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ABSTRACT
The Cancer Registry of Norway (CRN) collects information on can-
cer patients by receiving cancer messages from different medical
entities (e.g., medical labs, hospitals) in Norway. Such messages
are validated by an automated cancer registry system: GURI. Its
correct operation is crucial since it lays the foundation for cancer
research and provides critical cancer-related statistics to its stake-
holders. Constructing a cyber-cyber digital twin (CCDT) for GURI
can facilitate various experiments and advanced analyses of the
operational state of GURI without requiring intensive interactions
with the real system. However, GURI constantly evolves due to
novel medical diagnostics and treatment, technological advances,
etc. Accordingly, CCDT should evolve as well to synchronize with
GURI. A key challenge of achieving such synchronization is that
evolving CCDT needs abundant data labelled by the new GURI.

To tackle this challenge, we propose EvoCLINICAL, which con-
siders the CCDT developed for the previous version of GURI as
the pretrained model and fine-tunes it with the dataset labelled by
querying a new GURI version. EvoCLINICAL employs a genetic
algorithm to select an optimal subset of cancer messages from a
candidate dataset and query GURI with it. We evaluate EvoCLIN-
ICAL on three evolution processes. The precision, recall, and F1
score are all greater than 91%, demonstrating the effectiveness of
EvoCLINICAL. Furthermore, we replace the active learning part
of EvoCLINICAL with random selection to study the contribution
of transfer learning to the overall performance of EvoCLINICAL.
Results show that employing active learning in EvoCLINICAL in-
creases its performance consistently.
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1 INTRODUCTION
Cancer is a disease that affects numerous individuals in the world.
It is reported that the number of new cancer cases is around 20
million, and almost 10 million people died from cancer in 2020
only [16]. Cancer inflicts pain on a patient not only physically and
mentally but also significantly impacts society as a whole.

The Cancer Registry of Norway (CRN) collects cancer data and
provides statistics and research data to the public, government,
hospitals and researchers. CRN possesses a rich dataset on cancer
patients since health professionals in Norway are instructed by law
to notify CRN of diagnostics, treatment and follow-up of cancer
patients. Each cancer case is aggregated using a set of cancer mes-
sages containing specific information on medical events. To ensure
the high quality of the data, CRN developed an Automated Cancer
Registry System (known as GURI) to check the message’s validity
of a set of validation rules defined based on standard medical rules
(e.g., a person with type O blood cannot have a biological parent
with type AB blood). Specifically, GURI is constructed with domain
knowledge and maintains a set of validation rules. The validity of
each message is determined by systematically checking violations
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of these rules. The correct operation of GURI is the foundation of
producing reliable data for facilitating various research activities.
SSimulation, which imitates a real-world system with software, is
one promising approach to studying the operation of GURI. Inter-
action with simulation instead of the real system is comparatively
cheaper and more malleable, i.e., it facilitates various experiments
without intervening too much with the real system. Researchers
have recently proposed extending the simulation concept into a
digital twin (DT), synchronising the operation state with the real
system. Such an extension enables DT to uncover unknown issues
before they cause irreversible damage to the real system. Moreover,
it is possible to employ DT to replay critical events and assess how
to mitigate them in the future.

Despite their great success in various domains [15], most exist-
ing DTs are confined to cyber-physical digital twins, where DTs
are used to simulate physical systems. Nonetheless, we posit that
critical software systems like GURI can also benefit from DT. Face-
book proposed a cyber-cyber digital twin (CCDT) for one of their
platforms [1]. We take inspiration from this work and build CCDT
for GURI. With CCDT, we expect to enable the simulation of socio-
technical behaviours of various stakeholders of GURI, including
medical coders, hospital professionals, and policymakers, who con-
stantly interact with GURI and consequently impact its operation.
This is important to develop a test infrastructure for GURI. How-
ever, GURI keeps evolving naturally as novel medical diagnostics
and treatments are constantly introduced, new medical knowledge
is gained, etc., which entails adding, deleting, and modifying the val-
idation rules in GURI. Consequently, CCDT has to be continuously
evolved to remain synchronized with evolving GURI. Otherwise,
the performance of CCDT would present an unexpected decrease
inevitably. One intuitive evolution method is to train a new model
from scratch with abundant labelled new data. However, such la-
bels are acquired through interaction with GURI, which can cause
detriment to its safety and security. Therefore, we aspire to evolve
CCDT with a small amount of labelled data.

To that end, we propose a novel method EvoCLINICAL, which
constructs a neural network-based CCDT for GURI and harnesses
active transfer learning (TL) to enable the evolution of CCDT.
Specifically, CCDT simulates a specific version of GURI by predict-
ing the validation result of a given cancer message. Consequently,
a well-trained CCDT possesses knowledge about how a specific
version of GURI validates cancer messages. Such knowledge can be
leveraged to build a CCDT for a new version of GURI. Therefore,
when a major version update is conducted, we employ TL to evolve
the CCDT, which entails a pretraining + fine-tuning paradigm. TL
treats the CCDT from the previous version as a pretrained model
and fine-tunes it with data labelled by the updated GURI. How-
ever, fine-tuning necessitates sufficient data labelled by the updated
GURI, whereas minimal interaction with GURI is preferred. As a
solution, we adopt an active learning paradigm and select a subset
of the most valuable cancer messages from a candidate dataset to
query the new GURI. These labelled cancer messages are then used
to fine-tune the CCDT, synchronizing it with the new GURI.

To evaluate EvoCLINICAL, we acquire six versions of GURI and
a candidate dataset. The candidate dataset is generated following
the specifications of a cancer message, containing 8000 unlabelled

cancer messages. These six versions are divided into three experi-
mental groups, with each group consisting of a source GURI and a
target GURI. We perform separate TL from source GURI to target
GURI in each group. Experimental results show EvoCLINICAL’s
high performance in terms of precision, recall and F1 score, with a
minimum of 0.9105 (i.e., recall value on 𝑆2 → 𝑇2).We also find active
learning improves the performance in all three evolution processes
compared to random selection. Additional experiments show large
candidate dataset sizes have positive influences on EvoCLINICAL’s
performance, as expected.

The contribution of EvoCLINICAL is as follows. 1) We propose
a neural network-based CCDT that simulates GURI for validating
cancer messages. In particular, we first extract categorical, numeri-
cal, and string features from cancer messages, which are fed into a
Convolutional Neural Network (CNN) to predict the results for each
rule. 2) We leverage TL to evolve the CCDT for the new version of
GURI. TL adopts a pretraining + fine-tuning paradigm, harnessing
knowledge from previous versions of GURI to build a CCDT for
the new version of GURI. 3) To reduce the query times on the new
version of GURI, we propose a novel active learning method to
select the most valuable cancer messages for GURI to label. Active
learning utilizes indicator-based evolutionary algorithm IBEA [45]
to select a subset from the candidate dataset with five optimization
objectives. 4) We evaluate EvoCLINICAL with six versions of GURI.
We first assess the effectiveness of TL and active learning, then
analyse the impact of the candidate dataset size on the performance
of EvoCLINICAL.

The rest of the paper is organized as follows. We first present
the real-world application context in Section 2. In Section 3, we
demonstrate the details of EvoCLINICAL, including CCDT con-
struction and evolution. Section 4 presents the experiment design
of EvoCLINICAL, followed by the experiment results in Section 5.
In Section 6, we discuss the practical implications of EvoCLINICAL
and present the lessons learned. Related works are listed in Section
7, and we identify potential threats to the validity of the empiri-
cal study in Section 8. Finally, we conclude this paper and discuss
future works in Section 9.

