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An intelligent framework for forecasting and investigating
corrosion in marine conditions using time sensor data
Mohamed El Amine Ben Seghier 1,2✉, Ole Øystein Knudsen 3, Anders Werner Bredvei Skilbred4 and Daniel Höche 5

Corrosion of marine steel structures can be regarded as a time-dependent process that might result in critical strength loss and,
eventually, failures. The availability of reliable forecasting models for corrosion would be useful, enabling intelligent maintenance
program management, and increasing marine structure safety, while lowering in-service expenses. In this study, an intelligent
framework based on a data-driven model is developed that employs a group method of data handling (GMDH) type neural network
to forecast free atmospheric corrosion as time-series problem. Therefore, data from sensor data with a 30-min interval over a 110
day period that includes free atmospheric corrosion as well as environmental factors are used. In addition, the Shapley additive
explanations (SHAP) technique is used to investigate the impact of the surrounding environmental factors on free atmospheric
corrosion. For the performance evaluation of the proposed intelligent framework, selected comparative metrics are used. Findings
demonstrate the high accuracy and efficiency of the time series data-driven framework for tackling free atmospheric corrosion
progression in marine environments.
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INTRODUCTION
Steel structures located in marine and coastal environments are
well-known to suffer from severe corrosion due to the aggressive
environment1,2. Even though these structures are typically
protected with heavy-duty paint coatings, the harsh corrosive
environment reduces their durability and lifetime3–5. According to
statistics, 6.2% of the US GDP is allocated to replace industrial
damages caused by corrosion6, compared to 3.34% for China7.
Atmospheric corrosion is a common type of degradation in marine
steel structures8. A number of factors such as chloride deposition
rate, average daily sulfur oxide deposition rate, temperature, time
of wetness, and relative humidity will determine the corrosion
rate9–11. For marine and coastal structures accurate prediction of
corrosion behavior will provide a better understanding of the
structure’s health12. The corrosivity concept is yet a complicated
challenge to address13, but will help to propose maintenance
plans to avoid failures and monitor the structure safety14. The
development of a data-driven forecasting system for steel
atmospheric corrosion in marine and coastal environments can
result in significant economic benefits, add to that the structure
lifetime extension, and the avoidance of catastrophic failures15.
Over the last decade, heuristic corrosion modeling, in particular

pitting corrosion depth and growth, has been viewed as a
prediction-fitting problem. Mathematical formulations in use are
based on experimental test results, taking into account a variety of
environmental factors, such as empirical, statistical or stochastic-
based models16–21. Each type among these models demonstrated
a number of drawbacks and limitations, such as low adaptation for
a wide range of applications and large databases, as well as low
dealing with highly complex problems in the case of the statistical,
empirical, and stochastic-based analytical models. On the other
side, corrosion data are frequently insufficient, noisy, heteroge-
neous, and large in volume. Furthermore, the marine and coastal
environments are complex and changeable resulting in a highly

nonlinear system that is difficult to approach using traditional
statistical or analytical methods. Due to their extensiveness and
adaptability to various nonlinear and complex data, machine
learning models such as artificial neural networks (ANN), support
vector regression (SVR), extreme learning machine (ELM), and
random forest (RF), among others, have been rapidly developed
and employed for the prediction of corrosion process (i.e. rate,
morphology and distribution)1,22–26. The previous references
demonstrated that all machine learning-based models outperform
classical models in terms of effectiveness. In addition, it is believed
that the corrosion community has a potential benefit from
advances in artificial intelligence (AI) technologies, considering
the large amount of available corrosion data1. Furthermore, the
applied machine learning techniques until now have used a
surrogate function to predict the target output (i.e. corrosion
characteristics such as rate, morphology, distribution or others).
However, because corrosion is a time-dependent process, and
with the aid of sensors, treating the problem as a time-series can
be more effective in forecasting corrosion. To fill the research gap,
proposing the concept of machine learning to forecast corrosion
as a time series problem will provide new insights in this field.
A two-stage intelligent framework for forecasting free atmo-

