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ABSTRACT
We propose exchanging the energy functionals in ground-state density-functional theory with physically equivalent exact force expressions
as a new promising route toward approximations to the exchange–correlation potential and energy. In analogy to the usual energy-based pro-
cedure, we split the force difference between the interacting and auxiliary Kohn–Sham system into a Hartree, an exchange, and a correlation
force. The corresponding scalar potential is obtained by solving a Poisson equation, while an additional transverse part of the force yields
a vector potential. These vector potentials obey an exact constraint between the exchange and correlation contribution and can further be
related to the atomic shell structure. Numerically, the force-based local-exchange potential and the corresponding exchange energy compare
well with the numerically more involved optimized effective potential method. Overall, the force-based method has several benefits when
compared to the usual energy-based approach and opens a route toward numerically inexpensive nonlocal and (in the time-dependent case)
nonadiabatic approximations.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0177346

I. INTRODUCTION

It is with great pleasure that we provide this contribution to
the special issue of the Journal of Chemical Physics honoring John
Perdew and his work in quantum chemistry. John Perdew has made
groundbreaking advancements in developing exchange–correlation
functionals within density-functional theory (DFT), which are cru-
cial for an accurate description of the interactions between electrons.
DFT,1 with its many variants,2–9 is nowadays the workhorse of first-
principle simulations in quantum chemistry, solid state physics,
and materials science, and John Perdew greatly contributed to
this success story. His work has focused on improving the accu-
racy and efficiency of density-functional calculations by proposing

more precise and robust functionals, allowing researchers to study
a wide range of chemical and physical properties of materials.
Specifically, he has explored fundamental (exact) constraints that an
exchange–correlation functional must satisfy to accurately describe
the electronic interactions in a system. Enforcing such exact con-
straints can greatly improve the reliability of approximate function-
als.10 This work follows this general idea by taking up previous
suggestions on how to rephrase the exchange–correlation poten-
tial in terms of forces. We give known and novel exact force-based
constraints and show how to translate these ideas into an efficient
numerical scheme.

Most DFT simulations are performed using the Kohn–Sham
(KS) scheme,11 where the density of the interacting system is
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predicted by solving an auxiliary noninteracting system. It is pre-
cisely the mentioned exchange–correlation potential that relates the
interacting and the noninteracting system through the underlying
density-potential mapping v(r)↔ ρ(r). For a recent review on this
mapping in the context of DFT, we point to the work of Penz
et al.12 It is common practice to derive approximations for the (in
general unknown) exchange–correlation potential by re-expressing
the universal density functional as a sum of noninteracting kinetic,
Hartree, and exchange-energy functionals, as well as the unknown
correlation energy functional,13 and then to assume functional dif-
ferentiability14 with respect to the density. While for approximate
functionals that are given explicitly in terms of the density, poten-
tials can be determined this way by direct differentiation, for implicit
functionals this is no longer possible in general.15 To make mat-
ters worse, it has been shown that the universal density functional
of DFT is not functionally differentiable with respect to the usual
function spaces.16 While a generalized definition of functional differ-
entiability (subdifferentiability) is enough to establish the mapping
from v-representable densities to potentials,17 many of the com-
monly employed rules of differential calculus, such as linearity or
the chain rule, might no longer hold in the same way.18 This fact
therefore questions this common way to infer exchange–correlation
potentials from exchange–correlation energy functionals. We note
that the theoretical setting of an exact regularization procedure is
available that renders the involved functionals differentiable19–21 and
that this surprisingly links to the Zhao–Morrison–Parr method for
mapping ρ(r)↦ v(r).22 Importantly, in this work we highlight that
also the exchange-only energy is non-differentiable with respect to
densities, thus allowing local-exchange potentials only in the form
of generalized constructions such as the optimized effective potential
(OEP), or, alternatively, leading to an additional vector potential for
exchange effects. This vector potential naturally appears in a force-
based approach and acts semi-locally on the wave function. This
is in contrast to the exchange term in Hartree–Fock that acts fully
nonlocally on the wave functions.

From a physical point of view, one can always exchange
the description of a many-particle quantum system in its ground
state in terms of energies by a description based on forces. Both
views have been viable routes toward getting the desired poten-
tial. Indeed, the exact exchange–correlation potential of DFT can
be expressed directly in terms of the difference in force den-
sities between the interacting and the auxiliary noninteracting
system,23–26 thus bypassing functional differentiation and related
issues. A method for deriving DFT potentials from the electric field
due to the Fermi–Coulomb hole charge distribution was pioneered
by Harbola and co-workers.27–30 However, this approach misses
the kinetic-correlation contribution and thus does not retrieve the
full exchange–correlation potential.31 This issue was also noted by
Holas and March,23 who first used a force-based approach to give
an expression for the exchange–correlation potential of DFT in
the form of a (path-independent) line integral. Building upon this
important work, Sahni32 was able to extend the method of Harbola.

In this work, we show that a force-based approach is not only
conceptually very appealing but also practically relevant. In doing
so, we stick to a fully spin-resolved, collinear formulation. Specif-
ically, we show that besides the usual Hartree potential, we can
also derive the simple explicit form of the local-exchange poten-
tial previously suggested by Harbola and Sahni.27 This potential

we show to be directly linked to the exchange force density and
it enters a generalized exchange virial relation. A different form
of a generalized exchange virial relation is actually discussed in
another paper of this special edition.33 We further find a relation
between the exchange and the correlation force densities that takes
the form of a novel exact constraint. As we demonstrate, the for-
mulation of the force-based local-exchange potential is consistent
with current-density-functional theory (CDFT)6,34 and we discuss
its connection to the time-dependent case. In the context of ground-
state DFT, we then show that the explicit force-based local-exchange
potential performs similarly to the numerically much more involved
optimized effective potential (OEP) approach in exchange approxi-
mation. We show that the difference between OEP and force-based
local-exchange potential can be connected to the abovementioned
exact constraint that exchange and correlation force densities need
to fulfill. We finally comment on practical ways on how to treat the
remaining correlation force densities. In this, we highlight how the
force-based approach provides a route toward numerically inexpen-
sive nonlocal (in how it depends on the density) and nonadiabatic
functionals that also act semi-locally on the wave function if they
contain a vector-potential contribution.

