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Abstract: An important part of diagnostics is to gain insight into properties that characterize a
disease. Machine learning has been used for this purpose, for instance, to identify biomarkers
in genomics. However, when patient data are presented as images, identifying properties that
characterize a disease becomes far more challenging. A common strategy involves extracting features
from the images and analyzing their occurrence in healthy versus pathological images. A limitation
of this approach is that the ability to gain new insights into the disease from the data is constrained
by the information in the extracted features. Typically, these features are manually extracted by
humans, which further limits the potential for new insights. To overcome these limitations, in
this paper, we propose a novel framework that provides insights into diseases without relying
on handcrafted features or human intervention. Our framework is based on deep learning (DL),
explainable artificial intelligence (XAI), and clustering. DL is employed to learn deep patterns,
enabling efficient differentiation between healthy and pathological images. Explainable artificial
intelligence (XAI) visualizes these patterns, and a novel “explanation-weighted” clustering technique
is introduced to gain an overview of these patterns across multiple patients. We applied the method
to images from the gastrointestinal tract. In addition to real healthy images and real images of polyps,
some of the images had synthetic shapes added to represent other types of pathologies than polyps.
The results show that our proposed method was capable of organizing the images based on the
reasons they were diagnosed as pathological, achieving high cluster quality and a rand index close to
or equal to one.

Keywords: clustering; deep learning; explainable artificial intelligence; image classification; knowledge
discovery

1. Introduction

Gaining new insights into diseases is crucial for diagnostics. Machine learning (ML)
has been employed for this purpose. For instance, in genomics, ML has been used ex-
tensively to identify biomarkers for various diseases [1]. However, when patient data
are presented as images, deriving insights into characteristics associated with a disease
becomes more challenging. A common approach involves extracting a set of features from
the images or performing image segmentation [2]. To search for new insights, these features
can be analyzed using statistical or machine learning techniques. A recent advancement
in this area is the use of graph convolutional networks on regions of interest from brain
neuroimaging data [3,4]. Nevertheless, there is a risk that information might be lost during
the feature extraction or image segmentation process. Another constraint is that the features
and image segments typically rely on pre-existing medical knowledge, thereby limiting the
potential for discovering new diagnostic insights.

To address these limitations, we introduce a novel framework based on deep learning
(DL). The rationale behind this proposal is that the intricate patterns learned by DL models
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for successful predictions/classifications might also contain valuable insights into the
relationship between the characteristics of medical images and the associated disease.
The DL model operates independently of handcrafted features or human interventions,
potentially overcoming the aforementioned constraints.

While there is great potential for DL to uncover new insights, this is still a highly
unexplored area of research. This is likely because DL models are primarily designed for
optimal prediction/classification performance, making them inherently difficult to interpret.
Consequently, leveraging them to gain new medical insights can be challenging. However,
the recent development of explainable artificial intelligence (XAI) provides methods to
interpret ML and DL algorithms [5,6]. For instance, XAI techniques can highlight the
sections of an input image that predominantly influenced the DL model’s decision, such as
rendering a diagnosis. XAI is vital for quality-checking ML methods, ensuring they base
their predictions on pertinent parts of the input. These methods also bolster trust in ML
system recommendations among users.

In this paper, we propose a lesser-explored application of XAI, primarily to discover
new knowledge. For example, XAI can be used to pinpoint features in an input image
that clarify the DL model’s reasoning for classifying a patient as ill. A pertinent study in
this context is the one by [7]. The authors trained DL algorithms to diagnose skin lesions,
aiming to identify skin lesion biomarkers for various diagnoses. Their findings revealed
that the “surrounding skin can also serve as evidence for skin lesion diagnosis,” which
was previously omitted from traditional diagnostic procedures, signifying a potential
new medical discovery. In [8], the authors harnessed XAI techniques to extract medical
knowledge from electrocardiogram (ECG) data.

The diagnostic insights referred to above were discerned through a manual examina-
tion of explanations for multiple patients. Such a method, however, can be labor-intensive
and subjective. Consequently, we introduce a pioneering framework that clusters multiple
input patient images based on their explanations of why they were classified as sick or
healthy. The practical implementation of this is intricate. We propose a unique technique
that clusters the input images, giving more weight to the pivotal pixels based on the XAI
explanation. This is accomplished using a Hadamard product between the input image
and the explanation, producing what we term “explanation-weighted” images. Clusters
derived from these images can provide an overview of varying explanations, some of which
might elucidate novel disease characteristics. These clusters also help identify common
explanations for a diagnosis (larger clusters) versus the less frequent, and perhaps less
reliable, explanations (smaller clusters).

In summary, the framework proposed in this paper operates as follows: DL models are
trained to distinguish patients with a disease from healthy controls or in another diagnostic
context. XAI elucidates why patients were categorized as either ill or healthy. However,
since XAI methods offer individual explanations for each patient, they cannot furnish an
overview of various disease characteristics. Our proposed explanation-weighted clustering
technique is designed to fill this gap. The main contributions of this paper are as follows:

• Introduction of a novel framework that integrates DL, XAI, and explanation-weighted
clustering to unveil new insights into disease characteristics

• Computation of so-called explanation-weighted images, which are obtained through
the Hadamard product of an input image and its corresponding explanation.

