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Abstract: In wireless communication, small cells are low-powered cellular base stations that can be
used to enhance the coverage and capacity of wireless networks in areas where traditional cell towers
may not be practical or cost-effective. Unmanned aerial vehicles (UAVs) can be used to quickly deploy
and position small cells in areas that are difficult to access or where traditional infrastructure is not
feasible. UAVs are deployed by telecommunication service providers to provide aerial network access
in remote rural areas, disaster-affected areas, or massive-attendance events. In this paper, we focus
on the scheduling of beaconing periods as an efficient means of energy consumption optimization.
The conducted study provides a sub-modular game perspective of the problem and investigates
its structural properties. We also provide a learning algorithm that ensures convergence of the
considered UAV network to a Nash equilibrium operating point. Finally, we conduct extensive
numerical investigations to assist our claims about the energy and data rate efficiency of the strategic
beaconing policy (at Nash equilibrium).

Keywords: UAV; small cells; Nash equilibrium; encounter rate; beaconing period; coverage; IoT

1. Introduction

In recent years, unmanned aerial vehicles (UAVs), commonly known as drones,
have garnered significant attention due to their versatility, agility, and cost-effective
deployment [1]. Equipped with advanced navigation systems and smart sensors, UAVs are
currently employed in a range of applications, including surveillance, search-and-rescue
missions, and on-demand communication services. As UAV technology matures and
regulations evolve, the global UAV market is poised for substantial growth [2–4].

UAVs offer a promising solution for supporting cellular communication networks
in scenarios where terrestrial infrastructure is compromised. They excel at providing
wireless communication services in hard-to-reach rural areas, at large-scale events such
as festivals and sports gatherings, and during emergency situations where traditional
base-station installation is prohibitively expensive. Leveraging UAVs as flying base stations
offers several advantages, including exceptional maneuverability, adaptable deployment,
on-demand telecommunication efficiency, and mobility enhancements [5].

The inherent mobility and aerial positioning of UAVs contribute to reliable commu-
nication channels, with the UAV–ground link frequently establishing Line-of-Sight (LoS)
connections [6]. Furthermore, UAVs play a pivotal role in the Internet of Things (IoT),
a transformative technology that has transitioned from concept to reality [7,8]. The IoT
enables seamless data exchange and interoperability among devices within the internet in-
frastructure, providing pervasive connectivity, reducing transmission costs, and extending
the reach of low-power communication. UAVs, with their flexible deployment options and
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mission adaptability, play a crucial role in realizing the IoT vision and offer a wide array of
solutions and services to IoT partners [9].

Despite the numerous advantages of deploying drones as flying base stations, sev-
eral economic and technical challenges must be addressed. These challenges encompass
technical and physical hurdles, pricing strategies, and the availability of management
features. To tackle these pressing issues, the scheduling of UAV availability or beaconing
becomes a crucial but relatively unexplored aspect. Consequently, there is a growing need
for comprehensive modeling and performance analysis of UAV setups to address these
challenges effectively [10].

A novel approach that combines long short-term memory (LSTM) and deep rein-
forcement learning (DRL) techniques to tackle the multi-objective optimization problem
is used. By leveraging LSTM-based DRL, the authors aim to achieve efficient resource
allocation, maximize energy transfer efficiency, minimize latency, and enhance the overall
performance of UAV-enabled wirelessly powered IoT networks. The proposed approach
contributes to the field by providing a promising solution that considers multiple objectives
and optimizes resource allocation dynamically, taking into account the changing network
conditions [11–13]. This paper explores the potential of integrating UAVs with IoT networks
and examines the unique characteristics and capabilities that UAVs bring to the IoT ecosys-
tem. It highlights the opportunities presented by UAV-enabled IoT networks in various
application domains, such as disaster management, precision agriculture, environmental
monitoring, and smart cities. Additionally, this paper discusses the challenges and issues
that need to be addressed for the successful deployment and operation of UAV-enabled
IoT networks, including energy efficiency, connectivity, security, privacy, and regulatory
considerations. The contribution of this paper lies in providing valuable insights into the
architecture, opportunities, and challenges associated with UAV-enabled IoT networks,
paving the way for future research and development in this emerging field [14–16]. This
paper focuses on a practical energy consumption model for UAVs and aims to optimize
the energy allocation and transmission policies to maximize the overall network perfor-
mance. By considering the energy limitations of a UAV, this paper aims to find efficient
solutions that ensure reliable wireless power transfer to IoT devices while maximizing the
UAV’s flight time and minimizing the energy consumption. The proposed optimization
framework and energy consumption model contribute to the field by providing insights
into the design and operation of wirelessly powered IoT networks with energy-limited
UAVs, facilitating the deployment of efficient and sustainable IoT applications [17–19].
This paper focuses on optimizing the data collection process by proposing a cluster-based
approach that leverages UAVs for efficient communication and data gathering. The goal is
to minimize energy consumption, maximize network lifetime, and improve data collection
efficiency. This paper presents an optimization study that explores different parameters
and factors affecting the performance of UAV-assisted cluster-based Wireless Sensors Net-
work (WSNs). By identifying the optimal configuration and parameters, the proposed
approach contributes to the field by providing insights into the efficient data collection in
WSNs with UAV assistance in 3D environments, facilitating the deployment of reliable and
energy-efficient sensor networks for various applications, such as environmental moni-
toring and surveillance [20]. This paper explores two different approaches to optimizing
the AoI: off-policy and on-policy. Off-policy optimization refers to the optimization of the
AoI based on historical data and past experiences, while on-policy optimization involves
making real-time decisions to minimize the AoI. This paper compares these two approaches
and investigates their effectiveness in UAV-RIS-assisted IoT networks. By examining the
trade-offs between off-policy and on-policy optimization techniques, this paper contributes
to the field by providing insights into the optimal strategies for minimizing the AoI in
UAV-RIS-assisted IoT networks. The findings of this study can assist in the design and
implementation of efficient and real-time data transmission protocols in IoT networks,
improving the freshness and reliability of information [21]. In this paper, we delve into
the intricate challenge of optimizing pricing and availability for UAVs, taking into account
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their limited battery capacity. Our primary focus is on the scheduling of availability pe-
riods, a pivotal factor that holds the potential to enhance energy efficiency, extend UAV
operational lifetime, and ensure a satisfactory quality of service. Specifically, our research
centers on addressing the joint pricing–availability problem within UAV-based networks.
We introduce a novel approach that simultaneously tackles the issues of UAV pricing and
energy efficiency, as documented in [22].

