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Abstract

A striking difference between animals and traditional robots
is that the latter usually have rigid and non-flexible bodies.
Animals, on the other hand, exhibit highly adapted traits,
such as elastic tendons. The tendons work as springs, stor-
ing and releasing kinetic energy during an animal’s gait cy-
cle. Springs have been used in some hand designed robots
for similar benefits. However, little research has been done
on springs in robots with evolving morphology. We exam-
ine the use of compliant and structural modules in modular
robots, using a standard evolutionary algorithm. We also look
at connections between spring stiffness and robot size using
the quality diversity algorithm MAP-Elites. We found that
the modular robots evolved to use elastic actuators, and that
structural modules enabled morphologies that use less actu-
ators, but still achieve the same walking speed as the robots
with actuators in every module. We also observe some indi-
cations that larger robots may require lower elasticity.

Introduction
Complex animals have emerged from millions of years of
evolutionary pressure. These animals exhibit many adap-
tive traits that increase their efficiency in various tasks. One
such trait is the reuse of potential and kinetic energy during
locomotion. Elastic tendons can store and release kinetic
energy, which results in a minimization of work required for
a limb (Alexander, 1984). For example, a vertebrate ten-
don’s stress-strain curve shows that up to 93% of kinetic en-
ergy can be recovered when a tendon is loaded and unloaded
(Biewener, 2003). Compliant parts have been used in hand
designed robots to provide similar benefits to that of a ten-
don in an animal (Zhou and Bi, 2012). Since the purpose of
tendons is to minimize work through recovering kinetic en-
ergy, and because we see a selection pressure towards elastic
tendons in nature, this paper tries to evaluate whether there
is a selective pressure towards springiness when evolving
modular robots.

Evolutionary robotics (Doncieux et al., 2011) attempts to
harness the adaptive power of evolution, and use it as a tool
to design the morphology or controller of machines (Lipson
and Pollack, 2000; Cully et al., 2015). Evolution of virtual
or mechanical robots can also be used to gain insights into

Figure 1: Examples of robots evolved with the standard evo-
lutionary algorithm. The letter codes refer to the modules
available for the algorithm. S - serial elastic actuator, C -
connector block, B - beam.

evolutionary processes, and to investigate biological ques-
tions (Roberts et al., 2014). Although virtual creatures are
merely an abstraction of the real world, the ability to rapidly
process many generations by means of parallel computa-
tion is a benefit, allowing experiments on their evolution
to be carried out in hours or days. Furthermore, one can
easily change experimental conditions, such as morphologi-
cal building blocks, encodings, or environmental properties
(Sims, 1994).

Modular robotics concerns robots with adaptable bodies,
that can be modified through assembly and reconfiguration
of modular components (Stoy et al., 2010; Yim et al., 2007).
As the morphology of modular robots can easily be modi-
fied, and thus be adapted through evolution, these robots can
be used to investigate evolutionary pressures on morphol-
ogy. Many different modular robot systems have been pro-
posed. They range from robots made from building blocks
such as actuators, connectors and structural elements (Zhao
et al., 2020; Auerbach et al., 2014), to soft robots made of
voxels in a lattice structure, where the voxels simulate the
properties of different types of tissue (Cheney et al., 2014),
and even to robots made from live cells (Blackiston et al.,
2021). Although there are many different approaches to
evolving robot morphology, there has been little research on
how different module designs and properties are utilized by
the evolutionary algorithms. Some research has been done
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on the number of connection sites on a module (Liu et al.,
2017), and on the length of a module (Moreno and Faina,
2020). However, both of these studies used exclusively ac-
tuated joint modules in the limbs of the robots. To further
explore the usage of different types of modules, we will ex-
plore the selection pressures, in a standard evolutionary al-
gorithm, towards structural elements and a serial elastic ac-
tuator with evolvable elasticity.

Just like for animals, elastic parts can be useful in robotics
(Zhou and Bi, 2012). A series elastic actuator (Pratt and
Williamson, 1995) is an actuator, such as a servo motor,
with a spring attached along the actuated axis of the motor.
This type of actuator is common in hand designed robots
(Pratt and Krupp, 2004). A serial elastic actuator can pro-
vide many benefits, such as reduction of stress on joints and
increased energy efficiency. It has also been used in robots
that work with or alongside humans to increase safety in
human-robot interaction (Yu et al., 2015). Serial elastic ac-
tuators have even been used in modular robots previously,
although they were only tested with handcrafted morpholo-
gies (Kalouche et al., 2015).

