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Reinforced concrete (RC) shear walls macroscopic models are simplified strategies able to simulate the complex nonlinear behavior
of RC shear walls to some extent, but their efficacy and robustness are limited. In contrast, microscopic models are sophisticated
finite element method (FEM) models that are far more accurate and reliable. However, their elevated computational cost turns
them unfeasible for most practical applications. In this study, a data-driven surrogate model for analyzing RC shear walls is
developed using deep neural networks (DNNs). The surrogate model is trained with thousands of FEM simulations to predict the
characteristic curve obtained when a static nonlinear pushover analysis is performed. The surrogate model is extensively tested and
found to exhibit a high degree of accuracy in its predictions while being extremely faster than the detailed FEM analysis. The
complete framework that made this study possible is provided as an open-source project. The project is developed in Python and
includes a parametric FEM model of an RC shear wall in OpenSeesPy, the training and validation of the DNN model in Tensor-
Flow, and an application with an interactive graphical user interface to test the methodology and visualize the results.

1. Introduction

Reinforced concrete (RC) shear walls are typically used as the
main lateral-force-resisting elements in mid and high-rise
buildings. Their primary purpose is to increase the building’s
lateral stiffness and withstand the severe in-plane shear
forces generated when strong lateral loads are applied to
the structure, such as those induced by earthquakes or
high-speed winds. Consequently, RC shear walls are prompt
to suffer significant structural damage that could compro-
mise the integrity of the building [1]. To ensure a safe and
sound structural design, it is essential to develop reliable RC
shear wall modeling techniques that take into consideration
the well-known nonlinear behavior that characterizes con-
crete structures. A significant amount of effort and research
has been carried out toward this goal, including the rigorous
experimental testing of RC shear walls under lateral-induced
cyclic loading [2–4] and the development of various model-
ing techniques, which can be classified into two major cate-
gories: macroscopic and microscopic models [5].

Macroscopic models or macromodels are essentially sim-
plified systems consisting of multiple vertical (axial) and hor-
izontal/rotational (shear) springs that are connected together
with rigid elements. Alternatively, similar techniques have
been developed using truss or plane stress elements instead
of springs [6]. The elements in macromodels are arranged in
specific configurations that enable them to simulate the flex-
ural and shear behavior of RC shear walls. For example, the
popular multiple vertical lines element model, proposed by
Vulcano et al. [7], is depicted in Figure 1(a). Macromodels that
are combined with appropriated nonlinear force–displacement
relationships have proven capable of reproducing the complex
behavior of RC shear walls to some extent [8–12]. The main
advantage of the macromodeling approach is that it is compu-
tationally efficient and relatively easy to implement. Neverthe-
less, one of themain setbacks is that its accuracy is questionable
for certain effects. For instance, such models may considerably
underestimate the compressive strain of the concrete, ren-
dering them unable to capture the failure due to concrete
crushing [13].
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Alternatively, microscopic models consist of detailed
finite element method (FEM) models using a combination
of solid, shell, and beam elements that describe the geometry
of the wall with significantly more detail, such as those
depicted in Figures 1(b) and 1(c). Typically, micromodels
are implemented with appropriated nonlinear constitutive
material laws based on fracture mechanics and provide a
much more reliable modeling alternative that can reproduce
even severe damage scenarios with reasonable accuracy
[14–18]. Nonetheless, their analysis tends to be computa-
tionally expensive due to the refined mesh and the small
step required for the numerical stability of the nonlinear
solution procedure. Moreover, their adequate implementa-
tion requires an experienced engineer with advanced knowl-
edge in nonlinear computational mechanics and powerful
FEM software that includes the corresponding constitutive
models. Therefore, the usage of microscopic models is gen-
erally only conceived for research purposes or highly impor-
tant projects that can afford the increased time and effort.

There is a tradeoff between robustness, accuracy, and
computational cost between the RC shear wall macroscopic
and microscopic modeling alternatives. So far, no methodol-
ogy has been found to dominate over the others overwhelm-
ingly. Consequentially, the development of new models and
the improvement of existing methods are topics of particu-
larly high importance that motivate researchers to bring
innovative ideas to the table. In that context, leveraging the
advantages of the recent developments in machine learning
(ML), and particularly, artificial neural networks (ANNs),
could significantly contribute to tackling the aforementioned
challenges more efficiently [19]. For instance, finding ways to
reduce the computational cost of the microscopic FEM-
based models or increasing the robustness of the macro-
scopic modeling techniques [20], among other interesting
applications in structural engineering [21, 22].

This paper develops a novel modeling alternative for RC
shear walls that consists of creating a computationally effi-
cient surrogate model using deep neural networks (DNNs).
The DNN surrogate model is trained to predict the complex
nonlinear response of the wall based on an extensive data-
base of thousands of analyses that are generated with a
detailed microscopic FEM model. The predicted response

corresponds to the nonlinear force–displacement curve
obtained when a lateral displacement-controlled pushover
static analysis is performed using a detailed FEM model.
Furthermore, in this paper, a second but equally important
goal is to provide, as an open-source project, the complete
framework that has been developed to make this study pos-
sible. By making the source code available, we intend to
contribute to reducing the gap between the research and
the real-world application of ML-powered methodologies
in the field of Structural Engineering. The project is entirely
developed in Python and includes four major components:
(i) a parametric FEM model of an RC shear wall in Open-
SeesPy [23]; (ii) an automated subroutine to run thousands
of analyses and generate a usable database to train ML mod-
els; (iii) the training and testing of the DNN using the Ten-
sorFlow library [24]; and (iv) a powerful application with an
interactive GUI to explore and visualize the results.

The methodology presented in this paper is inspired by a
previous study published by the authors where a similar
surrogate model was developed to predict the lateral load
capacity of an RC wall [25]. The previous study considered
only a few parameters to describe the wall properties and
predicted a single numerical value corresponding to the
peak of the pushover curve. In this new study, the whole
curve is approximated, and more variables are introduced
to describe the geometry and the material properties of the
RC wall, thus, significantly increasing the robustness com-
pared to the previous methodology. Similarly, other studies
using ANNs for modeling RC shear walls include the work
by Barkhordari and Tehranizadeh [26] that proposed a
hybrid approach using ANN and the simulated annealing
algorithm to predict the response of RC shear walls. Moradi
and Hariri-Ardebili [27] created a database of shear walls by
assembling the results from various experimental tests avail-
able in the literature. They use the database to develop an
ANN capable of approximating the response of shear walls
with relatively good accuracy. Furthermore, other examples
of studies that use surrogate models to alleviate the compu-
tational cost of FEM simulations can be found [28–30].

The rest of the paper is structured as follows. In Section 2,
the FEM model used to create the training database is thor-
oughly described. In Section 3, the basic structure of an ANN
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FIGURE 1: Different modeling techniques for an RC wall: (a) macromodel using the MLVM approach; (b) finite element model using shell
elements; (c) finite element model using 3D solid and truss elements.
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is detailed, followed by a description of the creation, training,
and validation of the ANN-based surrogate model in Sec-
tions 3.2 to 3.4. Various numerical examples to test the sur-
rogate model predictions are presented in Section 3.5, and
the results are discussed in Section 4. A brief description of
the developed open-source framework is presented in Sec-
tion 5. Finally, the conclusions of this study and the possible
future directions are discussed in Section 6.