II. FORCE-BASED KOHN–SHAM SETTING
To start with, we consider the N-particle Hamiltonian [in

Hartree atomic units e = h̵ = me = (4πϵ0)−1 = 1], first in a time-
dependent setting while we later switch to ground states. We
have

Ĥ = −1
2

N

∑
k=1
∇2

k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T̂

+
N

∑
k=1

v(rkσ, t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
V̂[v]

+∑
k>l

1
∣rk − rl∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ŵ

, (1)

where v(rσ, t) is the external, spin-resolved one-particle potential
at time t. Note that while the external potential can act separately
on the spin components, we here do not take an external magnetic
field nor spin–orbit coupling into account. We at the end com-
ment how to extend the present force-based formalism to these cases
as well. For antisymmetric wave functions Ψ(x1, . . . , xN , t), where
xk = (rkσk), we define the spin-resolved pth-order reduced density
matrix as

ρ(p)(x1, . . . , xp, x′1, . . . , x′p, t)

= N!
p!(N − p)! ∑σp+1...σN

∫ Ψ(x1, . . . , xp, xp+1, . . . , xN , t)

×Ψ∗(x′1, . . . , x′p, xp+1, . . . , xN , t) drp+1 . . . drN. (2)

We can then use these reduced density matrices and the spin-
resolved density ρ(x, t) = ρ(rσ, t) = ρ(1)(rσ, rσ, t) to express the
(paramagnetic and spin-resolved) current density as

j(rσ, t) = Im(∇ρ(1)(rσ, r′σ, t)∣
r′=r
) (3)

and its equation of motion26,35 (also called “local force-balance
equation”) as

∂tj(rσ, t) = −ρ(rσ, t)∇v(rσ, t) + FT(rσ, t) + FW(rσ, t). (4)
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This expression introduces the exact interaction-stress and
momentum-stress force densities, respectively, as follows:

FW(rσ, t) = −2∑
σ′
∫ (∇∣r′ − r∣−1)ρ(2)(rσ, r′σ′, rσ, r′σ′, t) dr′, (5)

FT(rσ, t) = 1
4
(∇−∇′)(∇2 −∇′2)ρ(1)(rσ, r′σ, t)∣

r′=r
. (6)

Here, (∇∣r′ − r∣−1) indicates that the gradient only acts on the
Coulomb interaction term. Those force terms can be linked directly
to the quantum stress tensor36 that includes information about
the atomic shell structure.37 Equation (4) has been the primary
starting point for inquiries in time-dependent DFT (TDDFT).
Among other things, it was used to provide a mapping from den-
sities to potentials,38 to analyze features of the time-dependent
exchange–correlation potential,39 to get exact constraints as well as
formulations for nonadiabatic approximate functionals,40,41 and to
reformulate KS-TDDFT in terms of the second time derivative of the
density.42 While here we focus on the ground-state problem, some
consequences for the time-dependent case will be discussed further
in Sec. V.

In the following, we indicate the terms coming from the solu-
tion Ψ of the fully interacting problem as FW[Ψ] and FT[Ψ].
The auxiliary, noninteracting KS problem is controlled by the
Hamiltonian Ĥs = T̂ + V̂[vs], including a different external poten-
tial vs(rσ, t), and has a Slater determinant solution Φ. Analogous to
Eq. (4), we then have for the auxiliary system

∂tjs(rσ, t) = −ρs(rσ, t)∇vs(rσ, t) + FT[Φ](rσ, t), (7)

with a different current density js.
We now assume that all potentials are time-independent, that

we are in the ground state for both systems, and further that they
both generate the same ground-state density, i.e., ρ(rσ) = ρs(rσ). In
the ground state, it also holds that ∂tj(rσ) = ∂tjs(rσ) = 0 and we
find with the definition of the Hartree exchange–correlation (Hxc)
potential vHxc(rσ) = vs(rσ) − v(rσ) that

ρ∇vHxc = −FHxc[Φ, Ψ] = FT[Φ] − FT[Ψ] − FW[Ψ], (8)

which defines FHxc for each spin channel. By virtue of the
Hohenberg–Kohn theorem12,43 and assuming non-degeneracy of
the ground states for simplicity, the Slater determinant Φ as well
as the interacting wave function Ψ are given solely and uniquely in
terms of the density, which makes all the force densities determined
by the density only. Equation (8) implies that

∇vHxc(rσ) = −FHxc[Φ, Ψ](rσ)
ρ(rσ) = −f Hxc(rσ) (9)

is a purely longitudinal (conservative) vector field. Since the
Hartree contribution is longitudinal as well, so is the remain-
ing exchange–correlation part. However, if we decide to split the
exchange–correlation part into its exchange and correlation contri-
butions, as it is typically done for the energy, we do not have any
such knowledge about these individual contributions any more. So,
the exchange and correlation vector fields can and will contain a
nonzero transverse component.

Now, we can recast Eq. (9) into a Poisson equation ∇2vHxc
= −∇ ⋅ f Hxc by applying the divergence and solve for vHxc using the
corresponding Green’s function for the spatial domain R3,

vHxc(rσ) = ∫
∇′ ⋅ f Hxc(r

′σ)
4π∣r − r′∣ dr′. (10)

Equation (10) represents the direct link between Hxc force density
and the corresponding potential. Unlike the link between the energy
and the potential, no functional differentiability is involved here.

Next, we split up the Hxc force density in analogy to the
partition of the energy usual in DFT as

FHxc[Φ, Ψ] = FW[Φ] + FT[Ψ] − FT[Φ] + FW[Ψ] − FW[Φ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Fc[Φ,Ψ]

, (11)

where FW[Φ] is the Hartree exchange (Hx) force density and
Fc[Φ, Ψ] the correlation force density. If desirable, the correla-
tion part can be split again into a kinetic-correlation contribu-
tion FT[Ψ] − FT[Φ] and an interaction-correlation contribution
FW[Ψ] − FW[Φ]. The partition of Eq. (11) leads to the respective
force-based potentials, vfHx and vfc, that add up to the exact Hxc
potential,

vHxc(rσ) = ∫
∇′ ⋅ f Hx(r

′σ)
4π∣r − r′∣ dr′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
vfHx(rσ)

+ ∫
∇′ ⋅ f c(r

′σ)
4π∣r − r′∣ dr′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
vfc(rσ)

. (12)

Here, we have denoted f Hx = FW[Φ]/ρ and f c = Fc[Φ, Ψ]/ρ. Since
the Hx force density is given in terms of the KS wave function only,
we know this part explicitly and we can in principle calculate the
exact force-based Hx potential for a given KS wave function.

