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Abstract
Stimulus equivalence is a central paradigm in the analysis of symbolic behavior,
language, and cognition. It describes emergent relations between stimuli that were
not explicitly trained and cannot be explained by primary stimulus generalization.
In recent years, researchers have developed computational models to simulate the
learning of equivalence relations. These models have been used to address primary
theoretical and methodological issues in this field, such as exploring the underly-
ing mechanisms that explain emergent equivalence relations and analyzing the
effects of training and testing protocols on equivalence outcomes. Nonetheless,
although these models build upon general learning principles, their operation is
usually obscure for nonmodelers, and in the field of stimulus equivalence compu-
tational models have been developed with a variety of approaches, architectures,
and algorithms that make it difficult to understand the scope and contributions of
these tools. In this paper, we present the state of the art in computational model-
ing of stimulus equivalence. We seek to provide concise and accessible descrip-
tions of the models’ functioning and operation, highlight their main theoretical
and methodological contributions, identify the existing software available for
researchers to run experiments, and suggest future directions in the emergent field
of computational modeling of stimulus equivalence.

KEYWORDS
artificial neural networks, computational models, reinforcement learning, stimulus equivalence,
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Since the seminal and significant works on stimulus
equivalence by Murray Sidman (1971, 1992, 1994, 2000;
Sidman & Tailby, 1982), this paradigm has become cen-
tral in the experimental analysis of behavior for the study
of language, symbolic behavior, and cognition (Barnes-
Holmes et al., 2018; Critchfield et al., 2018; Dickins &
Dickins, 2001; Dougher et al., 2014; Green &
Saunders, 1998). Stimulus equivalence has been mainly
studied using behavioral tasks that assess the ability to
derive a full set of stimulus relations (e.g., A = A, B = B,
C = C, A = B, B = A, B = C, C = B, A = C, C = A)
when only a limited number of these relations have been
explicitly trained (e.g., A = B, B = C). This simple yet
powerful model is used to account for emergent behavior

that cannot be explained by primary stimulus generaliza-
tion (Dougher et al., 2014). In recent years, innovative
methods based on computational modeling have been
proposed as a promising technology for research in this
field. Notably, several computational models have
already been used to explore traditional and new theories
on stimulus equivalence, and they have provided research
tools for behavioral scientists, who can now run simula-
tions with these models to address their research ques-
tions and strengthen links with other scientific disciplines
such as linguistics and neuroscience. Nonetheless, the
influence of these models within the behavior-analytic
tradition has been limited, possibly because researchers
in this field are less familiar with this approach. In this
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paper, we review and discuss the contributions of compu-
tational models of stimulus equivalence. We attempt to
present a handy description of the functioning of these
models and to highlight the bidirectional contributions in
this unique theoretical intersection. On one hand, stimu-
lus equivalence provides a solid framework for testing
artificial systems’ abilities to show human-like symbolic
behavior. On the other hand, computational models pro-
vide a means of exploring previous and new theories on
the question of how a system, whether human or artifi-
cial, can acquire these symbolic relations and show com-
plex behavior. Our goal is to present the state of the art
in computational modeling of stimulus equivalence to
promote the dissemination of these models and motivate
future developments in this field.

This paper is organized as follows. The next
section briefly describes the main concepts to understand
basic research paradigms and applications of stimulus
equivalence. Then, a general review of concepts in com-
putational modeling and artificial neural networks is pre-
sented. The subsequent sections review the existing
computational models of stimulus equivalence grouped
into four main sections with contributions and future
directions for each group of models, and then a final
section with conclusions is presented.

STIMULUS EQUIVALENCE

Sidman and colleagues worked on different research
questions within stimulus control both with humans and
nonhumans beginning in the mid-1960s. The results of
this research gradually led to findings that indicated
that some relations emerged without direct training
(Arntzen & Sætherbakken, 2021). Sidman and Tailby
(1982) introduced the formal definition of stimulus equiv-
alence and used terms from mathematical set theory
(Hrbacek & Jech, 1999, pp. 29–32). Properties such as
reflexivity, symmetry, and transitivity have been used as
the criteria for the definition of stimulus equivalence.
Traditional procedures consider the establishment of
baseline conditional discriminations among arbitrary
relations, commonly arranged in a matching-to-sample
format; a sample stimulus (e.g., A1) is presented, and a
response to the sample stimulus initiates the presentation
of two or more comparisons. Selection of the correct
comparison (e.g., B1) is reinforced, whereas selections of
the incorrect comparisons (e.g., B2, B3) are extinguished.
The sample and comparisons are either presented simul-
taneously (simultaneous matching to sample) or with a
delay between the offset of the sample and the onset of
the comparisons (delayed matching to sample). Follow-
ing the training of a minimum of three members in two
classes as AB and BC relations, the equivalence tests are
presented under extinction conditions. Reflexivity means
that A is related to A, B is related to B, and C is related
to C. Symmetry means that B is related to A, and C is

related to B. Transitivity means that A is related to C. In
addition, a global test implies that C is related to A
(Sidman & Tailby, 1982). The CA trials are often called
equivalence trials (e.g., Arntzen & Mensah, 2020).

Research has proven the robustness and flexibility of
this paradigm because equivalence relations have been
described within stimulus sets composed of words, pic-
tures, sounds, abstract concepts, mathematical concepts,
and interoceptive stimuli, to name a few. Moreover, this
has resulted in a solid development of applied studies
with benefits in clinical and educational contexts. The
paradigm has been used for teaching word-object map-
pings, basic language, writing, and naming skills in chil-
dren (Stromer et al., 1992); complex concepts to college
students including inferential statistics and statistical
interactions (Fields, Travis, et al., 2009; Fienup &
Critchfield, 2010), classes of logical fallacies (Gallant
et al., 2021), and biological concepts such as brain–
behavior relations (Fienup et al., 2010); developing clini-
cal interventions in adults (Guinther & Dougher, 2015),
with particular relevance in therapies such as acceptance
and commitment therapy (Tarbox et al., 2020); and train-
ing communication abilities, relational responding, and
generalization skills in children with neurodevelopmental
disorders (Arnall et al., 2021; Gale & Stewart, 2020;
Tovar & Torres-Ch�avez, 2021).

Moreover, research on equivalence relations also
motivated exploring other kinds of derived relational
responding. Consider for example that an arbitrary stim-
ulus relation can be established under different kinds of
contextual control (Dougher et al., 2002); the relation
between A and B can be taught as one of equivalence,
opposition, or difference, to name a few (Barnes &
Hampson, 1993). The relational frame theory (Barnes-
Holmes & Harte, 2022) has been raised as one strong
approach for the study of different kinds of derived stim-
ulus relations; nonetheless, most of the computational
models reviewed here are mainly circumscribed to under-
standing equivalence relations.