2. RC Shear Wall FE Model

2.1. Typical RC Shear Wall Reinforcement. RC shear walls are
typically built with higher quantities of reinforced steel and
stricter detailing criteria near the edges compared to the
other sections of the wall. Such reinforcement conditions
follow the high concentration of stresses near the edges
resulting from the characteristic stress distribution of ele-
ments subjected to bending. When in-plane lateral loads
are applied to the wall, one edge experiences compression
while the other extreme is under tension. Therefore, a

standard procedure is the inclusion of so-called boundary
elements placed at the edges of the wall. The steel reinforce-
ment at the boundary elements resembles similar character-
istics to the standard reinforcement that is applied to columns,
providing sufficient longitudinal steel reinforcement as well as
appropriate confinement to withstand the developed compres-
sive and tensile stresses. The rest of the wall is commonly
denoted as the web and typically requires a lesser quantity of
steel reinforcement. A representative image of an RC shear
wall cross section is given in Figure 2.

2.2. Multilayer Shell Element (MLSE) for RC Shear Walls. The
MLSE is a specific shell formulation in which the total thick-
ness of the shell is discretized into several fully bonded layers
with smaller thickness values. Each layer may have different
material properties, thus, making it relatively simple to
model RC shear walls where the longitudinal and transverse
steel reinforcement are included as smeared orthotropic
layers, as depicted in Figure 3. With an appropriate layer
discretization, the actual stress distribution over the
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FIGURE 2: Typical RC shear wall cross-section.
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FIGURE 3: RC shear wall modeling using multilayer shell element.
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thickness of the wall can be approximated. The main princi-
ple is similar to how the popular fiber beam-column element
works [31]. First, the strain and the curvature are computed
at the middle layer. Next, the strains are obtained in the
subsequent layers using a plane-section assumption. Finally,
the stresses are obtained based on the corresponding consti-
tutive law at each layer. The MLSE approach has been thor-
oughly tested in numerous studies. It has been found to be
effective in capturing the coupled in-plane and out-of-plane
bending, as well as the in-plane direct shear and coupled
bending-shear characteristic behavior of RC shear walls
[32, 33].

2.3. MLSE Model Implementation in OpenSees. This study
uses the MLSE modeling approach to generate a large data-
base of RC shear walls and the corresponding results. The
model is implemented in OpenSees [34], more specifically,
the Python distribution OpenSeesPy [23]. The adopted MLSE
implementation is the one developed by Xie et al. [17], which
has been successfully applied to the analysis of super-tall build-
ings [35]. Within the OpenSees environment, such MLSE is
identified as the element “ShellNLDKGQ.” It includes the
effect of geometric nonlinearity due to large deformations
based on the updated Lagrangian formulation [36]. The layer
discretization is specified by assigning to every shell element
the “LayeredShell” section that stores the information regard-
ing the thickness and the associated material model for
each layer.

Each shell is discretized with eight layers. Four homoge-
neous concrete layers and four orthotropic steel reinforce-
ment layers, where two are for the longitudinal rebar and the
other two are for the transverse rebar, as shown in Figure 3.
The meshing of the model is done so that the whole RC
shear wall is discretized with 12 elements in the horizontal
direction and 15 elements in the vertical direction totaling
12× 15 = 180 elements. Each boundary element is discretized
with 3× 15 = 45 elements, and the web is discretized with

6× 15 = 90 elements. This mesh configuration yields rectan-
gular elements with an approximate size of 15–35 cm per side,
as shown in Figure 4(a). The adopted mesh is sufficient to
produce accurate results as the size effect is mitigated in the
material model with the adoption of the popular crack band
theory [37]. A more refined meshing scheme does not
improve the results considerably; thus, it is not worth the
increased computational effort. This claim is pointed out
[35] and corroborated in this study by testing different mesh-
ing configurations, up to 576 elements, with a computational
demand 5× times larger but without any significant improve-
ment in the results.

2.3.1. Material Models. The selected material model for the
concrete layers is based on a damage mechanism and the
smeared crack model [38]. It is identified within OpenSees
as “PlaneStressUserMaterial” and has to be combined with
the “PlateFromPlaneStress” command to properly account for
the out-of-plane behavior. A total of sevenmaterial parameters
are required for its definition, namely, the compressive
strength at 28 days f 0c ; the tensile strength ft ; the crushing
strength fcu; the strain at the maximum compressive strength
ϵco; the strain at the crushing strength ϵcu; the ultimate tensile
strain ϵtu; and the shear retention factor (or shear transfer
coefficient) β.

The adopted material model for the steel reinforcement
layers is the uniaxial Giuffre–Menegotto–Pinto formulation,
which includes the characteristic post-yielding and Bauschin-
ger effects [39, 40]. It is identified in OpenSees as “Steel02”,
and it is combined with the “PlateRebar” command so that it
can be incorporated into the MLSE formulation considering
its corresponding angle due to its orthotropic behavior (90°
for longitudinal and 0° for transverse). Its definition requires
three parameters: yield stress fy ; initial elastic tangent E0; and
the strain-hardening ratio b, which is the ratio between the
elastic and the post-yield tangent Ep.
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FIGURE 4: (a) Geometry and properties of the specimen SW1-1 and (b) specimen SW1-1 modeled using the MLSE formulation.
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The material models for the concrete and the steel rein-
forcement are illustrated with uniaxial strain–stress curves in
Figure 5. Note that the curves are not in scale and that their
only purpose is to provide a graphical interpretation of the
material parameters.

The parameters required for the material models are
commonly obtained by performing experimental testing.
However, for the purposes of this study, values suggested
in different sources from the literature have been mainly
used. This way, the seven parameters required for the con-
crete material model depend entirely on the compressive
strength f 0c of concrete. The fracture strength is taken as ft ¼
0:1 ⋅ f 0c [41]. The crushing strength is fcu ¼ 0:2 ⋅ f 0c [42]. The
strain at the maximum compressive strength is taken as
ϵco ¼ −0:002 [43]. The strain at the crushing strength equals
ϵcu ¼ −0:01. The ultimate tensile strain is set to ϵtu ¼ 0:001,
and the shear retention factor is equal to β ¼ 0:3 [44].
Regarding the steel material model, the yield strength fy is
the only variable. The initial elastic modulus and the strain
hardening ratio are kept constant at E0 ¼ 200GPa, and
b ¼ 0:01, respectively.

2.3.2. Pushover Analysis and Validation of the FEM Model.
The previously described implementation of the MLSE FEM
model is tested and validated with a numerical example. The
example’s data are taken from an open-access database of
various experimental tests conducted on large-scale RC shear
walls [4]. The selected example is the specimen SW1-1,
whose geometry, properties, and loading conditions are
depicted in Figure 4(a). A visual representation of the final
form of the FEM model 2.3 is presented in Figure 4(b).

The analysis consists of two phases. In the first phase, a
vertical force is applied at the top middle node that simulates
the weight supported by the wall. The second phase is a
lateral displacement-controlled static pushover analysis with
a target displacement of 2 cm applied at the wall’s top-left
corner. The displacement is applied with a rate of 0.005 cm

per iteration for 2/0.005 = 400 steps. Note that a beam element
with increased stiffness is added to the top edge of the wall to
distribute the vertical load and the horizontal deformation to
all the nodes on the top edge. The deformed shape and the
strain field in the vertical direction at various stages of the
analysis are shown in Figure 6.

The pushover curve is obtained by plotting the horizontal
reaction force (commonly known as base shear) and the
horizontal displacement (measured at the top-left node) at
every step during the analysis. To corroborate the accuracy of
the FEM model, the analysis results are compared with the
experimental test data found [4]. The comparison is shown
in Figure 7, where it can be noticed that both curves exhibit
close agreement. These results corroborate that the imple-
mented FEM model provides a reliable approximation of the
actual behavior of the RC shear wall; hence, the model is
validated. In this study, only one specimen has been used
for validation purposes, as the chosen MLSE implementation
has been validated in more depth in other studies [17].

