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When potassium in the extracellular space separating neurons and glia reaches
sufficient levels, neurons may fire spontaneous action potentials or even become
inactivated due tomembrane depolarisation, which, in turn, may lead to increased
extracellular potassium levels. Under certain circumstances, this chain of events
may trigger periodic bursts of neuronal activity. In the present study, reduced
neuron–glia models are applied to explore the relationship between bursting
behaviour and ion concentration dynamics. These reducedmodels are built based
on a previously developed neuron–glia model, in which channel-mediated
neuronal sodium and potassium currents are replaced by a function of
neuronal sodium and extracellular potassium concentrations. Simulated
dynamics of the resulting two reduced models display features that are
qualitatively similar to those of the existing neuron–glia model. Bifurcation
analyses of the reduced models show rich and interesting dynamics that
include the existence of Hopf bifurcations between which the models exhibit
slow ion concentration oscillations for a wide range of parameter values. The
study demonstrates that even very simple models can provide insights of possible
relevance to complex phenomena.
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1 Introduction

Neurons are the main carriers of signals and information in the brain. When a neuron
fires an action potential, K+ ions are discharged from and Na+ ions are taken up by the
neuron, causing elevated levels of K+ in the extracellular space (ECS) and of Na+ in neurons.
This affects neuronal excitability and thus ion flux magnitudes, which may further enhance
ECS K+ levels (Frankenhaeuser and Hodgkin, 1956; Fertziger and Ranck, 1970; Zuckermann
and Glaser, 1970; Kager et al., 2000; Kager et al., 2007). During high action potential
frequency, K+ accumulates in the ECS and excess ECS K+ is absorbed by surrounding glial
tissue (Lux et al., 1986; Somjen, 2004), which, at low neuronal activity could have been
removed by the neuronal sodium–potassium pump. Glia, which are at least as abundant as
neurons in the brain, modulate neurons by K+ uptake, e.g., through the 3Na+/2K+ ATP-
driven sodium–potassium pump, the inwardly rectifying K+ channel Kir4.1, the Na+/K+/
2Cl–cotransporter (NKCC1) (see Østby et al. (2009) for references), and through potassium
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spatial buffering (Orkand et al., 1966; Halnes et al., 2013; Witthoft
et al., 2013). Alterations in corresponding glial transmembrane ion
fluxes will affect the dynamics of [K+]o, as already explored by
modelling (Øyehaug et al., 2012). Glial cells also contribute to
regulation of cerebral blood flow by transport of K+ ions through
glia from perisynaptic to perivascular ECS (Paulson and Newman,
1987; Farr and David, 2011).

With the increased recognition of glial cells as highly
significant modulators of neuronal activity, the past decades
have witnessed a growing interest in mathematical neuron–glia
models (reviewed by Volman et al., 2012). Many of these models
are characterised by highly detailed neuron models and glial
models of much lower biophysical detail (Kager et al., 2000;
Kager et al., 2002; Kager et al., 2007; Fröhlich et al., 2006;
Cressman et al., 2009; Florence et al., 2009; Ullah and Schiff,
2010), such that the models can assess qualitative effects of glial
potassium buffering but cannot provide insights into how
individual glial actors operate during potassium clearance.
Recent scientific and technological advances have stimulated
the emergence of more complex neuron–glia models (e.g., Sibille
et al., 2015; Du et al., 2016; Depannemaecker et al., 2022; Du
et al., 2022; Liu et al., 2023), which are capable of reproducing
and predicting quantitatively a wide range of phenomena.
However, their complexity makes it challenging to pinpoint
which part of the model is responsible for a certain type of
behaviour. This is easier to do with low-complexity models.

Classical neuroscience models derived from the Hodgkin and
Huxley formalism (e.g., Hodgkin and Huxley, 1952) mostly neglect
the variation in ion concentrations due to the short time scales of
action potential dynamics. On longer time scales, ion concentration
variability and its effect on neuronal excitability cannot be neglected.
Mathematical neuron–glia models are thus generally composed of a
fast neuron model and a slow glia model, in which the latter typically
describes ion concentration dynamics in which time is measured in
seconds. Therefore, when studying phenomena on this time scale, it
may be beneficial to create models that facilitate the analysis of the
slow ion concentration dynamics by developing alternative
representations of the fast time scale dynamics (e.g., Cressman
et al., 2009). Derivation of such reduced models and application
of these models to describe and explain phenomena that are
impacted by the neuron–glia interaction represent one of the
outputs of the present study.

Previously, a combination of a glia model (Østby et al., 2009)
with the neuron–ECS model of Kager et al. (2000) was developed
and applied (Øyehaug et al., 2012) to investigate ECS K+ ([K+]o)
dynamics and its effect on neuronal excitability, and to examine
how glial membrane processes modulate neuronal excitability
through the action of [K+]o. Model simulations of that study
revealed that spontaneous bursts of neuronal activity and
oscillations in ion concentrations were generated in certain
glial parameter regimes, a discovery made independent of the
phenomenon having been reported in several experiments
(McBain, 1994; Jensen and Yaari, 1997; Feng and Durand,
2006; Ziburkus et al., 2006) and in numerous theoretical
modelling studies (Bazhenov et al., 2004; Fröhlich et al.,
2006; Cressman et al., 2009; Barreto and Cressman, 2011).
The present paper extends the work from Øyehaug et al.
(2012) by developing reduced neuron–glia models to disclose

mechanisms that underlie the bursting behaviour. Since these
models do not have action potentials, examining how bursts
emerge is equivalent to examining how ion concentration
oscillations emerge in the low-complexity reduced model.
Developing the reduced models, a function of [K+]o and the
neuronal Na+ concentration ([Na+]n) is fitted to neuronal ion
fluxes obtained in simulations using the model of Kager et al.
(2000). The resulting reduced models are investigated using
simulation and bifurcation analysis. Although the study, to
some extent, replicates the modelling, methods, and results of
Cressman et al. (2009) and Barreto and Cressman (2011), the
more biophysically detailed glia model in the present study
compared to these studies allows the assessment of the role
of various glial actors in the neuron–glia interaction.

