
Solving the Lunar Lander Problem with Multiple Uncertainties
using a Deep Q-Learning based Short-Term Memory Agent

Håkon Guttulsrud, Mathias Sandnes, and Raju Shrestha
Department of Computer Science, Oslo Metropolitan University (OsloMet)

Oslo, Norway
{s360394,s361766,raju.shrestha}@oslomet.no

ABSTRACT
Efficient space travel requires intelligent and robust control
mechanisms during spacecraft landing scenarios. Developing a
control mechanism for a rocket trajectory problem is inherently
complex. This paper introduces a novel approach using Deep
Q-Learning (DQL) with Short-Term Memory (STM) to address
the intrinsic challenges of this task. Unlike traditional Q-Learning
methods, our DQL STM agent performs in an environment with
uncertainties such as starting position, gravity, and wind in both
training and simulation, allowing for enhanced robustness in
difficult environmental conditions. This adaptation enables the
agent to observe 𝑛-previous state-action pairs, offering a more
accurate estimation of environmental dynamics. Experiments
demonstrate that this new approach yields better results under
stricter testing conditions compared to previousmethods. Moreover,
we establish the innovative aspects of our methodology through
systematic comparisons with basic Q-Learning, highlighting the
merits of the DQL STM agent.

CCS CONCEPTS
• Computing methodologies→ Reinforcement learning.

KEYWORDS
Lunar Lander, Reinforcement learning, Deep Q-learning (DQL),
Uncertainties, Short-Term Memory (STM), Non-Markovian envi-
ronments, Robust control

ACM Reference Format:
Håkon Guttulsrud, Mathias Sandnes, and Raju Shrestha. 2023. Solving the
Lunar Lander Problemwith Multiple Uncertainties using a Deep Q-Learning
based Short-Term Memory Agent. In 2023 12th International Conference
on Computing and Pattern Recognition (ICCPR 2023), October 27–29, 2023,
Qingdao, China. ACM, New York, NY, USA, Article 4, 7 pages. https://doi.
org/10.1145/3633637.3633641

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICCPR 2023, October 27–29, 2023, Qingdao, China
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0798-8/23/10.
https://doi.org/10.1145/3633637.3633641

1 INTRODUCTION
LunarLander-v2 is a two-dimensional environment developed by
OpenAI in the Gym toolkit [1]. The Lunar Lander problem aims
to successfully land a rocket-propelled spacecraft in moon-like
conditions as quickly and safely as possible. Previous attempts to
solve the Lunar Lander problem without additional uncertainties
have been successful with heuristics and Reinforcement Learning
(RL) techniques such as Q-learning, Deep Q-learning (DQL), Sarsa,
and model-based methods [2, 3, 5, 10, 16]. These approaches,
however, fail to address the uncertainties inherent in the
environment, making them unsuitable for more complex scenarios.

The introduction of uncertainties into the Lunar Lander environ-
ment makes it non-Markovian, meaning a single observation does
not necessarily contain all the information necessary to understand
the entire state of the environment [2].While some researchers have
proposed methods to handle individual uncertainties, they have
not accounted for multiple uncertainties combined. This limitation
highlights the need for a more sophisticated approach that can
address complex situations with various uncertain elements.

We propose a novel approach using Deep Q-Learning with
Short-TermMemory (DQL STM) to develop an advanced and robust
control mechanism capable of landing a spacecraft on any planet
in any environment with uncertainties. Unlike previous work, our
method introduces uncertainties such as gravity, wind direction
and speed, and starting position into the training process in the
lunar lander environment. This innovation forces the agent to adapt
to unseen challenges, improving its robustness and allowing for
a more accurate estimation of the environment dynamics and its
trajectory. Our approach is rigorously evaluated systematically and
controlled to demonstrate its performance across a wide range of
uncertainty combinations, thus proving its merits over traditional
techniques.

The rest of the paper is organized as follows. We introduce the
Lunar Lander environment in Section II. Section III describes related
works. Section IV presents the proposed uncertainties and our novel
model. Experimental setup and experiments are described in Section
V. Results are presented and discussed in Section VI. Finally, Section
VII gives a conclusion to the paper.

