
AI Open 4 (2023) 145–153

A
2
B

Contents lists available at ScienceDirect

AI Open

journal homepage: www.keaipublishing.com/en/journals/ai-open

MOTT: A new model for multi-object tracking based on green learning
paradigm
Shan Wu a,∗, Amnir Hadachi a, Chaoru Lu b, Damien Vivet c

a ITS Lab, Institute of Computer Science, University of Tartu, Narva mnt. 18, Tartu, 51009, Estonia
b Centre of Metropolitan Digitalization and Smartization (MetSmart), Department of Built Environment, Oslo Metropolitan University, Pilestredet
46, Oslo, 0167, Norway
c ISAE-SUPAERO, Université de Toulouse, 10 Av. Edouard Belin, Toulouse, 31400, France

A R T I C L E I N F O

Keywords:
Multi-object tracking
Pedestrian tracking
Green learning
Transformer
End-to-end

A B S T R A C T

Multi-object tracking (MOT) is one of the most essential and challenging tasks in computer vision (CV). Unlike
object detectors, MOT systems nowadays are more complicated and consist of several neural network models.
Thus, the balance between the system performance and the runtime is crucial for online scenarios. While some
of the works contribute by adding more modules to achieve improvements, we propose a pruned model by
leveraging the state-of-the-art Transformer backbone model. Our model saves up to 62% FLOPS compared with
other Transformer-based models and almost as twice as fast as them. The results of the proposed model are
still competitive among the state-of-the-art methods. Moreover, we will open-source our modified Transformer
backbone model for general CV tasks as well as the MOT system.
1. Introduction

As a cornerstone of diverse CV tasks, MOT is a significant pre-
requisite. For instance, public surveillance, autonomous vehicles, and
video analysis, where MOT’s performance is critical for the subsequent
analysis.

Analogizing humans paying attention to the targets when tracking
objects, Transformer’s attention mechanism is an advisable solution for
MOT (Vaswani et al., 2017). Some works have leveraged the novel
Transformer-based detector for MOT, such as TransTrack (Sun et al.,
2020) and TrackFormer (Meinhardt et al., 2022). It turns out that
the key-query mechanism in the Transformer is capable of focusing
attention on massive objects and simplifying the tracking systems from
tracking-by-detection to jointly-detection-and-tracking.

Nonetheless, current Transformer-based solutions boost the overall
model sizes by additional modules for tracking, as explained in Fig. 1.
Indeed, it is beneficial to patch the existing solutions with novel tech-
niques to make them more robust and reasonable. However, we also
need to consider each module’s purpose and effectiveness by breaking
down the structure instead of using the whole model.

On the other hand, ResNet, which was proposed in 2015 (He
et al., 2016), is an old but still prevalent and effective convolutional
backbone for various CV tasks. Although it is famous for its innovative
residual connection, it is arguable whether it is prominent over recent
competitors.
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This paper proposes a new standalone end-to-end tracking model
to address the previous issues. Instead of following the conventional
model paradigm and producing a mixed model, we create a new
architecture by investigating the mechanism of Transformers deeply
and keeping it compact. Firstly, we adopt an encoder-only Transformer.
It works as a feature extraction backbone and an encoder to embed
the object’s spatial context. Next, only the decoder of the DETR model
is used to decode the features and predict the object locations and
classes (Zhu et al., 2021). In this way, we follow the general architec-
ture of encoder–decoder Transformers since our problem is an iterative
prediction of objects and removes the ambiguous module.

In our unified tracking Transformer, we keep the tracking-by-
attention paradigm, which jointly detects and tracks objects using the
same queries. As an online system, the encoder takes the image of
the current time step, extracting the objects’ features and encoding
them into a memory embedding. Next, the decoder regresses the
objects’ locations and classes by the attention mechanism using learned
object queries and memory. The regressed queries of detected objects
will be added to the tracking queries in the next time step. Subse-
quently, the decoder will process all detection and tracking queries
auto-regressively. Hence, jointly-detection-and-tracking is done within
the system using an extended query mechanism.

We evaluate our model with the state-of-the-art Transformer-based
models on the MOT17 dataset during the experiment. Our model
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Fig. 1. A visualization of the architectures of the state-of-the-art Transformer-based
MOT systems comprising a convolutional backbone, a Transformer encoder, and up
to two Transformer decoders. (A) Sun et al. (2020) uses two decoders dedicated to
detection and tracking, respectively. However, Transformer is a heavy module in terms
of computation. Two decoders would be too bulky. (B) Meinhardt et al. (2022) is the
most straightforward model where the detected queries are reused as tracking queries.
(C) Zeng et al. (2022) and Xu and Vivet (2021) implemented a query update module for
better-engineered query embedding. Still, (B) and (C) all combine two distinct models
requiring more computational resources than ours.

achieves prominent results compared with the Transformer-based com-
petitors while the model size shrunk by up to 30.7%. Ablation research
is conducted to show the effectiveness of our new architecture. In this
way, we hope the researchers can go further in this direction with the
unified tracking model and exploit more Transformers and green learning
for CV.

In summary, we listed our contributions as follows:

• A modified open-sourced1 Transformer backbone, which can be
a substitution of convolutional backbones in any CV tasks for
arbitrary image sizes.

• A new unified MOT Transformer, namely MOTT, which is signif-
icantly efficient while maintaining competitive performance.

• We took a step towards a solely Transformer-based tracking
model without relying on any convolutional model, which mini-
mized both the size and the computational cost for green learning.