• Development of a novel smoothing function to enhance the quality of XAI explanations.
• Evaluation of the framework on a large dataset comprising gastrointestinal tract

images, consisting of real healthy images, real images with polyps, and images with a
synthetic overlay to represent other disease types beyond polyps.

2. Background and Literature Review

We begin this section by providing an introduction and review of the techniques
related to XAI, clustering, and cluster performance evaluation. Starting from Section 2.3,
we offer an overview of methods that utilize ML to gain medical knowledge.
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2.1. Explainable AI

XAI is a field of Artificial Intelligence (AI) that seeks to offer insights into black-
box models and their predictions. Trust, performance, legal (regulation), and ethical
considerations are some reasons researchers advocate for XAI [5]. This is increasingly
critical as AI adoption reaches domains like healthcare.

External XAI techniques might explain single predictions through text or visualiza-
tions, or delve into models comprehensively using examples, local changes, or trans-
formations to simpler models. While text and visualization explanations offer a direct,
human-understandable clarification typically for a specific prediction, utilizing examples
grants a broader understanding of a model by showcasing similar examples and predic-
tions to the prediction in question. This method, however, does not provide an immediate
explanation for a particular prediction. Local explanations focus on a subset of the problem,
aiming to elucidate within that restricted context. Finally, to achieve higher interpretability,
one can either employ a mimic model, which is an interpretable model that emulates the
black-box model’s behavior, or replace the black-box model altogether. In this paper, we
utilize visual explanations.

In [9], the authors detail four techniques that elucidate image classifiers by modifying
the input. The methods include the method of concomitant variation, the method of
agreement, the method of difference, and the method of adjustment. Each method offers a
unique approach and insight into how models interpret and classify images.

The technical procedure to retrieve visual explanations from an image classifier com-
prises two parts: (1) an attribution algorithm furnishing the data for the explanation and
(2) a visualization employing that data to generate a human-understandable elucidation.
Broadly, image classification’s attribution algorithms can be classified as either gradient-
based methods or occlusion-based methods.

Visualizations represent the interpretations derived from the attribution methods
mentioned earlier. However, there is no consensus in the literature regarding what consti-
tutes a “good” explanation. While some believe an explanation should detail parts of an
image contributing to its classification, others focus on resolution quality or the trade-offs
involved. Indeed, as 2D visualizations cannot fully depict a model’s intricacy, clarity about
the limitations and trade-offs is essential when using such explanations.

Other research on improved visualization argues that past studies have overly concen-
trated on the positive alterations in an input image without contemplating the negative
impacts [10,11]. Both perspectives are necessary for a comprehensive explanation, espe-
cially for AI adoption in sensitive areas.

2.2. Unsupervised Learning-Clustering

Clustering is an unsupervised ML technique where the objective is to discern group-
ings in unlabeled data. It has diverse applications, including anomaly detection, compres-
sion, or unveiling intriguing properties in data. In this paper, we focus on clustering for
image classification using K-means and X-means clustering.

2.2.1. K-Means and X-Means

K-means is a straightforward clustering algorithm with a time complexity of O(n)
in big-O notation. The algorithm commences by initializing a centroid for each of the K
clusters. Various strategies exist for this initialization. One method is to select K random
points from the dataset as the initial centroids, although this can make K-means sensitive
to its initialization. To mitigate this, one can execute K-means multiple times. Another
method, K-means++, has been proven to be a more robust initialization scheme, outdoing
standard K-means in both accuracy and time [12]. K-means++ selects initial centroids using
a probability based on a point’s distance to the current centroids. Once initialized, each
point is assigned to its closest centroid. The primary loop of the algorithm then adjusts the
centroids toward the mean of the points linked to them, and points are reassigned to the
nearest centroid.
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A limitation of K-means is the necessity to predefine K, the number of clusters. If the
number of clusters is unknown, one can employ X-means. This method involves running
K-means algorithms with various K values. The most fitting number of clusters for a
dataset can be determined by evaluating multiple clustering performance metrics.

2.2.2. Clustering Performance Evaluation

Clustering performance evaluation metrics can be divided into two main categories:
those requiring labeled data and those that do not. In this paper, we used the techniques
Rand index, silhouette coefficient, and Davies–Bouldin index [13,14].

The Rand index measures the similarity between the labels that the cluster has assigned
to data points and the ground truth labels. This metric differs from standard accuracy
measures because, in clustering, the label of the cluster to which a data point is assigned
may not match its true label. To accurately measure the performance of clustering, one
must therefore account for permutations. The Rand index provides a score in the range
[0, 1], indicating the number of matching pairs between the cluster labels and the ground
truth. While it is highly interpretable, other methods must be employed when labels are
not available.

The silhouette coefficient is a metric suitable for use when no labels are present. It
produces a value that increases as clusters become more defined. “More defined” in
this context means that the distance between points within a cluster is small, while the
distance to other clusters is large. The silhouette coefficient yields a value in the range
[−1, 1]: −1 indicates an incorrect clustering, while 1 signifies highly dense clusters that are
well separated.

In contrast, the Davies–Bouldin index places less emphasis on the quality of clusters
and more on their separation. A low Davies–Bouldin index suggests a significant degree
of separation between clusters. Its value starts at 0, which represents the best possible
separation, and has no upper bound.

