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A B S T R A C T   

The success in the flexible design of smart acoustic metamaterials is crucially contingent upon the 
degree of control over the parameters that uniquely define the spectrum of band structure and 
morphology of dispersion surfaces. In this work, we have studied the driving physical mecha-
nisms, the control of which makes possible operating, in real-time, on the set of band gaps formed 
in 3D metamaterials based on magneto elastomers. In such acoustic structures, the stiffness of the 
medium in which unit cells are immersed, as well as the stiffness of the shells surrounding multi- 
particle cores depend on the induction, B(t), of an external magnetic field. The results obtained 
are systematized through the qualitative analysis of diversе scenarios for the evolution of the 
frequency characteristics of the metamaterial and summarized in the following complete physical 
picture of their dynamics. Variation of the stiffness of the medium/shells changes the wavelength 
of the shell’s surface waves at characteristic frequencies of the core vibrations and, as a result, the 
level of coupling between the vibration modes of the flexible shells and cores. Consequently, with 
an increase/decrease in the stiffnesses of the shells/medium, the dispersion surfaces of the entire 
acoustic system shift up/down along the frequency axis with noticeably different ‘mobilities’ that 
reversibly lead either to the formation of the band gaps in initially dense frequency spectrum or to 
the transformation of the band gaps formed into pass bands. The tuning of the set of dispersion 
surfaces depending on the range of changes in the magnetic field induction can be carried out in 
dynamic, quasi-stationary, and over-critical regimes when some of the dispersion surfaces 
degenerate into planes. In anisotropic metamaterials, simultaneously with creating full band gaps, 
it is possible to create tunable directional band gaps with adjustable frequency and angular 
widths. The results obtained, within the framework of the idealized discrete mass-spring model, 
are in good agreement with the data presented in the available experimental works and can be 
useful in the design of acoustic systems with desirable properties.  
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1. Introduction 

In recent years, a lot of attention has been paid to the study of the physical properties of acoustic metamaterials (AMM) and 
phononic crystals (PC), which are artificially designed smart materials created to own capabilities and potentials beyond those of 
natural materials [1–5]. Scientific advances in this area have greatly expanded our ability to control sound waves in the process of their 
transmission, reflection, refraction, absorption, diffraction, and attenuation. Analogous to electromagnetic/optical metamaterials [6], 
the emergence of properties or phenomena as negative refractive index of the medium [7,8], negative stiffness [9–12], negative 
Poisson’s ratio [13–16], acoustic cloaking [17,18], and acoustic superlensing [19,20] are realized in acoustics. 

One of the important properties of PCs and AMMs is their ability to block the passage of sound waves of certain frequency ranges in 
such media, i.e. to create bandgaps. In PCs, bandgaps are formed as a result of wave interference after Bragg scattering of the incident 
acoustic waves [21–25]. Since in this case, the wavelengths are of the same order of magnitude as a directional lattice constant i.e. the 
directional spatial period of the structure, the created stopband corresponds to relatively high frequencies. In AMMs, the incident 
acoustic wave interacts with local resonators/unit cells of diverse types e.g. Helmholtz resonators [26–28], membrane-type structures 
[29,30], multi-resonators of mass-in-mass type [31,32], fractal/pseudo-fractal [33–35], chiral [36,37], or labyrinthine [38–40] mi-
crostructures. The edges of the bandgaps formed are determined only by the resonant frequencies of unit cells. The corresponding 
sound wavelengths can thus significantly exceed the lattice constant so that bandgaps form in a relatively low-frequency range which is 
important for practical implementations such as noise reduction [41], underwater detection [42], or medical imaging [43]. 

In the modern physics of acoustic metamaterials, one of the important problems is the development of methods for generating a 
controlled spectrum of propagating acoustic waves [23,44–48]. One solution may be found and implemented through the successful 
selection of design parameters and proper assignments made in predefined arrangements of geometry, topology, and mass and stiffness 
distributions within the unit cell of metamaterials. This way, the goal of the creation of specific bandgaps may be achieved – this is the 
so-called ‘passive’ method which does not allow changing the bandgap parameters in real-time. 

Despite the useful properties of the aforementioned designs, more flexible real-time control is desirable. This possibility may be 
realized through changing the elastic properties of metamaterial elements by various external physical factors. Authors of the work 
[49] used piezoelectric springs in the one-dimensional periodic structure to tune various types of band gaps with electrical stimuli, 
which caused a change in the elastic modulus of resonators and their natural frequencies. Drawing on the mechanical properties of an 
origami pattern known as the Miura-ori [50–52], the tunability of complete bandgaps or partial bandgaps in specific directions is 
investigated in a proposed novel perforated Miura-ori phononic structure when the morphology of its unit cells changes [53]. On the 
base of the three-dimensional printed hollow sphere lattice metamaterials, tunable phononic bandgaps magnified by 37.5 % are 
realized in work [54], in which the bandgap control is carried out through the reversible temperature-dependent stiffness of the glassy 
polymer and discontinuity of stable thermal field in the lattice structure. 

In this work, we consider the possibility of ‘active’ control of band gap parameters when the controlling factor is an external 
magnetic field, which changes the elasticity of unit cells through magnetic induction, B, and, accordingly, the frequency characteristics 
of the AMM as a whole. Magnetic field-sensitive AMM elements are comprised of artificial materials i.e. Magnetorheological Elas-
tomers (MRE) [55,56]. 

MREs are the result of the solidification of a nonmagnetic polymer filled with micro-sized magnetic particles and other additives. 
The type of filler [57–60], particle size [58], and their arrangement in the matrix [59,61] determine the level of sensitivity of this 
particulate composite to an external magnetic field. In particular, a significant increase in the moduli of elasticity of the material in 
sufficiently moderate magnetic fields of the order of 50~600 mT. For instance, in a magnetic field with an induction of 500 mT, 
elastomers containing carbonyl iron particles showed an increase in the elastic modulus by a factor of 277 [62,63]. Such changes occur 
rapidly (in a time range counting up to several milliseconds [64]) and reversibly [65,66]. Since the magnetic field is a convenient 
control factor, the use of MREs in technology as intelligent materials [67,68] is very promising in numerous engineering applications 
such as the design of actuators and sensors [69–71], vibration dampers [72,73], and adaptive stiffness devices [55,74]. 

The possibilities of controlling the spectrum of propagating acoustic waves in 2D-AMMs were studied in [75–80], in which AMM 
unit cells had various shapes and formed various structures. In [81], a metamaterial plate incorporating magnetorheological elasto-
mers and multiple gradient resonators was investigated, in which an adaptive magnetic field adjustment mechanism works to alter the 
elastic modulus of the MRE in order to modulate the local resonance bandgap. Wang et al. [82] studied a semi-active graded MRE 
metamaterial sandwich beam with real-time tunable graded stiffness. The results show that the width of the band gap in the proposed 
system can be increased by grading the stiffness of the MRE in an ascending order. The change in the width and position of the band gap 
for transverse waves in magnetically active laminates was demonstrated in [83]. 

As far as dimensions of the space are concerned, the unit cells in two-dimensional [75,84] and three-dimensional [85] meta-
materials have a topologically similar structure. The cores of the unit cells (flat cylinders [75], cubes, or balls [85]) were covered with 
MRE-shells. The unit cells formed were ordered either on a flat plate from the same MRE [75] or in an epoxy matrix [85] without direct 
contact between the nearest cells. In both cases, with an increase in the induction of the external magnetic field, the bandgap edges 
gradually move to high frequency, and the band gap width becomes wider. The analogical bandgap transformation is observed in work 
[84]. Note that for 3D-AMM [85] the results were obtained using the finite element method. 

The peculiarity of the studies conducted is that the band gaps have already been formed in the initial state i.e. in the absence of a 
magnetic field (the induction of external magnetic field B = 0). When they shifted and expanded with increasing magnetic field 
magnitude, a significant part of the frequency spectrum remained common to the initial and “movable” band gaps. Examples of re-
gimes in which the band gap arose in the initial transmission spectrum with increasing magnetic field magnitude and only transformed 
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afterward are not given in the aforementioned works. 
In our work, within the framework of the idealized discrete spring-mass model, we explore physical mechanisms to extend the 

possibilities of active control through judicious alteration of frequency parameters of 3D-AMMs based on MREs. The structure of the 
metamaterial subject to this investigation, which is described in detail in the sequel, represents a generalized version of the meta-
material in the form of an ordered lattice of multivibrators/cores embedded in a cellular elastic medium - the substratum MRE-skeleton 
that is sensitive/responsive to the induction of a magnetic field. Variations in the external magnetic field change the coupling between 
the vibrational modes of the cores and the skeleton, which leads to a variety of scenarios for the formation of complete or partial 
bandgaps in specific directions in the initially continuous transmission spectrum. The physical mechanisms responsible for both the 
appearance of bandgaps and for their further evolution are analyzed in detail qualitatively and illustrated graphically. The main 
attention is paid to the search for regularities in dependence of functionality on ratios of cores and skeleton parameters for controlling 
the acoustic properties of the system from the creation of the bandgaps to their quasi-steady state with increasing magnitude of the 
magnetic field induction. 

The present paper is organized in the following sections. In Section 2, we analyze the basis for the physical conception of band gap 
formation and the effects of nonlocal interactions. In Section 3 the representative discrete-parameter model i.e. the 3D mass-spring 
model of the acoustic metamaterial is adopted and the relevant dispersion equations are derived. A multitude of scenarios for band 
gap dynamics control for a number of unit cell constructions is discussed in Section 4 including the formation of directional band gaps 
in the anisotropic metamaterial. In Section 5 a short final review of the results obtained is presented. 