2. Related work

Over the past few years, a plentiful of work has been done by
researchers to enhance the performance of multi-object tracking (MOT)
systems. Because MOT is a complex task involving both object detec-
tion and object tracking, we categorize the literature into two main
domains: tracking-by-detection and joint-tracking-and-detection.

2.1. Tracking-by-detection

These approaches mainly focus on the tracking task using existing
detections from other detectors.

In the early stages, works like Sanchez-Matilla et al. (2016) and Be-
wley et al. (2016) solely rely on the detection boxes and their prob-
abilities. The tracking is achieved by data association using a particle
filter framework or a bipartite matching between detected boxes and
the estimated boxes. They perform moderately but suffer from low
accuracy and identity switches because of the density of objects and
the occlusions.

The evolution of machine learning and the involvement of image
features in MOT systems remarkably boosted tracking performance. As
many robust object detectors emerge (Ren et al., 2015; Duan et al.,

1 GitHub link: https://github.com/simonwu53/MOTT.
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2019; Redmon and Farhadi, 2018), some works (Wang et al., 2021;
Sheng et al., 2018) integrate their data association techniques with
existing detectors. For instance, Leal-Taixé et al. (2016) leveraged
the Siamese network for auto-regressed data association. Wojke et al.
(2017) integrated appearance information using a pre-trained network
to mitigate the identity switch issue. It is important that a good de-
tection result will contribute to the tracking performance. Nonetheless,
tracking objects using several models would be less efficient and require
more computational resources.

2.2. Joint-tracking-and-detection

By performing detection and tracking simultaneously, the track-
ing process could happen earlier. Zhang et al. (2021a) employed an
encoder–decoder network for feature extraction. Both the detector and
re-ID module take the feature embedding of the same origin simulta-
neously. However, an additional tracking step is needed using feature
fusion and Kalman filters.

CTracker (Peng et al., 2020b) proposed an end-to-end neural net-
work model to detect objects among three consecutive frames followed
by an IoU matching for the boxes on the middle frame. Objects are
chained by a sliding time window of three frames. This method facil-
itates the training process but requires considerable power to perform
detection on multiple frames.

Due to the success of the Transformer architecture (Vaswani et al.,
2017), many researchers find it a good model for MOT tasks because
it simplifies the model structure, the data association process, and the
training procedure. DETR (Carion et al., 2020) established the concept
of object queries as a fixed number of learnable embeddings, which
is acknowledged by most of the research works using Transformer in
Computer Vision (CV). These queries will be transformed into output
embeddings in the decoder, followed by a post-process decoding them
into bounding boxes and class labels. The object query mechanism built
in Transformers greatly facilitates the development of object detection
and tracking.

TransTrack (Sun et al., 2020) is one of the first models imple-
menting an end-to-end Transformer-based MOT architecture derived
from deformable DETR (Zhu et al., 2021), a cornerstone of the Trans-
former detector. The TransTrack duplicates the decoder of deformable
DETR, utilizing one for detection and another for tracking. This method
is straightforward without additional data association. However, the
backbone and the second decoder make it an enormous model.

Meinhardt et al. (2022), Zeng et al. (2022) and Xu and Vivet (2021)
improved a step further by tracking-by-query mechanism, which only
involves the backbone and a full deformable DETR in this paradigm.
Object queries are categorized into detection queries and tracking
queries. The deformable decoder will decode all types of queries at
once. Hence, detection and tracking processes happen concurrently.
Despite the simplification of the model, they are still a combination
of two complete models.

2.3. The transformer

Since the Transformer came to CV, it developed into two directions
as two well-known CV tasks: object classification and object detection.
In object detection, Transformers keep its original architecture (Zhu
et al., 2021; Carion et al., 2020), an encoder–decoder model, because
object queries are necessary to populate instances. Zhu et al. (2021) is
the state-of-the-art of this category, which reconstructs the multi-head
attention and leverages multi-level features.

In object classification, the structure of Transformers (Dosovitskiy
et al., 2020; Liu et al., 2021; Dong et al., 2022) are as plain as an
encoder because attention is one of the substitutions of the receptive
field as in the convolutions. Instead of attending features globally, these
works exploit local attention, making them state-of-the-art backbones
for feature extraction.

https://github.com/simonwu53/MOTT


AI Open 4 (2023) 145–153S. Wu et al.
Fig. 2. Architecture of proposed MOTT model, where 𝐼 is the input image, 𝑡 is the
time step, 𝑞𝑑 and 𝑞𝑡𝑟 denote the detection queries and tracking queries, respectively.

Both feature extraction and object detection are crucial components
in MOT systems. By leveraging Transformer encoders and decoders
independently, we could further minimize the model by proposing
MOTT, a single Transformer-only architecture for MOT. Consequently,
we will reduce the power consumption of training and testing as a step
forward to the green learning model (Strubell et al., 2019).

3. Methodology

It is known to all that a full encoder–decoder-based Transformer
is good at sequence prediction problems by the interaction between
object queries and memory embedding. We formulate MOT as a se-
quence prediction as other Transformer-based MOT systems. Based
on the characteristics of different types of Transformers, we create a
customized encoder–decoder architecture specialized in MOT, namely
MOTT, as shown in Fig. 2. The model adheres to a general encoder–
decoder Transformer architecture, where the encoder also functions as
a backbone to extract features and encode information simultaneously.
At every time step, an image 𝐼 is fed into the model for feature
extraction and encoding. The output of the encoder will be queried
by learnable object queries comprised of fix-sized detection queries 𝑞𝑑
and tracking queries 𝑞𝑡𝑟 in the decoder. In the post-process, Multi-Layer
Perceptron (MLP) modules will process the decoded queries, which
hold the target objects’ appearance information to predict the locations
and classes of objects. We will discuss all components in the following
subsections.