2.3. Image-to-Image Translation

Image-to-image (I2I) translation refers to the process of learning to map from one
image to another [15]. Such a mapping could, for instance, transform a healthy image
into one with pathological identifiers. Differences between the input and output images
can then be analyzed to extract medical insights. For this purpose, generative adversarial
networks (GANs) and variational autoencoders (VAEs) have been employed.

RegGAN has proven to be the most effective I2I solution for medical data [16]. One
challenge of I2I in the medical realm is the difficulty in finding aligned image pairs in
real-world scenarios. To address this, the authors used magnetic resonance images of
the brain and augmented them with varying levels of noise and synthetic misalignment
through scaling and rotation. RegGAN surpassed previous state-of-the-art solutions for
both aligned and unaligned pairs and across noise levels ranging from none to heavy.

In the realm of I2I translation, there are also initiatives leveraging newer architectures,
such as Transformers. Specifically, the Swin transformer-based GAN has demonstrated
promising results on medical data, even outperforming RegGAN on identical datasets [17].

2.4. Data Mining Techniques

Data mining involves extracting valuable knowledge from large datasets by identifying
pertinent patterns and relationships [18]. Clustering is one such technique and is also
employed in this paper. While clustering has found application in diverse facets of medical
knowledge discovery, its direct use in medical imaging remains relatively rare.

In [19], the authors demonstrated that K-means clustering could identify subgroups
of yet-to-be-treated patients. This approach unveiled four unique subgroups. The re-
sults were promising for K-means clustering, but unlike our study, their research did not
incorporate images.
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In another study [20], a system was proposed for medical image retrieval. The process
began by searching for an image within a known primary class and subsequently by the
identified markers that had not been labeled previously. The authors showcased that by
using clustering, previously unlabeled subclasses could be detected, facilitating the search
for analogous images. This proved beneficial, enhancing a doctor’s diagnostic accuracy
from 30% to 63%.

Other research focuses on how data mining techniques can offer insights not directly
as new medical knowledge from AI, but rather to equip users with enriched information,
allowing them to derive novel medical insights. In [21], a visualization solution was
proposed for practitioners, grounded in spectral clustering, to decipher information from
2D and 3D medical data. Although spectral clustering was central to their approach, they
recognized that no single clustering method excels universally.

2.5. Explainable Artificial Intelligence

In the medical domain, XAI research predominantly serves ethical and legal imper-
atives, fostering trust and privacy, and revealing model biases [22]. The deployment of
XAI for medical knowledge discovery is less common, yet some recognize its untapped
potential [6].

In [23], the authors illustrated a method to cluster images, assign groups of images
importance scores, and subsequently obtain explanations regarding significant components
across an entire class. This technique employs super-pixel segmentation to fragment the
image. This procedure is replicated for all images in a class. The segments are then
clustered, and the significance of each segment group is evaluated. This approach yields
explanations highlighting crucial features across the class. Although their evaluation used
a general dataset, it appears feasible to adapt this to the medical context. In such cases, this
methodology could potentially expose medical insights by categorizing types of markers.
This aligns with the objectives of this paper, albeit through a different modality. Here, the
explanations are the primary outcome, contrasting with our work where explanations are
integral to the process of enhancing the categorization.

In [24], the authors exemplified how XAI can be harnessed for medical knowledge
discovery. Using a ResNet, they autonomously analyzed ECG data. Their model could
predict the sex of a subject with 86% accuracy, a feat they claim is nearly unachievable
for human cardiologists. To elucidate the model’s learned insights, they turned to XAI.
They modified Grad-CAM, presenting a visual justification of the segments deemed crucial
for the prediction. This process revealed what the authors termed as “new insights into
electrophysiology”. While their study did not incorporate images as in our research, it did
utilize 2D visual explanations to uncover fresh medical knowledge.

No papers were identified that directly leverage the explanations of image classifiers
in a manner analogous to the methodology proposed in this paper.

3. Methodology

In this section, we present our proposed novel framework that combines DL, XAI,
and clustering to potentially uncover new insights into characteristics in medical images
associated with a disease.

We recognize that individuals can be diagnosed with a disease based on different
criteria. For example, a doctor might determine a mole’s cancer risk based on various
factors such as color, spots, irregular border, or, as identified by [7], the surrounding skin.
An overview of the method we developed and implemented in this paper is shown in
Figure 1. The green border represents healthy data, while the red with a dotted border
indicates the flow of pathological data. In this example, we envision two characteristics of
the disease, represented by blue and yellow shapes. Our framework aims to automatically
identify these two characteristics. It is important to note that both fall under the “sick”
class, and since we do not have labeled data to distinguish them, traditional machine
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learning cannot be employed. Instead, we propose using XAI and clustering to achieve
this distinction.

Figure 1. Overview showing the four main steps of our proposed framework.

Our proposed procedure includes the following steps:

Step 1 We train a DL image classifier on healthy and pathological data. We detail the data
in Sections 3.1 and 3.2. Section 3.3 describes the DL classifier we chose. As shown
in Figure 1, the pathological class consists of two characteristics, namely the yellow
and blue shapes.

