food items. For more details, please see section 3.2 in [10].
Table 3
Dataset characteristics.

Dataset Users Items Comparisons Sparsity

BookCrossing 271,379 278,858 5,893,374 99%
MovieLens 1M 6040 3952 104,931,478 92%
XING 784,687 1,029,480 180,601,043 99%
Movie online interface 46 100 2262 54%
Food 20 6 300 0%
Car 60 10 2700 0%

• The second dataset comprises car preferences1 that were provided
by Abbasnejad et al. [65] in 2013. The dataset was gathered
from 60 users residing in the United States, who participated in
the data collection process through Amazon’s Mechanical Turk.2
The dataset focuses on ten distinct cars, treated as individual
items for comparison purposes. Each user in the dataset provided
responses for all 45 possible pairs of items, resulting in a total
of 90 observations for each expert. In addition to the pairwise
preference scores, the dataset also includes two additional files
containing users’ attributes (education, age, gender, and region)
and car attributes (body type, transmission, engine capacity, and
fuel consumed). However, in our study, neither the users’ at-
tributes nor the cars’ attributes were used during the training of
the model.

Table 3 displays the characteristics of six real-world datasets utilized
in recommendation systems. BookCrossing [66], MovieLens 1M,3 and
XING4 encompass both implicit and explicit feedback from users re-
arding items, without incorporating pairwise preferences. Conversely,
atasets such as Movie online interface [18], food and car datasets
ontain pairwise preferences expressed by users towards items. In their
ork [19] Kalloori et al. extracted both pairwise comparisons and

atings from the initial data of the first three datasets. For instance, the
ookCrossing dataset comprises implicit (e.g., item clicks) and explicit
ser preferences on a 1–10 rating scale. Items with ratings exceeding 7
re deemed relevant, while the rest are considered irrelevant. Pairwise
omparisons are derived by prioritizing items with implicit preferences
ver those deemed irrelevant. Similarly, in the XING dataset, interac-
ions such as ‘click’, ‘bookmark’, ‘apply’, and ‘delete’ are recorded, with
apply’ interactions signifying relevance and ‘delete’ indicating irrel-
vance. Implicit preferences are inferred from ‘click’ and ‘bookmark’
ctions, guiding the derivation of pairwise comparisons. For MovieLens
M, items rated 4–5 stars are deemed relevant, while those rated 1–
stars are considered irrelevant. All user ratings contribute to the

erivation of pairwise comparisons, with differing ratings from the
ame user being subtracted.

Table 3 provides an overview of the datasets and their salient
eatures. Notably, the sparsity metric is calculated as the ratio of
issing elements to the total number of elements. Due to the substantial

parsity observed in the generated pairwise comparison datasets for
ll datasets except food and car, they are unsuitable for our method.
ur method, which relies on SimGNN and GcPp, involves comparing
ser graphs, where nodes represent items and directed edges signify
ser preferences. The lack of pairwise comparisons makes it impossible
o compare user graphs and compute user similarities. Therefore, the
ood and car datasets emerge as optimal choices for our proposed
ethodology.

1 http://users.cecs.anu.edu.au/ u4940058/CarPreferences.html.
2 http://mturk.com.
3 https://grouplens.org/datasets/movielens/.
4
 2https://github.com/recsyschallenge/2016.

http://users.cecs.anu.edu.au/~u4940058/CarPreferences.html
http://mturk.com
https://grouplens.org/datasets/movielens/
https://github.com/recsyschallenge/2016
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4.2. Clustering performance

In this section, we provide a detailed explanation of the clustering
evaluation methodology employed, the experiments conducted for the
parameter optimization, and present the related results obtained for the
GcPp clustering method and the SimGNN similarity score prediction.
Please note that the evaluation and discussion related to the proposed
Group Recommendation System (GRS) are presented in Section 4.3.

4.2.1. Metrics
According to an informal definition proposed by Jain et al. [67], ‘‘a

cluster is a set of entities which are alike and entities from different
clusters are not alike’’. Consequently, clustering approaches aim to
achieve high internal homogeneity, which translates to high intra-
cluster similarity (as shown in Eq. (12)), and at the same time, to
maintain significant dissimilarity between entities within a cluster and
those outside it, leading to low inter-cluster similarity (as expressed
in Eq. (13)).