In addition to exploring the selection pressure towards
springiness in modular robots, we also want to explore how
springiness is connected to morphology. In nature larger an-
imals tend to have stiffer leg springs (Farley et al., 1993).
We want to explore if the same connections are applicable
in the context of modular robotics. That is, will larger mod-
ular robots evolve to have stiffer spring than smaller ones?

While there have been studies on the effects of selection
pressures and environments on evolved robot bodies and
brains (Auerbach and Bongard, 2014; Miras et al., 2018b;
Miras and Eiben, 2019), these relations have been surpris-
ingly difficult to demonstrate (Miras and Eiben, 2019; Miras
and Ferrante, 2020). The reasons for this remain convoluted,
but design factors such as developmental encodings and con-
trollers can bias the search space (Miras et al., 2018a; Veen-
stra and Glette, 2020). Moreover, the search landscape, in
particular for modular robots, can be complex and lead to
premature convergence challenges (Faı́ña et al., 2013; Ch-
eney et al., 2016).

To explore the connections between evolved springiness
and size we will need to evolve robots with a variety of
sizes. A standard evolutionary algorithm that converges to
one solution is not capable of this on its own, so we opt
to use a quality-diversity algorithm (Chatzilygeroudis et al.,
2021) for this purpose. Quality-diversity algorithms have
been used in modular robotics to increase diversity and avoid
converging prematurely to a local optima (Nordmoen et al.,
2021). The quality-diversity algorithm MAP-Elites (Mouret
and Clune, 2015) will be especially useful to explore the
connections between morphology and springiness. In MAP-
Elites individuals with different properties are arranged in a
grid, and an elite is found within each cell of the grid. By
creating a grid with robot springiness along one axis, and

Figure 2: The different modules, from left to right: SEA
(serial elastic actuator), beam, connector.

robot size along the other, we can analyse the benefit of dif-
ferent amounts of springiness across different robot sizes.

Our contributions are threefold, 1) we evolve modular
robots with joints with variable compliance, and find that
the robots evolve to use elastic actuators. 2) We explore the
use of structural components, and observe that they can re-
place a large portion of the actuators, without reducing the
robots’ walking speed. 3) We do an initial investigation into
connections between elasticity and size in modular robots,
which indicates that larger robots may require stiffer springs.

Methods
In this work we perform two experiments where we 1)
evolve modular robots with a standard evolutionary algo-
rithm, and look at the emergence of elasticity, and 2) look at
the usefulness of springs in modular robots by illuminating
the search space of modular robots using MAP-Elites. For
both experiments we use a modular robot simulator devel-
oped in Unity, using Unity ML-agents (Juliani et al., 2020).
The following sections will describe 1) details of the modu-
lar robot simulator, 2) the encoding of the robots’ morphol-
ogy and controller. The same encoding is used in both ex-
periments. 3) measures we use to evaluate the robots, 4) the
standard evolutionary algorithm used in experiment 1, and
5) the MAP-Elites approach used in experiment 2. 1

Simulator
We use a version of the modular robot simulator used in
(Kvalsund et al., 2022). We have extended this simulator
to allow for serial elastic actuators with evolvable elasticity.
The modular robot simulator is developed in unity and com-
municates with Python through the ML-agents package. It
uses Nvidia’s PhysX physics engine. During simulation a
robot is spawned in the middle of a rugged floor. The dis-
tance it moves and the torque that is applied to its joints is

1Code is available at https://github.com/
EmmaStensby/modular-robots-sea
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Module Length Plates Actuated Weight
SEA (S) 1 3 Yes 1
Beam (B) 3 1 No 1
Connector (C) 1 5 No 0.33

Table 1: Information about the robot modules. Plates refers
to the number of connection plates where a child module can
be connected.

Figure 3: The bounceback of a test robot dropped from 7
meters for different values of the spring constant. The com-
pression and bounceback is higher for lower spring values.

recorded. Some examples of modular robots in the simulator
are shown in Fig. 1.

The simulation of a robot lasts 10 seconds. The robot
makes a control decision for each update in the physics en-
gine. We use an accuracy of 0.002 for the physics simu-
lation, which means that one physics update happens every
0.002 seconds, for a total 5000 physics updates per simu-
lation. Each physics update has an accuracy of 200 solver
iterations. This high accuracy was chosen to be able to sim-
ulate the springiness in the serial elastic actuators. Fig. 3
demonstrates the effect of the elastic actuators in the simu-
lation.

