
Household Energy Consumption Prediction: A Deep
Neuroevolution Approach

Alexander Soudaei
Dept. of Computer Science, Oslo

Metropolitan University, Oslo, Norway
asoudaei@gmail.com

Jianhua Zhang
Dept. of Computer Science, Oslo

Metropolitan University, Oslo, Norway
jianhuaz@oslomet.no

Mohamed Elmi
Dept. of Mechanical, Electronic and
Chemical Eng., Oslo Metropolitan

University, Oslo, Norway
s341927@oslomet.no

Mikael Tsechoev
Dept. of Computer Science, Oslo

Metropolitan University, Oslo, Norway
mikael.tse88@live.no

Zishan Khan
Dept. of Mechanical, Electronic and
Chemical Eng., Oslo Metropolitan

University, Oslo, Norway
mo-elmi1998@hotmail.com

Ahmed Osman
Dept. of Mechanical, Electronic and
Chemical Eng., Oslo Metropolitan

University, Oslo, Norway
a.ozman723@gmail.com

ABSTRACT
Accurate energy consumption prediction can provide insights to
make better informed decisions on energy purchase and generation.
It also can prevent overloading and make it possible to store energy
more efficiently. In this work, we propose a new deep learning
model to predict the household energy consumption. In the new
model, we employ differential evolution (DE) algorithm to automati-
cally determine the optimal architecture of the deep neural network.
The energy prediction results are presented and analyzed to show
the effectiveness of the deep neuroevolution model constructed.

CCS CONCEPTS
• : Computing methodologies→ Neural networks; Computing
methodologies; Supervised learning by regression; Applied com-
puting; computer-aided design.

KEYWORDS
Deep learning, Neural networks, Neuroevolution, Differential evo-
lution, Evolutionary algorithm, Energy consumption prediction
ACM Reference Format:
Alexander Soudaei, Jianhua Zhang,Mohamed Elmi,Mikael Tsechoev, Zishan
Khan, and AhmedOsman. 2023. Household Energy Consumption Prediction:
A Deep Neuroevolution Approach. In 2023 3rd International Conference on
Artificial Intelligence, Automation and Algorithms (AI2A ’23), July 21–23,
2023, Beijing, China. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3611450.3611474

1 INTRODUCTION
In this paper, we present a new approach to predict the household
energy use, where we employ differential evolution (DE) algorithm
to optimize the architecture and parameters of a deep learning (DL)
model.

This work is licensed under a Creative Commons Attribution International
4.0 License.

AI2A ’23, July 21–23, 2023, Beijing, China
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0760-5/23/07.
https://doi.org/10.1145/3611450.3611474

The DE was inspired by the evolutionary aspects of living organ-
isms [1-5]. The biological plausibility makes the DE a competitive
candidate for selecting the optimal architecture of a deep neural
network, since it provides remarkable approximate solutions that
cannot be easily obtained by using other algorithms [6]. Approxi-
mate solutions, provide by the evolutionary algorithms or swarm
intelligence algorithms [7] in the field of computational intelli-
gence [8], are a good way to mitigate the computational overhead
for developing DL models with appropriate architectures.

Reference [9] presented a method using DE to optimize artificial
neural network (ANN) for classification of parity-p problem. The
results were compared to those of the Levenberg-Marquardt (LM)
and backpropagation algorithms. It was shown that the DE-ANN
approach had a higher percentage of correct classification in four
of ten cases than the LM algorithm. In [10], the authors presented
four different approaches to energy prediction in home appliances,
namely Multiple linear regression, Gradient Boosting Machines
(GBM), Support Vector Machine (SVM) with radial kernel, and
Random Forest. It was shown that GBM has achieved the best
results in terms of the modeling accuracy metrics of RMSE and R2.
These four algorithms proved to have certain limitations in their
modeling abilities.

In [11], Njock et al. presented an ANN optimized by the DE
algorithm for predicting diameters of jet grouted columns in 2021.
Though the results reported in the paper were shown certain im-
provement, unfortunately the authors only use R2 as the metric
for accuracy. Reference [12] used different ways of presenting and
validating the modeling results.