In line with this definition, we define the following equations. For
object 𝑖 within cluster 𝑐𝐼 ,

𝑎(𝑖) = 1
|

|

𝑐𝐼 || − 1

∑

𝑗∈𝑐𝐼 ,𝑖≠𝑗
𝑑(𝑖, 𝑗) (12)

𝑎(𝑖) represents the average distance between object 𝑖 and the other
objects within the same cluster (𝑐𝐼 ), where 𝑑(𝑖, 𝑗) denotes the distance
between objects 𝑖 and 𝑗. A smaller value of 𝑎(𝑖) indicates a better
assignment of the object to its respective cluster.

On the other hand, the dissimilarity of the object 𝑖 to other clusters,
such as 𝑐𝐽 , is defined as the average distance between object 𝑖 and all
objects 𝑗 within 𝑐𝐽 (where 𝑐𝐼 ≠ 𝑐𝐽 ). For each object 𝑖, we calculate:

𝑏(𝑖) = min
𝐽≠𝐼

1
|

|

𝑐𝐽 ||

∑

𝑗∈𝑐𝐽

𝑑(𝑖, 𝑗) (13)

defined as the minimum average distance of object 𝑖 to all points in any
other cluster to which 𝑖 does not belong. By considering Eqs. (12) and
(13), the silhouette score of an object 𝑖 can be determined.

𝑠(𝑖) =

⎧

⎪

⎨

⎪

⎩

1 − 𝑎(𝑖)
𝑏(𝑖) 𝑖𝑓𝑎(𝑖) < 𝑏(𝑖)

0 𝑖𝑓𝑎(𝑖) = 𝑏(𝑖)
𝑏(𝑖)
𝑎(𝑖) − 1 𝑖𝑓𝑎(𝑖) > 𝑏(𝑖)

(14)

From this equation, −1 ≤ 𝑠(𝑖) ≤ 1, and a higher value of 𝑠(𝑖) indicates
better clustering results.

4.2.2. Experiment and parameter setting (SimGNN)
In this section, we explain our conducted experiments to evaluate

the GcPp clustering method.
Our first step was to determine the optimal parameters for the

experiment. As mentioned earlier, In the process of clustering by GcPp,
we utilized a similarity method called SimGNN, which is a graph
convolutional neural network, to predict the similarity scores between
pairs of graphs. However, since SimGNN is a learning-based method,
we needed ground truth similarity scores for comparison. To facilitate
this comparison, we obtained ground truth scores from two different
similarity methods: graph edit distance (GED) [13] and the Top-K
similarity that we introduced in this paper (see Section 3.2.2). In graph
theory, GED calculates similarity based on the number of node and edge
deletions and insertions required to transform one graph into another.
This method emphasizes the shape of the graphs and its impact on their
similarity. On the other hand, Top-K similarity compares the K-most
preferred items of each pair of users, indicating that users are similar if
their most preferred items are the same. We conducted the SimGNN
experiment with 100 epochs using both Top-K and GED as ground
truth, varying the training batch sizes (128, 256, and 512 for the car
dataset, and 32, 64, and 128 for the food dataset). The corresponding
results are shown in Fig. 3 for the car dataset and Figure Fig. 4 for the
food dataset. Interestingly, the clustering based on the Top-K method
9

achieved better test loss and exhibited lower validation and training
loss compared to the clustering based on GED. This significant finding
demonstrates that in calculating the users’ similarities, incorporating
valuable user information, such as their best items according to Top-K
similarity, leads to improved similarity score predictions compared to
GED, which solely relies on the graph structure. Regarding the batch
sizes, we observed that a batch size of 128 and 256 performed better
than 512 for the car dataset, while batch sizes of 32 and 64 were more
effective for the food dataset. We reported the minimum validation and
training loss as well as the test loss for all the experiments conducted
on the car dataset in Table 4. The best results are highlighted in bold
for easy reference.

