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2 ABSTRACT 

Over the past decade, there has been a notable increase of 13% in mental health 

issues. Approximately one in five children and adolescents globally suffer from a 

mental health problem, with suicide ranking as the second most common cause of 

death for individuals aged 15-29.  

Cognitive biases, such as attentional bias (AB), may contribute to the onset and 

persistence of mental health disorders. AB can be defined as the tendency to 

selectively attend to or focus on certain stimuli while ignoring others, where someone 

with a negative AB have a disproportional attention to negative stimuli. The dot-probe 

task is one of the most widely used tasks to measure AB. Understanding the 

underlying neural processes involved in AB and identifying reliable biomarkers may 

be important in developing successful interventions for mental health disorders.  

This master's thesis aimed to setup an experiment laboratory to investigate AB and 

its underlying neural mechanisms using a combined approach of hybrid functional 

near-infrared spectroscopy (fNIRS)/eye-tracking (ET) and hybrid 

electroencephalography (EEG)/ET systems in conjunction with the dot-probe task.  

A large-scale experiment was conducted, and a multi-subject analysis was done on 

the fNIRS data, which focused on detecting significant variations in oxyhemoglobin 

(HbO) and deoxyhemoglobin (HbR) concentrations between congruent and 

incongruent dot-probe trials in the prefrontal cortex (PFC) and visual cortex regions 

of the brain. 

The results of the multi-subject general linear model (GLM) analysis revealed two 

significant findings: (1) a higher HbR concentration in the right ventral medial PFC 

when the dot is located behind the fearful face compared to when it is behind the 

neutral face, and (2) a higher HbR concentration in the right dorsal PFC when the dot 

is positioned behind a face expressing emotion compared to when it is behind a 

neutral face. These findings highlight the potential of using fNIRS to study AB. 
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6 INTRODUCTION 

Over the past decade, there has been a notable increase of 13% in mental health 

issues. Approximately one in five children and adolescents globally suffer from a 

mental health problem, with suicide ranking as the second most common cause of 

death for individuals aged 15-29. Depression and anxiety have a combined economic 

impact of US$ 1 trillion annually (WHO, 2023). 

Cognitive biases, such as AB, may contribute to the onset and persistence of mental 

health disorders. AB can be defined as the tendency to selectively attend to or focus 

on certain stimuli while ignoring others, where someone with a negative AB have a 

disproportional attention to negative stimuli. For instance, individuals with depression 

often focus disproportionately on dysphoric stimuli, while those with anxiety are prone 

to being easily side-tracked by potential threats (Barry et al., 2015; Disner et al., 

2011).  

Understanding the underlying neural processes involved in AB and identifying 

reliable biomarkers may be important in developing successful interventions for 

mental health disorders. By incorporating cost-efficient and portable cognitive and 

neurofunctional measures of AB alongside conventional mental health evaluations, 

we can potentially enhance the accuracy of individualized treatment response 

predictions (Barry et al., 2015). 

Numerous computerized experimental tasks have been utilized by researchers to 

investigate AB. The tasks employed include spatial cueing-, visual search-, Stroop-, 

and dot-probe tasks (Chew, 2015). Among these, the dot-probe task is regarded as 

the "gold standard" by some experts, as it remains the most widely employed 

technique in AB research (Kappenman et al., 2014; Torrence & Troup, 2018). The 

task employs reaction time (RT) as an indicator of AB. Nevertheless, relying solely on 

behavioural measures, such as RT, presents certain limitations. Incorporating 

supplementary assessment methods could offer additional insights into AB (Carlson, 

2021; Carlson & Fang, 2020).  

To better understand AB, measurement of different brain activities has been used in 

combination with the dot-probe task, mainly electrical and perfusion. Electrical activity 

refers to the changes in electrical potentials generated by neurons, which can be 
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measured using EEG. Perfusion changes refer to the changes in blood flow and 

oxygenation levels in the brain, which can be measured using functional magnetic 

resonance imaging (fMRI) and fNIRS (Carlson & Fang, 2020; Price et al., 2014; 

Torrence, 2015). Electrical and perfusion changes are linked together through 

neurovascular coupling, where an increase in neuronal activity drives changes in 

blood flow and oxygenation to meet the demands of active brain regions, resulting in 

concentration changes in HbO and HbR (Khan, Naseer, et al., 2021). 