2 THE LUNAR LANDER ENVIRONMENT
In the LunarLander-v2 environment, the spacecraft has three
controllable engines, a powerful main engine located at the base of
the spacecraft, and two lighter engines on each side. In the discrete
version of LunarLander-v2, only one engine can fire at once, and the
engines can be turned completely on or completely off. However,
there also exists a continuous version of the environment where
these restrictions are not present. By default, the gravitational

https://doi.org/10.1145/3633637.3633641
https://doi.org/10.1145/3633637.3633641
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3633637.3633641

ICCPR 2023, October 27–29, 2023, Qingdao, China Guttulsrud et al.

force is comparable to the forces on the moon. Figure 1 shows
a screenshot of the running environment. The state and action
space and reward in the environment are described below.

Figure 1: Lunar Lander environment in the OpenAI Gym.

2.1 State and action space
The state space of the environment contains information about
the spacecraft itself, shown in Equation 1. The agent observes its
position and speed in the two dimensions, angular momentum, and
velocity, and which legs are in contact with the ground.

𝑆𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 →

𝑥 : 𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑦 : 𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑣𝑥 : 𝑥 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑣𝑦 : 𝑦 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝜃 : 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
𝑣𝜃 : 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑟 : 𝑟𝑖𝑔ℎ𝑡 𝑙𝑒𝑔 𝑔𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑙 : 𝑙𝑒 𝑓 𝑡 𝑙𝑒𝑔 𝑔𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑛𝑡𝑎𝑐𝑡

(1)

The agent can perform one of four possible discrete actions. The
actions are to do nothing, fire the left orientation engine, fire the
right orientation engine, or fire the main engine. Firing an engine is
a binary operation, meaning the engine must be turned completely
on or off. Firing the main engine exerts 10x the force as the side
engines. After a successful landing, the agent must be stationary
for a set amount of timesteps to terminate the episode.

2.2 Reward
The reward function for the environment is calculated with
Equation 2.

𝑟𝑡 =

−100 ∗
√︃
𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛2 + 𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛2

−100 ∗
√︃
𝑥 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦2 + 𝑦 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦2

−100 ∗ |𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 |
−100 ∗ ℎ𝑎𝑠 𝑐𝑟𝑎𝑠ℎ𝑒𝑑
−0.3 ∗ 𝑏𝑜𝑡𝑡𝑜𝑚 𝑒𝑛𝑔𝑖𝑛𝑒 𝑜𝑛

−0.03 ∗ 𝑠𝑖𝑑𝑒 𝑒𝑛𝑔𝑖𝑛𝑒 𝑜𝑛
+10 ∗ 𝑟𝑖𝑔ℎ𝑡 𝑙𝑒𝑔 𝑔𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑛𝑡𝑎𝑐𝑡

+10 ∗ 𝑙𝑒 𝑓 𝑡 𝑙𝑒𝑔 𝑔𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑛𝑡𝑎𝑐𝑡

+100 ∗ ℎ𝑎𝑠 𝑙𝑎𝑛𝑑𝑒𝑑

(2)

The agent receives a positive reward for landing safely, while
unsafe behavior andmoving away from the target receive a negative
reward. The spacecraft must land within a specific range along the
X-axis to achieve the highest possible reward. The spacecraft may
land outside the range, but the reward is lowered. The episode is
terminated if the spacecraft crashes or landing is not successfully
performed within the required time limit. The reward is measured
in points, and a reward of 200 points or more is considered solved.
If the spacecraft moves away from the landing pad, the reward
decreases. Additionally, if the spacecraft crashes, it receives a
negative reward. Firing the main engine decreases the reward by
0.3 points, and firing the smaller side engines decreases it by 0.03
points. The spacecraft has two legs; if either leg comes into contact
with the ground, the reward is increased by 10 points for each leg.
If the legs lose contact, the respective 10 points for that leg are
subtracted from the score. Additionally, the reward is determined
by the angular velocity of the spacecraft. The reward function does
not consider the spacecraft’s angular position.

After calculating the reward for the current timestep, the
previous reward is subtracted, resulting in the received reward
𝑅𝑡 , expressed in Equation 3.

𝑅𝑡 = 𝑟𝑡 − 𝑟𝑡−1 (3)

3 RELATEDWORK
Using multiple timesteps in reinforcement learning has previously
been studied and can be categorized into two approaches. The
first approach is the forward view, where each state is updated by
looking forward to 𝑛 future rewards and states. The other approach
is the backward view, where each state is updated by looking back
to previous 𝑛 rewards and states [13]. The forward view method
has been researched extensively, showing improved performance
over the 1-step method [6]. However, the use of a backward view
has not been as thoroughly researched for DQL in RL problems.

