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Abstract: The accurate prediction of residential heat load is crucial for effective heating system design,
energy management, and cost optimization. In order to further improve the prediction accuracy of
the model, this study introduced principal component analysis (PCA), the minimum sum of squares
of the combined prediction errors (minSSE), genetic algorithm (GA), and firefly algorithm (FA) into
back propagation (BP) and ELMAN neural networks, and established three kinds of combined
prediction models. The proposed methodologies are evaluated using real-world data collected
from residential buildings over a period of one year. The obtained results of the PCA-BP-ELMAN,
FA-ELMAN, and GA-BP models are compared with the neural network before optimization. The
experimental results show that the combined prediction models have higher prediction accuracy.
The Mean Absolute Percentage Error (MAPE) evaluation indices of the three combined models are
distributed between 5.95% and 7.05%. The FA-ELMAN model is the combination model with the
highest prediction accuracy, and its MAPE is 5.95%, which is 2.25% lower than the MAPE of an
individual neural network. This research contributes to the field by providing a comprehensive and
effective framework for residential heat load prediction, which can be valuable for building energy
management and optimization.

Keywords: heat load prediction; combined models; principal component analysis; genetic algorithm;
firefly algorithm

1. Introduction

Currently, the proportion of energy consumption in the construction sector in our
country’s total energy consumption has reached 30%, and the energy consumption gen-
erated by heating accounts for 25% of the total energy consumption in buildings [1]. As
of 2020, the national coverage of centralized heating has reached 12.266 billion square
meters. However, the increase in carbon emissions and pollutant emissions caused by fuel
combustion has resulted in serious environmental problems. In order to alleviate the energy
crisis and improve environmental pollution, the government has implemented numerous
measures in energy conservation and emission reduction. In our country, heating systems
are mainly regulated through manual experience. However, due to the characteristics of
centralized heating systems, such as significant time delays, strong non-linearity, high
energy consumption, and multiple influencing factors, the traditional inefficient heating
regulation model has created issues such as significant heat waste and uneven distribution
of heating. In practice, the energy consumption in heating processes still cannot meet
the heating needs of users. Therefore, it is necessary to incorporate heat load forecasting
into the heating system to guide heating operations. By utilizing a heat load prediction
model, the heating system can adjust in advance based on the predicted load. Building
an accurate, efficient, and reliable heat load prediction model is crucial in ensuring the
centralized heating system can meet heating demands effectively and on demand.
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The commonly used heat load predicting models include the data-driven model and
mechanism model. By using building energy simulation software such as EnergyPlus V22
and TRNSYS 18 to evaluate building heat load, the mechanism model requires a complex
calculation process and usually takes a long time to get the result, so it is not suitable
for real-time energy consumption prediction [2,3]. However, the data-driven model can
produce prediction results in a relatively short time, which is suitable for real-time energy
consumption prediction and rapid decision-making. Common data-driven models used
in various fields include statistical analysis techniques, machine learning algorithms, and
deep learning architectures. Statistical methods tend to overfit when handling diverse
influencing factors, leading to poor predictive performance of the models [4–7]. With the
wide application of artificial intelligence algorithms in the prediction field [8–11], more
and more scholars have started researching load-predicting methods founded on machine
learning [12–14]. Some commonly used approaches in machine learning include artificial
neural networks (ANN) [15], support vector machines [16], extreme learning machines [17],
random forest (RF) [18], and regression trees [19]. Park et al. [20] separately used partial
least squares, neural networks, and support vector regression (SVR) to establish load fore-
casting models for district heating, and the research results showed that SVR had the lowest
average relative error. Meng et al. [21] built an ELMAN neural network prediction model
and, on this basis, proposed a DR control strategy for office buildings. Wang et al. [22]
implemented 12 models for single-building heat load predicting, discussing the impact
of prediction level and input uncertainty on load forecasting accuracy. Introducing these
models for heat load forecasting has provided good predictive results, demonstrating that
an individual model based on machine learning can derive feasible computational rules
from a significant volume of historical operational data.

Several researchers have adopted hybrid methods that combine an optimization
algorithm with a machine-learning model [23]. In an improved model, various parameters
can be optimized, such as weights, bias, and others [24]. The combination models can
be divided into two classifications. The initial classification is the ensemble models that
combine multiple individual models [25]. These models are trained on the same dataset
using different individual models. The predictions from each individual model are then
combined to generate an optimal output. The second category is the improved models
that combine an individual model with optimization methods. For example, Fan et al. [18]
developed an integrated model for predicting commercial building loads. They used
a genetic algorithm (GA) to optimize the weights of the eight prediction models and
combined the results to obtain the final prediction. The experimental results showed that
the ensemble model outperformed typical individual models in terms of prediction accuracy.
Qi et al. [26] introduced GA into a back propagation (BP) neural network to establish a
heat load prediction model. Meanwhile, the date type was quantified when selecting
input variables, which ensured the prediction accuracy. Principal component analysis
(PCA) was used to obtain reasonable model inputs and build a prediction model [27].
Zhao et al. [28] proposed a convolutional neural network (CNN) hybrid short-term heat
load prediction model based on the adaptive T-distribution satin Bowerbird algorithm.
Compared with other prediction models, The Mean Absolute Percentage Error (MAPE)
and Root Mean Square Error (RMSE) of the mixed model decreased by 18.08% and 16.26%,
respectively. Song et al. [25] proposed a heat load prediction model based on convolution
neural network-long short-term memory (CNN-LSTM), which obtains a more accurate
dynamic heat load model. Al-shammari et al. [29] proposed an SVR regional heating system
thermal load prediction model based on the firefly algorithm (FA).

