
TYPE Original Research

PUBLISHED 30 January 2024

DOI 10.3389/fninf.2023.1272791

OPEN ACCESS

EDITED BY

Spase Petkoski,

Aix Marseille Université, France

REVIEWED BY

Hassan Aqeel Khan,

Aston University, United Kingdom

Jon Kleen,

University of California, San Francisco,

United States

*CORRESPONDENCE

Thomas Tveitstøl

thtvei@ous-hf.no

RECEIVED 07 August 2023

ACCEPTED 07 December 2023

PUBLISHED 30 January 2024

CITATION

Tveitstøl T, Tveter M, Pérez T. AS,

Hatlestad-Hall C, Yazidi A, Hammer HL and

Hebold Haraldsen IRJ (2024) Introducing

Region Based Pooling for handling a varied

number of EEG channels for deep learning

models. Front. Neuroinform. 17:1272791.

doi: 10.3389/fninf.2023.1272791

COPYRIGHT

© 2024 Tveitstøl, Tveter, Pérez T.,

Hatlestad-Hall, Yazidi, Hammer and Hebold

Haraldsen. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Introducing Region Based Pooling
for handling a varied number of
EEG channels for deep learning
models

Thomas Tveitstøl1,2*, Mats Tveter1,2, Ana S. Pérez T.1,2,

Christo�er Hatlestad-Hall1, Anis Yazidi3, Hugo L. Hammer3,4 and

Ira R. J. Hebold Haraldsen1

1Department of Neurology, Oslo University Hospital, Oslo, Norway, 2Institute of Clinical Medicine,

Faculty of Medicine, University of Oslo, Oslo, Norway, 3Department of Computer Science, Oslo

Metropolitan University, Oslo, Norway, 4Department of Holistic Systems, SimulaMet, Oslo, Norway

Introduction:A challengewhen applying an artificial intelligence (AI) deep learning

(DL) approach to novel electroencephalography (EEG) data, is theDL architecture’s

lack of adaptability to changing numbers of EEG channels. That is, the number

of channels cannot vary neither in the training data, nor upon deployment. Such

highly specific hardware constraints put major limitations on the clinical usability

and scalability of the DL models.

Methods: In this work, we propose a technique for handling such varied numbers

of EEG channels by splitting the EEGmontages into distinct regions andmerge the

channels within the same region to a region representation. The solution is termed

Region Based Pooling (RBP). The procedure of splitting the montage into regions

is performed repeatedly with di�erent region configurations, tominimize potential

loss of information. As RBP maps a varied number of EEG channels to a fixed

number of region representations, both current and future DL architectures may

apply RBP with ease. To demonstrate and evaluate the adequacy of RBP to handle

a varied number of EEG channels, sex classification based solely on EEG was used

as a test example. The DL models were trained on 129 channels, and tested on

32, 65, and 129-channels versions of the data using the same channel positions

scheme. The baselines for comparison were zero-filling the missing channels and

applying spherical spline interpolation. The performances were estimated using

5-fold cross validation.

Results: For the 32-channel system version, the mean AUC values across the

folds were: RBP (93.34%), spherical spline interpolation (93.36%), and zero-filling

(76.82%). Similarly, on the 65-channel system version, the performanceswere: RBP

(93.66%), spherical spline interpolation (93.50%), and zero-filling (85.58%). Finally,

the 129-channel system version produced the following results: RBP (94.68%),

spherical spline interpolation (93.86%), and zero-filling (91.92%).

Conclusion: In conclusion, RBP obtained similar results to spherical spline

interpolation, and superior results to zero-filling. We encourage further research

and development of DL models in the cross-dataset setting, including the use of

methods such as RBP and spherical spline interpolation to handle a varied number

of EEG channels.
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1 Introduction

Recent advancements in artificial intelligence (AI) have opened

up new opportunities for the fields of cognitive neuroscience and

clinical brain health research. In this context, the EU Horizon 2020

funded project AI-Mind (www.ai-mind.eu) has been established,

which aims at developing AI-based tools to estimate the risk

of dementia for people affected by mild cognitive impairment.

The project collects a comprehensive set of biomarkers, including

blood samples, sociodemographic information, digital cognitive

test scores, and electroencephalography (EEG) data. A combination

of traditional machine learning (ML) and deep learning (DL)-based

algorithms will be employed.While the former commonly provides

improved transparency and integration of domain knowledge, the

latter has the capacity to find patterns and extract features in

complex and unstructured data beyond what can be obtained by

hand-crafted features.

DL is a method in AI with potential to significantly transform

healthcare services (Hinton, 2018). By processing data in multiple

layers, DL learns representations with different levels of abstraction.

Breakthroughs of DL include processing of images, video, speech,

audio, and text (LeCun et al., 2015). Despite the progress in

research and development, there are still significant gaps to

be filled for deployment of AI in clinical practice, such as

mitigating discriminatory bias and improving generalization to

new populations (Kelly et al., 2019; Chen et al., 2023). In particular,

AI systems trained on datasets with an underrepresentation of

marginalized groups have an elevated risk of bias toward those

groups (Rajpurkar et al., 2022). Furthermore, AI algorithms trained

on data generated by a single system (e.g., when all imaging data are

collected using the same camera with fixed settings) may exhibit

single-source bias, resulting in a decrease in performance on inputs

collected from other systems (Rajpurkar et al., 2022). For the AI-

Mind project, such biases may pose challenges requiring particular

considerations. While about two-thirds of dementia cases are in

low-income and middle-income countries (LMICs), extrapolating

predictive models developed in high-income countries to LMICs is

not always feasible (Stephan et al., 2020). A technical prerequisite

for extrapolating models to LMICs is the availability of hardware

needed for data acquisition. As a neuroimaging modality, EEG

is low-cost and mobile compared to magnetic resonance imaging

and magnetoencephalography. Moreover, it does not require a

dedicated isolated room. Extrapolation of EEG biomarkers to

LMICs is thus not hindered by difficulties in installation of the

acquisition hardware.