Mnih et al. [7] proved that DQL could handle complex problems
without looking at the inner workings of the environment. They
continued the work proposed two years earlier and caused a boom
in DQL approaches for RL [8]. This work proved that DQL could
perform at a superhuman level in perfect information environments.
Using DQL and experience replay, Yu [16] solved the default
problem. They found that the Lunar Lander problem favors wide
but not deep neural networks.

Solving Lunar Lander Problem with Multiple Uncertainties ICCPR 2023, October 27–29, 2023, Qingdao, China

Lu et al. [5] solved the Lunar Lander problem using a
model-based approach where instead of learning the system’s
dynamics, a model directly learns the optimal parameters for
controlling the spacecraft. Gou and Liu [3] proposed a novel
approach by combining a model-based and model-free agent,
evaluating the performance in two Gym environments, Mountain
Car and Lunar Lander. They propositioned that transitions stored
in the replay memory have little informative correlation to the
reward signal. The transitions can be used to learn the environment
dynamics by posing the problem as a supervised learning approach.
Instead of dealing with the stochastic nature of the epsilon greedy
algorithm [11], they proposed one-step planning during exploration
that explored environments better and faster by predicting the next
state. Although the method improved over model-free DQL for
Mountain Car, the performance did not transfer to the Lunar Lander
problem.

Other researchers have compared the performance of Deep
Q-Networks (DQN) to Policy Gradient (PG) in the Lunar Lander
environment [12]. They found that the stochastic PG method
performed relatively disadvantageously compared to DQN, as
the episodic Lunar Lander environment is deterministic. The PG
method reached upwards of 160 points in the environment, while
the DQL-based method reached 200 points. In their concluding
remarks, they note that the validity of their results is limited to
the deterministic Lunar Lander environment and could potentially
observe different results in the real world under uncertainty.
Nugroho [10] used DQL to solve the problem and compared the
performance to a heuristic approach using classical Q-Learning
[15]. They found that the heuristic approach outperformed the
DQL. However, the heuristic approach is carefully hand-crafted
to the default Lunar Lander environment, which suggests that the
approach would not be able to handle environments with added
uncertainty. In the case of Lunar Lander, introducing multiple
uncertain elements such as variable gravity and wind, causing the
environment to be non-markovian, would argumentatively reduce
the performance of a heuristic approach.

Gadgil et al. [2] have solved the problem with three different
uncertainties, random force acting on the agent, noisy observation
data, and stochastic engine failure. The researchers sought to solve
the problem with several approaches, including a Sarsa agent that
reached average rewards of 170+. The Sarsa agent is an on-policy
algorithm that chooses the highest Q value using an exploration
policy, in their case, the epsilon-greedy algorithm. They show
that the agents can adapt to the environment under uncertainty
and attain rewards of 100+. However, they found that the Sarsa
agent performed poorly without reducing the dimensionality of
the environment by implementing a state-discretization scheme.
It could be argued that their Sarsa agent could see an increased
reward if they were to combine the state discretization with the
supervised learning approach proposed by Gou and Liu [3]. Their
DQL-based agent attained marginally better results and solved the
problem with rewards above 200. However, they tested the agents
only on individual uncertainties in isolation and did not combine
multiple uncertainties to assess agent performance in more complex
conditions. In their concluding remarks, the researchers say that
further work should be done to combine uncertainties to assess
how agents would adapt to the increased uncertainty.

4 PROPOSED UNCERTAINTIES AND MODEL
4.1 Uncertainties
We introduce three new uncertainties to the Lunar Lander problem
and combine uncertainties for a more challenging and realistic
landing situations. The uncertainties are the start position of the
lander, gravitational force, and wind speed and direction. These
uncertainties change the properties of the environment, causing it
to become non-Markovian. At the time of our research, only gravity
and wind were implemented in the Lunar Lander environment.
Therefore, we had to customize the source code of the Lunar Lander
environment to allow for variable start positions. The uncertainties
are described below.