Several variables can influence the formation of
equivalence classes, and one such variable is training and
testing protocol (Arntzen, 2012). Simple-to-complex,
complex-to-simple, and simultaneous protocols are used
for the arrangement of training and test trials in experi-
ments studying emergent relations (Adams et al., 1993;
Imam, 2006). For example, in an arrangement with three
members (A/B/C), the protocols will differ as follows: In
the simple-to-complex protocol, one relation (AB) is
trained and tested (BA) before the next relation (BC and
CB). When all relations are trained and tested in separate
blocks, all relations are presented in one test block (BA,
CB, AC, and CA). In the complex-to-simple protocol, all
relations are trained in one block (AB and BC) followed
by a test block including equivalence trials only (CA) and
then a test block with all trials (BA, CB, AC, and CA).
In the simultaneous protocol, all relations are trained in
one block (AB and BC) followed by a test block including
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all trials (BA, CB, AC, and CA). The simple-to-complex,
complex-to-simple, and simultaneous protocols have shown
different outcomes on the tests for emergent relations
(Imam, 2006).

Three different training structures, linear series (LS),
many-to-one (MTO), and one-to-many (OTM), have
been used in the training of baseline conditional discrimi-
nations (Green & Saunders, 1998). When training three
members (A/B/C) in the classes using the LS structure,
AB and BC relations are trained; in the MTO structure
AC and BC relations are trained, and in the OTM struc-
ture AB and AC relations are trained. Several studies
have shown differences in test outcomes for emergent
relations depending on the training structure. The general
finding is that MTO and OTM produce the same yields
(number of participants who form equivalence classes),
whereas LS produces substantially lower yields
(Arntzen, 2012). Class size, number of nodes (i.e., stimuli
related to at least two others during training), the distri-
bution of “singles” among nodes, and directionality of
training are essential parameters for understanding the
structure of stimulus classes (Fields & Verhave, 1987),
and this is important because the class structure and the
training protocols affect the learnability of the classes.

A vast number of empirical studies on stimulus equiv-
alence have focused on understanding the influence of
the abovementioned variables on the formation of equiv-
alence classes. Remarkably, the effect of all these vari-
ables can be modeled in different computational
architectures of stimulus equivalence.

COMPUTATIONAL MODELING

Computational models are useful tools in science given
their power to simulate natural phenomena and labora-
tory experiments, predict most-likely outcomes under cer-
tain circumstances, discover underlying mechanisms, and
propose explanations for complex phenomena. In recent
years, these models have been massively expanding, cov-
ering the psychological sciences (McClelland, 2009;
Wilson & Collins, 2019; Zuidema et al., 2020). Because
most of the computational models of stimulus equiva-
lence are based on artificial neural networks (also
referred as connectionist models in this context), in this
section we briefly describe the basic functioning and
structure of these networks to facilitate the review of neu-
ral network models of stimulus equivalence.

Architecture and function of artificial neural
networks

Artificial neural networks are described in architecture
and function, with the two components highly interre-
lated. The architecture describes the number of artificial
neurons composing a network and how these are

connected. The functional properties of a network
describe how activation (i.e., information) flows through
the network and how the network learns from training
trials. Artificial neurons are processing units with two
main functions: (1) an input function that adds up incom-
ing information from external stimuli or from other pro-
cessing units and (2) an activation/output function that
transforms input information into an activation value
that propagates to other units or is taken as the response
of the network.

The artificial neurons are arranged in layers.
Models are composed of single or multiple layers
(Figures 1 and 2) where processing is usually feedfor-
ward, which means that activation values spread in one
direction only, from input/stimuli to output/response
layers. The networks may have weighted connections
within and between layers. As in the brain, connections
between neurons allow spreading activation through
the network, which exerts either excitatory or inhibi-
tory control on the activation of the connected neu-
rons. The stronger a connection is, the more activation
it spreads. Activation values and connection weights
are mathematically modeled through different algo-
rithms as we describe later.

Stimuli are usually symbolically presented to the net-
work through input vectors (e.g., binary values 0, 1; see
Figure 1). When a stimulus is presented to the network, it
triggers the input and activation/output functions of the
neurons in a cascade mode until reaching the last units of
the network. The final pattern of activation values in the
neural network is taken as the response of the model to
the input pattern. For clarity of the above description,

F I GURE 1 A training trial in a three-layer feedforward neural
network. A schematic representation of a three-layer feedforward neural
network for the learning of the compound stimulus A1B1 with YES/NO
responses. Activation flows from the input to the output layer. Error
values are computed as the difference between target and actual
outputs. Error values are back-propagated to adjust magnitude and
direction of connection weights to decrease error for future trials.
Colors of neurons represent activation values with yellow units
representing highly active units.

COMPUTATIONAL MODELS OF STIMULUS EQUIVALENCE 409
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Figure 1 shows an example of a multilayer feedforward
network for the learning of the stimulus pair A1B1. A
binary vector is presented to the input layer that activates
neurons A1 and B1. Activation from this layer flows
through the weighted connections to the hidden layer and
from this one to the output layer where a response pat-
tern is activated. The output activation for this example
is 0.92 and 0.08 for the YES and NO response units,
respectively, which is close to the target activation of
1 and 0, respectively. In the next section, we describe how
these networks produce the expected outcomes from
adjusting connection weights.

Learning in artificial neural networks

Artificial neural networks learn. This has been claimed
by scientists in the field for many years. A simple but
straightforward description of the mechanistic function
of connection weights facilitates an understanding of how
learning is conceptualized by researchers and accom-
plished by these networks. The mapping process from
stimuli (input vectors) to responses (output vectors)
depends on how activation flows through the weighted
connections (Figure 1). An untrained or naïve network
has either random or zero connection weight values,
which leads to incorrect or inefficient unit activations.
However, certain combinations of weight values lead to
correct or efficient input–output mappings. The task of
the learning algorithms is to find the best combination of
connection weights. Remarkably, and highly relevant for
stimulus equivalence, many learning algorithms are effi-
cient at finding the best connection weights to solve the

input–output mappings of the training phase, and they
are also able to show correct responses to new problems
(e.g., generalization) during test phases. The ability of
artificial neural networks to solve new problems
makes them highly suitable for stimulus equivalence
research because derived relations can be seen as a
case of new problems to solve after training with base-
line relations.

Learning algorithms can be classified into many dif-
ferent families. Two relevant families for understanding
the neural network models of stimulus equivalence are
unsupervised learning and supervised learning.

Supervised learning is provided through labeled exam-
ples and is sometimes called “learning with a teacher.”
Frequently, an external supervisor (i.e., through teaching
or target vectors as shown in Figure 1) provides the target
response for a given input pattern, and the learning pro-
cess consists of reducing the error (i.e., difference)
between the target output and actual output of the net-
work. In neural networks, one of the most popular super-
vised algorithms is back propagation (Rumelhart
et al., 1986), which operates by adjusting the weight
values across the network layers and gets its name from
the fact that error is computed in the output layer and
then it is propagated in a direction back to the input
layer. This process operates many times (e.g., for many
trials, cycles, or iterations; these terms are usually inter-
changeable) until a small error value is obtained.

On the other hand, unsupervised learning, also called
“learning without a teacher,” refers to those cases where
the training examples are presented without labels,
expected responses, or target vectors. Instead, learning
occurs by detecting stimulus correlations, similarities,

F I GURE 2 A training trial in a single-layer Hebbian neural network. A schematic representation of a single-layer Hebbian neural network for
the learning of the compound A1B1. Neurons are fully connected with each other. The coactivation of neurons representing stimuli A1 and B1 leads
to strengthening their associative connection, shown as a thicker blue line. The associative strength or relatedness between items is analyzed in the
connection matrix after training. The weight matrix on the right shows a strong connection between A1 and B1, the remaining connections are shown
in 0 for this example. Note that self-connections (in the matrix diagonal) are possible, which allow for modeling reflexivity in this kind of networks.
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and differences in the input patterns. A simple case to
understand unsupervised learning is Hebbian learning
(Hebb, 1949).