In the field of heat load prediction, the innovation of this research lies in combining
optimization algorithms with machine learning models to improve the accuracy and reliability
of heat load prediction by comparing the predicting performance of different combination
models. The heat load prediction models of PCA-BP-ELMAN, FA-ELMAN, and GA-BP
were established, respectively. We used the real heat load data and MATLAB platform for
experimental simulation. By comparing and analyzing the performance of different combined
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prediction models, we explore the effectiveness and applicability of the combination of
optimization algorithm and machine learning model in heat load prediction and determine
the best-combined model to provide more accurate and reliable heat load prediction.

2. Methods

The research framework, depicted in Figure 1, encompasses key components such as
data collection, data preprocessing, feature selection, implementation, and prediction of
classical individual machine learning models, as well as the implementation and prediction
of combined models. To evaluate model performance, four evaluation indicators are
employed to identify an individual model with superior predictive capabilities. Building
upon this, PCA, minSSE algorithm, GA, and FA are incorporated into multiple efficient
individual models for heat load prediction, resulting in the creation of three combined
models. These models are assessed using the generated dataset and compared with both
the pre-optimized prediction model and different combined models to validate the superior
prediction accuracy of the combined models. Furthermore, the study investigates the
optimization effects of various combination methods.
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2.1. Optimization Algorithm
2.1.1. Principal Component Analysis

The heating load is influenced by various factors, including meteorological, system,
social, and building factors [30]. However, considering all these factors comprehensively
when calculating it can lead to increased complexity and difficulty in problem-solving.
PCA offers a solution by reducing multiple initial indicators that affect the problem to a
few major components that are most effective. This simplifies the problem analysis [31,32].
The main steps of this method include:

(1) The n samples with m influencing factors are subjected to data standardization, then:

xj =
1
n∑n

i=1 xij, (j = 1, 2, . . . , m), (1)

sj =

√
1

n− 1∑n
i=1

(
xij − xj

)2, (j = 1, 2, . . . , m), (2)

∼
xij =

xij − xj

sj
, (i = 1, 2, . . . , n; j = 1, 2, . . . , m), (3)
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where m is the number of influence factors; n is the number of influence factor samples;
xij is the ith index of the jth influence factor, and xj is the sample mean of the jth influence

factor. sj is the sample standard deviation of the jth influence factor.
∼
xij is a standardized

indicator.

(2) The eigenvalues and eigenvectors of the correlation coefficient matrix R =
(
rij
)

m×m
are calculated, where rij represents the correlation coefficient between the ith and
jth influencing factors. A higher value indicates a stronger correlation between the
two factors. To calculate the correlation coefficient, use the Equation (4) and sort the
eigenvalues in descending order, λ1, λ2, . . ., λm. From these feature vectors, m new
index vectors can be formed, as shown in Equation (5):

rij =
∑n

k=1
∼

xki ×
∼

xkj

n− 1
, (i, j = 1, 2, . . . , m), (4)

where
∼

xki is the kth standardized index of the ith influence factor;
∼

xkj is the kth standardized
index of the jth influence factor.

F1 = u11
∼
x1 + u21

∼
x2 + . . . + um1

∼
xm

F2 = u12
∼
x1 + u22

∼
x2 + . . . + um2

∼
xm

.

.

.
Fm = u1m

∼
x1 + u2m

∼
x2 + . . . + umm

∼
xm

, (5)

where Fm is the mth principal component;
∼
x1,
∼
x2, . . . ,

∼
xm is the impact factor vector after

standardization; uj is the eigenvector corresponding to λj, uj = (u1j, u2j, . . ., umj), j = 1, 2, . . ., m.

(3) The contribution rate is calculated, and the principal component is extracted.

bj =
λi

∑m
k=1 λk

, (j = 1, 2, . . . , m), (6)

αp =
∑

p
k=1 λk

∑m
k=1 λk

, (7)

where the information contribution rate of bj is the main component Fj; The cumulative
contribution rate of αp as the main component is taken as αp > 90%.

2.1.2. The minSSE Algorithm

The model is built by assigning distinct weight coefficients to the predictions generated
by multiple individual models. Subsequently, a new predicted value is derived through the
employment of the weighted average method. The main focus of the combined model lies
in identifying the weight coefficient for each model, and there exist numerous calculation
methods that can be utilized for this purpose. This study utilizes the minSSE algorithm,
which aims to minimize the sum of squares of the combined prediction error. By applying
this algorithm, the optimal weight coefficient can be determined.