Start position: The start position determines where the spacecraft
spawns along the X-axis for each new episode. The varying start
position allows the flight controller to be initiated in a broader
range of situations instead of directly above the landing pad as in
the default environment. The environment’s default value of the
start position is 300. Here, we used the range 0 to 550, covering the
full width of the environment as shown in Figure 2.

Figure 2: Uncertain start position.

Gravity: Changing the gravitational force ensures the agent can
land on a broader range of moons and planets. Gravity will heavily
influence the velocity and behavior of the agent and how it needs to
utilize the engines. The environment default for gravity is -10, while
we define a gravity range between -15 and -5. With gravitational
force stronger than -15, the legs of the spacecraft can no longer
support the body’s weight. In addition, the engines are too powerful
for gravitational forces weaker than -5. Figure 3 illustrates uncertain
gravity in the Lunar Lander environment.

Wind:Wind has been introduced so that the landing procedure can
function in variable climates. The wind will affect the spacecraft’s
trajectory. The direction of the wind is selected at random and can
originate from any angle in the 2D space (see Figure 4). Wind is
enabled with wind speed values between but not including 0 and
20.

The three uncertainties have been combined, and the problem
has to be solved without changing the spacecraft’s body, engine
positions, number of engines, and engine thrust.

ICCPR 2023, October 27–29, 2023, Qingdao, China Guttulsrud et al.

Figure 3: Uncertain gravity.

Figure 4: Uncertain wind.

4.2 Model
We propose a Short Term Memory DQN-based learning agent that
observes its environment through a queue containing the current
state and 𝑛 number of previous state-action pairs, making the
agent a backward-lookingmultiple timestep agent. Our experiments
found the ideal value to be the current and five previous state-action
pairs, totaling six timestep states that are used as input to the
agent. The DQN consists of an input layer, two hidden layers, and
an output layer (see Figure 5). The input layers contain one-hot
encoded current state, previous states, and previous actions. Both
hidden layers use ReLU [9] as the activation function and have
128 nodes. This network architecture is inspired by the DQL
agent proposed by Gadgil et al. [2]. Both hidden layers in their
DQN have 64 nodes. Using this as a starting point, we have
run Hyperparameter Optimization (HPO) schemes to test various
hyperparameters and network architectures. Architectures with
different depths and breaths were explored, resulting in the final
model architecture. The network has four linear output nodes, one
for each action. The output of each output node is an estimated
expected return for performing each action given the input state.
The loss is calculated with Mean-Squared-Error (MSE) [14], and the
network is updated with the Adam optimizer [4] and the learning
rate 0.001. The exploration rate is set to 0.2, and the discount factor
is set to 0.99.

Figure 5: Deep Q-Network used in the proposed DQL model.

Algorithm 1 Training of the agent.
initialize Agent
for every episode do

load uncertainty values
build environment
for every timestep do

decide action
step environment
save experience
train agent on random batch

end for
evaluate agent

end for

The model’s training is episodic as expressed algorithmically in
Algorithm 1. At the start of every timestep, the agent interacts with
the environment. The data relating to that interaction is then saved
in the experience replay buffer. The relevant data for a timestep is
the state, action, new state, reward, and whether or not the episode
should be terminated. This cycle of observing, acting, and collecting
experience is repeated until the episode terminates.

At every timestep, the model is trained on one batch of data
after the current timestep data has been stored. The training data
is selected stochastically from the experience replay buffer. During
training, the input is the current state, while the desired output is
calculated by looking at the received reward for the current state,
the next action, the discount factor, and if the episode should be
terminated. The network’s output estimates the Q-value, which is
the expected return for performing a specific action in a specific
state.

The agent has a set amount of time before the episode terminates,
determined by the amount of maximum allowed timesteps, set at
1000. During training, the agent will periodically choose random
actions, determined by a static exploration rate of 20% using the
epsilon-greedy algorithm.

Solving Lunar Lander Problem with Multiple Uncertainties ICCPR 2023, October 27–29, 2023, Qingdao, China

The introduction of a backward-looking multiple timestep agent
through the Short Term Memory Deep Q-Learning model signifies
a novel approach to handling non-Markovian environments. By
observing both the current state and previous state-action pairs,
our model gains enhanced adaptability and robustness in the face
of uncertainties. The optimal configuration of six timestep states,
determined through meticulous experimentation, sets our model
apart from conventional Q-Learning methods. The well-tuned
hyperparameters and network architecture, combined with the
episodic training regimen, ensure a balance between exploration
and exploitation. The successful handling of multiple uncertainties
reaffirms the merits of this innovative approach, extending the
boundaries of existing solutions in Reinforcement Learning.