The recent progress of DL has significantly increased its

relevance for EEG data analysis (Roy et al., 2019). Domains of

application include emotion recognition (Houssein et al., 2022),

driver drowsiness (Stancin et al., 2021; Mohammed et al., 2022),

classification of alcoholic EEG (Farsi et al., 2021), epileptic seizure

detection (Ahmad et al., 2022), mental disorders (de Bardeci et al.,

2021), schizophrenia (Oh et al., 2019), major depressive disorder

and bipolar disorder detection (Yasin et al., 2021), motor imagery

and other brain computer interface (BCI)-related problems (Lotte

et al., 2018; Abo Alzahab et al., 2021). Despite the attention of DL

in EEG, little research has focused on issues relating to the cross-

dataset setting and generalization (Wei et al., 2022). As AI-Mind

will use EEG signals for its algorithm development, enabling our

tools for deployment on multiple data acquisition systems and

mitigating discriminatory bias, is a necessity.

However, a common limitation of many existing DL

architectures occurring specifically to EEG is their inherent

inability to handle a varied number of channels as input data

(Wei et al., 2022). This lack of compatibility conflicts with the

real-world high variety of EEG hardware and hinders training and

deployment on heterogeneous datasets where both the number

of electrodes and their positions on the scalp may vary. Hence,

this challenge not only prevents integration of DL models into

diverse EEG setups but also limits the inclusion of larger sample

sizes as well as more heterogeneous and representative data.

Moreover, evidence from clinical neurology research suggests that

the number of channels used during EEG recording may have a

significant impact on the data’s ability to capture spatially limited

phenomena (Hatlestad-Hall et al., 2023). The inability to handle

this diversity originates from tensors such as matrices and vectors

requiring fixed dimensions to be compatible from a linear algebraic

perspective. To address this technical issue, this work aims at

introducing a simple methodological framework which can be

used in combination with current and future DL models to handle

a varied number of electrodes. Here, two methods for scaling the

data to fit into the DL model are used as baselines for comparison:

(1) zero-filling missing channels and (2) applying spherical spline

interpolation (Perrin et al., 1989).

There exist several techniques which may leverage external

datasets to improve DL models, which we hypothesize will play

a significant role in cross-dataset learning and generalization.

Approaches such as unsupervised and self-supervised learning

may be utilized even in the absence of the target of interest.

Improvements may be in terms of, e.g., performance or

generalization, and are considered to play an important role for

data efficiency of DL (Hinton, 2018; Hendrycks et al., 2019; Banville

et al., 2021). In the field of EEG research, Kostas et al. (2021)

obtained improved results on multiple downstream datasets by

using contrastive self-supervised learning on a large dataset for pre-

training. Furthermore, Banville et al. (2021) successfully applied

self-supervised learning to sleep staging and pathology detection.

Another approach on heterogeneous EEG datasets is to use transfer

learning, shown in the BEETL competition (Wei et al., 2022).

Furthermore, a desired outcome of AI-Mind is to characterize

brain networks from EEG data. While metrics from neuroscientific

literature have known cognitive relevance (Stam et al., 2006), a

DL methodology to obtain features of similar neurophysiological

meaning seems non-trivial. This is due to features of DL being

learned in a data-driven manner rather than human defined

to capture the underlying neurophysiological phenomena. We

hypothesize, however, that feature learning and pre-trained models

may be viable alternatives.

The intended purposes for developing methods for handling a

varied number of channels with possibly different positions on the

scalp are (1) to enable the application of DL models on a range

of existing and varied EEG systems. For clinical implementation,

a highly desired property is to have a method which works on the

EEG systems currently in use at different clinical centers around the

world. The number of channels and channel locations are indeed
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varied, meaning that it is a necessity to handle this diversity, to

maximize outreach and clinical usefulness; (2) to be able to pre-

train or perform representation learning on heterogeneous and

large amounts of data. There are many open-source datasets from

a range of nationalities, pathologies, age groups, and cohorts. To

generalize across such data, methods including pre-training and

representation learning on multiple and heterogeneous datasets

may be a step in the right direction, as it can lead tomore robust and

generalized features. Improving the robustness and generalization

may in turn improve the fairness and equity of the developed AI

models. This relevance extends to all medical use and integration of

DL in EEG, including the generation of synthetic data (Goodfellow

et al., 2014) and digital twins (Grieves and Vickers, 2017), and

enabling of simulation techniques for improved clinical treatment

selection. Indeed, developing methods to facilitate the evolution

of such precision medicine approaches is essential. This study

does not carry out such pre-training or representation learning

but introduces a framework for enabling it to be performed in

a larger scale, with a varied number of electrodes. Instead, this

study conducts an initial evaluation to ascertain the efficacy or

inadequacy of the framework.

Our framework is designed to be model agnostic, meaning that

both current and future DL architectures can apply it with ease. The

code is publicly available and may be used to develop customized

implementations of the framework, or to combine it with other DL

architectures. Furthermore, we aim to experimentally demonstrate

that by applying our framework, the algorithm performance in itself

remains the same.

2 Materials and methods

In this section, the dataset, methods, models, and experiments

are described. A high-level overview of the workflow is provided in

Figure 1.