Step 2 We predict a set of images that the DL method has not seen and compute explana-
tions for each image classified as pathological, using XAI techniques. We elaborate
on this step in Section 3.4.

Step 3 We create an explanation-weighted version of the input images by computing the
Hadamard product between the input image and the visual explanation.

Step 4 We cluster the explanation-weighted images from Step 3 to identify the different
diagnostic characteristics in the pathological class, illustrated in the figure as yellow
and blue shapes. We detail the clustering methodology in Section 3.5.

One might question why, in our proposed framework, we chose to cluster the explanation-
weighted images classified as pathological rather than the original images. The rationale is
that clustering the original images, classified as pathological, offers no assurance that they
would be clustered based on pathological patterns. They could be grouped according to
other unrelated image attributes, like brightness levels. In our experiments (though not
included in the paper), we found that without the explanation and weighting provided in
steps 2 and 3, the images were clustered based on criteria other than the reasons they were
classified as pathological.
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The methodology can be further equipped with uncertainty measures, giving us the
ability to identify which characteristics (clusters) are statistically significant findings and
which are just random noise. However, we have not explored uncertainty measures in
this paper.

3.1. Gastrointestinal Dataset

The dataset we used as the basis for all experiments in this work is the HyperKvasir
dataset [25]. It is a large image dataset of the GI tract taken from gastro- and colonoscopy
examinations performed at Bærum Hospital in Norway. The images were captured using a
Pentax colonoscope (Pentax Medical Europe, Hamburg, Germany). Some images contain
extra information in the form of a picture-in-picture located in the bottom left corner,
recognizable by its distinct green background. These images were taken by an Olympus
ScopeGuide™, a device used to image the colon (Olympus Europe, Hamburg, Germany).

The dataset comprises 10,662 labeled and 99,417 unlabeled images. Each label was
reviewed by more than one expert in the field and is, therefore, assumed to be highly
accurate. The dataset also includes videos containing 889,372 video frames. Figure 2
displays a sample from the dataset.

Figure 2. A sample from the HyperKvasir dataset showing images from the upper and lower GI tract.

3.2. Pseudo-Real Data

We created two pseudo-real datasets from the HyperKvasir dataset for the experimen-
tal parts of the paper, referred to as Datasets A and B. By ‘pseudo-real’ dataset, we refer to
a dataset consisting of real medical images and real medical images with a small colored
shape added to represent pathology.

Dataset A comprises 20,000 samples; 10,000 of these were real images from the Hy-
perKvasir dataset representing the healthy class. The other 10,000 samples were created
using the same images, but colored shapes were added to each image: either a single
yellow rectangle or a blue ellipse. The width and height of these shapes were randomly
set between 20–25% of the images, with each shape added at a rate of 50%. Examples of
healthy and pathological samples are shown in Figure 3.

Dataset B contains 2056 images labeled as healthy in the HyperKvasir dataset and
2056 images, with half being real pathological images, in the form of polyps, and half being
pseudo-real, in the form of blue shapes. We chose the blue ellipse because it resembles
polyps in terms of size and shape, adding to the dataset’s challenge. Examples of healthy
and pathological samples are shown in Figure 4. We see that half of the images in the
pathological class consist of real polyps and half-blue shapes.
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Figure 3. Examples of images from Dataset A with images from the healthy class on the (left) and
the pathological class on the (right). The pathological class consists of the same images as the healthy
class but with blue or yellow synthetic overlays representing two types of pathologies.

Figure 4. Examples of images from Dataset B with images from the healthy class on the (left) and the
pathological class on the (right). The pathological class features two pathologies: real polyps and
blue shapes.

The HyperKvasir images have an aspect ratio of 4:5. The classifiers we used in this
paper required square images as input. Therefore, we cropped the images to a 1:1 aspect
ratio. A bottom-left crop ensured that the entire Olympus ScopeGuide image was included.
This process does remove 20% from the top of the images, resulting in some information
loss. However, this approach aligns with the methods used in the official experiments
by the HyperKvasir dataset creators. We further scaled the images to 224× 224 pixels, as
expected by the classifiers used in the experiments in this paper, and normalized them
between 0 and 1. Finally, we augmented the training data with a 50% chance of randomly
flipping the image horizontally or vertically and rotating it uniformly up to 90 degrees.

Setting up the pseudo-real datasets in this manner serves three main purposes. First,
by using real data for the healthy class and the same images as the background for the
pathological class, the classification problem becomes more realistic and challenging. There
is a potential for the classifier or the XAI method to confuse the actual difference between
the classes (the colored shapes) with other image characteristics, such as polyps or the
green shapes in the bottom left corner of some images [25]. Second, since we know the
true explanation (given by the presence or absence of the colored shapes for Dataset A
and colored shapes and polyps for Dataset B), it allows us to evaluate the performance of
different XAI explanation methods. Third, with the number of possible synthetic classes
only being limited by the combinations of colors and shapes, the pseudo-real dataset can
be constructed to be as simple or complex as needed.