2. Physical conception of bandgap formation and effects of nonlocal interactions 

In this section, we analyze the physical conceptions of controlling the structure of the formed band gaps by an external magnetic 
field based on the proposed spring-mass model. Unit cells with cubic symmetry of the internal structure (one of the variants of such a 
cell is shown in Fig. 1(a)) consist of a multi-particle core (red spheres) and a multi-particle shell surrounding the nucleus (blue spheres). 
These directly interact with each other’s unit cells and, in turn, form a cubic 3D lattice of an acoustic metamaterial. One of the possible 
cross-sections of the medium formed this way is shown in Fig. 1(b). Each one of the particles (red/blue sphere) interacts with 26 
nearest particles through springs connecting them. The stiffness of the springs, κ, inside the cells (marked olive in Fig. 1(b)) does not 
depend on the induction of the external magnetic field. The stiffness of the springs connecting the cells, χ, and the stiffness of the 
springs, η, between the particles of the single shell (blue thin and thick lines in Fig. 1(b), respectively) depend on the magnetic field and 
in most cases are assumed equal (η = χ). But, at times, and to demonstrate the relationship between various physical factors that 
determine the features of the frequency characteristics of acoustic waves, processes are considered in which these parameters are 
different i.e., η ∕= χ. 

The main physical concepts of real-time active band gap control can be most clearly shown using discrete AMM models. It is for this 
reason that the structural form used in our research was chosen as shown in Fig. 1 accounting for a different number of particles in the 
core and, respectively, in the surrounding shell. 

For an initial qualitative analysis, let us scrutinize the formation of a band gap in a one-dimensional chain of simple (single) vi-
brators (Fig. 2A(a)). Obviously, in the absence of an external elastic medium (external springs of stiffness χ), the free vibrator oscillates 
with a frequency ω2

f = 2κ/M∗, where M∗ is the reduced mass (of the two-body problem) derived as M∗ = Mm/(M + m), where M and m 
are the masses of the shell and the core, respectively. In the acoustic chain (Fig. 2A(a)) each vibrator is subject to external perturbations 
from the surrounding elastic medium. When an acoustic wave of wavelength λ propagates in the chain, springs with an effective 
stiffness χ∗(λ) ∕= χ act on the vibrator shell, since this effective stiffness depends on the relative displacements of neighboring shells, i.e. 
on the wavelength λ. The necessity of bandgap formation in the chain under consideration can be easily deduced from the equations of 

Fig. 1. Morphology of the acoustic metamaterial under consideration in the spring-mass model. Configuration (a) presents the typical 
structure of the elementary cell. Red particles-spheres represent the core, blue particles - the shell. Configuration (b) depicts a section of the acoustic 
medium by a plane passing through the red particles of the cores. 
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motion for the core and the shell as follows: 

Mẍe = κδxi − χ∗xe and mẍi = − κδxi. (1) 

Here xi and xe are the displacements of the core and the shell, respectively, and δxi = xi − xe is the displacement of the core relative 

Fig. 2. Acoustic waves in one-dimensional elastic chains. (A) Part (а) shows the chain structure with simple mass-in-mass resonators at its 
nodes, and part (b) depicts the unit cell of the chain in the case when the elements of the composite shell of the resonator are connected by a 
nonlocal interaction. (B) Classification of vibration modes of elementary cells in the center of the Brillouin zone and on its boundary according to 
different types of symmetry. Springs that do not deform when a given type of vibration mode is excited are not shown in the corresponding graphical 
representation of the vibration pattern of that type. (C) Frequency branches of oscillations, {ω2

n(k̂)}, in a one-dimensional chain with elementary 
cells, the structure of which is shown in Fig. 2A(b); m = 1, M = 1.25, χ = 1.5 (Ω2 =

χ
M = 1.2). (a) η = 0, and (b) η = 0.15 (Ω2

nl =
η
M = 0.12). 
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to the shell. For harmonic in-phase solutions, xe = xeoeiωt, xi = xioeiωt, we obtain two representations for δxi0: 

δxi0 =
ω2

ω2
0 − ω2xe0 and δxi0 =

χ∗(λ)
M

1
ω2

f − ω2xe0, (2)  

where ω2
0 = 2κ/m (ω2

0 < ω2
f ). 

The requirement of the same sign for the coefficients of xe0 on the right-hand side of equations (2) does not allow propagation of 
waves of frequencies in the interval expressed in the inequality of relation (3). 

ω2
0 < ω2 < ω2

f . (3) 

The lower and upper branches of allowable frequencies, ω2
1,2 = ω2

1,2(λ), are determined by the dispersion equation: 
(

ω2
f − ω2

)
ω2

ω2
0 − ω2 =

χ∗(λ)
M

. (4) 

Fig. 3. Dynamics of the sets of characteristic points and band gaps with variation in the stiffness of the environment, χ, and non-local interaction, η, 
in the chain presented in Fig. 2(B). The number of red particles in the core is 4 and the mass of each of them is m = 1. The mass of each of the shell 
particles is M = 1.2 and the stiffness of the internal springs is κ = 1. Red circles mark frozen frequencies from the set of modes {Ss}, green circles - 
mobile modes from the set {Sa}, horizontal red arrows - are sensitive to variations in η modes from the set {Aa}, blue arrows - sensitive to changes in 
χ modes from the set {As}. Vertical arrows mark the switching between modes of different sets. Configuration (а) - frequency branches ω2

n(k̂) at χ 
= 1.8 (Ω2 =

χ
M = 1.5), Ω2

nl =
η
M = 0; (b)- Ω2 = 1.5, Ω2

nl = 0.15; (c)- Ω2 = 1.5, Ω2
nl = 0.5; (d) -parameter Ω2

nl remained the same as for configuration 
(c), Ω2

nl = 0.5, but the value of Ω2 was reduced: Ω2 = 0.75. 
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The result obtained shows that by varying the stiffness of the external springs in any way (including through induction of a 
magnetic field) it is impossible to change the characteristics of the formed bandgap. At the same time, it is technically difficult to 
influence the elastic characteristics, κ, of the internal structure of vibrators by a magnetic field, although such a possibility, in our 
opinion, was realized in [81]. In this work, the design of the unit cells mimics that of a mass-in-mass resonator, for which the upper 
edge of the bandgap, ω2

f = 2κ(B)/M∗, rises faster than its lower boundary, ω2
0 = 2κ(B)/m, while both vary linearly with increasing 

stiffness κ(B). A more realistic option for tuned bandgap formation is to change the elastic properties of the shells, which are not rigid 
and are themselves multi-particle vibrators. 

In the simplest case, such a shell can be idealized as being composed of two parts with the inclusion of a non-local interaction 
between them along an integral chain, as shown in Figs. 2A(b) and 2(B) (a shell of two parts A and B encloses a many-particle nucleus 
in an arbitrary case). In the sequel, we shall discuss those properties of such one-dimensional chains that are important for the analysis 
of similar but more complex systems. 

The set of frequency branches, ω2
n = ω2

n(k̂) (k̂ being the dimensionless wave vector ̂k = 2πL/λ, where L is the length of the unit cell) 
starts at the set of points, {ω2

n(k̂ = 0)}, on the frequency axis at k̂ = 0 and ends at the corresponding points of the set {ω2
n(k̂ = π)} (on 

the boundary of the Brillouin zone) as depicted in Figs. 2(C) and 3. These points react differently to changes in the stiffness of external 
springs, χ, and nonlocal bonds, η, induced by the magnetic field. This can be easily verified by analyzing the morphology of the 
different types of possible vibration modes at the center of the Brillouin zone and on its boundary (see Fig. 2(B)). It can be seen that the 
set of modes symmetric about the center of the unit cell, {Ss}, do not respond at all to changes in the values of χ and η, since these 
springs do not deform on exciting waves of the specific type. Such modes are ‘frozen’ in a certain sense while the ‘mobile’ set {Sa}, 
conversely, reacts to changes in each of the stiffnesses χ and η. At the boundary of the Brillouin zone, the sets {As} and {Aa} react only 
to changes in the stiffness χ in the first case and the stiffness η in the second. Note that the sets of frequencies {Ss} and {Aa} represent 
the eigenfrequencies of an isolated unit cell i.e. without taking into account the effect of external springs on it. The frequency sets {Sa}

and {As}, on the other hand, correspond to eigenfrequencies of an ‘open’ primitive cell with fixed boundaries (see points 1 and 2 in 
Fig. 2(B)). External springs (formally shortened) act on the shell of such a cell to the left and the right with effective stiffness 2χ. 

The manifestation within the sets {ω2
n(k̂ = 0)} and {ω2

n(k̂ = π)} of different mobility of characteristic frequencies with changes in 
the elasticity parameters of the external medium and shells is visible in the data presented in Figs. 2(C) and 3. 

It should be noted that for M ∕= m, band gaps can also form in the absence of nonlocal interactions (Figs. 2(C)-(a)), while with 
nonlocal interaction included, they form even if the masses were equal i.e., M = m. However, in the general case, the result of the 
inclusion of nonlocal interactions can be a reduction in the number of band gaps. For example, if for the data presented in Figs. 2(C)- 
(a), we increase η to the value of η = 0.095, then only the frequencies from sets Aa and Sa will respond/increase, moreover, the 
frequency of Aa will coincide with the frequency of As1 and the lower band gap will disappear (converts to passband). With a further 
increase in the parameter η, switching occurs between the two lower frequency branches at the boundary of the Brillouin zone (Figs. 2 
(C)-(b)) with the formation of a new bandgap above the As1 mode, which is stationary in this case. An increase in the number of 
particles in the cores increases the number of frequency branches ω2

n(k̂), the number of characteristic points, and, accordingly, the 
number of band gaps (See Fig. 3). The movement of characteristic points along the numerical axis with variation in the elasticity of the 
shells of elementary cells and their environment is accompanied by several shifts between frequency surfaces both at the border of the 
Brillouin zone (See Fig. 3) and at its center (See Video file ‘1D-Bandgap Dynamics’ in Supplementary Materials). 