2.1 Data

The data used for this study is an open-source dataset from

Child Mind Institute (Alexander et al., 2017). It contains a large

high-density EEG (129 electrodes) dataset from the age distribution

5–21 years, including male and female subjects, with varied brain

pathologies. The objective of the DL models was to classify the sex

of a subject, given the EEG data. After removing samples which did

not fulfill the inclusion criteria for data quality (see Section 2.1.1),

the dataset was balanced by down sampling the class in abundance,

resulting in a final dataset with 1,788 subjects. Only the resting-

state EEG data files were extracted. The first 30 s of the recordings

were skipped as the first parts of the EEG are more likely to contain

unwanted artifacts. The proceeding 10 s was used as input for the

models. Only a single 10 s window was used per subject, and the

FIGURE 1

High-level overview of the workflow. The di�erent hyperparameters for each model are described in Section 2.5.
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splitting of data was thus made on subject level. The sampling

frequency was kept at 500 Hz as in the original dataset.

2.1.1 Preprocessing
The raw data was preprocessed using an automated data

cleaning pipeline developed in MATLAB, using functions from

the EEGLAB toolbox (Delorme and Makeig, 2004). Channels with

low-quality data were removed by iterative exclusion of signals

with amplitude standard deviation SD > 75µV or no amplitude

variation at all. The EEG file was rejected if the number of excluded

channels exceeded 39 (>30%). Line artifacts were removed with

Zapline (de Cheveigné, 2020), and the signals were band-pass

filtered between 1 and 45 Hz. Excluded channels were replaced

with interpolated signals to ensure data dimension consistency. The

channels were re-referenced to the average of all scalp channels. The

pipeline is available at GitHub.1

2.2 Inception network

The Inception network is a convolutional neural network

(CNN) based architecture, which is the main building block of

InceptionTime. Here, the Inception network is briefly described,

and for further details on the architecture, the reader is referred to

the original study (Ismail Fawaz et al., 2020).

An Inception network is composed of multiple Inception

modules, with linear shortcut connections for every third Inception

module. A key component of the Inception module is the

bottleneck layer, which effectively computes linear combinations of

the input time series. Furthermore, the Inception module applies

filters of different lengths simultaneously on the same input time

series, and resulting feature maps are aggregated by concatenation.

After passing the data through all Inception modules, global

average pooling is performed in the temporal dimension. Finally,

while the original Inception network used a fully connected layer

with softmax activation, this was changed to a single fully connected

layer with sigmoid activation (Ismail Fawaz et al., 2020).

The hyperparameters of our Inception network was set as

described in the original study. This includes a depth of six

Inception modules, and 32 number of filters for all convolutional

kernels in all Inception modules (Ismail Fawaz et al., 2020).

2.3 Methods for handling a varied number
of channels

Three methods for handling a varied number of channels were

tested on a binary classification problem, sex prediction. The three

methods were (1) zero-filling, (2) spherical spline interpolation

(Perrin et al., 1989), and our suggested new method (3) Region

Based Pooling (RBP). Inception network (Ismail Fawaz et al., 2020)

was the DL model used after zero-filling, interpolation, or applying

RBP, with the exception that the final layer used scalar output and

sigmoid as activation function for predictions.

1 https://github.com/hatlestad-hall/prep-childmind-eeg

2.4 Region based pooling

RBP splits the topology of the EEG montage into regions, as

illustrated in Figure 2. The channels within a single region are

pooled into one or more region representations, and hence the

name Region Based Pooling. To minimize the loss of information,

multiple splits with different region formations are performed. RBP

introduces three new optimization problems; (1) how to split the

EEG montage into regions (both the number of montage splits and

the algorithm separating the regions), (2) how to pool the channels

within the same region, and (3) how to merge the outputs of the

different montage splits. The proceeding two subsections intend

to illustrate how the first two problems can be addressed and are

meant as examples of implementation.

All RBP models in the experiments of this study merged the

outputs of the montage splits by concatenation. Furthermore, all

channels within the same region were merged to a single region

representation. Finally, all region representations were normalized

by subtracting the mean and dividing by the standard deviation in

the temporal dimension.

2.4.1 Method for splitting into regions
A montage split is a region-based partitioning of the

EEG montage. The set of all montage splits are denoted

{M1,M2, ...,Mn}, where n is the number of montage

splits. Each montage split contains multiple regions,

Mi = {R
(i)
1 ,R

(i)
2 , ...,R

(i)
mi} ∀i ∈ {1, ..., n}, where the regions

may or may not overlap. Furthermore, a montage split may or

may not cover the entire EEG montage. Given a channel system

C which is compatible with the partitioning, the j-th region of the

i-th montage split R
(i)
j ∈ Mi contains the channels R

(i)
j ⊃ R

(i)
j ∩ C,

where R
(i)
j ∩ C denotes the set of channels of channel system C,

positioned within the boundaries of R
(i)
j .

The algorithm used in all experiments for splitting the montage

into regions is illustrated in Figure 3. It follows an iterative

procedure and was designed to not have overlapping regions.

Furthermore, all regions are used for all montage splits. The

algorithm requires one to fix a split vector k = (k1, k2, ..., kp)
T ∈ N

p
2,

where the elements of k and p are design choices/hyperparameters.

As a pre-step of the algorithm, all channel positions are mapped to

2D coordinates. Thereafter, the centroid of the channel positions

is calculated, and a random angle is generated. With the centroid

and the random angle as starting point and angle, k1 − 1 angles are

computed such that the angles split the channels into k1 equally

sized regions. Here, the size of a region refers to the number

of channels within it. For all newly generated regions, the same

procedure is repeated; (1) compute the centroid (2) generate a

random angle, and (3) generate k2 − 1 angles such that k2 number

of equally sized regions are formed. This iterative approach is

executed either p times, or until the number of channels in the

regions are too low, defined by a stopping criteriamin_nodes.