4.2.3. Experiment and parameter setting (GcPp)
In the subsequent phase of the experiment, we employed the pre-

dicted similarity scores to cluster all of the users. Then, we evaluated
our clustering with the silhouette score. As outlined in Section 4.2.1,
the calculation of the silhouette score necessitates a distance metric.
To this end, we utilized five distinct distance metrics, such as the
Euclidean distance and cosine distance, which are computed based on
the distance between the ‘‘feature vectors of the users’’. Notably, these
feature vectors were not employed in the training of our proposed
method. Additionally, we employed the ‘‘inverses of three similarity
methods’’, namely SimGNN, GED, and Top-K, as three distance met-
rics. These three methods only used ‘‘similarity’’ between the ‘‘graphs
of users’’ and not the ‘‘feature vectors of the users’’. The obtained
silhouette scores based on these five distance metrics are presented
in Table 5. Intriguingly, the inverse of SimGNN yielded the highest
score in all experiments, irrespective of the batch sizes and ground
truth methods. Even Top-K outperformed GED in terms of results.
These remarkable findings underscore the effectiveness of our proposed
method in clustering. There are two primary reasons for this: Firstly,
we integrated the pairwise preferences of users, which provided valu-
able and detailed information about their preferences. This inclusion
allowed us to capture the finer nuances of user preferences, leading
to more accurate similarity predictions. Secondly, by using the Top-
K similarity score as the ground truth, we incorporated the overall
preferences of users in a broader sense. This approach allowed us to
consider the general preferences and popular choices among users,
resulting in a more comprehensive understanding of similarity. By
combining these two approaches, we achieved improved performance
in capturing and predicting similarity scores, resulting in better cluster-
ing. As anticipated, the Euclidean and cosine metrics did not perform
as well as the other metrics. This can be attributed to the fact that
we did not employ the feature vectors of users during the training
process. Instead, training solely relied on the structure of graphs (users’
pairwise preferences). In summary, our GcPp clustering method was
implemented using the concept of ‘‘Dominant Set Clustering’’ and incor-
porated predicted similarity scores obtained from SimGNN, where the
Top-K similarity score served as the ground truth. The construction of
graphs was based on the pairwise preference data of the users. Our eval-
uation metrics demonstrated that the users were effectively clustered
using this approach. Subsequently, we utilized these user clusters as
groups in our Group Recommendation System (GRS) implementation.
Through an ablation study, we optimized the system’s parameters and
evaluated its performance.

4.3. Group recommendation performance

In this section, we will elaborate on the evaluation methodology
used for group recommendation. We will provide a comprehensive
explanation of the experiments conducted to optimize the system’s
parameters and perform an ablation study. Furthermore, the results
obtained from these experiments will be presented and discussed in
detail.
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Fig. 3. Car dataset: Performance evaluation of SimGNN with 100 epochs and varying Training batch sizes (128, 256, 512). (Left) Ground truth: is Top-K, (Right) Ground truth is
GED.
Fig. 4. Food dataset: Performance evaluation of SimGNN with 100 epochs and varying Training batch sizes (32, 64, 128). (Left) Ground truth: is Top-K, (Right) Ground truth is
GED.
Table 4
SimGNN was implemented with various parameter configurations, including different ground truth methods
(Top-K and GED) and batch sizes (128, 256, and 512). The minimum loss obtained for each setup is
highlighted in bold.

Ground truth: Top-K Ground truth: GED

Train and validation batch Train and validation batch

128 256 512 128 256 512

Min validation loss 0.002 0.002 0.003 0.004 0.006 0.010
Min train loss 0.001 0.002 0.003 0.004 0.005 0.009
Test loss 0.005 0.004 0.005 0.013 0.010 0.011
10
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Table 5
Calculating Silhouette score for evaluation of our proposed GcPp clustering method by applying various parameter
configurations, including different ground truth methods (Top-K and GED) and batch sizes (128, 256, and 512) and
different distance metrics.
Distance metrics in Ground truth: Top-K Ground truth: GED

Silhouette score Train and validation batch Train and validation batch

128 256 512 128 256 512

1 Euclidean distance −0.332 −0.179 −0.240 −0.379 −0.411 −0.394
2 Cosine distance −0.484 −0.504 −0.641 −0.616 −0.642 −0.553
3 Inverse of SimGNN −0.002 −0.003 −0.003 −0.019 −0.022 −0.021
4 Inverse of GED −0.026 −0.033 −0.032 −0.025 −0.023 −0.024
5 Inverse of Top-K −0.006 −0.009 −0.008 −0.056 −0.048 −0.049
Fig. 5. Car dataset: Confusion matrices for different theta values, ranging from 0.1 to 0.9 (The letters N and P represent negative and positive, respectively).
4.3.1. Metrics
Our evaluation of the group recommendation model involves four

key metrics: precision, recall, F1-score, and fairness. Below, I provide
detailed explanations of how each of these metrics is calculated. We
calculate TP (true positive), FP (false positive), and FN (false negative)
based on the following equations (see section 5.2 in [12]):