Figure 2 shows an example to describe single-layer
networks with Hebbian learning. Note that the network
architecture consists of one layer only of fully connected
neurons. During a particular trial, two (or more) stimuli
activate their corresponding neurons; for example, pre-
sentation of the compound A1B1 activates neurons A1
and B1, respectively. The co-occurrent activation of these
neurons triggers the strengthening of their connection;
neurons that fire together wire together. Different from
the multilayer network presented in Figure 1, in single-
layer Hebbian networks, learning can be analyzed by
exploring the connectivity matrix that captures associa-
tive strengths (i.e., relatedness) between stimuli processed
by each neuron in the network (Figure 2). Hebbian learn-
ing can incorporate additional features; for example,
weight adjustments for less strong co-activations may
actually lead to weakening the connection values (Tovar
et al., 2018; Tovar & Westermann, 2017, 2023). And
although the Hebbian algorithm is traditionally unsuper-
vised, networks may be sensitive to co-occurrence with pro-
grammed reinforcement signals; for example, Hebbian
learning can be positive (i.e., strengthening the connection)
for reinforced responses to within-class compounds, such as
A1B1, and negative (i.e., weakening the connection) for
nonreinforced responses to between-class compounds, such
as A1B2, combining the influences of regularity-detection
and reinforcement on learning.

Finally, the computational simulations are pro-
grammed to mimic the general structure of empirical
studies. In the field of stimulus equivalence there are
two main experimental phases: training and tests. In
computational simulations the main distinction
between these phases is captured by the fact that
learning algorithms are used to adjust connection
weights during training trials only, and these algo-
rithms do not operate during tests trials. The network
connections are fixed after training baseline relations,
and test trials are presented to evaluate performance
without further connection weight adjustments, except
for the recent reinforcement models reviewed here in
the last section, which allow changes in baseline rela-
tions during tests.

NEURAL NETWORK MODELS OF
STIMULUS EQUIVALENCE

This review is divided into subsections organized chro-
nologically considering the year of the first publication
that uses a particular type of model. Each sub-
section includes follow-up studies that have used the
same model or simulation approaches. The primary
features and main differences between models are sum-
marized in Table 1.T
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Feedforward networks

Feedforward networks using matching to
sample

Barnes and Hampson (1993) presented the first computa-
tional approach to simulating stimulus equivalence. They
proposed the use of connectionist models to link interests
in both traditional behavior analysis and cognitive sci-
ence. One important objective of their study was to test
whether complex and symbolic emergent behavior could
be simulated in artificial systems: a question under vigor-
ous debate during that time.

They presented a three-layer connectionist network
called RELNET (Barnes & Hampson, 1993). In this net-
work (Figure 3a), input patterns represent matching-to-
sample trials and activations in the output layer indicate
the comparison stimulus selected by the network in each
trial. Simulations of contextual control were also possible
through the mapping of the type of stimulus relation
between input and output units: same, different, and
opposite (Figure 3a). This model and a group of follow-
up models designed with the same principles (Cullinan
et al., 1994; Lyddy et al., 2001; Lyddy & Barnes-
Holmes, 2007) used supervised learning with the back-
propagation algorithm.

With this approach, Barnes and Hampson (1993)
modeled derived relations under contextual control simu-
lating empirical data from Steele and Hayes (1991). They
also compared the effect of linear series versus one-to-
many training structures on equivalence class formation
(Lyddy & Barnes-Holmes, 2007), simulating empirical
procedures and results comparable to those reported by
Arntzen and Holth (1997), and they provided mechanis-
tic explanations for why these procedures resulted in dif-
ferent equivalence class formation yields; they described
that each training structure provides training on a differ-
ent sample of statistical regularities and stimulus func-
tions of the class, with the one-to-many structure
providing a more readily applicable training structure.

Although this modeling approach seemed very prom-
ising as a new tool with which to study equivalence clas-
ses, this optimism was later questioned by Tovar and
Torres-Ch�avez (2012), who pointed out a critical network
design flaw in RELNET models. To understand this
computational flaw, it is important to explain how the
input vectors were presented to RELNET during
matching-to-sample trials. The network was trained on
numerous stimulus sets, and for each trial the network
was informed about stimulus functions: particularly,
which stimulus was the sample. A training or test trial
was presented through different sections of the input vec-
tor (Figure 3a). The first section (stimulus identity) indi-
cated what stimuli were used in a particular trial
(e.g., A1, B1, B2, and B3). The second section was called
the sample-marking duplicator and indicated what stimu-
lus served as the sample (e.g., A1). The critical problem

entailed by the implementation of this sample-marking
duplicator is that it presented the exact same pattern of
activations for different trials (i.e., different stimulus
sets). For example, the activation of units in the sample-
marking duplicator was the same for training either
A1B1 or D1E1, with the only difference being that A1B1
was part of the first stimulus set and D1E1 was part of
the second stimulus set. Moreover, the duplicator activa-
tions during test trials were the same as those during
some training trials, which means that RELNET
responses during tests of supposedly derived relations
were actually directly trained in the sample-marking
duplicator. In other words, the sample-marking duplica-
tor can be seen as a template for a stimulus relation that
dictated which stimulus must be selected as the correct
response, whereas the particular stimuli used in training
or test trials were interchangeable and presented in an
additional section of the input vectors. Consequently, the
performance of RELNET networks during tests cannot
be considered evidence of emergent behavior in artificial
neural networks (see Ninness et al., 2018; and Vernucio &
Debert, 2016 for complementary descriptions of problems
entailed by the sample-marking duplicator).

Feedforward networks using compound stimuli

Tovar and Torres-Ch�avez (2012) proposed the next gen-
eration of connectionist networks to study stimulus
equivalence. Their main interest was in properly docu-
menting whether connectionist networks were useful for
simulating responses indicative of derived equivalence
relations. To avoid the problems entailed by the sample-
marking duplicator needed for matching-to-sample trials,
they focused on simulating compound stimuli procedures
with YES/NO responses (Debert et al., 2007, 2009;
Fields, Doran, et al., 2009; Tovar et al., 2015) because
these procedures do not require the specification of stim-
ulus functions.

Tovar and Torres-Ch�avez (2012) first ran an empiri-
cal study with human adults. During training, partici-
pants were presented with stimulus pairs (e.g., A1
adjacent to B1), and they responded with either a YES
option for within-class stimulus pairs (e.g., A1B1) or NO
for between-class pairs (e.g., A1B2). After training of AB
and BC relations, participants were exposed to new con-
figurations of compound stimuli representing symmetry,
transitive, and equivalence test trials—BA, CB, AC and
CA. Four out of six participants formed the stimulus
classes according to the criteria. Then, during the second
part of their study, the authors presented a three-layer
connectionist network using back-propagation learning
(Figure 3b) that simulated the same training and test
structure as in the study with human participants. Their
simulation results showed that five out of six runs of the
network (i.e., after each “run” all prior learning is deleted
in the network and a new simulated participant is
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modeled with new randomized connection weight values)
met the equivalence class formation criteria, confirming
that connectionist networks were able to simulate trained
and derived stimulus relations of the kind documented
with human participants.