2.4. Model Parametrization and Sampling. The MLSE FE
model is used to create a large database composed of thou-
sands of different-sized RC shear walls and their correspond-
ing pushover analysis results. To that end, the model is
parametrized with several variables describing the geometry,
steel reinforcement quantity, and material properties. The
chosen sampling strategy is a random uniform distribution.
Table 1 shows all the variable parameters and their corre-
sponding lower and upper bounds used for the sampling.

The bounding values of the parameters and the sampling
method are two highly important aspects of the developed
methodology. In a sense, they control the quality and required
quantity of the data. The quality of the data, in the context of
this study, could be defined as how well the data set encom-
passes the real phenomenon. In other words, the generated
walls must be realistic in the context of structural design.
Attending to such premise, the selected bounding values
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FIGURE 5: Schematic uniaxial stress–strain curve of the adopted material models: (a) concrete model; (b) steel reinforcement model.
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(see Table 1) are based on some of the design guidelines
provided by the American Concrete Institute (ACI318-19)
[45] as well as on structural engineering criteria. For example,
from the ACI318-19, the minimum thickness allowed for a
structural wall is t ¼ 12:5 cm, and the smallest length-to-
thickness ratio is lw=t ¼ 6, then the chosen lower bound for
the wall length is set to t ⋅ 6. Similarly, according to section
18.10.6.4 of ACI318-19, the quantity of transverse reinforce-
ment ρtbe for the boundary element is approximately within
the range of 0.0075–0.020 (depending on the material prop-
erties). The longitudinal reinforcement ρlbe is similar to those
in concrete columns, so a value between 0.01 and 0.04 is
reasonably selected. Note that the reinforcement is expressed

as a ratio of the corresponding concrete cross-section area.
The compressive strength f 0c and the yield strength fy vary
within traditional values normally used in the construction
ofmodern buildings. The length lw and the height h are chosen
based on the wall dimensions commonly found in medium-
rise buildings. The axial load value qa is expressed as a ratio of
the maximum axial strength for concrete sections according to
equation 22.4.2.2 of ACI318-19. The range from 0.010 to 0.1 is
selected based on the premise that a value of 0.1 represents the
loading of a wall in the bottom story of a medium-height
building [2].

2.5. Database Generation. The database is created by ran-
domly generating multiple input vectors with the 11 param-
eters described in Table 1. Each input vector is processed by a
function that creates the corresponding FEMmodel and per-
forms the static nonlinear pushover analysis. The obtained
force–displacement curve is discretized by taking the base
shear at seven stations of horizontal displacement. The cho-
sen stations are 0, 0.5, 1.0, 2.5, 5.0, 10.0, and 20.0mm. Since
the base shear at 0mm is also 0 kN, only six values are
required to discretize the curve into six sections. The base
shear values at these stations become the corresponding out-
put for the given input values. Therefore, each data point in
the database contains 18 values: 11 input values describing
the geometry and properties of the shear wall and six output
values denoting the base shear at each displacement interval.
As an example, Figure 8(a) shows a table with the input and
output values for four randomly chosen data points referred
to as DP1, DP2, DP3, and DP4. Additionally, Figure 8(b)
shows the pushover curves obtained with the FEM analysis
and their discretization into six segments.
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FIGURE 7: Comparison between the experimental results and the
pushover curve obtained with the FEM analysis.
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For some input values, the pushover analysis does not
converge to the target displacement of 20mm, as seen in the
data point DP2 in Figure 8(b). In such cases, the base shear at
20mm is taken as 1.055 times the base shear at 10mm
to complete the required six output values: BS 20ð Þ ¼
1:055 ⋅ BS 10ð Þ. The factor of 1.055 is taken as the average
of BS 20ð Þ=BS 10ð Þ measured in all the analyses where the
convergence does reach the last step of 20mm. Note that
the data points with convergence issues are most likely a
result of numerical instabilities typically encountered when
solving nonlinear FEM analyses. A complete loss of stiffness
due to material failure is not likely to happen in the scenarios
tested in this study.

The selected stations at which the curve is discretized
(0.5, 1.0, 2.5, 5.0, 10.0, and 20.0mm) have been selected based
on trial and error where the goal is to approximate the curve
with sufficient accuracy but with the least number of segments
to reduce the complexity of the problem. Alternatively, using

physically meaningful stations, such as the limit states of
cracking, yielding, peak capacity, ultimate capacity, and fail-
ure, could also be useful. Nevertheless, accurately estimating
such transitional states for all the data points is a challenging
task that is out of the scope of this study. Instead, the selected
stations have shown to be sufficient to obtain a reliable
approximation of the actual pushover curve.

3. ANN Surrogate Model

3.1. ANNs Basics. ANNs are a subset of ML and are the basis
of most modern artificial intelligence applications. Essen-
tially, an ANN is a mathematical structure that attempts to
mimic the complex biological structure and the information
processing capacity observed in the brains of living animals.
The ANN is composed of several artificial neurons arranged
in sequentially connected layers; such structure can be depicted
graphically in Figure 9(a).

TABLE 1: Variable parameters are used for the parametric model generation.

No. Parameter Lower bound Upper bound Description

1 f 0c 25 60 Concrete compressive strength (MPa)
2 fy 380 600 Reinforcing steel yield stress (MPa)
3 h 300 350 Wall height (cm)
4 t 12.5 40 Wall thickness (cm)
5 lw t ⋅ 6 300 Wall length (cm)
6 lbe 0.15⋅lw 0.30⋅lw BE length (cm)
7 ρlbe 0.01 0.04 BE longitudinal reinforcement ratio
8 ρtbe 0.0075 0.015 BE transversal reinforcement ratio
9 ρlweb 0.0025 0.5⋅ρlbe Web longitudinal reinforcement ratio
10 ρtweb 0.0025 0.5⋅ρtbe Web transversal reinforcement ratio
11 qa 0.010 0.1 Axial load ratio

DP1
1
2
3
4
5
6
7
8
9
10
11

34
563

308.90
23.51

141.94
0.2595
0.0164
0.0114
0.0065
0.0057
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311.20
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598.76

52
506

336.42
20.15

219.61
0.2021
0.0214
0.0138
0.0102
0.0044
0.0679
350.47
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1180.47
1416.09
1493.98
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21.16
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0.2471
0.0359
0.0130
0.0071
0.0046
0.0932
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2238.07
2655.64
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FIGURE 8: Four randomly generated data points: DP1, DP2, DP3, and DP4: (a) numerical input and output values; (b) obtained pushover
curves and their six-segment discretizations.
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The structure of the ANN can be written in the following
form:

Y0 − Y1 −… − Yn−1 − Yn; ð1Þ

where the subscript indicates the position of the layer, start-
ing from the input layer z ¼ 0 to the output layer z ¼ n, so
that z ¼ 0;f 1;…; ng. The variable Yz indicates the number of
neurons in the zth layer. Following such notation, the ANN
depicted in Figure 9(a) could be written as 2 − 4 − 4 − 2.