2 REAL-WORLD APPLICATION CONTEXT
AND CHALLENGES

CRN is one of the oldest national cancer registries in the world,
extensively researching cancer since 1951. Over the years, the prac-
tices of managing cancer registries in CRN have shifted from a
manual approach to a rule-based system, i.e., GURI. CRN collects
cancer messages from different medical entities throughout Nor-
way and relies on GURI to assess the validity of these messages. We
present a snippet of one cancer message as in Listing 1. A cancer
message is created as a JSON-like file, encompassing multiple fields
related to the cancer registry. These fields can be divided into three
types: categorical fields (e.g., "gender", "topography" and "morphol-
ogy" ), numerical fields (e.g., "chemotherapy"), and textual fields
(e.g., "birth_date", "diagnosis_date", "ct" and "message_version").
GURI validates such a message by checking violations of the vali-
dation rules, each involving one or multiple fields in the message.
Take this validation rule as an example: The birth date of a patient
shall be later than the diagnosis date. It involves two fields in the
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message, i.e., "birth_date" and "diagnosis_date." Formally, let 𝑋 be a
cancer message and 𝑛 be the rule set size of GURI. GURI validate
𝑋 by checking the violations of each rule 𝑅𝑖 and assign a label 𝑦𝑖 ∈
{"info", "warning", "not applied", "error"} to it, with "info" denoting
that 𝑋 successfully passes 𝑅𝑖 ’s validation, "error" representing a
failed validation result, "warning" highlighting improbable field
values or combination values in 𝑋 , e.g., the age of one patient is
130 years, and "not applied" meaning 𝑅𝑖 does not apply to 𝑋 due to
unmet prerequisites, e.g., rule 𝑅𝑖 shall be activated on 2023/01/01
while 𝑋 is generated on 2020/01/01.

1 {
2 "gender":"M",
3 "topography": "809",
4 "morphology" : "405",
5 "chemotherapy": 3,
6 "birth_date" : "2000-01-01",
7 "diagnosis_date":"2019-07-09",
8 "ct": "gvEQyqbV46",
9 "message_version":"tNJP2eAMEd",
10 }

Listing 1: Snippet of a cancer message

The relations between fields in modern medical research are con-
stantly changing, and new relations are being identified as research
progresses. This is due to the development of advanced medical
technologies that allow researchers to gain a more comprehensive
picture of health than ever before. For example, genomics, cancer
blood tests, MRIs, sleep analysis, and many other innovations al-
low medical professionals to gain the most comprehensive picture
of patient health. Consequently, GURI needs to evolve by adding
new rules or modifying existing rules when needed. From CRN, we
obtained six stable versions of GURI. We divide them into three
evolution processes for evaluation purposes as shown in Table 1.
We can observe that the first version change 𝑆1 → 𝑇1 concerns rules
checking individual fields, whereas 𝑆2 → 𝑇2 and 𝑆3 → 𝑇3 introduce
new rules checking more than one field. Concretely, 𝑆2 → 𝑇2 intro-
duces two new rules that involve two fields, and 𝑆3 → 𝑇3 presents
a new rule that involves three fields: diagnosis date, morphology,
and topography. Evidently, the complexity of the newly introduced
rules varies in the three evolution processes (𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝑆1 →
𝑇1) < 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝑆2 → 𝑇2) < 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝑆3 → 𝑇3)).

3 METHODOLOGY
We aim to build a CCDT for each source GURI and evolve it to
synchronize with the corresponding target GURI. Concretely, Evo-
CLINICAL tackles the following challenges: The first challenge is
about cancer message complexity. Despite its structural format,
each cancer message contains multiple heterogeneous fields, such
as topography type (categorical), chemotherapy times (numerical),
and CT description (textual). Extracting high-quality features from
these fields is non-trivial. As a solution, we leverage one-hot encod-
ing, normalization, and universal sentence encoder to preprocess
each field and harness a multi-layer CNN to extract local and global
features from each message.

Another challenge is the data scarcity issue on target GURI.
Constructing CCDT necessitates sufficient version-specific labelled

Table 1: Descriptions of evolution processes of GURI. 𝑛𝑆 and
𝑛𝑇 denote the rule set sizes in the source and target GURI.

Evolution Pair 𝑛𝑆 𝑛𝑇 Description of Changed Rules

𝑆1 → 𝑇1 30 35 Rules related to non-solid surgery
procedure, diagnosis date, and
metastasis morphology.

𝑆2 → 𝑇2 40 45 Rules related to clinical stage, tu-
mour topography, combination va-
lidity of surgery type and topogra-
phy, combination validity of mor-
phology and basis.

𝑆3 → 𝑇3 51 56 Rules related to melanoma, disease
stage, combination validity of topog-
raphy and tumour basis, combina-
tion validity of morphology, topog-
raphy, and diagnosis date, and com-
bination validity of morphology and
tumour basis.

data provided by GURI. For the source versions of GURI: 𝑆1, 𝑆2,
and 𝑆3, we hypothesize that they produce abundant labelled data
due to their continuous operation in the production environment.
By contrast, the number of labelled data from the target versions,
i.e., 𝑇1, 𝑇2, and 𝑇3, is not guaranteed due to their short operation
time. Meanwhile, querying the target GURI with a large number of
unlabeled messages should be avoided since it can interfere with
the normal operation of the target GURI. To mitigate this problem,
we postulate that the old CCDT for source versions contains useful
knowledge for constructing CCDT for target versions since not
all rules are updated, and these rules are interdependent on each
other. Therefore, we harness TL to transfer such knowledge from
source CCDTs to target CCDTs, theoretically requiring less data
than training from scratch. TL considers the source CCDT as a
pretrained model for the target version and fine-tunes it with data
acquired from the target version.

Despite that it requires few data than training from scratch,
acquiring sufficient data from target GURI for fine-tuning is still
challenging. As a remedy, we propose to adopt an active TL para-
digm, where we purposely select the most valuable cancer messages
and query the new GURI with these valuable messages instead of
all unlabelled messages from the candidate dataset. Active selec-
tion minimises the number of queries on the target GURI while
maintaining high-quality fine-tuning. EvoCLINICAL builds an ef-
fective CCDT (denoted as CCDT-T) for the target GURI with the
knowledge transferred from the source GURI’s CCDT (denoted as
CCDT-S). Figure 1 shows EvoCLINICAL’s overview comprising two
stages: CCDT-S Construction Stage and CCDT-T Construction Stage.
CCDT-S Construction Stage trains CCDT-S for GURI-S to predict
rule validation results with the dataset collected during the opera-
tion of GURI-S. CCDT-T Construction Stage entails Evolution Dataset
Construction Phase and Transfer Learning Phase. During the first
phase, we construct a dataset for evolution by selecting a subset of
valuable cancer messages from the candidate dataset. Specifically,
we define five objectives and employ a genetic search algorithm
(i.e., IBEA) to find an optimal subset of cancer messages. Next, we
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Figure 1: Overview of EvoCLINICAL.GURI-S denotes the sourceGURI version, which evolves toGURI-T, the targetGURI version.
CCDT-S and CCDT-T are the cyber-cyber digital twins of GURI-S and GURI-T, respectively. TL denotes transfer learning.

query GURI-T to validate each message in the subset, which is then
up-sampled into a larger dataset 𝐶𝑀 to increase the training data
volume. Finally, in Transfer Learning Phase, we build the CCDT-T
by extending CCDT-S by adding new model modules dedicated
to newly-introduced rules. We represent the parameters for previ-
ously existing and new modules as 𝑃CCDT−S and 𝑃New, respectively.
We consider CCDT-S as the pretrained model for CCDT-T, sharing
its trained parameters as 𝑃CCDT−S’s initialization. We randomly
initialise new modules’ parameters since CCDT-S does not contain
knowledge about 𝑃New. After initialization, we use dataset 𝐶𝑀 to
fine-tune 𝑃CCDT−S and train 𝑃New from scratch.

