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Introduction: Research on the classification models of suicide attempts has 
predominantly depended on the collection of sensitive data related to suicide. 
Gathering this type of information at the population level can be  challenging, 
especially when it pertains to adolescents. We addressed two main objectives: 
(1) the feasibility of classifying adolescents at high risk of attempting suicide 
without relying on specific suicide-related survey items such as history of suicide 
attempts, suicide plan, or suicide ideation, and (2) identifying the most important 
predictors of suicide attempts among adolescents.

Methods: Nationwide survey data from 173,664 Norwegian adolescents (ages 
13–18) were utilized to train a binary classification model, using 169 questionnaire 
items. The Extreme Gradient Boosting (XGBoost) algorithm was fine-tuned to 
classify adolescent suicide attempts, and the most important predictors were 
identified.

Results: XGBoost achieved a sensitivity of 77% with a specificity of 90%, and 
an AUC of 92.1% and an AUPRC of 47.1%. A coherent set of predictors in the 
domains of internalizing problems, substance use, interpersonal relationships, 
and victimization were pinpointed as the most important items related to recent 
suicide attempts.

Conclusion: This study underscores the potential of machine learning for 
screening adolescent suicide attempts on a population scale without requiring 
sensitive suicide-related survey items. Future research investigating the etiology 
of suicidal behavior may direct particular attention to internalizing problems, 
interpersonal relationships, victimization, and substance use.
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Introduction

Suicide attempt is defined as engaging in self-harm behavior with at least some intention to 
die (1) and its prevalence during adolescence is estimated to be up to 10% with a peak around 
the age of 16 (2). Cross-national studies also emphasize the high prevalence of suicide attempts 
during adolescence and early adulthood (1, 3). Thus, identifying adolescents at risk of attempting 
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suicide is a key step toward offering early interventions and mitigating 
its substantial public health impact. Yet, identifying at-risk adolescents 
is a challenging task, because suicide attempt risk is tied to a variety of 
individual, societal, cultural, and environmental factors (4) and 
despite decades of extensive research, the predictive power of 
identified risk factors remains weak and inconsistent (5). A systematic 
meta-analysis on clinical instruments revealed a low combined 
positive predictive value of 5.5% for suicidal behavior, concluding that 
the “high-risk” classification was not clinically useful (6). Adolescents’ 
suicide attempts can also be unpremeditated or compulsive, making 
risk estimation even more difficult (7–9). As a result, recent reviews 
noted that prediction of suicidal behavior needs to account for the 
complex interplay of a multitude of risk factors, shifting the focus 
from risk factors to risk algorithms (5, 10).

Not only is the prediction of suicide attempt risk a challenging 
endeavor, but the sensitive subject matter also poses difficulties for 
assessment in the general population (11–13). Therefore, suicidal 
behavior is often not measured in population-based studies (12, 14, 
15). Research has shown that prevalence of self-reported suicidal 
behavior in anonymous surveys is up to three times higher than 
non-anonymous surveys, further stressing sensitivity of suicide-
related items (16, 17). Therefore, recent studies have stressed the 
importance of identifying individuals at risk for suicide attempts when 
suicide-related items, such as suicidal ideating and self-harm behavior 
are not assessed (18).

Recently, the potential of machine learning techniques to improve 
suicide attempt classification has been explored. Machine learning 
algorithms can make use of a multitude of variables and evaluate their 
complex interplay, resulting in promising improvements in the field of 
suicide research (19–21). However, these studies have focused on 
variables directly related to suicide, such as suicidal ideation and self-
harm behaviors, and consistently identified them as the strongest 
predictors (19, 22–26). Moreover, there seems to be insufficient focus on 
the practicality of implementing machine learning algorithms at a 
population level, especially when suicide-related data are lacking. 
Although machine learning is regarded as a promising tool for 
predicting suicide attempts, a strong focus on suicide-related data may 
serve as a barrier to its implementation at scale. As a result, less is known 
about the performance of machine learning models in predicting suicide 
attempts when suicide-related items are not included (18).