Define the actual value at time t as xt, t = 1, 2, . . ., p; Define the prediction of the ith
model as xit, i = 1, 2, . . ., n; t = 1, 2, . . ., p; Let {l1, l2, . . ., ln} denote the weight coefficients of
the n models, and these coefficients must satisfy the following requirements.

∑n
I=1 li = 1, i = 1, 2, . . . , n, (8)

x̂t as the predicted value of the combined model at time t is calculated as follows:

x̂t = ∑n
i=1 lixit, i = 1, 2, . . . , n, (9)
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The calculation process of the minSSE algorithm is as follows:

(1) The prediction error of the combined prediction model at time t is calculated.

et = xt − x̂t = ∑n
i=1 lieit, (10)

where eit = xt – xit was defined as the prediction error of the ith individual model at time t.

(2) The combined prediction errors, denoted as et, are squared, and then summed to
calculate the value of J.

J = ∑p
t=1 e2

t = ∑p
t=1 ∑n

i=1 ∑n
j=1 lieitljejt,

= [l1l2 . . . ln]


∑

p
t=1 e2

1t ∑
p
t=1 e1te2t K ∑

p
t=1 e1tent

∑
p
t=1 e2te1t ∑

p
t=1 e2

2t K ∑
p
t=1 e2tent

M M K M
∑

p
t=1 ente1t ∑

p
t=1 ente2t K ∑

p
t=1 e2

nt




l1
l2
M
ln

, (11)

Let L =


l1
l2
M
ln

, E =


∑

p
t=1 e2

1t ∑
p
t=1 e1te2t K ∑

p
t=1 e1tent

∑
p
t=1 e2te1t ∑

p
t=1 e2

2t K ∑
p
t=1 e2tent

M M K M
∑

p
t=1 ente1t ∑

p
t=1 ente2t K ∑

p
t=1 e2

nt

, J = LTEL

(3) Let H = [1KK1]T; The following optimization model is constructed with the minimum
sum of squares of prediction errors as the optimal criterion.

minJ = LTEL, (12)

s.t.
{

HTL = 1
L ≥ 0

(4) The Lagrange multiplier method is used to solve the model, and the optimal combina-
torial weight vector L and the minimum sum of square of combinatorial prediction
error J are obtained.

L =
E−1H

HTE−1H
, (13)

J =
1

HTE−1H
, (14)

(5) Based on the weight coefficients assigned to each individual model, the predicted
value of the combined model is calculated.

2.1.3. The Genetic Algorithm

The steps involved in the GA primarily consist of population initialization, fitness
function, selection, crossover, and mutation [33]. The following sections outline each step
in detail:

(1) Population initialization:

To facilitate computer recognition and storage, each individual in the population is
encoded using a binary array. Each individual represents a real string consisting of four
components: input layer and hidden layer link weight, hidden layer weight, hidden layer
and output layer weight, and output layer weight.

(2) Fitness function:
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The fitness function is determined by the sum of squared errors between the predicted
output value and the expected output value of the network. The calculation equation is
as follows:

F =
1

∑n
k=1|yk − xk|

, (15)

where n is the number of output nodes; yk is the expected value of the kth node of the BP
neural network. Xk is the predicted value of the kth node.

(3) Selection:

The roulette method, which employs a selection strategy based on the proportion of
fitness values, is utilized for determining the selection probability (P) of each individual (i).
This probability is calculated as follows:

p =
fi

∑N
j=1 fj

, (16)

where fi is the fitness of individual Xi; N is the number of population individuals.

(4) Cross:

The process involves randomly selecting an individual chromosome from a set of
chromosomes and crossing it over with another chromosome, employing a specific method
to generate a novel individual.

(5) Mutation:

The jth gene is selected for mutation in individual ith. At a particular locus, the gene
is substituted with an allele, leading to the creation of a new individual.

2.1.4. The Firefly Algorithm

FA is a biologically inspired optimization algorithm that utilizes group search. Within a
specified range, fireflies emit light randomly, and their attractiveness is directly proportional
to the intensity of their light emissions. During the process of movement and aggregation,
each firefly’s flight position changes based on the luminosity of the brightest individual in
the current time zone. Ultimately, all fireflies converge towards the brightest individual.

The brightness function varying wi”h di’tance In Gaussian form is defined as:

I = I0e−γd2
, (17)

where I0 is the maximum brightness of fireflies; d is the distance between two fireflies; γ is
the absorption coefficient of light intensity.

The attractiveness function β(d) of a firefly at a distance reference point d is defined as:

β(d) = β0e−γd2
, (18)

where β0 is the attraction of fireflies at the light source.
For two fireflies located in wi and wj, the distance between them is expressed as:

dij =
∥∥wi −wj

∥∥ =

√
∑n

k=1

(
wI,k −wj,k

)
, (19)

where n is the dimension of the target problem; wi,k are the coordinates of the ith firefly on
the k dimension; wj,k is the coordinates of the jth firefly on the k dimension.