The connection between neurons is represented by a
numerical value known as weight w. The weight wij denotes
the value for the connection between the neurons i and j,
where i belongs to the layer z, and j belongs to the layer z − 1.
In an ANN, the information flows from the input layer Y0 to
the output layer Yn. At each layer, Yz , the value of every
neuron is computed by performing the weighted summation
depicted in Figure 9(b). Such flow of information can be
conveniently written as a matrix multiplication that must
be computed layer by layer in a sequential order starting at
the layer z ¼ 1:

Yz ¼ σz WzYz−1 þ bzð Þ; ð2Þ

Wz ¼
w11 ⋯ w1q

⋮ ⋱ ⋮

wp1 … wpq

2
664

3
775; ð3Þ

where variables p and q are local variables that denote the num-
ber of neurons in the layers z and z − 1, respectively. The
function σz indicates the activation function for the layer z.
Activation functions are used to incorporate nonlinearity to
the ANN and restrict the neuron’s output value to a specific
range. Two commonly used activation functions are the

Sigmoid and the ReLu [46]:

ReLu : σ zð Þ ¼
0 for z<0

z for z> ¼ 0

(
: ð4Þ

Sigmoid : σ zð Þ ¼ 1
1þ e−z

: ð5Þ

The letter b in Equation (2) represents the vector that
contains the bias values for the neurons in the layer n. The
biases are added to increase the flexibility of the ANN by
shifting the activation function to the left or right.

The keys to the proper functionality of the ANN are the
weights which are also referred to as the model’s features or
parameters. Normally, the weights are initialized randomly;
therefore, the problem becomes in finding their value so that
the output Yn becomes meaningful. The procedure that is
followed to find the appropriate value for the weights is a
numerical optimization problem referred to as training. It is
solved by an iterative process of trial and error using large
volumes of data that must be known a priori.

The basic functionality of an ANN could be described
with the following mathematical analogy. Suppose that for a
given problem f xð Þ ¼ y, the function f is unknown. Then, a
function denoted as g, is created to find an approximation
g w;ð xÞ ¼ yp such that yp ≈ y. The problem then becomes in
finding a value for w that minimizes the error e ¼ y − yp.
Such minimization problem is solved by an iterative process
of trial an error that utilizes known information. In this
analogy, the known information refers to a database T that
consists of a number m of pairs of input and output values
such as T ¼ x1;f y1; x2; y2;…; xm; ymg. The ultimate goal is
that with an appropriate training procedure, the function
g w;ð xÞ should reach a state that is capable of extrapolating
the information contained in the training data to predict any
value that lays in-between.
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FIGURE 9: ANN graphical representation: (a) connectivity of the layers; (b) detail of a single neuron.
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One of the most popular training strategies for ANNs is
the backpropagation (BP) algorithm applied with the stochas-
tic gradient descent (SGD) updating scheme. The fundamen-
tal principle is to compute the total error and propagate it to
all the weights in the ANN. Then, a gradient for the error with
respect to the model weights is defined, and the weights are
adjusted accordingly. A graphical simplification of the proce-
dure is depicted in Figure 10. A complete description of the
BP algorithm and its detailed formulation can be found [47].

Every time that the whole training database has been
processed by the updating scheme is called an epoch. Depend-
ing on the size of the training database and the ANN, several
epochs may be required to train the model. The most com-
mon stopping criterion is monitoring the error of a small
subset of the training database known as the validation
data. The validation data is not used in the training process;
however, the error in the validation data is measured after
every epoch. If the error increases for several consecutive
epochs, it may be a signal of overfitting, which may compro-
mise the generalization capabilities of the model. Hence, the
training is stopped to prevent the overfitting.

The scheme described in this section corresponds to a
type of ANN known as a feedforward neural network or BP
neural network (BPNN). The final size and properties of the
ANN are commonly known as the hyperparameters. For
example, the number of layers, number of neurons per layer,
type of activation functions, and type of algorithm for train-
ing. Typically, several combinations of hyperparameters are
tested, and the configuration that shows the best perfor-
mance is selected.

3.2. ANN as Surrogate Model for FE Simulations. A surrogate
model is a simplified model that approximates the behavior
of a more complex model, and it is often used when the
complex model is computationally expensive to evaluate
[48]. In this work, an ANN is used as a surrogate model of
the expensive RC shear wall FEMmodel described in Section 2.
The surrogate model is trained to approximate the characteris-
tic pushover curve with a much lower computational cost.

The data required for the training are generated using the
same expensive FEM model that the surrogate model is
intended to replace. While this may seem counter-intuitive,
it has to be noted that the data creation and the training
processes are typically one-time operations that can be done
efficiently using techniques such as parallelization and GPU
processing. Once the surrogate model is fully trained, it can
be used indefinitely as a less computationally intensive
alternative.

3.3. Construction of the ANN Surrogate Model. The surrogate
model is a fully connected BPNN implemented in Python
using the TensorFlow [24] library. Its final configuration is a
five-layered network with three hidden layers containing
200 neurons each: 11 − 200 − 200 − 200 − 6. The total num-
ber of trainable weights (or features) can be computed as
follows: 11þ 1ð Þ ⋅ 200þ 200þ 1ð Þ ⋅ 200þ 200þ 1ð Þ ⋅ 200þ
200þ 1ð Þ ⋅ 6 ¼ 84;006 (where the + 1 value corresponds to
the bias neuron added to every layer). Due to its size, the
proposed ANN falls into the category of deep learning; there-
fore, it could also be referred to as a DNN [49].

For the activation functions, two types are used. The
ReLu function (Equation (4)) is used in the first four layers,
and a linear function σ xð Þ ¼ x in the output layer. The
weights are initialized by a uniform random distribution
from 0 to 1. The selected error function for the training is
the mean square error (MSE): ∑s

i¼1 yi − ŷ ið Þ2, where yi is the
ground truth, ŷ i is the predicted output, and s is the number
of data points. The adopted optimization scheme is the
Adam algorithm [50], which is an improvement to the
SGD that considers the exponentially weighted average of
the gradients. It is particularly well-suited for large data
sets and high-dimensional parameter spaces. The training
database contains 2,500 data points generated with the pro-
cess described in Section 2.5. The input data are normalized
to add stability to the ANN. For validation purposes, 10% of
the training data are separated and monitored during the
training phase. The network is set to run for 200 epochs;
however, an early stopping algorithm is introduced to avoid

Randomize the order of the database

Start New epoch Training
database

Take one
data point

Feedforward

Backpropagation

Propagate the error
to all the weights

Slightly update
all the weights
using gradients

All data
processed?

Termination
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Compute the ANN
output value Compute error

between prediction
and ground truth

End
Yes Yes

No No

FIGURE 10: Flowchart of the training procedure of an ANN using the stochastic gradient descent and backpropagation algorithm.
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overfitting. The stopping criterion is set to terminate the
training when the error in the validation database is increased
for five consecutive epochs.

The previously described hyperparameters are the final
selection after testing several configurations of the ANN.
The obtained results of some of those tested variants are pre-
sented in Table 2. It can be appreciated that the 11-200-200-
200-6 ANN yields the lowest error and better correlation
values by far. Despite the relatively large size of the surrogate
model with 84,006 features, it is fast enough to produce real-
time results, taking less than 1ms to predict the output for a set
of input values on a typical computer. Additionally, its storage
on a digital file consumes approximately 1MB, which is sub-
stantially small for a modern computer. Thus, for this particu-
lar application, there is no practical advantage in optimizing
the hyperparameters any further, as the proposed 11-200-200-
200-6 ANN configurationworks very well, providing good and
quick solutions without becoming extremely large in size.