5 EXPERIMENTS
The proposed DQL STM agent and the model are implemented and
tested with the three new uncertainties individually and combined.
The agent was trained and tested with individual uncertainties by
introducing one uncertainty at a time.With combined uncertainties,
the agent was tested with all uncertainties enabled simultaneously.
The same experiments were conducted with the state-of-the-art
model and agent from Gadgil et al. [2], which will be referred to
as a Naive agent, to test how this agent would adapt to the new
uncertainties and to compare the results from the proposed model.
The implementation was done with Python 3.7 using Keras and
Tensorflow 2.8. ReLU activation function, Adam optimizer, Mean
squared error (MSE) loss function, and batch size of 32 were used
in both agents.

As some combinations of uncertainties are more challenging,
the evaluation can not be performed with random uncertainty
values for each evaluation. In addition, the goal is not to find
an agent proficient in one specific combination of uncertainties.
Therefore, the selected uncertainty values have to be the same for
each evaluation, and each agent needs to be evaluated in multiple
episodes. The agent should not be evaluated more than necessary
to reduce training time. Because of this, we have used a new testing
method when agents are tested with combined uncertainties. The
method is described below.

Testing method: The testing method consists of a robust
evaluation scheme, as shown in Figure 6. The test has a set amount
of unique uncertainty combinations, resulting in eight evaluation
episodes with all uncertainties enabled. When an agent performs
proficiently, it means that the agent is highly adept at solving the
Lunar Lander problem with various combinations of uncertainties.

The robust test is initialized by selecting values periodically
from each uncertainty range, ranging from the minimum to the
maximum. All possible combinations of the selected values are
combined. The evaluation selects two values between the minimum
and maximum of each uncertainty range. This can be imagined as
a 3D plot, with each uncertainty as an axis. The selected points
are the corners of a cube that fits inside the plot. This means that
every evaluation is run with 8 unique combinations of uncertainties,
sampled evenly.

Figure 6: Flowchart depicting the testing method used to
evaluate DQL agents with combined multiple uncertainties.

6 RESULTS AND DISCUSSION
At the end of each training episode, the agents are evaluated two
times for specific uncertainties and eight timeswith all uncertainties
with uncertainty values selected periodically from their ranges.
The results are presented as the average score (reward) received in
overall evaluation episodes. Figure 7 shows the results of the Naive
agent when evaluated with individual uncertainties.

The results show that the Naive agent could not solve the
problem with either uncertainty. However, the best results were
obtained with a random start position, and the agent was close
to solving the problem. The agent could not deal with uncertain
wind and gravity because the introduction of uncertain wind
and gravity makes the environment to be non-Markovian, i.e.,
a single observation does not fully describe the state of the
environment. This confirms that these uncertainties are arguably
more challenging to handle than what was introduced by Sadavarte
et al. [12].

Figure 8 shows the results from the performance of the proposed
agent running the environment with individual uncertainties in
isolation. As observed, the proposed agent is able to handle the
challenge of individual uncertainties more optimally than the Naive
agent. The agent is able to reach average rewards of over 200 points
multiple times for every 8 evaluations per episode.

Because the Naive agent could not handle the individual
uncertainties, they predictably did not succeed with the
introduction of multiple simultaneous uncertainties. The evaluation
results from the proposed agent and the Naive agent when all three
uncertainties are enabled simultaneously are shown in Figure 9.

ICCPR 2023, October 27–29, 2023, Qingdao, China Guttulsrud et al.

Figure 7: Results from the Naive agent with individual
uncertainties in isolation.

Figure 8: Results from the proposed agent with individual
uncertainties in isolation.

From the scores in Figure 9, we observe that the proposed DQL
STM agent solved the problem by achieving an average of over 200
points for some evaluations, while the Naive agent never solved
the problem. The trend for the former is more positive than the
latter over time, and it warrants further research to explore if
the proposed agent would be able to perform better given more
training time. We believe that the environment context gained from
observing previous states and actions is attributed to the improved
performance compared to the other agents. The extra context of
previous state-action pairs allows the agent to estimate its trajectory
better and better understand how the uncertainties affect it.