For the 3D metamaterials considered below, the general structure of which is shown in Fig. 1, the set of oscillation modes at k̂ = 0 
and singular points on the boundary of the Brillouin zone (see Fig. 4) also have different mobilities with changes in stiffness parameters 
χ(B) and η(B) (B is the norm of the external magnetic field induction) causing inhomogeneous movement of the wave surfaces in 4D- 

Fig. 4. The trajectory in k̂ − space for calculations of frequency-branches, ω2 = ω2
m(k̂), to study their morphology over the irreducible Brillouin 

zone i.e. the region 0 ≤ k̂x,y,z ≤ π. 
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space ω2 = ω2
n(k̂), n = 1, 2, 3, …, 3N, where N is the number of mass particles (material points) in a unit cell. Thus, it is this in-

homogeneity in the mobility of wave surfaces that is the main factor for the controlled effective mixing/switching of these surfaces and 
the corresponding change in the positions and width of the band gaps up to their complete disappearance. Moreover, in anisotropic 
structures, the disappearance of band gaps for waves across the axis of anisotropy can be accompanied by their formation for waves 
propagating along this axis. 

3. Parameters of 3D mass-spring model and construction of the dispersion equations 

In the general case, the core of the unit cell (see Fig. 1) contains Ncore particles: Ncore = n3, n = 1,2,3… The core is surrounded by a 
shell, which consists of Nshell = (n + 2)3

− n3 particles. The shortest distance between neighboring particles is normalized to 1. The 
stiffness of the horizontal/vertical (i.e., the shortest) springs connecting the core particles and the shell particles is equal to κ. The 
stiffness of the horizontal/vertical springs acting between the shell particles inside the unit cell is equal to η. A similar value of χ holds 
for springs connecting neighboring unit cells. It is assumed that a linear spring captures interaction effects accurately enough and its 
potential is of logarithmic form of the initial length. Thus, the numerical model takes into account the inversely proportional 
dependence of the spring stiffness on their length. For example, 6 springs with stiffness κ, 12 springs with stiffness κ /

̅̅̅̅̅
2,

√
and 8 springs 

with stiffness κ/
̅̅̅
3

√
act on a particle of the core. The general form of the dispersion equation is therefore: 

Au = ω2u, (5)  

where u signifies the displacement vector i.e. the transposed column vector of uT = (xT , yT , zT), where, xT = (x1, x2, x3,…, xN), yT =

(y1, y2, y3,…, yN) and zT = (z1, z2, z3,…, zN), with N being the total number of particles in the unit cell as: 

N = Ncore + Nshell. (6) 

The sets {xi}, {yi}, {zi} represent the displacements of the main particles (particles lying inside the single unit cell). Matrix A is a 
square matrix of dimension 3N and is composed of the coefficients of the equations of motion for these particles. When constructing 
these equations for the shell particles, the displacements of particles outside the main unit cell must be considered. These displace-
ments are not independent but are connected by a linear relationship with the displacements of particles in the main cell. Each of the 
‘external’/equivalent particles has a primary particle inside the shell of the main cell. The vector connecting the primary particle with 
the equivalent particle must be equal to one of the lattice translation vectors of the form: 

a = lx ⋅ ax + ly ⋅ ay + lz ⋅ az, (7)  

where | ax| = | ay| = | az| = L = (n+2), lx, ly, lz -are integers, which can take the values − 1, 0, + 1, and L is lattice constant of the 
constructed cubic structure. The number of the equivalent particles, (n + 4)3

− (n + 2)3, is greater than the number of particles in the 
shell, Nshell. As a result, one, three, and even seven equivalent particles can correspond to one primary particle. 

When a wave propagates in a metamaterial, the displacement, uj, of the equivalent particle with index j and displacements, ui, of 
the main particles with index i are interconnected by Bloch’s theorem (also known as Floquet-Bloch’s principle) as: 

uj = ui⋅exp(ikaij (8)  

where k (k = 2π/λ) is the wave vector of the acoustic wave with the wavelength λ, aij is the vector that connects these particles (see Eq. 
(7)). In sequel, we will operate with the dimensionless wave vector k̂ = 2πL /λ. 

For small-amplitude harmonic vibration of particle i, i.e. its small oscillations around the equilibrium position, ui = ui0exp(iωt), the 
equations of motion, miüi = f i (i = 1,2,3,…,N) take the following form: 

− ui0ω2 =
∑26

j=1
ej

(
κij

mi

)
(
ej.
(
uj0 − ui0

))
. (9) 

The summation in Eq. (9) is carried out in 26 directions from the central, i-th, particle to the lattice particles surrounding it and the 
vectors {ej} are unit vectors defined as ej = aij/aij, oriented along these directions, κij− the stiffness coefficients of the corresponding 
springs, ui0,j0− the amplitudes of oscillations of the particles, which are in general complex, mi − the mass of the central particle. The 
dependence of matrix A (i.e., its entries formed by the coefficients of N equations of the form Eq. (9)) on the dimensionless wave 
vector, k̂ = 2πL /λ in Eq. (8) is a consequence of applying Bloch’s theorem to deviations at auxiliary lattice nodes. 

Since the size of matrix A is equal to 3N× 3N, the solution of Eq. (5) entails a set of dispersion surfaces ω2 = ω2
m(k̂), m = 1,2, 3,

…,3N in 4-dimensional space. Through graphical presentation and physical analyses of this set, we calculate sections of these surfaces 
along a trajectory in the first Brillouin zone (see. Fig. 4), taking into account the cubic symmetry of the system under consideration. 

The intelligent computational procedure that forms the elements of matrix A based on Eqs. (9) is embedded in an optimized 
computer code that rapidly calculates the eigenfrequencies of matrix A at 1200 points evenly spaced on the k̂ − trajectory shown in 
Fig. 4. 

Concerning the parameters of the system under consideration, we assume the unit of masses is the mass of the red core particle, m, 
and the unit of stiffnesses is the stiffness κ (see Fig. 1). Thus, the independent parameters are the mass of the blue shell-particles, mshell, 
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stiffness η and stiffness χ (see the description of Fig. 1 above). Eq. (5) is divided by the value κ/m which reduces it to a dimensionless 
form. 

4. Intermixing of the dispersion surfaces in the 3D-bandgap dynamics 

In this section, we shall consider the formation and dynamics of band gaps in systems with different numbers of particles in their 
cores, including the cases when the cores are anisotropic (elongated along one of the main axes). When choosing the parameters of the 
shells and the environment, the following physical factors should be considered. The first of them is related to the fact that the for-
mation of a band gap over the range of acoustic vibrations has a significant deal in common with the splitting of the energy levels of a 
simple mass-in-mass vibrator, even though in the cases under consideration the shells are flexible. At low frequencies, one way or 
another, oscillations of a many-particle core can be considered, with a rather good approximation, as the motion of a single entity as 
the whole for estimating the parameters of the emerging band gap. According to Eq. (3), the band gap, Δω2 = ω2

up − ω2
down (where ω2

up 

and ω2
down present upper and down edges of the bandgap respectively) is of the order of the difference between the frequency of an 

isolated vibrator, ω2
up ≈ ω2

f , and the frequency of a vibrator with a fixed shell, ω2
down ≈ ω2

0. Thus, up to some extent, 

Fig. 5. Frequency characteristics of a 3D metamaterial with a single-particle core in an elementary cell. (a) Dependences ω2
n(k) for the 

metamaterial skeleton along the trajectory shown in Fig. 4(a), η = χ = 0.25, and mshell = 0.125. On the right is the eigenfrequency spectrum, ω̂2
n , of 

an isolated cell (η = 0.75). (b) Dependences ω2
n(k) at χ = 0.25 and η = 0.75 for the entire metamaterial. (c) χ = 0.75 and η = 0.25. Configurations 

(d), (e), and (f) demonstrate the band gap dynamics with a gradual decrease in stiffnesses: η = χ = 0.75, 0.40, and 0.25, respectively. 
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Δω2 ≈ ω2
f − ω2

0. (10) 

So, a practical conclusion is that the difference in the masses of the shell, Mshell, and the core, Mcore, should not be significant for 
creation of the noticeable relative bandgap: 

Δω2
/

ω2
f = (1 + Mshell/Mcore)

− 1
. (11) 

The second of the necessary physical factors in our model (Fig. 1), is the adequately strong coupling between the vibration modes of 
the unit cell and the vibration modes of the ‘skeleton’ of the acoustic system (recall that so-called ‘skeleton’ is the remnant lattice 
ensued after the extraction of the cores). This coupling should ensure that a gap appears in the initially continuous spectrum of the 
whole system as the magnitude of the magnetic field induction increases in order to provide a sufficiently strong splitting of the 
skeleton wave surfaces, ω2

m(k̂), at the points of its intersection with the linear spectrum of the unit cell. These conditions are met in the 
systems discussed below. In particular, the freedom in the choice of values for elastic parameters χ and η provides a wider frequency 
range for the skeleton than for isolated cell modes (see, for example, Fig. 5(a)). 

4.1. The dispersion-surface dynamics in single-resonator metamaterials 

Obviously, in the case of multiparticle shells of unit cells, the estimation of the bandgap width from relation (10) will be most 
accurate at high values of the stiffnesses η and χ. The dependence of the bandgap upper and lower limits on the magnitude of the 
magnetic field induction, ω2

up(B) and ω2
down(B) saturates and these tend to their limiting values as the skeleton system increasingly 

manifests itself as a unified whole. In our opinion, it is this saturation mode that corresponds to the experiments conducted by re-
searchers [75] (massive copper discs surrounded by magneto elastomer shells). In these experiments, the band gap, which already 
exists at B = 0, only slightly shifted and broadened with an increase in the external magnetic field’s intensity. This means that in the 
initial state the stiffness of the skeleton was high enough to form band gaps in the aforementioned ‘classical’ way. 