When firefly I is attracted to another firefly j, which is brighter, the movement pattern is:

wi = wi + β0e−γd2
ij
(
wj −wi

)
+ αεI, (20)
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where α is the step factor; εi is the vector of random numbers derived based on a Uniform
distribution or Gaussian distribution.

2.2. Construction of Models
2.2.1. Construction of Individual Models

(1) SVR is a machine learning technique that is based on statistical learning theory
and the principle of minimizing structural risk. Its primary objective is to prevent
overfitting and ensure that the model can generalize and approximate accurately.
SVR is particularly effective for identifying non-linear relationships between the
dependent variable and multiple influencing factors, especially when working with
limited sample sizes [34–36]. The essence is to project the training samples onto a
high-dimensional plane and identify an appropriate hyperplane that can effectively
separate the samples.

(2) Elman neural network is a recurrent neural network composed of four layers. The
input layer is responsible for signal transmission, while the output layer performs
linear weighting. The hidden layer units are capable of employing either linear
or non-linear transfer functions. The context layer is utilized to store the previous
moment’s output values of the hidden layer units and subsequently feed them back
to the network’s input [37].

(3) LSTM is an improvement of recurrent neural networks (RNNs) that addresses the
issue of long-term dependencies. It not only maintains the connectivity among hidden
layer nodes in RNNs but also introduces the concept of filtering past states [38,39].
The results of long time series training with good continuity are better than those
of ordinary RNN models [40,41]. The key to LSTM is the cell state, which carries
pertinent information outward. The cell state undergoes updates through the forget
gate, input gate, and output gate.

(4) Based on LSTM, bidirectional long short-term memory (Bi-LSTM) transforms the
single-direction LSTM layer into both Backward and Forward layers. The Forward
layer processes the sequential information at the current time step, while the Backward
layer reads the same sequence in reverse, incorporating the inverse order information.
The final output combines the respective outputs from the Backward and Forward
layers at each time step. In LSTM, the hidden output signals can be transmitted not
only to neighboring grids but also to the next layer’s grids. During the training process,
the two-state neurons do not interact, allowing for the expansion of the network into
a typical feed-forward neural network. Building upon this, the adjustment of network
weights is achieved through both forward and backward propagation methods [42,43].

(5) RF is an improved algorithm of ensemble learning. It involves randomly sampling
a training set of m samples, with replacement, from the original dataset. The size of
the sample matches that of the original dataset. Then, it constructs m decision trees
{h(x, θn), n = 1, 2, . . . , m} (where θn is an independently and identically distributed
random vector). The final output ŷ(x) of RF regression is obtained by averaging the
outputs of the m decision trees.

(6) BP neural network structure mainly consists of three layers: the input layer, the
output layer, and the hidden layer. These layers are fully interconnected, and there is
no coupling between neurons within the same layer. The network’s functionality is
achieved through forward signal propagation and backward error propagation [44,45].

2.2.2. Construction of Combined Models

In order to improve the accuracy of artificial neural networks in building energy
prediction, the following three problems need to be solved: First, it is easy to fall into
the local optimal problem in the training stage; Secondly, the problem of input selection;
Finally, the question of hyperparameter setting [46]. To solve the above problems, different
optimization algorithms are introduced into building energy consumption prediction. The
following is the construction process of the combined models.
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(1) PCA-BP-ELMAN

The parameters of the input layer were optimized using PCA, and the optimal weight
coefficient of the model was obtained through the minSSE algorithm, which utilized the
predicted and actual values of the BP and ELMAN neural network models. The PCA-BP-
ELMAN model was then constructed based on these weight coefficients for prediction. The
specific calculation process is depicted in Figure 2.
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(2) FA-ELMAN

The optimal firefly individual is selected by changing the position and brightness of
fireflies, followed by the optimal replacement of initial weights and bias [47]. The nonlinear
relationship between each input parameter and the hourly heat load is established by the
ELMAN neural network so as to enable accurate prediction. The ELMAN neural network
is optimized by using FA, as shown in Figure 3.
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(3) GA-BP

GA is a methodology that simulates natural biological evolution and proves to be
effective in solving complex problems, including nonlinear and global optimization [48].
In this study, GA is used to optimize the weights and bias of the BP neural network.
Subsequently, the optimized weights and biases are employed to train the network and
obtain the optimal solution. The specific calculation process is depicted in Figure 4.
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2.3. Data Processing and Analysis
2.3.1. Data Collecting and Preprocessing

Weifang City is located in the western part of the Shandong Peninsula and serves
as a central city within the cluster. Geographically, it spans from 118◦10′ to 120◦01′

east longitude and 35◦41′ to 37◦26′ north latitude. The city covers a total land area of
1,616,723.99 hectares. Weifang experiences specific climatic conditions characterized by
high winter temperatures, relatively abundant precipitation, and reduced sunlight. Over-
all, the climate is favorable. During the spring season, temperatures rise, precipitation
increases, and sunlight is abundant, often leading to frequent meteorological disasters. In
summer, the temperature becomes pleasant, with higher precipitation but less sunlight.
Nevertheless, the climate remains suitable. In autumn, temperatures remain high, precip-
itation decreases slightly, and sunlight diminishes further. Weifang was selected as the
research area for forecasting the heat supply load.