3.4. Surrogate Model Training and Performance. To create
the surrogate model, 2,500 data points are generated as train-
ing data. The training process runs for 65 epochs and takes
around 30 s to finalize. The evolution of the error throughout
the training, for both the validation and training data, is
presented in Figure 11.

Two metrics are used to determine the correlation
between the predicted data and the ground truth: the

correlation coefficient (R) and the coefficient of determina-
tion (R2). The R score measures the direction and strength of
the linear relationship of both variables, while R2 measures
the proportion of variance of the predictions. In the context of
ML, these metrics provide a simple way of judging the perfor-
mance of a regression model. If both R and R2 have values
close to 1, it indicates that the error is low and the model is
effective. A comprehensive description of the formulation and
the limitations of these metrics is provided [51].

A second database containing 150 data points is gener-
ated as a testing set to assess the surrogate model’s perfor-
mance properly. The generated database is entirely new in
the sense that it has not been used in the training process;
thus, it serves as an effective test to check the generalization
capabilities of the model. Such testing set is fed to the trained
surrogate model, and the correlation coefficients R and R2

are computed for each of the six output variables. The results
are presented in Figure 12.

It can be noted that there is a good correlation between
the predicted data and the ground truth. The resulting aver-
age values of the metrics R, and R2, are 0:9919, and 0:9838,
respectively. Such result hints that the predictions of the
model are accurate with high correlation and low error
with respect to the ground truth, even for data that were
not used in the training. Therefore, the training database
has been sufficient for the surrogate model to generalize and
learn the corresponding mapping.

TABLE 2: Results of various different ANN configurations.

ANN size Features MSE R R2

11-25-25-25-6 1,756 29,344 0.9641 0.9298
11-50-50-50-6 6,006 28,088 0.9662 0.9340
11-70-70-75-6 12,756 27,376 0.9659 0.9332
11-100-100-100-6 22,006 27,791 0.9660 0.9331
11-150-150-150-6 48,006 27,905 0.9654 0.9322
11-200-200-200-6 84,006 5,046 0.9919 0.9838

The minimum MSE obtained is marked in bold.
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FIGURE 11: ANN surrogate model training history.
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3.5. Numerical Examples. A numerical example is presented
to further corroborate the effectiveness of the surrogate
model by picturing the input and output data in an engineer-
ing context. The input is generated randomly, and it is
rounded to the following values: f 0c ¼ 55, fy ¼ 430MPa,
h ¼ 330, t ¼ 35, lw ¼ 250 cm, lbe ¼ 0:2385 (or 60 cm),
ρlbe ¼ 0:0229, ρtbe ¼ 0:0118, ρlweb ¼ 0:0122, ρtweb ¼ 0:0063,
qa ¼ 0:064 (or 2,632 kN). The resulting geometry is pre-
sented in Figures 13(a) and 13(b). The steel reinforcement
depicted in the picture is an approximation using rebar of
size ϕ20 that corresponds to a diameter of 19.05mm. The
inputs are normalized and then fed to the surrogate model,
which outputs the values: v1 ¼ 933:6, v2 ¼ 1553:64,
v3 ¼ 2359:92, v4 ¼ 2862:27, v5 ¼ 3294:38, v6 ¼ 3358:61
(units in kN). The six output values v1 to v6 correspond to
the base shear at 0.5, 1.0, 2.5, 5.0, 10, and 20mm, respec-
tively. With such information, the obtained pushover curve
is plotted in Figure 13(c). The curve obtained using the FEM

model for the same input values is also presented for com-
parison. There is a close agreement between both curves,
indicating that the prediction is substantially accurate.

An additional set of eight input vectors is randomly gen-
erated as a final test of the surrogate model. For each input
vector, the nonlinear static pushover analysis is performed
using the FEM model, and then it is compared with the
prediction from the surrogate model. The eight results can
be observed in Figure 14. It can be seen by a simple visual
inspection that the surrogate model is indeed able to accu-
rately approximate the pushover curve of each analyzed
input vector, despite the different shape of the curve in
each case.

4. Discussion

4.1. Advantages. The main advantages of the developed strat-
egy are summarized as follows:

250 500

1,000

1,000

1,000

1,000 2,000 3,000 4,000 5,000

2,000

3,000

4,000

5,000

2,000

3,000

1,500

2,000

1,000

2,000

3,000

250

1,000 2,000 3,000

1,000 2,000 3,000
Real values Real values

4,000

1,000 2,000 3,000

500 750 1,000 1,250 500 1,000 1,500 2,000

500

750

Pr
ed

ic
tio

n
Pr

ed
ic

tio
n

Real – prediction
x = y

1,000

2,000

3,000

4,000

Pr
ed

ic
tio

n

1,000

1,250
Output 1R = 0.96999

R2 = 0.93983
R = 0.99232
R2 = 0.98445

R = 0.9956
R2 = 0.991

R = 0.99804
R2 = 0.99595

R = 0.99869
R2 = 0.99722

R = 0.99731
R2 = 0.99461

Output 3

Output 5 Output 6

Output 4

Output 2

FIGURE 12: Correlation value between the ground truth and the prediction for each of the six output variables of the surrogate model.

Advances in Civil Engineering 11



(i) Speed: The main advantage of the surrogate model is
that it is extremely fast in comparison to the original
FEM model. The achieved time reduction is from an
average of 40 s per analysis with the FEM model to
0.025ms with the surrogate model. The surrogate
model is significantly faster than the conventional
FEM model.

(ii) Adaptability: Once the methodology is developed, the
surrogate model can be easily extended or modified to
tackle different challenges if necessary. For example,
changing the input variable bounding values and add-
ing more data to increase the generalization capabili-
ties of the model or modifying the ANN structure to
increase its accuracy.

(iii) Portability: An ANN created with the TensorFlow
framework can be easily serialized and utilized across
different platforms and programing languages. In
contrast, the FE model is usually restricted to a par-
ticular software or solver.

(iv) Improved convergence: Since the ANN is, in princi-
ple, a regression model, the entire pushover curve is
always predicted, and there are no converge issues
that result from numerical instabilities as those
encountered when using FEM models. An example
can be seen in Figure 14 for the curves DP3 and
DP4, where the FEM model failed to converge, but
the surrogate model was able to approximate the
complete response.

4.2. Limitations. There are also a few limitations when using
an ANN-based surrogate model as a substitute for the FEM
model, such as the well-known tradeoff of accuracy with
respect to the exact FEM simulation. The accuracy of the
ANN’s predictions will depend on its complexity and the
quality of the training. If the training data do not represent
the full range of the input parameters or if the ANN is not
complex enough to capture the relationships between the
inputs and outputs, the accuracy of the predictions may be
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poor. Additionally, ANNs are commonly defined as “black
box”models, meaning that it is difficult to interpret how they
arrived at their predictions, making it challenging to under-
stand the system’s underlying physics. However, in this case,
this is not an issue as the physics of the problem is known
from the detailed FEM model; the ANN is only used to
increase the speed of the final solution.

4.3. Computational Efficiency. All the operations, including
the solutions of the FEM models, the training and testing of
the ANN, and the generation of the database are conducted
using a regular PC with an Intel Core i7-6700HQ CPU
@2.60GHz and 16GB RAM.

