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Abstract—Diagnosing, treatment, and follow-up care of patients is happening increasingly
through telemedicine, especially in remote areas where direct interaction is hindered. Over the
past three years, following the COVID-19 pandemic, the utility of remote patient care has been
further field-tested. Tackling the technical challenges of a growing demand for telemedicine
requires a convergence of several fields: 1) software solutions for reliable, secure, and reusable
data processing, 2) management of hardware resources (at scale) on the Cloud/Fog/Edge
Computing Continuum, and 3) automation of DevOps processes for deployment of digital
healthcare solutions with patients. In this context, the emerging concept of big data pipelines
provides relevant solutions and is one of the main enablers. In what follows, we present a data
pipeline for remote patient monitoring and show a real-world example of how data pipelines help
address the stringent requirements of telemedicine.

1. Introduction

TELEMEDICINE, over recent years during the
COVID-19 pandemic, has provided healthcare
solutions to patients, municipalities, and hospitals
with reduced costs and improved patient treat-
ment [1]. Typical scenarios involve treatment and

care for elderly people and for chronic diseases
(e.g., diabetes, kidney, cancer) or quarantined
(e.g., COVID-19) patients [2]. Examples of dig-
ital healthcare services include personal safety
alarms, care phones, healthcare call centers, re-
mote patient monitoring, and digital supervision.
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The uptake of information technologies in
Europe is the leading accelerator for telemedicine.
The market potential of telemedicine was valued
at USD 83.5 billion and is expected to grow
at a compound annual growth rate of 24% in
the coming years. Accordingly, the well-being
market, enabled by digital technologies (mobile
applications, sensing devices), is also rapidly
growing1.

Digital healthcare services control mainly two
types of sensors gathering raw information from
thousands of patients through tablets, mobile
phones, sensors, or other devices [3]:

1) remote supervision sensors such as patient
motion sensors and video cameras;

2) care and wellness-specific sensors monitor-
ing specific patient data, such as blood pres-
sure, scales, glucose, and medicine quantity.

Gathering data on behalf of thousands of
patients implies data processing solutions for au-
tomated, private, and secure processing, including
filtering, encryption, anonymization, and storage.
The processes may take dynamic structures de-
pending on their functionality, patient type (e.g.,
elderly, quarantined), disease, data acquisition de-
vice, data format (e.g., alarm, measurement, video
stream), stakeholder (e.g., doctor, nurse, response
center), or third-party integration (e.g., electronic
health records).

The large number and variability of different
telemedicine scenarios require organizing data
processing into reusable and deployable units that
can be easily managed across distributed settings.
Big Data pipelines [4] are composite workflows
for processing and communication of data with
non-trivial properties and characteristics, referred
to as the “Vs” of Big Data. Examples include
volume, velocity, variety, veracity, validity, value,
variability, etc. They represent data processes
as sets of discrete and often independent steps
or pipes that can be individually managed and
reused.

In a distributed setting, modern frameworks
for data pipelines enable the use of the so-called
Cloud/Edge/Fog Computing Continuum [5]. The
Computing Continuum extends traditional Cloud
computing with emerging Edge and Fog comput-

1https://www.grandviewresearch.com/industry-analysis/
telehealth-market-report

ing paradigms, reducing overheads and compli-
ance issues for transferring distributed data into
remote data centers.

The contributions of this paper can be sum-
marised as follows:
• We provide a generic example of remote

patient monitoring use case and an outline of
a set of data processing challenges, as well
as how data pipelines can be used to address
them;

• We describe a real-world industrial example
of a remote patient monitoring data pipeline;

• We introduce the concept of container-based
data pipelines in the domain of remote pa-
tient monitoring and illustrate how they can
be used to address the challenges outlined.

2. Motivating use case: remote patient
supervision

An example remote patient supervision sce-
nario is depicted in Figure 1. A set of remote
supervision or care and wellness sensor devices
are installed in a patient’s home, along with an
edge device that connects them with the respec-
tive telecare service provider. The patients can
then use the devices actively or passively to per-
form measurements related to their current health.
The edge device sends these values (raw or pre-
processed) to a centralized Cloud web service.
The data are analyzed according to a pre-defined
care or aftercare plan. If deviations occur, the
central service may notify the care physician or
the patient to take action or contact.