The simulator takes in a tree representing a robot, and
spawns the robot starting with the modules closest to the
root. The root module is spawned at a height of 3 units
above the floor, where 1 unit is the length of a joint mod-
ule. If a module overlaps with a previously spawned module
it, and all its children, are removed. Any modules spawned
below the floor or above a height of 9 units are also removed
along with their children. There are 3 module types, the se-
rial elastic actuator (SEA), a connector block, and a beam.
The details of the modules are summarized in Table 1, and
the modules are displayed in Fig. 2. The floor is slightly
rugged, with a maximum height difference of 0.16 units be-
tween the lowest and highest points of the floor.

Amplitude 0.0, 11.25, 22.5, 33.75, 45, 56.25, 67.5,
78.75, 90.0

Frequency 0.0625, 0.125, 0.25, 0.5, 1.0
Phase 0.125π, 0.25π, 0.5π, π, 2π

Table 2: The possible values for the discretized sine con-
troller parameters. The amplitude is in degrees of rotation
for the motor.

Encoding
We use a direct encoding. The phenotype of a robot is a tree,
where each node in the tree directly represents one module.
The node contains information about the module type, and
the module’s rotation. If the module is actuated the node also
contains information about the module’s spring constant and
controller. The edges of the tree define how the modules will
be connected. Each node can have as many children as its
module has connection plates.

Controller The controller for a module is a sine wave de-
fined as:

θ(t) = A sin(2πft+ ϕ) (1)

Where θ is the desired joint angle, A is the amplitude,
f the frequency, and ϕ the phase offset. One controller
is stored in each node of that represents an actuated mod-
ule. The possible values for the sine wave parameters are
discretized to make it easier for the robot modules to syn-
chronize. The possible values for each parameter are sum-
marised in Table 2.

Spring stiffness The parameter for the spring constant is
stored in each node representing an actuated module, and
is a float between 0 and 1. However, because the effect of
changing it is higher when the value is low, we use a natural
logarithmic scale. The parameter is translated to the spring
constant as:

S =
(1000(ees−e))− 65

1000− 65
1000 (2)

Where s is the spring constant parameter. This gives a
natural logarithmic scale from approximately 1 to 1000 for
the spring constant.

Mutation A newly initialized tree, representing a robot,
starts out with one module. It can be mutated to add or re-
move nodes, or to modify a node’s spring constant or con-
troller. The module type can not be modified. The mutation
function iterates over all nodes in the tree.

The probability of adding a node to an empty connection
is the morphology mutation rate (see Table 3) divided by the
number of modules in the tree. Newly added nodes also have
a chance to be mutated. The probability of removing a node
is 0.5 times the probability of adding a node. When a node is
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removed all its children are also removed. If the maximum
number of modules is reached new nodes can not be added.
The root node can never be removed.

The probability of modifying the spring constant or the
controller parameters is the controller mutation rate divided
by the number of joints in the robot. The probability of mu-
tation is applied separately for each parameter. The spring
constant is mutated by adding Gaussian noise drawn from
N(0, 0.3). The discretized controller parameters are re-
placed by a new value drawn uniformly from the parameter’s
possible values.

When a new tree is initialized, it is mutated 40 times to
ensure some diversity in the starting population.

Robot evaluation measures
Distance moved The distance moved is used as the fitness
measure in all our experiments. It is measured as the dif-
ference in start and end position of the root module of the
robot. Due to issues with falling robots, any robot whose
root module is rotated more than 80 degrees around either
the X or Z axes is assigned a distance of 0.

Cost of transport The cost of transport is not used as a fit-
ness measure for either of the evolutionary algorithms, but
is used to evaluate the efficiency of the found solutions after
the experiments are completed. We define the cost of trans-
port in one simulation step as:

COT =
T

mgv
(3)

Where T is the torque of the motors, which is read from the
unity simulation. m is the mass of the robot, g is the gravity
constant, which is set to -19.632, and v is the speed of the
robot. Gravity is set to -19.632 to avoid excessive jumping
behaviour. The speed of the robot is measured as the average
speed of all the modules in the robot. The cost of transport is
summed for each time step to form the final cost of transport.