Vernucio and Debert (2016) later adapted the archi-
tecture proposed by Tovar and Torres-Ch�avez (2012) to
simulate go/no-go responses during compound stimuli
procedures. They ran simulations using the same training
and test protocols as Tovar and Torres-Ch�avez but with
a slight modification to the network architecture; they
used only one response unit (Figure 3c), whose activation
represented “go” responses, expected for within-class
stimulus pairs. Inactivation of the response unit was

taken as a proxy for “no/go” expected for between-class
trials. This model successfully simulated equivalence class
formation.

Building on these models (Tovar & Torres-
Ch�avez, 2012; Vernucio & Debert, 2016), more recently
Chris Ninness and his colleagues have been working on
developing a computational resource called emergent vir-
tual analytics, or EVA (Ninness et al., 2018). Notably,
they have developed a research agenda for extending the
application of EVA to analyzing both theoretical and
applied aspects of stimulus equivalence and derived stim-
ulus control. For example, they have used EVA to
explore the basic training requirements for human partic-
ipants to derive stimulus relations and generalize to other

F I GURE 3 Feedforward neural networks for simulations of stimulus equivalence. Panel a: Simplified representation of RELNET as described in
Barnes and Hampson (1993), only some units are shown for simplicity. The sample marking duplicator is presented in two rows for space reasons,
and the italics indicate that these units change identities depending on the trial, in this case they represent stimuli A and B because these are presented
in the first input section. Panel b: Network used in Tovar and Torres-Ch�avez (2012). Panel c: Network used in Vernucio and Debert (2016). The three
architectures show active units in yellow representing a training trial for the relation between A1 and B1. Panels b and c are taken and adapted from
the original publications, panel b with permission from the editor, panel c is under License CC BY 4.0.
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training sets in a task directed at establishing stimulus
relations between algebraic expressions (Ninness
et al., 2019), and more recently they have discussed the
implications of simulating more challenging human per-
formances in neural networks (Ninness & Ninness, 2020).
Particularly, they have included more hidden layers in
the EVA architecture, in a way that the final network
includes four layers (one input layer, two hidden layers,
and one output layer) instead of the typical three-layer
architecture, which provides the network with additional
computational power, approaching the methods used in
deep neural networks (where “deep” indicates the addi-
tion of processing layers).

Ninness and colleagues have modeled the perfor-
mance of human participants in experiments of contex-
tual control (Ninness & Ninness, 2020), suggesting that
responding to symbolic relations under contextual con-
trol may require more computational power as provided
in their deep neural network model. In this way, they
have finally achieved one of the original objectives pro-
posed by Barnes-Holmes and colleagues (Barnes &
Hampson, 1993) in the research agenda of connectionist
networks and derived responding.

The EVA software is available to researchers inter-
ested in running simulation experiments at: http://www.
chrisninness.com

Contributions and future directions

Feedforward network models have served as an impor-
tant bridge between descriptions of stimulus equivalence
and studies of symbolic behavior from other areas,
including linguistics and cognitive psychology. As a main
theoretical contribution, these models have demonstrated
that symbolic behavior, as studied in stimulus equiva-
lence paradigms, can be accounted for by the interaction
of two components: (a) a learning system with domain-
general learning mechanisms, as it is the back-propaga-
tion algorithm that reduces error during training trials,
and (b) the learning history of stimulus regularities. This
interaction allows the acquisition of structured represen-
tation of stimulus classes.

The notion of stimulus equivalence emerging from
domain-general learning mechanisms is theoretically
remarkable because it demonstrates that it is unnecessary
to use specific (i.e., dedicated) functions, instructions,
modules, or learning algorithms to learn equivalence rela-
tions. This is particularly noticeable in the more recent archi-
tectures (Ninness et al., 2018; Ninness & Ninness, 2020;
Tovar & Torres-Ch�avez, 2012; Vernucio & Debert, 2016),
where the models did not require explicit instructions or any
kind of dedicated computational resources (such as the
sample-marking duplicator) to account for derived equiva-
lence relations and contextual control. We highlight this the-
oretical contribution because it strengthens the empirical
view of symbolic behavior as a repertoire that emerges in

organisms sensitive to complex stimulus regularities and
challenges traditional linguistics, cognitive, and evolutionary
theories that propose the need for specific (arguably innate)
computations to develop symbolic behavior, such as the
Chomskyan approach (Berwick et al., 2013; Hauser
et al., 2002).

Future work should test the effects of using more real-
istic representations of stimulus objects and context
instead of simple binary representations of them to test
how this complexity interacts with the domain-general
learning principles included in these architectures. Addi-
tionally, slightly more complex architectures can be
implemented, such as recurrent networks (Elman, 1990),
which are based on the traditional three-layer neural net-
work but include links to feedback activation values of
hidden layers to themselves. These recurrent links provide
networks with a dynamic memory component that is use-
ful for modeling numerous phenomena and paradigms,
such as delayed matching-to-sample and sequence
learning.

Self-organizing maps

García and colleagues (García-García et al., 2010;
Martín H. et al., 2007) proposed a computational
approach to stimulus equivalence using a self-organizing
map (SOM). A SOM is a network of artificial neurons
arranged in a grid map (Figure 4). In this architecture,
each neuron “contains” an internal representation (weight
vector). These representations are comparable in size and
properties to the stimuli (input vectors) used for training
and tests. When one stimulus is presented to the SOM,
for example, stimulus A1, the model finds the best
matching unit (BMU) as the neuron that has the internal
representation with the highest degree of similarity with
A1. The BMU and their surrounding units create a
neighborhood of active units on the map that respond to
the presented stimulus. After finding the BMU, weight
adjustments take place; the BMU and its neighboring
units adjust their weight vectors to reduce error by means
of becoming even closer (i.e., more similar) to the stimu-
lus just presented. Crucially, the BMU’s neighboring neu-
rons learn with a reduced amount of error correction.
The amount of error correction in each neuron is an
inverse function of neighborhood distance to the BMU.
Then, the next stimulus is presented to the SOM, and the
same process takes place. After several iterations with dif-
ferent stimuli, weight adjustments lead to a topographical
organization of the stimuli on the SOM in such a way
that similar stimuli will be processed in the same or
nearby neurons on the map (Figure 4).

García-García et al. (2010) and Martín H. et al.
(2007) proposed a training procedure with single
(e.g., A1) and compound stimuli (e.g., A1B1) and a
supervised version of the learning algorithm with positive
(e.g., for A1B1 trials) or negative (e.g., for A1B2 trials)
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weight adjustments, depending on whether the stimuli in
the compound belonged to the same or to different clas-
ses. They simulated a traditional arrangement of linear
series training by reinforcing AB pairings, followed by
reinforcing BC pairings. They argued that the SOM was
able to establish equivalence classes because they con-
firmed that the single and compound stimuli (A, B, C,
AB, BA, BC, CB, AC, CA) belonging to the same class
were processed within the same cluster in the SOM
(Figure 4).