3.3. Classification

We selected the ResNet architecture with 50 layers (ResNet50) for the experiments
conducted in this work [26]. Table 1 provides details of the architecture. Furthermore, we
followed the ResNet50 model architecture up to the classification head. This classification
head is task-specific and is replaced with a single neuron, which provides a prediction in the
form ŷ ∈ R | 0 ≤ ŷ ≤ 1 after the softmax is applied. We chose this architecture because it
has demonstrated good results in classification tasks within medical imaging. Additionally,
it is a model that previous research on XAI has employed to extract explanations, making it
a reliable base model for our experiments. The method we propose in this paper does not



Diagnostics 2023, 13, 3413 9 of 18

necessitate a specific architecture. We should also note that the main aim of this paper is
not to identify the best possible DL model for the classification problem. Instead, we aim to
select a model that performs well to demonstrate the efficacy of the suggested framework,
as described at the beginning of Section 3.

Table 1. Classifier architecture overview.

Input x ∈ R224×224×3

Conv 64, 7 × 7, stride = 2, BN, ReLU

Max Pool, 3 × 3, stride = 2

Residual Block × 16

Average Pool, 2 × 2, stride = 2

Fully-connected 1

Output ŷ ∈ R | 0 ≤ ŷ ≤ 1

3.4. Explanations

We considered a multitude of methods for extracting explanations from image clas-
sifiers, each with its benefits and trade-offs. However, we selected the occlusion-based
method by [27] as it consistently performed the best in our experiments. Since we had
synthetic overlays and annotation (polyp), we were privy to the true explanation, which
we could then use to compare the performance of various explanation methods.

Given an image I with width and height W×H and three color channels, I ∈ RW×H×3,
and a black-box classifier f (I)→ ŷ ∈ R | 0 ≤ ŷ ≤ 1, we obtain an explanation by modifying
I and recording the changes in ŷ for each pixel j. The modification involves a 2D patch
of pixels P of size PW × PH moved over the image with stride s. We apply the patch N
times until all pixels are covered. Each patch is added to a copy of the original image,
and the colors of the affected pixels are replaced with gray color values (128 in all color
channels for RGB 0-255). As the stride increases, the computation decreases, but it results
in reduced detail. We chose gray because most of the research we reviewed used this color.
Let us represent this color by the constant C. For easier computation, the patch P can
match the image’s first two dimensions, with 0’s in the patch position and 1’s elsewhere,
facilitating clean matrix multiplication. The occluded input using a given patch can then be
expressed as

g(I, P) = f (I � P + (1− P)� C) (1)

where � denotes the Hadamard product. The importance of some pixel j ∈ I can then be
calculated as the average change in classification probability across all patches containing j.
Specifically, let Pi, i = 1, . . . , N denote all the patches used, and let J represent all patches
containing pixel j, i.e., J = {i : j ∈ Pi, i = 1, . . . , N}. Then, the importance of pixel j, denoted
Yj, is computed as

Yj =
1
|J| ∑j∈J

( f (I)− g(I, Pj)) (2)

where |J| indicates the number of patches containing j. Also, let Y symbolize the importance
of all pixels in image I.

For improved visualization, we typically normalize Y values between 0 and 1 for all
positive values and between 0 and −1 for all negative values. Although the attribution
methods retain only the positive values, research on visualizations indicates that negative
values play a crucial role in forming comprehensive explanations, prompting us to include



Diagnostics 2023, 13, 3413 10 of 18

them in our method. We have omitted the mathematical formulation of the normalization
procedure for the sake of brevity.

Moreover, we propose applying a smoothing function, S, to the importance map to
eliminate noise from less significant pixels and accentuate those of greater importance. This
step drew inspiration from [28], where values are clipped, setting a clear boundary between
important and unimportant pixels. However, our experiments showed that a smoothing
function produced superior visualizations. This function takes three parameters: the value
to smooth, x, the offset θ, and the strength σ:

S(x, θ, σ) =

{
xσ

θσ−1 , if x ≤ θ

1− (1−x)σ

(1−θ)σ−1 , otherwise
(3)

The final explanation is then defined as S(Y, θ, σ), where θ and σ are hyperparameters
that must be chosen for each use case. The θ hyperparameter adjusts the function’s point
where values transition from being suppressed to being amplified. A higher θ results in
more noise removal. Conversely, the second hyperparameter, σ, determines the function’s
rate of change. We illustrate the smoothing function using θ = 0.1 and σ = 8 in Figure 5.
In a manner similar to [28], we have not identified an automatic procedure to pinpoint
optimal hyperparameter values and have, therefore, tuned the parameters based on visual
inspection. The resulting smoothing function was robust in our experiments, consistently
performing well for all images. The function solely enhances the explanations’ clarity, and
we did not detect any bias introduction in the explanations due to it.

Figure 5. Visualization of the smoothing function in Equation (3) using θ = 0.1 and σ = 8 applied to
the explanations.

As elaborated above, this method solely depends on modifying the model’s input
and tracking output changes, making it model-agnostic. This characteristic is vital for
the method’s future applications, enabling the selection of the best model based on its
proficiency in identifying characteristics in medical imaging, rather than its compatibility
with the XAI method. This flexibility contrasts with the rigid coupling that certain gradient-
based methods might possess with the model architecture. Another compelling reason
for our choice of an occlusion-based approach is its documented ease of comprehension
for humans [29], a critical factor in the medical realm where professionals without ML
expertise must interpret an explanation.
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3.5. Explanation-Weighted Clustering

From the first three steps of the procedure, listed at the beginning of Section 3, several
images are classified as pathological, and we provide an explanation in terms of pixel
importance Y for each image. Recall that we consider the situation where we imagine that
the images are classified by the DL model due to different characteristics, identified by the
occlusion-based method.