For the experiments, there were seven different split vectors,

k = (3, 3, 3)T, k = (4, 2, 4)T, k = (2, 4, 2)T, k = (2, 2, 2, 2, 2)T,

k = (3, 2, 3)T, k = (2, 3, 2)T, and k = (3, 4, 2)T. For each montage

split, the selection of k was made by random sampling with equal
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FIGURE 2

Region based pooling. The EEG montage is split into multiple regions. All channels in the same region are pooled into a region representation.

Multiple montage splits may be performed, and the number of montage splits equals to two in this figure,M1 andM2. If there is at least one channel

in all used regions, the mapping from channels into region representations can be made. This is illustrated as channel system A and channel system B

have unequal numbers of channels with di�erent channel locations, and they can both obtain region representations. After pooling channels into

region representations, the region representations are stacked/row concatenated. The sequence of stacking represents an arbitrarily chosen design.

FIGURE 3

Example of how the EEG montage may be split into regions. In this example, the split vector was set to k = (5, 3). This can be observed, as the

montage was first split into five regions, followed by splitting those into three regions.

probabilities. The stopping criteria was one of the hyperparameters

for grid search and includedmin_nodes ∈ {1, 2, 3}.

2.4.2 Pooling operations
To enable compatibility with a varied number of channels with

possibly different channel positions, defining pooling mechanisms

which can input and handle multivariate time series of different

dimensions within the regions, is a prerequisite. That is, to apply

mechanisms within the regions which can map a varied number

of channels to a single region representation. Finding sophisticated

mechanisms with this property may be crucial for RBP. This

subsection presents several approaches for pooling mechanisms.

2.4.2.1 Average

The first pooling mechanism is to merge the channels within a

region by computing its mean in channel dimension. This offers a

simple and time-efficient method and aggregates the channels with

equal contributions for computing region representations.

2.4.2.2 Channel attention

A second pooling mechanism is to select the key channels

by first assigning an importance score, and secondly merge the

channels by computing a weighted average based on the importance

scores. Mathematically, this may be accomplished by defining a

function g :R1×T → R, where T denotes the number of time

samples, applied on all time series within the region, and using the
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FIGURE 4

Illustration of channel attention mechanism. An importance scalar is computed for each channel, and the attention vector is computed by applying

softmax on a concatenation of these. The elements of the attention vector are used as coe�cients to compute a linear combination of the channels.

values obtained to compute coefficients of a linear combination,

as illustrated in Figure 4. Applying g to each channel in a region

gives an importance scalar for each channel, which is subsequently

concatenated and passed to a softmax activation function, giving

the channel attention vector of the i-th montage split and j-th

region a(i,j) ∈ {q ∈ (0, 1)
|R

(i)
j ∩C|

: ||q||1 = 1}. The vectors a(i,j) have

the properties that the entries are positive and sum to one due to

the softmax activation function. After computing a(i,j), the channels

of the i-th montage split and j-th region are pooled by weighted

averaging f
(i,j)

pool
(X,C) = a(i,j)TX

R
(i)
j ∩C

, where X
R
(i)
j ∩C

∈ R
|R

(i)
j ∩C|×T

are the EEG time series of all channels within the region.

ROCKET-based features: Random Convolutional Kernel

Transform (ROCKET) (Dempster et al., 2020) is a highly efficient

time series classifier, which obtained high performance in a short

time frame in a multivariate time series classification bake off

(Ruiz et al., 2021). For feature extraction, ROCKET applies a

large number of diverse, random and non-trainable convolutional

kernels, and computes the proportion of positive values and

maximum value of the resulting feature maps. This was adopted

as a pooling mechanism, where the proportion of positive values

and max values of the feature maps were used for computing the

importance score of a channel. From the num_kernels · 2 features, a

trainable fully connected module with scalar output and specific to

the i-th montage split and j-th region, FC(i,j)
:R

num_kernels·2 → R,

was applied. After computing the importance scores for all time

series in the region, a softmax activation function was applied to

obtain positive coefficients only, which sum to one. A desirable

property of using non-trainable convolutional kernels is that the

output feature maps (along with proportion of positive values and

max values) are being computed only once per subject, prior to

training. Therefore, the computational cost of a large number of

convolutions may be justified by its property to be pre-computed.

The number of convolutional kernels was set to 1000, and the

maximum receptive field in the temporal dimension to 250, which

corresponds to half a second with the given sampling rate. This was

based on computational feasibility, taking both time consumption

andmemory usage on limited hardware into account. Furthermore,

no padding was used, in contrast to the original implementation.

The ROCKET features were pre-computed prior to training, as

the convolutional kernel weights were frozen, and the proportion

of positive values and max values of the feature maps were thus

constant per channel and subject during training. Furthermore, the

ROCKET kernels were shared across all regions and montage splits

to reduce runtime. The FC modules mapping the num_kernels·2

features to a single coefficient, used only a single fully connected

layer with linear activation function. That is, for every subject, the

importance score of the k-th channel in the j-th region of the i-

th montage split prior to softmax normalization, was computed

as g(i,j)(xk) = FC(i,j)(zk) = wT
i,jzk, where wi,j ∈ R

num_kernels·2 is

a trainable weight vector of the j-th region of the i-th montage

split, xk ∈ R
T is the time series of the k-th channel, and zk ∈

R
num_kernels·2 is the pre-computed ROCKET features of channel k.