3.1 Stage 1: CCDT-S Construction
As mentioned in Section 2, GURI validates a given cancer message
𝑋 with rule 𝑖 , labelling it as 𝑦𝑖 ∈ {"info", "warning", "not applied",
"error"}. To simulate GURI-S, we design CCDT-S as a 4-category
classification neural networkmodel. Specifically, we employ amulti-
output classification model [38] as the CCDT-S to predict the valida-
tion result of a cancermessage. Figure 2 shows the detailed structure
of CCDT-S. For a given cancer message 𝑋 , we first apply a series of
feature preprocessing techniques to preprocess the inputs as vector
representations, which will be inputted to CCDT-S. CCDT-S is a
multi-output model consisting of several independent prediction
modules with identical architecture, where each module is respon-
sible for the result code prediction of one specific rule. Let the rule
set size of GURI-S be 𝑛. We design CCDT-S with 𝑛 modules, i.e.,
𝑀1,𝑀2, ...,𝑀𝑛 . Next, we present the design of CCDT-S: its feature
representation (Section 3.1.1) and architecture (Section 3.1.2).

3.1.1 Feature Representation. A cancer message 𝑋 encompasses
multiple variables of the same or different types, i.e., numerical,
categorical, and string types. Therefore, feature representation tech-
niques are needed to transform the original cancer message dataset
into numerical feature representations, such that they can be pro-
cessed by CCDT-S. Specifically, we apply the following feature
representation approaches for handling different variable types.
One-hot encoding is a frequently used approach to deal with cat-
egorical data in machine learning [37]. In our context, for variables
with 𝑛𝑐 categorical values, we represent each categorical value as a
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Prediction layer
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Rule 1 prediction module (M1)

…
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…

Mn

…
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Predicted rule validation results

Figure 2: Architecture of CCDT. Ca: categorical variables; Str:
string variable; Nu: numerical variables

𝑛𝑐-dimensional sparse vector where all elements are 0 except for a
single 1 that uniquely identifies the categorical value.
Sentence embedding is a natural language processing (NLP) tech-
nique, which represents entire sentences and their semantic infor-
mation as vectors [36]. It is trained on various data sources. It can
encode sentences, phrases, or short paragraphs and is commonly
used to identify similar texts based on context, meaning, and topics.
We choose universal sentence encoder (USE) [10], a commonly ap-
plied sentence embedding model, to represent each string variable
value as a 512-dimensional vector.
Min-max normalization, also known as min-max scaling, is ap-
plied to scale numerical variable values within the range of [0, 1].
This can ensure that numerical variables contribute equally to the
model fitting as categorical and string variables.

3.1.2 Module Architecture. As we discussed earlier, for a GURI
version with 𝑛 rules, its corresponding CCDT will have a CCDT-S
with 𝑛 modules, each of which is responsible for one specific rule
result prediction. In our current design of CCDT-S, all the modules
have the same module architecture, and we employ the multi-input
CNN to design a module, which has been proven effective for breast
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cancer detection [40]. Specifically, as shown in Figure 2, a module
has two CNN branches, where CNN B1 is for categorical and numer-
ical variable values, and CNN B2 is for string variable values. Each
branch processes its input (vector representations) independently.
Outputs of the two branches are concatenated and processed by a
fully connected layer. Its output is then processed by the prediction
layer, which uses softmax as the activation function to obtain the
prediction result.

CNN B1 and CNN B2 share the same architecture shown on the
right-hand side of Figure 2. The first two layers are one-dimensional
convolutional (conv1D) layers with the kernel size being 16 and 32,
respectively. The third layer is the max pooling layer with stride
2, followed by two conv1D layers of kernel size 64. The flattening
layer is used to flatten the output of the previous layer. The last
layer is a fully connected layer with 200 neurons.

3.2 Stage 2: CCDT-T Construction
To construct CCDT-T, we first utilize search-based selection to
construct a subset 𝐶𝑀 of valuable cancer messages (Section 3.2.1).
Then we harness TL to transfer knowledge from CCDT-S to CCDT-
T by fine-tuning with dataset 𝐶𝑀 (Section 3.2.2).

3.2.1 Evolution Dataset Construction Phase. This phase involves
dataset selection and augmentation.
Dataset Selection is formulated as a search problem. Let𝐶𝑀𝑆→𝑇 =

{𝑋1, 𝑋2, ..., 𝑋𝑛𝑐 } be a cancer message dataset, where 𝑛𝑐 is the total
number of cancer messages in 𝐶𝑀𝑆→𝑇 . A cancer message 𝑋 is
specified with several variables related to cancer registration: 𝑋 =

{𝑣𝑎𝑟1, 𝑣𝑎𝑟2, ..., 𝑣𝑎𝑟𝑛𝑣}. Notice that 𝐶𝑀𝑆→𝑇 can be obtained by a
cancer message generation strategy or provided by CRN, and the
generation strategy is out of the scope of this paper. Our objective is
to search a subset of cancer messages from 𝐶𝑀𝑆→𝑇 that satisfies a
specific optimization goal to evolve CCDT from CCDT-S to CCDT-
T. Therefore, the entire search space is all non-empty subsets of
𝐶𝑀𝑆→𝑇 , and we define the search space of all possible solutions
as: 𝑃𝑆𝑆→𝑇 = {𝑝𝑠1, 𝑝𝑠2, ..., 𝑝𝑠𝑛𝑝𝑠 }, where 𝑛𝑝𝑠 is the total number
of possible solutions. Notice that 𝑛𝑝𝑠 can be calculated as 2𝑛𝑐 − 1,
and as the size of 𝐶𝑀𝑆→𝑇 (i.e., 𝑛𝑐) increases, the search space will
exponentially increase and exhaustively explore the entire search
space is practically infeasible.