2 Materials and methods

The system under study comprises the neuron, the glial cell
surrounding the neuron, and the ECS separating the two cells. This
neuron–ECS–glia system (also sometimes referred to as the tripartite
synapse) is depicted with its actors in the neuronal and glial
membranes in Figure 1A. In the scenario in which an active
neuron increases its own activity by releasing large quantities of
K+ into the ECS, potentially causing harmful seizure activity, the key
question of the present study is to which extent the
sodium–potassium pump and the NKCC1 cotransporter in the
glial membrane can clear ECS K+ and thereby contribute to
maintaining a sound microenvironment in the surroundings of
the neuron. This question is addressed using the reduced
neuron–glia models that are derived from the neuron–glia model
developed by Øyehaug et al. (2012).

2.1 The neuron–glia model

The neuron–glia model is an ordinary differential equation
(ODE) model that describes ion and water transport through the
membranes separating the neuron, the ECS, and the glial cell.
The model is, crudely speaking, composed of the glia model
developed by Østby et al. (2009) and the neuron model by Kager
et al. (2000). Examples of simulated neuronal membrane
potential and [K+]o dynamics using the neuron–glia model
defined by Eqs 1a–6 are shown in Figures 1D, E. The model
exhibits resting state (RS) behaviour when the glial
sodium–potassium pump rate is slightly reduced (top panels),
shows behaviour alternating between RS and spontaneous
discharges (SDs), i.e., spontaneous bursting (SB), when the
pump rate is moderately reduced (middle panels), and
depolarisation block (DB) behaviour when the pump rate is
severely reduced (bottom panels). In the DB case, the neuron
membrane is highly depolarised and [K+]o shows extreme levels.
RS, SB, and DB represent the three modes of behaviour in the
dynamical repertoire of the neuron–glia model.

To assess the significance of ion concentration dynamics on
mode selection, the neuron model was subjected to bifurcation
analysis with [K+]o and [Na+]n as bifurcation parameters. Fixing
[Na+]n to 10 mM, the neuron model exhibits RS behaviour for low-
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to-moderate [K+]o levels, SD behaviour for [K+]o approximately in
the range 6–13 mM, and DB behaviour for [K+]o beyond 13 mM
(Figure 1B). Extending the bifurcation analysis to allow variation
also in [Na+]n resulted in a two-dimensional bifurcation plot where
the locations of the Hopf and heteroclinic bifurcations are tracked
throughout the ([K+]o, [Na+]n)-plane. The two-parameter analysis
separates the plane into three regions corresponding to the three
dynamics modes (Figure 1C). The solution orbits corresponding to
the dynamics in Figures 1D, E are depicted in the diagram
demonstrating RS dynamics (black curve), SD and bursting
behaviour (red), and DB behaviour (cyan). The red curve
repeatedly enters and exits the SD region (Figure 1C), indicative
of the bursting behaviour (SB) observed in Figures 1D, E, middle
panel.

The neuron dynamics is described by a modified version of the
neuron model of Kager et al. (2000) that describes the membrane
potential dynamics that result from K+ and Na+ transmembrane
currents and the kinetics of channel gates. The associated ODEs of
the neuron model read

Cm
dV(n)

m

dt
� 10−3 −I(n)Na I

(n)
K − Ileak,f − INaKATPase,n( ), (1a)

dx/dt � αx 1 − x( ) − βxx, (1b)

where Cm = 1 μF cm−2 is the neuron membrane specific capacitance,
−I(n)Na � −INa,T − INa,P − Ileak,Na represent transient, persistent, and
leak sodium currents, respectively, and −I(n)K � −IK,DR − IK,A −
Ileak,K represent delayed rectifier, transient, and leak potassium
currents, respectively. Furthermore, x is any of the activating or
inactivating gates. Exact expressions for the currents, forward and
backward rates αx and βx, and parameter values of the neuron model
can be found in Øyehaug et al. (2012) and in Supplementary
Material.

The glia model describes the time rate of change of the number
of ions S (denoted NS,g for the number of ions within glia or NS,o in
the ECS, where S can be sodium, potassium, and chloride), the time
rate of change of the glial volume by ODEs, and the change of the
glial membrane potential as a function of time by an algebraic
equation. The number of each ion species S (Na+, K+, and Cl−) per

FIGURE 1
Properties of the neuron–ECS–glia system and of neuron and neuron–glia models. (A) Schematic representation of the neuron–glia system with
channels, pumps, and cotransporters in the neuron and glia membranes (depicted sodium and potassium channels in the neuron membrane comprise
several channels). (B) Bifurcation diagram of the model of Kager et al. (2000) using [K+]o as the bifurcation parameter [(Na+)n is fixed at 10 mM, andmodel
parameter values are given in Supplementary Material]. “HB” and “HC” indicate locations of a Hopf bifurcation and a heteroclinic bifurcation,
respectively. (C) Two-parameter bifurcation diagram of the model of Kager et al. (2000) using [K+]o and [Na+]n as bifurcation parameters showing how
curves that correspond to the HB and HC bifurcations in (B) separate the parameter plane into regions corresponding to the resting state (RS),
spontaneous discharge (SD), and depolarisation block (DB) behaviour. Curves displayed are solution orbits corresponding to the dynamics displayed in (D)
and (E) using the same colour coding. (D)–(E): Dynamics of neuronal membrane potential (D) and of [K+]o (E) obtained from simulations using the full
neuron–glia model (parameter values are given in Supplementary Material). The glial sodium–potassium pump rate J(g)NaKATPase,max is multiplied by factors
of 0.8 (top panels in D and E), 0.65 (middle), and 0.55 (bottom) to generate different types of behaviour.