The data processing corresponding to this sce-
nario can be generalized into three main stages,
shown in Figure 2 (a):

1) Data generation, pre-processing, and rout-
ing: during this stage, the measurements
gathered from remote supervision and well-
ness sensors are translated to signals, poten-
tially pre-processed at the edge, and routed
to the centralized service.

2) Data storage and analytics: in this stage,
data are securely stored in the (centralized)
Cloud of the service provider, and analytical
services are performed to determine whether
additional intervention is necessary by the
patient or the medical doctor.

3) End user application logic: during this stage,
based on the analytical results, specific ap-
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Figure 1. General setup for a remote patient monitoring process
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Figure 2. Mapping between a) generic telecare pipeline and b) sample pipeline based on Telluhealth Remote
Patient Monitoring solution

plication logic is executed for the end user,
which can be both the care physician and the
patient.

2.1. Challenges
For many patients, the instantiation and main-

tenance of the aforementioned process at scale,
securely, and privately on hybrid hardware infras-
tructures come with technical challenges, some of
which are discussed in the following list.

1) Scalability: Due to the variability of
the sensor packages sold and continuous up-
dates/improvements in sensing technology, de-
ploying a completely new setup for each patient
is often necessary. This issue is exacerbated by
the need to efficiently and flexibly introduce
new sensors and monitor different aspects of a
patient recovery process. Upgrades to the soft-
ware caused by this can lead to service outages
[6]. And thus, although sensing devices do not
often produce significant volumes of data, several
different processes equal to at least the number
of patients served by a service provider must be
deployed and managed.

2) High cost of testing: As device sets are

determined by the need of each remote patient
and devices get shipped and deployed together,
compatibility tests are needed to ensure the soft-
ware and hardware are working well and in
tandem [7]. This means that test data must be
produced or generated per each case and used
with the specific installed version of the software
to be delivered to the patient. Even if test data
are available, all testing must be performed in an
equal setting to the one targeted for the patient,
which means that the exact (type of) device
shipped must be used, making testing difficult and
impractical. Finally, at runtime, multiple process
instances (maybe in the thousands) must be used
in parallel without downtime, making simulations
at scale particularly relevant.

3) Ensuring control and trustworthiness:
Medical data, in particular, has very high re-
quirements for privacy and security, and ensuring
the patient control over their data and trust in
the system’s security are critical [8]. And in the
context of a complex, multi-instance, variable
data processing system, ensuring transparency
and consistent security and privacy measures is
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difficult.
4) Difficult DevOps process: Complex data

processing systems are difficult to efficiently or-
chestrate (automate, monitor, tune at runtime)
and deploy across the Computing Continuum [9].
Finally, each step has different requirements in
terms of hardware resources, such as memory
and processing, and finding the optimal resource
allocation for a given set of available resources
adds additional complexity.

2.2. (Big) data pipelines to the rescue
Big Data pipeline frameworks provide facil-

ities for deploying and managing resources on
the Computing Continuum and, depending on the
implementation, enable easy reuse and scalability
at the individual step or pipeline level. Thus,
telemedical data processing pipelines can be spec-
ified in a standard form in compliance with secu-
rity and privacy requirements and then deployed
according to the purpose. Alternatively, at run-
time, many existing telecare systems produce and,
for compliance purposes, store execution traces
that are often standardized. They contain enough
information to reconstruct one data pipeline or the
set of all running pipelines (e.g., using process
discovery techniques) and to reuse them, making
it possible to discover and specify data pipelines
[10]. Authors in [11] propose a framework for
the lifecycle of Big data pipelines that covers
their management and execution from their in-
ception to their deployment and runtime. Thus,
migrating to a mode of operation that relies on
data pipelines for processing, service providers
must take care of both design and runtime aspects
- how to identify the pipelines, configure them,
potentially test them, provision the necessary re-
sources, create a deployment topology and finally
deploy on the Computing Continuum.

2.3. TelluCare pipeline
TelluCare2 is a telehealth system for support-

ing and helping various patients stay at home to
the maximum possible extent during treatment
and care. It is built for patients who need regular
follow-ups caused by chronic diseases such as di-
abetes, non-working kidneys, chronic obstructive
pulmonary disease, or patients with temporary

2https://tellu.no/en/services/

diseases that need to be regularly followed up
for some time, such as COVID-19 and cancer.
Patients report their physical and mental well-
being from home, and about 1000 people have
been onboarded.