2.4.2.3 Continuous channel attention

Another possible pooling mechanism is to apply continuous

channel attention, which is illustrated in Figure 5. In the channel

attention mechanism explained in Section 2.4.2.2, it is impossible

for the model to adapt its channel attention in time. Therefore,

continuous channel attention is implemented by defining a function

g :R1×T → R
1×T , apply g to every channel, and apply softmax

activation function in the channel dimension. That is, what was

in Section 2.4.2.2 an attention vector of the j-th region in the i-th

montage split a(i,j) ∈ {q ∈ (0, 1)
|R

(i)
j ∩C|

: ||q||1 = 1} is replaced

by an attention matrix A(i,j) ∈ {Q ∈ (0, 1)
|R

(i)
j ∩C|×T

: ||Q
:,t||1 =

1 ∀t ∈ {1, 2, ...,T}}, where all elements are positive and each

column sum to 1 due to the softmax activation function. The

region representation of the j-th region in the i-th montage split is

followingly computed as f
(i,j)

pool
(X,C) = 1T

(

A(i,j) ⊙ X
R
(i)
j ∩C

)

, where

1 is a vector of ones, ⊙ is the Hadamard product (element-wise

multiplication), and X
R
(i)
j ∩C

∈ R
|R

(i)
j ∩C|×T

is the EEG data of the

channels in R
(i)
j ∩ C. This formulation is equivalent to applying a

unique attention vector per time step.
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FIGURE 5

Illustration of continuous channel attention. An importance scalar is computed for every channel and time step, and the attention matrix is computed

by applying softmax on a concatenation of these in the channel dimension. The attention matrix is used to compute a linear combination of the

channels per time step. That is, a new linear combination is computed for each time step, allowing the pooling mechanism to shift its attention

through time.

In the experiments, an Inception network (Ismail Fawaz et al.,

2020) was used as g. The depth of the architecture was set to

two Inception modules, and the number of filters was set to

two for all convolutional kernels and Inception modules. These

hyperparameters were set smaller than in the original study due to

high memory consumption.

2.4.2.4 Region based pooling with head region

With the pooling mechanisms described in Sections 2.4.2.1,

2.4.2.2 and 2.4.2.3, RBP is not able to tailor the region

representations based on other regions. As this may be an

important property to possess, RBP can be extended to Region

Based Pooling with a Head Region, which is illustrated in Figure 6.

A head-region is selected, which exhibits the property of being able

to influence the aggregation of channels in non-head regions.

The region representation is computed as an aggregation of the

channels, given a vector embedding of the head region. For every

montage split Mi ∈ {M1,M2, ...,Mn}, a head region H(i) ∈ Mi

is selected. The region representation of all non-head regions R
(i)
j ∈

Mi\{H
(i)} is computed as

f (i,j)(X,C) = AGG(i,j)

(

X
R
(i)
j ∩C

; s
→R

(i)
j

i

)

∀j :R
(i)
j ∈ Mi\{H

(i)},

(1)

s
→R

(i)
j

i = f
→R

(i)
j

i (XH(i)∩C), (2)

where s
→R

(i)
j

i is the search vector embedding of the head regionH(i)

with relevance to region R
(i)
j ∈ Mi\{H

(i)}, f
→R

(i)
j

i is the function

mapping the channels of the head region to s
→R

(i)
j

i , and AGG(i,j) is

an aggregation function. The vector embedding of the head region

may thus depend on the region to compute a region representation

of. The motivation of this is that the head region systematically

searches for certain characteristics in the other regions, and such

characteristics may depend on the given regions.

The region representation of the head region was computed as

in ROCKET channel attention, introduced in Section 2.4.2.2. The

search embeddings s
→R

(i)
j

i were computed as

s
→R

(i)
j

i =
[

f
(i,j)
1 (ZH(i)∩C)⊙ σ

(

f
(i,j)
2 (ZH(i)∩C)

)]

1, (3)

f
(i,j)
1 (ZH(i)∩C) = W

(1)
i,j ZH(i)∩C, (4)

f
(i,j)
2 (ZH(i)∩C) = W

(2)
i,j ZH(i)∩C, (5)

where σ is the softmax activation function computed in the channel

dimension, ZH(i)∩C ∈ R
num_kernels·2×|H(i)∩C| is a concatenation of

the ROCKET features, and W
(1)
i,j and W

(2)
i,j are trainable weight

matrices of the search embedding function of region R
(i)
j . The use

of softmax allows the search embedding to weight the different

channels in the head region differently for each ROCKET feature.

The region representation of regionR
(i)
j ∈ Mi\{H

(i)} are computed

per subject as

AGG(i,j)(X
R
(i)
j ∩C

; s
→R

(i)
j

i ) = a(i,j)TX
R
(i)
j ∩C

, (6)

ak =
exp{cos(f

(i,j)
1 (zk), s

→R
(i)
j

i )}

∑

c∈R
(i)
j ∩C

exp{cos(f
(i,j)
1 (zc), s

→R
(i)
j

i )}

,

(7)

with ak being the elements of a. Note that the same embedding

functions (f
(i,j)
1 ) are used on the channels of R

(i)
j ∈ Mi\{H

(i)} as on

the channels of the head region H(i). This may be beneficial, as the

embeddings share the same space, and computing similarity may

thus be more meaningful.

For the experiments in this study, the number of rows in the

weight matrices W
(1)
i,j and W

(2)
i,j (and hence the dimensionality of

the search vector embeddings s
→R

(i)
j

i ) were set to 64, for all i and j.
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FIGURE 6

Region based pooling with a head region. The head region may influence how the channels in the non-head region should be aggregated. This is

done by passing an embedding vector of the head region to the aggregation functions. By passing di�erent embeddings to the di�erent non-head

regions, the head region is allowed to search for di�erent features in the di�erent spatial locations.