 

 

Figure 6-1 Illustration of neurovascular coupling, from (Khan, Naseer, et al., 

2021). 

 

Although fNIRS is relatively new and unexplored in AB research, it presents several 

advantages over fMRI, including measurements of both HbO and HbR, superior 

temporal resolution, substantially cheaper equipment, and the capacity to assess 

changes in cortical regions   in more natural settings compared to fMRI machines 

(Ehlis et al., 2014). fNIRS uses atleast two wavelength of light to measure 

concentration changes in HbO and HbR. The procedure involves sending near-

infrared light into the brain tissue through the skull, where Hb absorbs it in the blood. 

Depending on the oxygenation status of the Hb, different amounts of light are 

absorbed by it. fNIRS can determine which regions of the brain are active during a 

specific task or at rest by observing these changes (Quaresima & Ferrari, 2019). 
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ET is also a measurement technique used in combination with the dot-probe task. 

The ET uses light, often infrared or near-infrared, to shine on the eye. It then detects 

the reflections from the cornea and pupil with sensors or cameras, tracking their 

position and direction (Carter & Luke, 2020). It measures eye movements and 

fixation patterns, providing information about where the participant is attending 

(Duque & Vázquez, 2015).  

A hybrid EEG/fNIRS approach can be beneficial, as it allows for the simultaneous 

measurement of electrical and perfusion-based brain changes. However, this 

approach is in the early stages, where the hardware design needs improvements (Liu 

et al., 2021). It has proven challenging to record neural activity from the exact 

location (Khan, Naseer, et al., 2021). A viable alternative might be integrating hybrid 

fNIRS/ET and hybrid EEG/ET systems, as ET does not interfere with the signal 

quality or setup of the other modalities. This combined approach could enhance our 

comprehension of AB and their associated neural mechanisms by capitalizing on the 

strengths of each technique without incurring any drawbacks from individual 

modalities. Nevertheless, a recent systematic review on attention bias modification 

has endorsed the adoption of a multimodal approach for evaluating AB (Carlson, 

2021). 

A cognitive neuroscience experiment requires extensive preparation and multiple 

steps before a research question can be answered. The process begins with 

establishing a test laboratory, where all the necessary hardware and software must 

be installed and ready for use. This state-of-the-art environment is essential for 

producing accurate results, and ensuring the experiment runs in controlled 

surroundings. 

Following the laboratory setup, an experiment paradigm must be designed to 

effectively display the stimulus to the participant. This is a crucial aspect of the 

process, as it determines the type of responses elicited from the subjects. 

Subsequently, a well-structured lab protocol must be developed, which provides an 

accessible overview of the experiment's procedure, enabling seamless data 

collection. 

Once these preparatory steps are completed, researchers can begin collecting 

participant data. This information then undergoes a pre-processing stage, cleaned 
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and organized to facilitate accurate analysis. The data is subsequently analysed, 

allowing researchers to identify patterns, correlations, and other significant findings. 

Finally, based on the analysis results, a conclusion can be drawn that contributes to 

our understanding of cognitive neuroscience and potentially informs future research 

in the field. 

 

Figure 6-2 Illustration of the process to get results from cognitive 

neuroscience experiment. 

The objectives of this master's thesis are to set up an environment to investigate and 

enhance our understanding of AB and their underlying neural mechanisms using a 

combined approach of hybrid fNIRS/ET and hybrid EEG/ET systems in conjunction 

with the dot-probe task. To accomplish this, the study aims to establish a state-of-

the-art test laboratory, design an effective dot-probe experiment paradigm and create 

an experiment procedure pipeline that facilitates seamless data collection, pre-

processing. By conducting a large-scale experiment with a considerable amount of 

data collected, this research aims to contribute to cognitive neuroscience and 

improve the clinical potential of AB measures. 

To summarize, the key objectives of this master's thesis are as follows: 

Results

Analysis

Pre-process

Collect data

Create lab protocol

Design experiment paradigm

Setup experiment lab
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1. Establish a test laboratory with hybrid fNIRS/ET and EEG/ET systems. 

2. Design a dot-probe experiment paradigm and create a comprehensive 

experiment procedure pipeline. 

3. Conduct a large-scale experiment using the combined approach of hybrid 

fNIRS/ET and hybrid EEG/ET systems with the dot-probe task. 