Frontiers in Network Physiology frontiersin.org03

Øyehaug 10.3389/fnetp.2023.1189118

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1189118


unit of glial area in the glia compartment is given by the product
NS,j = wj[S]j, where j is either g or o and wg represents the ratio
between the glial cell volume and glial membrane area. Provided the
ECS and glial volumes are modelled by glial membrane processes, a
precise geometrical specification of the region of interest is not
required (Chen and Nicholson, 2000; Østby et al., 2009); it suffices to
specify the ratio between the ECS volume and the associated glial
volume and the ratio between the glial membrane area and glial
volume. The model describes sodium, potassium, and chloride
channels, as well as the sodium–potassium pump, the
NKCC1 cotransporter, and water channels in the glial membrane
(depicted in Figure 1A). Compared to the model used by Øyehaug
et al. (2012), the model implemented in this study neglects
bicarbonate ions and the electrogenic sodium bicarbonate
cotransporter (NBC).

The neuron–glia model (hereafter referred to as the full model) is
composed of the aforementioned Eqs 1a, 1b and the following ODEs
for the number of ions in the neuronal, ECS, and glia compartments;

dNK+ ,o

dt
� ΦS J(n)Na − 3J(n)NaKATPase − J(g)K + 2J(g)NaKATPase + JNKCC1( )[ ],

(2a)
dNNa+ ,n

dt
� ΦS J(n)Na − 3J(n)NaKATPase[ ], (2b)

dNNa+ ,g

dt
� ΦS J(g)Na − 3J(g)NaKATPase + JNKCC1[ ], (2c)

dwg

dt
� ΦwLp Πg − Πo[ ], (2d)

where Πg � [Na+]g + [K+]g + [Cl−]g +Xg/wg and Πo � [Na+]o −
[K+]o − [Cl−]o are the glial and ECS osmolarities, respectively,
J(g)NaKATPase and J(n)NaKATPase are the glial and neuronal
sodium–potassium pump fluxes (pump rates), respectively,
JNKCC1 is the electrochemically induced ion flux mediated by the
NKCC1 cotransporter, and ΦS = 10–2 and Φw = 10 are conversion
factors that ensure matching units in the ODEs (explained in
Supplementary Material). Exact expressions for the fluxes are
given in Table 1. Xg is the number of negatively charged
impermeable ions trapped within the glial cell divided by the
glial cell area A. All ion species are subject to ion number
conservation, i.e.,

N(n)
S +N(o)

S +N(g)
S � NS, S � K+, Na+, Cl−, (3)

where NS is constant. Furthermore, the sum of the ECS and glia
volumes and the neuron volume are assumed constant such that wo

+ wg = wtot and wn are constants. The fact that the expression J(n)Na −
3J(n)NaKATPase occurs in Eq. 2a and in Eq. 2b is due to the requirement
of charge electroneutrality and is detailed below. The details of the
rewriting of the present model equations from the model equations
in Øyehaug et al. (2012) are given in Supplementary Material.

2.2 Electroneutrality

The requirement of charge neutrality (Johnston and Wu, 1994)
is enforced within each compartment. Glial electroneutrality is
ensured by assuming the glial chloride concentration to be given
by the following equation:

Cl−[ ]g � [Na+]g + [K+]g − ρ
Xg

wg
. (4)

Here, ρ is the average charge of the negatively charged
impermeable ions relative to the elementary charge.
Multiplication of Eq. 4 by wg followed by differentiation gives
an algebraic equation that translates to the assumption that the
total glial transmembrane electric current is at every instant zero,
giving for the glial membrane potential V(g)

m ;

V(g)
m � gNaE

(g)
Na + gKE

(g)
K + gClE

(g)
Cl − J(g)NAKATPaseF

gNa + gK + gCl
, (5)

where the glial Nernst potentials of the ion species S (E(g)
S , S = Na+,

K+, and Cl−) and the glial sodium–potassium pump rate J(g)NAKATPase

are defined in the caption to Table 1.
Since the total glial transmembrane current is zero and the total

neuronal transmembrane current is generally non-zero, the
additional assumption that the neuronal chloride flux can be
neglected is imposed to ensure ECS electroneutrality. Then, the
ECS chloride level is

Cl−[ ]o � Na+[ ]o + K+[ ]o. (6)
Finally, neglecting Cl−neuronal currents and assuming that neuronal
K+ and Na+ currents are equal in magnitude but oppositely directed
(which explains the identical terms in Eqs 2a, 2b) together ensure
that the neuron is electroneutral.

TABLE 1 Ion flux densities in the glia model and the sodium–potassium pump ion flux density in the neuron model. The glial Nernst potential of ion species S is
E(g)
S � (Ψ/zS)ln([S]o/[S]g), where zS is the valence of S and Ψ = RT/F ≈25.8 mV, where R, T, and F are the gas constant, temperature, and Faraday constant,

respectively. The ion flux through NKCC1 is modelled in a Nernst-like fashion (Lauf and Adragna, 2000; Dronne et al., 2006; Dronne et al., 2007). All concentrations
are given in mM.