The current study

In this study, we aim to answer two research questions. First, how 
accurately can machine learning models identify adolescents who self-
report a recent suicide attempt without using sensitive suicide-related 
information such as self-harm, suicide plan, suicide ideation, or 
history of previous suicide attempts? Second, what are the most 
important personal, psychological, societal, and environmental 
variables associated with adolescents’ recent suicide attempts? As 
noted in the literature, the risk factors of suicide attempts are usually 
studied in isolation and it is not clear what the most important 
predictors are, once hundreds of potential predictors are being taken 
into consideration (5, 10). Due to the low prevalence of suicidal 
behavior, richness and size of data is central to studying suicidal 
behavior with machine learning, both for classifying suicide attempt 
accurately as well as evaluating the predictors’ importance; however, 
previous studies of machine learning frequently suffer from either 

small sample sizes or using non-representative samples (23–29). 
We use nationally representative retrospective cross-sectional survey 
data from 173,664 Norwegian adolescents and analyze a multitude of 
items from a variety of psychological, sociological, and environmental 
domains to address our research questions.

Methods

Sample and procedure

This study utilizes the Ungdata surveys, a data collection scheme 
developed to administer youth surveys at municipal levels in Norway, 
assessing junior and senior high school students (grades 8–13, ages 
13–18). The data were collected between 2014 and 2019 across most 
of municipalities in Norway, with students being invited to complete 
an electronic questionnaire in their classrooms. The current data 
analysis was performed on a subset of dataset, which included 169 
items that were received by all participants (n = 173,664).

Measures

The analysis included 169 survey items. The full description and 
response options of these items can be found on the OSF repository 
of the study via https://osf.io/2qfnc/.

Recent suicide attempt
The outcome variable was recent suicide attempts, which was 

measured with a single self-report item, asking “Have you tried to take 
your own life in the last 12 months?,” with the response options “Yes” 
and “No.”

Socio-demographics
In addition to participants’ gender and age, various socio-

demographic factors were evaluated. These included socio-economic 
status, assessed using the second edition of the Family Affluence Scale 
(30, 31), parents’ education level, adolescents’ subjective assessment of 
their financial status in recent years, and the quality of their local 
environment. Participants also responded to items about future 
expectations such as higher education, career, and life quality, 
reflecting on their aspirations.

Interpersonal relationships
Interpersonal relationships were assessed through a 

comprehensive set of items inquiring about sexual and romantic 
relationships, relationships with parents, relationships with teachers 
and peers, and activities on social media. In addition, adolescents were 
asked to report online friendships and their parents’ supervision of 
their social media activities online.

Somatic health, mental health, and victimization
Several items measured somatic health, physical pain, and 

hospitalizations, along with other health aspects such as exercising 
habits and dietary practices. For example, participants reflected on 
their consumption of vegetables, fruits, junk food, and energy 
drinks, adherence to strict diets, and concerns about body weight. 
Several mental health instruments were also administered, including 
the measurement of depressive and anxiety symptoms using a short 
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version of the Hopkins Symptom Checklist (32). Self-esteem was 
assessed with items from the Self-Perception Profile for Adolescents 
(33), and loneliness was assessed using the short form of the revised 
UCLA Loneliness Scale (34). In addition to somatic and mental 
health evaluations, participants’ exposure to victimization, 
including bullying and physical, verbal, or sexual victimization in 
settings such as family, school, or social media, was assessed (35).

Conduct problems and substance use
Conduct problems were assessed through a series of questions 

drawn from Olweus’ scale of antisocial behavior (36) and the National 
Longitudinal Youth Survey (37). Participants were also queried about 
their use of substances such as alcohol, tobacco, snus (an oral tobacco 
product), cannabis, and other illegal substances. Additionally, the 
alcohol consumption of parents and friends was assessed, along with 
the respondents’ perception of alcohol consumption norms within 
their family.

Other measures
Various other aspects of adolescents’ lives were also assessed, 

including leisure activities, lifestyle, online and offline activities, 
participation in different youth clubs and organizations, individual 
values, and political attitudes.

Statistical analysis

The data were prepared and analyzed using R statistical software 
version 4.1 (38) and all the machine learning models were built using 
the h2o R package version 3.30.0.6 (39).

Procedure
To predict recent suicide attempts among adolescents, the Extreme 

Gradient Boosting (XGBoost; (40)) algorithm was examined, which is 
based on boosting decision-tree techniques. The algorithm was trained 
using 80% of total data, reserving 20% of the sample for testing. 
Instead of a random split, stratified random splitting was employed 
from the splitTools R package (41) to ensure the prevalence of suicide 
attempts remained consistent in both the training and testing datasets.