To make the resulting force-based Hx potential more explicit,
we make use of the fact that Φ is a single, closed-shell Slater
determinant with spin-space orbitals φk(rσ). We can then express44

ρ(2)s (rσ, r′σ′, rσ, r′σ′) = 1
2
(ρ(rσ)ρ(r′σ′) − δσσ′ ∣ρ

(1)
s (rσ, r′σ′)∣2),

(13)
where ρ(1)s (rσ, r′σ′) = ∑k φk(rσ)φ∗k (r′σ′). Therefore, the Hx force
density splits naturally into a Hartree and an exchange term,

FW[Φ] = FH[Φ] + Fx[Φ] = −ρ(rσ)∇∑
σ′
∫

ρ(r′σ′)
∣r − r′∣ dr′

+ ∫ (∇∣r − r′∣−1)∣ρ(1)s (rσ, r′σ)∣2 dr′. (14)

Note that while the Hartree mean-field acts on both spin chan-
nels, the exchange force density only links to the same spin com-
ponent. If Φ would be the Slater determinant from a nonlocal
Hartree–Fock calculation, then these terms would be the corre-
sponding Hartree and Fock exchange force densities, respectively.
From the Hartree force density FH(rσ) = −ρ(rσ)∇vH(r), we read
off the (spin-summed) Hartree potential

vH(r) =∑
σ′
∫

ρ(r′σ′)
∣r − r′∣ dr′. (15)
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The potential from the exchange terms will be derived in Sec. IV.
The exchange force density satisfies an exchange virial relation that
gives the exchange energy (see Appendix B for details)

Ex[Φ] =∑
σ
∫ r ⋅ Fx[Φ](rσ) dr. (16)

The exchange force density can be interpreted as the force on a test
particle in the electric field of the exchange hole, as detailed in the
work of Harbola and Sahni.27 This relation provides an important
link from forces, or approximations to them, back to the respective
energies.

III. FORCE-BASED EXACT CONSTRAINTS
Let us now comment on some exact constraints for the force

densities. If, for the sake of consistency, just a single particle
with wave function φ(rσ) is considered, then it directly follows
FW[φ] = 0 (no self-force) and naturally Fc[φ, φ] = 0. Note that
FW[φ] = 0 can also be deduced from Eq. (14). Moreover, in the one-
particle case, because of Ψ = Φ = φ the kinetic-correlation and the
interaction-correlation force densities must vanish independently.
We further remark that these self-interaction properties are directly
related to the corresponding expressions for the energy, which serve
as a basis for the construction of self-interaction corrections, as pio-
neered by Perdew and Zunger.45 A similar scheme could thus be
developed on the basis of forces.

The zero-force and zero-torque constraints46 in the force-based
formulation for the ground state take the simple form

∑
σ
∫ FHxc(rσ) dr = 0, ∑

σ
∫ r × FHxc(rσ) dr = 0. (17)

They even hold for each spin channel independently with a Hamilto-
nian like Eq. (1) that does not feature any noncollinear magnetism.
Since we have an explicit expression for the contribution FW[Φ] to
the full FHxc[Φ, Ψ] available, we can tighten these constraints fur-
ther. Equation (14) yields an antisymmetric integrand in rσ, r′σ′ in
Eq. (17) that must be invariant under the exchange of rσ ↔ r′σ′.
This means that Eq. (17) holds for FW[Φ] independently and thus
we also receive exact constraints for just the correlation force,

∑
σ
∫ Fc(rσ) dr = 0, ∑

σ
∫ r × Fc(rσ) dr = 0. (18)

This property can even be independently formulated for the kinetic-
correlation and the interaction-correlation force densities, as shown
in the work of Fuks et al.40

A further exact constraint that holds locally for the exchange
and correlation vector fields is derived at the end of Sec. IV.

IV. DISCUSSION OF THE FORCE-BASED
LOCAL-EXCHANGE POTENTIAL

Let us now consider how to make the above relations between
force densities practical for DFT applications. Using Eqs. (12) and
(14), we can define the force-based local-exchange potential

vfx(rσ) = −∫
∇′ ⋅ ∫(∇′∣r′′ − r′∣−1)ρ̄x(r′′∣r′σ) dr′′

4π∣r − r′∣ dr′ (19)

that together with the Hartree term gives vfHx = vH + vfx. Here, we
used the usual definition of the exchange-hole density44 (without a
factor 1

2 since it is spin-resolved) given by

ρ̄x(r′∣rσ) = − ∣ρ
(1)
s (rσ, r′σ)∣2

ρ(rσ) . (20)

The potential vfx is therefore the exchange potential that orig-
inates from only the longitudinal part of the exchange vector field
f x = Fx[Φ]/ρ. We will come back to this point and its implications
for density-functional approximations below. To complete the pic-
ture, the missing correlation potential is given uniquely in terms of
the (unknown) force density difference Fc[Φ, Ψ] from Eq. (11) and
a simple Coulomb integral [see Eq. (12)]. For the force-based local-
exchange potential given by Eq. (19), a numerically more convenient
form in terms of the Slater exchange potential plus correction terms
can be derived (see Appendix A). It also obeys the usual coordinate
scaling relations (see Appendix B).

Based on the above explicit form of the local-exchange poten-
tial, we can highlight differences to the usual energy-based approach
and point out potential advantages of the force-based approach. In
the energy-based approach, the potential is found via a functional
variation of the energy expression with respect to the density. In the
exchange case, one considers the functional derivative of

Ex[ρ] = ⟨Φ[ρ]∣ Ŵ ∣Φ[ρ]⟩ − EH[ρ]

= −1
2∑σ

∫
∣ρ(1)s (rσ, r′σ)∣2
∣r − r′∣ dr dr′, (21)

where EH[ρ] = 1
2∑σ ∫vH(r)ρ(rσ) dr is the Hartree energy. Now,

Ex[ρ] is defined as a density functional by invoking the usual map-
ping ρ↦ Φ. As was pointed out by van Leeuwen,15 for an implicit
density functional the (generalization of the) functional derivative is
not straightforward and does not exist in general. On the other hand,
if the functional derivative would exist, then by construction it obeys
a virial relation of the form (see Appendix B)

Ex[ρ] = −∑
σ
∫ ρ(rσ) r ⋅ ∇ δEx[ρ]

δρ(rσ) dr. (22)