𝑇𝑃𝐺 =
{

𝑖 ∈ 𝑅𝐺|∀𝑢 ∈ 𝐺 such that 𝑟𝑢,𝑖 ≥ 𝜃
}

(15)

𝐹𝑃𝐺 =
{

𝑖 ∈ 𝑅𝐺|∃𝑢 ∈ 𝐺 such that 𝑟𝑢,𝑖 < 𝜃
}

(16)

𝐹𝑁𝐺 =
{

𝑖 ∉ 𝑅𝐺|∀𝑢 ∈ 𝐺 such that 𝑟𝑢,𝑖 ≥ 𝜃
}

(17)

Here, the set of items recommended to group 𝐺 is denoted by 𝑅𝐺,
while the rating of user 𝑢 for item 𝑖 is 𝑟𝑢,𝑖. To measure whether a user
likes or dislikes an item, we used a threshold 𝜃. In the following, we
describe the process of determining an appropriate value for 𝜃.
11
4.3.2. Parameters setting
To determine the optimal threshold value for theta (𝜃), we con-

ducted multiple iterations of the experiment using various theta values
ranging from 0.1 to 0.9 for the car dataset and 0.0 to 0.8 for the food
dataset.

As the heatmaps in Figs. 5 and 6 affirm, lower theta values are
associated with higher values of TP and FN. Conversely, higher theta
values result in higher TN and FP. Hence, a well-determined threshold
is necessary to achieve high TP, TN, low FP, and FN, thereby ensuring
high precision and recall. Based on our experiment, we selected a theta
value of 0.4 for the car dataset and 0.1 for the food dataset. This implies
that items with scores above this theta value are considered liked by the
users, while those below, are deemed disliked.

4.3.3. Precision–recall curve
In order to demonstrate the effectiveness of utilizing GcPp clustering

in the group recommendation system (GRS), we conducted two exper-
iments: one with clustering and one without clustering. The precision–
recall curve, depicted in Fig. 7, illustrates the evaluation outcomes at
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Fig. 6. Food dataset: Confusion matrices for different theta values, ranging from 0.1 to 0.9 (The letters N and P represent negative and positive, respectively).
Fig. 7. Precision–recall curve for Group recommendation system with/without GcPp clustering on car dataset (left) and food dataset (right).
various thresholds (ranging from theta 0.1 to 0.9). This curve serves as
evidence of the impact and performance of our group recommendation
model with and without GcPp clustering. From these figures, it is
observed that the curve for our model (with clustering) consistently
lies above the curve for the model without clustering across all theta
values. This indicates that our proposed model consistently achieves
higher precision and recall compared to the other one. This means
our model performs better in accurately identifying positive instances
and minimizing false positives compared to the second model. This
suggests that using GcPp clustering results more effectively in the task
at hand, as it achieves a better balance between precision and recall.
This comparison between the precision–recall curves of the two models
highlights the superior performance of GRS with GCPp clustering.

4.3.4. Aggregation function setting
In the pursuit of identifying the most suitable aggregation function

for our group recommendation System, we employed two aggregation
12
methods: Approval Voting (AV) [68], which quantifies the number
of ratings exceeding a specified threshold, and Average (Avg). These
functions were applied to user groups derived from GcPp clustering and
randomly assembled groups. The outcomes for the car dataset and food
dataset on different thresholds (theta) are presented in Figs. 8 and 9,
respectively.

Within the car dataset, Average exhibited a superior F1-score when
contrasted with Approval Voting in both clustered and random user
groups. Upon scrutinizing the left-hand figures (representing clustered
groups) against the right-hand figures (depicting random groups), it
becomes evident that GRS on groups clustered by GcPp demonstrates
enhanced fairness and F1-score (a combination of precision and recall)
compared to groups composed of random users. This observation un-
derscores the advantageous impact of our proposed GcPp clustering
approach within the context of GRS.