TABLE 1 Overview of batch sizes used for grid search.

Pooling mechanism Min. number of electrodes Number of montage splits Batch size

With head region 1 50 8

2 50 8

Continuous attention 1 5 4

2 5 4

3 5 4

1 10 2

2 10 2

3 10 2

1 25 1

2 25 1

3 25 1

All RBP models not listed used a batch size of 16.

2.5 Experiments

All models were implemented using PyTorch (Paszke et al.,

2019), version 1.10.1+cu113. The hardware used was a computer

equipped with an NVIDIA GeForce RTX 3060 12GB GPU. The

code is publicly available on GitHub.2

All models were run with learning rate set to 0.0001. The

maximum number of epochs was set to 50, except for RBP

with continuous channel attention, which used 20 epochs due

to high time consumption. The batch size was mainly set to 16

although some models required smaller batch size due to memory

constraints. The exceptions are listed in Table 1. Experiments using

zero-filling and spherical spline interpolation were run with batch

size set to 4, 8, 16, and 32, to ensure that potential improvements

2 https://github.com/thomastveitstol/RegionBasedPoolingEEG

were not due to differences in batch size. Adam (Kingma and

Ba, 2015) and binary crossentropy (with logits loss for improved

numerical stability) were used as optimization technique and loss

function, respectively.

For all experiments, a 5-fold cross validation strategy was

carried out. For every fold, the 4 folds not used for testing were

split into training and validation 75/25. The training data was used

to optimize the trainable parameters of the DL models, whereas the

validation data was used to estimate what epoch to stop at. During a

single fold, only the model parameters which obtained the highest

area under the receiver operating characteristics curve (AUC) on

the validation set (computed as the mean performance on the 32,

65, and 129-channel versions of the channel system) was used when

testing on the test data fold.

To evaluate the sensitivity with respect to two new

hyperparameters introduced by RBP, a grid search was made for
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FIGURE 7

Mean performance on the channel system with 32 electrodes, as a function of number of montage splits and number of allowed electrodes in the

smallest channel system.

all pooling mechanisms. The first hyperparameter was min_nodes,

which is the smallest number of channels allowed in the 32-

channel version of the channel system. The smaller the min_nodes,

the smaller the regions are allowed to be when splitting the

montage. The second hyperparameter was num_montage_splits,

which is the number of montage splits performed. The grid

search was carried out with min_nodes ∈ {1, 2, 3} and

num_montage_splits ∈ {5, 10, 25, 50}, with the exception of

RBP using continuous channel attention, which was restricted to

num_montage_splits ∈ {5, 10, 25} due to memory limitations.

3 Results

Figures 7–9 show the results of grid search for the different

pooling methods, on 32, 65, and 129 number of channels,

respectively. The number in each entry represents the average

performance estimate on the test sets after conducting a 5-fold

cross validation. The results show that the performance is more

sensitive to the selected hyperparameters for the low-resolution

channel systems than the 129-channel system version. In particular,

RBP seems to favor smaller regions per montage split for the

downsampled channel systems.

Figure 10 compares the performance of using RBP, spherical

spline interpolation, and zero-filling. The RBP model selected used

ROCKET channel attention as pooling mechanism, with number

of montage splits set to 25, and min_nodes set to 1. The model

selection was based on the mean validation performance on 5-

fold cross validation and maximizing the mean performance on

the three channel systems. The selected models using spherical

spline interpolation and zero-filling used batch size set to 32 and

8, respectively, following the same model selection procedure as for

RBP. For the 32-channel system version, themeanAUC values were

as follows: RBP (93.34%), spherical spline interpolation (93.36%),

and zero-filling (76.82%). On the 65-channel system version, the

performances were RBP (93.66%), spherical spline interpolation

(93.50%), and zero-filling (85.58%). Finally, the 129-channel system

version produced the following results: RBP (94.68%), spherical

spline interpolation (93.86%), and zero-filling (91.92%).

4 Discussion

4.1 RBP for handling a varied number of
channels

RBP shows highly similar performance to spherical spline

interpolation for all channel systems, as seen in Figure 10.

Both RBP and spherical spline interpolation demonstrate

robustness in handling a varied number of channels, as

indicated by the minor performance degradation observed

on the down-sampled channel systems. A potential decrease

in performance when reducing the number of channels is not

necessarily to be evaluated as weaknesses in these methods

but may be due to a loss of information when removing

channels. The objective of the methods is to handle the

channel down-sampling with the smallest reduction in

performance as possible although no method can restore

the fully lost information. In contrast to RBP and spherical

spline interpolation, zero-filling missing channels vastly reduce

the performance on the lower resolution channel systems.

Zero-filling is therefore not a recommended approach for
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FIGURE 8

Mean performance on the channel system with 65 electrodes, as a function of number of montage splits and number of allowed electrodes in the

smallest channel system.

FIGURE 9

Mean performance on the channel system with 129 electrodes, as a function of number of montage splits and number of allowed electrodes in the

smallest channel system.

handling missing channels, despite its use in, e.g., the official

preprocessed version of the EEG data of the Child Mind

Institute (Alexander et al., 2017).

The results from the grid searches on the different pooling

mechanisms indicate that the selection of pooling mechanism

was unimportant for the selected task and dataset, except for
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continuous channel attention for 25 number of montage splits.

However, the batch size was set to 1 due to memory constraints,

which is not optimal for training, and thus a strong confounder.