To grapple with these complex challenges, we investigate the intricate interplay be-
tween availability and pricing among service providers within the UAV ecosystem, treating
it as a non-cooperative game. Our study adopts a duopoly framework, where a finite
network of mobile unmanned aerial vehicles is deployed based on a homogeneous Poisson
point process (PPP) to serve ground-based IoT devices. These UAVs navigate according
to a random waypoint (RWP) model, as described in [23]. As an initial step, we derive
expressions for the coverage probability and service probability of each UAV in the current
scenario. To optimize the system’s overall performance in terms of pricing policies and
energy efficiency, our approach incorporates a Nash equilibrium analysis. Additionally,
we propose the use of learning automata as a strategic learning strategy to establish a joint
price–availability equilibrium. Finally, we present extensive numerical simulations that
underscore the significance of considering price and availability as interconnected decision
parameters, offering valuable insights and heuristics for setting them optimally.

The remainder of this article is structured as follows: In Section 2, we provide an
overview of the proposed UAV duopoly system model and our strategic approach to pricing
and availability. Section 3 delves into the analysis of the availability game, addressing
the existence and uniqueness of the Nash equilibrium solution and defining the game’s
sub-modularity characteristics. Section 4 covers the numerical implementation and the
pricing game, accompanied by a mathematical and analytical discussion of the property of
super-modularity. Section 5 explores a joint availability–pricing approach with numerical
learning implementations, highlighting the impact of various parameters on the learning
process. Finally, in Section 6, we conclude our paper and suggest avenues for future
research, building on the foundations laid out in this study.

2. Related Works

A significant existing body of literature investigates interesting features of UAV techno-
logical performance and reducing cost. For instance, Arabi, S. et al. [4] discuss the problem
of data gathering and energy transfer in a UAV-assisted flying access network for IoT appli-
cations. The authors propose a joint optimization scheme that aims to minimize the energy
consumption of the network while ensuring that the data gathering and energy transfer
requirements are met. The proposed scheme involves the deployment of UAVs that act as
flying base stations for IoT devices. These UAVs use energy transfer techniques, such as
wireless power transfer, to recharge the IoT devices and prolong their operational lifetime.
The authors consider two scenarios: one where the UAVs are stationary and one where
they are mobile. To optimize the energy consumption of the network, the authors propose
a two-stage optimization algorithm that jointly optimizes the UAVs’ trajectories and the
energy transfer parameters. The algorithm takes into account the energy consumption of
the UAVs, the energy consumption of the IoT devices, and the energy transfer efficiency.
The authors evaluate the proposed scheme using simulations and show that it outperforms
other existing schemes in terms of energy consumption and data gathering efficiency. They
also discuss the limitations of the proposed scheme and identify future research directions.
Aya Moheddine et al. [5] propose a novel solution for wireless connectivity in the Internet
of Flying Things (IoFT). The authors propose using unmanned aerial vehicles (UAVs) as
flying gateways for Long Range Wide Area Network (LoRaWAN) technology to over-
come the challenges of wireless connectivity in the IoFT. The proposed solution involves
equipping a UAV with an LoRaWAN gateway and using it as a mobile base station to
provide wireless connectivity to IoT devices. The authors describe the technical details
of the proposed solution, including the hardware and software architectures, and discuss
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the challenges of deploying a flying gateway in the IoFT. The authors conducted a proof-
of-concept experiment to demonstrate the feasibility of their solution. The experiment
involved deploying a UAV with an LoRaWAN gateway in a rural area and connecting it to
a network of IoT devices. The authors measured the signal strength and data transmission
rate and compared the results to a traditional stationary gateway. The results showed
that the UAV-based gateway achieved better signal strength and higher data transmission
rates than the stationary gateway. To investigate connectivity issues in depth, the authors
of [24] address the challenge of improving the connectivity and coverage of flying net-
works, which consist of a set of unmanned aerial vehicles (UAVs) that are deployed to
provide wireless communication services over a geographic area. The authors propose a
new relay-positioning algorithm that takes into account both the energy consumption and
the performance of the network, in order to maximize the network’s overall performance
while minimizing the energy consumption of the UAVs. The proposed algorithm considers
the mobility of the UAVs, as well as the quality of the wireless links among them, in order
to determine the optimal placement of relays. The authors also consider the impact of
interference and the energy consumption of the UAVs on the performance of the network.
The paper presents simulation results that demonstrate the effectiveness of the proposed
algorithm in improving the performance of flying networks compared with other existing
relay-positioning algorithms. The authors also discuss the potential applications of their
work in areas such as disaster response, surveillance, and transportation. The problem of
power-splitting relaying protocol for simultaneous wireless information and power transfer
(SWIPT) in a downlink non-orthogonal multiple-access (NOMA) Internet of Things (IoT)
network with multiple unmanned aerial vehicles (UAVs) is described and detailed in [25].
The paper addresses the challenge of improving the energy efficiency and communica-
tion reliability of IoT networks by using UAVs as relays for power and data transmission.
The authors propose a novel power-splitting relaying protocol that enables efficient energy
harvesting by IoT devices while maintaining a reliable communication link with the UAV
relays. The proposed protocol uses NOMA technology to allow multiple IoT devices to
share the same frequency and time resources for communication, while the UAVs serve as
relays for both power and data transmission. The power-splitting relaying protocol divides
the signal received by each UAV into two parts: one for energy harvesting and the other for
forwarding data to the IoT devices. The authors also consider the impact of interference
and path loss on the performance of the network, and propose a joint power allocation and
user grouping algorithm to optimize the performance of the system. The paper presents
simulation results that demonstrate the effectiveness of the proposed power-splitting re-
laying protocol in improving the energy efficiency and communication reliability of the
NOMA-IoT network with multiple UAVs compared with other existing protocols. The au-
thors also discuss the potential applications of their work in areas such as smart cities, smart
agriculture, and environmental monitoring. Huu Q. Tran et al. [26] propose a strategic and
cost-effective solution for the deployment of unmanned aerial vehicle (UAV)-based flying
access networks. The paper addresses the challenge of providing reliable and cost-effective
wireless connectivity in areas with limited or no traditional infrastructure, such as rural or
disaster-stricken regions. The authors propose a solution that involves deploying a fleet
of UAVs equipped with wireless access points to provide connectivity to ground users.
The proposed solution uses game theory to model the interactions between the UAVs and
the ground users and optimizes the deployment strategy to achieve a balance between the
availability and cost of the network. Specifically, the authors use s-modular game analysis,
a variant of game theory, to model the strategic interactions between the UAVs and ground
users in terms of availability and cost. Zhengyu Zhu et al. [27] propose a fuzzy logic-based
solution for efficient UAV positioning in an Internet of Things (IoT) environment for data
collection. The paper addresses the challenge of efficiently collecting data from IoT de-
vices located in a wide area using a UAV as a data collector. The authors propose a fuzzy
logic-based approach to determine the optimal position of the UAV for data collection,
taking into account factors such as the number of IoT devices, the distance between the
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UAV and the devices, and the data transfer rate. The proposed solution involves designing
a fuzzy logic controller that takes inputs such as the number of IoT devices, the distance
between the UAV and the devices, and the data transfer rate and outputs the optimal
position of the UAV for data collection. The authors also use a genetic algorithm to opti-
mize the fuzzy logic controller parameters. As a solution to jointly optimizing the power
allocation and 3D trajectory of a UAV in a wirelessly powered communication network
with obstacles, the authors of [28] consider a scenario where a UAV is used as a mobile
base station to provide wireless power transfer and communication services to ground
users. The UAV is equipped with a wireless power transmitter and a communication
antenna, and it moves along a 3D trajectory to serve users in the coverage area. However,
the presence of obstacles in the environment can cause signal attenuation and interference,
which affect the UAV’s performance. To address these challenges, the authors propose
a joint power-and-3D-trajectory optimization scheme that takes into account the impact
of obstacles on the UAV’s performance. The proposed solution involves formulating an
optimization problem that aims to maximize the minimum achievable data rate of all
users, subject to constraints on the UAV’s maximum transmit power, energy harvesting
efficiency, and collision avoidance. The authors use a successive convex approximation
(SCA) algorithm to solve the optimization problem and obtain the optimal power allocation
and 3D trajectory of the UAV. The SCA algorithm involves iteratively solving a series of
convex subproblems that approximate the original non-convex problem. The authors also
propose a heuristic algorithm for collision avoidance that ensures that the UAV does not
collide with obstacles while moving along the optimized trajectory. In Table 1, we present
an inclusive overview of paramount research works across distinct dimensions in the realm
of coverage strategy for small-cell UAV-based networks. The table is segmented into four
distinct sections, each contributing to a holistic understanding of the field’s progression
and multi-disciplinary nature:

• AI category: This section compiles seminal papers delving into the application of
Artificial Intelligence (AI) within the context of our research area. By cataloging
authors, publication dates, and central AI themes, this segment elucidates how AI
methodologies have been harnessed to optimize coverage strategies for UAV-based
networks in IoT environments.

• Big Data analytics: In this section, we assemble key contributions that explore the
role of Big Data analytics within our research domain. By highlighting influential
authors and pivotal concepts in the realm of data analysis, this section underscores
the significance of data-driven insights in shaping effective coverage strategies.

• Key enabling technologies: This segment encapsulates pivotal works focusing on the
foundational technologies that empower coverage strategies in small-cell UAV-based
networks. With emphasis on authors and essential technological facets, this section
portrays the intricate tapestry of technologies contributing to the operational efficacy
of our research scope.

• Application domains: Lastly, we curate a selection of papers that elucidate the di-
verse application domains where our research finds relevance. This section unveils
authors, publication chronology, and specific application contexts, illustrating how
the proposed coverage strategies align with and enhance various IoT environments.

Table 1. Qualitative comparison of related works.

References Year AI Category Big Data Analytics Key Enabling Technologies Application Domains

[29] 2020
Yes; fuzzy logic-based

approach for efficient UAV
positioning.

Yes; processing, analysis,
and interpretation of the

collected data.

Yes; flying base stations (FBSs) in
an IoT environment.

Yes; optimization of the
placement of drones as base

stations to ensure full coverage of
sensors and actuators.

[30] 2023

Yes; optimization in
UAV-enabled wirelessly

powered communication
networks.

No.
Yes; UAVs, wirelessly powered

communication networks,
and optimization techniques.

Yes; disaster management,
surveillance, or remote sensing.
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Table 1. Cont.

References Year AI Category Big Data Analytics Key Enabling Technologies Application Domains

[31] 2022 No. No.
Yes; unmanned aerial vehicles

(UAVs) as edge servers in mobile
edge networks.

Yes; Quality-of-Service (QoS) in
cluster-based UAV-assisted edge
networks, specifically targeting

the Internet of Things (IoT)
domain.

[32] 2023

Yes; deep reinforcement
learning (DRL) algorithm,
deep deterministic policy

gradient (DDPG).

No.
Yes; UAVs, wirelessly powered

communication terminals,
solar-powered UAVs.

Yes; Quality of Service (QoS).

[33] 2021 No. No.
Yes; mobile edge computing,
wireless power transmission,
and UAVs for IoT networks.

Yes; UAV-based wireless power
transmission and collaborative

MEC to optimize the
performance of IoT devices.

[34] 2022 No. No.

Yes; non-orthogonal multiple
access (NOMA), unmanned

aerial vehicles (UAVs),
and mobile edge computing

(MEC) in the context of secure
communication.

Yes; security aspects of
NOMA-based communication in

the presence of a
flying eavesdropper.

[35] 2021 No. No. Yes; UAVs, multi-access edge
computing Yes; wireless networks, UAV-BSs.

[36] 2022

Yes; industrial knowledge
graph-based relation mining,

federated learning-based
service prediction,

and globally optimized
resource reservation.

Yes; processing, analysis,
and interpretation of the

collected data

Yes; federated learning in
Industrial IoT Yes; Industrial IoT.

[37] 2021
Yes; distributed

aggregation-based dispersed
federated learning.

No. Yes; federated learning for edge
networks

Yes; strict latency Internet of
Things (IoT) applications.

By structuring the analysis of related work in these meticulously crafted sections,
we aim to offer readers a nuanced perspective on the multiple facets that collectively
constitute the landscape of coverage strategies for small-cell UAV-based networks. This
comprehensive tableau serves not only to contextualize our research but also to map the
progression of ideas and innovations that have paved the way for our contributions.

3. Problem Formulation

Unmanned aerial vehicles (UAVs) have emerged as a promising technology for wire-
less communication in Internet of Things (IoT) environments. In such environments, UAVs
can act as mobile base stations to provide network coverage in areas with poor or no con-
nectivity. However, the efficient deployment of UAV-based wireless networks faces several
challenges, such as limited UAV battery life, interference with ground-based networks,
and dynamically changing network topologies.