The summary of the parameter configuration of the proposed
method based on the influence of various parameters on experimental
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Fig. 8. Comparison of two aggregation functions: Approval Voting (upper panel) and Average (lower panel) applied to groups clustered by GcPp (left) and random groups (right),
under varying theta values within the car dataset.
Fig. 9. Comparison of two aggregation functions: Approval Voting (upper panel) and Average (lower panel) applied to groups clustered by GcPp (left) and random groups (right),
under varying theta values within the food dataset.
outcomes, comes in the following. According to Section 4.2.2, Ta-
ble 4, and Figs. 3 and 4, the choice of ‘‘Top-K’’ as the ground truth
for similarity in SimGNN is highlighted. Additionally, the train and
validation batch sizes were set to 256 for the car dataset and 64 for
the food dataset, driven by observations of lower test and validation
losses. Furthermore, in accordance with Table 5 and the associated
explanations in Section 4.2.3, ‘‘inverse of SimGNN’’ was selected as the
distance metric for evaluating our clustering via the silhouette score.
Having identified the optimal parameters for the clustering method,
attention now shifts to leveraging these user clusters as groups for
our group recommendation system. Towards this objective, as outlined
13
in Section 4.3.4 and illustrated in Figs. 8 and 9, the aggregation
function ‘‘Average’’ was chosen. Furthermore, guided by insights from
Section 4.3.2 and depicted in Figs. 5 and 6, a theta value of 0.4 was
adopted for the car dataset, while 0.1 was selected for the food dataset.

4.3.5. Comparison with state-of-the-art
In order to assess the effectiveness of our model, we conducted

a comparative analysis with two widely recognized recommendation
system methods, namely BPR [21] and MFP [12], which operate on
pairwise-preference data. We evaluated various performance metrics,
including precision, recall, F1-score, fairness, and execution time, to
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Table 6
Comparison of evaluation results between our proposed GRS method with GcPp
clustering and three alternative recommendation methods on the car dataset.

Precision Recall F1-score Fairness Execution
time

BPR 0.87 0.05 0.10 0.90 0.0061
MFP 0.78 0.30 0.43 0.82 0.0088
GRS without clustering 0.77 0.36 0.50 0.79 0.0088
GRS with GcPp clustering 0.90 0.42 0.57 0.98 0.0077

Table 7
Comparison of evaluation results between our proposed method with GcPp clustering
and three alternative methods on the food dataset.

Precision Recall F1-score Fairness Execution
time

BPR 0.68 0.74 0.71 0.70 0.0087
MFP 0.71 0.73 0.72 0.78 0.0093
GRS without clustering 0.92 0.50 0.65 1.00 0.0016
GRS with GcPp clustering 0.94 0.85 0.89 1.00 0.0014

gauge the quality and efficiency of our model in relation to these
established methods. Moreover, we compared our method with the
proposed GRS without using GcPp clustering. The obtained results are
displayed in Tables 6 and 7.

The results obtained from our evaluation demonstrate the superior
performance of our proposed method over the other methods across
all evaluation metrics. These findings highlight the significance of
employing GcPp clustering in group recommendation systems. The
high precision, recall, F1-score, and fairness achieved by our proposed
method, which utilizes GcPp clustering, compared to BPR and MFP
in the group recommendation system can be attributed to several key
factors. Firstly, the incorporation of GcPp clustering in our proposed
method allows for a more accurate and effective grouping of indi-
viduals with similar preferences. By clustering individuals based on
their preferences, our method can capture the underlying patterns and
similarities within the group more effectively. This clustering process
enables us to create more homogeneous groups, where the members
share similar tastes and preferences. As a result, our proposed method
can generate recommendations that are more aligned with the indi-
vidual preferences of the group members, leading to higher precision
and recall compared to BPR and MFP. Furthermore, GcPp clustering
facilitates targeted and precise recommendation aggregation within
each cluster. By considering the preferences of the clustered group
members, our method can identify items that are highly preferred by
a significant portion of the group. This targeted aggregation enhances
the relevance and accuracy of the recommendations, resulting in higher
precision and recall scores. In terms of fairness, GcPp clustering helps
to address the fairness concerns in group recommendations. By forming
clusters based on similarity, our method ensures that individuals with
similar preferences are grouped together. This helps in avoiding situa-
tions where certain individuals dominate the recommendation process,
ensuring a fair distribution of recommendations among the group mem-
bers. The recommendations provided by our proposed method take into
account the preferences and interests of the entire group, promoting
fairness in the recommendation outcomes. Moreover, GcPp clustering
helps to mitigate the influence of personal biases or outliers within the
group. By grouping individuals with similar preferences, our method
can reduce the impact of extreme or outlier preferences, resulting in
a more balanced and fair recommendation process. This contributes to
higher fairness scores for our proposed method compared to BPR and
MFP.