spheric corrosion in steel constructions located in marine
environments is proposed in this study. The group method data
handling (GMDH) type neural network is introduced in the first
stage of the framework to solve the corrosion forecasting system
as a time series problem, where the employed database is
obtained from real-time sensors with 30 min measurement
intervals over a 110 day period. Shapley additive explanations
(SHAP) are proposed in the second stage to investigate the impact
of different surrounding characteristics on free atmospheric
corrosion. To demonstrate the forecasting capability, the perfor-
mance of the proposed models was investigated using various
scenarios and analysis metrics.
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RESULTS AND DISCUSSION
Figure 1 depicts the overall structure of the proposed free
corrosion forecasting system. Based on the time-series data of free
atmospheric corrosion obtained from the sensors described in the
method section (i.e. section “Experimental setup and data
analysis”) and detailed in section “Data collection”, the GMDH-
type neural network (i.e. see section “Experimental setup and data
analysis”) divides the original free corrosion datasets into training
(i.e. used to build the model) and testing (i.e. used to validate its
performance) datasets, creating several scenarios for the training-
testing splitting. Similarly, to achieve optimum performance,
multiple values were assigned to the GMDH-type neural network
control parameters, and its performance was then evaluated. The
forecasting system then aggregates each scenario’s results to
produce a result with high accuracy and stability. Furthermore, the
developed forecasting system is validated using historically
recoded free atmospheric corrosion datasets selected from
Norway.
The SHAP approach (i.e. detailed in Methods Section) is used in

the second part of the forecasting framework to identify the
important variables that contribute to the free atmospheric
corrosion in steel structures located in marine environments. In
the same way, the model is built from the ground up by randomly
dividing the data into a training set and a test set. SHAP is applied
to the prediction model (Random Forest (RF) classifier model in
this case) to establish additive attributes (Eq. (11)), which are then
used to determine the important factors for free atmospheric

corrosion. It should be noted that the RF classifier is a non-
parametric method consisting of an ensemble of tree-structures.

Data collection
To assess the ability of the proposed GMDH-type neural network
to forecast free atmospheric corrosion in the marine environment
and to use the SHAP technique to explain it relationship to the
surrounding environmental factors, historical sensor data from the
described experimental setup in Section “Experimental setup and
data analysis” are used in this study27. The total number of
observation data collected over the 110 days period, beginning in
May and ending in August, is 5291. Table 1 contains statistical
information about the sensor data, which is plotted in Fig. 2. The
average temperature was 18 °C (with a maximum of 42 °C and a
minimum of 5 °C), which is reasonable given that most of the data
was collected during the summer. Similarly, a mean relative
humidity of 72% was measured. The average reported corrosion in
MSP2 was 0.1361 μA 2 ½0:6671 μA; 0:0979μA�, while reported free
atmospheric corrosion data by MSP1were higher, with an average
of 0.3015 μA 2 ½71 μA; 0:1291μA�. This can be observed in the
irregularity in the period indicated by the red and purple boxes in
Fig. 2, where certain high levels of corrosion were reported, which
can be attributable to an error in the sensor, which was
considered outliers and hence deleted during data processing.
The data is organized in the form of a time series for training
purposes, with 30min as input embedding length and the next
half-hour of corrosion as the target used to calculate the error.

Fig. 1 Study methodology. Structure of the proposed free atmospheric corrosion forecasting framework.
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Implementation results and analysis
As there are no general rules in machine learning regarding the
data-splitting for training and testing the models, it is more logical
to investigate several splitting schemes. As a result, the proposed
GMDH type neural network model was implemented with
different splits as: 50%-50%, 60%-40%, 70%-30%, 80%-20%, and
90%-10% of the data attributed to the training and testing phases,
respectively. This investigation will provide us with the optimal
free atmospheric corrosion data partitioning. Figure 3 depicts the
modeling results in terms of determination coefficient (R2), and it
can be seen that the performance during the training phase is
usually higher than the testing phase due to the fact that the first

is used to build the GDMH type neural network model (known
data), while the second is used to validate it (unknown data).
Obviously, the 70%-30% split produced the highest R2 values in
terms of overall performance (Training+ Testing). As a result, the
70%-30% partition is designated as the primary splitting for the
remainder of this study’s modeling phases.
Even though the results using the 70%-30% in Fig. 3 are

optimistic, the R2 remains relatively low due to the selection of un-
optimal design parameters of the GMDH type neural network
model prior to computation. These design parameters are a
maximum number of layers (Nl), neurons in a layer (Nn), and
selection pressure (Sp). Thus, different scenarios are investigated
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Fig. 2 Time-series corrosion data. Historical corrosion data obtained from sensors on the period 110 days (a) MSP1 (b) MSP2.