More research is therefore needed to assess if a high number

of montage splits failed in continuous channel attention due to

inadequacy of the pooling mechanism or if it is solely due to the

batch size. No pooling mechanism was superior to the others for

all hyperparameters. A consistent trend appears to be that RBP

benefits from smaller regions, as the performance on especially the

channel systems with 32 and 65 channels seem to increase when

the stopping criteriamin_nodes decrease. This is not an unexpected

finding as using smaller regions increases the spatial resolution

per montage split. The current results further suggest that solely

increasing the number of montage splits is insufficient when the

regions are excessively large. However, as future work may include

even smaller channel systems, larger regions may be beneficial from

a practical point of view. Finding the optimal balance between low

resolution channel systems compatibility and model performance

may therefore be important for future research. However, as the

model was trained only on 129 channels, the performance on the

low-resolution channel systems may be increased by including

them in the training data as well. For extension to the large-

scale setting with multiple datasets, this is likely to be a feasible

approach. Furthermore, it may be used as a data augmentation

technique, in particular when the high-resolution channel system

has low-resolution equivalents.

This study proposed an algorithm for splitting the EEG

montage into regions although no optimization of montage

splits was performed. It is likely that different EEG related

problems may benefit from different montage splits. This is

because the important spatial features may be task related and

require higher or lower resolution of some areas. Furthermore,

as only one algorithm for splitting the EEG montage into

regions was tested, future work could benefit from exploring

and evaluating alternative methods. Note that with the current

use of regions having defined boundaries, where an electrode is

either inside or not inside a region, optimizing montage splits

by gradient based methods cannot work directly. This is because

an infinitely small change to the boundaries of the region will

either cause zero change in output or an output change of

fixed size (not infinitely small, as required). The gradients would

thus be either zero or infinite, making gradient based learning

infeasible. Two potential solutions are further discussed in Section

4.4.2.

4.2 Related work

As discussed in Wei et al. (2022), limited studies has focused

on generalizing DL models to handle the cross-dataset setting and

a varied number of channels. A desired outcome of the BEETL

competition was to develop transfer learning techniques in the

cross-dataset setting (Wei et al., 2022). However, the top three

entries selected simple methods to handle a varied number of

channels and the difference in channel locations; channel removal,

dataset removal, or both. Furthermore, to handle a varied number

of channels in the pre-training and downstream training, Kostas

et al. (2021) mapped all datasets to 19 channels, and in that process,

FIGURE 10

Results of sex prediction using Inception network in combination

with RBP (blue), spherical spline interpolation (orange), and

zero-filling (green). The splitting into 5 folds were equal for the

di�erent methods, and only the five performance estimates from

the test sets are plotted. For the channel system with c = 129,

interpolation and zero-filling are technically the same, as there are

no channels to interpolate nor zero-fill. The model selection

procedure, however, selected di�erent batch sizes, and the

performance di�erences are therefore attributed to both the model

selection and di�erences in initialization of weights.

sacrificed a considerable part of the data for several of the datasets

used for downstream training. However, research from clinical

neurology suggests that certain characteristics require high-density

EEG with an increased number of channels (Kuhnke et al., 2018;

Hatlestad-Hall et al., 2023). The feasibility of downsampling the

spatial resolution may therefore be limited to only a subset of

EEG-related tasks.

Li and Metsis (2022) developed SPP-EEGNET, an architecture

designed for inter-dataset transfer learning, and is compatible with

a varied number of channels. However, SPP-EEGNET pools the

feature maps by spatial pyramid pooling (SPP) (He et al., 2014)

after convolutions have been applied channel-wise. Cross-channel

patterns can therefore not be extracted by the convolutionalmodule

of SPP-EEGNET as the receptive field of the feature maps are

bounded to their respective single channel. Such cross-channel

patterns may only be extracted by the fully connected module,

after applying the SPP layer. As the success of signal processing

is mostly attributed to the convolutional module, this approach

may be sub-optimal. Furthermore, many existing DL architectures

for EEG data apply 1D convolutions across channels, hindering its

application to many of the currently existing architectures. This

contrasts with RBP, which is compatible with any DL model for

multivariate time series classification/regression.3 This is beneficial,

as the current high-performing models from literature may apply

RBP with ease (simply use RBP as the initial layer), meaning

the accumulated research and development on DL architectures

over time is respected. Furthermore, it offers a simple solution

for working on the cross-dataset and cross-channel system setting

in the future. Note also that although this study represented the

EEG data as time series, using other representations such as power

3 Although one requirement is di�erentiability, if the pooling mechanism

has parameters to be optimized as part of the gradient based learning.
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spectral density or operating on wavelet transformed images are

popular choices of input to DL models. RBP is indeed compatible

with such representations although the pooling mechanisms must

be tailored to fit the input domain. Finally, the pooling in RBP is

performed based on the spatial positions of the electrodes, whereas

SPP-EEGNET does not precisely specify how the feature maps of

the different channels were merged. If the pooling is made only by

the data matrix X [as if it was an image, following the original SPP-

net (He et al., 2014)], then inconsistency in which channels end up

in which spatial region will occur.

4.3 Limitations of the study

A limitation of this study is its reliance on a single dataset and

classification problem, which may restrict the generalizability of

the findings. In particular, the size of the dataset was larger than

what is commonly available for EEG datasets with more clinically

relevant labels. When the total number of region representations

exceeds the number of channels in a given channel system, RBP

effectively expands the dimensionality of the data. This is especially

the case when the regions are small, and the number of montage

splits are many. For smaller datasets in particular, this may lead

to an increased risk of overfitting. The generalizability of the

results to smaller datasets, and in particular, the effect of the

hyperparameters min_nodes and num_montage_splits is therefore

poorly investigated. While testing the methods on sex classification

allowed for a large dataset with low chance of false labeling,

its clinical utility is low. Thus, classification/regression problems

with higher clinical relevance should be considered in the future.