The data utilized in this study were obtained from two sources—the China Meteoro-
logical Data Network and the Weifang thermal data visualization monitoring platform. The
dataset used for analysis was collected from a specific community. The type of enclosure
structure is an ordinary external wall; the thickness of the wall is 240 mm, and the heat
transfer coefficient is 2.03 W/m2/◦C. The research focused on the complete heating season,
with the query time range set from 15 November 2021, to 15 March 2022. To ensure data
accuracy, a query interval of 3 min was used. Historical operating data and heat loads were
sampled at 1-h intervals.

Since there are instances of abnormal and missing data, it is essential to apply proper
data preprocessing techniques. For missing data, interpolation methods are used to fill in
the gaps. Regarding abnormal data, the 3σ criterion is initially used to identify outliers,
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and then interpolation methods are employed to determine appropriate replacements.
When long-term repetitions or omissions are detected, these occurrences are regarded as
anomalies in the data-collection process and are subsequently eliminated.

2.3.2. Feature Selection

The heating load is affected by many factors, such as meteorological factors, system
factors, social factors, and building factors. Temperature, relative humidity, wind speed,
solar radiation, and other meteorological factors will affect the heating load. With the
increase in temperature, the value of the heating load gradually decreases, and with the
decrease in temperature, the value of the heating load gradually increases. When the
temperature is unchanged, with the reduction of relative humidity, the evaporation of
sweat is enhanced, the human body will feel cold, and the heating load will increase. As
the wind speed increases, the heating load will also increase. Solar radiation also has a
certain influence on the heating load. When the solar radiation is small, the heating load is
larger, but its influence on the heat load is small. The influence of some characteristics of the
heating network itself on the heat load is mainly reflected in the supply water temperature,
return water temperature, circulation flow, and so on. Social factors such as residents’
heating habits, local policies, number of inhabitants, and development of the population
will affect the change of heating load, and building factors such as its structure, function,
geographical location, number of flats, the size of the heated volume and the quality of
thermal insulation will also affect the heating load [30]. However, the influence of social
factors on the heat load makes its change relatively slow, so it cannot be considered in the
short-term heat load prediction, and once the building is formed, the influence of its own
factors on the heat load can also be ignored.

To sum up, the preliminary analysis of the factors affecting heating load and the
related literature review [49–51], Eight characteristics, including supply water temperature
at time t-1, return water temperature at time t-1, heat load at time t-1, circulation flow at
time t-1, solar radiation at time t-1, outdoor temperature at time t, wind speed at time t, and
relative humidity at time t, were determined as input variables of the prediction model,
and heat load at time t, were determined as output variables.

2.4. Evaluation Indices

The four selected accuracy evaluation indices for assessing the precision of the predic-
tion model are as follows: Mean Square Error (MSE), RMSE, Mean Absolute Error (MAE),
and MAPE [52].

MSE =
1
n∑n

i=1(xi − yi)
2, (21)

RMSE =

√
1
n∑n

i=1(xi − yi)
2, (22)

MAE =
1
n∑n

i=1|xi − yI|, (23)

MAPE =
100%

n ∑n
i=1

∣∣∣∣xi − yi
yI

∣∣∣∣ (24)

where n—the number of samples; xi—the ith simulated value, GJ/h; yi—the ith actual
measured value, GJ/h; x—the mean of the simulated values, GJ/h; y—the mean value of
the measured value, GJ/h.

For the same dataset, smaller values of MSE, RMSE, MAE, and MAPE indicate reduced
discrepancies between the predicted and actual values, implying a higher level of precision
in the model.
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3. Results
3.1. Comparisons of Individual Models

Using MATLAB as the calculation platform, the heat and meteorological data of a
community in Weifang from 15 November 2021 to 15 March 2022 were used as training data
to train the model. On this basis, the optimal input parameters of each model were selected
as follows: (1). SVR: The kernel function is RBF, the loss function p = 0.4, the penalty factor
C = 1000, and the kernel parameter γ = 0.01; (2). ELMAN: the number of neurons in the
input layer is 8, the number of neurons in the output layer is 1, the number of neurons in the
hidden layer is 8, the maximum number of iterations is 1000, the learning rate is 0.01, and
the minimum error of the training target is 10−5; (3). LSTM and Bi-LSTM: The optimization
method was the Adam algorithm, the maximum number of iterations was 300, the initial
learning rate was 0.1, and the learning rate dropped to 0.1× 0.1 after 50 training sessions. The
optimized neural network was trained using the trainNet function. The model data is in a
period of 24 h, and the input data formats are batch_size:24, time_step:1, iput_size:8; (4). RF:
The number of decision trees is 500, the minimum number of leaves of each decision tree is 3,
and the regRF_train function is called to train the model; (5). BP: Set the maximum number of
iterations to 1000, the learning rate to 0.01, and the BP neural network structure to 8-14-1.