Table 1. Description of the historical measurements collected from the sensors in Kjerringvik, Norway.

Captured measurements Symbol Unit Statistical attributions

Max Mean median Standard deviation Min Range

Temperature Ts °C 42.89 18.2664 17.07 6.0188 5.131 37.759

Temperature Ta °C 36.21 17.1092 17.06 3.6936 7.373 28.837

Relative Humidity RH % 100 72.7303 76.19 17.5171 22.76 77.24

Effective humidity EH % 108.3865 70.3002 72.9977 22.9853 11.2485 97.1379

Conductivity at high frequency σ µS 10000 2545.0326 6.34 4071.675 5 9995

Free corrosion from scribe, MSP 1, Cl µA 71 0.3015 0.1291 2.0292 0.005 70.995

Free corrosion from scribe, MSP 2, Cl µA 0.6671 0.1361 0.0979 0.1025 0.0053 0.6618
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using numerous design parameter values in order to improve the
forecasting accuracy, and after deploying the GMDH type neural
network, performance metrics are used to evaluate the models’
efficiency. Table 2 summarizes the performance evaluation of the
obtained forecasting results based on the statistical metrics (i.e.
RMSE, MAE, SMAPE, and R2), whereas nine GMDH type neural
network models are explored depending on the design para-
meters (i.e. no Sp means the attributed value is 0). Forecasting
results revealed that changing the design parameters of a GMDH
type neural network has a significant impact on its performance.
According to this table, the best performance for MSP1 datasets
was obtained using model No. 7 with Nl, Nn, and Sp equal to 10, 15,
and 0.4, respectively, whereas for MSP2 was using model No. 5
with Nl, Nn, and Sp equal to 10, 15, and 0, in the same respect.
Additionally, for MSP2, the results show that the error between the

forecasted and the measured values is lower than the obtained
using MSP1 dataset (this conclusion is seen in lower values of
RMSE (RMSEMSP1= 0.03598μA; RMSEMSP2= 0.03008 μA) and MSE
(MAEMSP1= 0.01775 μA; MAEMSP2= 0.01039μA) for the overall
data (70% training+ 30% test)). Overall, the forecasting error
based on SMAPE is about 5% for the MSP1 dataset and 3% for the
MSP2 dataset, demonstrating that the right design parameters can
significantly improve computational performance.
Figure 4 illustrates the forecasted versus measured values using

the best GMDH type neural network models (No. 7 and No. 5,
respectively, for MSP1 and MSP2), with the results plotted using
the testing dataset. Furthermore, the scatterplots with the dashed
black-line represent the linear regression equation. The higher the
R2 value, the better the performance of the developed GMDH-
model. Forecasting results using MSP1 and MSP2 datasets based
on the proposed framework showed high agreement with
measured sensor data, with R2= 0.8942 for MSP1 datasets and
R2= 0.9456 for MSP2 datasets. Moreover, in terms of R2, the
forecasting results obtained by MSP2 outperform MPS1 by 5.47%,
which can be attributed to the complexity of collected data from
the sensors. In addition, Fig. 5 depicts the histograms of the
forecasting error (ek) values of the developed GMDH type neural
network models (No. 7 and No. 5 for MSP1 and MSP2, respectively)
for the testing dataset. According to the error histograms, the
mean error of the GMDH models is approximately −0.0068 μA for
MPS1, while it is −3.15.10−4 μA for MSP2, which these values are
relatively close to zero, indicating high forecasting abilities.
Furthermore, the standard deviation (StD) of both models is
0.0506 and 0.0132, respectively, indicating that nearly 68% of the
forecasting error is around the mean with ± 5% and ± 1% error
for MSP1 and MSP2, respectively.

Table 2. Performance evaluation of GMDH type neural network with different design parameters for forecasting corrosion.