3.1. Object queries

Transformers need a query for the sequence prediction. A query is
a one-dimensional embedding with a hidden space of 𝑑ℎ. Similar to the
work of Meinhardt et al. (2022) and Zeng et al. (2022), we leverage
two types of object query 𝑞 – detection query 𝑞𝑑 and tracking query
𝑞𝑡𝑟 (shown in Eq. (1)). The decoder performs the track association on
the concatenation of 𝑞𝑑 and 𝑞𝑡𝑟 using deformable attentions (Zhu et al.,
2021).

𝑞 = {𝑞𝑡𝑟, 𝑞𝑑}

𝑞𝑑 = {𝑞𝑖𝑡 ∣ ∀ 𝑖 ∈ 𝑁𝑜𝑏𝑗}

𝑞𝑡𝑟 = {𝑞𝑖𝑡−1 ∣ 𝑖 ⊂ 𝑁𝑜𝑏𝑗}

(1)

where 𝑡 is the time step, 𝑁𝑜𝑏𝑗 is the length of detection query. 𝑞𝑡𝑟 is a
subset of 𝑞 from the previous time step.
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𝑑

Fig. 3. Diagram shows the general architecture of CSWin model including four
stages, where each stage has a predefined number of CSWin layers 𝑁𝑖. ↓ denotes a
downsampling layer, where ∕𝑛 means the size of the feature map compared with its
original input size.

3.1.1. Detection query
Our model has a learnable query embedding 𝑁𝑜𝑏𝑗 of a fixed length,

namely detection queries 𝑞𝑑 . It is initialized by a normal distribution
and gradually optimized to store the appearance attributes of target ob-
jects during the training process (white boxes in Fig. 2). The optimized
𝑞𝑑 will be processed in the decoder to update its content to the new
objects’ attributes for every incoming image (colored boxes in Fig. 2).

In practice, the parameter 𝑁𝑜𝑏𝑗 defines how many variants of target
objects to learn. It is much larger than the maximum number of
objects in each frame to acquire as much detection as possible. Another
parameter 𝑑ℎ determines the number of appearance attributes for every
independent instance.

3.1.2. Tracking query
When one of the detection queries 𝑞𝑖𝑡 at time step 𝑡 detects an object,

it will be kept as a tracking query for the next iteration (the boxes
in the same color across frames as shown in Fig. 2). As previously
mentioned, this query carries the appearance attributes of a specific
object through attention operations. Hence, we leave all queries that
have valid detection unaffected in the next frame.

tracking queries are always selected and concatenated with new
detection queries to form the object queries at every iteration, as shown
in Fig. 2. The model consumes a fluctuating number of object queries
for all subsequent frames.

3.1.3. Query update
Let 𝑔𝑡 = {𝑏𝑔,𝑡, 𝑠𝑔,𝑡} denotes the detection of an object at time step 𝑡

with its bounding box 𝑏𝑔,𝑡 and a score 𝑠𝑔,𝑡. If the score of a detected
object is larger than a threshold 𝜎𝑑𝑒𝑡, the corresponding detection
query is validated and kept for tracking. In the next time step, this
tracking query will be responsible for 𝑔𝑡+1, where the score 𝑠𝑔,𝑡+1 will
be compared with a tracking threshold 𝜎𝑡𝑟. The model keeps updating
this tracking query using the latest input frame until the score 𝑠𝑔,𝑡+𝑛
is lower than 𝜎𝑡𝑟, and the tracking query will be removed from the
tracking queries.

There are occasions that a detection query does not find a valid
object (𝑠𝑔,𝑡 < 𝜎𝑑𝑒𝑡), and the detection will be discarded (crossed boxes
in Fig. 2). During the testing phase, the duplicated detection will be
further reduced by a Non-Maximum Suppression (NMS) threshold 𝜎𝑛𝑚𝑠.

3.2. Transformer encoder

In this work, we leverage a novel Transformer encoder called
CSWin (Dong et al., 2022), a general-purpose vision backbone. We
select it for three reasons: it has a better performance compared
with conventional ResNet backbone; it is a Transformer backbone,
also an encoder, which significantly diminishes the model parameters
and computations compared with the mixture of a backbone and an
encoder; it is fully open-sourced.

The CSWin model, as shown in Fig. 3, is an encoder-only model
with four stages like ResNet, where each stage has a different amount of
encoder layers 𝑁 , and the size of output feature maps will be shrunk by
𝑖
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Fig. 4. Structure of the amended cross-shaped window self-attention (CSWin-SA)
module in each CSWin layer. The red stripe is the zero-padding added to the feature
map, while the blue stripe denotes the local range of the self-attention mechanism.

two after every stage. Within each layer is a cross-shaped window self-
attention (CSWin-SA) module, dividing the feature maps into two heads
by depth (as shown in Fig. 4). A dynamic stripe window 𝑠𝑤 divides the
feature map into smaller stripes vertically and horizontally, followed
by the CSWin-SA applied on each stripe in parallel. Hence, the module
only attends to the local context within the stripes to extract features.
𝑠𝑤 is wider as the stage goes deeper because the receptive field is larger.
Later, these features will be merged into global features using a linear
layer.