Class imbalance
The prevalence of suicide in the population is low, creating a severe 

imbalance between the classes (suicidal vs. non-suicidal), which can bias 
both the model and the measures used to evaluate its performance in 
favor of the majority class (42–44). A standard solution is to artificially 
balance the training dataset by either up-sampling the minority class or 
down-sampling the majority class. However, modifying the underlying 
distribution of the outcome breaches the principal machine learning 
assumption that the training and testing datasets are sampled from the 
same population (45). To resolve this issue, previous machine learning 
studies on suicide attempt prediction have often balanced the testing 
dataset as well [see for example, (26, 29)], rendering the model 
inapplicable to the real-world problem. Simply put, when the 
distributions of both the training and testing datasets differ from the 
underlying population distribution, the performance of the model on a 
real-world dataset with severe class imbalance would be unknown (45).

Another approach suggests preserving the testing dataset to 
represent the real-world distribution (46) and calibrating the trained 

model’s probabilities before evaluating its performance on the testing 
dataset (45, 47, 48). This method addresses the imbalance problem 
while keeping the model pertinent to the actual outcome distribution. 
In accordance with this strategy, we balanced the training dataset by 
up-sampling the minority class through bootstrapping, calibrated the 
models’ probabilities using monotonic transformation, provided by 
the h2o R package, and then assessed the performance of the selected 
models on the testing dataset.

Fine-tuning and model evaluation
To fine-tune the models, random search was employed (49) and 

early stopping strategies were implemented during the search to 
mitigate overfitting (50). Each model was assessed through 10-fold 
cross-validation and optimized and ranked according to the Area 
Under the Precision-Recall Curve (AUPRC). Traditionally, the Area 
Under the Curve (AUC) of the Receiver Operating Characteristic 
(ROC) curve is used to optimize and evaluate binary classifiers (51). 
Under severe class imbalance, however, AUC can be overly optimistic, 
making AUPRC the preferred measure for assessing the model’s 
performance (52). Yet, to make our results comparable to other suicide 
prediction studies, we  continue to report AUC alongside 
AUPRC. When the random search process stopped, the model with 
the highest AUPRC (on the training dataset) was selected and further 
examined with the unseen testing dataset, and metrics such as AUC, 
AUPRC, sensitivity, and specificity were computed and reported.

Predictor importance
To evaluate the predictors’ importance, we employed SHapley 

Additive exPlanations [SHAP; (53)] method, which is inspired by 
Shapley values in cooperative game theory (54, 55). Initially, we will 
present a SHAP summary plot to depict the contribution of each 
variable across all subjects (rows in the dataset) within the test 
dataset. This procedure differs from determining predictor 
importance based on the gain of the loss function during the 
construction of decision trees. The advantage of this method is that 
it offers detailed insights into the importance of each variable 
throughout its entire range of values. Hence, SHAP also enhances the 
transparency of the model by illustrating how different values of each 
item influence the model’s decision-making. We identify the top 15 
predictors from a total of 168 items included in the model, ranking 
them according to the normalized mean absolute SHAP value in 
descending order [see (56, 57)]. By normalizing the mean absolute 
SHAP value, ranging from 0 to 1, we  can compare the relative 
importance of the top predictors. It should be noted that the term 
“predictor” may be  contentious, as we  are utilizing retrospective 
cross-sectional data. In this context, we use “predictor” solely to refer 
to a survey item that provides the model with unique information, 
facilitating the evaluation of suicide attempt risk (i.e., the likelihood 
that an adolescent has attempted suicide within the past 12 months) 
and classification, without implying any causal relationship between 
the item and the outcome.

Missing data imputation
The average missing rates of the data was 2.64%. The regularized 

iterative Factorial Analysis for Mixed Data (FAMD) algorithm from 
the missMDA R package (58) was utilized to conduct a single 
imputation. This algorithm flexibly imputes numerical and factor 
variables (59, 60) and, importantly, offers a fast and scalable 
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imputation solution for large datasets. Except for the descriptive 
statistics, all other analyses were carried out on the imputed dataset.

Results

The prevalence of self-reported recent suicide attempt in the sample 
was 4.66% (n = 8,090), with a male prevalence of 3.37% (n = 2,824) and 
a female prevalence of 5.87% (n = 5,040). There were 2.28% missing data 
on gender, and a Chi-square test revealed a significant difference 
between genders [χ2 (1) = 579.52, p  < 0.001]. According to Table  1, 
students in their third year of junior high school (age 15) and first year 
of senior high school (age 16) reported the highest prevalence of self-
reported recent suicide attempts, both at a rate of 5.21%. Conversely, the 
lowest rate was observed among third-year senior high school students, 
at a rate of 3.20%. Students who reported no parental higher education 
had higher suicide attempt rates compared to others, as detailed in 
Table 1. Additionally, the majority of adolescents who reported a recent 
suicide attempt had not met with a psychologist (56.22%) or visited a 
health clinic for adolescents (69.67%), a school nurse (42.89%), or an 
accident and emergency ward (51.42%) in the past 12 months.