In the sequel, we shall show how more noticeable variations in the parameters of the band gaps (width and position in the fre-
quency spectrum) can be achieved by reducing the initial rigidity of the shells, which is quite feasible, and will qualitatively analyze 
the dynamics of the bandgap throughout different stages of its evolution. 

The data in Fig. 5 give a representation of the processes that reversibly occur in the acoustic system, both from the initial formation 
of the band gap to its most developed phase/width with an increase in the stiffness of the homogeneous medium surrounding the cores 
(η = χ) and in the reverse direction of the sequence. The video ‘Initial_Stage.mp4’ in Supplementary Materials shows, in detail, an 
increase in the rigidity of the external environment leads to a line spectrum of isolated cells transforming into a continuous spectrum of 
the whole metamaterial in which a band gap arises. It is its gradual disappearance during the reverse course of the process that is 
shortly presented in the configuration sequence (d)-(e)-(f) in Fig. 5. 

We note below that the result of the configuration in Fig. 5(d) corresponds well with the qualitative assessment expounded above. 
With a fixed shell, a single-particle core (Mcore = m = 1) is under the influence of 26 springs with an effective isotropic stiffness, K ∗. 
According to the Eq. (9): 

K
∗ = 2 + 8

/(
2

̅̅̅
2

√ )
+ 8

/(
3

̅̅̅
3

√ )
≈ 6.37, ω2

0 =
K

∗

Mcore
≈ 6.37. (12) 

Thus, for given masses of the core, Mcore = 1, and shell, Mshell = 3.25 (the corresponding reduced mass M∗≈ 0.765), the upper edge 
of the band gap, ω2

up, should be of the order of 

ω2
f = K

∗
/

M∗ ≈ 8.3. (13)  

and its width Δω2 ≈ 2 (see. Eq. (10)) that is in good agreement with the data shown in Fig. 5(d). However, the edges of the band gap, 
ω2

down and ω2
up, which are visible in Fig. 5(d), are noticeably shifted down about half of the width, Δω2 (Δω2/2 ≈ 1) relative to the 

frequencies ω2
0 and ω2

f , respectively. With increasing elasticity parameters, η and χ, the band gap moves upwards without noticeable 
changes in its width, while frequencies ω2

down and ω2
up approach their limit values of ω2

0 and ω2
f ( ω2

down ≈ 5.97 and ω2
up ≈ 8.01 at η = χ 

= 2). 
To establish the driving physical factors of such dynamics, let us analyze the types of modes that are responsible for the subsequent 

band gap dynamics (Figs. 5(e) and (f)). Naturally, the spatial structure of the 3D-oscillation modes excited in AMMs is very diverse. But 
at the singular points (see Fig. 4) of the Brillouin zone, similar to the one-dimensional case considered above, all oscillation modes can 
be divided into two groups - symmetric (at the equivalent lattice points of the metamaterial, the displacements are equal and in phase) 
and antisymmetric (at the equivalent lattice points of the metamaterial, the displacements are in antiphase). The type of symmetry is 
determined by the coordinates k̂x, k̂y, k̂z (k̂x,y,z = 0, ±π) of the singular point and the corresponding sign of the Bloch factor ν =
exp[i(k̂x + k̂y + k̂z)] = ±1. The degree of sensitivity of such modes to changes in the elasticity of the environment and the shell 
corresponds quite well to the results of the one-dimensional case considered above (Fig. 2B), which is easy to see in the data presented 
in Fig. 5. 

The lower edge of the bandgap, ω2
down, in all configurations shown in Fig. 5 is defined by an asymmetric (ν = − 1) oscillation mode 
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at point X of the Brillouin zone, ω2
(X)down, which refers to one of the mode sets either {As} or {Aa}. Recall that the modes of the sets {As}

or {Aa} respond only to changes in either the stiffness of the external environment or to changes in the stiffness of the shell (see 
Fig. 2B), respectively. It is easy to establish that the analyzed mode belongs to the set {As}. Indeed, the frequency ω2

(X)down does not 
respond to changes in the stiffness, η, of the internal springs of the shell – the values of this frequency in Figs. 5(d) and 5(c) are 
practically unchanged, although the value η in the latter case is three times lower. In addition, the values of ω2

(X)down in Figs. 5(f) and 5 
(b), where the stiffness values η also differ by a factor of three for the fixed values of χ, are visually equal. At the same time, the 
frequency ω2

(X)down and as a consequence its associated mode, are sensitive to variations in the elasticity of the environment, χ. This is 
easy to see when comparing the values of ω2

(X)down in the data pair in Figs. 5(b) and 5(d) and the data pair of Figs. 5(с) and 5(f) at 

constant values of η in each of the variants. This fact can be easily explained qualitatively. At point X (k̂x = π and k̂y = k̂z = 0), the 
cores of neighboring cells oscillate in antiphase (ν = − 1) relative to each other along x-axis, compressing/stretching the space be-
tween the corresponding deforming shells. The increasing stiffness of this space, χ, makes the walls of the shells immobile, and ω2

(X)down 

tends to ω2
0. 

The frequencies, ω2
(M1,2)acoust, at points M1 and M2 (ν = 1) on the acoustic branches of oscillations increase with the stiffness χ 

similarly to frequency ω2
(X)down. However, at these points the displacements of the particles are transverse to the direction of wave 

propagation (orthogonal polarization or transverse waves). The shells of the unit cells also become immobile at high stiffness values χ, 
but the effect of ‘freezing’ of their mobility at shear strains of the environment between neighboring cells is weaker, and ω2

(M1,2)acoust 

< ω2
(X)down. 
Prior to the formation of the band gap, the upper acoustic branch of oscillations and the lower optical branch form a conical 

intersection of two energy surfaces [86] in the vicinity of singular points of the Brillouin zone (one such intersection is marked in Fig. 5 
(f) by arrows), which splits into two states as the rigidity of the acoustic system’s skeleton increases. After this splitting, the upper 
frequencies of the type ω̂2

(X) and ω̂2
(M) are not bounded by the condition of in-phase displacement of the core and shell. The frequencies, 

ω̂2
(X)(η, χ) and ω̂2

(M)(η,χ), respond differently to changes in the values of stiffness parameters η and χ, but are similar in that they increase 

indefinitely with increasing η and χ, and each can determine the upper edge of the formed band gap, ω2
up (see Fig. 5(b) - ω2

up =

ω̂2
(M1)

(η,χ); 5(c) - ω2
up = ω̂2

(X)(η,χ); 5(e) - ω2
up ≈ ω̂2

(X)(η,χ) ≈ ω̂2
(M1)

(η,χ)). The accompanying widening of the band gap occurs rather 
abruptly until ω2

up equals the lowest frequency of optical vibrations, ω2
(Γ). If we track the development of the band gap from the 

configuration shown in Fig. 5(f) to the configuration of Fig. 5(d) then the frequency ω2
(Γ)(χ, η) becomes the upper edge of the band gap 

at χ = η = 0.55 ( ω2
(Γ),up(χ,η) = 7.05, Δω2 = 2.08). 

To the frequency of oscillations, ω2
(Γ), there corresponds a mode of the Ss − type, in which the vibrations of the cores and shells are 

antiphase to each other in each unit cell, but these vibrations are in phase in neighboring unit cells. In the one-dimensional acoustic 
chain, that mode is insensitive to variations in χ and η, as in this case the shell (particles A and B in Fig. 2B) moves as a whole. In a 3D 
metamaterial with a flexible shell, the frequency ω2

(Γ) nevertheless responds to changes in the stiffness of both the shell and the 
environment, and is almost equally affected by them, which can be seen by comparing the data presented in Fig. 5(d) with the data in 
Figs. 5(b) and (c). However, once the frequency ω2

(Γ) becomes the upper edge of the band gap, ω2
(Γ)up at a sufficiently high value of χ, 

further growth of ω2
(Γ)up (and the band gap width, Δω2, accordingly) turns significantly less sensitive to changes in environmental/ 

skeleton rigidity as the shells of the unit cells become gradually ‘frozen’. 
Only at high values of η and χ does the shape of the shell become ‘frozen’ (where the displacements of the shell particles are almost 

the same) and the frequency ω2
(Γ),up rises to its limit given in Eq. (13) while the frequency ω2

(M)
(χ, η) increases indefinitely. If the initial 

stiffness parameters of the medium and shells assume sufficiently high values, then such a slow transitional evolution to the stationary 
state is feasible as was observed in several previous investigations [75,85]. 

4.2. Controllable set of band gaps in metamaterials with multi-particle cores 

In the cases of AMM’s studied below, the core itself possesses many modes of oscillation even in the presence of a stationary shell. If 
the shell is elastic, then to some extent it mimics the non-local interaction between the particles of the core, causing the interaction 
between the vibrations of its individual parts. This interaction depends on the stiffness of the shell, which determines the length of the 
waves excited on its surface and their frequency. At high values of η, the metamaterial has a fixed set of band gaps independent of the 
stiffness χ [31] since the unit cells turn into simple mass-in-mass multi-resonators. Moderate values of η provide the connection be-
tween the surface waves of neighboring shells and, accordingly, the impact of the external medium on the vibrations of the cores. It is 
under such circumstances that it is possible to effectively control the set of band gaps formed by changing the rigidity of the external 
environment. 