The static nonlinear pushover analysis using the FEM
model takes, on average, 41:3 s to finalize. In contrast, load-
ing the trained ANN surrogate model from a file takes 0.05 s.
Once the ANN is loaded, predicting the output for a set of
input values takes 0:000025 s. This amounts to an improve-
ment of 1,652,000 times in terms of computational time
needed for a nonlinear analysis. Nonetheless, it is not fair
to compare the models without taking into account the con-
siderable computational time and effort that is required to
generate the training data. Considering the 41:3 s average of
each FEM analysis, the generation of the 2,500 data points
required for the training take approximately 28:68 hr to
complete. However, the generation of the training database
is a process that has to be done only once. Furthermore, the
data may be generated using parallel processing or high-
performance computing systems which can further signifi-
cantly reduce the time required. After the model is trained, it
is ready to be used indefinitely, providing results at lightning
speed.

4.4. Database and Sampling. As stated in Section 2.5, the
bounding values of the parameters and the sampling method
are two fundamental aspects of the developed methodology.

In that regard, even though the bounding values are carefully
selected based on structural engineering criteria, the selected
sampling scheme may still produce some unrealistic wall
geometries. For example, a data point where the minimum
vertical reinforcement ratio is selected together with the maxi-
mum transverse reinforcement. Such a scenario is uncommon
in RC shear walls, and it is actually unrealistic. Unfortunately,
there is no trivial solution to this problem. One simple alter-
native is to hard-code some rules to impose certain criteria into
the data generation process. However, this is usually not a
clever idea because despite the fact that some of the generated
geometries may not be practical from an engineering or eco-
nomic perspective, they may still be compliant with the build-
ing design code. Thus, this can introduce some bias into the
predictive model leading to a compromise in its performance.
Additionally, adding certain rules in the data generation could
turn some parameters into discrete values rather than contin-
uous variables, which may have a negative impact in the accu-
racy of the model.

Other sampling strategies may improve the data genera-
tion strategy, such as using the Latin hypercube sampling
(LHS) method [52]. Nonetheless, it would most-likely not
improve much the accuracy or performance of the data-
driven model. At best, it would only reduce the amount of
data required. With that in mind, for the present study, the
authors have chosen to keep a clean and simple strategy, that
is, generate the data randomly in a continuous way within
specific bounds. It is fundamental to keep in mind that data-
driven methodologies are normally nonstatic, meaning that
the available data are usually evolving, and the models are
retrained and improved constantly. In any case, the sampling
method is not restricted to the strategy followed by the
authors. In fact, changing the sampling strategy from a uni-
form random distribution to a more advanced scheme, such
as the LHS, could be achieved by changing a few lines of code
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in the provided open-source framework that is introduced in
Section 5.

4.5. Applications and Future Work. To visualize some of the
potential applications, it is important to keep in mind that
the developed surrogate model is not meant to fully replace
the traditional FE modeling of RC shear walls, which follows
a strong theoretical framework built on decades of research.
Instead, it is envisioned as a powerful strategy that could
replace a computationally expensive model with a signifi-
cantly faster approximation for certain types of applications.
For instance, for the optimal design of RC shear walls [53],
failure probability analysis, uncertainty quantification, and
risk assessment [54]. These applications usually involve run-
ning a large number of analyses, sometimes hundreds of
thousands, with different parameters and conditions in order
to estimate risk levels, failure probabilities, or optimal con-
figurations. Therefore, in such scenarios, having a simpler
but much faster model is preferred over a highly detailed
computationally expensive one.

Another potential application is using the surrogate model
to improve the macroscopic modeling technique for the anal-
ysis and design of buildings. That may be achieved by using the
predicted pushover curve as the force–displacement relation
in the horizontal shear spring of a macro model. This can
increase the effectiveness and accuracy of the macro modeling
approach [55].

There are various directions in which the methodology
described in this study could be continued or enhanced with
further research. A potential improvement could be achieved
by increasing the input variables bounding ranges or adding
more variables to describe other properties of the RC shear
wall to significantly increase the surrogate model’s generali-
zation capabilities. Alternatively, increasing the amount of
output information so that the surrogate model is made
capable of predicting additional results, such as the stresses,
strains, or any other relevant output quantity that can be
extracted from the FEM model. Similarly, increasing the
number of stations in which the curve is discretized to
obtain a more refined discretization could also be easily
implemented.

5. The Open-Source Framework

The full framework that has been developed to create the
surrogate model is published as an open-source project in
the GitHub platform under the following link: https://github.
com/germansr/RC.ShearWall.DNN.SurrogateModel.

The project includes (1) the parametric code for the
multilayered-shell FEM model of the RC shear wall in Open-
SeesPy (it contains various 2D visualization routines, such as
those used to create Figures 5 and 6). (2) A script that takes
the parametric FEM model to create random RC shear wall
geometries runs the corresponding nonlinear static pushover
analyses and stores the results on a text file. (3) A routine that
cleans the results and creates a functional database with
the required 11 inputs and six outputs for the training of
the surrogate model. (4) A script to create, train, and test the
ANN-based surrogate model using TensorFlow and other

scientific libraries. (5) A powerful application with an inter-
active GUI to analyze RC shear walls using OpenSees and to
test the surrogate model in real-time with neat visualization
graphics. (6) Other useful scripts for testing and visualization.

The project is entirely developed in Python and consists
of thousands of lines of code that are well-structured, modu-
larized in several files, and extensively commented. We
strongly believe that the project can serve as a motivation
for other researchers and professionals to explore the advan-
tages of using ML and data-driven solutions in structural
engineering applications.

5.1. Visualizing the Results of the Surrogate Model. When
dealing with ML-oriented methodologies, the physical con-
cepts behind the problem being solved may not be entirely
clear and could easily get lost in the data. Therefore, provid-
ing visual feedback could significantly enhance the experi-
ence and efficacy when using ML-based methodologies. For
these reasons, a simple yet powerful interactive application
has been developed to test and visualize the results of the
surrogate model; see Figure 15.

The surrogate model has to be trained and serialized to a
text file before using the application. When the application is
initialized, the surrogate model is loaded from the text file
and used to make real-time predictions based on the current
values of the input variables, which are controlled by 11
interactive components known as sliders, see Figure 15(a).
The sliders provide a simple way of changing the input values
within the upper and lower bounds of the training data.
Every time that the user modifies the value of any slider, the
displayed geometry (Figures 15(a) and 15(b)) is refreshed, and
the surrogate model is fired in the background to update the
corresponding pushover curve almost instantly (Figure 15(d)).

The application also includes an easy way of testing the
predictions by incorporating a button that runs the pushover
analysis in the background. Note that the FEM analysis is not
required to obtain the predictions, and the optional analysis
only serves as a means to demonstrate the accuracy of the
results for any given set of inputs. The analysis is performed
using the same FEM model that is used to generate the
training data, which has been described in this paper in
Section 2.3. A small loading screen is added to indicate that
the analysis is running. Upon finalizing, the model is tempo-
rarily locked (the input values cannot be updated), and the
analytical pushover curve is plotted and compared to the
surrogate model’s current prediction. Additionally, when
the model is analyzed, a small module can be called to visu-
alize the FEM analysis results in more detail; see Figure 15(e).
The model can be unlocked at any time to analyze different
cases. The GUI is constructed using the Tkinter library, typi-
cally included in the regular Python distribution.