In this section, we describe the fourth step of the proposed procedure. Here, we employ
clustering to gain an overview of the characteristics pinpointed by the occlusion-based
method. We achieve this by emphasizing the crucial pixels in terms of the explanations Y.
Essentially, we group the images based on different types of explanations or pathologies.

For the pathological class, we are keen on understanding the pixel’s importance in
relation to pathology. Therefore, we set all values of Y less than zero to zero, denoting
it as Y+. We compute the explanation-weighted images, referred to as IY, by perform-
ing a Hadamard product between the input image, I, and the non-negative explanation
IY = I �Y+.

Direct clustering of the explanation-weighted images is not feasible when dealing with
50 thousand features (pixels) for a 224× 224 image, and becomes even more challenging for
higher resolution images, like 1024× 1024. Thus, we needed a feature extraction mechanism.
We achieved this by running the explanation-weighted images through an image classifier
and then using the output, just before the classification layer, as features for clustering. As
detailed in Section 3.3, the penultimate layer is the average pooling layer, which outputs a
256-dimensional vector. While this vector could be clustered directly, its 256 dimensions
are not optimal concerning computational efficiency and clustering accuracy. Hence, we
reduced it to a lower dimension using Singular Value Decomposition before clustering [30].
We employed K-means for clustering. However, since K-means necessitates specifying the
number of clusters, K, it does not align seamlessly with our method, particularly when the
number of explanation clusters (different pathologies) is typically expected to be unknown.
Thus, we determined the number of clusters by clustering repeatedly with an increasing
number of clusters, subsequently evaluating the cluster metrics. We selected the K with
the highest silhouette coefficient. We chose the silhouette coefficient as our metric since
it provides a tangible number showcasing how distinct the clusters are. The rationale
behind this is that well-defined clusters (with a high silhouette coefficient) suggest correct
data clustering since segregating a well-defined cluster is challenging. In contrast, poorly
defined clusters (with a low silhouette coefficient) hint at the possible existence of multiple
clusters within a given cluster. While this approach can yield more than one plausible
solution based on the data, the same holds true for other methods to determine K, such as
the elbow method. In the elbow method, the inertia is plotted, and the graph’s elbow point
signifies the correct cluster count.

4. Experiments and Results

To develop efficient classifiers for Datasets A and B as described in Section 3.2, a pre-
trained version of ResNet50 on 1000 classes of ImageNet [31], was fine-tuned for Datasets A
and B using transfer learning. The datasets were split into training, validation, and test sets
with 64%, 16%, and 20% of the data in each set, respectively. A batch size of 64, the binary
cross-entropy loss function, and stochastic gradient descent with a learning rate of 0.001 and
a momentum of 0.9 were used. The learning rate was decayed by a multiplicative factor of
0.1 every seven epochs. The model was trained with these parameters until early stopping
was triggered, which was based on no improvement in the F1 score on the validation set
for five consecutive epochs. The models were trained on a Nvidia V100 GPU.

In the occlusion XAI method on Dataset A, a patch size of PW , PH = 24 and a stride
s = 8 were used, and on Dataset B, a patch size of PW , PH = 64 with a stride of s = 16 was
used. For both datasets, θ = 0.1 and σ = 8 were used in the smoothing function, as detailed
in Equation (3).
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Throughout the rest of this section, we present the results from the experiments de-
tailed above. The fine-tuned ResNet50 classifiers learned to classify the test examples
of both Dataset A and B with perfect test scores, i.e., test examples were classified cor-
rectly. This was even better than expected, especially for Dataset B, where 75% of the test
examples were real data without any synthetic overlay, i.e., all the real healthy images
must be classified as healthy and all the real polyp images (half of the pathological class)
must be classified as pathological. Classifying polyps from healthy data is known to not
be a straightforward task [32]. Next, we analyze the performance of the quality of the
explanations and the explanation-weighted clustering.

4.1. Explanations

Figure 6 displays two images. The image on the left presents a pseudo-real sample
with a blue ellipse symbolizing a pathological identifier. In contrast, the image on the
right overlays the explanation onto the image. Green regions indicate areas positively
influencing the model’s prediction of the pathological class, whereas red regions denote
a negative impact. Greater color brightness and visibility signify higher importance. The
explanation underscores a pronounced focus on the anticipated area (the blue ellipse).
This indicates that the occlusion method has accurately discerned the identifiers of the
pathological class. This observation holds consistent upon visually analyzing a broader set
of samples. The insights from the explanations suggest that the classifier does not exhibit
any evident bias.

Figure 6. (Left) A pseudo-real data sample. (Right) The sample overlaid with its explanation.

Figure 7 displays an image of a polyp (the small growth in the upper right corner)
both with and without the overlaid explanation. The explanation highlights the most
pronounced and expansive focus on the upper portion of the polyp, whereas the base of
the polyp receives minimal attribution for the classification. Unlike the explanation for
the pseudo-real image discussed earlier, this image identifies attribution in multiple areas.
These areas, being less bright, suggest diminished importance. Whether these areas are
medically significant cannot be determined without the input of a medical professional.