To assess the accuracy of these models, MSE, RMSE, MAE, and MAPE were used
as evaluation indices, and their corresponding error indicators are presented in Table 1.
The results in Table 1 indicate that the MAPE values for the RF, SVR, LSTM, and Bi-LSTM
models are all greater than 15%. Moreover, as shown in Figure 5, these four models exhibit
a significant deviation between the predicted and actual values, consistently overestimating
the heat load. Consequently, these models demonstrate poor prediction performance and
are not recommended for heat load prediction. Conversely, the BP and ELMAN neural
network prediction models display lower evaluation indices with MAPE values less than
10%, MSE values below 0.1 GJ2/h2, RMSE values less than 0.3 GJ/h, and MAE values less
than 0.2 GJ/h. Additionally, the predicted values from these two models exhibit minimal
deviation from the actual values. Therefore, these models exhibit good prediction perfor-
mance and are suitable for heat load prediction. Furthermore, in comparison to the other
four models with inadequate prediction performance, the BP and ELMAN neural network
models demonstrate a maximum reduction in MAPE of 20.5% and 19.75%, respectively.

Table 1. Prediction results of the individual models.

Model MSE (GJ2/h2) RMSE (GJ/h) MAE (GJ/h) MAPE (%)

BP 0.052 0.229 0.169 7.45
ELMAN 0.061 0.246 0.184 8.20

RF 0.162 0.403 0.351 16.25
SVR 0.435 0.660 0.601 27.95

LSTM 0.202 0.450 0.412 19.03
Bi-LSTM 0.187 0.432 0.392 18.02
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3.2. Results of Combined Models

(1) PCA-BP-ELMAN

To effectively reduce redundancy and correlation in the initial characteristic variable
data for heat load prediction, dimensionality reduction processing was performed using
IBM SPSS Statistics 26. The results, summarized in Table 2, showed that the first four
principal components accounted for a cumulative contribution rate of 90.610%. This
indicates that these principal components effectively captured and represented the majority
of the information contained in the initial eight feature variables. As a result, principal
components Y1 to Y4 were selected as the input data for further analysis.

Table 2. The contribution rate of each component.

Component Characteristic Value Rate of
Contribution (%)

Accumulating
Contribution Rate (%)

1 3.655 45.684 45.684
2 1.872 23.406 69.090
3 0.937 11.710 80.800
4 0.785 9.810 90.610
5 0.425 5.312 95.922
6 0.168 2.102 98.024
7 0.118 1.479 99.503
8 0.040 0.497 100.000

Table 3 presents the linear relationship between each principal component and its
respective variable. In particular, principal component Y1, which accounts for a contribution
rate of 45.684%, is largely associated with return water temperature, circulation flow rate,
historical heat load, and outdoor temperature. Principal component Y2 is primarily linked
to relative humidity and solar radiation. Additionally, principal components Y3 and Y4 are
mainly influenced by wind speed and water supply temperature, respectively.

Table 3. Principal component coefficient.

Characteristic Variable Y1 Y2 Y3 Y4

TS(t − 1) 0.334 0.088 0.576 −0.564
TR(t − 1) 0.482 0.174 −0.022 −0.086
F(t − 1) 0.410 0.164 −0.455 0.371
S(t − 1) −0.167 0.603 −0.198 −0.251

T(t) −0.451 0.171 −0.115 −0.172
W(t) −0.091 0.360 0.631 0.660
H(t) 0.084 −0.620 0.082 0.093

Q(t − 1) −0.491 0.169 −0.061 0.021

Each model in this study was trained using data that underwent PCA dimensionality
reduction. The initial parameters for both the BP and ELMAN neural networks were set
as follows: the transfer function was chosen as tansing, the training was conducted for
1000 iterations, the target error was defined as 10−5, the learning rate was set to 0.001, and the
normalization range was [−1, 1]. The minSSE algorithm was employed to obtain the optimal
weight coefficients for each model based on the predicted and actual values. Table 4 presents
these weight coefficients, which range between 0 and 1, and their sum totals to 1.

Table 4. Weighting coefficients of individual models.

Model PCA-BP PCA-ELAMN

PCA-BP-ELMAN 0.52 0.48
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Each individual model is used to predict the heat load, resulting in forecasted out-
comes. These prediction results are then combined and weighted to calculate the final
prediction results, which represent the prediction of the PCA-BP-ELMAN model. The
respective evaluation indicators can be observed in Table 5, and a comparison between the
predicted and actual results is presented in Figure 6.

Table 5. Prediction results of the PCA-BP-ELMAN model.