In fact, different types of ANNs can be combinedwith DE or other
evolutionary algorithms (EAs) (see [13-15]) to make predictions.
In [16], long short-term memory (LSTM) system was utilized for
short-range prediction of electricity load and price. On the other
hand, other EAs have also been integrated with an ANN model. In
[17], Han and others employed genetic algorithm (GA) to optimize
hyperparameters of Convolutional Neural Network (CNN). The
algorithm showed reduced CNN training time and encouraging
modeling results.

In the present work, we try to combine DE and ANN for
regression-model-based energy prediction. We use four standard

164

https://doi.org/10.1145/3611450.3611474
https://doi.org/10.1145/3611450.3611474
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3611450.3611474
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611450.3611474&domain=pdf&date_stamp=2023-08-20


AI2A ’23, July 21–23, 2023, Beijing, China Alexander Soudaei et al.

Figure 1: The histograms of all the 31 variables (30 inputs
and one output) in the dataset.

metrics, i.e., RMSE, MAE and MAPE, and R2, to evaluate and com-
pare, in a more comprehensive manner, the accuracy of our pro-
posed model with several state-of-the-art methods in literature.

2 PROBLEM STATEMENT AND DATASET
We consider a time series model with 28 inputs (humidity and
temperatures of 9 rooms in a house with lower energy use, wind
speed, pressure, dew point, among others) and a single output (the
energy consumption rate of appliances in the house in Watts per
hour (Wh)).

The data was measured from Chievres airport station using a
ZigBee Wireless Sensor Network (WSN). The available dataset
contains 19736 instances, measured every 10 min for a period of
about 4.5 months (from Jan. 11 to May 27, 2016). There are no
missing values in this dataset. For more details about the dataset,
the interested readers are referred to [10].

As the dataset is a time series, we divide the date of each data
point into three separate features: Day, Month, and Time. After this
conversion we now have a total of 30 input features in our dataset.
Another typical problem to deal with are outliers. Fig. 1 shows the
distribution of the model I/O variables in the dataset.

From the distributions, we can see that most of the variables are
normally distributed while a few of them stand out. The prediction
variable, energy consumption rate of appliances, seems to be slightly
right-skewed. Lights, month, day and hour also stands out here, as
they are discrete variables which only take a number of discrete
values.

Detecting and removing outliers is a common practice in ma-
chine learning, as this allows us focus on the regular values.

We remove these outliers (extreme values) as we prefer a higher
accuracy on values that we commonly see to a decent accuracy on
both the common and extreme values.

To achieve this, we use the common 3𝜎 method, i.e., the instances
whose output (appliance energy consumption rate) is out of the
range mean±3𝜎 will be removed before further processing. Using
this outlier detection and removal method, 540 instances were
removed from the original dataset and 19195 instances are left.

Fig. 2 shows the correlation between the different I/O variables.
We can observe that the four inputs which have the highest cor-
relation to the model output (appliance energy consumption) are

Figure 2: Correlation matrix between the inputs and output
variables.

Lights, T2, and T6 (all with a positive correlation to the output),
and RH_out (with a negative correlation to the output).

Before splitting, we shuffle the dataset, i.e., we change the order
of data instances to make sure that the model would be created
with reliable training and testing sets. Shuffling makes the model
training resistant to memorizing the patterns of the dataset. It also
helps with faster convergence which is convenient when working
with a large number of data instances. Then we split the dataset
into a training set and a testing set to evaluate its accuracy on a
disjoint testing set. The training set is used for training the model,
and the test set is used for testing the accuracy of the model. The
validation set may also be created to make sure that the model
does not overfit the training data, by stopping the training process
if the training error keeps decreasing while the validation error
keeps increasing. To train our model, we allocate 60% of the original
dataset as a training set, 15% as validation set, and the rest 25% as a
testing set.

3 DEEP NEUROEVOLUTION APPROACH
The differential evolution (DE) algorithm is a metaheuristic, sto-
chastic population-based direct search method [18]. One major
advantage of DE algorithm is that it has fast convergence to the
global minimum. DE uses the GA-like evolutionary operators (e.g.,
crossover and mutation) to alter the behavior of the swarm. In [4],
Bilal et al. presented the evolution of the DE algorithm since 1995.
In [18], mutation is referred to as the generation of a new posi-
tion in the search space from three vector donors. The mutation is
performed by:

𝑣 = 𝑣1 + 𝐹 (𝑣2 − 𝑣3) (1)

where the amplification parameter F∈[0, 2] is a crucial parameter
for controlling the balance between exploration and exploitation.
Increasing 𝐹 would increases the exploration in the swarm, caus-
ing the particles to spend more time finding the solution, while
decreasing it would increase the exploitation in the swarm. This
can prevent the premature convergence of the particles in the DE
algorithm [5].