Dataset GMDH type neural network-
models

Training results Testing results

No RMSE MAE SMAPE R2 RMSE MAE SMAPE R2

μA μA % μA μA %

Free corrosion datasets 1
(MSP1)

1 Nn= 5; Nl= 5 0.10894 0.03351 14.61749 0.49532 0.11569 0.04385 14.65221 0.43206

2 Nn= 5; Nl= 10 0.04106 0.02032 12.17580 0.91819 0.09995 0.03143 10.40972 0.68271

3 Nn= 5; Nl= 15 0.03620 0.01753 6.92449 0.91190 0.11879 0.03205 8.07397 0.44577

1 Nn= 5; Nl= 10 0.04106 0.02031 12.15976 0.91819 0.09552 0.03079 10.38546 0.73779

4 Nn= 10; Nl= 10 0.06402 0.04335 25.27315 0.87918 0.10501 0.05168 23.84227 0.58145

5 Nn= 15; Nl= 10 0.04011 0.01315 8.44835 0.92603 0.06115 0.02433 8.70761 0.82193

6 Nn= 20; Nl= 10 0.06618 0.02216 9.26640 0.74295 0.10530 0.03245 9.82060 0.71024

7* Nn= 15; Nl= 10; Sp= 0.4 0.02954 0.01799 4.71047 0.94971 0.05102 0.01720 5.06711 0.89423

8 Nn= 15; Nl= 10; Sp= 0.6 0.03621 0.01557 7.13647 0.91532 0.07108 0.02120 7.07970 0.75154

9 Nn= 15; Nl= 10; Sp= 0.8 0.04866 0.02811 13.36761 0.86016 0.08803 0.03385 12.64693 0.66598

Free corrosion datasets 2
(MSP2)

1 Nn= 5; Nl= 5 0.02034 0.00944 3.19179 0.96749 0.02108 0.00798 3.67979 0.87300

2 Nn= 5; Nl= 10 0.02016 0.00944 3.09216 0.96808 0.01709 0.00708 3.47375 0.91036

3 Nn= 5; Nl= 15 0.02034 0.00949 3.19662 0.96749 0.01820 0.00744 3.64240 0.89974

1 Nn= 5; Nl= 10 0.02016 0.00944 3.09216 0.96808 0.01709 0.00708 3.47375 0.91036

4 Nn= 10; Nl= 10 0.02037 0.00940 3.12103 0.96739 0.01594 0.00697 3.48140 0.92129

5* Nn= 15; Nl= 10 0.02010 0.00920 3.04229 0.96823 0.01316 0.00640 3.34344 0.94556

6 Nn= 20; Nl= 10 0.02020 0.00928 3.10425 0.96791 0.01599 0.00682 3.38230 0.92111

7 Nn= 15; Nl= 10; Sp= 0.4 0.02037 0.00943 3.13245 0.96739 0.01601 0.00695 3.49901 0.92111

8 Nn= 15; Nl= 10; Sp= 0.6 0.02057 0.00958 3.16392 0.96674 0.01606 0.00699 3.50363 0.92023

9 Nn= 15; Nl= 10; Sp= 0.8 0.02059 0.00962 3.18399 0.96666 0.01609 0.00704 3.53589 0.91991

The bold numbers represent the best results in each sub-category, while *represents the best GMDH-type neural network model among all others.
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Fig. 4 Scatterplots of the forecasted date. Forecasted results versus the measured values during the testing phase, (a) MSP1 dataset and (b)
MSP2 dataset.

Fig. 5 Modeling uncertainties. Forecasting error based on the testing phase.
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SHAP based factor impact discussions
The effect of the collected data related to the environmental
factors, in addition to the corrosion measurements from the
CorRES sensors, on the final output (i.e. free atmospheric
corrosion), as stated in the framework section, has been quantified
using the SHAP technique. The primary goal of this approach is to
assign a SHAP value to each environmental variable (i.e. Ts, Ta, RH,
and Conductivity), which can summarize the factor’s impact on
the final prediction results. A positive SHAP value indicates that
the variable has a positive effect on the output, while a negative
value indicates that the variable has a negative effect. In other
words, positive values indicate that the variable will hasten or
significantly contribute to the corrosion process, whereas negative
values indicate that the corresponding variable will decrease or
insignificantly contribute to the corrosion process. The impact of a
variable on the collected free atmospheric corrosion measurement
from the sensor, on the other hand, is proportional to the
magnitude of its SHAP value.
Figure 6a, b show the results of the SHAP model. Figure 6a