However, this model is limited to specific datasets like ImageNet
(Deng et al., 2009) and COCO (Lin et al., 2014) because of the split
size 𝑠𝑤 in the CSWin-SA module. The module will not work when the
sizes of feature maps cannot be divided by 𝑠𝑤 evenly. This constraint
remarkably hinders the downstream CV tasks. Thus, we propose a
padding mechanism to make it work with arbitrary images as shown
in Fig. 4.

For an arbitrary feature map 𝑓 𝑐𝑖×ℎ𝑖×𝑤𝑖
𝑖 of stage 𝑖 ∈ [1, 4] and the 𝑠𝑤𝑖

of stage 𝑖, if any side 𝑙 of the feature map cannot be divided by 𝑠𝑤𝑖
evenly (e.g. ℎ𝑖 mod 𝑠𝑤𝑖 ≠ 0), we add zero-paddings to that side using
Eq. (2) before the CSWin-SA module.

𝑙𝑝𝑎𝑑 = 𝑠𝑤𝑖 − (𝑙 mod 𝑠𝑤𝑖)

∀𝑙 ∈ {ℎ𝑖, 𝑤𝑖} ∧ 𝑙 mod 𝑠𝑤𝑖 ≠ 0

𝑙𝑎 = 𝑙𝑝𝑎𝑑 ∣ 2

𝑙𝑏 = 𝑙𝑝𝑎𝑑 − 𝑙𝑎

(2)

where 𝑙𝑝𝑎𝑑 is the total padding size for both extremities of a side 𝑙. 𝑙𝑎
and 𝑙𝑏 are the padding sizes of each extremity.

Local feature extraction is convolutional networks’ specialty as they
can easily extract features like eyes, noses, and ears by limiting their
receptive field. This differs for the Transformers because the attention
mechanism focuses on the whole input. CSWin-SA controls its recep-
tive field by dynamic 𝑠𝑤 strengthening local feature extraction while
drawing the global features from other heads.

Besides, our modified backbone provides multi-level feature maps
collected from the last layer of every stage for CV tasks requiring fea-
ture pyramids. The feature pyramid comprises two-dimensional feature
maps 𝜒 = {𝑓 𝑐𝑖×ℎ𝑖×𝑤𝑖

𝑖 ∣ 𝑖 ∈ [1, 4]}.
In this work, we leverage the last three stages’ feature maps (𝑖 ∈

{2, 3, 4}) along with an additional feature map downsampled by a
convolution layer (𝑘𝑒𝑟𝑛𝑒𝑙 = 3, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2, 𝑝𝑎𝑑 = 1) using the last stage’s
feature map 𝑓 to enrich the spatial context in different scales. Eq. (3)
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summarizes the output features we use in all models where CSWin is
embedded.

𝜒𝑒 = {𝑓 𝑐𝑖×ℎ𝑖×𝑤𝑖
𝑖 ∣ 𝑖 ∈ {2, 3, 4, 5}}

where 𝑓 𝑐5×ℎ5×𝑤5
5 = Conv(𝑓 𝑐4×ℎ4×𝑤4

4 )
(3)

3.3. Transformer decoder

Before the interaction with queries in the decoder, multi-level fea-
ture maps need to be preprocessed. As shown in Eq. (4), feature maps
will be projected into 𝑑ℎ channels to match the queries. Next, two
spatial dimensions of the feature maps will be merged, followed by a
concatenation of all flattened features generating a memory embedding
𝜒𝑒𝑛𝑐 for the decoder.

𝜒𝑝 = {𝑓 𝑐𝑖×ℎ𝑖×𝑤𝑖
𝑖 → 𝑓 𝑑ℎ×ℎ𝑖×𝑤𝑖

𝑖 ∣ ∀𝑓𝑖 ∈ 𝜒𝑒}

𝜒𝑓 = {𝑓 𝑑ℎ×ℎ𝑖×𝑤𝑖
𝑖 → 𝑓 𝑑ℎ×ℎ𝑤𝑖

𝑖 ∣ ∀𝑓𝑖 ∈ 𝜒𝑝}

𝜒𝑒𝑛𝑐 = Concat(𝜒𝑓 )

(4)

Decoders are intended for performing detection and tracking simul-
taneously using object queries and memory embedding. In order to
decode massive queries while keeping the computational cost low, we
only select the decoder from the deformable DETR (Zhu et al., 2021).
This decoder can regress the bounding boxes using its efficient Multi-
scale Deformable Attention module (MSDAttn), whose computational
complexity is irrelevant to the input size.

MSDAttn is capable of attending memory embedding 𝜒𝑒𝑛𝑐 contain-
ing multi-level features, where each level’s feature embedding 𝑓𝑖 will
go through deformable attention (DAttn) as shown in Eq. (5). DAttn
comprises 𝑚 heads of attention, which only attends to a subset of the
feature embedding 𝑓 sifted by reference points 𝑝, and its sampling
offsets 𝛥𝑝. Both Reference points and sampling offsets are derived from
query embedding 𝑞′, and object queries 𝑞 using linear layers, respec-
tively. Query embedding 𝑞′ is a trainable positional encoding (Vaswani
et al., 2017) dedicated to the decoder.