165



Household Energy Consumption Prediction: A Deep Neuroevolution Approach AI2A ’23, July 21–23, 2023, Beijing, China

After mutation, the crossover operator is applied to create can-
didate vector u with its i-th component:

𝑢𝑖 =

{
𝑣𝑖 , if𝑟 < 𝐶𝑅or𝑖 = 𝐼

𝑥𝑖 , otherwise
(2)

where r and I are random numbers in the interval [0, 1] and [0, n],
respectively, CR stands for the crossover rate (or probability) larger
than the random number 𝑟 [0,1], and x is the position of a particle.

If 𝐶𝑅 is set to a low percentage, then it would cause a low
amount of breeding between particles; otherwise it would cause
high amount of breeding between them. The variable 𝐼 makes sure
that at least one component in the candidate vector 𝑢 comes from
the mutation vector 𝑣 . Using both mutation and crossover oper-
ations we reach the goal of finding candidate vector 𝑢. The last
step is selection where the candidate vector is decided if it will be
included in the upcoming generations. This is done by comparing to
the current particle position 𝑥𝑖 using the greedy criterion [3]. This
criterion makes sure that a new parameter vector is selected and
accepted into the new generation only if it reduces the objective
function value.

Both crossover and mutation must be carried out to generate a
new position of the particle. This process eliminates a higher degree
of random position generation, which has been used by many other
optimization algorithms.

DE algorithm performs well with combinations of various swarm
sizes and iterations and may find the global minimum in most ap-
plications. This versatility makes it a widely utilized swarm intelli-
gence (SI) optimization algorithm. Application areas of DE ranges
from solution of simple mathematical problems to solution of nu-
clear engineering optimization problem [2].

In this work, we combine DE, stochastic gradient descent (SGD)
and Adadelta optimization algorithms to optimize the architecture
and weight parameters of a multi-layer feedforward ANN model.
The DE is used to optimize the number of nodes in the four hidden
layers of the ANN.

3.1 Encoding Scheme of the DE Algorithm
We represent ANN architecture as a position vector, where the i-th
component represents the number of nodes in the hidden layer #i
in the network. The units in the input and output layers are not
included, as they are predetermined and kept constant. For example,
the architecture of a 3-layer network with 51 and 33 nodes in the
1st and 2nd hidden layer, respectively, would be represented as a
position (row) vector [51 33]. The positions are then normalized to
the unit interval [0, 1] in order to speed up the swarm convergence
of the DE algorithm.

3.2 Deep Neuroevolution Approach
As described above, we represent the multi-layer feedforward archi-
tecture of ANN as position vector. We first train the network with
all possible architectures using Stochastic Gradient Descent (SGD)
algorithm due to its fast learning convergence. Then we put the
network with specific architecture through a second training phase
using Adadelta optimizer with an adaptive learning rate, which has
proven to be slow but lead to quality convergence. This two-phase
training process is repeated twice for every network architecture,

and we use the best result from the two trials as the final measure
of its quality, as random initializations of the ANN make the same
architecture produce different results in different trials. Due to the
consideration of computing resource we restrained the number of
runs to two. After architecture evaluation, the old position vector
is updated by the DE.

3.3 Setting of Parameters
Table 1 shows the parameters we used in the subsequent energy use
prediction experiments. It is noted that the initial value of learning
rate would be reduced by 25% if there is no improvement for the
last 30 epochs of training.

4 EXPERIMENTAL RESULTS AND ANALYSIS
4.1 Modeling Results
From Table 2, we can see that the first two hidden layers have fewer
hidden units than the last two hidden layers in the best architecture
found. Table 3 shows how the NN model with the best architecture
performs on the training, validation and test set. It is shown that
the model performs better on the training and validation sets than
the test set.
By observing the last column of Table 3, in terms of RMSE, MAE
and R2, the proposed neuroevolution approach outperform the best-
performing GBM model in [10] (66.65, 35.22 and 0.57, respectively,
therein).