4. Develop an easy-to-use pipeline for fNIRS data pre-processing. 

5. Perform a multi-subject analysis on the collected fNIRS data, where the 

research question is:  

Is it possible to detect any significant variations in HbO or HbR between 

congruent and incongruent dot-probe trials in the PFC and visual cortex 

regions of the brain? 

 

ADvanced hEalth intelligence and brain-insPired Technologies (ADEPT), is a 

research group, situated at Oslomet, focused on developing and applying brain-

inspired technologies to improve health outcomes. The research focus of ADEPT 

falls under two main categories: Brain Health and Brain-Inspired Technologies. 

A robust and easy-to-use pipeline for data collection and pre-processing will 

contribute to ADEPT's research ambitions. By streamlining the data acquisition 

process and ensuring high-quality pre-processed data, researchers can focus on 

developing advanced brain-inspired technologies and applications more efficiently. 

This, in turn, will accelerate the rate at which these new technologies are integrated 

into the healthcare industry, ultimately leading to improved health outcomes for 

patients. 
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7 STATE OF THE ART 

7.1 ATTENTIONAL BIAS (AB) 

The cognitive theory suggests that anxiety, depression, and other mental illnesses 

are linked to AB. This means that people with these mental health issues tend to 

focus more on certain negative things while ignoring others, which can be influenced 

by a combination of genetic and environmental factors. The cognitive theory of 

anxiety and depression posits that AB are significant factors in the development and 

maintenance of these mental health conditions (Disner et al., 2011).  

Attentional selection falls into two types: top-down and bottom-up. Top-down 

attentional selection is voluntary and goal-oriented, while bottom-up attentional 

selection is automatic and driven by attentional capture (Weierich et al., 2008). 

People with anxiety often show a stronger inclination towards bottom-up processing, 

especially when confronted with potential threats (Eysenck et al., 2007). These 

biases can appear as difficulties in inhibiting distractions caused by emotional stimuli, 

increased shifting of attention towards or away from threatening stimuli, or problems 

in updating attention based on new data (Cisler & Koster, 2010). 

Anxiety research often highlights the prioritization of threat-related stimuli, whereas 

depression research emphasizes the prioritization of negative information and 

diminished responsiveness to positive stimuli (T. Armstrong & B. O. Olatunji, 2012; 

Peckham et al., 2010). However, the role of AB in depression remains inconsistent, 

with some studies examining the potential interaction effects of co-existing anxiety in 

depression-related AB (Sass et al., 2014). 

Transdiagnostic is an approach to mental health research that suggests common 

cognitive, behavioural, and psychophysiological processes underlie symptoms 

across different diagnoses (Garland & Howard, 2014; Mansell et al., 2008). AB 

exemplify a cognitive transdiagnostic process, where a systematic review found that 

research on AB has been conducted in relation to anxiety, depression, eating 

disorders, obsessive-compulsive disorder, and addictive disorders (Rogers et al., 

2020). This perspective emphasizes studying transdiagnostic processes, such as AB, 

to inform future transdiagnostic treatments (Craske, 2012). 
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7.2 PREVIOUS RESEARCH ON METHODS TO MEASURE AB 

Numerous methodologies have been employed by researchers to examine AB. The 

techniques implemented encompass spatial cueing, visual searching, Stroop, and 

dot-probe task. The latter two, namely the Stroop and dot-probe tasks, have gained 

the most widespread recognition and usage (Chew, 2015). 

The Stroop task assesses AB by evaluating the RT at which participants identify the 

colours of displayed words. In an adapted version of this task, researchers employ 

disorder-specific words to investigate AB in psychological disorders such as anxiety 

and depression. Findings indicate that individuals with these conditions demonstrate 

slower colour-naming responses for disorder-relevant words in comparison to neutral 

words (Gotlib & McCann, 1984; Mattia et al., 1993). This delay is thought to reflect an 

AB toward disorder-relevant words (Williams et al., 1996).  