The data presented in Fig. 6 confirm the qualitative analysis above of the general acoustic properties of the metamaterials 
considered. At a relatively low stiffness of external springs, χ, the line frequency spectrum of isolated unit cells splits into many pass 
bands separated by band gaps (Fig. 6A). Increasing the stiffness of the environment, χ, increases the coupling between the surface 
modes of neighboring shells and the vibrational modes of neighboring cores. The corresponding splitting of the energy levels leads to 
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Fig. 6. Dynamics of the band gap set at a fixed shell stiffness η = 1.5, Ncore = 23, Nshell = 56, and mshell = 0.125 (core mass Mcore = 8 and shell mass Mshell = 7). In subparts (A), (B), and (C) the stiffness 
of the outer springs, χ, is 0.25, 0.75, and 1.25 respectively. (D) Displacements of core particles in different vibrational modes at singular points of the Brillouin zone marked in subpart B by blue and red 
dots. Configurations (a) and (c) correspond to the lower edges of the lower and upper band gaps, respectively. In both cases, the amplitude of longitudinal displacements of core particles (in 
configuration (c) along the blue axis) is strictly the same. Configuration (b) represents the rotational oscillations of the core at point M1 - the upper edge of the lower band gap. Displacements of core 
particles along the axis of rotation are equal to zero. Configuration (d) represents displacements of core particles in the uppermost band gap edge (point Γ). The displacements of the 56 shell particles are 
not shown to facilitate a visual representation of the morphology of the fundamental vibration modes. 
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Fig. 7. Dynamics of the band gap set with variation in the stiffness of a homogeneous medium surrounding the cores of unit cells of the metamaterial, Ncore = 23,Nshell = 56,η = χ; mshell = 0.125,Mcore =

8, and Mshell = 7. In configurations (a) to (d), the stiffness of the external and shell springs is 0.25, 0.38, 0.75, and 1.25, respectively. 
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the overlap of adjacent passbands and the disappearance of single band gaps (Fig. 6C). Note that the formation of the edges of the most 
stable lower and upper band gaps quite fully corresponds to the classical physical mechanisms—in-phase vibrations of the core and 
shell at the lower edge of the band gap and their antiphase vibrations at the upper edge of the band gap. 

Based on the concepts above, the characteristic frequency of the lower bandgap with the width Δω2
down (see Fig. 6B) can be esti-

mated as the oscillation frequency of the core relative to the fixed shell. If we consider all the external bonds of the particles of the core 
according to Eq. (9), the sets of which are equivalent for each of the Ncore core particles in the case under consideration, then the 
calculation of the force, Fcore, acting by the low displacement of the core as a whole, Δcore, leads to the relation: 

Fcore ≈ − Ncore ⋅ 4.47 ⋅ Δcore. (14) 

Thus, the frequency range of the lower bandgap should be close to the estimation Ω2
low = Fcore/Mcore ≈ 4.47 (Mcore = Ncore ⋅ m =

Ncore), which corresponds quite well to the data presented in Figs. 6B and C. In addition, at the edges of the lower bandgap, Δω2
down, the 

motion of the cores as single entities is indeed realized–see Fig. 6D, configurations (a) and (b). However, on its upper edge, instead of 
antiphase vibrational oscillations of the cores and shells, rotational oscillations are excited. The singular point M of the Brillouin zone 
corresponds to symmetric oscillation modes, ν = exp[i(k̂x + k̂y + k̂z)] = 1, i.e., all cores rotate in phase relative to each other but in 
antiphase relative to the rotation of the surrounding shells. 

An estimate of the characteristic frequency, Ω2
upper, of the uppermost bandgap with a width of Δω2

up is given by the oscillation 
frequency of a single particle in the core. If neighboring particles are stationary, then such a frequency, according to expression (12), is 
approximately 6.4. Taking into account the antiphase displacement of particles in the cores (see Fig. 6D, configuration (c)) it was 
possible to foresee the results observed in Figs. 6B and C – characteristic frequencies of the upper band gap, Ω2

upper, lie above 6.4. At the 
lower edge of the upper band gap, Δω2

up, displacements of the cores as a whole are also realized up to some extent (see Fig. 6D(c)), 
however, the amplitude of oscillations of the particles of the cores along the blue axis is much smaller than the amplitude of their 
oscillations in the transverse direction. It is the transverse antiphase oscillations that determine the frequency at the lower edge of the 
band gap. The higher frequency at its upper edge (k̂ = 0) at relatively small displacements of the core particles (see Fig. 6D(d)) is due 
to more significant antiphase displacements of the shells relative to the cores. 

One can see that the state of the acoustic system, shown in Fig. 6B, is close to stationary. An increase in environmental rigidity, χ, by 
a factor of ~1.7 (see Figs. 6B and 6C) slightly changes the position and width of the main band gaps, Δω2

down(η, χ) and Δω2
up(η,χ). 

The results of Fig. 6 were obtained with a sufficiently high value of fixed shell stiffness, η. Band gap control modes with varying 
rigidity of the homogeneous medium surrounding the cores, η = χ, are preferable, a fact which is demonstrated by the results shown in 
Fig. 7. In the quasi-saturation mode, the parameters of the formed band gaps (see Figs. 7(c) and 7(d)) are practically the same as before 
(see Fig. 6C), but with a decrease in the rigidity of the environment through alteration in magnetic field induction, it is possible to 
transform the band gaps into pass bands (see Fig. 7(a)) since in the low-frequency range the density of skeleton states increases. 

Results presented in Fig. 7(b) can be explained based on different qualitative models. The focus here, however, is on the band gap 
formation model discussed above. At the upper edge of the formed band gap, an antiphase oscillation mode of the core and shell always 
appears. For a relatively flexible shell i.e. if the rigidity of the shell is insufficient, then the excitation of such a mode is difficult, 
especially at low frequencies and, accordingly, long-wavelength surface vibration modes of the shell. At high frequencies (short- 
wavelength surface modes), the local curvature of the shell surface increases, and the corresponding ‘surface pressure’ increases which 
can provide antiphase oscillations with short-scale oscillations of the cores. It is with this effect that the earlier formation of the upper 
band gap, Δω2

up, is observed in Fig. 7(b). 
As noted above, as the stiffness of the external environment increases, the dynamics of the set of band gaps approach a quasi- 

stationary regime (see Figs. 6B, 6C and 7(c), 7(d)). It is important to note that the emergence of a quasi-stationary mode is in itself 
rather peculiar in metamaterials with multi-particle cores. As one can see in Figs. 6B, 6C and 7(c), 7(d), the lower edge, ω2

down(min)(χ,η), 
of the lowest band gap is very close to the oscillation frequency, ω2

0, (ω2
0 = 4.47 according to Eq. (12)) and the upper edge, ω2

up(max)(χ,η), 
of the uppermost band gap is bounded from above by the frequency ω2

f , which is also easily calculated from Eq. (13) as: 

ω2
f = Ncore ⋅ 4.47

/
M∗ ≈ 9.6, (15)  

where the reduced mass is M∗ = McoreMshell/(Mcore +Mshell) ≈ 3.73 (Mcore = 8 and Mshell = 7). 
Thus, if the unit cells were simple mass-in-mass vibrators, the band gap formed would correspond to the frequency range 

ω2
0 ≤ ω2 ≤ ω2

f . However, in the case under consideration, this range is rather wide and includes a series of intermediate frequency 
branches (see Figs. 6C and 7(d)), which are formed as a consequence of coupling between the natural vibrations of cores and shells. As 
the stiffness of the skeleton (η = χ) increases, the characteristic frequencies of the shell vibrations increase and their coupling with the 
lower-frequency vibrations of the core is weakened. This effect is noticeable in Figs. 7(b), (c), and (d) in which the group of frequency 
branches marked by the blue ring, to take as an example, gradually narrow down with increasing stiffnesses η and χ. A pictorial 
consequence of the increase in these parameters is shown in Fig. 8A where the narrowing of the intermediate frequency branches 
resulted in a set of new band gaps. 

Thus, in the case of the multi-particle cores, the frequency interval 

ω2
0 ≤ ω2 ≤ ω2

f , (16) 
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gives a reasonable estimate of the limits of the so-called ‘band gaps creation region’, within which both the formation of a dense set of 
band gaps at large skeleton stiffness (see Fig. 8A) and the full opening of this range for acoustic waves at lower skeleton stiffness are 
possible (see Fig. 7(a)). 

Note that the frequency, ω2
f , depends on the reduced mass of the unit cell. At the fixed core mass the reduced mass increases with 

increasing the shell mass. This dependence makes it possible to reduce the upper limit of the upper band gap when increasing the shell 
mass and achieve the formation of only a controlled low-frequency band gap above the acoustic branches of the dispersion relation (see 
Figs. 8B and C). 

A remarkable fact is that changing the shell mass does not change the value of ω2
down(min)(χ, η) (see Figs. 8A and C), which, once 

again, confirms this fundamental characteristic of the band gaps creation region. The correctness of the qualitative analysis above is 
also confirmed by the data presented in Fig. 9 with a higher number of masses in the multi-particle unit cell core (Ncore = 33). An 
increase in the stiffness of the environment enhances the coupling between the shortwave/high-frequency modes of the shells and 
cores. The band gaps formed subsequently are gradually shifted to the high-frequency region of the spectrum (see Fig. 9(b),(c),(d)). An 
estimate of the oscillation frequency of the core, ω2

0, with a stationary shell gives the value ω2
0 ∼ 3.32. The upper limit of the band gaps 

creation region, ω2
f , at given core and shell masses of Mcore = 27 and Mshell = 12.25 is equal to 10.63. Thus, the formation of band gaps 

is expected to arise within the frequency range of 3.32 ≤ ω2 ≤ 10.63, which is in good agreement with the data shown in Fig. 9. It is in 
the proximity of frequency ω2

0 that a low-frequency band gap should form, however, with a many-particle heavy core immersed in a 
soft shell, the coupling between their low-frequency modes is weak. As a result, even with a high stiffness of the environment, when the 
upper band gap has just formed, the low-frequency band gap is in its ‘infancy’ (Fig. 9(d)) and appears only at η = χ >

∼
1.5. 