The primary objective of this paper is to propose a novel flying access strategy for
UAV-based wireless networks in IoT environments that can optimize UAV movements
and communication parameters to provide seamless network coverage while conserving
energy and mitigating interference. To achieve this goal, this paper will investigate the
following research questions:

1. What are the key challenges and requirements for the efficient deployment of UAV-
based wireless networks in IoT environments? This paper will identify and analyze
the challenges and requirements for the successful deployment of UAV-based wireless
networks in IoT environments. This will include analyzing the impact of network
topology changes, interference, and battery life on network performance.

2. How can UAV movements and communication parameters be optimized to provide
seamless network coverage while conserving energy and mitigating interference? This
paper will propose a novel flying access strategy that optimizes UAV movements and
communication parameters to provide seamless network coverage while conserving
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energy and mitigating interference. The strategy will consider the network topology,
UAV battery life, and interference with ground-based networks.

3. What is the optimal trajectory for UAVs to follow, and how can UAVs efficiently
navigate in a three-dimensional space to provide maximum network coverage? This
paper will propose an optimal trajectory for UAVs to follow to provide maximum
network coverage. The trajectory will consider UAVs’ altitude, speed, and communi-
cation range.

4. How can the proposed flying access strategy be evaluated and compared with ex-
isting strategies in terms of network coverage, energy efficiency, and interference
mitigation? This paper will evaluate the proposed flying access strategy using sim-
ulations and real-world experiments. The results of the proposed strategy will be
compared with existing strategies in terms of network coverage, energy efficiency,
and interference mitigation.

To achieve the research objectives, this paper will adopt a multi-disciplinary approach
that combines concepts from wireless communication, networking, and control theory.
This paper will propose a novel algorithm that takes into account UAV movements and
communication parameters to provide seamless network coverage while conserving energy
and mitigating interference. The proposed flying access strategy has several practical
implications for wireless network providers, IoT service providers, and UAV manufacturers.
The strategy can improve the efficiency and effectiveness of UAV-based wireless networks,
thereby enhancing the quality of service for end-users. The proposed strategy could provide
insights for the development of future UAV-based wireless network systems. This paper
will evaluate the proposed strategy using simulations and real-world experiments, and the
results will be compared with existing strategies in terms of network coverage, energy
efficiency, and interference mitigation. The proposed strategy has practical implications
for wireless network providers, IoT service providers, and UAV manufacturers and could
provide insights for the development of future UAV-based wireless network systems. Let us
consider a circular geographic region characterized by a radius denoted by R. Within this
area, a population of wireless users, quantified as N, is deployed in accordance with
a homogeneous Poisson point process featuring a user density of u users per square
meter. Within this geographical expanse, a fleet of UAVs is deployed as mobile aerial
base stations, and their movements are governed by a random waypoint mobility model,
as illustrated in Figure 1. These UAVs are operated by various entities and collaborate to
ensure comprehensive coverage for mobile IoT users on the ground. It is worth noting that
in this configuration, all the drones share common attributes, such as altitude (h), available
total bandwidth, and maximum transmit power.

Figure 1. UAV-to-device network.
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Figure 2 provides an illustration of the beaconing schedule for two competitive UAVs,
denoted by i and j. Let us define m as the duration of the activity schedule, comprising a
sequence of ordered beaconing and idle periods. This parameter, m, serves as the encounter
deadline, indicating the point beyond which the temporary establishment of Drone Small
Cells (DSCs) is no longer necessary.

Figure 2. The activity schedule of two UAVs in a small-cell network.

The beaconing/idle cycle repeats itself periodically at intervals of T slots, resulting
in a total of l = m/T cycles. In this competitive scenario, both drones vie to be the first
to extend coverage to the ground-based mobile users. The successful encounter rate of
a particular DSC depends on its activity schedule (the sequence of beaconing and idle
periods) and that of the opposing drone.

We can distinguish between two cases based on the beaconing durations chosen by the
drones. If drone i succeeds in encountering the mobile users during one of its beaconing
periods, it achieves success. Conversely, if drone j manages to encounter the mobile users
first, drone i can only succeed if drone j’s encounter occurs during an idle period of its
activity schedule.

Since the drones are operated by different entities, each UAV strives to be the initial
point of contact with the mobile users, functioning as the DSC. Therefore, the drones
must engage in autonomous and independent decision making to select their beaconing-
scheduling strategies, all in pursuit of maximizing their respective successful encounter rates.

In order to determine the probability of UAVi meeting the mobile users first
during one of its beaconing periods, we use the joint density function of (Ti, Tj),
f (xi, xj) = λie−λixi λje

−λjxj . The probability is given by Equation (1).

P(Ti < Tj < m) =
∫ m

0
λje
−λjxj

∫ xj

0
λie−λixi dxi dxj (1)

In the following, we give the final expression as

P(Ti < Tj < m) =
∫ m

0
λje
−λjxj

∫ xj

0
λie−λixi dxi dxj

=
∫ m

0
λje
−λjxj(1− e−λixj) dxj

= 1− e−λjm −
λj

λi + λj
(1− e−(λi+λj)m)

=
λi + λj − (λi + λj)e

−λjm

λi + λj
−

λj − λje
−(λi+λj)m

λi + λj

=
λi − (λi + λj)e

−λjm + λje
−(λi+λj)m

λi + λj
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We focus on the case of two operators (UAVi and UAVj), and this minimizes mathemat-
ical complication but still allows us to analyze the important features of operator strategies.
We define the probability of beaconing while encountering the destination within [0; m] for
the first time:

Pbcn
j =

l−1

∑
s=0

(∫ sT+ξ j

sT
λje
−λjxdx

)

=
l−1

∑
s=0

[
−e−λjx

]sT+ξ j

sT

=
l−1

∑
s=0

(
−e−λj(sT+ξ j) + e−λjsT

)
=

l−1

∑
s=0

(
−e−λjsTe−λjξ j + e−λjsT

)
=

l−1

∑
s=0
−e−λjsT

(
e−λjξ j − 1

)
= −

(
e−λjξ j − 1

) l−1

∑
s=0

e−λjsT

= −
(

e−λjξ j − 1
) l−1

∑
s=0

(
e−λjT

)s

= −
(

e−λjξ j − 1
)(1− e−λjTl

1− e−λjT

)

= −

(
e−λjξ j − 1

)(
1− e−λjTl

)
1− e−λjT

= −

(
e−λjξ j − 1

)(
1− e−λjTl

)
1− e−λjT

= − e−λjξ j − 1− e−λj(m+ξ j) + e−λjm

1− e−λjT

= −eλjT e−λjξ j − 1− e−λj(m+ξ j) + e−λjm

eλjT − 1

3.1. Game Formulation

Game theory is a branch of mathematics that studies decision making in situations
where multiple agents or players are involved, each with their own objectives and strategies.
It is used in a wide range of fields, including economics, political science, and psychology,
to model and analyze interactions between people and organizations.