DAttn(𝑞, 𝑞′, 𝑓 ) =
𝑀
∑

𝑚
𝑊𝑚Attn(𝑞, 𝑞′, 𝑓 ) + 𝑏𝑚

Attn(𝑞, 𝑞′, 𝑓 ) = 𝐴 ⋅ 𝑓

𝐴 = Softmax(𝑊𝑎𝑞 + 𝑏𝑎)

𝑓 = (𝑊𝑣𝑓 + 𝑏𝑣)(𝜋(𝑝) + 𝛥𝑝)

𝑝 = 𝑊𝑞′𝑞
′ + 𝑏𝑞′

𝛥𝑝 = 𝑊𝑞𝑞 + 𝑏𝑞

(5)

where 𝐴 is the attention weight, 𝑊 and 𝑏 are the projection weights
and bias. 𝜋 is a function rescaling the reference points to its feature
maps’ scales. The final output will become the new object queries 𝑞
with updated appearance attributes of the current frame.

3.4. Post process

For every query from the decoder, the bounding box is predicted
by a three-layer MLP module, while the class label is generated from a
fully-connected layer directly. Because the MSDAttn utilizes reference
points for attention, the predicted bounding boxes are the offsets
relative to the center of reference points.

In this implementation, 𝑁𝑑𝑒𝑐 cloned MLP modules are created for it-
erative bounding box refinement, where 𝑁𝑑𝑒𝑐 is the number of decoder
layers. These MLP modules will be injected into the decoders to update
the coordinates of reference points on every decoder layer.

3.5. Re-Identification (Re-ID)

An object usually will not appear continuously among the frames.
It may be occluded by another object or temporarily out of the frame.
Thus, we do not terminate a tracking query if the score 𝑠 at time
𝑔,𝑡
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step 𝑡 is lower than the track threshold 𝜎𝑡𝑟. Instead, this tracking query
s marked inactive, and we keep it in the list of tracking queries for
nother 𝑇𝑟𝑒𝑖𝑑 time steps. Thus, the model can still re-identify an inactive
rack object within a small time window if the track score 𝑠𝑔,𝑡+𝑛 is larger

than a Re-ID threshold 𝜎𝑟𝑒𝑖𝑑 .
Because inactive tracking queries cannot be updated effectively in

he decoder when targeting objects are not visible, the model cannot
ecover a long-term inactive tracking query or inactive tracking queries
ith drastic appearance changes. Nonetheless, the model acquires Re-

D ability because of the Transformer’s attention mechanism on object
ueries without additional techniques and training.

.6. Training

Initially, the model only understands the detection and tracking
ueries once it was trained in simulated scenarios of tracking objects
etween two consecutive frames. Thus, we train the model using super-
ised learning as proposed in Meinhardt et al. (2022). A training cycle
onsists of two model forward propagations:

1. The model performs purely object detection with detection
queries 𝑞𝑑 on frame 𝑡 − 1 (𝑡 = 0 in Fig. 2). Select partial of the
outputs to be the track targets.

2. The model performs joint object detection and tracking with
both detection queries 𝑞𝑑 and tracking queries 𝑞𝑡𝑟 on frame 𝑡
(𝑡 = 1 in Fig. 2).

The loss is calculated for all predictions in the second forward
propagation using bipartite matching (Hungarian algorithm (Kuhn,
1955)), which sets up one-to-one matching between predictions and
ground truths. In addition, there are three cases when assigning ground
truth targets to the predictions. Let 𝑡 = {𝑦}𝑁𝑗=1 be a collection of 𝑁
ground truth targets 𝑦 for frame 𝑡.

• 𝑡 − 𝑡−1: these are new objects appears in frame 𝑡 and bipartite
matching is used for those objects.

• 𝑡−1 − 𝑡: these are terminated objects which become invisible
or occluded in frame 𝑡. Thus, the background class is assigned to
these predictions.

• 𝑡∩𝑡−1: these are objects in both frames. The connection between
the prediction and the ground truth is hard linked by its track id.

Following Meinhardt et al. (2022), Sun et al. (2020) and Carion
et al. (2020), we calculate the loss based on cases whether a prediction
is matched by a ground truth as shown in Eq. (6):

(𝑦̂, 𝑦) =
𝑁𝑜𝑏𝑗
∑

𝑖=1

[

𝜆𝑐𝑙𝑠𝑐𝑙𝑠 + 1𝑗=𝜑(𝑖)𝑏𝑜𝑥
]

(6)

where 𝑦̂ and 𝑦 are the prediction and ground truth objects, respectively.
𝜆 is a factor adjusting the balance between class loss 𝑐𝑙𝑠 and box loss
𝑏𝑜𝑥. 𝜑 is bipartite matching performed by Hungarian algorithm and
1𝑗=𝜑(𝑖) = 1 if 𝑦̂𝑖 is matched to 𝑦𝑗 . The class loss and box loss are defined
as Eq. (7):

𝑐𝑙𝑠 = − log 𝑝̂𝑖(𝑐𝜑(𝑖))

𝑏𝑜𝑥 = 𝜆𝓁1‖𝑏𝜑(𝑖) − 𝑏̂𝑖‖1 + 𝜆𝑖𝑜𝑢𝑖𝑜𝑢(𝑏𝜑(𝑖), 𝑏̂𝑖)
(7)

where 𝑝̂𝑖(𝑐𝜑(𝑖)) is the predicted class probability of matched class 𝑐𝜑(𝑖).
If 𝑦̂𝑖 has no matched ground truth, we give it a background label
(𝑐𝜑(𝑖)=∅ = 0). For the bounding boxes, a combination of 𝓁1 loss and
generalized IoU loss (Rezatofighi et al., 2019) is used.