Furthermore, only a single model (Inception network) was used in

combination with the three different methods for handling a varied

number of electrodes. Although Inception network is an effective

DL model for multivariate time series analysis, generalization to

other models was not assessed. This is needed due to the high

number of DL models used for EEG analysis. Finally, hardware

limitations constrained the training of all RBP models using the

same batch size, potentially reducing the performance of themodels

with smaller batch size. By testing with more models, datasets, and

classification/regression problems, the relevance of the methods

will thus be better addressed. In particular, to fully explore the

potential and relevance of the investigated methods, experiments

including datasets with even smaller numbers of EEG channels,

such as 19 or 25, are required.

4.4 Future work

4.4.1 Pooling mechanisms and hyperparameters
The use of features as computed in ROCKET, and a single

linear layer to compute the importance score of a channel, provides

a light-weight method for computing channel attention. It was

selected based on its light-weightedness as the sole purpose of

the pooling mechanism is to compute coefficients of a linear

combination. Furthermore, the extracted ROCKET features could

be pre-computed prior to training, making it a pragmatic choice

for run-time efficiency. Using more powerful DL models was

hypothesized to be unnecessary and overpowered for such a

task although in the absence of proper experimental results in

this regard, final conclusions cannot be drawn. Using pooling

mechanisms which selects not only the channels of interest but also

the frequency bands of interest is a possible future direction.

All pooling mechanisms used in the experiments were

compatible with a single channel per region. This is the case,

e.g., for computing channel attention using ROCKET features, as

the function g for computing the importance score of a channel

only uses the features of that very channel. Future work may

attempt to define pooling mechanisms which require more than

one channel per region. Thismay be accomplished by e.g. extending

the input domain and output range of g to g :Rpin×T → R
pout ,

where pin is the lower bound of accepted number of channels in a

region, and pout is the number of output features per application

of g. However, as this may either require larger regions (which

by the current results does not appear to be favorable) or lead

to incompatibility with the low-resolution channel systems, it is

important to determine if the potential benefits outweigh the

drawbacks in future research.

All experiments in this study merged the different montage

splits by concatenation directly after the pooling was made.

Another approach could be to apply convolutional modules

separately on the montage splits, prior to merging them.

Furthermore, other approaches such as summation, averaging, or

alternating between applying convolution and adding a montage

split such as skip connections, are examples of other possible

pooling strategies. In particular, merging montage splits by skip

connections and using dynamic neural networks (Han et al., 2022)

to e.g. perform a sample or channel system conditioned number

of montage splits by early exiting or layer skipping is a possible

future direction. By using dynamic architectures, more montage

splits could be used on the high-resolution channel systems,

and fewer montage splits could be used on the low-resolution

channel systems. Furthermore, montage splits with small regions

could be used on high-resolution channel systems only, possibly

alleviating the here observed trade-off between performance and

low-resolution compatibility.

4.4.2 Splitting into regions
While the current study did not perform any optimization

of the splitting of the EEG montage into regions, two possible

solutions which may be explored in the future are (1) use other

techniques for optimizing. One approach could be to generate

many splits and apply sparsity. (2) Introduce soft regions, where

electrodes are assigned a non-binary weight to its presence in the

region. A region could e.g. be represented as a Gaussian, where the

mean and standard deviation are treated as trainable parameters.

The influence of a specific channel on a region representation

would be determined by both an importance score calculated

from a function g operating on the time series, and its spatial

importance given the properties of the region (e.g., mean and

standard deviation).

4.4.3 Training strategies with large amounts of
data

Amajor motivation behind RBP is to enable the use of multiple

and heterogeneous datasets with a varied number of channels for
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different training strategies. Large-scaled use of multiple datasets

should be tested for methods such as pre-training (e.g., transfer

learning or self-supervised learning), representation learning (e.g.,

self-supervised or unsupervised learning), and simply using more

datasets if the same targets are available. Fixing different electrode

arrays and using spherical spline interpolation in the case of varied

channel systems across the datasets, should be used as baselines.

For the AI-Mind project, this may be of high relevance for

both improving the DL model performance and generalization.

While the project aims at collecting a dataset comprised of 1,000

participants and possibly expanding this with synthetic data, this

is not guaranteed to be sufficient for DL models. Improving data

efficiency and model performance by the abovementioned training

strategies may be enhanced by enabling them in the cross-channel

system setting. Furthermore, data collection from four different

countries and five different clinical sites is likely to mitigate bias to

some extent. However, its sufficiency is difficult to address a priori.

Two arguments against, are that (1) all clinical sites are situated in

European countries, and (2) the hardware for EEG recordings are

the same. Thus, by applying the abovementioned training strategies

to heterogeneous datasets, the ability of the DLmodels to generalize

across populations and hardware may be improved.

5 Conclusion

Region based pooling was introduced for deep learning models

to handle a varied number of EEG channels. Furthermore, its

adequacy in maintaining performance when downsampling the

channel system was experimentally demonstrated. Grid search was

used to assess the effect of two new hyperparameters, which relates

to the size of the regions and the number of montage splits. Several

pooling mechanisms were introduced and tested, yielding highly

similar results. Region based pooling obtained similar results to

spherical spline interpolation, and superior results to zero-filling

missing channels when downsampling the channel system to 65

and 32 channels. Zero-filling missing channels is therefore not a

recommended method for handling a varied number of channels.

Future work includes applying region based pooling on multiple

and heterogeneous datasets with different EEG channel systems. In

particular, large-scale pre-training and representation learning in

combination with region based pooling will be investigated.
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