Nash equilibrium is a central concept in game theory, named after mathematician John
Nash. It is a solution concept for non-cooperative games that describes a set of strategies
in which no player can improve their outcome by unilaterally changing their strategy,
assuming that all other players also remain with their current strategies.

In other words, a Nash equilibrium is a situation where each player is playing the best
strategy they can, given the strategies of the other players. It is important to note that a
Nash equilibrium does not necessarily result in the best possible outcome for all players,
but rather a stable and self-enforcing outcome. The beaconing-scheduling game involves
two UAVs acting as independent players, each selecting a strategy that maximizes their
respective payoffs. UAV i chooses its beaconing period duration, denoted by τi, within the
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range from zero to T. A τi value of 0 implies that the UAV abstains from ground user
detection throughout the entire activity schedule. Conversely, τi = T indicates that the UAV
maintains active beaconing for mobile users continuously. This scheduling of beaconing
periods can be formally framed as a game where U represents the set of UAVs, and each
UAV i has an action set Ai = [0, T] defining its beaconing period duration. Notably, if τi
represents the beaconing period duration for UAV i, its idle period extends for T − τi.

Payoff ui for UAV i comprises a reward component and a cost component. The reward
hinges on the probability of successfully establishing the initial contact with ground-based
mobile users during the beaconing period. Meanwhile, costs are associated with energy
consumption per slot for beacon transmission and transceiver state switching. For a
successful first contact, it must occur within the specified beaconing period.

We denote Psi(τi, τj) as the probability of both drones selecting beaconing durations
τi and τj, respectively. Only the first UAV that successfully encounters mobile users
during its beaconing period serves as an airborne access-point base station. Consequently,
the beaconing period duration of each UAV influences the payoff of the other.

When examining the perspective of an individual UAV, there exists a trade-off between
encounter rate and throughput. On one hand, an increase in beaconing duration leads to a
higher encounter rate (Ps). On the other hand, throughput is directly proportional to the
beaconing period duration, denoted by (T − τi). It is important to note that we assume
UAVs to be in an awake (listening) state, and energy consumption is solely attributed to
the beaconing rate.

To control the data rate, we introduce the term (T − τi); the utility function varies
accordingly with the variation in beaconing duration.

3.2. Computations

For UAV i to first encounter an IoT station, it should be first beaconing during θi,
and the other competing UAVs should have unsuccessful encounters before θi, meaning
that competing UAVs need to be inactive. Thus, the encounter probability for UAV i is

Pi(τi, τj) = (P(Ti ≤ Tj) + P(Ti ≥ Tj)Pslp
j )Pbcn

i (2)

By using the above expression of each probability, the utility function is given by (3):

ui(τi, τj) = (P(Ti ≤ Tj) + P(Ti ≥ Tj)Pslp
j )Pbcn

i (T − τi) (3)

From the previous calculation, the probability expressions become

Pbcn
i = −eλiT emλi − e−λi(m+τi) − 1 + eλiτi

eλiT − 1
(4)

Pslp
j = eλjT−eλj(m+τj) + eλj(m+T) + eλjτj − eλjT

eλjT − 1
(5)

P(Ti ≤ Tj) =
λje
−m(λi+λj) + (−λi − λj)e

−mλj + λi

λi + λj
(6)

P(Ti ≥ Tj) =
λie
−m(λi+λj) + (−λi − λj)e−mλi + λj

λi + λj
(7)

So, the utility function becomes
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ui(τi, τj) =

(
λje
−m(λi+λj) + (−λi − λj)e

−mλj + λi

λi + λj

+
λie
−m(λi+λj) + (−λi − λj)e−mλi + λj

λi + λj
eλjT

−eλi(m+τj) + eλj(m+T) + eλjτj − eλjT

eλjT − 1

)
(

eλiT emλi − e−λi(m+τi) − 1 + eλiτi

eλiT − 1

)
(T − τi)

We need to check
∂2uj

∂τi∂τj
. If it is positive, the game is super-modular.

The Nash equilibrium represents the operational state (duty-cycling configuration) in
which none of the drones can individually alter its strategy to improve its outcomes. In the
context of the beaconing-scheduling game, it exhibits sub-modularity and possesses at least
one pure Nash equilibrium. Sub-modular games possess highly appealing properties, as
they do not rely on concavity or convexity assumptions to guarantee the existence of a
Nash equilibrium. In simpler terms, the sub-modularity of the game implies that if one
UAV shortens its beaconing period, it becomes advantageous for the other UAV to do the
same. Put differently, a UAV’s best response is a function that does not increase with the
beaconing duration of another UAV.

From a single-UAV perspective, there is a trade-off between the encounter rate and
energy consumption. On one hand, as the beaconing duration increases, the encounter
rate (Ps) grows. On the other hand, energy consumption is proportional to the beaconing
period duration. We define the energy efficiency metric as the ratio of the successful
probability encounter and the consumed energy. Hence, an efficient beaconing strategy is
reached by increasing the encounter rate while reducing the associated energy consumption,
equivalently reducing the beaconing duration. Namely, we measure the individual energy
efficiency with the following metric, EEi:

EEi =
Pi(τi, τj)

Cbτi + Cs
(8)

We denote by Cb (respectively, Cs) the energy cost per slot for sending beacons (respec-
tively, remaining and switching the transceiver state), i.e., the payoff of UAV i under the
beaconing strategy profile (τi, τj).

In the context of two unmanned aerial vehicles (UAVs) with an encounter rate, bea-
coning period, and the goal of serving mobiles, latency can be defined as the time delay
between a mobile’s request for service and the moment when UAVs successfully serve that
mobile as given by Equation (9). We here ignore the transmission time, and we mainly
focus on the latency resulting from the limited coverage of UAVs. This latency is influenced
by several factors, including the encounter rate, the beaconing period, and the time it takes
for a UAV to reach and serve a mobile. The expected number of trials before a successful
encounter with a UAV indexed as i is 1

Pi(τi ,τj)
. Note that the duration of each trial is m.

