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Abstract. This paper reports the design, fabrication, and validation of a novel integrated 

interface circuit for ultra-low voltage step up converter in 0.18 μm CMOS technology. The 

circuit does not use off-chip components. Fully integrated centre-tap differential inductors are 

introduced in the proposed LC oscillator design to achieve 38% area reduction compared to the 

use of four separate inductors. The efficiency of the system is hence enhanced through the 

elimination of clock buffer circuits traditionally utilized to drive the step-up converter. The 

experimental results prove that the system can self-start, and step 0.25 V up to 1.7 V to supply 

a 46 μW load with 15.5% efficiency. The minimum validated input voltage is 0.15 V, which is 

boosted up to 1.2 V under open circuit conditions. 

1.  Introduction 

Due to recent developments in remote and embedded microsystems working with only micro- to milli-

Watts of power, energy harvesting micro-power generators have become key enablers in electronic 

industry. However, small micro-power generators used to harvest energy from the ambient 

environment are limited in capacity. DC-DC boost converters are necessary to attain a sufficiently 

high voltage from ultra-low voltage output of the energy harvesters, such as thermoelectric micro-

modules used in wearable computing. Charge-pumps have been commonly used in such miniaturized 

applications, for which on-chip integration of step-up circuits is a critical system design requirement. 

Typical requirements from on-chip charge-pumps include maximized efficiency to enable more 

features at the load, self-starting operation with minimum or no external component support, and ultra-

low input voltage range (~200 mV) – often much lower than the threshold voltage of the low cost 

MOSFET technologies [1] [2]. Most of the integrated charge-pumps utilized in memories, liquid 

crystal display drivers and control systems for motor drivers consist of non-inductive circuits [3]. 

Inefficiency of on-chip inductors is often perceived as an inhibitive design problem. Hence, 

conventional clock generator circuits, such as the ones presented in [4] and [5], employ ring oscillators 

with buffer circuits in the final stage to sustain edge rates and high drive currents required to switch 

the charge-pump capacitors. However, dynamic power consumed by large CMOS clock buffers can be 

a significant portion of the total power budget available from micro-power generators.   
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In this paper, validation data from an alternative clock generator design is presented. The circuit 

replaces digital oscillators with a low cost voltage-doubling LC tank implemented in standard 0.18 μm 

CMOS technology with on-chip inductors, eliminates large CMOS buffers, and thus provides high 

step-up ratio at higher efficiency and larger output power capacity compared to the alternatives. The 

resulting step-up converter, illustrated in Fig. 1, is capable of self-starting, and boosting an input 

voltage as low as 0.15 V. Section 2 presents the design and analysis of the clock generation circuit. 

The charge-pump design, also utilized in a number of previous designs, is briefly introduced in 

Section 3. Experimental results from the test chip under targeted load conditions are provided in 

Section 4. Finally, Section 5 highlights conclusions from this work. 

 

 
Figure 1. Block diagram of the proposed system.  

 

2.  Clock Generation Circuit 

The clock generator is required to operate with an ultra-low voltage supply in a self-starting, efficient 

mode to provide two out-of-phase clock signals. Use of digital CMOS buffers in conventional ring 

oscillators increases dynamic power dissipation, and reduces efficiency. LC oscillators, which are 

more suitable for out-of-phase differential clock generation, have traditionally been avoided due to 

potentially high cost associated with on-chip inductor design. In this work an LC tank [10] based 

oscillator topology was enhanced, and implemented in standard (low cost) 180 nm CMOS technology. 

The circuit model for the LC tank based oscillator is depicted in Fig. 2(a). Rp is the parasitic resistance 

of the LC tank, and –Ra is the negative resistance used to compensate Rp, in order to generate an 

undamped system. The cross-coupled NMOS pair; shown in Fig. 2(b) provides the negative resistance 

(-Ra) for the LC tank as describe in [10].  

  

Figure 2. (a) Schematic of LC oscillator, (b) Cross 

coupled NMOS pair, (c) LC tank based oscillator 

 Figure 3. Half circuit model of the oscillator. 
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The frequency of the proposed LC oscillator is given by Equation (1): 
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 ⁄
                  (1) 

where f0 is the frequency of the LC tank based oscillator, C (Ctank) is the parasitic capacitance of the 

NMOS M1 and M2, and L (Ltank) is the inductance of the inductor shown in Fig. 2(c). The circuit 

parameters can calculate using the transient analysis for the half circuit model as shown in Fig. 3. 