The digital health system controls various
medical devices and specific sensors supporting
the care and wellness of the specific patient -
i.e., blood pressure meters, scales, glucose meters,
and medicine reminders. It can also be connected
to sensors deployed for remote supervision, such
as bed sensors, motion sensors, and video cam-
eras, as needed. In addition, the system allows
integration with third-party systems, e.g., to pro-
vide information or alarms to response centers,
caregivers, physicians, family members, etc., or
to give information to medical systems such as
electronic health record systems.

The TelluCare system is provided to patients,
including a personal health gateway device de-
ployed at the homes of patients. The software
stack of the gateway can be deployed both on
a smartphone or in a stationary device provided
by the service provider. This device can inte-
grate medical-technical equipment with more pro-
prietary protocols and equipment that can only
be connected via USB port, serial port, Ether-
net, Wifi, etc. The implementation communicates
with the remote patient monitoring system using
RESTful APIs3 or MQTT4.

Figure 2 (b) shows a subset of the concrete
pipeline corresponding to a part of the data
processing of the TelluCare system. Data from
the sensors is obtained, reformatted, and then
securely communicated to a centralized service
through an MQTT broker. This process is exe-
cuted at the gateway device deployed in the home
of the patient receiving care. The transmitted
data are then checked against the patient plan
for any deviations from the prescribed regiment
by the doctor and recorded in a database. All
data from the pipeline, including execution traces,
are stored in conformance to the Fast Healthcare
Interoperability Resources (FHIR)5 standard. If

3Application programming interfaces (APIs) using the Repre-
sentational State Transfer (REST) architectural style are used to
communicate securely over the Internet.

4MQTT is a network protocol designed for communication
using a publish-subscribe model for message queueing services
(https://mqtt.org/)

5https://hl7.org/FHIR/
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any deviations from the patient plan have been
identified in the data, a notification is created
and sent to the care physician of the patient.
Notably, besides the hardware heterogeneity in
the implementation, the programming languages
of the steps are also different.

3. Data Pipelines in Telemedicine
Using the DataCloud Toolbox

The DataCloud toolbox6 offers tools that
cover the entire lifecycle of (big) data pipelines on
the Computing Continuum. The toolbox relies on
software containers for implementing pipelines.
The lifecycle consists of six stages as depicted
in Figure 3 - discovery, design/specification,
simulation, provisioning, scheduling (or adap-
tation at runtime), and deployment. The tools
that comprise the toolbox are interoperable and
have been designed around their uses by dif-
ferent types of stakeholders at the different
stages of the lifecycle [11]. Thereby, business
domain experts are involved in the discovery
and design of the pipelines and can contribute
their knowledge of the domain and value in
the data their organization manages. During the
pipeline design and simulation stages, data sci-
entists can implement programming logic flexi-
bly, independent of their preferred programming
language, and insert pipeline step implementa-
tions using a common template approach. Com-
puting continuum infrastructure maintainers can
manage the heterogeneous infrastructures, provi-
sion new resources, specify adaptation policies,
deploy pipelines across the computing contin-
uum, and monitor them during runtime. The
computing continuum’s resources include Cloud
(public/private/hybrid), Edge, Fog, and resource
providers (public companies and even private
individuals) can incorporate new resources using
a shared blockchain-based resource marketplace.

Below we discuss how the data pipeline by
Tellucare is implemented using the tools and
technologies offered.

3.1. Telecare pipelines using software
containers

To solve some of the challenges of telemed-
ical pipelines, the DataCloud toolbox uses soft-
ware container-based data pipelines as described

6https://datacloud-project.github.io/toolbox/

in [12]. One of the approach’s key aspects is
using containers to package standalone steps.
Such packaging provides an easy means to ef-
ficiently orchestrate the pipeline execution across
resources. The container-based approach is hori-
zontally scalable and performs better than state-
of-the-art data workflow tools (challenge 1). Ad-
ditionally, control and trustworthiness can be
implemented as integral components in each
step by including relevant software libraries
for secure/private communication and storage
(challenge 3). Container systems manage com-
ponents’ deployment, scaling, and networking,
which grants the pipeline execution framework
the ability to scale each pipeline step inde-
pendently. Furthermore, container orchestration
technologies can manage the distributed hetero-
geneous hardware infrastructures (in our case,
the Edge and Cloud components), constituting
the Computing Continuum (challenge 4). Finally,
representing the pipeline as an easily deployable
collection of program elements enables service
providers (using the right tools) to test each step
independently or simulate multiple configurations
of all steps in different settings and determine
requirements for the hardware to support many
concurrent pipelines (challenge 2).