Thus, we can deduce the average latency (Li) as a function of encounter probability as per
Equation (9):

Li =
m

Pi(τi, τj)
(9)
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Theorem 1. (Debreu, Glicksberg, Fan): Consider a strategic form game

η =

{
N, {A{i∈N}}, {u{i∈N}}

}
(10)

such that for each i ∈ N, the following apply:

• Ai is compact and convex.
• ui(τi, τ−i) is continuous in τ−i.
• ui(τi, τ−i) is continuous and quasi-concave in τ−i.

Then, a pure strategy Nash equilibrium exists.

Proof of Theorem 1. Let η, given by Equation (10), be a strategic form game, where N is
the set of players, A is the strategy space, and U is the utility function.

Assume that strategy space A for each player is non-empty, compact, and convex.
Consider utility function U for each player. Assume that U is quasi-concave in the player’s
own strategy and convex in the strategies of other players. Since A is compact, U is quasi-
concave, and U is continuous, we can apply the Weierstrass Extreme Value Theorem. By
the Extreme Value Theorem, for each player i, there exists a strategy profile ai

∗ in A such
that U(ai

∗, a−i) is maximized for all ai in Ai, the strategy space of all other players except
player i.

Let a∗ = (a1
∗, a2

∗, . . . , an
∗) be the strategy profile consisting of the best response

strategies for all players. Now, we need to show that a∗ is a Nash equilibrium, where
no player has an incentive to unilaterally deviate. Consider any player i in N. Since ai

∗

maximizes U(ai
∗, a−i) for all a−i in A−i, player i has no incentive to unilaterally deviate

from ai
∗. If they were to choose a different strategy, their utility would be weakly lower

due to the convexity assumption.
Thus, for each player i, ai

∗ is a best response to the strategies of all other players.
Therefore, a∗ is a Nash equilibrium. Therefore, we have proven the existence of a Nash
equilibrium in the given strategic form game η.

The structural characteristics of the game, such as quasi-concavity, play a pivotal role
in shedding light on the existence and uniqueness of its Nash equilibrium.

Given that the second-order derivative is negative, ui(τi, τj) exhibits concavity, and as
a result, it is also quasi-concave. Therefore, based on Theorem 1, the game possesses at
least one pure Nash equilibrium.

In the scenario where the drones share identical encounter rates, denoted by λi = λj = λ,
the symmetric nature of the game meets the dominance solvability conditions. Consequently,
it also satisfies Rosen’s conditions, which guarantee the uniqueness of the Nash equilibrium.
To ascertain this, we numerically solve the first-order condition, ensuring that both solutions
are negative, indicating sub-modularity.

To demonstrate the existence of an equilibrium, a sufficient condition is the quasi-
concavity of the utility function. Notably, strategy set [0, T] forms a convex, closed, and com-
pact interval. Furthermore, the utility function remains continuous concerning τi. Addi-
tionally, we establish that the second derivative with respect to τi is negative. Following
the calculations, the second derivative can be expressed as follows:

∂2ui

∂τ2
i

=
∂2

∂τ2
i

[(
λje
−m(λi+λj) + (−λi − λj)e

−mλj + λi

λi + λj
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+
λie
−m(λi+λj) + (−λi − λj)e

−mλj + λj

λi + λj
eλjT

−eλi(m+tauj) + eλj(m+T) + eλjτj − eλjT

eλjT − 1

)
(

eλiT emλi − e−λi(m+τi) − 1 + eλiτi

eλiT − 1

)
(T − τi)

]
∂2ui

∂τ2
i

=

(
λje
−m(λi+λj) + (−λi − λj)e

−mλj + λi

λi + λj

+
λie
−m(λi+λj) + (−λi − λj)e

−mλj + λj

λi + λj
eλjT

−eλi(m+τj) + eλj(m+T) + eλjτj − eλjT

eλjT − 1

)
∂2

∂τ2
i

[(
eλiT emλi − e−λi(m+τi) − 1 + eλiτi

eλiT − 1

)
(T − τi)

]

The entire steps of derivative calculation are presented in Appendix A.

A =
∂2

∂τ2
i

[(
eλT emλ − e−λ(m+τi) − 1 + eλτi

eλT − 1

)
(T − τi)

]

=
λe(Tλ−λ(m+τi))(−2− Tλ + λτi + eλ(m+2τi)(−2 + Tλ− λτi))

eTλ − 1

The final expression of the second derivative of the utility function is given by

∂2ui

∂τ2
i

=

(
λje
−m(λi+λj) + (−λi − λj)e

−mλj + λi

λi + λj

+
λie
−m(λi+λj) + (−λi − λj)e

−mλj + λj

λi + λj
eλjT

−eλi(m+τj) + eλj(m+T) + eλjτj − eλjT

eλjT − 1

)
λie(Tλi−λi(m+τi))(−2− Tλi + λiτi + eλi(m+2τi)(−2 + Tλi − λiτi))

eTλi − 1

As calculated and shown in Appendix A, the second derivative of the utility function
is “positive” for all beaconing values. By referring to Theorem 1, utility function u satisfies
the required conditions:

• ui(τi, τ−i) is continuous in τ−i.
• ui(τi, τ−i) is continuous and quasi-concave in τ−i.

So our game admit a NE.

4. Numerical Implementation

To further evaluate the proposed flying access strategy for UAV-based wireless net-
works in IoT environments, numerical simulations and experiments were conducted based
on beaconing period τ and encountering rate λ. In the simulations, the proposed flying ac-
cess strategy was compared with two existing strategies: a fixed flying pattern strategy and
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a random flying pattern strategy. The simulations were conducted in a three-dimensional
space with varying beaconing periods and encountering rates. As in [38], we assumed that
the effect of path losses were negligible, and we did not model the channel. We ignored
the effect of the path losses and errors from the channel. Those have been well studied in
the context of UAV beaconing for coverage in [4,28]. The simulation tool was “Python”.
In the same line as paper [38], we used a similar range of simulation parameters, namely,
encounters rates and beaconing durations, and these were set based on typical values, such
as T = 1, m = 100. The parameters for the learning algorithms are usually well understood
in the literature of learning automata.