Figure 7. (Left) A real data sample of a polyp. (Right) The sample overlaid with its explanation.



Diagnostics 2023, 13, 3413 13 of 18

While the focus is appropriately directed, the samples in Figures 6 and 7 reveal that it
is slightly offset towards the top left of the pathological identifier. We believe this is likely a
result of the combination of the chosen attribution method, which applies gray rectangles
from the top-left to bottom-right, the selected patch size, and the classifier architecture.
This conclusion is drawn from the observation that this offset is consistently present across
all classes and in explanations from both Datasets A and B. Despite these weaknesses
with the occlusion-based method, it performed better in our experiments than gradient-
based methods. Delving deeper into the source of the offset would necessitate further
research, but is beyond the focus of this paper. The focus of the paper is to demonstrate
the usefulness of the suggested medical knowledge discovery framework, rather than
improving existing DL, XAI, and clustering methods. The alignment with the anticipated
focus and the level of detail captured also hinge on the chosen hyperparameters. Figure 8
illustrates the relationship between patch size and explanation accuracy. The top row of
images presents the image with a gray patch for size reference, while the bottom row
displays the corresponding explanations. Beginning on the left, the figure showcases
patch sizes of 64 pixels, followed by 48, 32, and concluding with 24 pixels. The first
patch, approximately 150% the size of the ellipse, results in significant attribution to areas
outside the ellipse. The subsequent patch, roughly equivalent in size to the ellipse, still
attributes large areas outside of the ellipse, albeit to a lesser degree than the preceding
patch. Shrinking the patch to 75% of the ellipse’s size yields a more precise attribution
area. Further diminishing the patch size to 50% of the ellipse’s size reduces the extraneous
attribution but also omits some accurate attribution from the ellipse. We observe that the
explanations are profoundly influenced by the chosen patch size. As patch size enlarges,
recall surges, and as it diminishes, precision intensifies. This presents a balancing act we
must consider.

Figure 8. Visualization of how the patch size affects the explanation. (Top row) The gray square
shows the patch size and the blue ellipses the pathology. (Bottom row) The green overlay shows the
resulting explanation using the patch size in the image above.

4.2. Explanation-Weighted Clustering Experiments

The images on the left side of Figure 9 display the original pathological images from
Dataset A. In contrast, the images on the right present the explanation-weighted images,
which result from applying the Hadamard product to the images on the left and the
explanations, as detailed in Section 3.5. We observe that the resulting explanation-weighted
images effectively isolate the pathological characteristics.
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Figure 9. Original (left) and explanation-weighted (right) image samples from the pathological class
of Dataset A.

Table 2 displays the clustering performance using two distinct sets of features. The first
row (pre-trained) pertains to features derived from the pre-trained ResNet50 on ImageNet,
while the second row (fine-tuned) pertains to features from the ResNet50 after fine-tuning
it to distinguish between healthy and pathological images in Dataset A. We observe that
both sets of features deliver commendable performance, with a rand index close to, and at
times equal to, one. This indicates that one cluster comprises the yellow shapes while the
other encompasses the blue shapes. The features from the fine-tuned model exhibit a slight
edge in terms of cluster quality.

Table 2. Clustering results for Dataset A. The first column represents the features used, the second
column the results of a classification test using images previously not seen by the cluster and the
third column shows cluster quality metrics. Bold indicates the best values.

Features
Classification Cluster Quality

(Rand Index) (Silhouette/Davies–Bouldin)

Pre-trained 0.995 0.485/0.840

Fine-tuned 1.0 0.548/0.724

The images on the left side of Figure 10 display samples from the pathological class
of Dataset B. The images on the right present the results after explanation weighting.
Once again, we observe that the method efficiently isolates the pathological characteristics.
However, the precision is slightly lower than for Dataset A. This outcome aligns with
our expectations, given that classifying Dataset B is more challenging than Dataset A.
This complexity arises because 50% of the pathological class in Dataset B comprises real
pathologies (polyps).

Table 3 displays the quality of the clusters for Dataset B. Using the pre-trained features
yields a rand index of 0.92, while employing the fine-tuned features for this dataset produces
a perfect rand index of one. We observe that the cluster quality improves when using the
fine-tuned features. By comparing Tables 2 and 3, as anticipated, we notice that the cluster
quality is superior for Dataset A compared to Dataset B. Overall, our results remained
robust across different variants of the datasets and initial values of the clustering algorithm.
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Figure 10. Original (left) and explanation-weighted (right) image samples from the pathological
class of Dataset B. The pathologies in Dataset B are real polyps and blue ellipses.

Table 3. Clustering results for Dataset B. The first column represents the features used, the second
column the results of a classification test using images previously not seen by the cluster and the
third column shows cluster quality metrics. Bold indicates the best values.