According to the Kirchhoff’s low, the current at node V1 can written as, 
  
  
 
  
   

       (     )           
(2) 

  
   

 
  
  
       (     )            

(3) 

By asserting V0/Vi = -1 (Barkhausen criteria) to sustain oscillation, and considering the real part, the 
final equation can derive as follows: 

            (4) 

where, 

  (      )(      )  (      )(      )               

   (                                                          ) 

       
 

The inductors L1 and L2 are implemented as two center tap differential inductors to minimize the 
cost and chip area. To obtain 1 GHz frequency for the ultra-low voltage range, the inductances are 
selected as L1=15 nH and L2 = 1.6 nH. The quality factor and self-resistance of the inductor L1 are 5.8, 
13.6 Ω, and L2 inductor is 3.5, 2.96 Ω respectively. The spiral Inductor Assistant software for Sonnet is 
used to design the layout of the inductor and 3D planner electromagnetic field solver software is used to 
model the inductor. The inductors are designed using UMC 0.18μm CMOS technology with 19 μm 
wide and 20KA Aluminum top Metal 6 and Metal 5 layers in order to generate relatively high quality 
factor values. The total area for the center-tap differential inductors is 0.61 mm

2
. R2 and C2 are the 

parasitic resistance and capacitance of L2. R1 and C3 are the parasitic resistance and capacitance of L1. 
C1 is the parasitic capacitance of the NMOS. For the clock frequency range of 1 GHz, R1 is around 2240 
Ω and R2 is 77 Ω. The calculated transconductance of the NMOS is approximately 5 mA/V. C1, C2 and 
C3 values are 100 fF, 0.4 pF, and 1.68 pF respectively. The oscillation frequency is derived as: 

   
 

  √  
  

 

  √                  
      

 

Figure 4. Charge-pump circuit with cross connected NMOS[9] 
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3.  Charge-Pump Circuit 

Dickson charge-pump [6] and its derivatives [7], [8] are commonly used for on-chip voltage step-up. 

An ultra-low voltage derivative was proposed by [9] as shown in Fig. 4. A five stage version of this 

design has been implemented in this work with suitable MOSFET parameters to minimize power 

dissipation and current backflow. Further details on the operation of this design can be found in [9].  

4.  Experimental Results 

The system has been designed in UMC 0.18μm CMOS technology, and SONNET 3D Planner 

Electromagnetic Field Solver Software is used to characterize the centre tap inductors for the LC tank 

based oscillator. The circuit with LDO regulation stage occupies 0.88 mm
2
 of layout area, although 

regulation mode has not been utilized in this work. The full chip layout of the step-up converter is 

shown in Fig. 5. 

The fabricated charge-pump design has been validated using 30 pF capacitive load and various load 

resistance values. The measured system efficiency curve is depicted in Fig. 6 against varying load 

resistance with 0.25 V input. The maximum efficiency is achieved for a load resistance of 60 kΩ. The 

proposed system can convert 0.25 V to 1.1 V with 30 kΩ load resistance, as depicted in Fig. 7. For 60 

kΩ load resistance, the system can achieve 1 V output level at 0.2 V input, as shown in Fig. 8. The 

experimental results demonstrate the system can self-start, and step 0.25 V up to 1.7 V to supply a 46 

μW load with 15.5% efficiency.  The minimum validated input voltage is 0.15 V, which is boosted up 

to 1.2 V under open circuit conditions. At ultra-low voltage range, the proposed step-up converter is 

smaller in size, and has higher integration with improved efficiency compared to the alternatives [11], 

[12], [13] respectively in 0.18 μm technology. 

 

 

 

Figure 5. Die layout of the fabricated system. 
Figure 6.  System Efficiency vs. load resistance 
for 0.25 V input voltage. 

5.  Conclusion 

An ultra-low voltage step-up integrated charge-pump circuit topology with voltage doubling LC tank 

for interfacing micro-power generators has been designed, fabricated, and validated using 0.18μm 

standard CMOS technology, with 0.88 mm
2
 area. The center tap differential inductors in the LC tank 

achieve 38% area saving compared to the usage of four distinct inductors. The system can self-start as 

low as 0.15 V, and generate an out-of-phase clock pair with amplitude 0.30 V at this input voltage. 

0.25 V can be stepped up to 1.7 V with input load resistance of 60 kΩ and maximum efficiency of 

15.5%. Therefore, a step-up ratio of 1:6.8 is achieved at highest efficiency.  At 160 kΩ load resistance 

and 0.25 V input, the effective step-up ratio increases to 1:9.  
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Figure 7.  System unregulated output voltage with 
varying load resistance for 0.25 V input voltage. 

Figure 8.  The variation of output voltage with 
input voltage for 60 kΩ load resistance. 
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