Term Expression Description

J(g)Na −gNa
F (V(g)

m − E(g)
Na ) Glial sodium channel flux density

J(g)K −gK
F (V(g)

m − E(g)
K ) Glial potassium channel flux density

JNKCC1 gNKCC1
F Ψ ln([Na+]o[Na+]g

[K+]o
[K+]g (

[Cl−]o
[Cl−]g)2) Glial NKCC1 ion flux density

J(g)NaKATPase J(g)NaKATPase,max
[Na+]1.5g

[Na+]1.5g +K1.5
m,Na

[K+]o
[K+]o+Km,K

Glial sodium–potassium pump ion flux density

J(n)NaKATPase J(n)NaKATPase,max
[Na+]1.5n

[Na+]1.5n +K1.5
m,Na

[K+]o
[K+]o+Km,K

Neuronal sodium–potassium pump ion flux density

Frontiers in Network Physiology frontiersin.org04

Øyehaug 10.3389/fnetp.2023.1189118

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1189118


2.3 Model reduction

The model reduction process that leads to the creation of the
two reduced models involves i) replacing neuronal ion fluxes at
given [Na+]n and [K+]o by the expression obtained when fitting a
suitable function to the ion fluxes computed using the neuron
model and ii) assuming that the sum of ECS K+ and Na+ levels is
constant. Step i) is used to create the first reduced model (RM1).
When additionally invoking step ii), the second reduced model
(RM2) is derived.

2.3.1 Approximation of neuronal currents
In the first step of the model reduction process, the neuronal

transmembrane sodium flux is replaced by a function of [K+]o
and [Na+]n as follows: The neuron model ODEs (Kager et al.,
2000) are numerically solved on a representative domain in the
([K+]o[Na+]n) plane, such that all modes of dynamics (RS, SD,
and DB) are covered for a range of pairs ([K+]o[Na+]n), followed
by estimation of the voltage-gated channel-mediated sodium
flux density. The function J to be fitted to the simulation data is
defined as follows:

J [K+]o, [Na+]n( ) � y1 + y2F u( ) 1 − G u( )( )

+ y3 exp −[Na
+]n

y4
[ ]G u( ), (7a)

F u( ) � y5 − u

1 + exp Mu[ ], u � [Na+]n − y6[K+]o + y7, (7b)

G v( ) � 1
1 + exp Mv[ ], v � [Na+]n − y8[K+]o + y9. (7c)

The parameterM is set to 50 such that F and G are step-like in
the vicinity of u = 0 and v = 0, respectively, F is approximately zero
when ([K+]o, [Na+]n) is located above the straight line defined by
u = 0 and approximately equal to y5 − u when ([K+]o,[Na+]n) is
below u = 0. Moreover, G is approximately zero when
([K+]o, [Na+]n) is located above the straight line defined by v =
0 and approximately equal to 1 when ([K+]o, [Na+]n) is below v =
0. This means that the current density is approximately equal to the
constant level y1 in the region called “RS” in Figure 2C,
approximately equal to the linear function y1 + y2(y5 − u) in
“SD” and to y1 + y3 exp[−[Na+]n/y4], which is approximately
constant, in “DB.” Mathematically, this means that

J ≈
y1 in RS,
y1 + y2 y5 − u( ) in SD,
y1 + y3 exp −[Na+]n/y4[ ] inDB,

⎧⎪⎨⎪⎩ (8)

which is in agreement with the computed ion flux (Figures 2A, C).
The function J is fitted to the simulation data by minimising a cost
function defined as the sum of squared deviations between data
and the function J using the MATLAB function fminsearch.

FIGURE 2
Calculated and fitted sodium transmembrane neuronal current. (A)Magnitude of the sodium current into the neuron as a function of [K+]o and [Na+]n
computed from the neuronal model of Kager et al. (2000). (B) Best fit to the current plotted in (A) to the function given in Eq. 7a obtained by the
parameters y1 = 0.367, y2 = 25.52, y3 = 6.39, y4 = 35.38, y5 = 1.10, y6 = 2.51, y7 = 3.33, y8 = 16.38, and y9 = 137.9 (the unit for y1 and y3 is pmolms−1 cm−2, for
y2: pmolms−1 cm−2 mM−1, for y4, y5, y7, and y9: mM. y6 and y8 are unit-free). (C)Contour plot of the current in (A) as a function of [K+]o and [Na+]n with
indications of the expected behaviour in three regions of the ([K+]o,[Na

+]n)-plane.
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The estimated parameter values are given in the caption to
Figure 2.

2.3.2 Development of reduced models
In order to derive the first reduced model RM1, the aforementioned

fitting procedure was invoked to replace the neuronal channel-mediated
sodium current JNa in Eqs 2a, 2b by the function in Eqs 7a, 7c. Then, the
ODEs Eqs 1a, 1b describing action potential dynamics are not needed,
such that the model equations for RM1 are

dNK+ ,o

dt
� ΦS J − 3J(n)NaKATPase − J(g)K − 2J(g)NaKATPase + JNKCC1( )[ ], (9a)

dNNa+ ,n

dt
� ΦS J − 3J(n)NaKATPase[ ], (9b)

dNNa+ ,g

dt
� ΦS J(g)Na − 3J(g)NaKATPase + JNKCC1[ ], (9c)

dwg

dt
� Φw Lp Πg − Πo[ ]. (9d)

For a range of parameter values in the full model and in RM1, [K+]o
+ [Na+]o shows limited variation (Supplementary Figure S1). In the
second step of the model reduction process, it is thus additionally
assumed that the sum of K+ and Na+ ECS concentrations, [K+]o +
[Na+]o, is constant. This allows the omission of the variableNNa+ ,g from
the model and causes the ECS and glia models to be constant (proven in
Supplementary Material). A further consequence is that the sum
[Na+]g + [K+]g is also constant, and due to glial and ECS
electroneutrality, both [Cl−]o and [Cl−]g must be constant. Then,
the second reduced model equations are obtained from RM1 Eqs
9a–9d by omitting the equations for N(g)

Na+ and wg;

dNK+ ,o

dt
� ΦS J − 3J(n)NaKATPase − J(g)K − 2J(g)NaKATPase + JNKCC1( )[ ], (10a)

dNNa+ ,n

dt
� ΦS J − 3J(n)NaKATPase[ ]. (10b)

In RM2, ion number variables could have been replaced by ion
concentrations but were kept to maintain consistency between all
models.