Instead of increasing the ambient stiffness to form a low-frequency band gap, a simpler method exists to achieve this goal. It is 
sufficient, for example, to replace the central particle of the core with a particle of a larger mass. Then, on the one hand, for the same 
number of core’s eigenmodes, the low-frequency region of the spectrum will be filled more densely, which will provide effective 
coupling of the vibrational modes of the core and the shell and on the other hand, the high-frequency vibrations of the core will be 
mainly due to the surface motion of particles along its faces and edges. Under these circumstances, the formation of a low-frequency 
bandgap will not significantly affect the dynamics of high-frequency band gaps as the two mechanisms correspond to different po-
sitional allocations for vibrational modes in space. This qualitative analysis of the consequences of the proposed modification in the 
core structure/mass is consistent with the data presented in Fig. 10. 

The results shown in Figs. 9 and 10 are suggestive of using multilayered cores instead of a simple increase in the number of particles 
of uniform mass in it. A multi-layered core with an inhomogeneous distribution of particle masses is an open-type multivibrator with a 
flexible shell. An example of a unit cell with such a multilayered core is shown in Fig. 11(a). The dynamics of the band gaps of the 
corresponding 3D-metamaterial with variations in the elasticity of the external medium (η = χ) are shown in Figs. 11(b), (c), and (d). 

The unit cell presented in Fig. 11(a) is an analog of a mass-in-mass type multivibrator that has four nested elements: a central heavy 
particle of mass mc = 5, a shell of 26 magenta particles surrounding it with the mass of mmag = 3 each, and the next layer which is a 

Fig. 8. Examples of varying degrees of filling the band gaps creation area. (a) η = χ = 4, and the rest of the parameters are the same as in Fig. 7. (b) 
& (c) Ncore = 23,Nshell = 56,mshell = 0.5,Mcore = 8, and Mshell = 28. The stiffnesses are η = χ = 3 and 4.6, respectively. 
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Fig. 9. Dynamics of the band gap set of a metamaterial with the number of particles in the core Ncore = 33, Nshell = 98. The stiffness of the medium surrounding the cores of elementary cells is 
homogeneous: η = χ and mshell = 0.125 (Mcore = 27 and Mshell = 12.25). In configurations (a) to (d), the external and shell stiffnesses are 0.40, 0.65, 0.90, and 1.20, respectively. Band gaps in the range 
ω2 > 3 with a width, Δω2, less than 0.3 are not highlighted. 
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shell of 98 red particles with the mass of m = 1 each. The super-core is enclosed by the outermost shell (marked by a blue color), which 
simultaneously represents the external environment. The stiffness of the springs, κ, connecting concurrently the elements of the super- 
core to one another and the outer shell is assumed to be equal, as before, to unity, κ = 1. 

A classic multivibrator with four nested masses has three non-zero eigenfrequencies. Accordingly, in an external field, the acoustic 
environment built from these multivibrators would form three band gaps [31] with edges that do not depend on the stiffness of the 
external environment. Thus, in the metamaterial with the super unit cells shown in Fig. 11(a), it is indeed possible to form three band 
gaps, as shown in Figs. 11(b-d), but both the number of gaps formed and their upper/lower edges are functions of the stiffnesses χ and η 
(see Figs. 11(b),(c), and (d)). The detailed band gap dynamics of this case is shown in the video file ‘Super-Core_dyncs.mp4’ (see 
Supplementary materials). 

4.3. Controlled directional transmissibility of acoustic waves in anisotropic metamaterials 

In two-dimensional structures, the formation of directional band gaps (prohibiting propagation of acoustic waves within specified 
frequency ranges and along prescribed directions) was considered in several previous works [87–89]. To achieve directional broad-
band gaps for flexural waves at mid-to-low frequencies, researchers [88] have proposed a kind of periodic plate carved inside with 
tunneled acoustic black holes that generate band gaps through locally resonant effects of the created cells. Another proposed 2D model 
of a phononic crystal [89], is a periodic structure made of rectangular unit super-cells that consist of 25 conventional rectangular unit 
cells. Below, we show the possibility of creating a 3D-metamaterial based on primitive cells with a relatively simple topology and 
morphology (see Fig. 12), which implements controlled dynamics of both full and directional band gaps. 

The methodology for constructing the dispersion relations (equations of motion for unit cell particles) is the same as that used 
above (see Section 3). The only distinctive feature to be taken into account is the anisotropy (in this case orthotropy) meaning that the 
integral acoustic structure formed has different period of translational symmetry, L , along different coordinate axes: L x = L y = 3, 
and L z = 5. Accordingly, the components of the dimensionless wave vector are equal to ̂kx = 2πL x/λ, ̂ky = 2πL y/λ, and k̂z = 2πL z 

/λ. Considering the special type of anisotropy in the acoustic properties of the metamaterial, the calculation of frequency branches, ω2 

= ω2
n(k), presented in Fig. 13 is conducted along the trajectory in the first Brillouin zone shown in Fig. 12(b). It was assumed that the 

constitutive relations associated with the elastic medium surrounding the cores of the unit cells are those of homogeneous materials (η 
= χ). 

The sequence of states of the acoustic metamaterial, shown in Fig. 13 can be easily interpreted qualitatively. The three-particle core 
of the unit cell shown in Fig. 12(a) is an open-type multivibrator because each of the core particles interacts with the environment. 
Nevertheless, the formation of the two full bandgaps is consistent with physical concepts developed for metamaterials, in which the 
core of the unit cell is a multivibrator with a mass-in-mass structure [31] and eigenfrequencies of the multivibrator with fixed outer 
shell signify the lower edges of the formed bandgaps. In the case under consideration, the set of these eigenfrequencies, {Ω2

0}, includes 
only three values, which we show below. 

All degenerate modes of the horizontal vibrations of particles of the core have the same frequency, ω2
0,hor, which is equal to the 

Fig. 10. Dynamics of the band gap set of a metamaterial with the number of particles in the core Ncore = 33. The stiffness of the medium sur-
rounding the cores of elementary cells is homogeneous: η = χ and mshell = 0.125. The mass of the central particle, mc, in the core has been increased 
to 2.4. In configurations (a) to (d), the external and shell stiffnesses are 0.40, 0.65, 0.90, and 1.20, respectively. Band gaps in the range ω2 > 3 with a 
width, Δω2, less than 0.3 are not highlighted. 
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Fig. 11. Dynamics of band gaps in a metamaterial with inhomogeneous super-cores in unit cells. Configuration (a) is the central section of the multilayer unit cell. The mass of the central olive particle 
mc = 5, the mass of magenta particles surrounding it mmag = 3, the mass of red particles m = 1, the mass of the blue particles mshell = 0.25. The stiffness, κ, of the springs connecting the particles of the 
super-core to one another and with the outer blue shell is equal to one, κ = 1. Configurations (b), (c), and (d) represent the frequency branches, ω2 = ω2

n(k̂), of the metamaterial for different values of 
the rigidity of the medium surrounding the core: η = χ = 0.6, 1.0, and 2.0, respectively. 
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frequency of oscillations of the single-particle core, ω2
0, under the action of 26 springs (see Eq. (12)), since at their small horizontal 

displacements (as shown in Fig. 14(a)) the local interaction of the neighboring particles (among themselves) does not appear: 

ω2
0,hor = ω2

0 = K
∗
/

mcore ≈ 6.37 (17) 

Among the three possible vertical vibrations of the core, one of the modes where the central particle of the core stands still, and the 
opposite ends oscillate in antiphase relative to each other, also has the frequency ω2

0. The frequencies of the other two modescan be 
easily calculated based on the equations of motion (9) for three core particles. Thus the complete set of eigenfrequencies, {Ω2

0} is of the 
form: 

{
Ω2

0

}
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω2
0,ver2 ≈ ω2

0 +
̅̅̅
2

√
≈ 7.78

ω2
0 ≈ 6.37 (degenerate energy level)

ω2
0,ver1 ≈ ω2

0 −
̅̅̅
2

√
≈ 4.96

(18) 

It is therefore clear that the coupling between the oscillation modes of cores and shells, which increases with the increase in the 
stiffness of the environment, leads to the formation of three directional band gaps (Fig. 13(b)) in the proximity of frequencies {Ω2

0} (for 
waves propagating along the axis of the core - Γ − L path section in Fig. 12(b)). With a further increase in the value of elasticity 
parameter χ, the two lower directional band gaps successively transform into two full bandgaps (see Figs. 13(c) and (d)). Note that 
despite the multitude of particles in the shells of the unit cells, they are indeed practically immobile at the lower edges of the 
bandgaps, ω2

down,1 and ω2
down,2, (see Figs. 14(a) and (b)), and shift as a whole at their upper edges, ω2

up,1 and ω2
up,2 (see Fig. 14(c) and (d)) at 

large values of stiffness of the environment. Accordingly, the frequencies ω2
up,1 and ω2

up,2 can be estimated quite accurately when 
calculating the eigenfrequencies of a generalized system of four interacting particles moving along the unit cell axis (the Z axis in 
Fig. 12). The number of eigenfrequencies different from 0 in such a problem, as in the problem with a stationary shell (see Eq. (18)), 
equals 3, but in both cases, only the modes in which the central particle of the core moves in antiphase relative to the other two (see 
Fig. 14) determine the edges of the formed bandgaps in the quasi-stationary regime. 