In addition to the regular supervised training procedure mentioned
above, several data augmentations techniques are used as in Meinhardt
et al. (2022) and Sun et al. (2020), such as tracking with larger
time steps, false positive/negative for object queries, and conventional
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image augmentations.
4. Experiments

4.1. Dataset

We conducted our experiments on the MOT17 dataset (Milan et al.,
2016) provided by MOTChallenge Benchmark to compare with other
competitors. It is a multi-object tracking dataset favored by most of the
works we researched. The dataset contains 14 videos in total, where
seven are for training and the remaining seven are for testing. Noted
that there are only annotations for training sequences. In order to get
evaluation results on testing sequences, one must create a new entry
on their benchmark and submit the tracking results to their server to
get the scores. Many works include additional training data and tuning
to get a competitive score. Hence, in our experiments, we use data
differently in order to control variables:

• Benchmark: All training data, including additional ones (mention
below).

• Comparison: Similar to Sun et al. (2020) and Zhou et al. (2020),
we split the training data into two halves — one for training and
the other part for validation and comparison.

In addition to data splits, MOTChallenge also provides two tracks for
competition: public and private detections. Methods based on public
detection only associate spatiotemporal tracklets using the detections
provided in the dataset. Private-detection methods perform detection
and tracking by themselves. Hence, our method is an online private
one that performs one-shot prediction for every incoming frame.

As mentioned before, CrowdHuman dataset (Shao et al., 2018)
is another dataset we used for benchmarking. Because the MOT17
dataset is relatively small, CrowdHuman could be a great complement.
CrowdHuman dataset focuses on human detection, which has 15 000,
4370, and 5000 images for training, validation, and testing, respec-
tively. Although it is not a sequence-based dataset, we can imitate two
consecutive frames by cropping and shifting the original image.

To test the capability of the proposed MOTT, we also evaluated it
with the MOT20 dataset (Dendorfer et al., 2020) and DanceTrack (Sun
et al., 2022). MOT20 features a tremendous number of people in a
single image, while DanceTrack focuses on different people’s poses.

4.2. Metrics

All tracking performances are measured by MOT metrics (Bernardin
and Stiefelhagen, 2008) widely acknowledged among other works.
Specifically, there are Multi-Object Tracking Accuracy (MOTA), ID F1
score (IDF1), False Positives (FP), False Negatives (FN), Mostly Tracked
targets (MT), Mostly Lost targets (ML), and the number of Identity
Switches (IDs).

Among them, MOTA (shown in Eq. (8)) measures the overall accu-
racy of the tracking, taking into account FP, FN, and IDs. IDF1 ranks
all methods on the same scale showing the balance of identification
precision and recall.

MOTA = 1 −
∑

𝑡(FP𝑡 + FN𝑡 + IDs𝑡)
∑

𝑡 𝑦𝑡
(8)

where 𝑦𝑡 is the number of ground truth boxes at time step 𝑡.

4.3. Implementation details

We trained several models for a comprehensive comparison. Firstly,
we trained vanilla TrackFormer (Meinhardt et al., 2022) and
TransTrack (Sun et al., 2020) as two online private competitors. Sec-
ondly, we substitute the ResNet backbone in TrackFormer with our
modified CSWin model to test the ability of the state-of-the-art Trans-
former backbone (denoted as TrackFormer-CSWin). Thirdly, our pro-
posed efficient model MOTT.
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Table 1
Four models are compared in terms of the number of parameters (#Params), total
CUDA time used, and averaged FLOPS.

Model #Params CUDA time Avg. FLOPS
(M) ↓ total (s) ↓ (G) ↓

TransTrack 46.9 8.17 428.69
TrackFormer 44.0 13.67 674.92
TrackFormer-CSWin 38.3 16.26 714.83
MOTT 32.5 6.76 255.74

In this paper, we use the tiny variant of CSWin in all corresponding
odels, which features 25 layers with an initial embedding size of 64

nd produces a three-level feature pyramid from stages 2, 3, and 4. The
ncoder is pre-trained with COCO dataset (Lin et al., 2014). For the
ecoder, we leverage deformable DETR’s decoder, featuring 6 layers
ith an embedding size of 288 and 8 attention heads. It takes a four-

evel feature pyramid, where the last level is derived from the result of
he last stage of the CSWin model by a convolutional layer. Besides, we
et the number of detection queries to 500. The total number of object
ueries varies based on how many objects are tracked among frames.

For the benchmark model, the model is pre-trained on the Crowd-
uman dataset for 80 epochs. Then, we train the model on a mixed
ataset combining MOT17 and CrowdHuman for 40 epochs. For the
omparison models, we pre-train the models as before. Next, all models
re trained on the first half of the MOT17 training set for 40 epochs
nd evaluated on the second half. During all training, we use AdamW
ptimizer (Loshchilov and Hutter, 2019) with the initial learning rate
t 2 × 10−4. The learning rate drops by a factor of 10 at 50 epochs for
he pretraining stage; Then, it drops again at 10 epochs for the second
tage. Because the encoder is initialized with pre-trained weights, we
educe its learning rate to 2 × 10−5. The input samples are randomly
ropped and resized so that the shorter edges range from 480 to 800
ixels and the longer edges not exceeding 1333 pixels.