3 Results

In Øyehaug et al. (2012), it was observed that the neuron–glia
model exhibited slow ion concentration oscillations when the glial
sodium–potassium pump rate was sufficiently weakened. In the
present study, in addition to studying the effect of the pump rate, the
dependence of slow oscillations on NKCC1-mediated ion uptake
and on glial K+ levels will be examined in RM1 and RM2 using
bifurcation analysis, phase plane analysis, and numerical
simulations. Bifurcation analyses and numerical simulations were
performed using XPPAUT software (Ermentrout, 2012) and the
MATLAB ODE solver ode113, respectively.

3.1 Comparison of simulated model
dynamics

To assess whether the full and reduced models show similar
behaviour, model simulations were performed for a range of values

for the glial sodium–potassium reduction factor fNaK, which is
multiplied by the rate J(g)NaKATPase in order to generate different
modes of dynamics for [K+]o (Figure 3). At sufficient reduction
(fNaK = 0.58, Figure 3A), all models display depolarisation block
(DB) behaviour, where [K+]o converges to extreme levels, especially
in RM2. For less pronounced reductions [fNaK in the range (0.62,
0.66), Figures 3B–E], slow oscillations are the rule, although for the
largest value in this range (fNaK = 0.66, Figure 3E), the full model
displays RS behaviour in which RM1 and RM2 show oscillating
solutions. Furthermore, when fNaK = 0.62, the RM2 shows vanishing
[K+]o oscillations and convergence to a semi-elevated level (Figure
3B, bottom). This behaviour represents an anomaly and is discussed
and explained by the following bifurcation analysis. All models
predict the system to be in the resting state for moderate reduction of
the sodium–potassium rate (fNaK = 0.74, Figure 3F). Although the
simulations do not demonstrate a precise quantitative agreement
between the different models, all exhibit gradual changes of the
dynamics from RS via SB to DB behaviour with decreasing pump
rate.

3.2 Dependence on the glial
sodium–potassium pump rate

Spontaneous bursting was observed in the full model when the
glial sodium–potassium pump rate was significantly reduced
(Øyehaug et al., 2012); see also Figures 1C, D. In order to assess
the propensity of the reduced models to show the same kind of
behaviour, bifurcation analyses with the glial sodium–potassium
pump rate reduction factor fNaK as the bifurcation parameter were
performed for RM1 and RM2. This analysis shows that both models
possess a rich dynamical repertoire (Figures 4A1, A2, B1, B2).

3.2.1 Bifurcation analysis of reduced models
The full bifurcation diagrams for RM1 and RM2 (Figures 4A1,

B1, respectively) show the same qualitative behaviour; for modest
pump rate reductions, i.e., for fNaK near 1, [K

+]o is at moderate levels
(corresponding to resting state–RS–solutions), and for smaller fNaK,
there is a regime of values in which solutions are oscillating
(spontaneous bursting–SB). For all values of fNaK, there is an
elevated K+ state with very high K+ levels, especially in RM2
(depolarisation block–DB). Thus, the DB state coexists with the
RS and with the SB state. Enlarging the areas within the rectangles in
Figures 4A1, B1, further details of the bifurcation analysis for
RM1 and RM2 are revealed (Figures 4A2, B2, respectively). The
bifurcation diagrams of RM1 and RM2 are qualitatively similar; both
show RS behaviour for fNaK just below 1, SB behaviour in an
intermediate range for fNaK, and no stable steady state below
some threshold values for fNaK. The values which separate
different modes of dynamical behaviour are Hopf bifurcations
(indicated by “HB”) where, as stable steady states go unstable,
stable limit cycle solutions emerge (or the opposite; as unstable
steady states go stable, unstable limit cycle solutions emerge).
Surprisingly, in both diagrams, in addition to the Hopf
bifurcation separating the stable RS and stable bursting
oscillations (approximately at fNaK = 0.72 in both diagrams),
there is one Hopf bifurcation where the unstable steady state that
coexists with stable limit cycle solutions goes stable when fNaK is
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decreasing and unstable limit cycle solutions emerge (roughly at
fNaK = 0.64 in both diagrams) and one where the stable steady state
goes unstable again when fNaK is decreasing (roughly at fNaK =
0.54 in RM1 and at fNaK = 0.56 in RM2). In this case, three stable
states coexist, the DB state, the SB state, and the semi-elevated [K+]o
state, i.e., tristability. Figure 3B, bottom, shows [K+]o dynamics using
RM2 with fNaK = 0.62, i.e. in the parameter regime of tristability.
Solutions exhibit vanishing oscillations and subsequent convergence
to a stable steady state, consistent with the bifurcation diagram at
this value of fNaK which predicts the existence of unstable oscillatory
solutions in coexistence with a stable semi-elevated state for [K+]o.
The tristability phenomenon will further be elaborated in the
Discussion. Finally, the points where the periodic limit cycle
solutions vanish (approximately at fNaK = 0.55 in RM1 and at
fNaK = 0.56 in RM2) are heteroclinic bifurcations (indicated by
“HC” in the diagrams).