depicts the magnitude of the SHAP value, demonstrating that all
environmental variables have an impact on the resulting free
atmospheric corrosion output, with a higher influence of
temperatures (air and surface temperatures) followed by con-
ductivity and relative humidity, respectively. Figure 6b explains
the impact of each variable on corrosion-model in terms of the
SHAP Beeswarm plot, making the results of the SHAP values for
these variables more interpretable. According to Fig. 6b, higher Ts
values lead to higher SHAP values and the opposite for Ta, which
can be explained by indicating that a high-temperature gap
accelerates the corrosion process, with results not clearly showing
the temperature impact and this can vary depending on the time.
It is worth mentioning that the temperature-corrosion process
relationship is complicated and difficult to address without
significant experimentation. On the other hand, point distribution
can be useful. We can notice a dense cluster of low conductivity
values with small yet negative conductivity SHAP values. Higher

conductivity extends further to the right, implying that high
conductivity has a significant impact on increasing the atmo-
spheric corrosion process. The surface conductivity parameter
represents chloride concentration, where Chlorides accelerate
corrosion by changing the nature of the surface oxide, making it
less protective. It is worth emphasizing that SO2 has little influence
in our study because the sensors were placed very far away from
the emission locations, and the SO2 content in the air in Norway is
less than 0.1 μg/m³. Similarly, a dense cluster of relative humidity
was observed with lower SHAP values, where higher humidity
values can further contribute to the atmospheric corrosion
process. On the other hand, the results are limited to only four
variables and more parameters should be included to provide a
general model and explanation of the variables impacting the free
atmospheric corrosion process in marine environments, such as
wind intensity and direction, dew point, and precipitation, all of
which may contribute to this process.
In summary, this study addresses the forecasting of free

atmospheric corrosion in marine structures using an intelligent
time-series ML framework. The decision to handle the corrosion
problem as a time-series problem stems from the fact that
corrosion data was measured over a specified time step by the
sensors, allowing us to tackle the process as time-dependent. As a
result, this framework was tested on time-series corrosion datasets
obtained from real-time sensors with 30min intervals in Norway
over a 110-day period. The following are the study’s main findings:

● The training-testing percentage splitting was discovered to
have an effect on the modeling process’s outcome, with
different scenarios (i.e. 50%-50%, 60%-40%, 70%-30%, 80%-
20%, and 90%-10%) yielding different results. This latter
showed that the best performance was obtained with 70-30%
splitting in terms of R2 when compared to the other cases.

● Implementing the GMDH type neural network with different
design variables demonstrated the importance of selecting
these variables optimally to improve the forecasting system’s
performance. However, the forecasted data pattern using

Fig. 6 SHAP results. Summary plots for explaining the influence of the corrosion sensors’ collected variables. a Bar plot of mean SHAP values;
(b) Beeswarm plot.
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GMDH type neural network was found to closely match the
actual sensor data pattern, with little disagreement.

● The GMDH technique performed the best with Nn= 15;
Nl= 10; Sp= 0.4 for the first set of data from MSP1 with
RMSE= 0.051μA and SMAPE= 5.06%; and with Nn= 15; Nl=
10; Sp= 0.4 for the second set of data obtained from MSP2
with RMSE= 0.0069 μA and SMAPE= 3.49%.

● The SHAP approach provides an effective way to explain the
impact of some environmental factors on the corrosion model,
demonstrating that higher values of conductivity can increase
corrosion currents, indicating the presence of corrosive ions,
and that higher values of humidity can do the same.

Future research should focus on optimizing the selection of the
machine algorithm (in this case, GMDH) rather than the manual
approach, or on the implementation of advanced data-driven models
as deep learning techniques for time-series data. Furthermore, further
climatic and marine factors on the corrosion process and data using
the SHAP approach can provide new insights in this field.

METHODS
Experimental setup
As shown in Fig. 7, the experimental setup in this study consists of
installing two sensors (referred to as MSP1 and MSP2, respectively)
provided by Luna Innovations Company (i.e. CorRES sensors) at a
coastal site in Kjerringvik, southern Norway. Each sensor has two
sensor panels on a docking platform, with one panel reporting
weather data such as surface temperature (Ts) and air temperature
(Ta), where measurements are done with thermistors; Surface
conductivity, which is measured using a gold interdigitated sensor;

and relative humidity (RH) measured using capacitive. The other
panel is used to detect carbon steel-free atmospheric corrosion
using LPR on an interdigitated steel sensor (steel type UNS
G10080)27,28. All of the reported data was collected continuously
during 2022 (i.e. From May to August over a period of 110 days).