3.2. Pipeline discovery
The process of discovering or decomposing

existing processes of telemedical applications is
enabled through the analysis of execution traces
(Figure 3-1) from existing systems [10]. In the
DataCloud toolbox, this is done by importing the
logs stored in the databases for compliance (in
the case of the TelluCare pipeline, this is the
FHIR standard). The pipeline discovery tool7 can
then be used to analyze the torrents of stored
data and convert it to reveal the sets of events
that occurred during the execution of the health
application. The data are then segmented, ab-
stracted, and filtered to extract discreet execu-
tion traces associated with one or more specific
pipelines. The tool can automatically identify and
discard unnecessary events that do not contribute
to the pipeline execution. The final clean set of
execution traces is then stored in an event log
repository, where process mining algorithms are

7https://github.com/DataCloud-project/DIS-PIPE
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Figure 3. Lifecycle of a telemedicine data pipeline on the computing continuum

applied to discover and learn the structure of the
underlying pipelines. The pipeline representations
are in a standard format8. By analyzing execution
traces and identifying the key steps and events in
a telemedical pipeline, the discovery tool makes
it easier for users to synthesize partial data pro-
cesses that can be reused and deployed later in
the pipeline lifecycle (challenges 3 and 4).

3.3. Pipeline specification
Once the structure of the data process is

discovered, it can be translated to a data pipeline
(Figure 3-2). This is done by the use of
pipeline specification tools and standards [14].
The pipeline specification tool in the DataCloud
toolbox9 can be used to change the discovered
process to an executable pipeline by specifying
the containers that correspond to the intended
functions of the steps and configuring the pipeline
with the proper step-specific parameters. Such
parameters and configuration may include the
execution environment (Edge or Cloud), required
hardware capabilities (e.g., the required RAM
and CPU on the device to deploy a step), as
well as the step communication/data transmission
configurations (e.g., using MQTT or web APIs).
The tool allows for specifying and maintaining
standard pipelines or pipeline fragments (i.e.,
sub-pipelines) that can be reused when creating

8https://github.com/DataCloud-project/DEF-PIPE-DSL
9https://github.com/DataCloud-project/DEF-PIPE-Frontend

solutions for new patients with variations that
the specific illness can cause they receive care
for. This tool also specifies privacy- and security-
compliant pipelines following user and authority
requirements. The resulting fully specified data
pipeline can then be used directly for deploying
on the required hardware at the appropriate scale
(challenges 1 and 4).

3.4. Simulation and testing before deployment
As was mentioned, telemedical pipelines can

have variations based on the requirements of
the patient and the installed medical devices.
This means that testing of pipelines before their
deployment with patients (Figure 3-3) is needed.
Furthermore, as the number of patients a service
provider supports grows, predicting the comput-
ing resources needed to maintain the infrastruc-
ture responsive and running is difficult. Simu-
lation frameworks for data pipelines provide a
means to predict such requirements [15]. The
DataCloud toolbox contains a tool10, specifically
designed to test container-based data pipelines
and provide insights into the requirements at
runtime [16]. It extracts the steps from pipeline
definitions and performs dry runs by instantiat-
ing the containers in an isolated environment. It
then estimates their throughput and computing
requirements and displays useful monitoring in-
formation about their execution state (e.g., this

10https://github.com/DataCloud-project/SIM-PIPE
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can be useful if a pipeline variation fails). With
this information, a DevOps team can quickly and
easily estimate the hardware requirements, and a
scheduler can use it to identify the right nodes
from the available infrastructure to deploy the
pipeline (challenge 2).