Each possible solution 𝑝𝑠𝑖 ∈ 𝑃𝑆𝑆→𝑇 has 𝑛𝑝𝑠𝑖 (1 ≤ 𝑛𝑝𝑠𝑖 ≤
𝑛𝑐) cancer messages: 𝑝𝑠𝑖 = {𝑋1, 𝑋2, ..., 𝑋𝑛𝑝𝑠𝑖 }. For a cancer mes-
sage 𝑋 𝑗 ∈ 𝑝𝑠𝑖 , we can use CCDT-S to predict the validation re-
sults of each rule in 𝑅𝑆 , which can be represented as a set of
probability vectors: 𝑃𝑉𝑋 𝑗

= {𝑝𝑣𝑟1
𝑋 𝑗
, 𝑝𝑣

𝑟2
𝑋 𝑗
, ..., 𝑝𝑣

𝑟𝑛𝑟𝑆
𝑋 𝑗

}, where 𝑛𝑟𝑆 is
the size of 𝑅𝑆 . Each probability vector has four probability val-
ues denoting the probabilities of the four types of result codes
(i.e., ”𝑖𝑛𝑓 𝑜”, ”𝑤𝑎𝑟𝑛𝑖𝑛𝑔”, ”𝑛𝑜𝑡 𝑎𝑝𝑝𝑙𝑖𝑒𝑑”, ”𝑒𝑟𝑟𝑜𝑟”). Therefore, for so-
lution 𝑝𝑠𝑖 , CCDT-S predicts its validation results as: 𝑃𝑉𝑅𝑝𝑠𝑖 =

{𝑃𝑉𝑋1 , 𝑃𝑉𝑋2 , ..., 𝑃𝑉𝑋𝑛𝑝𝑠𝑖
}. Notice that the sum of the four proba-

bility values in a probability vector is one, and we take the position
with the maximum probability value as the predicted rule result
code, i.e., argmax. For example, 𝑝𝑣𝑟1

𝑋 𝑗
= [0.1, 0.05, 0.65, 0.3], then

the predicted result code for rule 𝑟1 is 2, which is ”𝑛𝑜𝑡 𝑎𝑝𝑝𝑙𝑖𝑒𝑑”.
Furthermore, we can also get the true validation results of solu-
tion 𝑝𝑠𝑖 on GURI-S:𝑇𝑉𝑅𝐺𝑈𝑅𝐼𝑆

𝑝𝑠𝑖
= {𝑡𝑣𝑟𝑋1 , 𝑡𝑣𝑟𝑋2 , ..., 𝑡𝑣𝑟𝑋𝑛𝑝𝑠𝑖

}, where

𝑡𝑣𝑟𝑋 𝑗
is the true validation results of the 𝑗𝑡ℎ cancer message (i.e.,

𝑋 𝑗 ) in 𝑝𝑠𝑖 .
Solution Measurements. To measure the goodness of a solution 𝑝𝑠
in 𝑃𝑆𝑆→𝑇 , we define the following set of solution measurements.

1) Solution Size (SS) measures the amount of selected cancer
messages in solution 𝑝𝑠 . 𝑆𝑆 is calculated as:

𝑆𝑆𝑝𝑠 = 𝑛𝑝𝑠, (1)

where 𝑛𝑝𝑠 is the total number of cancer messages in solution 𝑝𝑠 .
2) Cancer Message Diversity (CMD) measures the diversity of

solution 𝑝𝑠 . To calculate𝐶𝑀𝐷 , we first define the difference of two
cancer messages 𝑋 𝑗 , 𝑋𝑘 in 𝑝𝑠 :

𝐷𝐼𝑉𝑗,𝑘 =
𝑐𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 (𝑋 𝑗 , 𝑋𝑘 )

𝑛𝑣
, (2)

where, function 𝑐𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 counts the number of variables hav-
ing the same values in 𝑋 𝑗 and 𝑋𝑘 , and 𝑛𝑣 is the total number of
variables in cancer messages. Then we define 𝐶𝑀𝐷 of solution 𝑝𝑠
as the average of the difference of each pair of messages in 𝑝𝑠 :

𝐶𝑀𝐷𝑝𝑠 =

∑𝑛𝑝𝑠−1
𝑗=1

∑𝑛𝑝𝑠

𝑘=𝑗+1 𝐷𝐼𝑉𝑗,𝑘∑𝑛𝑝𝑠−1
𝑚=1 𝑚

, (3)

where 𝑛𝑝𝑠 is the total number of cancer messages in 𝑝𝑠 .
3) Result Code Diversity (RCD) measures the similarity between

the four result code distributions between 𝑝𝑠𝑖 and the original
dataset 𝐶𝑀𝑆→𝑇 , with the Jensen–Shannon (JS) divergence [17],
a method of measuring the similarity between two probability
distributions, 𝑃 and 𝑄 :

𝐽𝑆 (𝑃 | |𝑄) = 1
2
∗ 𝐾𝐿(𝑃 | |𝑀) + 1

2
∗ 𝐾𝐿(𝑄 | |𝑀), (4)

where 𝑀 is a probability distribution calculated as 1/2 ∗ (𝑃 +𝑄),
and 𝐾𝐿(𝑃 | |𝑀) is the Kullback-Leibler (KL) divergence between
distributions 𝑃 and𝑀 :

𝐾𝐿(𝑃 | |𝑀) =
∑︁
𝑥∈𝑋

𝑃 (𝑥)𝑙𝑜𝑔(𝑀 (𝑥)
𝑃 (𝑥) ) . (5)

Based on JS-divergence, we calculate 𝑅𝐶𝐷 between the result code
distributions achieved by 𝑝𝑠 and 𝐶𝑀𝑆→𝑇 :

𝑅𝐶𝐷𝑝𝑠 = −1 ∗
∑𝑛𝑟𝑠

𝑗=1 𝐽𝑆 (𝐷
𝑝𝑠
𝑟 𝑗 | |𝐷

𝐶𝑀𝑆→𝑇
𝑟 𝑗 )

𝑛𝑟𝑠
, (6)

where, 𝑛𝑟𝑆 is the number of validation rules in GURI-S, and 𝐷𝑝𝑠
𝑟 𝑗

and 𝐷𝐶𝑀𝑆→𝑇
𝑟 𝑗 are the result code distributions of rule 𝑟 𝑗 in 𝑝𝑠 and

𝐶𝑀𝑆→𝑇 , respectively.
4) False Prediction Proportion (FPP) is to measure how many

cancer messages in 𝑝𝑠 lead to predictions by CCDT-S to differ from
the real validation results in GURI-S:

𝐹𝑃𝑃𝑝𝑠 =
#𝐹𝑃
𝑛𝑝𝑠

, (7)

where #𝐹𝑃 is the number of cancer messages that lead to predictions
to differ from real validation results in GURI-S.

5) Prediction Uncertainty (PU) measures how much confidence
CCDT-S have on its predictions. To calculate 𝑃𝑈 , we employ infor-
mation entropy [6] as the uncertainty quantification measures:

𝐻 (𝑋 ) = −
∑︁
𝑥∈𝑋

𝑃 (𝑥) log 𝑃 (𝑥) = E[− log 𝑃 (𝑋 )], (8)
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where 𝑋 is a set of events, 𝑃 is the probability distribution of 𝑋 ,
and 𝑃 (𝑥) is the probability of event 𝑥 ∈ 𝑋 .

Information entropy calculates the amount of information in 𝑋 .
A smaller value of information entropy implies a higher uncertainty
in𝑋 . Based on information entropy, we first calculate the prediction
uncertainty of one cancer message 𝑋𝑖 ∈ 𝑝𝑠 as:

𝐶𝑀𝑃𝑈𝑖 =

∑𝑛𝑟𝑠
𝑗=1 𝐻 (𝑝𝑣𝑟 𝑗

𝑋𝑖
)

𝑛𝑟𝑆
, (9)

where 𝑝𝑣𝑟 𝑗
𝑋𝑖

is the probability vector of rule 𝑟 𝑗 of the prediction of
𝑋𝑖 , and 𝑛𝑟𝑆 is the total number of rules applied in GURI𝑆 . Then, for
solution 𝑝𝑠 , we calculate its 𝑃𝑈 as:

𝑃𝑈𝑝𝑠 =

∑𝑛𝑝𝑠

𝑖=1 𝐶𝑀𝑃𝑈𝑖

𝑛𝑝𝑠
. (10)

Problem Formulation. Since we aim to evolve CCDT-S to CCDT-T by
applying active TL, the quality of the dataset for evolving CCDT-
S is the key to obtaining a high quality CCDT-T with the least
possible cost. Therefore, we want to select a dataset, as a possible
solution 𝑝𝑠 , with the minimum size. Our optimization problem can
be represented as follows: Given a set of cancer messages 𝐶𝑀𝑆→𝑇

with 𝑛𝑐 being its size, find solution 𝑝𝑠𝑘 ∈ 𝑃𝑆𝑆→𝑇 that satisfies:
∀𝑝𝑠𝑖 ∈ 𝑃𝑆𝑆→𝑇 ∩ 𝑝𝑠𝑖 ≠ 𝑝𝑠𝑘 :

(1) 𝑆𝑆𝑝𝑠𝑘 ≤ 𝑆𝑆𝑝𝑠𝑖 , implying that 𝑝𝑠𝑘 has the minimum number
of cancer messages. This is important because we want to obtain
CCDT-T with minimum cost.