Machine learning models
In this part, a review of the theories relating to the developed
forecasting and investigation framework based on the GMDH and
SHAP methods was conducted. The proposed GMDH framework is
based on previous measurements of free atmospheric corrosion.
This type of prediction can be described by a possible linear or
non-linear autoregressive process, which can be expressed as29:

x k þ hð Þ ¼ f x kð Þ; x k � 1ð Þ; x k � 2ð Þ; ¼ ; xðk � n� 1Þ½ � (1)

where f is a function of the x’s past and present values.
The main directions that can be applied to such problems

(forecasting the h next values in time-series) are using an iterative
method, which consists of repeating one-step-ahead predictions
to the desired horizon as described in Fig. 8, and independent
value prediction training the direct model to forecast x(k+ h). A
machine learning algorithm is generally defined as a function f(x)
that takes an input vector X and produces an output vector Y,
making them excellent tools for dealing with time series problems.
In this study, GMDH-type neural network is developed to predict
the free atmospheric corrosion in a marine environment, and the
SHAP approach is used to investigate the relationship between
environmental factors and this phenomenon, as described in the
subsection that follows.

Group method of data handling (GMDH) type neural network. The
GMDH type neural network is a powerful data-driven modeling
technique that is built based on mathematical functions to obtain
complex nonlinear relationships between given input-output data-
sets30. The search for a function f that uses an input vector X = (x1,
x2,…,xn) to calculate the output Y based on a M observation using
multi-input-single-output data, as described in Eq. (2), is a difficult
task31. The goal is to train the GMDH to generate an approximated
function f̂ rather than the actual f in order to achieve the closest
output values ŷ to the actual output y as described in Eq. (3)29.

yi ¼ f xi1; xi2; ¼ ; xinð Þði ¼ 1; 2; ¼ ;MÞ (2)

ŷi ¼ f̂ xi1; xi2; ¼ ; xinð Þði ¼ 1; 2; ¼ ;MÞ (3)

Thus, GMDH seeks to minimize the square of the difference
between predicted and actual data, as expressed in Eq. (4).

XM
i¼1

f̂ xi1; xi2; ¼ ; xinð Þ � yi
h i2

! min (4)

The Kolmogorov-Gabor polynomial approach (also known as
the Volterra functional series) is used in GMDH type neural
networks to create a connection between the inputs and outputs,
as shown in Eq. (5):

y ¼ a0 þ
Xn
i¼1

aixi þ
Xn
i¼1

Xn
j¼1

aijxixj þ
Xn
i¼1

Xn
j¼1

Xn
k¼1

aijkxixjxk þ ¼

(5)

To simplify, a system of partial quadratic polynomials composed
of two neurons can be used to represent the previous equation as
follows:

ŷ ¼ G xi; xj
� � ¼ a0 þ a1xi þ a2xj þ a3xixj þ a4xi

2 þ a5xj
2 (6)

In Eq. (6), the quadratic form is used to construct three
polynomials, with coefficients ai determined using a regression

Fig. 7 The experimental setup. View of a sensor installed toward
the south eats sea in Kjerringvik, Norway27.

Fig. 8 Time-series forecasting model. Explanation of the forecast-
ing process in time-series models.
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method, in which the difference between the predicted and actual
output is minimized for each pair of (xi, xj) input variables. As a
result, maintaining the coefficient of each quadratic function Gi is
required to optimally fit the output in the entire set of input-
output data pairs using the expression:

E ¼
PM
i¼1

yi � Gið Þ
M

! min
(7)

To generate Eq. (7), the basic GMDH model considers all
possible combinations of the two independent variables out of a
total of n input variables. So, from the observations

yi; xipxiq
� �

; i ¼ 1; 2; ¼ ;Mð Þ
n o

for different q, p ∈ {1, 2,…,n},

n
2

� �
¼ nðn�1Þ

2 neurons will be generated in the first hidden layer

of the feed-forward network. Respectively, Eq. (8) represents the
feasibility of generation M data triples

yi; xipxiq
� �

; i ¼ 1; 2; ¼ ;Mð Þ
n o

from observations using such q,

p ∈ {1,2,…,n}.

x1p x1q
x2p x2q

� � � y1
� � � y2

..

. ..
.

xMp xMq

. .
. ..

.

� � � yM

2
66664

3
77775 (8)

The matrix equation Aa= Y can be calculated using the
quadratic sub-expression Eq. (4) for each row of M data triples,
where a (a ¼ a0; a1; a2; a3; a4; a5f g) is the vector of unknown
coefficients of the quadratic polynomial in Eq. (6), while Y=
y1; y2; ¼ ; yMf gT is vector of output’s value from measurements.
Therefore A can be expressed as follows:

A ¼

1 x1p x1q
1 x2p x2q

x1px1q x21p x21q
x2px2q x22p x22q

..