6. Conclusion and Outlook

6.1. Conclusion. In this study, a deep-learning surrogate
model using DNNs has been developed for the analysis of
RC shear walls. The surrogate model is capable of approxi-
mating the characteristic nonlinear curve that is obtained
when a lateral pushover analysis is performed using a
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conventional FEM analysis. The DNN-based surrogate
model is constructed in such a way that it takes as input
11 values describing the RC shear wall’s geometry, proper-
ties, and loading conditions. The output is a vector of six
values corresponding to the nonlinear pushover curve dis-
cretized into six segments. The final configuration of the
DNN is a BPNN architecture composed of 11 input nodes,
three hidden layers with 150 nodes each, and six output
nodes. The data used for the training have been generated
with a sophisticated FEM model using multi-layered shell
elements and state-of-the-art constitutive laws for the rein-
forcement steel and concrete materials. A total of 2,500 data
points were generated for the training database, which took
about 13 hr using parallel processing. After a successful train-
ing procedure, the surrogate model has been thoroughly
tested and compared to the FEM model in several examples.
The obtained results have shown good accuracy and a strong
correlation between the predicted data and the FEM simula-
tions, thus, indicating that the ANN-based surrogate model
is indeed a viable and computationally efficient alternative.
The most significant advantage is the speed of the surrogate
model, which takes roughly 0.025ms to run in contrast to the
40 s that the FEM analysis takes to complete. Thus, the
improvement in speed is an impressive factor of 1.6million
times faster than the nonlinear FEM analysis. Additionally,
another advantage is that there are no converge problems as
those encountered when using nonlinear FEM procedures.
With the surrogate model, the entire pushover curve is
always predicted.

Another significant contribution of this paper is that the
complete source code and framework that made this study
possible has been made available as an open-source project,
along with an interactive application to test and visualize
the results. We hope that this approach facilitates further
research and development in the area and contributes to
narrowing the gap between research-oriented and practical
applications of ML-powered methodologies in the field of
structural engineering.

Data Availability

The full framework used to support the findings of this study
has been deposited in the GitHub repository as an open-
source project under the following link: https://github.com/
germansr/RC.ShearWall.DNN.SurrogateModel.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. Fintel, “Performance of buildings with shear walls in
earthquakes of the last thirty years,” PCI Journal, vol. 40,
no. 3, pp. 62–80, 1995.

[2] I. D. Lefas,M. D. Kotsovos, andN. N. Ambraseys, “Behavior of
reinforced concrete structural walls: strength, deformation
characteristics, and failuremechanism,”ACI Structural Journal,
vol. 87, no. 1, pp. 23–31, 1990.

FIGURE 15: Main screen of the interactive application was developed to test and visualize the surrogate model results.

Advances in Civil Engineering 15

https://github.com/germansr/RC.ShearWall.DNN.SurrogateModel
https://github.com/germansr/RC.ShearWall.DNN.SurrogateModel
https://github.com/germansr/RC.ShearWall.DNN.SurrogateModel
https://github.com/germansr/RC.ShearWall.DNN.SurrogateModel
https://github.com/germansr/RC.ShearWall.DNN.SurrogateModel
https://github.com/germansr/RC.ShearWall.DNN.SurrogateModel


[3] R. G. Oesterle, J. D. Aristizabal-Ochoa, A. E. Fiorato,
H. G. Russell, and W. G. Corley, Earthquake Resistant
Structural Walls—Test of Isolated Walls Phase II, Construction
Technology Laboratories, California, USA, 1979.

[4] X. L. Lu, Y. Zhou, J. H. Yang, J. Qian, C. Song, and Y. Wang,
“SLDRCE database on static tests of structural members and
joint assemblies—shear walls R11,” Tech. Rep., Institute of
Structural Engineering and Disaster Reduction, Tongji
University, Shanghai, China, Shanghai, China, 2008.

[5] A. Jalali and F. Dashti, “Nonlinear behavior of reinforced
concrete shear walls using macroscopic and microscopic
models,” Engineering Structures, vol. 32, no. 9, pp. 2959–
2968, 2010.

[6] K. Kolozvari, K. Orakcal, and J. W. Wallace, “New opensees
models for simulating nonlinear flexural and coupled shear-
flexural behavior of RC walls and columns,” Computers &
Structures, vol. 196, pp. 246–262, 2018.

[7] A. Vulcano, V. V. Bertero, and V. Colotti, “Analytical modeling of
R/C structural walls,” in Proceedings of the 9th World Conference
on Earthquake Engineering, vol. 6, pp. 41–46, International
Association of Earthquake Engineering, Tokyo/Kyoto, Japan, 1988.

[8] T. Takayanagi and W. C. Schnobrich, “Non-linear analysis of
coupled wall systems,” Earthquake Engineering & Structural
Dynamics, vol. 7, no. 1, pp. 1–22, 1979.

[9] X. Lu and Y. Chen, “Modeling of coupled shear walls and its
experimental verification,” Journal of Structural Engineering,
vol. 131, no. 1, pp. 75–84, 2005.

[10] V. Colotti, “Shear behavior of RC structural walls,” Journal of
Structural Engineering, vol. 119, no. 3, pp. 728–746, 1993.

[11] K. Kolozvari, C. Arteta, M. Fischinger et al., “Comparative study
of state-of-the-art macroscopic models for planar reinforced
concrete walls,” ACI Structural Journal, vol. 115, no. 6,
pp. 1637–1657, 2018.

[12] S. M. R. Mortazavi and B. Zaeimdar, “Shear wall modeling with
asymmetric openings by macro elements,” Structures, vol. 29,
pp. 899–910, 2021.

[13] K. Orakcal and J. W. Wallace, “Flexural modeling of reinforced
concrete walls–experimental verification,”ACI Structural Journal,
vol. 103, no. 2, pp. 196–206, 2006.

[14] İ. Kazaz, A. Yakut, and P. Gülkan, “Numerical simulation of
dynamic shear wall tests: a benchmark study,” Computers &
Structures, vol. 84, no. 8-9, pp. 549–562, 2006.

[15] O. Saghaian, F. Nateghi, and O. Rezaifar, “Comparison of
using different modeling techniques on prediction of the
nonlinear behavior of R/C shear walls,” International Journal
of Engineering, vol. 27, no. 2, pp. 269–282, 2014.

[16] F.-Y. Liao, L.-H. Han, and Z. Tao, “Performance of
reinforced concrete shear walls with steel reinforced concrete
boundary columns,” Engineering Structures, vol. 44, pp. 186–
209, 2012.

[17] L. Xie, X. Lu, X. Lu, Y. Huang, and L. Ye, “Multi-layer shell
element for shear walls in OpenSees,” in Computing in Civil
and Building Engineering, pp. 1190–1197, American Society of
Civil Engineers, 2014.

[18] J. R. de Barros Silva and B. Horowitz, “Nonlinear finite element
analysis of reinforced concrete shear walls,” Revista IBRACON
de Estruturas e Materiais, vol. 13, no. 6, Article ID e13603,
2020.

[19] J. Ghaboussi, “Advances in neural networks in computational
mechanics and engineering,” in Advances of Soft Computing in
Engineering, Z.Waszczyszyn, Ed., vol. 512 ofCISM International
Centre for Mechanical Sciences, pp. 191–236, Springer, Vienna,
2010.

[20] G. Solorzano and V. Plevris, “Computational intelligence
methods in simulation and modeling of structures: a state-of-
the-art review using bibliometric maps,” Frontiers in Built
Environment, vol. 8, 2022.

[21] A. Ahmad, V. Plevris, and Q.-u.-Z. Khan, “Prediction of
properties of FRP-confined concrete cylinders based on artificial
neural networks,” Crystals, vol. 10, no. 9, Article ID 811, 2020.

[22] M. E. A. Ben Seghier, J. A. F. O. Corriea, J. Jafari-Asl,
A. Malekjafarian, V. Plevris, and N.-T. Trung, “On the
modeling of the annual corrosion rate in main cables of
suspension bridges using combined soft computing model and
a novel nature-inspired algorithm,” Neural Computing and
Applications, vol. 33, pp. 15969–15985, 2021.