(2) 𝐶𝑀𝐷𝑝𝑠𝑘 ≥ 𝐶𝑀𝐷𝑝𝑠𝑖 , indicating that cancer messages in 𝑝𝑠𝑘
have the most diversity. A higher diversity means lower duplication
of cancer messages in the dataset.

(3) 𝑅𝐶𝐷𝑝𝑠𝑘 ≥ 𝑅𝐶𝐷𝑝𝑠𝑖 , showing that the prediction results of 𝑝𝑠𝑘
have the most diverse distributions. This objective is to ensure that
the predictions are diverse and close to the distribution from the
candidate dataset.

(4) 𝐹𝑃𝑃𝑝𝑠𝑘 ≥ 𝐹𝑃𝑃𝑝𝑠𝑖 , showing that in 𝑝𝑠𝑘 , the proportion of
cancer messages with false prediction is the highest. Recall that we
want to obtain high-quality CCDT-T by evolving CCDT-S. There-
fore, cancer messages that cause false predictions of CCDT-S are
expected to be more important for evolving CCDT-S and obtaining
a high performance CCDT-T.

(5) 𝑃𝑈𝑝𝑠𝑘 ≥ 𝑃𝑈𝑝𝑠𝑖 , implying that the prediction of cancer mes-
sages in 𝑝𝑠𝑘 has the highest uncertainty. Notice that the cancer
messages in the dataset are not all valuable in terms of evolving a
CCDT from CCDT-S to CCDT-T, and according to [42], data with
higher uncertainty is more useful in improving the prediction per-
formance of a model. This inspires us to select the most uncertain
samples for TL.
Dataset Augmentation. As Figure 1 shows, with the selected
dataset, we augment it to get the final dataset to evolve CCDT-S.
Concretely, we first execute the selected dataset on GURI-T and
identify cancer messages that have CCDT-S’s prediction results
different from the execution results. Then, we balance the selected
dataset by upsampling or downsampling these inconsistent cancer
messages to get a balanced dataset. In addition, considering that
GURI-T has newly added modules, we need to train the parameters
of these modules from scratch. To do so, we further randomly
sample a dataset from cancer messages that are pre-generated or

provided by CRN and merge it with the balanced dataset. Finally,
we obtain an evolution dataset, which includes the balanced dataset
and sampled dataset. The evolution dataset will be used in Evolution
Phase for TL.

3.2.2 Transfer Learning Phase. We denote the rule set for GURI-S
as the base rules 𝑅𝐵 and new rules 𝑅𝐸 . Correspondingly, CCDT-T
consists of base modules 𝑃CCDT−𝑆 and new modules 𝑃𝑁𝑒𝑤 , each
of which predicts the validation result of each rule in GURI-T. The
last box of Figure 1 illustrates the training process of the base and
new modules. For the base modules, we employ active TL for their
training, fine-tuning the pretrained model with actively selected
cancer messages with labels from GURI-T. For the new modules,
we adopt the same actively selected cancer messages to train 𝑃𝑁𝑒𝑤

from scratch.

4 EXPERIMENT DESIGN
We present research questions (RQs) (Section 4.1), experiment set-
tings (Section 4.2), and evaluation metrics (Section 4.3).

4.1 Research Questions
Recall that EvoCLINICAL evolves a source CCDT to a target CCDT
by fine-tuning the pretrained source CCDT with labelled data from
the target GURI. Hence, to evaluate EvoCLINICAL, we pose three
RQs: RQ1: Is EvoCLINICAL effective in evolving CCDT of GURI?
RQ2: How effective is the active learning paradigm in contributing
to the performance of EvoCLINICAL? RQ3: To what extent does
the candidate dataset size affect the performance of EvoCLINICAL?

TL is used for evolving source CCDT to the target CCDT. In
RQ1, we consider two baselines without TL for target CCDT con-
struction. The first baseline utilizes the pretrained source CCDT
as the target CCDT without fine-tuning, referred to as OTS. The
second baseline trains a target CCDT from scratch, denoted as
TFS. RQ2 investigates active learning’s contribution to EvoCLIN-
ICAL’s performance. Active learning selects a subset of valuable
cancer messages to query GURI-T and train CCDT-T. Alternatively,
such a subset can be selected randomly without considering the
importance of each cancer message. To demonstrate active learn-
ing’s effectiveness, we compare training CCDT-T with randomly
selected (denoted as EvoCLINICAL-RS) and actively selected cancer
messages (i.e., EvoCLINICAL). Since active learning is adopted for
the training of base modules 𝑃CCDT−𝑆 and new modules 𝑃𝑁𝑒𝑤 , we
evaluate its effectiveness separately on 𝑃CCDT−𝑆 and 𝑃𝑁𝑒𝑤 . RQ3
studies the influence of candidate dataset size on EvoCLINICAL’s
performance.

4.2 Experiment Settings
We determine the hyperparameters of CCDT by experimenting
with different combinations on a reserved validation dataset. As a
result, we use Adam [23] as the optimizer with a learning rate of
0.001. We build the neural network models with Tensorflow Frame-
work 2.11.0. In terms of the multi-objectives optimization algorithm,
we employ the indicator-based evolutionary algorithm IBEA [45]
because evidence has shown that it is effective in solving multi-
objective problems [29]. We also used the default parameter settings
of IBEA from jMetal [13] except for the number of evaluations set
to 30000 based on our pilot study. All experiments are conducted
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on one server node equipped with an Intel Xeon Platinum 8186,
16x NVIDIA V100 GPU.

4.3 Evaluation Metrics and Statistical Testing
We adopt three commonly used classification metrics: precision,
recall, and F1 score, which are defined based on the number of
true positives, false positives, false negatives, and false positives
denoted as 𝑇𝑃 , 𝐹𝑃 , 𝐹𝑁 , and 𝐹𝑃 , respectively. Precision measures
how accurate the model is for positive predictions, as calculated in
Equation 11.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (11)

As shown in Equation 12, recall assesses how well the model iden-
tifies true positives.

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (12)

Equation 13 shows that the F1 score is computed as the harmonic
mean of precision and recall, taking both false positives and false
negatives into account.

𝐹1 = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (13)

To reduce the effect of randomness on the experiment’s validity,
we repeat each experiment 10 times and perform statistical testing
to demonstrate the significance of each difference. Specifically, we
adopt the Mann-Whitney test as suggested in [2]. Furthermore, we
calculate Vargha-Delaney’s 𝐴12 to estimate the effect size of each
difference. 𝐴12 ranges from 0 to 1 and requires no knowledge of
the data distribution. When comparing method A with method B,
a higher 𝐴12 value (> 0.5) indicates method A has a higher chance
of yielding better results and vice versa.