In contrast to full bandgaps, whose parameters change slightly with variations in the rigidity of the medium/shell, the edges of the 
directional bandgap, ω2

dir,down and ω2
dir,up, shift significantly with different mobility, which results in noticeable changes in the width of 

this band gap, Δω2
dir. It can be seen that the value of Δω2

dir first increases (see Figs. 13(b) and (c)), and then decreases to zero – see 
Figs. 13(c), (d), and (e). The different dynamics of the edges of the directional bandgap are due to differences in the morphology of 
vibrational modes (see Fig. 15) that define its lower and upper edges. It is the specificity of deformations of the unit cell shell and the 
environment that determines the different degree of response of the values ω2

dir,down(η, χ), and ω2
dir,up(η, χ) to changes in the stiffnesses η 

and χ. For example, the shell stiffness, η, is a more significant factor in the longitudinal vibrations of the unit cell (see Fig. 15(a)) than in 
its transverse/flexural vibrations at the upper edge of the directional bandgap - see Fig. 15(b), which is reflected in the results of 
Figs. 13(d) and (e). With a simultaneous increase in stiffness parameters η and χ (η = χ > 0.75), the mobility of frequency ω2

dir,down(η, χ)

Fig. 12. Spring-mass model of an anisotropic acoustic metamaterial. (a) The unit cell of the metamaterial. (b) Trajectory in the first Brillouin 
zone along which the frequency branches, ω2 = ω2

n(k̂), are calculated. (c) A conical region in k̂-space, in which the passage of acoustic waves is 
studied and the corresponding spectral diagram is plotted. 
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is more pronounced than the mobility of frequency ω2
dir,up(η,χ), which causes narrowing the width of the directional bandgap, Δω2

dir, 
down to zero, essentially closing it. If the data in Fig. 13(d) take as some initial state and at the fixed value of η = 0.75 an increase only 
of the stiffness parameter χ to 1.2, then the increase in frequency ω2

dir,down(η, χ) lags behind the increasing value of ω2
dir,up(η,χ), and the 

directional bandgap does not disappear as it has occurred in Fig. 13(e) (η = χ = 1.2). Moreover, its width, Δω2
dir, becomes 0.26 larger 

relative to the data shown in Fig. 13(d) even when shifting up the lower edge, ω2
dir,down, by one. 

Note that in addition to the width of the directional bandgap, Δω2
dir, the bandgap possesses another important physical charac-

teristic worth being mentioned viz. the angle of the band gap cone, α (see Fig. 12(c)). The frequency band Δω2
dir is guaranteed to be 

prohibited for waves propagating strictly along the Z-axis (k̂x = k̂y = 0 and 0 ≤ k̂z ≤ π). However, the band gap of the same width is 
also formed for a certain set of waves (a set of wave vectors {k̂}) propagating at some angles, β, relative to this axis, β ≤ α /2. The set 
{k̂} fills some cone with the angle at its vertex, α, in the first Brillouin zone. To determine the value of this angle, the following 
procedure may be performed. In an arbitrary cone in the k̂–space (see Fig. 12(c)), a large number (in this case 10,000) of points were 
randomly selected, for which all eigenfrequencies of the system were calculated. The set of all these frequencies forms a spectral 

Fig. 13. Dynamics of the set of band gaps in the studied anisotropic material – see Fig. 12. The rigidity of the medium surrounding the cores of 
elementary cells k is homogeneous: η = χ; the mass of shell particles mshell = 0.125. In configurations (a) to (e), the external and shell stiffnesses are 
0.25, 0.40, 0.55, 0.75, and 1.2, respectively. The eigenvectors for the upper and lower edges of the band gaps (marked respectively by blue and red 
rings in configurations (c), (d), and (e)) are shown in Fig. 14. Configuration (f) represents the frequency surfaces, ω2 = ω2

n(k), adjacent to the 
directionally oriented band gap, Δω2

dir , observed in configuration (d) – magenta colored rectangle. 
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diagram (see vertical blue stripes in Fig. 13), which displays all band gaps for the selected set of wave vectors. The angle at the vertex of 
the cone, α, was fitted such that the highest frequency gap in the spectral diagram was equal to Δω2

dir. 
From the comparison of the data presented in Figs. 13(b), (c), and (d), it can be deduced that the dynamics of the band gap, Δω2

dir, 
with varying stiffness parameters η and χ, differs from the dynamics of the ‘angular width’, α, and the narrowing of the band gap on the 
frequency axis can be accompanied by the extension of band gap cone in the k̂- space. 

Thus, when designing metamaterials with different levels of response sensitivity in elasticity parameters, η(B) and χ(B), to changes 
in the norm of induction of an external magnetic field, B, various scenarios can be implemented to control the characteristics of the 
directional band gap in almost real-time. The details were discussed in the present work and many aspects of the smart controllable 
behavior were quantified. 

Fig. 14. Eigenvectors of particle displacements of the unit cell for vibration modes which represent the lower and upper edges of the band gaps in 
the configurations of Figs. 13(c), (d), and (e), where they are marked with blue and red rings, respectively. The initial positions of the shell particles 
coincide with the nodes of the cubic lattice (blue lines). The blue dots show the localization of the displaced shell particles. The initial and final 
positions of the core particles are represented by gray and red spheres, respectively. Configurations (a) and (b) correspond to the lower edges of 
band gaps (see Figs. 13(c) and (d)). The morphologies of these modes depict vibrations of type As (see Fig. 2B). Configurations (c) and (d) 
correspond to the upper edges of band gaps (see Fig. 13(e)). These oscillation modes are of the Ss type (see Fig. 2B). 

Fig. 15. Eigenvectors of unit cell particle displacements for vibration modes that determine the (a) lower and (b) upper edge of the directionally 
oriented band gap (see the red arrow in Fig. 13(d)). 
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5. Conclusions 

This work deals with the formation of smart controllable bandgaps governed by real-time sensitivity of elastic constitutive pa-
rameters to an external magnetic field induction. The detailed qualitative and quantitative analyses of a diversity of scenarios for the 
dynamics of generated bandgaps in an alternating magnetic field, which we carried out in this work, lays the ground and provides basic 
concepts for optimizing the parameters of specific acoustic 3D systems of given dynamic parameters for a particular response. 

The dominating physical factor that determines the features of investigated dynamic processes is the tunable elasticity of the shells 
of unit cells and their ability to generate surface vibrational modes. The formation of discontinuities in a primary dense spectrum of 
frequencies, Ω2 = {0 ≤ ω2 ≤ ω2

max} that corresponds to the set of dispersion-surfaces, {ω2
n(k̂, η, χ)}, of the entire acoustic system is 

based on the inhomogeneity of the shifts, Δω2
n(k̂,η,χ), of the frequency surfaces, {ω2

n(k̂,η,χ)}, along the frequency axis when variating 
the stiffnesses η(B) and χ(B): 

Δω2
n(k̂, η, χ) =

[
∂ω2

n(k̂, η, χ)
/

∂χ
]
Δχ +

[
∂ω2

n(k̂, η, χ)
/

∂η
]
Δη ≡ β(χ)

n,k̂Δχ + β(η)
n,k̂Δη.

The heterogeneity of the ‘mobilities’ β(χ)
n,k̂ 

and β(η)
n,k̂ 

with respect to mode number n, is associated with different levels of coupling 
between the vibration modes of the unit cell cores and the external simply-connected medium (the metamaterial skeleton). 

The evolution of band gaps formed by increasing stiffnesses η and χ occurs in three stages: dynamic, quasi-stationary, and over-
critical. The features of each stage are as follows:  

I. In the one-dimensional metamaterial with nonlocal interactions, there are four types of modes of oscillation, which respond 
differently to changes in the values of η(B) and χ(B) at singular points of the Brillouin zone. In a three-dimensional metamaterial 
with elastic shells of unit cells, similar features appear at sufficiently high stiffness of the skeleton, when the corresponding 
wavelengths for low-frequency surface modes gradually increase and the displacements of the shell particles become homo-
geneous up to a large extent. In this stage, i.e., the ‘dynamic’ stage, the band gaps arise due to the significant heterogeneity of the 
mobilities β(χ)

n,k̂ 
and β(η)

n,k̂ 
with respect to mode number, n, and splitting the frequency surfaces at the vicinity of their conical 

intersection. As the intensity of the magnetic field (skeleton stiffness) increases, the band gaps expand quite sharply due to the 
withdrawal of the more mobile frequency surfaces from the so-called ‘band gaps creation region’. At this stage, the number of 
band gaps can also significantly change.  

II. In the quasi-stationary stage, the edges of the band gaps are represented only by slow frequency surfaces (with low values of β(χ)
n,k̂ 

and β(η)
n,k̂

) since the fastest modes have left the ‘band gaps creation region’. In the modes of oscillations that fill the band gaps 
creation region, the displacements of the shell particles become increasingly homogeneous. Accordingly, the edges of the 
formed band gaps slowly approach their limits as the displacements of the shells relative to each other ‘freeze’ as the skeleton 
stiffness increases. The transmission ranges between band gaps are filled with intermediate optical frequency surfaces, ω2

m(opt)(k̂,
η,χ), which also practically do not shift along the frequency axis.  

III. At very high values of skeleton stiffness, some of the intermediate frequency surfaces, ω2
m(opt)(k̂,η,χ), degenerate into planes with 

frequencies of natural vibrations of the multiparticle cores enclosed in the stationary shells. In this supercritical stage, the 
number of band gaps in the ‘band gaps creation region’ can start to increase again, as seen in Fig. 8A. 