Contributions and future directions

The SOM of García and colleagues (2010; Martín
H. et al., 2007) shows that this architecture can be used
to model equivalence class formation with stimuli that do
not share physical similarities. This is an interesting con-
tribution given that SOMs have been mostly used by psy-
chologists to simulate perceptual processing and
categorization where the stimuli in each category main-
tain physical resemblance (Althaus & Mareschal, 2013;
Mayor & Plunkett, 2010; Tovar et al., 2019). Self-
organizing maps have shown potential as predictive,
descriptive, and theoretical tools in the field of perceptual
categorization and language development, but their use

in the study of stimulus equivalence is limited to the two
studies of García and colleagues reviewed here.

Several limitations of the studies by García and col-
leagues (2010; Martín H. et al., 2007) should be noted:
They have only replicated a generic equivalence experi-
ment, for example, training AB and BC relations before
evaluation of symmetry and transitive relations. They did
not replicate any empirical studies, did not present
detailed data from their simulations, and did not present
predictions to be confirmed in future experiments. All
these deficits make it difficult to assess the validity and
benefits of their modeling approach. Nonetheless, we
suggest that one potential field for future research in
which these SOMs are useful is in bridging studies of
symbolic and perceptual categorization, which is a topic
that has received only minimal attention in the field of
stimulus equivalence (Fields, 2015). This issue is of inter-
est because SOMs can form clusters of perceptually simi-
lar objects, and with the suggestions from the group of
García, it will be possible to train SOMs to form classes
of objects based on both perceptual and functional simi-
larities to explore in greater detail the integration of per-
ceptual and functional properties during categorization,
an area of great interest for cognitive and behavioral scien-
tists. Numerous questions for this field include the follow-
ing: How are perceptual and functional properties more or
less representative of stimulus classes? How are these prop-
erties weighted during categorization? Can stimuli have
numerous class memberships (e.g., perceptual, symbolic),
and how do these properties compete? How do stimulus
classes become topographically organized (i.e., relations
between classes) as a model of concept development and
semantic organization?

Biologically inspired neural networks

The simulations reviewed thus far are built on simple
abstract neural networks. The neurons and connections
of these models stand for symbolic representations of
stimuli and associations between them, respectively. The
way the models learn is dictated by the general principles
of error reduction. Although this approach offers numer-
ous possibilities to test formal hypothesis of equivalence
class formation, the models’ functioning hardly relates to
specific learning mechanisms implemented by biological
neural networks. This lack of correspondence should not
be considered a failure of the modeling approach because
these models are not intended to provide explanations of
brain mechanisms, as has been discussed before for com-
parable models in other fields of behavior analysis
(Burgos, 2007); instead, they provide insight into the
main conditions under which equivalence relations are
expected to emerge, with the benefit of providing com-
plete control and knowledge of both environmental regu-
larities and learning restrictions.

F I GURE 4 Equivalence class formation in a self-organizing map.
A Self-organizing map (SOM), as described by García-García et al.
(2010) and Martín H. et al. (2007). Colored squares represent active
units, with the more saturated square representing the BMU in each
map and the light-colored squares representing the BMU’s neighboring
units. The network is trained sequentially with presentations of A, AB,
and BC, which in time results in highly similar activations on the SOM
for either A, B, C, AB, BC, BA, CB, AC, and CA, stimuli.
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Nonetheless, one of the most provocative and exciting
findings in the literature of stimulus equivalence is that
even under the same experimental conditions, only a few
organisms can derive equivalence relations, namely,
human beings with basic language repertoires. There is
no clear evidence of other species forming equivalence
classes consistently, despite some controversial results
documented in nonhuman animals after very extensive
training programs (Kastak et al., 2001; Schusterman &
Kastak, 1993), and even humans with limited language
repertoires struggle to show derived symmetry and transi-
tivity relations (Devany et al., 1986). One way to account
for why human beings are unique in their ability to
acquire equivalence classes is by focusing on the role of
processing and learning restrictions beyond studying the
effect of training programs and stimulus regularities. It is
at this point that stronger links from biological processes
to computational implementations became theoretically
relevant.

Lew and Zanutto (2011) presented a biologically
grounded computational theory for the learning of equiv-
alence relations. Their computational model builds upon
a previous model (Lew et al., 2008) that successfully sim-
ulated visual discrimination and delayed matching to
sample but failed at deriving equivalence relations. Lew
and Zautto enriched this previous model with an ambi-
tious set of computational stages and processes to mecha-
nistically explain the emergence of equivalence relations.
The resulting model (Lew & Zanutto, 2011) includes
response selectivity to stimuli and places, unsupervised
associative learning for paired stimuli, reinforcement
learning and error reduction for conditional discrimina-
tions, and top-down modulation of responses over visual
inputs. Notably, each process was included with a biolog-
ically rationalized mechanism and the model architecture
captures anatomical interactions between structures
including the prefrontal cortex, ventro-tegmental area,
basal ganglia, and premotor cortex (see original publica-
tion for a full schematic representation of the model
architecture). The learning algorithms implemented by
Lew and Zanutto are both biologically informed and
behaviorally relevant, as they are grounded in the Heb-
bian learning rule (1949) and the Rescorla and Wagner
model (1972).

Lew and Zanutto (2011) analyzed the model’s perfor-
mance on three main tasks: visual discriminations, simple
conditional relations, and acquisition of equivalence rela-
tions. Their focus was on finding the necessary mecha-
nisms for the emergence of equivalence relations beyond
learning of visual and conditional discriminations. To do
this, they explored the effects of parametric variations
and specific lesions to components of their model. Their
main findings are as follows: The amount of neural
resources affects the equivalence outcomes; they found
accuracy in equivalence responding to be a function of
the number of neurons in the prefrontal cortex. A mini-
mum number of neurons in this structure was required to

show equivalence learning. They programmed three types
of lesions to the model: (1) lesions in the dopaminergic
system; these mainly disrupted reinforcement learning;
(2) lesions in the Hebbian learning process; these mainly
disrupted associative learning of paired stimuli; and
(3) lesions in the top-down inhibition system, simulating
disruptive feedback from frontal functions to processing
of visual inputs. To summarize, the three types of lesions
impaired the learning of equivalence relations, but they
had a lesser or even minimal disruptive effect on the
learning of visual and conditional discriminations. These
results reveal that a minimal complexity of the prefrontal
cortex with an intact dopaminergic system, Hebbian
learning, and top-down control are necessary, but none
of them is sufficient to explain the emergence of equiva-
lence relations.

To conclude, Lew and Zanutto (2011) asked why,
although all the mechanisms proposed as necessary for
equivalence class formation exist in other nonhuman pri-
mates, only humans learn equivalence relations. In addi-
tion to considering the effect of overtraining as a possible
explanation, they proposed an additional possibility; in
their model, there is a large parametric space of learning
mechanisms that results from considering all possible
values (e.g., number of neurons, connections), and func-
tions (e.g., variations in learning algorithms), but there
might exist a region within this parametric space best
suited for the learning of complex stimulus relations such
as equivalence. Although learning mechanisms may exist
in different organisms, their precise balance and tuning
may explain the emergence of complex repertoires in
human beings. The idea of this critical region that sup-
ports symbolic behavior converges with cognitive
approaches to language function; for example, reviewing
the relationship between language and its underlying neu-
robiology, Elizabeth Bates (1999) suggested that the
“‘language organ’ can be viewed as the result of quantita-
tive adjustments in neural mechanisms that exist in other
mammals [italics added], permitting us to walk into a
problem space that other animals cannot perceive much
less solve” (p. 10).