Model performance

Upon examination with the testing dataset, the best model 
achieved an AUPRC of 0.471 and an AUC of 0.921. The sensitivity and 
specificity of the model on the testing dataset were 0.77 and 0.90, 
respectively. This indicates that 77.0% of the adolescents who reported 
recent suicide attempt could be  correctly classified, while 
simultaneously correctly classifying 90.0% of adolescents who did not 
report a recent suicide attempt. Despite the low prevalence of recent 
suicide attempts at the population level, this result indicates that the 
best-performing model could identify the majority of adolescents who 
reported a suicide attempt with high specificity.

Predictor importance

To address our second research question, we  investigated the 
importance of the 168 items that were entered in the model as 
potential predictors. Table 2 shows the scaled relative importance of 
the top 15 predictors of suicide attempts, which were computed by 
normalizing mean absolute SHAP values. Of these, 7 items were 

FIGURE 1

The process of model development and evaluation.
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related to the domain of mental health, assessing symptoms of 
depression, anxiety, self-esteem, life satisfaction, or use of mental 
health service (e.g., “felt unhappy, sad, or depressed,” “felt worthless,” 
“satisfied with my appearance,” “felt scared for no reason,” and 
“contact with a psychologist/psychiatrist”). The item “felt unhappy, 
sad, or depressed” was the most important predictor of suicide 
attempt. In addition to mental health, items in the domain of 
victimization (e.g., “being teased or threatened”), substance use 
(“smoking” and “having been offered cannabis”), interpersonal 
problems (e.g., “satisfied with my parents,” “having nobody to share 
problems with”), and lastly, participants’ age were also among the 
most important predictors of suicide attempts. These prominent 
predictors, thus, were reflecting on four main domains of mental 
health, especially internalizing problems and substance use, 
victimization, and interpersonal relationships.

We visualized the SHAP values to elucidate how the significant 
predictors are related to the model’s output for all participants in 
the testing dataset. In Figure 2, each of the top 15 predictors is 
presented in a separate row, with color coding representing the 
normalized data point, ranging from blue (0) to red (1). Take, for 
example, the blue section of the “Smoking” item corresponds to low 
values such as “I’ve never smoked,” while red dots symbolize high 
values such as “I smoke every day.” In addition to the color range, 
Figure 2 also illustrates the SHAP contribution of each variable, 
which can be  negative, positive, or zero. Positive SHAP values 

signify importance for positive classification and vice versa, while 
SHAP values close to zero denote unimportance. For example, 
adolescents who have had frequent contact with a psychologist or 
psychiatrist (thus a red color) have a high and positive SHAP values, 
indicating that this information supported the model to distinguish 
adolescents who had reported suicide attempts from other 
adolescents. Regardless of the direction of the SHAP values, the 
higher the absolute value, the more important the predictor. In 
Figure 2, for example, the item “felt unhappy, sad or depressed” has 
a high overall SHAP value at both negative and positive sides, 
indicating that this item strongly supported the model’s 
classification. Figure 2 also shows that while taking hundreds of 
items into account, having lower age (shown in blue color) is 
indicator of a higher suicide attempt risk compared to higher age 
(red color).

Discussion

The aim of this study was to identify adolescents who had 
attempted suicide during the past 12 months without utilizing other 
sensitive suicide-related survey items as predictors. In doing so, 
we  employed population-based national data to fine-tune the 
XGBoost machine learning algorithm based on a multitude of 
psychological, social, and environmental survey items. The fine-
tuned model reached an excellent AUC of 92.1% (61). This figure is 
near the highest AUC reported in existing literature, ranging from 
0.716 to 0.925 (23, 25, 26, 28). With a high specificity of 0.90 and a 
high sensitivity of 0.77, the model could correctly classify 77% of 
adolescents reporting a recent suicide attempt as well as 90% of 
adolescents not reporting a recent suicide attempt. Such performance 
is promising and indicates the feasibility of classifying adolescents’ 
suicide attempts at scale with substantial accuracy, yet without 
utilizing any suicide-related items. Consequently, our findings 
answer our first research question, providing substantial evidence 
that high classification accuracy for adolescents’ recent suicide 
attempts at the population scale can indeed be achieved without the 
need to rely on suicide-related items. This result has important 
implications for the broader field and could guide future efforts in 
developing scalable, sensitive, and effective tools for identifying and 
addressing suicide risk in young populations.