Features
Classification Cluster Quality

(Rand Index) (Silhouette/Davies–Bouldin)

Pre-trained 0.919 0.259/1.567

Fine-tuned 1.0 0.431/0.979

5. Discussion

In this paper, we developed a framework that leverages DL, XAI, and clustering
to potentially uncover new characteristics associated with a disease. Offering credible
explanations for DL methods is notoriously challenging, as these explanations can be
marred by noise and bias. Hence, in this paper, we advocate for clustering explanation-
weighted images. This approach enables us to gain an overview of distinct groups of
explanations or pathological patterns. Some of these clusters could discover new insights,
with the size of a cluster indicating the prevalence of a particular characteristic.

5.1. Faithfulness vs. Interpretability

A pivotal element of the method we propose in this paper is the visual explanation.
Within the realm of visual explanations, it is imperative to consider both faithfulness and
interpretability. Faithfulness in visual explanations refers to the model’s ability to authenti-
cally represent the learned function. It is important to recognize that a balance between
faithfulness and interpretability is often necessary. While faithfulness is pivotal, ensuring
that explanations are lucid and easily comprehensible is crucial for effective communication.
Raw explanations can sometimes be hard to interpret. Often, some processing is employed
to refine the explanation and enhance its interpretability. In [28], the authors contend that
human perception of colors is not linear. Consequently, amplifying values to make them
more discernible is deemed reasonable; otherwise, one might overlook the significance of a
particular image area. In their study, pixels with high attribution were clipped. This ap-
proach resulted in a minimal gradient difference among high-end pixels. To ensure a better
gradient distinction between attributed pixels, our work employs a smoothing function
that amplifies values based on a designated function. A hyperparameter can then govern
the extent of this amplification, influencing the faithfulness of the visualization. Achieving
the right equilibrium between faithfulness and interpretability is vital for crafting visual
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explanations that are both truthful and easily understood. In this work, we introduced a
unique smoothing function to the explanation. This function curbs noise and accentuates
the prominence of crucial pixels. This approach not only preserves the faithfulness of
the learned function representation but also enhances interpretation. Such adjustments
enhance clustering efficiency and aid in the clearer comprehension of the resulting clusters.

5.2. Strengths and Weaknesses

Given that utilizing DL and XAI for knowledge discovery remains a largely untapped
area of research, the novelty of our study stands out as a strength. Methodologically
speaking, the employment of pseudo-real data is worthy of mention. Using pseudo-real
data makes the findings more palatable to a broader AI audience since medical expertise
is not a prerequisite for comprehension. This approach ensures that our work can be
accurately evaluated and generalized across various domains. Nevertheless, there is
an associated drawback. Pseudo-real data do not fully encapsulate the efficacy of the
proposed methodology when applied to genuine medical images. Medical professionals
were not involved in this research, limiting the evaluation scope on authentic medical
data. Nonetheless, the results from Dataset B, which focused on real-life polyps, suggest
promising prospects for real-world medical applications.

Any potential medical insight discovered using the suggested framework must be
verified by follow-up clinical trials before being implemented in clinical practice. This
is because approaches using machine learning for knowledge discovery do not satisfy
the requirements of the hypothetico-deductive model. However, machine learning-based
methods, including the suggested framework in this paper, can be highly useful for devel-
oping new and falsifiable medical hypotheses that can be further tested in clinical trials.
Developing medical hypotheses is a fundamental part of advancing the field of medicine.

6. Conclusions

Gaining new medical knowledge from image data is an exceedingly challenging
task. A prevalent approach in the literature involves manually extracting features from
images and then analyzing the occurrence of these features in images associated with a
disease in comparison to healthy controls. However, a challenge with this approach is the
potential loss of crucial information during the feature extraction process. Additionally,
these features are often derived based on pre-existing medical knowledge, which can
constrain the discovery of novel insights.

In this paper, we proposed a novel framework that combines DL, XAI, and clustering
to uncover new insights from medical image data. This framework sidesteps the need
for manual feature extraction and human intervention, offering a potential solution to the
limitations inherent in feature extraction-centric approaches.

Future Work

The results presented in this paper underscore the substantial promise of our novel
framework. Nonetheless, a limitation of our analyses is the presence of synthetic overlays
in some of the images from Datasets A and B. A logical progression would be to apply
our method to real data devoid of synthetic components. However, this endeavor would
necessitate meticulous planning and collaboration with clinical experts, which extends
beyond the scope of a single research paper.

In principle, our proposed framework could be applied across various domains,
including economics, biology, climate science, and social studies. For instance, there is
significant interest in climate research to comprehend weather patterns leading to extreme
weather events [33]. Our proposed technique could potentially be harnessed to analyze
distinct explanations or weather states that precipitate future extreme weather events.
Delving into the applicability of our framework in other disciplines presents an exciting
avenue for future investigations.
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Generating visual explanations for DL models is generally a complex endeavor. A
possible enhancement could involve training multiple DL models, employing various XAI
techniques, and devising strategies to determine a consensus across these models and
XAI outputs. This consensus could subsequently serve as the foundation for explanation-
weighted clustering.

Moreover, it might be worthwhile to examine the scalability of our framework, espe-
cially when handling larger datasets or more intricate multi-modal medical data scenarios.

To further our exploration, conducting additional experiments focused on the role
of DL in clustering could be enlightening. Probing into explanation-weighted cluster-
ing using cutting-edge deep clustering techniques could offer significant advancements
and innovations.
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