Standard EA
The standard evolutionary algorithm (Eiben and Smith,
2015) uses tournament selection as the parent selection, and
generational replacement as the survivor selection. The pa-
rameters used can be seen in Table 3. The mutation rates
and tournament size were chosen based on the parameters
used in a different work using the same simulator, to avoid
spending a lot of computation on parameter search (Kval-
sund et al., 2022).

MAP-Elites
We use the standard version of MAP-Elites as first described
by (Mouret and Clune, 2015). We choose to use the standard
version, as opposed to existing and potentially more efficient
extensions, as we want to focus on a simple approach with

Standard EA
Tournament size 4
Population size 64
MAP-Elites
Map resolution 20
Map dimensions 2
Individuals evaluated per iteration 64
Shared
Morphology mutation rate 0.32
Controller mutation rate 0.64
Maximum modules 20
Maximum depth 10

Table 3: Parameters for the standard evolutionary algorithm
and MAP-Elites.

an intuitive map structure to illuminate the design properties
of the robotic system.

MAP-Elites generates a repertoire of elite individuals,
each filling a niche of a discretised behaviour space. Every
iteration of the algorithm individuals are selected randomly
from the repertoire, mutated, evaluated, and then reinserted
into the repertoire if they perform better than the existing
individual in their niche. Only one individual is stored for
each niche at any time. The discretisation of the behaviour
space is defined through behaviour dimensions, which serve
as the axes of the grid shaped repertoire. We use the follow-
ing behaviour dimensions in our map:

1. The number of modules in the robot

2. The average spring constant in the SEA joints (0 if no
joints)

The dimensions are divided into 20 bins, giving a two-
dimensional map with 400 cells. The number of modules
ranges from 1 to 20 as the maximum number of modules is
20. The spring constant ranges from 1 to 1000. Because the
scale of the spring constant is non-linear, the bin sizes are
also non-linear. The bins are defined by:

Bi =
(1000(ee

bi
bm

−e))− 65

1000− 65
1000 (4)

Where bi is the bin index and bm is the total number of bins.
Bin i goes from Bi−1 to Bi, for bins 1 to 20.

Results
Experiment 1: Evolutionary use of springs and
structural components
In the first experiment we wanted to explore the use of
springs and structural components in a standard evolutionary
algorithm. We did 4 sets of 20 runs of the EA described pre-
viously. The length of the runs was 128 generations, which

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/35/76/2149168/isal_a_00689.pdf by guest on 06 February 2024



Figure 4: Behavioral and morphological measures of the results of the single-objective EA when evolved with Distance walked
(top left) as the objective. The letters refer to the four different evolution scenarios with different available building blocks: S
refers to the serial elastic actuator, C to the connector block, and B to the beam.

Figure 5: Spring constant values from all actuators in the
best solution of each of the 20 runs, when using the distance-
based single objective EA. The letters refer to the con-
stituents of the four different sets of modules available to
the EA: serial elastic actuator (S), connector block (C), and
beam (B). The spring constant scale in this graph is linear.

corresponds to 8192 evaluated individuals. The spring con-
stants for the joints were evolved in all four sets, but in each
set the algorithm had access to different modules. We label
the four sets S, SC, SB and SCB, based on which modules
were used. S refers to the serial elastic actuator, C to the
connector block, and B to the beam. Statistics from this ex-
periment are shown in Fig. 5 and 4, and examples of typical
morphologies evolved for each set are shown in Fig. 1.

From Fig. 4 we can see that robots with about the same
fitness evolved for all four combinations of modules. The
combinations with structural components had a lower cost of
transport than the one with only joints, likely because fewer
motors, and thus less energy, was used. The cost of trans-
port was lowest for the two combinations that included the
connector block. The robots using the connector block also
had lower weight, so it might seem like this module enables
some morphologies that have both lower weight and lower
cost of transport.

The combinations with structural modules had signifi-
cantly fewer joints, as structural modules were used in-
stead, and the combinations with beams seem to have cre-
ated robots with slightly fewer modules, likely because the
beam has fewer connection points than the other modules.