To address our second research question, we pinpointed the most 
important predictors and provisionally grouped them within four 
main domains of internalizing problems, interpersonal relationships, 
victimization, and substance use. Our findings are in line with existing 
literature showing that internalizing problems, particularly depressive 
symptoms, are key predictors of suicidal behavior among adolescents 
(7, 8, 62, 63). Similar to our findings, Carballo et al., (62) also identified 
conflicts in interpersonal relationships to be among the major risk 
factors of suicidality among adolescents [see also (64)]. Moreover, a 
review by Calati et al. (65) underscores the importance of interpersonal 
factors for suicidal outcomes. Reviews have also repeatedly 
emphasized the importance of childhood maltreatment and bullying 
experiences for understanding suicidal behavior (7, 9, 66, 67), thereby 
supporting the role of victimization experiences. Finally, substance 
use and more specifically, smoking, was also among the most 
important predictors of adolescents’ suicide attempt. This aligns with 
numerous studies that recognize smoking as a general risk factor, 
independent of other socio-demographic variables (68–71), although 

TABLE 1 Characteristics of the high-risk and no-risk suicide groups in the 
raw dataset.

Items (missing 
rate)

Reported 
recent suicide 

attempt 
(n =  8,090)

No reported 
recent suicide 

attempt 
(n =  165,574)

Gender (2.28%) *

  Boy 2,824 (3.37%) 80,983 (96.63%)

  Girl 5,040 (5.87%) 80,863 (94.13%)

School year (1.58%) *

  Junior (age 13) 1,391 (4.12%) 32,395 (95.88%)

  Junior (age 14) 1,673 (5.06%) 31,389 (94.94%)

  Junior (age 15) 1,735 (5.21%) 31,571 (94.79%)

  Senior (age 16) 1,760 (5.21%) 32,004 (94.79%)

  Senior (age 17) 1,013 (3.93%) 24,792 (96.07%)

  Senior (age 18) 359 (3.20%) 10,845 (96.80%)

Father education (13.59%) *

  Higher education 3,967 (3.93%) 96,891 (96.07%)

  No higher education 2,757 (5.60%) 46,450 (94.40%)

Mother education (11.79%) *

  Higher education 4,518 (3.96%) 109,450 (96.04%)

  No Higher education 2,466 (6.29%) 36,758 (93.71%)

Subjective SES (2.14%) *

  Well-off 2,164 (2.90%) 72,415 (97.10%)

  Average 5,211 (5.58%) 88,124 (94.42%)

  Poor 474 (23.37%) 1,554 (76.63%)

*Chi-square test of independence is significant with p < 0.001. 
Reported values are from the raw dataset, prior to the imputation.
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the association between smoking and suicide has been debated (72). 
Our analysis accentuates that frequent smoking is indeed related to 
adolescent suicide attempts, even when accounting for hundreds of 
other items.

In our analysis, while focusing on the important predictors of 
suicide attempts, we also observed that certain mental health-related 
factors were not as influential in the model as might have been 
expected based on prior literature. This warrants a closer examination 
of these seemingly inconsistent findings. For example, looking at 

Tables 1 and 2, despite significant variations in the suicide attempt rate 
across socio-demographic variables such as age, gender, and socio-
economic status, only age emerged as one of the important predictors. 
Moreover, among the top 15 predictors, age contributed among the 
least in terms of SHAP values. The fact that gender was not identified 
as an important predictor is particularly noteworthy. This contrasts 
with existing literature, including findings by Esang and Ahmed (69), 
where gender has been recognized as a significant factor. Given the 
marked prevalence differences between boys and girls in our dataset, 
the lack of gender’s role in the model requires careful consideration. 
A plausible explanation for this inconsistency may lie in the complex 
interplay of internalizing problems, interpersonal problems, and 
victimization experiences. These domains may subsume much of the 
demographic differences related to suicide attempts, rendering gender 
a comparatively less important predictor. Finally, in line with the 
existing literature, externalizing problems and delinquency did not 
emerge among the most important predictors of adolescent suicide 
attempts (69).