Later, Tovar & Westermann (2017) presented a neu-
ral network for the simulation of trained and transitive
relations. Although simpler and more abstract than the
model of Lew and Zanuto (2011), this model (Tovar &
Westermann, 2017) uses a biologically inspired learning
algorithm as well.

The model was implemented in a single layer of artifi-
cial neurons and trained with matching-to-sample trials
(Figure 5). This network has localist representations,
which means that activation of each artificial neuron in
the network stands for one and only one stimulus. Neu-
rons are fully connected through artificial synapses. The
connection strength between neurons changes following
Hebbian and reinforcement principles. The basic training
procedure consists of presenting a sample stimulus
(e.g., A1) and two or more comparison stimuli (e.g., B1
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and B2). The network selects one comparison (e.g., B1)
based on the strongest connection weight from the
sample, and if it correctly matches the sample, the con-
nection between these neurons is strengthened; otherwise
(i.e., selection of B2), the connection weight is weakened.
Strong connections determine the future behavior of the
model. Then, the connection weights between all possible
stimulus pairs, including trained and derived relations,
are analyzed and taken as a proxy for relatedness
(i.e., associative strengths) between stimuli. The authors
accounted for transitive relations with a simple neuronal
process: spreading activation. For example, after several
presentations of AB and BC training trials, a functional
cell assembly composed of A, B, and C neurons emerged in
the network because activation of B during the presentation
of BC training also spreads through the trained connection
from B to A, recalling the AB relation and allowing activa-
tion of all class members in this cell assembly, resulting in
the strengthening of the transitive AC relation.

The Hebbian algorithm presented by Tovar & Wes-
termann (2017) includes a continuous function from
weakening to strengthening of connections that captures
the continuum from long-term depression (LTD) to long-
term potentiation (LTP) of biological neural networks
(Bienenstock et al., 1982; Bliss et al., 2007; Malenka &
Bear, 2004). This Hebbian rule with LTD/LTP provided
the possibility of simulating populations with learning
disabilities because there is vast neurophysiological evi-
dence of intellectual disability associated with an imbal-
ance favoring LTD at the expense of LTP in synaptic
plasticity (Andrade-Talavera et al., 2015; Rueda et al.,
2012; Scott-McKean & Costa, 2011). This approach
allowed the modeling of biologically relevant variations
in the learning mechanisms to test their effect on the

acquisition of equivalence classes, and it seeks to explain
behavioral differences between populations based on
their processing restrictions.

Through parametric variations affecting the LTD/LTP
balance, Tovar and Westermann (2017) simulated intellec-
tual disabilities and modeled the classic study of Devany
et al. (1986), which was focused on analyzing the acquisi-
tion of trained and transitive relations by different groups
of children. In the original study, one group of children with
learning and language disabilities acquired the trained stim-
ulus relations but failed to show transitive relations, a pat-
tern that was replicated by the model of Tovar and
Westermann through the LTD/LTP imbalance. This simu-
lation provided a direct link between realistic neurophysio-
logical variations (i.e., atypical synaptic plasticity) and
performance in equivalence class formation. Moreover, the
theoretical approach of Tovar and Westermann converges
with the hypothesis of the critical region in the space of
learning parameters best suited for equivalence learning,
which explains important differences between organisms
and species in the development of symbolic behavior
(Bates, 1999; Lew & Zanutto, 2011).

Tovar and Westermann (2017) also provided a mech-
anistic explanation for variations in relatedness between
members of an equivalence class resulting from class
structure and training protocols. This was done through
the replication of the training schedules and results of the
classic studies by Sidman and Tailby (1982) and Spencer
and Chase (1996). The simulations accounted for nodal
distance effects and stronger relatedness for trained rela-
tions as compared with derived relations. Their results
suggest that this model provides a research tool for pre-
dicting learning outcomes under different training proto-
cols and structures.

A Matlab implementation of the model by Tovar and
Westermann (2017) is available to researchers interested
in running simulation experiments at https://osf.io/tx3h4/.

Contributions and future directions

The neural networks reviewed in this section have pro-
posed neurocognitive theories of equivalence class forma-
tion that address important questions in stimulus
equivalence including the following: What learning mech-
anisms are required for deriving stimulus equivalence?
Are other behavioral repertoires (e.g., basic language
skills) necessary for the emergence of equivalence classes?
Why do some organisms derive symmetry and transitive
relations while others do not? The two models (Lew &
Zanutto, 2011; Tovar & Westermann, 2017) converge in
demonstrating the emergence of equivalence classes in
the absence of language repertoires, and although each of
these models emphasizes the relevance of different com-
ponents and processes for equivalence learning, both sug-
gest the existence of a critical region in the parametric

F I GURE 5 Neural network model for equivalence class formation
by Tovar and Westermann (2017). The neural network model is
presented on the right with active units (in white) representing the
processing of the matching-to-sample trial depicted on the left of the
figure. All neurons are fully connected with Hebbian connections;
however, connections are not visible in the figure. The figure is taken
from the original publication under License CC BY 4.0.
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space of learning processes and restrictions (number of
neurons, synaptic thresholds, learning dynamics and
modulation) that is optimal for providing the system with
the power to derive equivalence relations beyond learning
the trained relations.

These models have emphasized the need to better under-
stand the processing restrictions and underlying neurobiol-
ogy, in addition to the environmental regularities and
training history, to account for equivalence class formation.
In doing so, they have provided direct links between neuro-
science and cognitive behavioral approaches to symbolic
behavior.

Several promising directions for future work with bio-
logically inspired models of stimulus equivalence can be
considered. One concerns the hypothesis of the critical
region in the parametric space of learning processes. What
aspects of the best suited learning properties for equivalence
class formation may be experience-dependent properties?
Answering this question would provide insight into possible
interventions to provide such experience and facilitate the
acquisition of symbolic repertoires. Additionally, as in the
case of the other groups of computational models, using
more realistic and informative representations of stimuli
(e.g., large vectors that capture the shapes and colors of
objects) may be a fruitful area for future research to explore
interactions between perceptual processing and stimulus
equivalence. Finally, future theoretical work on equivalence
class formation should explore the compatibility between
descriptions of Hebbian learning models and recent
developments in relational density theory (Belisle &
Dixon, 2020) because the density property of a stimulus
relation in the relational density theory may be analogous
to the relatedness (i.e., associative strength) captured by the
weighted connections in Hebbian networks. This may be
indicative of convergent descriptions of stimulus classes aris-
ing from complementary perspectives.

Reinforcement learning

In this section, we review computational models developed
in the framework of reinforcement learning, which is the sci-
entific study of how animals, humans, and machines adapt
their behavior to maximize the cumulative reward received
from the environment (Sutton & Barto, 2018). Reinforce-
ment learning is also referred to as “learning with a critic”;
the learner must discover the correct actions through trial
and error, and in this sense reinforcement learning is theo-
retically distinguished from the supervised and unsupervised
learning algorithms reviewed above.