In practice, the derivative is determined by the OEP approach47,48

that needs to assume Fréchet (total functional) differentiability to
allow for the application of the functional chain rule.49,50 Yet, OEP
exchange potentials, in accordance with non-differentiability of the
exchange-energy functional, in general do not obey Eq. (22). Some-
times, this relation is additionally imposed, e.g., in Fritsche and
Yuan51 (also compare Table I); however, this will not restore dif-
ferentiability. Consequently, the OEP procedure needs to be inter-
preted as a local-potential approximation but not to an actually
existing local-exchange potential defined by a functional derivative.
In the force-based approach that avoids any reference to func-
tional differentiability, a different virial relation is derived. We start
by applying the Helmholtz decomposition52 to the exchange vec-
tor field. This yields a longitudinal (curl-free) and a transverse
(divergence-free) vector field component as follows:

f x(rσ) = Fx[Φ](rσ)
ρ(rσ) = −∇vfx(rσ) +∇ × αfx(rσ). (23)
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TABLE I. Difference ΔEx = Eeig
x − Evirial

x , in mHa, between the exchange energy
computed from the orbitals (or the density) and from the exchange energy obtained
from the potential using the virial relation for different local-exchange potentials.

Atom Slater FBEx OEPx-KLI OEPx

Li 245.3 −0.049 0.647 −1.464
Be 415.2 0.037 32.87 17.97
Ne 208.2 −0.001 30.94 33.139
Na 896.1 0.080 −22.08 −36.4
Mg 1328.1 0.353 60.40 −19.49
Ar 221.95 0.000 7.61 8.21
Ca 603.4 −0.011 17.51 −1.52
Zn 6225.2 0.82 26.11 −83.34

With this, we find the generalized exchange virial relation (see
Appendix B for details; Harbola, Slamet, and Sahni28 give the same
relation, just without spin sum)

Ex[Φ] =∑
σ
∫ r ⋅ Fx[Φ](rσ) dr

= −∑
σ
∫ ρ(rσ) r ⋅ ∇vfx(rσ) dr

+∑
σ
∫ ρ(rσ) r ⋅ (∇× αfx(rσ)) dr. (24)

The last term due to the curl does vanish for spherically symmetric
densities (see Appendix B, where we also give an explicit formula
for αfx, and Table I). Hence, vfx satisfies a virial relation of the
form of Eq. (22) for closed-shell spherically symmetric systems, but
in general we have the more involved Eq. (24) including a trans-
verse component through the curl term. This is due to the fact that
the exchange vector field f x is not purely longitudinal, and hence
while the exchange energy is directly linked to the exchange force
density, the longitudinal part of the exchange vector field alone
cannot yield the full exchange energy in general. Since OEP meth-
ods do not fulfill the virial relation of the form of Eq. (22) even
in the spherically symmetric case (see Table I), this implies that
the local-exchange potential from the force-balance approach is in
general different from an exchange potential defined as a (general-
ized) exchange-energy derivative,15 like those obtained by common
OEP procedures. This was already pointed out in the work of Wang
et al.53 when discussing the local-exchange potential of Harbola and
Sahni,27 which is equivalent to Eq. (19). To show this, they derived
the second-order gradient expansion of both, the gradient of the
energy-based exchange potential and f x = Fx[Φ]/ρ from Eq. (14),
and showed that the expressions do not match. However, note that
in order to make this a strict statement about the potentials, we need
to assume that f x is a gradient field, i.e., αfx = 0, which does not hold
in general.

On the practical side, if one is only interested in finding a local
potential that minimizes the exchange energy, then the common
OEP approaches will usually perform better than the force-based
local-exchange potential (see Table II in Appendix C for comparison
to Hartree–Fock results). This is by design, since the exchange-only
OEP procedure is precisely such that it seeks the local potential vOEPx
that minimizes the energy with an uncorrelated state.54 Herein, the

state is always a Slater determinant constructed from the orbitals of
a one-particle Hamiltonian with the chosen potential vOEPx. Note,
however, that due to the restriction of the OEP to local potentials,
the obtained energies will be higher than the Hartree–Fock results
that allow for nonlocal potentials. Furthermore, as it is clear from
the previous discussion, the common OEP procedures applied to
the exchange energy do not give the correct exchange force density.
Instead they will generate a purely longitudinal vector field that is
not related to the exchange force density in a direct manner. We
usually lose control over the connection between the energy terms
and the corresponding force densities (which leads, among others,
to a violation of the virial relation). An important exception is the
exchange-only local-density approximation, where the connection
still holds as can be shown directly. The same holds for correla-
tion approximation. Any approximate correlation energy can always
only lead to a longitudinal vector field via the corresponding (gen-
eralized) energy derivative, while an approximation based on forces
will usually include a transverse component. This means that there
is no strict connection between the energy-based and force-based
approximations. To put it differently, if we want to build approxi-
mations in DFT based on Hartree and exchange terms beyond the
local-density approximation, we have to decide whether we use the
exchange energy or the exchange force density. Both strategies will
only agree when we use the exact exchange and correlation terms
together.

In the force-based approach, we find an additional exact con-
straint that holds locally for the transverse component of the
exchange vector field and relates it directly to correlation effects.
This is through the previous observation that by Eq. (9) the f Hxc is
purely longitudinal and since the same holds by construction for the
Hartree part, we must have a zero transverse contribution in f x + f c.
If we now define αfc analogous to αfx, then this means that at each
point in space and for every spin component it must hold that

αfx(rσ) + αfc(rσ) = 0. (25)

To have such an exact constraint that gives direct access to some
local correlation effects can be seen as an advantage of the force-
based approach over the usual energy-based, global viewpoint.

Finally, let us comment on the homogeneous-density limit.
In the work of Tchenkoue et al.,26 it was demonstrated how the
usual Slater Xα55 and local-density approximation (LDA)44 formu-
las for the local-exchange potential can be derived directly from the
exchange force expression of Eq. (14). Since f x(rσ) is purely longitu-
dinal for a homogeneous density, the exact same derivation can also
be started immediately from the local-exchange potential expres-
sion of Eq. (19). A related derivation of the same fact based on the
second-order gradient expansion of the exchange-hole density was
already given in the work of Wang et al.53 This directly connects
the most fundamental functional approximations of DFT with the
present formalism.