Figure 9: Results from the Naive and proposed agents, with
all uncertainties enabled.

7 CONCLUSION
In this study, we tackled the Lunar Lander problem under the
influence of complex uncertainties, such as starting position,
gravity, and wind. Traditional DQL agents struggle with these
uncertainties, as the non-Markovian nature of the environment
prevents a complete understanding of the state in a single
observation. To address this challenge, we proposed a novel Deep
Q-learning model equipped with a Short-Term Memory (DQL
STM) agent that observes previous state-action pairs which allows
for a more accurate estimation of the environmental state, thus
leading to successful landings even under strict testing conditions.
The innovative integration of Short-Term Memory into Deep
Q-learning improves the capability to perform at a high level in a
non-Markovian environment. This achievement distinguishes our
method from basic Q-learning, showcasing itsmerits and robustness
in handling multiple uncertainties.

Future work could explore more sophisticated recurrent
techniques, including RNN or LSTM-based layers [1], to further
refine the estimation of the spacecraft’s trajectory. The success
of this research offers promising directions for enhancing control
mechanisms in stochastic and uncertain environments.

REFERENCES
[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI gym. arXiv preprint
arXiv:1606.01540 (2016).

[2] Soham Gadgil, Yunfeng Xin, and Chengzhe Xu. 2020. Solving the lunar lander
problem under uncertainty using reinforcement learning. In 2020 SoutheastCon,
Vol. 2. IEEE, 1–8.

[3] Stephen Zhen Gou and Yuyang Liu. 2019. DQN with model-based exploration:
efficient learning on environments with sparse rewards. arXiv preprint
arXiv:1903.09295 (2019).

[4] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).

[5] Yingdong Lu, Mark S Squillante, and Chai W Wu. 2019. A control-model-based
approach for reinforcement learning. arXiv: 1905.12009 (2019).

Solving Lunar Lander Problem with Multiple Uncertainties ICCPR 2023, October 27–29, 2023, Qingdao, China

[6] Lingheng Meng, Rob Gorbet, and Dana Kulić. 2021. The effect of multi-step
methods on overestimation in deep reinforcement learning. In 2020 25th
International Conference on Pattern Recognition (ICPR). IEEE, 347–353.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529–533.

[9] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted
boltzmann machines. In ICML.

[10] Larasmoyo Nugroho. 2021. Powered Landing Guidance Algorithms Using
Reinforcement Learning Methods for Lunar Lander Case. Jurnal Teknologi
Dirgantara 19, 1 (2021), 43–56.

[11] Paavai Paavai Anand et al. 2021. A Brief Study of Deep Reinforcement Learning
with Epsilon-Greedy Exploration. International Journal Of Computing and Digital
System (2021).

[12] Rohit Sachin Sadavarte, Rishab Raj, and B Sathish Babu. 2021. Solving the
Lunar Lander Problem using Reinforcement Learning. In 2021 IEEE International
Conference on Computation System and Information Technology for Sustainable
Solutions (CSITSS). IEEE, 1–6.

[13] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An
introduction. MIT press.

[14] Philip Thomas and Emma Brunskill. 2016. Data-efficient off-policy policy
evaluation for reinforcement learning. In International Conference on Machine
Learning. PMLR, 2139–2148.

[15] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3 (1992), 279–292.

[16] Xinli Yu. 2019. Deep Q-Learning on Lunar Lander game. https:
//www.researchgate.net/publication/333145451_Deep_Q-Learning_on_
Lunar_Lander_Game.

https://www.researchgate.net/publication/333145451_Deep_Q-Learning_on_Lunar_Lander_Game
https://www.researchgate.net/publication/333145451_Deep_Q-Learning_on_Lunar_Lander_Game
https://www.researchgate.net/publication/333145451_Deep_Q-Learning_on_Lunar_Lander_Game

	Abstract
	1 Introduction
	2 The Lunar Lander environment
	2.1 State and action space
	2.2 Reward

	3 Related work
	4 Proposed uncertainties and model
	4.1 Uncertainties
	4.2 Model

	5 Experiments
	6 Results and Discussion
	7 Conclusion
	References