Projective simulation

The models of equivalence class formation based on rein-
forcement learning have been developed in the frame-
work of projective simulation. A projective simulator is

an agent that learns from interactions with the environ-
ment and makes decisions based on its episodic memory
network (Briegel & De las Cuevas, 2012; Boyajian
et al., 2020; Melnikov et al., 2017). These models are cap-
tured as simple graphical networks that are flexible and
adaptable, as they can be easily extended when more
stimuli, scenarios, and variables are considered within a
simulation.

The episodic memory component is a weighted net-
work of episodes (Figure 6a). An episode is a unit in the
network that represents either percepts (e.g., from stim-
uli) or actions (e.g., responses), and units are linked
through connection weights. Learning in projective

F I GURE 6 Episodic memory network for equivalence class
formation by Mofrad et al. (2020). Panel a: Schematic representation of
a memory network in a projective simulation model and a random walk
on the episodic memory that starts with activation of an episode (in red)
and reaches an action episode (in blue). Panel b: Schematic
representation of the training phase in EPS that starts by showing the
agent a sample stimulus (in red) and three comparison stimuli (in blue).
The figure shows that correct selection of B1 is followed by positive
feedback and incorrect selection of B2 is followed by negative feedback.
Continued lines in each panel show trained relations, and dashed lines
show symmetry relations. Thicker lines are used for stronger
connections. Panels a and b are taken and modified from (Mofrad
et al., 2020).
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simulation occurs by reconfiguration of the episodic
memory network, either by updating the connection
weights between units or by adding new units.

During a given trial (Figure 6a), a percept is observed
by the agent, the corresponding episode (unit) is created/
activated, which triggers a random walk on the episodic
memory network. Then, when an action episode is
reached, the agent performs this action. Evaluative feed-
back operates to reinforce or penalize this action. The
probabilities for moving between episodes are based on
the connection weights between them. When reward is
received for a chosen action, the connections navigated
for reaching this action are reinforced, and the occur-
rence of this behavior increases its probabilities.

Equivalence projective simulation
Equivalence projective simulation (EPS) is a modified
version of projective simulation, mainly in that it includes
symmetry connections and is designed to run simulations
of matching-to-sample trials to model equivalence class
formation (Mofrad et al., 2020). Additionally, in these
memory networks, unit self-connections can be used to
model reflexivity. The computational simulations in the
EPS model (Mofrad et al., 2020) were designed with two
phases: in the training phase the episodic memory is
shaped, and in the test phase it is evaluated in its ability
to cope with derived relations.

The training phase (Figure 6b) starts by showing a
stimulus to the agent, for example, A1. A unit represent-
ing A1 is created in the memory space. Three or more
comparison stimuli are shown to the agent, and the corre-
sponding memory units are added to the model. At the
beginning of training, all comparison stimuli may be
selected with equal probabilities. However, during train-
ing the connection weights are updated based on rein-
forcement, and therefore the correct stimulus relations
end up with stronger connections in the episodic memory
network (Figure 6b).

In the EPS model (Mofrad et al., 2020), the symmetry
relations are formed during training, and one assumption
is that transitivity and equivalence relations are also
acquired during training but their connection weights are
calculated on demand upon test trials, which captures the
finding that response latencies in transitivity and equiva-
lence tests are typically longer than those of trained rela-
tions and symmetry tests (Bentall et al., 1993).

Several methods were proposed by Mofrad et al.
(2020) to evaluate derived relations during the test phase,
including max product, random walks on the memory
network with absorbing action sets, and memory sharp-
ness; these are schematically explained in Figure 7.

The EPS model (Mofrad et al., 2020) successfully sim-
ulated the three influential studies in the equivalence liter-
ature (Devany et al., 1986; Sidman & Tailby, 1982;
Spencer & Chase, 1996) previously modeled by the neural
network of Tovar and Westermann (2017). These results
confirmed that, with a projective simulation approach, it

is also possible to model the typical outcomes observed
across a variety of training protocols and the atypical
outcomes reported in participants with learning disabil-
ities (Devany et al., 1986).

Moreover, to show the usefulness of EPS, the
authors (Mofrad et al., 2020) presented an additional
simulation experiment. They asked whether it was possi-
ble to obtain better equivalence yields than Devany
et al. (1986) while training the same stimulus classes
with the same number of trials but with a different train-
ing order. In the study by Devany et al. (1986), the
group of children with intellectual and language disabil-
ities failed to acquire the derived equivalence relations.
The EPS model was run with the learning parameters
that replicated learning disability in a variety of training
schedules. The new simulation results suggested that
there were training sequences that were more efficient
for acquiring symmetry relations and consequently the
formation of equivalence relations.

A Python implementation of the EPS model by
Mofrad et al. (2020) is available to researchers interested
in running simulation experiments at https://osf.io/grc2t/.

Enhanced Equivalence Projective Simulation (E-EPS)
In a follow-up study, Mofrad et al. (2021) presented an
enhanced network with two main upgrading features: one
is a computational enhancement of the memory network
detailed below and the second is that the operation of
E-EPS allows modeling the development of derived rela-
tions from an update process in the network instead of
“producing” them on demand. These procedures allow
modeling changes in both baseline and derived stimulus
relations during tests.

Network enhancement for EPS. Network enhancement
(Wang et al., 2018) is a computational method for denois-
ing networks. It converts a noisy weighted network into a
network with the same unit structure but adjusted
weights (see Figure 8 for a schematic representation). The
E-EPS model has a training phase similar to that for the
EPS. But during tests, the structure of episodic memory
in the agent changes through the network enhancement
method. As a result, the E-EPS model actually retrieves
the derived relations from its memory.

The E-EPS model (Mofrad et al., 2021) was used to
study acquisition of equivalence classes under LS, MTO,
and OTM training structures, and it was able to account
for the results of prominent studies (Arntzen, 2012;
Arntzen et al., 2010; Arntzen & Hansen, 2011), as it
yielded better performance in OTM and MTO proce-
dures compared with LS procedures. Finally, from a
computational point of view, E-EPS has fewer parame-
ters than EPS and is a much simpler yet accurate compu-
tational method.

A Python implementation of the E-EPS model by
Mofrad et al. (2021) is available to researchers interested
in running simulation experiments at https://osf.io/6czuj/.
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Contributions and future directions

The EPS and E-EPS models (Mofrad et al., 2020, 2021)
have strengthened links between the general framework
of reinforcement learning, the particular approach of pro-
jective simulation, and the study of stimulus equivalence.

As a bidirectional contribution for both equivalence
research and projective simulation, Mofrad et al.’s (2020,
2021) approach demonstrates that the variety of compu-
tational methods used in the analysis of episodic memory
networks during training and tests of equivalence results
in the observation of different emergent properties in the
memory network and its behavior. Through these
methods, it is possible to model empirical results includ-
ing typical class formation under OTM, MTO, and LS
training; nodal distance effects; and atypical acquisition
of stimulus relations.