V. THE FORCE-BASED APPROACH
IN OTHER DFT VARIANTS

Another advantage of the force-based approach is the inher-
ent compatibility to CDFT and time-dependent DFT (TDDFT). The
generalized exchange virial relation of Eq. (24) highlights the con-
nection of the force-based approach to CDFT. If besides the density
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ρ we also intend to control the current density j, then we would need
a transverse exchange–correlation vector potential as well, where αfx
contributes to the exchange vector potential.26 We even find that vfx
and αfx can be chosen to be the local-exchange potential of CDFT
and of time-dependent CDFT.26 This makes vfx nicely compatible
with this variant of DFT.

To make the connection to TDDFT visible, we derive the anal-
ogous equation to Eq. (8) by subtracting Eqs. (4) and (7), just this
time the time derivative of the currents is not zero. We have

∂t(j(rσ, t) − js(rσ, t)) = ρ(rσ, t)∇vHxc(rσ, t) + FHxc(rσ, t). (26)

In order to still get rid of the currents, one can apply the diver-
gence and use the continuity equation ∂tρ(rσ, t) = −∇ ⋅ j(rσ, t)
= −∇ ⋅ js(rσ, t) for both systems that share the density ρ(rσ, t) at all
considered times. This is how we arrive at5

∇ ⋅ [ρ(rσ, t)∇vHxc(rσ, t)] = −∇ ⋅ FHxc(rσ, t). (27)

Consequently, the local-exchange potential in TDDFT is now deter-
mined from the exchange force density not by solving a Poisson
equation but by inverting a Sturm–Liouville equation. Therefore, the
local-exchange potential in TDDFT will be different from vfx, yet
the difference can be determined from αfx.40 On the other hand, if
f Hxc(rσ, t) would be purely longitudinal, then Eq. (8) also holds in
the time-dependent case and then Eq. (27) is a direct consequence of
it by just multiplying with ρ(rσ, t) and taking the divergence. Con-
versely, it is only the transverse part of f Hxc(rσ, t) that makes the
difference when we compare instantaneously the time-dependent
case of Eq. (27) and the static case of Eq. (8). In other words, if
we only consider the wave functions/forces at a given instant, it is
only the nonzero phases/transverse forces that inform us whether
we are considering a time-dependent situation. While we do not
have access in this instantaneous picture to all memory effects,56,57

we nevertheless see that the transverse forces are important to gen-
erate memory over time. In an exchange-only approximation, this
role is then taken over by αfx.

Finally, let us shift attention back to the time-independent
setting again. Therein, besides Eq. (8), the exact ground-state
exchange–correlation potential and force density still also obey
Eq. (27). This gives rise to a different version of the local-exchange
potential. Here, we will not investigate this alternative force-based
formulation further but will compare these different definitions in
a forthcoming publication. It however highlights a route to more,
possibly useful conditions: Higher-order equations of motions bring
with them new exact constraints.

VI. NUMERICAL TESTS
Finally, we consider the differences between the force-based

approach and the energy-based approach in practice, with a focus
on the effects of the transverse part of the exchange vector field f x
expressed through the vector potential αfx. For this, we solve the
KS equation in exchange approximation (FBEx), i.e., we take vfx
from Eq. (19) and assume vfc = 0 for the total vHxc in Eq. (12) in
every KS iteration step, and check how this performs in compari-
son to common exchange approximations. In this investigation, we

do not yet employ the transverse part of f x somehow beneficially.
Yet, involving only the longitudinal component of f x in the calcula-
tion is equivalent to considering the full f x plus the transverse part
from f c since Eq. (25) holds as an exact constraint. A force-based
approximation focusing purely on exchange effects thus would need
to also consider the transverse contribution from the exchange vec-
tor field. To summarize, there are two possible viewpoints on this
approximation that are equally justified: When considering only the
vfx exchange potential then exchange effects from αfx are missing,
or alternatively, that this procedure additionally includes correlation
effects from αfc.

We have implemented the force-based local-exchange poten-
tial in the real-space code Octopus58 and ran simulations for a set of
atoms in closed-shell configurations using norm-conserving pseu-
dopotentials,59 a grid spacing of 0.15 bohr, and a radius of 10 bohrs
for Be and Ne, a radius of 12 bohrs for Mg, Ar, and Zn, and a radius
of 14 bohrs for Ca. We found that the FBEx potential performs
similar to the much more involved OEP in exchange approxima-
tion (OEPx) or its further approximation OEPx-KLI60 (see Fig. 1).
While the pure Slater, FBEx, and OEPx-KLI potentials all share
the same computational scaling as Hartree–Fock, the OEPx method
only works as an iterative procedure and is more costly. Further-
more, we demonstrate that the local-exchange potential adheres to
the virial relation of the form of Eq. (22) up to numerical inaccu-
racies (see Table I) because of spherical symmetry, while the OEPx

FIG. 1. Various local-exchange potentials for different atoms.
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FIG. 2. Top panels: Similar as Fig. 1 for all-electron calculations. Bottom panels: Difference Δvx between vFBEx and vOEPx-KLI, and rescaled norm of αfx from the exchange
force as in Eq. (23). The vertical lines indicate the positions of the bumps.

and the OEPx-KLI violate this relation. This numerically confirms
that the exchange functional is not functionally differentiable. Fur-
ther numerical tests and comparisons, also for small molecules, can
be found in Appendix C.

In fact, Fig. 1 shows that the FBEx and the OEPx potentials
are almost identical, apart from the small “bumps” that are an indi-
cation of the shell structure of the atoms. The Slater potential also
does not capture them and a suitable correction for it based on the

FIG. 3. Difference Δvx between vFBEx and vOEPx and rescaled norm of αfx from the exchange force for some of the atoms of Fig. 1.
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kinetic-energy density is available.61 Due to the use of pseudopoten-
tials in our simulations displayed in Fig. 1, we see here either one or
no bump. To check that the differences between these two potentials
are indeed only present at the shells of the atoms, we also performed
all-electron calculations for Ne and Ar using a grid spacing of 0.05
bohr and a radius of 14 bohrs and we obtain that the potentials differ
only at the location of the bumps, see the top panels of Fig. 2. The
lower panels of Fig. 2 show the difference between OEPx-KLI and
FBEx together with ∥αfx∥, i.e., the transverse part of f x. The same
comparison is conducted with OEPx for those atoms where a bump
is visible despite using pseudopotentials, see Fig. 3. In each case, we
find that the FBEx force has a nonvanishing transverse part only at
the position of the bumps and that the norm of αfx follows a pat-
tern similar to the difference between the FBEx and OEPx potentials,
clearly showing that there is a connection between the transverse
part of the force and the bumps of the OEPx potential. In fact, we
interpret our result in the following way: The bumps appear in the
OEPx potential as the procedure tries to impose a longitudinal vector
field at places where the exchange vector field actually has a trans-
verse component. Thus, even if we do not employ the transverse part
of the forces explicitly, they contain physical information (related to
the shell structure of atoms) that can be potentially used for more
advanced approximations. For instance, this feature is related to
the correlation forces f c, since αfx needs to precisely compensate
αfc. In this manner, we get local information about the correlation
vector field that could provide quite stringent constraints on future
approximations.