Limitations and strengths

Several limitations of the present study must be mentioned. Most 
notably, the assessment of suicide attempts through a single self-report 
item lacks detailed information about the nature, seriousness, and 
context of the attempt (73). However, as noted at the outset of the paper, 
collecting such sensitive items in nation-wide surveys from hundreds 
of thousands of adolescents can be  difficult, in contrast to clinical 
samples or smaller population-based samples. Yet, despite the absence 
of detailed data to distinguish between severe and less severe suicide 
attempts, the high performance and generalizability of our model 
provide assurance that the accurate identification of adolescents who 
have self-reported a recent suicide attempt is feasible, a finding of 

TABLE 2 Top 15 predictors of adolescents’ suicide attempt and their 
relative importance.

Items Relative Importance

Felt unhappy, sad, or depressed 1.000

Contact with a psychologist/psychiatrist 0.621

Felt worthless 0.477

Disappointed with myself 0.393

Smoking 0.360

Satisfied with my appearance 0.338

Satisfied with my parents 0.319

Felt scared for no reason 0.309

Being teased or threatened 0.296

Talking to parents in case of a problem 0.239

Having nobody to share problems with 0.227

Felt hopelessness about the future 0.213

Having been offered cannabis 0.204

Age 0.203

Having a partner or reporting a breakup 0.203

Relative importance represents normalized means absolute SHAP value.

FIGURE 2

SHAP contribution of the top 15 predictors.
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considerable significance. Additionally, our study employs retrospective 
cross-sectional data, limiting our understanding of the temporal 
development or severity of the predictors. While we have identified key 
psychological, social, and environmental predictors through 
comprehensive item analysis, the cross-sectional nature of our data 
precludes any inference about causality between these predictors and 
suicide attempts. However, as mentioned above, it is worth noting that 
our findings align well with existing literature that has established 
similar results in longitudinal studies. Emerging evidence suggests that 
risk scores derived from machine learning binary classification models 
using retrospective data can accurately predict future suicide attempts, 
including for those attempting for the first time [see (74, 75)]. 
Interestingly, these estimated risk scores also appear to be indicative of 
the severity of the suicide attempt. Recent longitudinal work 
demonstrates that higher estimated risk scores are inversely associated 
with the likelihood that adolescents will inconsistently report a prior 
lifetime suicide attempt in a 2-year follow-up assessment (76). These 
findings indicate that although our model is trained with retrospective 
cross-sectional data and cannot clarify causal relationships, yet, it 
provides real-world applications for identifying adolescents at risk of 
suicide attempts. Finally, we did not evaluate the model fairness, an issue 
increasingly emphasized in contemporary computer science literature. 
Warnings have been issued that even highly accurate models may 
underperform for minority groups, thereby perpetuating systematic 
inequality in fields such as social and health sciences (77). Future studies 
should aim to ascertain that models do not discriminate against specific 
socio-demographic groups, particularly if the model is intended for 
practical application (78).

Our paper also has a few significant strengths. The large sample 
size is particularly advantageous, as the low prevalence of suicide 
attempts necessitates a substantial number of participants to train 
robust classification models effectively. Additionally, the extensive 
array of survey items enables a comprehensive analysis, 
encompassing a myriad of potential risk and protective factors. This 
is particularly crucial given the complex nature of suicidal behavior 
(79), allowing the machine learning algorithms to account for 
intricate interactions between variables to refine predictive 
accuracy. Methodologically, we employed rigorous techniques to 
manage class imbalance and to evaluate and rank key predictors 
using a model-agnostic approach.

Conclusion

The utility of models requiring suicide-specific information for 
risk estimation of suicide attempts is questionable because such data 
are challenging to collect on a population scale, especially from 
adolescents. Our study demonstrates that it is possible to classify 
adolescents reporting recent suicide attempts with high accuracy 
without depending on such sensitive items. A novel contribution of 
our study is the identification of key factors—namely, internalizing 
problems, interpersonal relationships, victimization, and substance 
use—as important predictors of suicide attempts in this population, 
while accounting for a myriad of other items across different domains. 
A focus on these aspects is warranted when identifying at-risk 
adolescents, particularly from longitudinal research, which can offer 
invaluable insights into the causal dynamics between identified factors 
and adolescence suicide attempts.

Future research should address the limitations of our current 
study and align its findings with existing theoretical frameworks on 
suicidal behavior. Subsequent investigations should also examine 
the latent factorial structure of these predictors and consider 
whether different machine learning algorithms would identify 
similar important items. There is also an opportunity to explore the 
use of stacked ensemble meta-learners, constructed by combining 
multiple machine learning models, for achieving superior 
classification performance.
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