5 EXPERIMENT RESULTS
In this section, we present the results for each research question.
The replication package is available in our GitHub repository1.

5.1 RQ1 - Overall Effectiveness of EvoCLINICAL
Table 2 demonstrates the effectiveness of EvoCLINICAL in three
evolution processes, namely 𝑆1 → 𝑇1, 𝑆2 → 𝑇2, and 𝑆3 → 𝑇3. As
presented in the last row, the F1 scores of EvoCLINICAL on the
three evolution processes are 0.9338, 0.9137 and 0.9233, respectively.
This result indicates that EvoCLINICAL is comprehensively effec-
tive in constructing target CCDT-T. The precision values on the
three evolution processes are all greater than 0.9200, which means
more than 92% result code predictions are correct. Furthermore, the
lowest recall value recorded is 0.9105, indicating that EvoCLINICAL
manages to predict at least 91.05% of the result codes successfully.

Essentially, EvoCLINICAL uses CCDT-S as a pretrained model
and fine-tunes it with actively selected cancer messages to con-
struct CCDT-T with TL. We dissect the TL approach and study the
individual contribution of pretraining and fine-tuning to the overall
effectiveness of EvoCLINICAL. We compare EvoCLINICAL with
OTS, which trains a CCDT-T from scratch without relying on the
pretrained CCDT-S (Section 4.1). Results are presented in Row 2 of
Table 2. We find all the metrics plummet from above 0.9 to below 0.8,
1https://github.com/Simula-COMPLEX/EvoCLINICAL

with a maximum decrease of 0.1966 on the recall value of 𝑆3 → 𝑇3.
Table 3 demonstrates the significance (p − value < 0.05) of such
decreases with large effect sizes (𝐴12 = 1). These results align with
our expectations since the pretrained CCDT-S possesses valuable
information for the construction of CCDT-T. Specifically, we lever-
age this information for a more optimal initialization of CCDT-T. By
contrast, OTS randomly initializes CCDT-T’s parameters without
prior knowledge, which leads to significant decreases in the perfor-
mance. Considerably more cancer messages and training iterations
are required in the future to fill the knowledge gap.

Meanwhile, we analyze the effectiveness of fine-tuning by com-
paring EvoCLINICAL with OTS, where CCDT-S is utilized directly
without fine-tuning. Table 2 shows a significant decrease in all
three evolution processes regarding precision, recall, and F1 score,
with all the p-values less than 0.05 and all the 𝐴12 values being
1.0. This is reasonable since the fine-tuning trains the pretrained
model with cancer messages labelled by GURI-T. These labelled
cancer messages contain unique information of GURI-T, which was,
however, not available when CCDT-S was trained. Training with
these labelled messages incorporates GURI-T’s information into
the CCDT-T model. Consequently, the fine-tuned CCDT-T model
can produce better results compared to OTS.

5.2 RQ2 - Effectiveness of Active Learning
Paradigm

Recall that active learning selects cancer messages to fine-tune the
base modules, each of which corresponds to a rule in CCDT-S. To
test the contribution of active learning in the overall performance
of EvoCLINICAL, we also present the performance of fine-tuning
with the random selection strategy (i.e., EvoCLINICAL-RS) in Table
2 as the comparison baseline. Results show that EvoCLINICAL
outperforms EvoCLINICAL-RS in terms of all metrics in all three
evolution processes. Table 3 further shows the significance of all
the increments, except for precision in 𝑆1 → 𝑇1 and 𝑆2 → 𝑇2.
Despite the insignificance, we still find small effect sizes in terms
of precision: 𝐴12 = 0.64 in 𝑆1 → 𝑇1 and 𝐴12 = 0.65 in 𝑆2 → 𝑇2
and. In short, EvoCLINICAL still has a better chance of yielding
better results in precision in 𝑆1 → 𝑇1 and 𝑆2 → 𝑇2, compared to
EvoCLINICAL-RS.

Recall that active learning is utilized for training new modules
from scratch. Table 4 compares training new modules (correspond-
ing to new rules introduced to CCDT-T) with EvoCLINICAL-RS and
actively selected cancer messages (EvoCLINICAL). EvoCLINICAL’s
performance for all the new rules outperforms EvoCLINICAL-RS re-
garding precision, recall, and F1 score. The largest increase reaches
0.0366 on Recall for 𝑆2 → 𝑇2 for 𝑅1𝑇2 . Furthermore, we find the
overall performance displayed in Table 4 decreases by a large mar-
gin in terms of all three metrics, compared to the performance
on the base modules from Table 2. This decrease lives up to our
expectations since the training on the base modules can leverage
the pretrained CCDT-S for knowledge transfer, which is not the
case for the new modules. In a word, active learning is effective in
fine-tuning base modules and training new modules from scratch.
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Table 2: Results of comparing EvoCLINICAL and the baselines on the base rules in terms of precision, recall and F1 score. OTS
denotes using the pretrained source CCDT off-the-shelf; TFS denotes training a target CCDT from scratch; EvoCLINICAL-
RS represents using a random search strategy instead of active learning to select the fine-tuning dataset; ▲ denotes that
EvoCLINICAL is significantly better than a baseline model, i.e., 𝐴12 > 0.5, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05.

Method 𝑆1 → 𝑇1 𝑆2 → 𝑇2 𝑆3 → 𝑇3

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1

TFS 0.7722▲ 0.7426▲ 0.7518▲ 0.7434▲ 0.7095▲ 0.7187▲ 0.7566▲ 0.725▲ 0.7324▲
OTS 0.9272 ▲ 0.9237 ▲ 0.9244▲ 0.9125▲ 0.8981▲ 0.9035▲ 0.9106▲ 0.9146▲ 0.9116▲

EvoCLINICAL-RS 0.9376 0.9287▲ 0.9313▲ 0.9185 0.9069▲ 0.9105▲ 0.9247▲ 0.9201▲ 0.9207▲
EvoCLINICAL 0.9389 0.9313 0.9338 0.9200 0.9105 0.9137 0.9281 0.9216 0.9233

Table 3: Results of the statistical tests comparing EvoCLINI-
CAL and the baselines on the base rules. OTS denotes using
the pretrained source CCDT off-the-shelf; TFS denotes train-
ing a target CCDT from scratch; EvoCLINICAL-RS represents
using a random search strategy instead of active learning to
select the fine-tuning dataset.

Evolution Pair Baseline 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1
�̂�12 𝑝 �̂�12 𝑝 �̂�12 𝑝

𝑆1 → 𝑇 1
TFS 1.0 <0.05 1.0 <0.05 1.0 <0.05
OTS 1.0 <0.05 1.0 <0.05 1.0 <0.05

EvoCLINICAL-RS 0.64 0.31 0.87 <0.05 0.81 <0.05

𝑆2 → 𝑇 2
TFS 1.0 <0.05 1.0 <0.05 1.0 <0.05
OTS 1.0 <0.05 1.0 <0.05 1.0 <0.05

EvoCLINICAL-RS 0.65 0.27 0.9 <0.05 0.93 <0.05

𝑆3 → 𝑇 3
TFS 1.0 <0.05 1.0 <0.05 1.0 <0.05
OTS 1.0 <0.05 1.0 <0.05 1.0 <0.05

EvoCLINICAL-RS 0.84 <0.05 0.76 <0.05 0.94 <0.05

5.3 RQ3 - Impact of Candidate Dataset Size on
EvoCLINICAL’s Effectiveness

Table 5 reports the experiment results of EvoCLINICAL under dif-
ferent candidate dataset sizes, ranging from 1000 to 8000. We find
the performance of EvoCLINICAL tends to increase as the candidate
dataset size grows. Comparing sizes 1000 and 8000, the F1 scores
increase 0.064 (0.7160-0.6554), 0.0484 (0.8527-0.8043), and 0.0847
(0.8273-0.7426) in 𝑆1 → 𝑇1, 𝑆2 → 𝑇2, and 𝑆3 → 𝑇3, respectively.