3.2.2 Phase plane analysis of RM2
The dependence of the RM2 dynamics on fNaK was examined

by solving the RM2 model Eqs 10a, 10b for fNaK = 0.74, 0.64, 0.62,
and 0.58. Consistent with the bifurcation analysis, in the first and
last of these cases, the model solution orbit approaches,
respectively, a low [K+]o (approximately 4 mM) and a high
[K+]o (approximately 35 mM) steady state asymptotically (black
curves in Figures 4C1, C4, respectively), and, in the two
intermediate cases, the solution orbit is oscillating and
converges to a limit cycle (Figure 4C2, black curve) or spirals
toward a steady state (Figure 4C3, black curve, corresponding to
the dynamics of Figure 3B, bottom). The nullclines of NK+ ,o and
NNa+ ,n are plotted as blue and red curves, respectively, in Figures
4C1–C4. The dynamics of NNa+ ,n are due to ion fluxes across the
neuronal membrane, such that the corresponding nullcline is

unaffected by the value of the glial sodium–potassium pump
rate and, therefore, does not change between these plots. On the
other hand, decreasing fNaK has a marked effect on the nullcline of
NK+ ,o. For fNaK near 1, the two nullclines intersect for resting state
values of [K+]o and [Na+]n. By decreasing fNaK at some value, the
intersection point moves into the region where the red nullcline is
increasing, approximately corresponding to the location of the
Hopf bifurcation. Further decreasing fNaK first, there is a regime in
which the unstable state goes stable through a Hopf bifurcation
(corresponding to the semi-elevated [K+]o state and the orbit
depicted in Figure 4C3), then it goes unstable again before the
unstable state eventually vanishes (not visible in the figures), and
the only remaining stable steady state is the elevated [K+]o DB state.

3.3 Dependence on the
NKCC1 cotransporter

In order to assess how the sodium potassium chloride (NKCC1)
cotransporter affects the neuron–glia system’s propensity to show
bursting behaviour, a two-parameter bifurcation analysis was
performed where the NKCC1 factor fNKCC1 (the factor multiplied
by the NKCC1 ion flux JNKCC1) is the second bifurcation parameter
in addition to fNaK. The two-parameter analysis starts with the one-
parameter bifurcation diagrams for fNaK and then keeps track of the
location of the lower and upper Hopf bifurcations in Figures 4A2, B2
(The location of the lower Hopf bifurcation is used instead of the
location of the heteroclinic bifurcation since XPPAUT has
difficulties tracking the location of the latter). This results in two
curves that approximately separate the (fNaK, fNKCC1)-plane into
regions corresponding to RS, SB, and DB behaviour. Figures 5A, B
display these regions for RM1 and RM2, respectively. The steepness

FIGURE 3
Comparison of [K+]o dynamics obtained in simulations using the full and reducedmodels. Columns (A–F) display [K+]o dynamics for increasing values
of the sodium–potassium pump rate obtained by multiplication by a factor fNaK in the range 0.58–0.74, indicated at the top of each column. Full model
dynamics are displayed in the top panel, RM1 in the middle, and RM2 in the bottom panel.
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of these curves suggests that the sensitivity of neuronal excitability to
variation in the NKCC1 ion flux rate is much smaller than sensitivity
to variation in fNaK.

For RM1, four simulations were subsequently performed in
which parameter combinations were selected from each of the
three regions; simulation A1 displays DB behaviour
(Figure 5A1), simulations A2 and A3 display SB behaviour
(Figures 5A2, A3), and simulation A4 displays RS behaviour
(Figure 5A4), as expected from the associated location of the
parameters in the (fNaK, fNKCC1)-plane in Figure 5A. Similarly
for RM2, four simulations were subsequently performed in
which parameter combinations were selected from each of
the three regions; simulation B1 displays DB behaviour
(Figure 5B1), simulations B2 and B3 display SB behaviour
(Figures 5B2, B3), and simulation B4 displays RS behaviour
(Figure 5B4), as expected from the associated location of the
parameters in the (fNaK, fNKCC1)-plane in Figure 5B. The results
for RM2 are almost identical to RM1; the only major difference

is the DB value of [K+]o, which is much higher in RM2 than in
RM1 (compare Figures 5A1, B1).

3.4 Dependence on [K+]g

Increased levels of K+ generally increase neuronal excitability.
To investigate the models’ response to variable K+ total levels
without changing the structure of the models, the initial glial K+

concentration ([K+]g) was selected as the quantity to represent total
K+ levels. When [K+]g is variable, the electroneutrality condition (4)
may be disrupted such that the parameter Xg needs to be redefined in
order to maintain glial electroneutrality. The aforementioned two-
parameter bifurcation analysis was repeated with fNKCC1 replaced by
[K+]g. Tracking the location of the lower and upper Hopf
bifurcations for varying values of [K+]g, the curves in the
(fNaK,[K

+]g)-plane that approximately separate the parameter
plane into three regions corresponding to RS, SB, and DB

FIGURE 4
Bifurcation and phase plane analysis for RM1 and RM2. (A1-A2): Bifurcation diagram of RM1 with the sodium–potassium pump rate reduction factor
fNaK as the bifurcation parameter. (A1) shows the full diagram, and (A2) shows details of the diagramwithin the rectangle depicted in (A1). The black curve
indicates stable steady states; red curve, unstable steady states; black filled circles, stable oscillatory solutions; and red filled circles, unstable oscillatory
solutions. “HB” and “HC” indicate locations of Hopf and heteroclinic bifurcations, respectively. (B1–B2): Same as (A1–A2) for RM2. (C1–C4): Solution
orbits and phase plane analysis for RM2 in the ([K+]o, [Na+]n)-plane. In all plots, red and blue curves indicate nullclines of dNNa+ ,n/dt and dNK+ ,o/dt,
respectively, and black curves are solution orbits. The depicted dynamics correspond to different values of fNaK; (C1) fNaK = 0.74, (C2) fNaK = 0.64, (C3)
fNaK = 0.62, and (C4) fNaK = 0.58.
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dynamics were obtained (Figures 6A, B corresponding to RM1 and
RM2, respectively). Interestingly, in both diagrams, for [K+]g below
approximately 40 mM, the RS region extends to the zero pump rate,
indicating that at low [K+]g, bursting behaviour cannot be
generated, regardless of the strength of the sodium–potassium
pump. By contrast, the locations of both the lower and upper
Hopf bifurcations increase with [K+]g and the difference between
them widens, indicating that the addition of K+ increases the
propensity of the model to exhibit SB. Four simulations were
subsequently performed in which parameter combinations were
selected from each of the three regions: simulations A1 and
A2 display SB behaviour (Figures 6A1, A2), A3 displays RS
behaviour (Figure 6A3), and A4 displays DB behaviour
(Figure 6A4), as expected from the associated location of the
parameters in the (fNaK, [K+]g)-plane in Figure 6A. Similar to
RM1, four simulations were performed in which parameter
combinations were selected from each of the three regions:
Simulations B1 and B2 and display SB behaviour (Figures 6B1,
B2), simulation B3 displays RS behaviour (Figure 6B3), and
simulation B4 displays DB behaviour (Figure 6B4). The main
difference between RM1 and RM2 is that the DB value of [K+]o
is much higher in RM2 than in RM1 (compare Figures 6A4, B4).