In anisotropic structures with a wide variety of nondegenerate frequency/energy surfaces, simultaneous generation of both full and 
directional band gaps is possible. The controllable parameters of such band gaps are their frequency and angular widths. It is therefore 
possible to achieve full control through the alteration of system parameters affecting the angular width and frequency ranges of the 
gaps. 
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[71] H. Böse, R. Rabindranath, J. Ehrlich, Soft magnetorheological elastomers as new actuators for valves, J. Intell. Mater. Syst. Struct. 23 (2012) 989–994, https:// 

doi.org/10.1177/1045389x11433498. 
[72] H.X. Deng, X.L. Gong, Application of magnetorheological elastomer to vibration absorber, Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 1938–1947, 

https://doi.org/10.1016/j.cnsns.2007.03.024. 
[73] H.K. Kim, H.S. Kim, Y.K. Kim, Stiffness control of magnetorheological gels for adaptive tunable vibration absorber, Smart Mater. Struct. 26 (2016), 015016, 

https://doi.org/10.1088/1361-665x/26/1/015016. 
[74] Y. Li, J. Li, T. Tian, W. Li, A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control, Smart Mater. Struct. 22 

(2013), 095020, https://doi.org/10.1088/0964-1726/22/9/095020. 
[75] W. Yan, G. Zhang, Y. Gao, Investigation on the tunability of the band structure of two-dimensional magnetorheological elastomers phononic crystals plate, 

J. Magn. Magn. Mater. 544 (2022), 168704, https://doi.org/10.1016/j.jmmm.2021.168704. 
[76] G.J. Yu, X.X. Wen, C.B. Du, L.Y. Wang, S.J. Zhu, Study on bandgap vibration isolation of super-cell phononic crystals based on magnetorheological elastomers, 

AIP Adv. 11 (2021), 125113, https://doi.org/10.1063/5.0065140. 
[77] K.H. Lee, K. Yu, H. Al Ba’ba’a, A. Xin, Z. Feng, Q. Wang, Sharkskin-inspired magnetoactive reconfigurable acoustic metamaterials, Research 2020 (2020), 

https://doi.org/10.34133/2020/4825185. 
[78] C.D. Pierce, C.L. Willey, V.W. Chen, J.O. Hardin, J.D. Berrigan, A.T. Juhl, et al., Adaptive Elastic metastructures from Magneto-active elastomers, Smart Mater. 

Struct. 29 (2020), 065004, https://doi.org/10.1088/1361-665x/ab80e4. 

V.N. Gorshkov et al.                                                                                                                                                                                                   

https://doi.org/10.1088/1367-2630/aa83f3
https://doi.org/10.1063/1.4817934
https://doi.org/10.1016/j.physleta.2017.07.041
https://doi.org/10.1016/j.physleta.2017.07.041
https://doi.org/10.1103/physrevb.99.024302
https://doi.org/10.1063/1.5098819
https://doi.org/10.1063/1.5098819
https://doi.org/10.1103/physrevlett.115.254301
https://doi.org/10.1103/physrevlett.115.254301
https://doi.org/10.1063/1.4839375
https://doi.org/10.1103/physrevlett.101.134501
https://doi.org/10.1103/physrevlett.101.134501
https://doi.org/10.1126/science.1166949
https://doi.org/10.1016/j.apacoust.2016.05.005
https://doi.org/10.1038/nmat4308
https://doi.org/10.1016/j.mechmat.2022.104249
http://refhub.elsevier.com/S0022-460X(23)00606-5/opt2iQSg4i2r6
http://refhub.elsevier.com/S0022-460X(23)00606-5/optkmBgFU84wi
http://refhub.elsevier.com/S0022-460X(23)00606-5/optkmBgFU84wi
http://refhub.elsevier.com/S0022-460X(23)00606-5/optGeplcEOLjw
https://doi.org/10.1016/j.ijmecsci.2023.108389
https://doi.org/10.1016/j.ijmecsci.2022.107166
https://doi.org/10.1007/978-3-642-20925-3_12
https://doi.org/10.1007/978-3-642-20925-3_12
https://doi.org/10.1016/j.taml.2017.01.006
https://doi.org/10.1016/j.compositesb.2018.09.080
https://doi.org/10.1177/0307174x1704400607
https://doi.org/10.1177/0307174x1704400607
https://doi.org/10.3390/polym12102371
https://doi.org/10.1039/c6ra23435f
https://doi.org/10.1039/c6ra23435f
https://doi.org/10.1088/1742-6596/149/1/012090
https://doi.org/10.1088/1742-6596/149/1/012090
https://doi.org/10.1039/c1py00033k
https://doi.org/10.1039/c1py00033k
https://doi.org/10.1039/c2sm26717a
https://doi.org/10.3390/ma13214795
https://doi.org/10.3390/app10144899
https://doi.org/10.3390/app10144899
https://doi.org/10.32604/jrm.2020.012939
https://doi.org/10.1109/tmag.2011.2173669
https://doi.org/10.1109/tmag.2011.2173669
https://doi.org/10.1088/0964-1726/20/10/105003
https://doi.org/10.1039/c7nr09129j
https://doi.org/10.1016/j.matdes.2018.07.024
https://doi.org/10.1177/1045389x11433498
https://doi.org/10.1177/1045389x11433498
https://doi.org/10.1016/j.cnsns.2007.03.024
https://doi.org/10.1088/1361-665x/26/1/015016
https://doi.org/10.1088/0964-1726/22/9/095020
https://doi.org/10.1016/j.jmmm.2021.168704
https://doi.org/10.1063/5.0065140
https://doi.org/10.34133/2020/4825185
https://doi.org/10.1088/1361-665x/ab80e4


Journal of Sound and Vibration 572 (2024) 118157

24

[79] G. Zhang, Y. Gao, Tunability of band gaps in two-dimensional phononic crystals with magnetorheological and electrorheological composites, Acta Mech. Solida 
Sin. 34 (2020) 40–52, https://doi.org/10.1007/s10338-020-00189-6. 

[80] B. Li, W. Yan, Y. Gao, Tunability of band gaps of programmable hard-magnetic soft material phononic crystals, Acta Mech. Solida Sin. 35 (2022) 719–732, 
https://doi.org/10.1007/s10338-022-00336-1. 

[81] L. Wang, Z. Chen, L. Cheng, A metamaterial plate with magnetorheological elastomers and gradient resonators for tuneable, low-frequency and broadband 
flexural wave manipulation, Thin Walled Struct. 184 (2023), 110521, https://doi.org/10.1016/j.tws.2022.110521. 

[82] Y. Wang, J. Yang, Z. Chen, Y. Lin, L. Gong, S. Zhang, et al., Investigation of a magnetorheological elastomer metamaterial sandwich beam with tunable graded 
stiffness for broadband vibration attenuation, Smart Mater. Struct. 32 (2023), 065022, https://doi.org/10.1088/1361-665x/acd289. 

[83] N. Karami Mohammadi, P.I. Galich, A.O. Krushynska, S. Rudykh, Soft magnetoactive laminates: large deformations, transverse elastic waves and band gaps 
tunability by a magnetic field, J. Appl. Mech. 86 (2019), https://doi.org/10.1115/1.4044497. 

[84] H. Jafari, R. Sedaghati, Analysis of an adaptive periodic low-frequency wave filter featuring magnetorheological elastomers, Polymers 15 (2023) 735, https:// 
doi.org/10.3390/polym15030735. 

[85] Z. Xu, J. Tong, F. Wu, Magnetorheological elastomer vibration isolation of tunable three-dimensional locally resonant acoustic metamaterial, Solid State 
Commun. 271 (2018) 51–55, https://doi.org/10.1016/j.ssc.2017.12.024. 

[86] D.R. Yarkony, Diabolical conical intersections, Rev. Mod. Phys. 68 (1996) 985–1013, https://doi.org/10.1103/revmodphys.68.985. 
[87] J. Li, S. Li, Z. Miao, Investigations on the complex band diagram of flexural wave through the fluid-loaded phononic plate, Appl. Sci. 12 (2022) 12386, https:// 

doi.org/10.3390/app122312386. 
[88] L. Tang, L. Cheng, Periodic plates with tunneled acoustic-black-holes for directional band gap generation, Mech. Syst. Signal Process. 133 (2019), 106257, 

https://doi.org/10.1016/j.ymssp.2019.106257. 
[89] A. Singh, A. Gupta, Directional bandgap analysis in phononic crystal with rectangular super cell structure, Int. J. Math. Eng. Manag. Sci. 7 (2022) 341–349, 

https://doi.org/10.33889/ijmems.2022.7.3.023. 

V.N. Gorshkov et al.                                                                                                                                                                                                   

https://doi.org/10.1007/s10338-020-00189-6
https://doi.org/10.1007/s10338-022-00336-1
https://doi.org/10.1016/j.tws.2022.110521
https://doi.org/10.1088/1361-665x/acd289
https://doi.org/10.1115/1.4044497
https://doi.org/10.3390/polym15030735
https://doi.org/10.3390/polym15030735
https://doi.org/10.1016/j.ssc.2017.12.024
https://doi.org/10.1103/revmodphys.68.985
https://doi.org/10.3390/app122312386
https://doi.org/10.3390/app122312386
https://doi.org/10.1016/j.ymssp.2019.106257
https://doi.org/10.33889/ijmems.2022.7.3.023

	Smart controllable wave dispersion in acoustic metamaterials using magnetorheological elastomers
	1 Introduction
	2 Physical conception of bandgap formation and effects of nonlocal interactions
	3 Parameters of 3D mass-spring model and construction of the dispersion equations
	4 Intermixing of the dispersion surfaces in the 3D-bandgap dynamics
	4.1 The dispersion-surface dynamics in single-resonator metamaterials
	4.2 Controllable set of band gaps in metamaterials with multi-particle cores
	4.3 Controlled directional transmissibility of acoustic waves in anisotropic metamaterials

	5 Conclusions
	CRedit authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	Supplementary materials
	References