.4. Computing efficiency

As a backbone, CSWin (the tiny variant we adopted) requires
lightly more floating point operations per second (FLOPS) with 4.3 ×
109 compared to ResNet50 with 3.8 × 109 used in all competitors on
he ImageNet dataset. Nonetheless, it surpasses ResNet50 in object
etection and segmentation tasks by a large margin on the COCO
ataset in the experiment conducted by Dong et al. (2022).

It is known to all that the computation cost of the attention mech-
nism is extremely high in the image domain because of the high-
esolution images (Zhu et al., 2021). The computational complexity
f multi-head attention is 𝑂(𝑁𝑞𝐶2 + 𝑁𝑘𝐶2 + 𝑁𝑞𝑁𝑘𝐶), where 𝑁𝑞 , 𝑁𝑘,

and 𝐶 are the length of (object) query, key (flattened feature map),
and depth (channel), respectively. In the DETR encoder (Carion et al.,
2020), where only self-attention is applied, the complexity will grow
quadratically regarding the image size (𝐻,𝑊 ) to 𝑂(𝐻𝑊𝐶2 +𝐻2𝑊 2𝐶)
where 𝑁𝑞 = 𝑁𝑘 = 𝐻𝑊 .

CSWin self-attention, on the other hand, only requires 𝑂(𝐻𝑊𝐶2 +
𝑤𝐻2𝑊𝐶 + 𝑠𝑤𝐻𝑊 2𝐶) due to its paralleled cross-shaped attention
indow. The computation complexity can be adjusted dynamically by

he stripe size 𝑠𝑤. We can select small 𝑠𝑤 in shallow layers when 𝐻𝑊 is
arge and gradually increase 𝑠𝑤 in deeper layers while 𝐻𝑊 is shrinking
hrough stages. Consequently, the receptive field varies from small to
arge, akin to stacked convolution layers.

In addition, we measured the FLOPS of different models on sequence
of MOT17 using PyTorch’s profiler (Paszke et al., 2017) in testing
ode. All frames are reshaped into 800 pixels in width.

As shown in Table 1, MOTT has the least trainable parameters,
hich is the most lightweight among the Transformer-based mod-
ls. Besides, it requires around 60% of the FLOPS compared with
ransTrack and even less than 38% of FLOPS than TrackFormer. During
150
he evaluation, MOTT is the fastest in CUDA execution time, achieving
he best efficiency.

In summary, MOTT surpasses other Transformer-based models re-
arding computing efficiency, which benefits carbon footprint reduc-
ion and green learning. Besides, as shown in the following subsec-
ion, we only use one encoder to substitute the backbone-encoder
ombination and gain extra performance.

.5. Ablation study

In this section, we reveal the effects of each module in MOTT along
ith the TrackFormer, which is our baseline model. Table 3 presents

he performance impact of each module. The base model consists of a
esNet-50 backbone, a deformable encoder, and a deformable decoder.
hen we change only the backbone to CSWin, the model achieves a

onsiderable performance boost from 66.8% to 72.7% in MOTA and
rom 70.7% to 72.9% in IDF1, which shows the capability of the novel
ransformer-based backbone.

However, CSWin is more computationally-intensive than ResNet,
s we previously reviewed, making the system even slower. Since
SWin and the deformable encoder are pursuing the same objective, we
emove the deformable encoder entirely and get on par performance at
1.9% in MOTA and 72.6% in IDF1. Furthermore, the speed of the final
odel almost doubled.

The reason we remove the deformable encoder module is that it
s not efficient. We can barely get any improvements from such a big
odule. Tracking happens inside the decoder by transforming object

ueries into embeddings holding information from tracked objects.
he key, or flattened feature map, is required by object queries in a
ecoder. However, we cannot use the feature map from the ResNet
ackbone directly because it has to be encoded. MOTT is different
ince our backbone is an encoder itself. Thus, we choose to remove
he deformable encoder. The performance shows that CSWin is ca-
able of extracting features as well as encoding by the cross-shaped
elf-attention mechanism.

Additionally, the deformable encoder still puts attention over the
ntire image, demonstrating a deficiency in local attention. Conversely,
ocal attention learns local relations and structure information (Han
t al., 2021; Wu et al., 2023), which is essential in CV. Still, the
eformable decoder’s complexity is irrelevant to the spatial size and
akes it an efficient module for decoding object queries.

.6. Evaluation on different datasets

Firstly, we run the benchmark on the MOT17 testing set with
ur MOTT following the training steps in 4.3. The results from the
OTChallenge leaderboard are reported in Table 2. Our method takes
single image at each time step, and outputs detected and tracked

bjects. Thus, it is categorized as a private online method in the table.
MOTT achieves competitive results with the state-of-the-art meth-

ds. The highest score in MOTA means an overall better capability
n MOT. MT and ML show the ability to track objects among frames.
ompared to the second-best results, our method gets 4.9% more in
T and 9.1% less in ML. FN is another essential criterion because

atastrophic situations may happen if the system misses an object in
n unmanned scenario. Our model keeps a low FN result by providing
uch more detections, which also contributes to the occasions of

he identity switches. Another reason for frequently making identity
witches is that it cannot memorize an inactive object long-term with
he current simple tracking query mechanism.

In Table 4, we compare our method with the novel Transformer-
ased methods in the same training procedure on the same MOT17
alf-training set. The MOTT outperforms the other two methods by a
oticeable margin. Due to the local and global strip-shaped attention
echanism of the new Transformer encoder, the model can track
ore objects precisely than other attention structures. The deformable
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Fig. 5. Visualization of MOTT on MOT17, MOT20, and DanceTrack datasets.
Table 2
Benchmark results on MOT17 testing set. We list both public and private detection methods published on the benchmark leaderboard. All the methods are categorized into online
and offline methods. Bold numbers are the best results.