However, there are some limitations to the Stroop task. One limitation is that it does 

not provide information about the specific attentional processes involved or 

differentiate between different attentional processes (De Ruiter & Brosschot, 1994; 

Dobson & Dozois, 2004). Another limitation is the ecological validity of using word 

stimuli, which may not accurately represent real-life situations (Thomas Armstrong & 

Bunmi O. Olatunji, 2012). Additionally, the Stroop task provides only a single 

snapshot of the attentional process, which may not fully capture the complexity of the 

AB  (Thomas Armstrong & Bunmi O. Olatunji, 2012). 

The dot-probe task involves presenting two stimuli (pictures, words, etc.) 

simultaneously for a moment, followed by the appearance of a small dot over one of 

the stimuli. The participant is instructed to respond as quickly as possible by pushing 

a button when the dot appears. The difference in RT between dots appearing after 

emotional- vs. neutral- stimuli provides an index of AB, with shorter RTs indicating 

bias toward the cue (Cisler & Koster, 2010). 

The primary benefit of the dot probe task over the Stroop task lies in its flexibility. The 

Stroop task relies on colour-naming responses, which restricts its stimuli to words 

only (Chew, 2015). This constraint may not adequately capture the spectrum of 

anxiety-inducing stimuli for those experiencing anxiety (Bradley et al., 2000). In 

contrast, the dot probe task offers a more targeted assessment of AB, as it enables 
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the distinction between attentional vigilance and avoidance (Jiang & Vartanian, 

2018). 

However, traditional methods for assessing AB using RT indices have demonstrated 

weak internal consistency and limited test-retest dependability, as reported in various 

studies (Brown et al., 2014; Schmukle, 2005; Staugaard, 2009). Researchers have 

also investigated other RT-based metrics, such as those based on variability, but 

these alternatives have proven to be inconsistent as well (Carlson & Fang, 2020; 

Naim et al., 2015; Price et al., 2015). 

Given the inadequacies of existing methods, other measuring methods of AB has 

been tested. Researchers have explored other techniques, including subjective 

evaluations of stimuli, eye-movement biases, event-related potentials (ERP), and 

neuroimaging approaches such as fMRI to study neural activation patterns and 

connectivity (Thomas Armstrong & Bunmi O. Olatunji, 2012; Britton et al., 2013; 

Carlson & Fang, 2020; Price et al., 2014; Torrence & Troup, 2018). Technologies like 

ET, EEG, and fNIRS have been proposed as potential supplements to improve the 

dot-probe task measurements of AB (Carlson, 2021). 

ET offer a direct way to observe participants' eye movement patterns, allowing for a 

relatively immediate and ongoing evaluation of explicit visual focus (Thomas 

Armstrong & Bunmi O. Olatunji, 2012). Common indices for ET include the duration 

of gaze (dwell time) and the quantity or latency of the initial fixation. In the context of 

anxiety, the vigilance hypothesis posits that attention is initially directed towards 

threatening stimuli, while the maintenance hypothesis proposes that cognitive 

resources remain focused on such stimuli (Thomas Armstrong & Bunmi O. Olatunji, 

2012; Fox et al., 2001). However, these hypotheses may not hold as much 

significance for individuals with depression. 

For depressive individuals, stimulus relevance has not been shown to cause an 

immediate allocation of attention. Instead, they often exhibit diminished orientation 

and briefer gaze maintenance on positively charged stimuli (e.g., happy faces), while 

displaying increased gaze maintenance on negatively charged stimuli (e.g., sad 

faces) (Thomas Armstrong & Bunmi O. Olatunji, 2012; Duque & Vázquez, 2015). 

One potential drawback of ET methods is their dependence on overt behavior, which 

may not accurately reflect covert attention processes (Thomas Armstrong & Bunmi 
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O. Olatunji, 2012). Nevertheless, studies examining ET reliability as an AB 

measurement tool have yielded encouraging outcomes, with some research 

suggesting it possesses greater validity and dependability compared to reaction time 

(Price et al., 2015; Waechter et al., 2014). 

EEG is a non-invasive method of measuring the neural activity of the brain using 

scalp electrodes (Luck, 2014). The electrical activity captured by EEG can be divided 

into event-related potentials (ERPs), which are time-locked and averaged around an 

event or stimulus. ERPs offer benefits such as high temporal resolution and the 

ability to reflect the degree of processing through amplitude difference 

measurements. Neural chronometry of AB implies that distinct ERP components 

correspond to separate stages of information processing. Early stages of sensory 

processing are associated with the P1, N1, N170 (N1 component linked to 

processing of faces), and N2pc (N2 component linked to selective attention) 

components, typically seen in posterior or sensory regions. In contrast, later stages 

of strategic processing, such as engagement and disengagement processes, are 

linked to P2, N2, and P3 components, usually detected in anterior or frontal areas 

(Carlson, 2021; Gupta et al., 2019; Torrence & Troup, 2018). 
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Figure 7-1 Illustration of the different ERP components, from (Black, 2022). 