Another observation from the table is that there is a progressive
deceleration in the growth rate. Such deceleration can be derived
from two aspects: data quality and model capacity. The dataset
quality might decrease as newly added cancer messages to the can-
didate datasets can be redundant or less relevant to the validation
task. Another reason for the deceleration lies in the model capacity.
A neural network with a small capacity (i.e., EvoCLINICAL) tends
to overfit on a large dataset, decreasing the model performance.

The deceleration implies the diminishing returns of keeping
increasing the candidate sizes. A suitable candidate dataset size
should be determined empirically or based on prior knowledge to
reduce the query times on GURI-T.

6 DISCUSSION AND LESSONS LEARNED
Benefiting from transfer learning. An effective TL strategy paves the
way for automatic CCDT evolution. Instead of training a CCDT

from scratch, TL leverages the source CCDT and transfers knowl-
edge to the target CCDT. In this paper, TL improves the performance
of EvoCLINICAL compared to training from scratch. The plausi-
ble reasons for such improvement are discussed as follows. (1) TL
transfers mutual knowledge from the source CCDT to the target
DT. In the context of GURI, this mutual knowledge mainly entails
the knowledge of feature extraction. Despite the update of GURI,
the structure of a cancer message remains the same. Therefore, the
feature extraction capability of the source CCDT can be harnessed
to improve that of the target CCDT. (2) From an optimization per-
spective, the source CCDT provides a more stable and reasonable
location for the parameter initialization of the target CCDT. As
Sutskever et al. [39] pointed out, the initialization of deep learning
models is crucial for subsequent optimization. (3) TL can also be
considered a form of regularization, incorporating an inductive
bias derived from the source CCDT into the target CCDT. This
inductive bias can help reduce the risk of overfitting and improve
the generalizability of target CCDT.

Enabling testing. Testing of GURI to ensure its dependability is
essential. Several automated testing practices have been performed
onGURI. Specifically, Laaber et al. [24] utilized an AI-based system-
level testing tool, EvoMaster [3] to test GURI. Isaku et al. [20]
proposed to use a machine learning classifier to filter out test re-
quests that won’t lead to rule executions, consequently reducing
the cost of testing GURI. Despite the promising results of these
works, Laaber et al. [25] pointed out that it might be beneficial to
test GURI by learning and simulating medical coders. A CCDT can
enable such testing. Ahlgren et al. [1] stated that a well-established
CCDT could be considered a true twin of the system of concern,
informing and affecting each other. Such a bidirectional connection
enables many applications, such as regression testing, run-time
verification, and preventing real-time system failures. For example,
given an unlabeled cancer message 𝑋 , CCDT and GURI validate
𝑋 simultaneously. If the validation results are at odds and no test
oracles are available, we consider the risk of the system failing
to process the cancer message high, and developers are therefore
informed to perform manual examinations.

7 RELATEDWORK
We discuss the related works covering these three topics: cyber-
cyber digital twin (Section 7.1), transfer learning (Section 7.2), and
active learning (Section 7.3).
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Table 4: Results of comparing EvoCLINICAL and the baselines on the new rules regarding precision, recall, and F1 score.
EvoCLINICAL-RS uses a random search strategy instead of active learning to select the fine-tuning dataset; 𝑅𝑖𝑇𝑗

is the 𝑖𝑡ℎ newly
introduced rule in target GURI-𝑇𝑗 .

Method 𝑆1 → 𝑇1 𝑆2 → 𝑇2 𝑆3 → 𝑇3

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1

EvoCLINICAL-RS 𝑅1𝑇1 0.8054 0.7020 0.7265 𝑅1𝑇2 0.7825 0.7225 0.7345 𝑅1𝑇3 0.9267 0.9396 0.9329
EvoCLINICAL 0.8345 0.7164 0.7454 0.7963 0.7591 0.7696 0.9304 0.9431 0.9366

EvoCLINICAL-RS 𝑅2𝑇1 0.7316 0.7225 0.7255 𝑅2𝑇2 0.7969 0.7674 0.7795 𝑅2𝑇3 0.8591 0.8351 0.8420
EvoCLINICAL 0.7321 0.7251 0.7279 0.8082 0.7794 0.7904 0.8617 0.8280 0.8361

EvoCLINICAL-RS 𝑅3𝑇1 0.5912 0.4979 0.5323 𝑅3𝑇2 0.8116 0.8244 0.8166 𝑅3𝑇3 0.6880 0.6062 0.6348
EvoCLINICAL 0.6014 0.5012 0.5375 0.8199 0.8413 0.8298 0.6837 0.5958 0.6258

EvoCLINICAL-RS 𝑅4𝑇1 0.7868 0.7883 0.7869 𝑅4𝑇2 0.9460 0.9802 0.9625 𝑅4𝑇3 0.8792 0.8459 0.8604
EvoCLINICAL 0.7949 0.7884 0.7889 0.9496 0.9828 0.9657 0.8867 0.8533 0.8674

EvoCLINICAL-RS 𝑅5𝑇1 0.7894 0.7485 0.7650 𝑅5𝑇2 0.9481 0.9345 0.9409 𝑅5𝑇3 0.8898 0.8059 0.8377
EvoCLINICAL 0.8102 0.7613 0.7805 0.9431 0.9292 0.9357 0.9263 0.8356 0.8704

Table 5: Results of EvoCLINICAL’s performance under different candidate dataset sizes regarding precision, recall, and F1 score.

Candidate
Dataset Size

𝑆1 → 𝑇1 𝑆2 → 𝑇2 𝑆3 → 𝑇3

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1

1000 0.6827 0.6423 0.6554 0.8237 0.7984 0.8043 0.7873 0.7218 0.7426
2000 0.6907 0.6403 0.6562 0.8225 0.8034 0.8087 0.7997 0.7434 0.7616
3000 0.7039 0.6558 0.6691 0.8461 0.814 0.8204 0.8102 0.7526 0.7722
4000 0.7173 0.6716 0.6861 0.8389 0.8263 0.8276 0.8217 0.7656 0.7844
5000 0.7376 0.6798 0.6971 0.8442 0.8228 0.8279 0.8312 0.7866 0.8022
6000 0.7465 0.6923 0.7085 0.8529 0.8396 0.8415 0.8431 0.795 0.8119
7000 0.7448 0.6932 0.7095 0.8654 0.8482 0.8514 0.8534 0.8166 0.8292
8000 0.7546 0.6985 0.7160 0.8577 0.8533 0.8527 0.8578 0.8112 0.8273

7.1 Cyber-Cyber Digital Twin
The concept of DT has been intensively studied in both academia
and industry in recent years. Various DTs have been designed and
deployed for different contexts, such as health monitoring [44],
product lifecycle management, and cyber-physical systems security.
El Saddik [14] defined a concept of Digital Twin as “a digital replica
of a living or non-living physical entity”. This definition bound the
concept of DT to physical entities, while complex software systems
can also benefit from it.