A further comparison of the FBEx and OEPx-KLI methods
with inversion procedures that yield the full exchange–correlation
potential is performed in Appendix D.

VII. OUTLOOK AND CONCLUSIONS
Considering all the different insights obtained by this inves-

tigation, we want to highlight two specific results that we deem
important for the future of force-based approximations. On the one
hand, we have seen that the transverse part of the exchange vector
field contains important physical information. It stands to reason
that the standard OEP procedure tries to turn these transverse parts
into longitudinal contributions of the corresponding OEP potential,
which are responsible for the appearance of the “bumps.” An obvi-
ous way of including these contributions is to employ an auxiliary
system that also contains a vector potential instead of the usual KS
system with only a scalar potential. Using the beneficial connection
of the force-based approach to CDFT, the corresponding exchange
vector field is given via a nonlinear partial-differential equation.26

This paves the way to obtain a semi-locally acting vector potential in
the context of electronic ground-state DFT.

On the other hand, for time-dependent DFT, we have seen
that the appearance of the transverse vector field implies nonadi-
abaticity. That is, if we solve the corresponding Sturm–Liouville
Eq. (27) instead of the Poisson Eq. (12), we automatically get a
nonadiabatic functional based on force densities. These two aspects
make the force-based approach quite promising to find more accu-
rate yet numerically inexpensive approximations within density-
functional theories. It is even relatively easy to extend the present
approach to other variants of DFT, for instance to forms that
include noncollinear magnetism and spin–orbit coupling.62–65 Using

the corresponding equations of motions for the current density,66

one can apply the same Hartree exchange and correlation force
density decomposition and hence is able to derive the correspond-
ing potentials also for this case. Furthermore, in order to address
the still unknown correlation force density we highlight that the
transverse part of the exchange vector field provides us with local
constraints on approximate correlation force densities. In the cor-
relation force density, the interaction part FW[Ψ] − FW[Φ] can be
expressed by the correlation hole, while the kinetic part FT[Ψ]
− FT[Φ] can be expressed as the difference between the interact-
ing and the noninteracting one-body reduced density matrix close
to the diagonal.40 Approximations can then be tested by compar-
ing to the transverse exchange vector field. From this perspective,
the success of LDA-based approximations can be explained by the
fact that already on the exchange level no transverse forces appear,
such that the virial relation is fulfilled, and hence adding purely
longitudinal correlations obeys the zero transverse vector field con-
straint of Eq. (9). Alternatively, one can start from approximated
correlated reduced density matrices and derive the corresponding
forces. One can therefore either try to build approximate models
based on physical intuition,67 derive expressions for these terms
for specific cases (e.g., the homogeneous limit) from wave function
methods potentially augmented by modern machine-learning tech-
niques,68 or devise perturbative expansions on top of the KS Slater
determinants. Even though the force densities are three-dimensional
vector fields and thus more involved than energy expressions, the
previously successful application of the aforementioned approaches
to construct correlation energy functionals makes it plausible that
similar methods are well applicable to the force-based approach to
KS-DFT.

In conclusion, we have shown that defining the Hx potential
and energy of KS-DFT by forces not only is conceptually beneficial
but also has certain advantages in practice over the common energy-
based approach. It is numerically straightforward to construct the
corresponding potential from a given force density, the method
allows to avoid various problems of the energy-based approach such
as determining implicit functional derivatives, and it further pro-
vides an explicit form for the local-exchange potential and exchange
energy from the exchange force density. This force-based local (in
the sense on how it acts on the wave function) exchange approxima-
tion depends nonlocally on all other points and all occupied orbitals
and is numerically as cheap as the Slater potential. The non-explicit
correlation potential is defined uniquely by the correlation force
density and in contrast to the energy-based approach, the role of cor-
relations in compensating the transverse part of the exchange vector
field is transparent. It is seen that the exchange vector field provides
local information about the properties of the correlation vector field.
We also have a straightforward connection to the current density
variant of DFT and to the time-dependent case. Furthermore, the
approach can be seamlessly applied to atomic, molecular, and solid
state systems. We showed numerically that the well-known bumps
of the OEPx potential are connected to the transverse exchange vec-
tor field and with this also to the correlation vector field due to the
exact constraint that the transverse exchange vector field is exactly
compensated by the corresponding correlation effects. We think, fol-
lowing the ideas of John Perdew and others, that such local exact
constraints are a good starting point to help in devising correlation
force density approximations, in DFT and its variants.
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APPENDIX A: NUMERICALLY CONVENIENT FORMS
OF THE LOCAL-EXCHANGE POTENTIAL

In order to bring the local-exchange potential into a numer-
ically more convenient form, we perform a partial integration in
Eq. (19) and find

vfx(rσ) = vSL(rσ) + ∫
∇′ ⋅ ∫ ∣r′′ − r′∣−1∇′ρ̄x(r′′∣r′σ) dr′′

4π∣r − r′∣ dr′, (A1)

where vSL(rσ) = ∫ ∣r − r′∣−1ρ̄x(r∣r′σ) dr′ is the Coulomb potential
generated by the exchange hole, i.e., the well-known Slater exchange
potential. The second term can be computed using

∫ ∣r′′ − r′∣−1∇′ρ̄x(r′′∣r′σ) dr′′ =∑
ij
(∇′

ρ∗i j(r′σ)
ρ(r′σ) )∫ ∣r

′′ − r′∣−1

× ρij(r′′σ) dr′′, (A2)

where we defined the co-density ρi j(rσ) = ϕ∗i (rσ)ϕ j(rσ).
This form has a few advantages. First, we only need to solve

one Poisson equation and compute one gradient per pair of indices

i, j. Therefore, the numerical cost only increases by one gradient per
pair of indices i, j compared to the Slater potential. Furthermore, it
provides an analytical expression for beyond-Slater approximations
and might serve as the starting point for the development of novel
functionals. Finally, from this expression it is also clear that in the
single orbital case, ρ∗i j(r′σ)/ρ(r′σ) is uniformly equal to 1 and that
then the second term vanishes.