 

Recent literature reviews indicate a growing interest in using ERPs as an AB 

outcome measure, with some components showing potential for valid and reliable 

measurements (Carlson, 2021; Torrence & Troup, 2018). For instance, the N2pc 

component has been recognized as a more dependable outcome measure than 

reaction time (Kappenman et al., 2015; Reutter et al., 2017). However, the relevance 

of certain ERP components as indices of AB remains questionable. One study found 

no connection between the N2pc component and trait anxiety (Kappenman et al., 

2014) . The P1 component has also been investigated, yielding inconsistent results 

(Carlson, 2021). Additional research is needed to corroborate and generalize these 

findings.  

fMRI has been used to investigate neural activation patterns connected to AB in 

populations experiencing anxiety, depression and those who are healthy (Britton et 

al., 2013; Hilland et al., 2020; Monk et al., 2006; Price et al., 2014). These studies 

have linked AB to activation in the limbic regions, anterior cingulate cortex (ACC), 

and prefrontal cortex (PFC). One study using an fMRI slow event dot-probe paradigm 

found reduced activation in the bilateral parahippocampal/hippocampal limbic region 
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for non-anxious participants during incongruent trials, while anxious participants 

showed heightened activation during the same trials. A decrease in rdACC activity 

was observed for both groups during incongruent trials, suggesting that anxious 

individuals may have more difficulty regulating limbic responses when attention is 

shifted away from threats (Price et al., 2014). 

Research involving healthy participants performing the dot-probe task has revealed 

consistent activation in the ventral PFC (vPFC) and amygdala across two separate 

trials. The vPFC was activated when participants were exposed to 500ms of face-pair 

stimuli, while the amygdala was activated upon exposure to 17ms of face-pair stimuli. 

The study was unable to differentiate between incongruent and congruent trials 

(Britton et al., 2013). It has been suggested that the connectivity strength between 

the amygdala, ACC, and PFC is positively associated with the level of AB (Carlson et 

al., 2014; Carlson et al., 2013).  

Additional studies have shown relationships between the amygdala and visual cortex, 

with correlated activity when exposed to fearful faces (Morris et al., 1996; Pessoa et 

al., 2002). The visual cortex has also exhibited increased activity when exposed to 

emotional faces during the dot-probe task (Carlson et al., 2011; Pourtois et al., 2006)  

In summary, investigations using EEG and fMRI techniques have so far connected 

the brain's emotional attention system to the amygdala, PFC and visual cortex, with 

the amygdala being the primary center (Torrence & Troup, 2018). 

In addition, a recent systematic review on AB recommended a multimodal approach 

to measuring AB to improve the reliability and validity of assessments (Carlson, 

2021). By combining multiple measures, it may be possible to gain a more 

comprehensive understanding of AB and its underlying neural processes.  

 

 

 

 

 

 



   

 

21 

 

7.3 OPTICAL APPROACH USING NEAR-INFRARED LIGHT 

Near-infrared (NIR) light, with wavelengths ranging from around 650 to 950 nm, can 

penetrate several centimeters into the head due to the low absorption by skin, skull, 

and brain tissue within this wavelength range (Scholkmann, 2012). Moreover, this 

particular spectrum is where the absorption characteristics of HbO and HbR exhibit 

the greatest distinction (Torricelli et al., 2014). 