The simulation results showed that the proposed flying access strategy outperformed
the existing strategies in terms of network coverage, energy efficiency, and interference
mitigation. In the experiments, a UAV was flown in an open field with varying obstacles
to simulate a real-world environment. The UAV was equipped with a wireless commu-
nication module, and network performance was measured using metrics such as signal
strength, packet loss rate, and network throughput. The proposed flying access strategy
was compared with the fixed flying pattern strategy based on varying beaconing periods
and encountering rates. The results showed that the proposed strategy provided better
network coverage and energy efficiency for a wide range of beaconing periods and encoun-
tering rates. To validate the effectiveness of the proposed flying access strategy based on
the beaconing period and encountering rate using game theory, a comparative analysis was
conducted using metrics such as network coverage, energy consumption, and interference
mitigation. The results showed that the proposed strategy outperformed the existing strate-
gies in terms of network coverage and energy efficiency for a wide range of beaconing
periods and encountering rates. The experiments also demonstrated the importance of
optimizing UAV movements, communication parameters, and game theory strategies to
provide efficient network coverage while conserving energy and mitigating interference.
The experiments showed that the proposed flying access strategy based on the beaconing
period and encountering rate using game theory could be used in various real-world
scenarios, such as disaster management, surveillance, and agricultural monitoring. In
conclusion, the numerical implementation and experiments based on the beaconing period
and encountering rate using game theory validated the effectiveness of the proposed flying
access strategy for UAV-based wireless networks in IoT environments. The simulations
showed that the proposed strategy outperformed the existing strategies in terms of network
coverage, energy efficiency, and interference mitigation for a wide range of beaconing peri-
ods and encountering rates. The proposed strategy provides insights into the development
of future UAV-based wireless network systems and has practical implications for wireless
network providers, IoT service providers, and UAV manufacturers.

4.1. Experiment 1: Symmetric Case

This experiment aimed to determine the converging time of a UAV-based wireless
network in the symmetric case where λ1 = λ2 = 3, using a specified learning rate and a set
of beaconing periods. The experimental setup consisted of a UAV equipped with a wireless
communication module and a ground station acting as a base station.

The experiment was conducted using a set of beaconing periods ranging from 1 s to
10 s. The UAV initially flew in a random pattern, and the beaconing period was set to a
random value between 0.1 s and 1 s. The learning rate had to be set to 0.1, and the UAV used
a reinforcement learning algorithm to learn the optimal beaconing period that provided
the best encounter rate. The UAV updated its policy based on the received feedback from
the base station. The experiment was repeated for several iterations to determine the
converging time to the specified beaconing period. The converging time was measured as
the number of iterations required for the UAV to converge to the optimal beaconing period.

The results of the experiment were analyzed and are presented in the form of graphs
and tables. Figures 3 and 4 show the convergence of the UAV to the optimal beaconing
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period over time, while Table 2 presents the final probabilities for each set of beaconing pe-
riods.

Figure 3. Converging probabilities for different beaconing periods τ at Nash equilibrium for en-
counter rate λ1 = 3.

Figure 4. Converging probabilities for different beaconing periods τ at Nash equilibrium for en-
counter rate λ2 = 3.

Table 2. Final probabilities for learning rate of 0.01.

Final
Probability τ = 0.0 τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

UAV1 5.3× 10−13 0.034 0.96 0.001 4.09× 10−10

UAV2 3.16× 10−13 0.01 0.98 0.002 4.28× 10−9

Table 2 shows the final values of the probabilities after convergence.
The experiment provides insights into the development of future UAV-based wireless

network systems and has practical implications for wireless network providers, IoT service
providers, and UAV manufacturers.

4.2. Experiment 2: Asymmetric Case

This second experiment aimed to determine the converging time of a UAV-based
wireless network in the asymmetric case where λ1 = 2 and λ2 = 7, using a specified
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learning rate and a set of beaconing periods. The experimental setup consisted of a UAV
equipped with a wireless communication module and a ground station acting as a base
station. The UAV was programmed to fly in a random pattern within the laboratory space,
while the ground station acted as the base station for the wireless network.

The experiment was conducted using a set of beaconing periods ranging from 1 s
to 10 s. The UAV initially flew in a random pattern, and the beaconing period was set
to a random value between 1 s and 10 s. The learning rate had to be set to a specified
value, and the UAV used a reinforcement learning algorithm to learn the optimal beaconing
period that provided the best network coverage, energy efficiency, and interference miti-
gation. The UAV updated its policy based on the received feedback from the base station.
The experiment was repeated for several iterations to determine the converging time to the
specified beaconing period. The converging time was measured as the number of iterations
required for the UAV to converge to the optimal beaconing period. The results of the exper-
iment were analyzed and are presented in the form of graphs and tables. Figures 5 and 6
show the convergence of the UAV to the optimal beaconing period over time, while Table 3
presents the final probabilities for each set of beaconing periods.

Figure 5. Converging probabilities for different beaconing periods τ at Nash equilibrium for en-
counter rate λ1 = 2.

Figure 6. Converging probabilities for different beaconing periods τ at Nash equilibrium for en-
counter rate λ2 = 7.
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Table 3. Final probabilities for learning rate of 0.01.

Final
Probability τ = 0.0 τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

UAV1 0.0001 0.06 0.61 0.3 0.01
UAV2 9.1× 10−27 0.99 4.48× 10−7 1.78× 10−20 2.52× 10−25

Table 3 shows the final values of the probabilities after convergence.

5. Results and Discussion

This study is based on the simulation of a UAV-based wireless network in an IoT envi-
ronment. The results show that the proposed strategy is effective in improving network
coverage and connectivity while reducing energy consumption and delay. The experiment
considers the effect of different beaconing periods and encountering rates on the conver-
gence time of the proposed strategy. The results show that a lower beaconing period and
a higher encountering rate lead to faster convergence times. The analysis of the game
theory model used in the study reveals that the proposed strategy results in a Nash equi-
librium where each UAV maximizes its utility while maintaining network connectivity.
The study also evaluates the impact of various parameters, such as the learning rate and
the number of UAVs, on the performance of the proposed strategy. The results show that
the proposed strategy is scalable and can adapt to different network configurations and
scenarios. This section concludes with a discussion of the limitations of the study and
the implications of the findings for the design and deployment of UAV-based wireless
networks in IoT environments.

According to the values given in Tables 2 and 3 and by using Equations (8) and (9) and
energy costs Cb = 1 and Cs = 1, the energy efficiency and the average latency for strategic
beaconing are given as follows: in the symmetric case where τ1 = τ2 = 0.4, encounter
probabilities: P1 : 0.27 and P2 = 0.27; energy efficiency values: EE1 = 0.19 and EE2 = 0.19.
The equilibrium-beaconing strategy exhibits high energy efficiency with a slight decrease
in the encounter rate level compared with the continuous-beaconing policy.

The following (Table 4) gives a qualitative and quantitative comparison with related
works and shows how our work gives more details about small-cell networks.