4.2 Statistical Analysis of Modeling Errors
To get a deeper understanding of the testing errors of the proposed
deep ANN model, we present the statistics of testing errors in Table
4. We can observe that the model usually predicts too high energy
consumption but has a positive mean of errors, the maximum and
minimum testing errors are 332 and -249, respectively. The results
indicate that the worst prediction error occurs when the model
prediction is lower than the actual value.
From Fig. 3, we observe that the majority of prediction errors are
negative (with too high predictions) and there are also many big,
positive errors.

Table 5 shows the statistics of errors due to too high and too
low predictions, where we consider absolute values of the testing
errors (i.e., without considering their signs). We can see that 75% of
the negative errors (due to too high predictions of the model) fall
within the interval [0.006, 26.72], while 75% of the positive errors
(due to too low predictions) are in the interval [0.01, 29.00]. To
summarize, the testing error analysis above shows that the model
more frequently predicts higher than the actual value, however this
is outweighed by the magnitudes of the (positive) errors due to too
lower predictions. When the actual energy use is in the relatively
higher (e.g., in the range between 150 and 400), the model has
difficulty in making accurate predictions.

5 CONCLUSION
In this work, we present a DE-algorithm-based approach to de-
termining the optimal architecture of deep neural network for
predicting the household energy consumption. In summary, the
results showed that the proposed method reduced MSE by 98.32

166



AI2A ’23, July 21–23, 2023, Beijing, China Alexander Soudaei et al.

Table 1: The parameters setting in experiments.

Parameter Meaning Value

npart # of particles in the swarm 20
ndim Dimen. of search space 4
m Max # of generations 30
CR Crossover rate 0.5
F Mutation rate 0.8
minnodes Min. # of nodes in a hidden layer 30
maxnodes Max. # of nodes in a hidden layer 80
ninputs Input dimensionality 30
noutputs Output dimensionality 1
nhidden # of hidden layers 2
sizebatch Size of mini-batch per parameter update 200
maxepochs Max. # of training epochs 1000
patience # of training epochs without further improvement before stopping training 50
lr Initial learning rate 0.001

Table 2: The DE optimization results.

The best validation MSE before optimization 2369.34

Best architecture (NN with 4 hidden layers) 30-36-33-53-46-1
The validation MSE of the best architecture 2271.02
No. of iterations required to find the best architecture 17
Reduction in MSE 98.32

Table 3: Training, validation and test error metrics of the DE-ANN model constructed.

Training Validation Testing

RMSE 38.49 47.65 52.79
MAE 21.61 25.88 27.63
MAPE (%) 26.80 32.34 32.66
R2 0.68 0.48 0.38

Table 4: The statistics of the model testing errors.

Max 333.22

75th percentile 10.09
Mean 3.23
25th percentile -14.87
Min -278.82
s.d. 52.69
Percentage of negative errors (%) 55
Percentage of positive errors (%) 45

using the best NN architecture found by DE algorithm after 17 gen-
erations. Testing error analysis shows that 55% of model predictions
are higher than the actual value, 45% of them are lower than the
actual value, and the mean error is 3.23 (since the magnitude of the
positive errors outweigh that of the negative errors).

Figure 3: The distribution of model testing errors.

In conclusion, the results over the realistic dataset showed that
the proposed DL method can significantly reduce the prediction
error of the deep neural network by selecting the best network
architecture with DE algorithm.

167



Household Energy Consumption Prediction: A Deep Neuroevolution Approach AI2A ’23, July 21–23, 2023, Beijing, China

Table 5: The statistics of the absolute errors.

Absolute value

Negative errors Positive errors
s.d. 29.00 58.13
Max 278.02 333.22
75th percentile 26.72 29.00
Mean 22.23 34.20
25th percentile 5.56 5.38
Min 0.006 0.01

REFERENCES
[1] V. P. Plagianakos, D. K. Tasoulis, andM. N. Vrahatis, A review of major application

areas of differential evolution. in Advances in Differential Evolution, Studies in
Computational Intelligence, vol. 143, Berlin, Heidelberg: Springer, pp. 197-238,
2008.

[2] W. F. Sacco, N. Henderson, A. C. Rios-Coelho, M. M. Ali, and C. M. N. A. Pereira,
Differential evolution algorithms applied to nuclear reactor core design. Annals
of Nuclear Energy, vol. 36 (8), pp. 1093-1099, 2009.