Future research should explore additional methods of
developing more advanced versions of projective simula-
tion models. For example, modified versions of these
models may be useful to capture other training

procedures in addition to matching to sample, such as
compound stimuli procedures (Debert et al., 2007; Fields,
Doran, et al., 2009; Tovar et al., 2015; Tovar & Torres-
Ch�avez, 2012). A possible approach to modeling com-
pound stimuli is to implement projective simulation with
generalization (Melnikov et al., 2017), which considers
that each memory episode can be composed of different
components; in a similar way, each episode may

F I GURE 7 Testing methods in equivalence projective simulation. The first method is max product, which finds a path from the sample stimulus
to the comparison stimuli with the maximum multiplicative probability. The agent chooses the comparison stimulus based on the calculated
probability distribution (shown inside comparison units). The absorbing action sets captures the process of a random walk on the memory network.
For this second method, the comparison stimuli are set as absorbing states, which means it is impossible to leave them once visited. The algorithm
finds the probability of a random walk ended at each of the comparison stimuli, and like the max-product method selects one unit based on the
highest probabilities. The last scenario is called memory sharpness, it combines using both directed connections and memory, as in the previous two
methods. Memory sharpness gives the flexibility to model those situations when the baseline relations are acquired but the agent is unable to develop
transitive and equivalence relations.

F I GURE 8 Network enhancement. The network enhancement
takes a weighted network and then iteratively updates the network using
the diffusion process. The thickness of connections represents a higher
weight. This figure is a modified version of Figure 1 in (Wang
et al., 2018), under License CC BY 4.0.
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represent compound stimuli instead of single stimuli and
relations between each episode component (i.e., each sin-
gle stimulus) may emerge and reconfigure as a function
of training regularities.

Finally, as in the previous models reviewed in this
paper, future work with projective simulation models
should seek to include more complex input patterns that
can represent perceptual properties and differences
between stimuli. These models should be informative on
how perceptual and memory systems interact during
complex learning, and by doing so, they will also be
informative on how reinforcement learning is modulated
under different perceptual restrictions.

CONCLUSION

For the last 30 years, computational models have pro-
vided tools for the theoretical development and experi-
mental simulation of stimulus equivalence and symbolic
behavior. In this review, we have documented several
important contributions of these models, summarized
here in two main categories. First, are theoretical
advances on the core question of what mechanisms
underlie equivalence class formation and symbolic behav-
ior. This has been a matter of study since the first compu-
tational approach to stimulus equivalence (Barnes &
Hampson, 1993). Computational models have now
shown that equivalence relations emerge in systems with
domain-general learning abilities (Lew & Zanutto, 2011;
Mofrad et al., 2021; Ninness & Ninness, 2020; Tovar &
Torres-Ch�avez, 2012; Tovar & Westermann, 2017).
Notably, this finding directly contradicts other influential
perspectives on symbolic behavior, as it is the Chom-
skyan approach (Berwick et al., 2013; Hauser
et al., 2002), which postulates specific computational
abilities underlying such behavior. Through computa-
tional simulations, it has been demonstrated that there is
no need to use dedicated learning rules, systems, mod-
ules, or abilities to learn symbolic stimulus relations such
as equivalence; instead, equivalence learners use general
abilities such as associative, supervised, unsupervised,
and reinforcement learning, but they use it efficiently
enough to create internal models (i.e., representations) of
complex environmental structure (i.e., stimulus regulari-
ties) that underlie symbolic behavior. The biologically
inspired models of stimulus equivalence (Lew &
Zanutto, 2011; Tovar & Westermann, 2017) have sug-
gested the existence of a critical region in the space of
learning parameters best suited for providing this effi-
ciency, and by doing so these models have provided
insight into understanding failure of equivalence class
formation in other animal species and difficulties in
human participants with learning disabilities.

Second, the computational models have extended the
range of experimental tools for studying equivalence rela-
tions. Although in most areas of behavior and cognition,

comparative research with nonhuman animals has
yielded valuable insights and provided solid experimental
models, stimulus equivalence is mainly an approach to sym-
bolic human behavior, and as such there are no convincing
animal models for its study. All disciplines studying human-
only abilities deal with this methodological challenge
(Marcus & Rabagliati, 2006). Remarkably, we have docu-
mented here that it is now possible to use computational
models of stimulus equivalence to design experiments and
test hypotheses for both describing and predicting human
behavior. The models are particularly useful in exploring
the effects of preexperimental repertoires, class structures,
training protocols, and learning disabilities. Notably, the
models of Mofrad, Ninness, and Tovar have provided soft-
ware and resources for researchers interested in running
simulation experiments in this field.

For each family of models reviewed here, we have
suggested directions for future research that we believe
are relevant and challenging for both equivalence
researchers and computational modelers. There are sev-
eral exciting developments waiting at the intersection of
these fields that will promote a better understanding of
stimulus equivalence and symbolic behavior in humans
and artificial systems.
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Torres-Ch�avez, Á., Mofrad, A. A., & Arntzen, E.
(2023). Computational models of stimulus
equivalence: An intersection for the study of
symbolic behavior. Journal of the Experimental
Analysis of Behavior, 119(2), 407–425. https://doi.
org/10.1002/jeab.829

COMPUTATIONAL MODELS OF STIMULUS EQUIVALENCE 425

 19383711, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jeab.829 by U

N
IV

E
R

SIT
Y

 O
F B

E
R

G
E

N
, W

iley O
nline L

ibrary on [30/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/s40617-020-00466-3
https://doi.org/10.1007/s40617-020-00466-3
https://doi.org/10.1111/desc.12885
https://doi.org/10.1007/BF03395833
https://doi.org/10.1007/BF03395833
https://doi.org/10.5514/rmac.v47.i2.81165
https://doi.org/10.5514/rmac.v41.i1.63694
https://doi.org/10.3389/fpsyg.2017.01848
https://doi.org/10.3389/fpsyg.2017.01848
https://doi.org/10.1016/j.cognition.2022.105176
https://doi.org/10.1016/j.cognition.2017.10.021
https://doi.org/10.1016/j.cognition.2017.10.021
https://doi.org/10.1007/s40732-016-0184-1
https://doi.org/10.1038/s41467-018-05469-x
https://doi.org/10.1038/s41467-018-05469-x
https://doi.org/10.7554/eLife.49547
https://doi.org/10.1111/tops.12474
https://doi.org/10.1111/tops.12474
https://doi.org/10.1002/jeab.829
https://doi.org/10.1002/jeab.829

	Computational models of stimulus equivalence: An intersection for the study of symbolic behavior
	STIMULUS EQUIVALENCE
	COMPUTATIONAL MODELING
	Architecture and function of artificial neural networks
	Learning in artificial neural networks

	NEURAL NETWORK MODELS OF STIMULUS EQUIVALENCE
	Feedforward networks
	Feedforward networks using matching to sample
	Feedforward networks using compound stimuli
	Contributions and future directions

	Self-organizing maps
	Contributions and future directions

	Biologically inspired neural networks
	Contributions and future directions

	Reinforcement learning
	Projective simulation
	Equivalence projective simulation
	Enhanced Equivalence Projective Simulation (E-EPS)
	Network enhancement for EPS


	Contributions and future directions


	CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	ETHICS STATEMENT
	REFERENCES