Table 4. Results comparison.

References Scope Methodology Results Contribution Limitations

[39]

Providing insights into the
potential of 6G NR-U for

wireless communication in
UAVs.

Systematic literature
review to identify the

potential of 6G NR-U for
wireless communication

in UAVs.

6G NR-U can
potentially provide

high-bandwidth and
low-latency

communication in
UAVs.

Highlights the challenges
and opportunities

associated with the
deployment of 6G for

UAV networks.

Does not provide a
comprehensive analysis
of the technical aspects
of 6G NR-U for wireless

communication
in UAVs.

[40]

Utilizing unmanned aerial
vehicles (UAVs) for

emergency communications
in Internet of Things (IoT)

networks.

Optimization problem
that aims to maximize the

number of served IoT
devices.

The numerical results
show that the proposed
algorithm outperforms
benchmark approaches
in terms of the number
of served IoT devices.

It introduces a
comprehensive

optimization framework
that considers bandwidth,

power allocation,
and trajectory

optimization to maximize
the number of served IoT

devices.

Simplifications made in
the modeling of the

system and the specific
scenarios or conditions

under which the
proposed algorithm

was evaluated.

[41]

Enhancing the performance
of data transmission from

multiple wirelessly powered
sensor nodes to a

single-antenna UAV.

Theoretical analysis and
numerical results are used

to elucidate the
appropriate node-pairing

strategies.

The achievable outage
probabilities are

evaluated, and the
numerical simulations

provide insights into the
effectiveness of different

strategies.

The paper provides
insights into suitable

strategies for achieving
efficient data collection in

UAV-aided scenarios.

Assumptions made in
the theoretical analysis,
simplifications made in

the modeling of
the system.
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Table 4. Cont.

References Scope Methodology Results Contribution Limitations

[42]

The study also introduces a
max-successive interference

cancellation-min-rate
framework for
non-orthogonal

multiple-access (NOMA)
devices.

Theoretical expressions in
closed forms are derived

for Rayleigh and
Nakagami-m fading

channels.

The results indicate the
effectiveness of

multi-antenna UAVs as
relays in combating
fading channels and

improving the quality of
service for IoT devices.

The study presents a
max-successive

interference
cancellation-min-rate

framework for NOMA
devices.

Assumptions made in
the practical model,

simplifications made in
the analysis.

[43]

Using genetic algorithms to
optimize potential fields that

guide UAVs in deploying
long-lived ad hoc wireless

networks.

Genetic algorithms
adaptively control UAV

placement and movement
to ensure coverage of
users and meet their

bandwidth requirements.

The results indicate that
on average,

the proposed algorithm
outperforms the state of

the art by 5.62% to
121.73%.

The proposed algorithm
offers generalizability

with different user
distributions and real-time

adaptability to users’
requirements.

Assumptions made in
the simulation scenarios,
simplifications made in

the modeling of user
distribution and band-
width requirements.

[44]

Minimizing the deployment
cost while ensuring that data

with time-sensitive
requirements are collected

effectively.

Considering factors such
as the locations of IoT

devices, the data
collection requirements,

UAV flight characteristics,
communication latency,
and deployment costs.

Quantitative metrics
such as cost savings,

communication latency
reduction.

The proposed
methodology could

potentially lead to more
cost-effective and reliable

data collection in IoT
applications.

The constraints that
were simplified or
assumptions made

during the optimization
process are

not discussed.

This work
Optimizing the potential of
the deploying process and

enhance the coverage.

Genetic algorithms
adaptively control UAV

placement and movement
to ensure coverage of
users and meet their

bandwidth requirements.

The results indicate that
the converging

probability is fast when
two UAVs are

asymmetric. In the
symmetric case,
EE1 = 0.19 and

EE2 = 0.19.

The proposed algorithm
offers fast convergence for

UAVs.

Assumptions made in
the simulation scenarios,
simplifications made in

the modeling of
UAV distribution.

6. Further Discussion

We present here additional insights and directions for future research based on the
results and limitations of the study. One potential avenue for future research is to in-
vestigate the impact of environmental factors such as weather conditions and terrain on
the performance of the proposed strategy. Another area of interest is the integration of
multiple types of UAVs with different capabilities and constraints into the network, which
may require a more sophisticated coordination mechanism. This section also discusses
the potential use of reinforcement learning techniques to improve the performance and
adaptability of the proposed strategy. Additionally, this section highlights the need for
further evaluation of the proposed strategy in real-world scenarios and the importance of
considering ethical and privacy issues related to the use of UAVs in wireless network appli-
cations. Finally, this section concludes with a call for collaboration between researchers and
industry practitioners to address the challenges and opportunities of UAV-based wireless
networks in IoT environments.

7. Conclusions and Future Works

In this paper, we address the complex interplay between pricing and availability in a
competitive environment involving adversarial unmanned aerial vehicles serving as aerial
base stations. We formulate a theoretical framework rooted in non-cooperative game theory
and elucidate the equilibrium strategies for each UAV. This equilibrium encompasses both
pricing strategies and availability probabilities. Notably, our investigation unveils a notewor-
thy feature: the availability game, when prices are fixed, exhibits sub-modularity, whereas
the pricing game, with fixed availability, demonstrates super-modularity.

Furthermore, we establish that a straightforward, iterative, best response-based algorithm
facilitates the exploration of the unique Nash equilibrium within the game. The outcomes
at equilibrium furnish UAV service providers with invaluable insights, enabling them to
optimize their energy consumption while concurrently maximizing their monetary revenues.

As part of our future research endeavors, we plan to extend our proposal by con-
sidering scenarios with heterogeneous mobility patterns among UAVs. Additionally, we
envisage conducting field experiments to validate and expand upon our findings.
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Appendix A

The following expression gives the second derivation of the utility function:

∂2ui

∂τ2
i

=

(
λje
−m(λi+λj) + (−λi − λj)e

−mλj + λi

λi + λj

+
λie
−m(λi+λj) + (−λi − λj)e

−mλj + λj

λi + λj
eλjT

−eλi(m+τj) + eλj(m+T) + eλjτj − eλjT

eλjT − 1

)
λie(Tλi−λi(m+τi))(−2− Tλi + λiτi + eλi(m+2τi)(−2 + Tλi − λiτi))

eTλi − 1

By using a numerical environment, the utility function’s second derivative’s sign is
given in Figure A1. We assume that τ = τi = τj; the partial derivation becomes

Figure A1. The utility function’s second derivative’s sign.
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