Model MSE (GJ2/h2) RMSE (GJ/h) MAE (GJ/h) MAPE (%)

PCA-BP-ELMAN 0.062 0.248 0.151 6.29
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(2) FA-ELMAN

The initial parameters for the firefly algorithm are set as follows: a population size of 50,
a maximum iteration limit of 30, a critical error threshold of 0.01, a maximum attraction value
(β0) of 2, a light intensity absorption coefficient (γ) of 1, and a step factor (α) of 0.02. Similarly,
the initial parameter settings for the ELMAN neural network are the same as described in the
PCA-BP-ELMAN section. The respective evaluation indicators can be observed in Table 6,
and a comparison between the predicted and actual results is presented in Figure 7.

Table 6. Prediction results of the FA-ELMAN model.

Model MSE (GJ2/h2) RMSE (GJ/h) MAE (GJ/h) MAPE (%)

FA-ELMAN 0.050 0.214 0.142 5.95

(3) GA-BP

The initial parameters for the genetic algorithm are set as follows: the number of
iterations is 30, the population size is 10, the crossover probability is 0.8, and the mutation
probability is 0.2. The initial parameter setting for the BP neural network section is the
same as described in the PCA-BP-ELMAN method. The respective evaluation indicators
can be observed in Table 7, and a comparison between the predicted and actual results is
presented in Figure 8.
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3.3. Comparisons of Individual and Combined Models

In order to analyze and compare the optimization effects of different combined prediction
models, namely the BP and ELMAN neural network models, column charts and dot plots
are utilized to assess the MSE, RMSE, MAE, and MAPE visually and effectively. These charts
serve as clear and intuitive representations of the performance of the various models.

Figure 9 presents a comparison of evaluation errors between the BP model, ELMAN
neural network model, and three combined prediction models. It is evident from the
figure that the ELMAN neural network model exhibits the highest error index among the
various prediction models, while the FA-ELMAN model shows the lowest error index.
Additionally, the MSE, RMSE, MAE, and MAPE values of the three combined models
consistently prove to be smaller than those of the traditional BP and ELMAN neural
network models. This confirms the effectiveness of each employed optimization algorithm.
Moreover, it is noteworthy that the model optimized by the FA algorithm demonstrates
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the most substantial reduction in each index, followed by the PCA-minSSE algorithm.
Conversely, the model optimized by the GA algorithm displays the smallest reduction in
each index. These findings suggest that the predictive performance of the three combined
prediction models follows the order of FA-ELMAN, PCA-BP-ELMAN, and GA-BP, from
high to low.
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The error-index of the FA-ELMAN combined prediction model (MSE = 0.046 GJ2/h2,
RMSE = 0.214 GJ/h, MAE = 0.142 GJ/h, MAPE = 5.95%) was compared to that of the
traditional ELMAN neural network model (MSE = 0.060 GJ2/h2, RMSE = 0.246 GJ/h,
MAE = 0.184 GJ/h, MAPE = 8.20%). The results showed that the FA-ELMAN combined
prediction model achieved significant improvements. Specifically, the MSE decreased by
0.014 GJ2/h2, the RMSE decreased by 0.032 GJ/h, the MAE decreased by 0.042 GJ/h, and
the MAPE decreased by 2.25%.

4. Discussion

Accurate and reasonable heat load prediction models serve as a robust foundation for
ensuring on-demand heating in centralized heating systems. In this study, we leverage
winter heat load data from a residential building in Weifang City and integrate it with
hourly meteorological data. This study primarily proposes three combined prediction
models and examines the effectiveness of optimizing the combination of load prediction
models, which improves the accuracy of heat load prediction. Nevertheless, further research
can be undertaken in the following areas:

(1) Due to data availability limitations, we can only use limited historical data for model
training and validation. Therefore, further research may consider using longer time
ranges of data as well as more frequent sampling to improve the generalization ability
of the model.

(2) The influence of indoor temperature and wind direction on heat load is disregarded due
to limited data availability. Additionally, factors such as day-night variations, seasonal
changes, and other potential influences are ignored to simplify the prediction model,
owing to the complexity of its design. To address these limitations, future studies should
expand the range of collected data by enhancing monitoring conditions. Furthermore,
the use of sophisticated methods can help effectively handle day-night and seasonal
changes, thereby enabling a more comprehensive exploration of their impact.
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(3) In order to develop a predictive model that can be broadly applied to common
building types, we focus our research on a specific type of building structure, namely
residential buildings with standard building materials and insulation. However, it is
worth mentioning that the principles and methods used in our study can potentially
be applied to other types of buildings as well. We acknowledge that the building
structure and its thermal properties play a crucial role in heat load estimation. In
future research, we recognize the importance of investigating how different types of
building structures, materials, and insulation systems impact heat load prediction.
This will further enhance the applicability and accuracy of our predictive models
across diverse building types.

(4) The predictive models developed during this study demonstrated excellent prediction
performance in simulation experiments. However, they have not yet undergone
practical testing by heating supply companies. If future research allows for continuous
adjustments of the models based on real-time conditions during practical experiments,
it could truly enable on-demand heating.