. ..
. ..

.

1 xMp xMq

..

. ..
. ..

.

xMpxMq x2Mp x2Mq

2
666664

3
777775 (9)

The solution to the normal equations can be obtained by
performing a multiple-regression analysis based on the least-
squares technique in the form of Eq. (10), which will determined
the vector of the best coefficient of Eq. (6) for the entire set of M
data triples:

a ¼ ATA
� ��1

ATY (10)

Shapley additive explanations (SHAP). SHAP is an interpretable
game theory-based approach for describing the performance of
data-driven models based on an additive feature attribution
method, in which an output model is defined as a linear addition
of input variables32,33. Given a vector with p input variables
X= (x1, x2, …, xp), and based on an original model f(X) with
simplified input X 0, the explanation model g(X’) is as follows:

f Xð Þ ¼ g X 0ð Þ þ Φ0 þ
XM
i¼1

Φix
0
i (11)

where M is the number of input features, and Φ0 is a constant
value if all inputs are missing. The inputs X’ and X are linked by a
mapping function, X ¼ hXðX 0Þ.
Lundberg and Lee34 stated that the single solution for Eq. (11)

should have three desirable properties: local accuracy, missing-
ness, and consistency. When X ¼ hXðX 0Þ, the local accuracy
ensures that the function output is the sum of the feature
attributions, which requires the model to match the output of f for
the simplified input X’. Missingness guarantee that no weights are
given to missing features. In another word, missingness is
satisfied, as Xi’= 0. Changing a larger impact feature will not
reduce the attribution assigned to that feature because of the
consistency. When zi’= 0, for a setting z’\i, f 0x z0ð Þ � f 0x z0ið Þ �
f x z0ð Þ � f x z0ið Þ implies Φiðf 0;XÞ, in which the only possible model
that meets these requirements is as follows35,36:

Φi f
0;X

� � ¼ X
Z0�X 0

Z0j j! M� Z0j j � 1ð Þ!
M!

f x z0ð Þ � f x z0nið Þ½ � (12)

In Eq. (12), |Z’ | denotes the number of non-zero entries in Z0,
and Z0�X 0, while Φi represent the Shapely values. As a result,
Lundberg and Lee34 proposed a solution to Eq. (12), where
f x z0ð Þ ¼ f hxðZ0Þð Þ ¼ E f zð ÞjzS½ �, with S denotes the set of non-zero
indices in Z’, known as SHAP values.

Evaluation metrics. The prediction evaluation of forecasting
results in terms of accuracy and stability is crucial task37,38. Thus,
the forecasting accuracy is evaluated using the forecasted error
(ek), which is the difference between the actual measured sensor
data (Cl) and the forecasted atmospheric corrosion (Ĉl) for the k-th
forecast as follows:

ek ¼ Cl;k � Ĉl;k (13)

Table 3 summarizes the statistical metrics used in this study (i.e.
MAE, RMSE, SMAPE, and R2) as well as their intended use, where N
denotes the total number of forecasted samples. For MAE (μA),
RMSE (μA), and SMAPE (%), the lower the value, the higher the

Table 3. Comparative error metrics.

Metric Abbreviation Expression Role/Utilization

Mean Absolute Error MAE 1
N

PN
k¼1

ekj j Used to determine the degree of similarity between predicted and observed values.

Root Mean Square Error RMSE ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
k¼1

ekj j
s Used to assess the overall disparity between observed and predicted values.

Mean Absolute Percentage Error SMAPE 1
N

PN
k¼1

ekj j
Clj jþ Ĉlj j%

Based on the percentage absolute error, it is used to calculate the accuracy of
forecasted results.

Coefficient of determination R2

1�
PN
k¼1

ð�ek ÞPN
k¼1

ðĈl;k�ClÞ

Used to compare the agreement between the forecasted data and real
measurements

Cl : The actual measured sensor data of the free atmospheric corrosion.
Ĉl : The forecasted free atmospheric corrosion.
Cl : The average of the free atmospheric corrosion measurements.
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model performance accuracy, whereas for R2, the higher the value,
the better the model efficiency.
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