Public detection

Method MOTA ↑ IDF1 ↑ MT (%) ↑ ML (%) ↓ FP ↓ FN ↓ IDs ↓

offline

jCC (Keuper et al., 2018) 51.2% 54.5% 20.9% 37.0% 25,937 247,822 1802
TPM (Peng et al., 2020a) 54.2% 52.6% 22.8% 37.5% 13,739 242,730 1824
Sp_Con (Wang et al., 2022) 61.5% 63.3% 26.4% 32.0% 14,056 200,655 2478
HTracker (Zhang et al., 2021b) 66.9% 70.4% 28.3% 20.8% 30,704 151,001 4806

online

Tracktor++ (Bergmann et al., 2019) 53.5% 52.3% 19.5% 36.6% 12,201 248,047 2072
MPTC (Stadler and Beyerer, 2021) 62.6% 65.8% 26.6% 31.8% 8824 198,338 4074
HUGMOT (Wan et al., 2021) 64.8% 62.8% 31.3% 27.4% 16,174 180,371 2102
PixelGuide (Boragule et al., 2022) 69.7% 68.4% 38.3% 26.1% 26,871 140,457 3639

Private detection

online

Tube_TK (Pang et al., 2020) 63.0% 58.6% 31.2% 19.9% 27,060 177,483 4137
CTracker (Peng et al., 2020c) 66.6% 57.4% 32.2% 24.2% 22,284 160,491 5529
CenterTrack (Zhou et al., 2020) 67.8% 64.7% 34.6% 24.6% 18,489 160,332 3039
QuasiDense (Pang et al., 2021) 68.7% 66.3% 40.6% 21.9% 26,589 146,643 3378
MOTT (ours) 73.2% 66.0% 45.5% 10.8% 35,859 111,711 3651

Method MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDs ↓
Table 3
The ablation study shows the performance differences when gradually removing the
components. Notations: Res = ResNet50, CSWin = CSWin-tiny, DE = Deformable
Encoder, DD = Deformable Decoder.

Modules aval. MOTA IDF1 Hz
↑ ↑ ↑

Res+DE+DD (TrackFormer) 66.8% 70.7% 5.39
CSWin+DE+DD 72.7% 72.9% 4.73
CSWin+DD (MOTT) 71.9% 72.6% 9.09

decoder is also efficient and great at decoding the queries based on
selected key embedding. To be mentioned, the proposed model is much
lighter than the others considering the number of parameters and
FLOPS.

Next, we evaluated MOTT on the testing sets of MOT20 and Dance-
Track in addition to MOT17. Table 5 unveils more insights into our
model from different perspectives. The MOT17 and MOT20 results
are obtained from the model trained by corresponding datasets, while
the DanceTrack results are derived from the MOT20 model without
151
Table 4
Comparison among Transformer-based methods. All models are trained using the same
dataset and procedure.

Method MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓

TransTrack 66.5% 83.4% 66.8% 134 61
TrackFormer 67.0% 84.1% 69.5% 152 57
MOTT (ours) 71.6% 84.5% 71.7% 166 41

fine-tuning. As mentioned, MOT20 contains much more pedestrians per
frame. Hence, the model gets a lower MOTA score due to increasing
false negatives (higher ML score). MOTT misses a few of them but
detects most pedestrians successfully (high MOTP score). The reason
could be the non-maximum suppression (NMS) deployed after detection
to eliminate duplicating bounding boxes as many pedestrians are oc-
cluded. DanceTrack comprises dancing video sequences. It is relevantly
easy to detect people on the stage (higher MT and MOTA scores),
but ID switching happens frequently (lower IDF1 score) because of
various dance formations. Nonetheless, the evaluation of DanceTrack is
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Table 5
MOTT performance on MOT17, MOT20, and DanceTrack dataset. MT and ML are
calculated in percentages instead of absolute values.

Dataset MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓

DanceTrack 85.4% 81.9% 33.7% 81.5% 0.3%
MOT20 66.5% 81.1% 57.9% 52.1% 13.8%
MOT17 71.6% 84.5% 71.7% 49.0% 12.1%

achieved by the MOT20 model, which means MOTT can be generalized
in various use cases.

Finally, we show the model outputs in Fig. 5, corroborating the
statistics in Table 5. In MOT17, the model manages to track most people
but has low confidence in riding people due to insufficient training
data in this case. MOT20 shows the capacity of MOTT. Because of NMS
and occlusion, few bounding boxes among the crowd are eliminated.
Furthermore, MOTT detects people in various poses, demonstrating
invariance to translation, rotation, and scale by learning from the
MOT20 dataset.

5. Conclusion

In this paper, we proposed a new Transformer-based MOT architec-
ture, namely MOTT, which could save much on the hardware cost and
energy while retaining the state-of-the-art MOT performance. By only
leveraging the effective modules based on its specification, the new
model only contains an encoder and a decoder for the challenging MOT
task. Our model achieves a competitive score in MOTA at 73.2% with
up to 62% fewer FLOPS than a typical Transformer-based MOT model.
The model shows the potential of moving towards a green learning
paradigm in CV tasks. In future work, we will focus on improving the
object queries to solve the issues with re-identification. We hope this
new architecture could enlighten others on the balance of performance
and computational cost.
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