From Fig. 5 we can see that S, SC and SB use modules
with a low spring constant a bit more frequently than mod-
ules with a high spring constant. For SCB the modules are
spread more evenly across the spring constant values, which
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Figure 6: Repertoires from MAP-Elites when evolved with Distance walked as the objective. The color is the highest fitness
found for each cell over all 20 runs. White cells indicate no robots were found for that cell. The letters refer to the four different
evolution scenarios with different available building blocks: S refers to the serial elastic actuator, C to the connector block, and
B to the beam.

may be connected to the low number of joints it uses.
In Fig. 1 we can qualitatively evaluate a few morpholo-

gies, and see that the robots used all module types they had
available to construct the morphologies. Although the sam-
ple size is small, it may seem like the morphologies using
only joints have slightly longer worm-like bodies, while the
ones using the connector block have slightly more compact
bodies. 2

Experiment 2: Relations between spring stiffness
and robot size

In the second experiment, we wanted to explore relations
between robot size and spring stiffness using the quality-
diversity algorithm MAP-Elites. We did 4 sets of 20 runs.
The four sets use the same combinations of modules as the
four sets from experiment 1. The length of the runs was 256
generations, which corresponds to 16384 evaluated individ-
uals.

The evolved repertoires are displayed in Fig. 6. We can
see that all combinations of modules evolved high fitness
robots, but the set using the joint and connector found high
fitness for a larger variety of descriptor combinations. We
also see that the high fitness solutions lie mostly in the top
of the repertoire, where the small robots are, for S, SB and
SCB. For SC the high fitness solutions lie mostly in the top
right half of the repertoire. For SC this is indicated with a
black dashed line.

The white areas indicate no robots were found for those
descriptor combinations. The white areas are the most
prominent for large robots, and for the combinations that
tended to use many joints. We therefore believe the white
areas stems from it being difficult to reach solutions with the
same elasticity in many motors. This could be due to high

2Videos of some robots are available at https:
//youtu.be/9uRyqwFZhv0 and https://youtu.
be/yH7CaY8Qqq4

mutation rate, as high mutation rate would pull the average
of the spring constants towards the center.

Discussion
From Fig. 4 we saw that evolution finds solutions with ap-
proximately the same fitness regardless of the modules avail-
able. This is despite the robots evolved with access to struc-
tural modules, that is, the connector block and the beam,
having significantly fewer joints to move with. The robots
with structural modules have accomplished the same task,
but with fewer actuators. This shows that including struc-
tural components can be an advantage. The evolution sce-
narios that included the connector block had lower robot
weight despite having lower cost of transport. This likely
means that the evolution has found a way to use less mo-
tor torque by using the connector block. Either indirectly
through the lower weight, or because of some other prop-
erty, like the numerous connection points.

Figure 5 shows that joint modules with elasticity were
used a bit more frequently than stiffer joints for S, SC and
SB in the standard EA runs. This may indicate usefulness of
the elasticity, although it may also be an artefact of the non-
linearity of the spring constant scale during evolution. For
SCB the distribution of the elasticity in the motors was more
uniform than for the other three combinations, meaning that
it comparatively used less elastic joints.

SCB used very few joints, but still had equal volume to
the other combinations. This may indicate that stiffer joints
could be more useful when a few actuators are supporting a
large robot. Although it is difficult to say for certain without
more data, this would be in line with the observations on an-
imals from (Farley et al., 1993). The MAP-Elites repertoire
for SC in Fig. 6 could also support larger robots requiring
stiffer joints. No high fitness solutions have been found be-
low the dashed line, while several have been found above.
The cells below the line hold the robots that have very loose
springs relative to their size. We also saw from the reper-
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toires that SC had found high fitness for more diverse mor-
phologies than the other three setups, indicating that SC may
be the best setup of components out of the four we evaluated.

It is difficult to evaluate from the resulting robots whether
the springs were used in the intended way, to store and re-
lease kinetic energy. Our lack of clear observations on mor-
phological differences is in line with previous research (Mi-
ras and Eiben, 2019), and may be related to the evolutionary
algorithm being influenced by many factors. The simulta-
neous evolution of morphology and controller is quite com-
plex, and many other factors may have more effect on the
results than the elastic property we wanted to study.

Conclusion
In this paper we investigated how compliant and structural
modules were used, by an evolutionary algorithm, when
evolving modular robots. We also investigated connections
between robot morphology and elasticity. We found that the
modular robots evolved to use elastic actuators and struc-
tural modules, without causing a reduction in walking speed,
and did an initial investigation into connections between
elasticity and size in modular robots, which indicated that
larger robots require stiffer springs. In the future we would
like to further explore connections between morphological
features and elasticity, and test the evolved modular robots
on a physical platform in the real world.
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