There is still a subtle numerical issue when implementing this
expression. When evaluating ρ∗i j(r′σ)/ρ(r′σ) close to the border of
the simulation box we obtain 1, as in the one-electron limit only
the highest occupied state contributes to the density. Having zero-
boundary conditions at the border of the box leads to a step function
irrespective of the size of the simulation box. Consequently, the eval-
uation of the gradient on the real-space grid by finite differences
leads to a nonzero contribution at the surface of the simulation box.
This “surface charge” leads to a uniform potential that is not phys-
ical. In order to circumvent this issue, we simply used the Leibniz
product rule to evaluate

∇′
ρ∗i j(r′σ)
ρ(r′σ) =

ρ(r′σ)∇′ρ∗i j(r′σ) − ρ∗i j(r′σ)∇′ρ(r′σ)
ρ(r′σ)2 . (A3)

The numerator is computed first and the two contributions exactly
cancel, which leads to the correct long-range numerical value of the
potential.

APPENDIX B: SCALING BEHAVIOR
AND VIRIAL RELATION

If one uses the coordinate-scaled densities

ρλ(rσ) = λ3ρ((λr)σ), ρ(1)λ (rσ, r′σ′) = λ3ρ(1)((λr)σ, (λr′)σ′),
(B1)

one finds vfx,λ(rσ) = λvfx((λr)σ), where vfx,λ is the expression from
Eq. (19) with ρ↦ ρλ and ρ(1) ↦ ρ(1)λ replaced. Similarly, one finds
Ex[ρλ] = λEx[ρ] directly from Eq. (21). This is the correct scaling
behavior for the exchange energy.44 Together with the assumption
of functional differentiability of Ex[ρ] as a density functional and
applicability of the usual chain rule, this suffices to derive the virial
relation of Eq. (22). By virtue of the chain rule of functional calculus,
we have

Ex[ρ] =
dEx[ρλ]

dλ
∣
λ=1
=∑

σ
∫

δEx[ρ]
δρ(rσ)

dρλ(rσ)
dλ

∣
λ=1

dr

=∑
σ
∫

δEx[ρ]
δρ(rσ)(3ρ(rσ) + r ⋅ ∇ρ(rσ)) dr

= −∑
σ
∫ ρ(rσ)r ⋅ ∇ δEx[ρ]

δρ(rσ) dr, (B2)

where the last step involves partial integration and the easy identity
∇ ⋅ r = 3. It needs to be stressed that this form of the virial relation
depends on the assumption of functional differentiability and that
vx(rσ) = δEx[ρ]/δρ(rσ) defines a different local-exchange potential
than vfx(rσ) given by a force-based approach in Eq. (19) or by OEPx.

Next, we prove the virial relation between Ex[Φ] and Fx[Φ] by
direct computation. Starting with the exchange-energy expression
Eq. (21), we use the identity (r − r′) ⋅ ∇∣r − r′∣α = α∣r − r′∣α (which is
also central for deriving the usual virial theorem) with α = −1 and
the symmetry of the whole expression in r↔ r′.
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Ex[Φ] = −
1
2∑σ

∫
∣ρ(1)s (rσ, r′σ)∣2
∣r − r′∣ dr dr′

= 1
2∑σ

∫ ((r − r′) ⋅ ∇∣r − r′∣−1)∣ρ(1)s (rσ, r′σ)∣2 dr dr′

= 1
2∑σ

∫ ((r ⋅ ∇ + r′ ⋅ ∇′)∣r − r′∣−1)∣ρ(1)s (rσ, r′σ)∣2 dr dr′

=∑
σ
∫ r ⋅ (∇∣r − r′∣−1)∣ρ(1)s (rσ, r′σ)∣2 dr dr′

=∑
σ
∫ r ⋅ Fx[Φ](rσ) dr. (B3)

Exactly the same relation can be derived for the Hartree energy
in an analogous way. In order to extend the relation toward vfx,
in Eq. (19) we first switch ∇′ over to the term 1/(4π∣r − r′∣)
by partial integration and then switch ∇′ → −∇ by symmetry.
We have

vfx(rσ) = ∇ ⋅ ∫
(∇′∣r′′ − r′∣−1)

4π∣r − r′∣
∣ρ(1)s (r′σ, r′′σ)∣2

ρ(r′σ) dr′ dr′′. (B4)

Now putting this into the right-hand side of a virial relation of the
type of Eq. (B2), we get

−∑
σ
∫ ρ(rσ)r ⋅ ∇vfx(rσ) dr = −∑

σ
∫ ρ(rσ)r ⋅ ∇(∇ ⋅ 1

4π∣r − r′∣ (∇
′∣r′′ − r′∣−1)) ∣ρ

(1)
s (r′σ, r′′σ)∣2

ρ(r′σ) dr dr′ dr′′

= −∑
σ
∫ ρ(rσ)r ⋅ (Δ

1
4π∣r − r′∣ )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−δ(r−r′)

(∇′∣r′′ − r′∣−1) ∣ρ
(1)
s (r′σ, r′′σ)∣2

ρ(r′σ) dr dr′ dr′′

− 1
4π∑σ

∫ ρ(rσ)r ⋅ (∇× ((∇∣r − r′∣−1) × (∇′∣r′′ − r′∣−1))) ∣ρ
(1)
s (r′σ, r′′σ)∣2

ρ(r′σ) dr dr′ dr′′, (B5)

where the vector calculus identities ∇(∇ ⋅A) = ΔA +∇ × (∇×A)
and ∇× f (r)C = (∇ f (r)) × C were used. Now, the first part gives
exactly Ex according to Eq. (B3) while the second line appears as
an additional term in a virial relation between Ex and vfx. However,
since it appears as the curl of a vector expression it cannot be equal
to the gradient of a scalar potential, so the difference comes from the
transverse part of f x while vfx corresponds only to the longitudinal
part of f x. The nice thing is that this gives an explicit form for the
transverse part of f x, while the longitudinal part is already given by
−∇vfx. We thus find the following Helmholtz decomposition:

f x(rσ) = Fx[Φ](rσ)
ρ(r) = −∇vfx(rσ) +∇ × αfx(rσ), (B6)

vfx(rσ) = 1
4π ∫ (∇

′∣r − r′∣−1) ⋅ (∇′∣r′′ − r′∣−1)ρ̄x(r′′∣r′σ) dr′ dr′′,
(B7)