(5) Due to space constraints, we have not been able to cover the findings of all countries
in detail in the introductory chapter. However, in our future research, we will compre-
hensively analyze the research status and results of heat load forecasting in various
countries and regions from an international perspective.

(6) In order to enhance the rationality of experimental design, PCA, as a feature selection
method, was introduced into FA-ELAMN and GA-BP models. The respective evaluation
indicators can be observed in Table 8, and a comparison between the predicted and
actual results is presented in Figure 10. According to Table 8, after the PCA method
was introduced into the models, the value of MAPE decreased by 0.31% and 0.35%,
respectively. Therefore, by introducing PCA into GA-BP and FA-ELMAN models, the
prediction accuracy of the new combined models has been improved slightly.

Table 8. Prediction results of the PCA-GA-BP and PCA-FA-ELMAN models.

Model MSE (GJ2/h2) RMSE (GJ/h) MAE (GJ/h) MAPE (%)

PCA-GA-BP 0.061 0.246 0.159 6.74

PCA-FA-ELMAN 0.043 0.208 0.133 5.60
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5. Conclusions

PCA-BP-ELMAN, FA-ELMAN, and GA-BP are established to apply heat load predic-
tion. This study aimed to compare the prediction accuracy of these three combined models.
The main conclusions are as follows:

(1) To assess the prediction performance of six commonly used individual models, we
selected eight initial characteristics: water supply temperature, return water temperature,
circulation flow, solar radiation, heat load, outdoor temperature, wind speed, and relative
humidity at time t-1. The results indicated that the BP and ELMAN neural network
prediction models had a MAPE of less than 10% and an MSE of less than 0.1 GJ2/h2.
Furthermore, the RMSE and MAE were both less than 0.3 GJ/h and 0.2 GJ/h, respectively,
suggesting that these models demonstrate high prediction accuracy.

(2) The dimensionality of the characteristic variables that impact heating load is reduced
from 8 to 4 using PCA, and the input parameters of the neural network are optimized
accordingly. In predicting heat load, the most significant principal components
are return water temperature, circulation flow, historical heat load, and outdoor
temperature. Following these are relative humidity, solar radiation, water supply
temperature, and wind speed.

(3) The application of PCA-minSSE, FA, and GA algorithms in heat load prediction has been
shown to improve the accuracy of the prediction model. The models with the highest pre-
diction performance, ranked from high to low, are FA-ELMAN, PCA-BP-ELMAN, and
GA-BP. When compared to individual neural network models with superior prediction
performance, the combined model exhibits a decrease in MAPE of 2.25%.
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Nomenclature

bj information contribution rate of principal component Fj
dij the distance between any two fireflies i and j
et the prediction error of the combined prediction model at time t
eit the prediction error of the ith individual model at time t
fi the fitness of individual Xi
F the fitness of individual
Fm the mth principal component
F(t − 1) circulation flow at time t-1, m3/h
H let H = [1KK1]T

H(t) relative humidity at time t, %
I0 the maximum brightness of fireflies
J the sum of squares of combined prediction errors
li the weight coefficient
m the number of influence factors
n the number of influence factor samples
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N the number of population individuals
P the selection probability
Q(t − 1) heat load at time t-1, GJ/h
rij the correlation coefficient
R the correlation coefficient matrix
sj the sample standard deviation of the jth influence factor
S(t − 1) solar radiation at t-1 time, W/m2

T(t) outside temperature at time t, ◦C
TR(t − 1) return water temperature at time t-1, ◦C
TS(t − 1) water supply temperature at time t-1, ◦C
uj the eigenvector
wi the pattern of movement for the reference firefly i
wi, k the coordinates of the ith firefly on the k dimension
wj, k the coordinates of the jth firefly on the k dimension
Wt wind speed at time t, m/s
x the mean of the simulated values
xi the ith simulated value
xj the sample mean of the jth influence factor
xt the actual value of the heat load at time t
x̂t the combined predicted value of heat load at time t
xij the ith index of the jth influence factor
xit the heat load prediction of the ith model at time t
∼
xij a standardized indicator
∼

xki the kth standardized index of the ith influence factor
∼

xkj the kth standardized index of the jth influence factor
y the mean value of the measured value
yi the ith actual measured value
Abbreviation
Bi-LSTM bidirectional long short-term memory
BP back propagation
CNN convolutional neural network
FA firefly algorithm
GA genetic algorithm
LSTM long short-term memory
minSSE the minimum sum of squares of the combined prediction errors
MAE Mean Absolute Error, GJ/h
MAPE Mean Absolute Percentage Error, %
MSE Mean Square Error, GJ2/h2

PCA principal component analysis
RF Random Forest
RMSE Root Mean Square Error, GJ/h
RNNs recurrent neural networks
SVR support rector regression
Greek Symbols
α the step factor
αp the cumulative contribution rate
β0 the attraction of fireflies at the light source
β(d) the attractiveness function
γ the absorption coefficient of light intensity
εi the vector of random numbers
λj the eigenvalues
Subscripts
i represents the ith
j represents the jth
k represents the kth
t time
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