3.5. Resource provisioning
In the context of telemedical pipelines, it is

sometimes the case that there is a need to pro-
vide computing infrastructure outside of available
Cloud resources - e.g., when a client is in a
remote area outside of availability zones provided
by public cloud (Figure 3-4). Furthermore, as
more and more pipelines are supported by the
service to the point where capacity is exceeded, a
service provider may need on-demand provision-
ing. The resources acquired need to minimally
conform to step requirements of the pipeline to
enable successful execution and minimize the cost
to the service provider. Resource provisioning
tools and frameworks in the Edge/Fog frame-
works allow for dynamic management of the
needed resources [13]. The DataCloud toolbox
provides a decentralized tool for provisioning het-
erogeneous virtualized resources11 from various
providers. It comprises a decentralized market-
place based on a permissionless blockchain to
federate virtual machines and containers regis-
tered for on-demand usage. It can be used by
service providers to dynamically add and remove
new nodes to their infrastructure as demand for
data processing fluctuates (challenges 1 and 4).

3.6. Scheduling of resources
The deployment of a telemedical pipeline

needs to be performed in a distributed setting,
possibly over multiple deployment targets in both
Cloud and Edge (Figure 3-5). The deployment
must, nevertheless, conform to the requirements
of the pipeline steps. For example, a step that
needs to be performed on the gateway needs
to be deployed precisely there, whereas a step
that needs to be deployed over the Cloud in-
frastructure must be deployed on a node that
has just enough free resources to host it. The
task of determining the deployment targets is
done through the use of Computing Continuum

11https://github.com/DataCloud-project/R-MARKET

schedulers [17]. The DataCloud toolbox provides
an advanced tool that performs dynamic schedul-
ing and runtime adaptation for the produced
definitions container-based pipelines12. The tool
can analyze the pipeline structure and require-
ments and, taking into consideration the capa-
bilities managed by the resource provisioning
tool, produce a schedule for the deployment of
the pipelines. It also considers the dependencies
between the steps and provides a schedule with
the specific needed deployment sequence that can
be enacted by a deployment engine with minimal
overuse of resources. In addition, the tool uses
monitoring information and, based on the load of
the pipeline, may trigger runtime adaptations of
the pipeline, such as scaling up steps that are bot-
tlenecks in the pipeline or releasing unnecessary
resources (challenges 1 and 4).

3.7. Pipeline deployment on Cloud/Edge
Once a deployable and sequenced schedule

is available, the telemedical pipeline is ready
to be deployed (Figure 3-6). For this purpose,
the middleware is needed to orchestrate deploy-
ment over the provisioned and available Edge
and Cloud infrastructures. The DataCloud toolbox
provides an advanced orchestrator13 that is specif-
ically designed to support the distributed deploy-
ments based on the aforementioned sequenced
schedules. It deploys the pipeline steps on the
resources that were identified by the scheduler
through the MAESTRO orchestrator14 (challenge
4). It includes a monitoring system, modified
to support multiple compound metrics, such as
communication latency and bandwidth during the
runtime of the pipeline, and enact adaptation ac-
tions (provided by the scheduler), e.g., concerning
the requirements for scaling of steps.

4. Summary and Outlook
This paper has argued for using (big) data

pipelines to solve some of the challenges related
to data processing in telemedicine. It outlined
the general structure of a telemedicine setup and
pointed out corresponding technical and non-
technical challenges that emerge from the in-
creased demand for such services. It continued

12https://github.com/DataCloud-project/ADA-PIPE
13https://github.com/DataCloud-project/DEP-PIPE
14https://themaestro.ubitech.eu/
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to describe how data pipelines can address chal-
lenges by using a motivating use case with a real-
world telemedicine service provider using data
pipelines. We also showed how the outlined chal-
lenges are concretely addressed using the Dat-
aCloud toolbox for supporting container-based
data pipelines on the Computing Continuum.

There is a clear emerging direction in
telemedicine with the development and deploy-
ment of large-scale AI models in medicine, such
as Med-PaLM 2 [18], and others [19] that have
demonstrated effectiveness in data analysis and
automatic identification of medical conditions.
We foresee that these AI models will become
integral parts of the data analysis in telemedical
pipelines. And with the rapid development of
other technologies, such as quantum cryptography
for secure data transmission and Artificial Intel-
ligence for online analysis of video streams [20],
there is significant future potential to revolution-
ize remote patient monitoring pipelines.
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