[23] M. Zhu, F. McKenna, and M. H. Scott, “OpenSeesPy: Python
library for the OpenSees finite element framework,” Soft-
wareX, vol. 7, pp. 6–11, 2018.

[24] M. Abadi, A. Agarwal, P. Barham et al., TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems, Cornell
University, 2016.

[25] G. Solorzano and V. Plevris, “ANN-based surrogate model for
predicting the lateral load capacity of RC shear walls,” in The
8th European Congress on Computational Methods in Applied
Sciences and Engineering, ECCOMAS Congress, Oslo, Norway,
2022.

[26] M. S. Barkhordari and M. Tehranizadeh, “Response estima-
tion of reinforced concrete shear walls using artificial neural
network and simulated annealing algorithm,” Structures,
vol. 34, pp. 1155–1168, 2021.

[27] M. J. Moradi and M. A. Hariri-Ardebili, “Developing a library
of shear walls database and the neural network based predictive
meta-model,” Applied Sciences, vol. 9, no. 12, Article ID 2562,
2019.

[28] R. Quevedo-Reina, G. M. Álamo, L. A. Padrón, and
Juan J. Aznárez, “Surrogate model based on ANN for the
evaluation of the fundamental frequency of offshore wind
turbines supported on jackets,” Computers & Structures,
vol. 274, Article ID 106917, 2023.

[29] H. T. Mai, J. Kang, and J. Lee, “A machine learning-based
surrogate model for optimization of truss structures with
geometrically nonlinear behavior,” Finite Elements in Analysis
and Design, vol. 196, Article ID 103572, 2021.

[30] D. W. Abueidda, S. Koric, and N. A. Sobh, “Topology
optimization of 2D structures with nonlinearities using deep
learning,” Computers& Structures, vol. 237, Article ID 106283,
2020.

[31] F. F. Taucer, E. Spacone, and F. C. Filippou, A fiber beam-
column element for seismic response analysis of reinforced
concrete structures, Ph.D. thesis, University of California,
Berkeley, 1991.

[32] P. Hallinan and H. Guan, “Layered finite element analysis of
one-way and two-way concrete walls with openings,” Advances
in Structural Engineering, vol. 10, no. 1, pp. 55–72, 2007.

[33] H. Guan and Y.-C. Loo, “Flexural and shear failure analysis of
reinforced concrete slabs and flat plates,” Advances in Structural
Engineering, vol. 1, no. 1, pp. 71–85, 1997.

[34] F. McKenna, M. H. Scott, and G. L. Fenves, “Nonlinear finite-
element analysis software architecture using object composi-
tion,” Journal of Computing in Civil Engineering, vol. 24, no. 1,
pp. 95–107, 2010.

[35] X. Lu, L. Xie, H. Guan, Y. Huang, and X. Lu, “A shear wall
element for nonlinear seismic analysis of super-tall buildings
using OpenSees,” Finite Elements in Analysis and Design,
vol. 98, pp. 14–25, 2015.

16 Advances in Civil Engineering



[36] L. Jiang, M. W. Chernuka, and N. G. Pegg, “A co-rotational,
updated Lagrangian formulation for geometrically nonlinear
finite element analysis of shell structures,” Finite Elements in
Analysis and Design, vol. 18, no. 1–3, pp. 129–140, 1994.

[37] Z. P. Bažant and J. Planas, “Crack band models and smeared
cracking,” in Fracture and Size Effect in Concrete and Other
Quasibrittle Materials, pp. 1–47, Routledge, 1st edition, 1998.

[38] A. Hillerborg, M. Modéer, and P.-E. Petersson, “Analysis of
crack formation and crack growth in concrete by means of
fracture mechanics and finite elements,” Cement and Concrete
Research, vol. 6, no. 6, pp. 773–781, 1976.

[39] M. Menegotto, “Method of analysis of cyclically loaded RC
plane frames including changes in geometry and non-elastic
behavior of elements under normal force and bending,”
pp. 15–22, 1973, Zurich, Switzerland.

[40] F. C. Filippou, E. P. Popov, and V. V. Bertero, “Effects of
Bond Deterioration on Hysteretic Behavior of Reinforced
Concrete Joints,” Tech. Rep. OCLC: 65472460, Earthquake
Engineering Research Center, University of California,
Berkeley, California, 1983.

[41] S. P. Shah, S. E. Swartz, and C. Ouyang, Fracture Mechanics of
Concrete: Applications of Fracture Mechanics to Concrete, Rock
and Other Quasi-Brittle Materials, John Wiley & Sons, 1995.

[42] D. C. Kent and R. Park, “Flexural members with confined
concrete,” Journal of the Structural Division, vol. 97, no. 7,
pp. 1969–1990, 1971.

[43] J. B. Mander, M. J. N. Priestley, and R. Park, “Theoretical
stress-strainmodel for confined concrete,” Journal of Structural
Engineering, vol. 114, no. 8, pp. 1804–1826, 1988.

[44] M. Y. H. Bangash, Concrete and Concrete Structures: Numeri-
cal Modelling and Applications, Elsevier Applied Science,
London, United Kindom, 1989.

[45] ACI Committee 2019, “ACI 318-19 building code require-
ments for structural concrete,” Farmington Hills, MI, 2019.

[46] G. Solorzano and V. Plevris, “Design of reinforced concrete
isolated footings under axial loading with artificial neural
networks,” in 14th International Conference on Evolutionary
and Deterministic Methods for Design, Optimization and
Control, pp. 118–131, ECCOMAS Proceedia, Streamed from
Athens, Greece, 2021.

[47] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323,
pp. 533–536, 1986.

[48] J. Kudela and R. Matousek, “Recent advances and applications
of surrogate models for finite element method computations: a
review,” Soft Computing, vol. 26, pp. 13709–13733, 2022.

[49] L. Alzubaidi, J. Zhang, A. J. Humaidi et al., “Review of deep
learning: concepts, CNN architectures, challenges, applica-
tions, future directions,” Journal of Big Data, vol. 8, Article ID
53, 2021.

[50] D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” arXiv: 1412.6980 [cs], 2017.

[51] V. Plevris, G. Solorzano, N. Bakas, and M. E. A. Ben Seghier,
“Investigation of performance metrics in regression analysis
and machine learning-based prediction models,” in The 8th
European Congress on Computational Methods in Applied
Sciences and Engineering, pp. 1–26, ECCOMAS Congress,
Oslo, Norway, 2022.

[52] K. Nasrollahzadeh, M. A. Hariri-Ardebili, H. Kiani, and
G. Mahdavi, “An integrated sensitivity and uncertainty
quantification of fragility functions in RC frames,” Sustain-
ability, vol. 14, no. 20, Article ID 13082, 2022.

[53] G. Solorzano and V. Plevris, “Optimum design of RC footings
with genetic algorithms according to ACI 318-19,” Buildings,
vol. 10, no. 6, Article ID 110, 2020.

[54] C. L. Segura Jr., S. Sattar, and M. A. Hariri-Ardebili,
“Quantifying material uncertainty in seismic evaluations of
reinforced concrete bridge column structures,” ACI Structural
Journal, vol. 119, no. 3, pp. 141–152, 2022.

[55] G. Solorzano and V. Plevris, “DNN-MLVEM: a data-driven
macromodel for RC shear walls based on deep neural networks,”
Mathematics, vol. 11, no. 10, Article ID 2347, 2023.

Advances in Civil Engineering 17