αfx(rσ) = 1
4π ∫ (∇

′∣r − r′∣−1) × (∇′∣r′′ − r′∣−1)ρ̄x(r′′∣r′σ) dr′ dr′′,
(B8)

and the extended virial relation

Ex[Φ] =∑
σ
∫ r ⋅ Fx[Φ](rσ) dr = −∑

σ
∫ ρ(rσ)r ⋅ ∇vfx(rσ) dr

+∑
σ
∫ ρ(rσ)r ⋅ (∇× αfx(rσ)) dr. (B9)

If in certain situations it holds that the second term above is zero,
then the virial relation between Ex[Φ] and vfx holds in the form of
Eq. (B2). We show that for spherically symmetric densities ρ(rσ)
= Rσ(∣r∣), this is indeed the case. For this, we take the last

integral of Eq. (B9) and perform integration by parts with the
curl and vanishing boundary terms to get

∑
σ
∫ ρ(rσ)r ⋅ (∇× αfx(rσ)) dr = −∑

σ
∫ (∇× ρ(rσ)r) ⋅ αfx(rσ) dr

= −∑
σ
∫ (ρ(rσ)(∇× r)

+ (∇ρ(rσ)) × r) ⋅ αfx(rσ) dr.
(B10)

However, now ∇× r = 0 and (∇ρ(rσ)) × r = (r × r)R′σ(∣r∣)/∣r∣ = 0,
so the above expression evaluates as zero.

TABLE II. Deviation from the Hartree–Fock exchange energy, in mHa, for different
exchange functionals. We also report the mean absolute relative error (MARE) for
each functional.

Atom Slater FBEx OEPx-KLI OEPx

Li −29.34 1.496 1.234 0.787
Be −39.33 −2.255 0.040 0.909
Ne −27.51 −7.411 −1.981 2.505
Na −98.07 2.112 2.756 4.400
Mg −118.2 −2.106 −0.467 4.099
Ar −22.34 2.417 0.856 0.081
Ca −91.12 0.113 1.903 1.508
Zn −365.7 −81.22 56.42 9.788
MARE (%) 1.49 0.116 0.077 0.035
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TABLE III. Eigenvalues −ϵN , in Ha, of the highest occupied orbitals for different
functionals.

Atom Slater FBEx OEPx-KLI OEPx HF

Li 0.101 0.086 0.082 0.082 0.082
Be 0.325 0.311 0.307 0.307 0.307
Ne 0.900 0.859 0.843 0.845 0.844
Na 0.118 0.083 0.074 0.074 0.074
Mg 0.285 0.260 0.253 0.253 0.253
Ar 0.622 0.585 0.590 0.590 0.590
Ca 0.224 0.201 0.195 0.195 0.195
Zn 0.368 0.332 0.300 0.300 0.300

TABLE IV. Same as Table I, but for small molecules.

Molecule Slater FBEx OEPx-KLI OEPx

N2 93.34 −134.7 −276.4 −235.4
CO2 13.64 −520.9 −1157 −660.1
CH4 72.36 −12.517 −38.66 −19.15

TABLE V. Same as Table III, but for small molecules.

Molecule Slater FBEx OEPx-KLI OEPx HF

N2 0.635 0.607 0.629 0.630 0.617
CO2 0.619 0.586 0.545 0.544 0.546
CH4 0.566 0.540 0.543 0.545 0.546

APPENDIX C: NUMERICAL RESULTS
FOR THE FBEx FUNCTIONAL

Here, we show further numerical comparisons of the force-
based local-exchange potential to well-established exchange poten-
tials in DFT. First, we investigate how the force-based local-
exchange potential compares to the Hartree–Fock energies. Since the
force-based local-exchange potential is not derived directly from the
exchange-energy expression of Eq. (21), it is not designed to approx-
imate the nonlocal Hartree–Fock exchange-energy expression. Still,
the resulting energies of the force-based local-exchange potential
determined from Eq. (21) together with the respective orbitals (see
Table II) are in good agreement with the Hartree–Fock exchange
energies. Note that due to the nonlinear core correction from the
pseudopotential and the larger number of valence electrons, the
results for Zn show a larger discrepancy with Hartree–Fock.

In Table III, we further report the eigenvalue of the high-
est occupied orbital for different exchange functionals. While
OEPx-KLI and OEPx are yielding similar ionization energies as
Hartree–Fock, within a meV precision, the force-based local-
exchange potential leads to only slightly different results. The Slater
potential shows a stronger deviation from the Hartree–Fock values.

Table IV lists the difference in exchange energy computed from
the orbitals and the virial relation of Eq. (22) for small molecules.
This shows that for non-spherically symmetric systems, this virial
relation is not respected by the force-based local-exchange potential
either. For N2, we employed a N–N distance of 1.097 69Å. For CO2,
we considered a C–O bond length of 1.16Å. For CH4, we consid-
ered a C–H bond length of 1.087Å. In all cases, we employed a grid
spacing of 0.15 bohr and a simulation box made of atom-centered
spheres of radii 12 bohrs.

The corresponding ionization energies for these molecules are
given in Table V. Similar to the atomic case, we find that the force-
based local-exchange potential performs much better than the Slater

FIG. 4. Top panels: Comparison between vFBEx, vOEPx-KLI, and exact exchange–correlation potentials vxc, for Ne (left panels) and Ar (right panels). The bottom panels show
the potentials multiplied by r . “Inversion 1” and “Inversion 2” refer to the results of the Kohn–Sham inversion procedure from Refs. 69 and 70, respectively.
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potential and yields ionization energies close to the ones obtained
from Hartree–Fock or OEPx.

APPENDIX D: COMPARISON WITH THE EXACT
EXCHANGE–CORRELATION POTENTIAL

The fact that we only include the longitudinal part of the
exchange force density can be viewed as implicitly including a
correlation force density that imposes Eq. (25). It is therefore inter-
esting to compare not only to OEPx results but also to the exact
exchange–correlation potential. For the atoms considered in the
present work, this was done by the mean of the Kohn–Sham inver-
sion procedure, for instance based on Green’s function densities,69

or from CI densities.70 The comparisons are shown in Fig. 4. From
these results, it is clear that the implicitly included correlation part
does not seem to agree with the exact potential, as the bumps
representing the atomic shells are still a dominant feature in this
potential.
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