Facebook proposed to build a CCDT namedWW for their WWW
platform [1]. WW simulates the user interaction and their platform.
The authors demonstrated three key advantages of CCDT, namely
complete malleability, true twins, and simulation hierarchy [1].
Complete malleability means that, theoretically, no change is unim-
plementable in a software system, which is not valid in a physical
system. Moreover, CCDT and its corresponding software systems
can become true twins since they either inform or affect the other,
thanks to their malleability. Simulation hierarchy indicates the pos-
sibility of building a CCDT for a CCDT since a CCDT can also be
considered a software system. GURI, the system under study in
this paper, can also capitalize on these advantages. Therefore, we
follow this research line and build CCDT for GURI.

7.2 Transfer Learning
TL entails applying knowledge gained from solving one task to
another related task. Most recent developments of TL originated in
the 2010s when the pretraining+fine-tuning paradigmwas proposed

to classify ImageNet pictures. The pretrained model improves the
performance of image classification and the downstream tasks in
the computer vision domain, such as image segmentation [41] and
object detection [19].

The vast success of ImageNet illuminates a myriad of research
on applying TL in other domains, especially natural language pro-
cessing [11]. In particular, language models (LMs) are increasingly
studied as a counterpart for ImageNet in the natural language pro-
cessing domain. Pretrained on a large corpus, an LM can produce
meaningful embeddings to facilitate downstream tasks, such as
sentiment analysis [26], question answering [32], and named entity
recognition [28]. Mikolov et al. proposed to use shallow neural
networks to generate embeddings for each token [31], followed
by a series of other embedding techniques, e.g., fasttext [22] and
glove [33]. Later on, researchers dedicated their efforts to incorpo-
rating context information with the pretrained language models
by proposing contextualized language models such as ElMo [34],
BERT [12], and GPT [7]. The phenomenal chat bot ChatGPT is also
constructed based on the GPT language model.

Despite its wide applications in natural language processing
and computer vision, TL has been utilized by a few researchers
to evolve a digital twin. One plausible reason is the relatively low
data availability in the software/physical systems compared to
computer vision and natural language processing domains. Xu
et al. [42] built RISE-DT for an elevator system and utilized TL
to evolve it for different traffics and versions. RISE-DT tackles
time-series data consisting of sensor and actuator values, which
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differs significantly from the cancer messages. Xu et al. [43] also
proposed a DT-based method, named KDDT, for anomaly detection
in the network of a train control and management system. KDDT
enriched the training data for DT by distilling knowledge from the
out-of-domain dataset. In this paper, we design an entirely different
architecture of EvoCLINICAL to evolve CCDT for different GURI
versions and employ active learning to improve the TL efficiency
further.

7.3 Active Learning
Active learning is particularly useful when the unlabeled data sam-
ples are abundant, whereas manually labelling all of them is ex-
pensive or infeasible. Active learning is widely used in many areas,
such as text classification [18], information extraction [9], image
classification [21], and speech recognition [30].

Cai et al. [8] proposed to select the most informative samples
based on the prediction uncertainty. They demonstrate the effective-
ness of the proposed method in the text classification task. However,
their method suffers from sampling bias since the distribution of the
selected instances can differ from the original distribution. To miti-
gate this problem, several approaches take the diversity of selected
data into consideration [27, 35]. The basic idea is to avoid selecting
similar instances for annotation that increase the labelling cost. An-
other issue active learning faces is failing to select minority classes
in an imbalanced dataset, especially in a multi-output task [4]. This
paper proposes tackling the aforementioned problems with a search
algorithm encompassing multiple objectives, including uncertainty,
diversity, and weighted coverage. The uncertainty objective helps
us find the most informative samples, while the diversity objective
reduces the number of similar samples. Coverage objectives can
increase the chance of selecting a minority class by assigning a
larger weight.

8 THREATS TO VALIDITY
Construct Validity is the extent to which a metric assesses the
theoretical construct it is intended to measure. In this paper, we
construct the CCDT to perform a multi-label classification and
measure its effectiveness with three commonly used classification
metrics, i.e., precision, recall, and F1 score. However, there exist
other classification metrics, such as accuracy. Regardless of the
popularity of the accuracy metric in classification tasks, we argue
that accuracy can be misleading in some cases, especially with
imbalanced datasets [5]. By contrast, precision, recall, and F1 score
still provide meaningful insights even with an imbalanced dataset.
In our context, we calculate precision, recall, and F1 score for each
result code 𝑦 ∈ {"info", "warning", "not applied", "error"}. Precision
measures the percentage of correctly classified cancer messages
among all cancer messages predicted as 𝑦; recall is the percentage
of correctly classified cancer messages among all cancer messages
with result code 𝑦; F1 score is a harmonic average of precision and
recall, comprehensively reflecting the model performance.

Internal Validity is the extent to which the experiments can
establish a causal relationship between the independent and depen-
dent variables. In our context, we attempt to demonstrate a causal
relationship between the employment of TL and performance im-
provement. One possible threat to internal validity resides in the

selection of hyperparameters. The good performance of a method
can come from extensive work on manually selecting an optimal set
of hyperparameters, which incorporate external domain knowledge
into the model. In this paper, however, we acquire the hyperpa-
rameters through experiments. Concretely, we reserve a validation
dataset and explore different combinations of hyperparameter val-
ues. We choose the best combination as our hyperparameters. Such
a process requires no domain knowledge, reducing potential threats
to internal validity.

Conclusion Validity concerns the statistical significance of
the experiment results. The employment of neural networks in-
herently introduces randomness into the model. In other words,
the improvement presented in the experiment can be random and
not reproducible. To reduce the influence of randomness, we re-
peat all the experiments ten times and perform statistical testing to
demonstrate the significance of each improvement.

External Validity is the extent to which the proposed method
can be generalized to other datasets and domains. In this paper, we
address external threats from both approach design and dataset
construction. First, we design EvoCLINICAL as a generic method,
making no strong assumptions on the dataset distribution. Thus, it
is intrinsically straightforward to apply EvoCLINICAL in another
dataset. Second, we construct three target GURI with evolutions
of different difficulty levels in terms of the number of message
fields involved in an individual rule. The dataset collected from
such diverse evolutions is more representative, further reducing
the threat to external validity.

9 CONCLUSION AND FUTUREWORK
We propose EvoCLINICAL to construct and evolve CCDT of GURI
by leveraging active transfer learning, which fine-tunes a pretrained
CCDT with labelled data acquired from the target GURI. The active
learning paradigm reduces the query times on the target GURI.
To evaluate EvoCLINICAL, we obtained three transfer learning
experiment groups and performed comparative experiments with
EvoCLINICAL and the baselines. The experimental results demon-
strate the effectiveness of EvoCLINICAL with precision, recall, and
F1 score as at least 0.9200, 0.9105, and 0.9137, respectively. We fur-
ther demonstrated that active learning contributes to the overall
performance of EvoCLINICAL.

In the future, we plan to explore EvoCLINICAL on other datasets
in the healthcare domain, such as healthcare information system
platforms. For instance, we can build a CCDT for such platforms
and adopt EvoCLINICAL to evolve it as the platforms evolve. We
will also investigate other design options for EvoCLINICAL, such
as long short-term memory and transformer models to deal with
time-series data.
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