4 Discussion

The present study demonstrates how various actors in the glial
membrane can potentially influence neuronal excitability. This is

achieved by developing two highly simplified mathematical models
that describe ion concentration dynamics in the neuron–ECS–glia
system. Central to the derivation of the reduced models from the full
neuron–glia model of Øyehaug et al. (2012) is the replacement of
action potential-induced neuronal currents by expressions that
depend on neuronal Na+ and ECS K+ concentrations. The
dynamics of the reduced models mimics that of the full model,
and bifurcation analyses show that the dynamical repertoire of these
models is similar to that of the full model and to previously
published models (e.g., Cressman et al., 2009; Barreto and
Cressman, 2011) and consistent with experimental observations
(McBain, 1994; Jensen and Yaari, 1997; Feng and Durand, 2006;
Ziburkus et al., 2006).

The results of the bifurcation analyses provide evidence that the
mechanism responsible for bursting is a Hopf bifurcation.
Mathematically, this is clearly correct, but since the concept of a
bifurcation is difficult to interpret directly into the physiological
context, a clarification of the circumstances that enable periodic
bursting is required. The bursting phenomenon is primarily caused
by interaction between [K+]o and [Na+]n, suggesting that RM2 is an
appropriate venue for explaining how bursting behaviour is
maintained. For solutions of RM2, where the selected parameter
values are consistent with bursting, one cycle of the solution is
considered (Figures 7A–C). At the time labelled “1,” the solution
orbit enters the SD region (Figure 7C), which triggers a rapid switch
in the neuronal ion flux from negative to positive. This causes [K+]o
and [Na+]n to abruptly go from declining to increasing (Figures 7A,
B). Once the solution orbit has entered the SD region, for a while,

FIGURE 5
Bifurcation analysis and [K+]o dynamics showing the effect of pump rate andNKCC1. (A) Two-parameter bifurcation diagram showing how dynamics
of the RM1 depends on fNaK and fNKCC1. The three regions indicated by RS, SD, and DB correspond to regions of the (fNaK, fNKCC1)–plane where the resting
state, spontaneous discharge, and depolarisation block behaviour are observed, respectively. “A1”–“A4” in the figure indicate the locations in the
parameter plane associated with simulations whose results are shown in (A1–A4). (B) Same as (A) for RM2. “B1”–“B4” in the figure indicate the
locations in the parameter plane associated with simulations whose results are shown in (B1–B4).
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transmembrane sodium and potassium currents increase in
magnitude such that [K+]o and [Na+]n increase. However, rising
levels of [Na+]n cause a decrease in the K+ neuronal efflux, which, in
turn, leads to reduced [K+]o and, ultimately, the solution orbit exits
from the SD region and re-enters the RS region (Figure 7, “2”). In
this region, both K+ and Na+ fluxes are substantially reduced
compared to in SD, causing a decrease in both concentrations.
This lasts until [Na+]n becomes sufficiently small to allow the
neuronal efflux of K+ to increase, permitting the orbit to re-enter
the SD region (Figure 7, “1”), causing the initiation of another
bursting episode.

The bifurcation analysis shows that the reduced models possess
interesting properties, including the coexistence of two modes
(bistability) and even three modes (tristability) of dynamics.
Theoretical explorations into the dynamics of the mathematically
tractable RM2 should be made to gain an improved understanding
of this model and, if possible, pinpoint the mechanisms in the model
that are responsible for the bistability and tristability phenomena.
One specific question that should be addressed in this respect is why
the model ends up in one of the stable states rather than the others,
as seen in the simulation (Figure 3B, bottom), where, in the
parameter regime of tristability, the model converges to the semi-
elevated K+ state. The long-time behaviour of the model orbit
depends on the location of the orbit in state space, i.e., which

basin of attraction the initial state belongs to. Determining the
boundaries between the various basins of attraction is non-trivial in
complex high-dimensional systems but should be feasible in simpler
models, such as RM1 and RM2, and thus represents a possible topic
for future investigation. The aforementioned efforts will most likely
reveal whether or not bi and tristability are artefacts of the choice of
expressions in the model or of the simplifying assumptions that lead
to the creation of the reduced models. Furthermore, similar
investigations into the full model could be made to examine its
potential for displaying tristability. If it has such a potential, one
could argue that the coexistence of three types of dynamical
behaviour could be of biological significance.