To assess the efficacy of the proposed GcPp clustering approach
on Group Recommendation Systems (GRS), we employed Adversarial
Preference Learning with Pairwise Comparisons (CRGAN) [69] as a
recommendation technique suited for pairwise comparison data. For
14

group recommendation, user groups were formed using two methods: M
firstly, by leveraging the GcPp clustering outcomes where each cluster
represented a user group; secondly, by generating random groups of
equivalent sizes to the clustered groups but composed of random users.
To ensure impartiality, the process of generating random groups was
repeated 20 times, and the final evaluation results represent the average
performance across these iterations.

The evaluation encompassed 10 metrics, including HitRatio (HR),
Normalized Discounted Cumulative Gain (NDCG), Area under the ROC
Curve (AUC), Mean Average Precision (MAP), Mean Reciprocal Rank
(MRR), Accuracy, Precision, Recall, F1-score, fairness, and also execu-
tion time. Evaluation results are presented in Table 8. Notably, CRGAN
exhibited superior performance across all metrics when employing
GcPp for group formation compared to random grouping, particularly
excelling in precision, recall, F1-score, and fairness, pivotal evaluation
criteria for group recommendation systems. This superiority stems from
the clustering algorithm’s ability to categorize users based on detailed
(pairwise comparison) and top-K preferred items, resulting in similar
preferences within clustered groups. Specifically, when group members
share similar preferences, precision increases as a larger proportion of
recommended items align closely with group preferences. Conversely,
diversity within random groups poses challenges in matching items to
varying preferences, resulting in lower precision. Additionally, in clus-
tered groups, recommendations cater to common interests, enhancing
recall by capturing relevant items more effectively. In contrast, random
groups with diverse preferences struggle to identify universally relevant
items, leading to lower recall. The F1-score reflects a balanced perfor-
mance between recommendation accuracy and completeness. Fairness
is also higher in clustered groups due to recommendations aligning with
homogeneous group preferences, enhancing the satisfaction of each
user and equitable representation compared to random groups with
diverse preferences.

5. Conclusion

This paper presents a group recommendation approach using the
introduced graph clustering method called GcPp, which relies on users’
pairwise preferences. Initially, a neural network-based similarity score
prediction process is employed, where the top-k preferred items act
as the ground truth, determining the similarity scores between nodes
(users) based on their favorite items and pairwise preference simi-
larities. The integration of GcPp clustering enhances precision, recall,
F1-score, and fairness in the group recommendation system. The clus-
tering process enables accurate grouping and targeted recommenda-
tion aggregation, promoting fairness by considering the entire group’s
preferences and mitigating the impact of personal biases or outliers.
Consequently, our proposed method outperforms BPR and MFP (widely
used recommendation system methods based on pairwise preferences)
in terms of precision, recall, F1-score, and fairness. In future work,
we plan to explore GcPp in other applications such as intelligent
transportation [70,71] or agent-based communication [72,73] to test
the usability of the method in real settings.
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Table 8
Comparing assessment outcomes of the GRS through the utilization of CRGAN with GcPp clustering against random
clusters across car and food datasets.
Dataset Food Dataset Car Dataset

Method CRGAN CRGAN CRGAN CRGAN
(random groups) (clustered groups) (random groups) (clustered groups)

HR@3 1.00 1.00 1.00 1.00
NDCG@3 0.77 0.85 0.89 1.00
AUC@3 0.70 0.75 0.87 1.00
MAP@3 0.85 0.90 0.91 1.00
MRR@3 0.47 0.51 0.42 0.44
Accuracy 0.71 0.83 0.85 0.97
Precision 0.78 0.89 0.88 1.00
Recall 0.77 0.92 0.84 0.94
F1-score 0.76 0.89 0.86 0.97
Fairness 0.63 0.68 0.68 0.70
Execution time 0.0114 0.0130 0.0116 0.0130
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