[3] W. Huang, T. Xu, K. Li, and J. He, Multiobjective differential evolution enhanced
with principle component analysis for constrained optimization. Swarm and
Evolutionary Computation, vol. 50(100571), pp. 1-14, 2019.

[4] Bilal, M. Pant, H. Zaheer, L. Garcia-Hernandez, and A. Abraham, Differential evo-
lution: A review of more than two decades of research. Engineering Applications
of Artificial Intelligence, Vol. 90, pp. 1-24, 2020.

[5] M. F. Ahmad, N. A. Isa, W. H. Lim, and K. M. Ang, Differential evolution: A
recent review based on state-of-the-art works. Alexandria Eng. J., Vol. 61 (5), pp.
3831-3872, 2022.

[6] R. Wang, J. Zhang, Y. Zhang, and X. Wang, Assessment of human operator
functional state using a novel differential evolution optimization based adaptive
fuzzy model. Biomedical Signal Processing and Control, vol. 7(5), pp. 490-498, 2012.

[7] P. A. Whigham, and G. Dick, Implicitly controlling bloat in genetic programming.
IEEE Trans. on Evolutionary Computation, vol. 14(1), pp. 173-190, 2010.

[8] A. P. Engelbrecht, Computational Intelligence: An Introduction (2nd edition), John
Wiley & Sons, 2007.

[9] A. Slowik, and M. Bialko, Training of artificial neural networks using differential
evolution algorithms. in Proc. of 2008 Conf. on Human System Interaction (HSI2008),
pp. 60-65, 2008.

[10] L. M. Candanedo, V. Feldheim, and D. Deramaix, Data driven prediction models
of energy use of appliances in a low-energy house. Energy and Buildings, Vol.
140, pp. 81-97, 2017.

[11] P. G. A. Njock, S.-L. Shen, A. Zhou, and G. Modoni, Artificial neural network
optimized by differential evolution for predicting diameters of jet grouted column.
J. of Rock Mechanics and Geotechnical Eng., Vol. 13, pp. 1500 – 1512, 2021.

[12] E. Hancer, A newmulti-objective differential evolution approach for simultaneous
clustering and feature selection. Engineering Applications of Artificial Intelligence,
Vol. 87, 103307, pp. 1-9, 2020.

[13] M. M. Fouad, A. I. El-Desouky, R. Al-Hajj, and E.-S. M. El-Kenawy, Dynamic
group-based cooperative optimization algorithm. IEEE Access, vol. 8, pp. 148378-
148403, 2020.

[14] W. H. Bangyal, K. Nisar, Ag. A. B. Ag. Ibrahim, M. R. Haque, J. J. P. C. Rodrigues,
and D. B. Rawat, Comparative analysis of low discrepancy sequence-based ini-
tialization approaches using population-based algorithms for solving the global
optimization problems. Applied Science, vol. 11, 7591, 2021.

[15] J. Zhang, and S. Yang, A novel PSO algorithm based on an incremental-PID-
controlled search strategy. Soft Comput, vol. 20, pp. 991-1005, 2016.

[16] G. Memarzadeh, and F. Keynia, Short-term electricity load and price forecasting
by a new optimal LSTM-NN based prediction algorithm. Electric Power Systems
Research, Vol. 192, pp. 1-14, 2020.

[17] J.-H. Han, D.-J. Choi, S.-U. Park, and S.-K. Hong, Hyperparameter optimization
using a genetic algorithm considering verification time in a convolutional neural
network. J. of Electrical Engineering & Technology, Vol. 15, pp. 721-726, 2020.

[18] R. Storn, and K. V. Price, Differential evolution–A simple and efficient heuristic
for global optimization over continuous spaces. J. of Global Optimization, Vol.
11, pp. 341-359, 1997.

168


	Abstract
	1 INTRODUCTION
	2 PROBLEM STATEMENT AND DATASET
	3 DEEP NEUROEVOLUTION APPROACH
	3.1 Encoding Scheme of the DE Algorithm
	3.2 Deep Neuroevolution Approach
	3.3 Setting of Parameters

	4 EXPERIMENTAL RESULTS AND ANALYSIS
	4.1 Modeling Results
	4.2 Statistical Analysis of Modeling Errors

	5 CONCLUSION
	References