Without modifying the present models, in future studies, the
significance of the neuronal sodium–potassium pump and neuronal
sodium and potassium channels can be assessed using the methods
employed in the present study. Furthermore, applying slight
modifications and extensions of the models, future prospects for
applying the reduced models to assess the roles of more glial actors
and processes include, but are not limited to, the sodium-
bicarbonate cotransporter NBC, the inwardly rectifying K+ (Kir)
4.1 channel (Sibille et al., 2015), the potassium–chloride
cotransporter KCC1, and calcium-dependent channels. It is
known that ECS and glia volumes are variable even under quite
normal circumstances (Østby et al., 2009; Ullah et al., 2015). The

FIGURE 6
Bifurcation analysis and [K+]o dynamics showing the effect of pump rate and [K+]g. (A) Two-parameter bifurcation diagram showing how dynamics of
the RM1 depends on fNaK and [K+]g. The three regions indicated by RS, SD, and DB correspond to regions of the (fNaK, [K+]g)-plane where the resting state,
spontaneous discharge, and depolarisation block behaviour, respectively, are observed. “A1”–“A4” in the figure indicate the locations in the parameter
plane associated with simulations whose results are shown in (A1–A4). (B) Same as (A) for RM2. “B1”–“B4” in the figure indicate the locations in the
parameter plane associated with simulations whose results are shown in (B1–B4).
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impact of ECS and glia volume variation on model dynamics can be
assessed using RM1. However, since RM1 and RM2 dynamics are
qualitatively similar despite constant volumes in RM2 (compare
Figures 4A2, B2), altering the parameters that govern volume change
in RM1 will most likely not substantially affect the dynamics of this
model.

Epilepsy has been linked to weakened handling of ECS K+ levels
(Fröhlich et al., 2008a), astroglia dysfunction (Binder and Steinhäuser,
2006), and reduced overall activity of the sodium–potassium pump
(Grisar et al., 1992), consistent with the increased propensity of the
models of the present study to exhibit oscillatory ion concentration
dynamics when glial uptake mechanisms are impaired. In the elevated
[K+]o model of epilepsy, local perturbations in ECS K+ levels
spontaneously trigger neurons, which, in turn, lead to epileptic
seizure activity (e.g., Bazhenov et al., 2004; Fröhlich et al., 2008a;
Fröhlich et al., 2008b; Florence et al., 2012), which may be
propagated throughout the brain tissue (Lebovitz, 1996; Park and
Durand, 2006; Naze et al., 2015; Chizhov and Sanin, 2020). To
describe mathematical conditions for the spreading of neuronal
activity and for the termination of seizures, a spatial model is
required where neuron–glia systems interact with other neuron–glia
systems through the diffusion of ions and other agents or the
propagation of electrical properties, i.e., neuron–ECS–glia network
models (Park and Durand, 2006; Durand et al., 2010; Ullah and
Schiff, 2010; Oschmann et al., 2018; Manninen et al., 2023). The
simplicity of the reduced models makes them suitable as nodes in

complex network models, in particular models that describe the spread
of seizure activity. One specific question to be addressed by such models
is how high [K+]o-induced neuronal activity (i.e., seizures) may spread in
a multicellular neuron–glia network and how activity propagation and
termination depend on parameters of individual neuron–ECS–glia
systems and on properties of the interaction between these systems.

Potentially, network models may also be applied to describe
spreading depression (Ayata and Lauritzen, 2015), which is
characterised by a wave of intense but transient regional
depolarisation of neurons and glia, and associated with high [K+]o
due to overload of ECS K+ clearance mechanisms. When neuronal
activity is non-uniform across the neuron–ECS–glia system, spatial
models on a cellular or sub-cellular spatial scale are required to
describe phenomena such as spatial K+ buffering (Orkand et al.,
1966; Halnes et al., 2013; Witthoft et al., 2013), where glia absorb
excess K+ at glial sites facing the synapse and release it at distant
locations. A theoretical investigation of spatial potassium buffering
and its putative role in ECS K+ clearance and the promotion or
suppression of associated phenomena, such as SB and DB behaviour,
represents an interesting avenue for future research.

Blood supply and thus the provision of oxygen and nutrients to
neural tissue increase with enhanced neural activity, suggesting the
existence of a complex interplay between neurons, glia, epithelial
cells of the blood-brain-barrier, and non-cellular elements such as
the ECS and the extracellular matrix, the elements of the so-called
neurovascular unit (Attwell et al., 2010; Iadecola, 2017). In addition

FIGURE 7
Explanation for how burst cycles are maintained. (A) [K+]o (blue) and [Na+]n (red) dynamics during one cycle of bursting obtained by numerically
solving the RM2 model Eqs 10a, 10b using the default parameter set except the sodium–potassium pump rate, which is multiplied by 0.70 to generate
periodic bursting solutions. The times of entering and exiting from the SD region are indicated (black dashed vertical lines) and labelled “1” and “2,”
respectively. (B)Magnitude of glial transmembrane K+

flux (blue) and of neuronal transmembrane K+ and Na+ fluxes (red) during one cycle. The black
vertical dashed lines and the numbering have the same meaning as in (A). (C) Solution orbit during one cycle (blue) in the ([K+]o , [Na+]n)-plane and the
line that separates the RS and SD regions (black). Labels “1” and “2” refer to the times indicated in (A) and (B), respectively.
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to its role as the most prominent signalling ion in the neuron-ECS-
glia system, K+ contributes to signalling across the neurovascular
unit (Paulson and Newman, 1987; Farr and David, 2011). A
theoretical investigation of the intricate interaction between ion
concentrations in the neuron-ECS-glia subsystem and blood flow
regulation could combine the reduced models of the present study
with models that account for migration of K+ ions through glia from
perisynaptic to perivascular regions where K+ and other agents are
assumed to contribute to dilation and constriction of blood vessels
(as e.g. Farr and David, 2011; Witthoft et al., 2013). This kind of
approach, where no subsystems are considered as isolated entities,
but rather as interacting components, is very much aligned with the
brain active milieu research initiative (Semyanov and Verkhratsky,
2021; 2022).

Reduced models, although expected to be less realistic than the
more detailed full neuron–glia model, nevertheless reproduce
qualitatively essential features of the full model. In addition, owing
to the low complexity and relatively small number of tunable
parameters, mechanisms responsible for certain phenomena are
easily identified using simple models, demonstrated in this study in
which analyses show that bursting behaviour in the neuron–glia system
can be attributed to variability in the glial sodium–potassium pump
rate, the NKCC1 cotransporter uptake rate, and glial K+ levels.
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