The journey of NIR light within tissue is complex. As photons traverse through the 

tissue, they interact with cellular and subcellular structures, causing the photons to 

scatter in random directions. This scattering phenomenon leads to multiple 

interactions, with photons scattering up to 10 times per centimeter of tissue 

(Quaresima & Ferrari, 2019). Consequently, the light that reaches the scalp, skull, 

and brain surface becomes scattered and weakened (Quaresima & Ferrari, 2019).  

fNIRS is capable of measuring the scattered light. This is achieved by positioning a 

NIR laser or diode and a photodiode on the scalp, typically at a distance of around 2-

4 cm apart. Upon emitting NIR light into the tissue, a portion of the light is reflected 

back due to scattering (Quaresima & Ferrari, 2019). The photodiode subsequently 

measures this reflected light. The path of the light between the laser/diode and 

photodiode forms a distinctive "banana-shaped" pattern, as illustrated in Figure 7-2. 
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Figure 7-2 Example of emitter-detector pairs showing the “banana-shaped” 

paths of light, image taken from (Naseer & Hong, 2015) 

 

The maximum depth (zmax) of the investigated tissue is determined by the distance 

(d) between the light source and the detector, as described by the general guideline 

equation: zmax = d/2 (Scholkmann & Wolf, 2012). A longer depth penetration comes 

at the cost of higher signal-to-noise-ratio (SNR), therefore a distance of 3 cm is often 

used as it reasonable compromise between SNR and depth-sensitivity (Althobaiti & 

Al-Naib, 2020). It is then possible to assess intensity fluctuations in the emerging light 

from a depth of around 1.5 cm beneath the skull while also maintaining a good SNR 

(Althobaiti & Al-Naib, 2020; Quaresima & Ferrari, 2019). This enables the 

assessment of light reflected from the cerebral cortex and the estimation of the 

amount of light absorbed by HbO and HbR in that specific brain region.  

As a result, the intensity of the reflected light exhibits a strong correlation with the 

light absorption of HbO and HbR. This relationship enables fNIRS to measure 

alterations in HbO and HbR concentrations (Althobaiti & Al-Naib, 2020). Typically, 

fNIRS employs two wavelengths in the range 690-860nm, where one is more 
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sensitive to HbO changes, and another that is sensitive to HbR [refer to figure 7-3] 

(Khan, Noori, et al., 2021). This dual-wavelength approach allows for the 

differentiation of absorption between the two chromophores. 

 

Figure 7-3 Ilustration of the absorption spectra of HbO (red) and HbR (blue) 

with respect to light wavelength. It is evident that HbR exhibits a significantly 

higher absorption rate compared to HbO at around 700nm, whereas the 

opposite is true at around 850nm. The image source is (Liu et al., 2015). 

 

There are three main fNIRS techniques, each based on a specific type of 

illumination: continuous wave (CW), frequency-domain (FD), and time-domain (TD), 

with each having its own advantages and disadvantages: 

1. Continuous Wave (CW) fNIRS: This technique uses constant tissue 

illumination and measures the attenuation of light as it passes through the head. CW-

based systems are low cost and easily transportable, making them an accessible 
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option for researchers. Changes in HbO and HbR concentrations are measured 

using a modification of the Lambert-Beer's law. While this method is affordable and 

portable, it only provides relative changes in absorption, and cannot differentiate 

between absorbed and scattered light (Quaresima & Ferrari, 2019; Scholkmann & 

Wolf, 2012).  

2. Frequency-Domain (FD) fNIRS: In this technique, the head is illuminated with 

intensity-modulated light, and both the attenuation and phase delay of the emerging 

light are measured. FD fNIRS provides more accurate and detailed measurements 

than the CW modality, as it can distinguish between absorbed and scattered light. 

However, this method is more complex and expensive compared to CW fNIRS, 

which may limit its accessibility (Quaresima & Ferrari, 2019; Scholkmann & Wolf, 

2012). 

3. Time-Domain (TD) fNIRS: This method involves illuminating the head with 

short pulses of light and detecting the shape of the pulse after it propagates through 

tissues. TD fNIRS offers the most precise measurements of HbO and HbR 

concentrations, enabling a high level of accuracy in brain activity measurements. 

Despite its precision, TD fNIRS is also the most complex and expensive of the three 

techniques, and has a lower sampling rate compared to the other two methods 

(Quaresima & Ferrari, 2019; Scholkmann & Wolf, 2012). 

Out of these three, the CW technique is the most commercially available and cost-

effective, and as a result, the one that has used the most in research (Quaresima & 

Ferrari, 2019). 

 

 

Figure 7-4 Illustration the three types fNIRS techniques, picture taken from 

(Scholkmann, 2012). 
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In these cognitive studies, the results from neurovascular coupling are often the 

signal of interest (Phillips et al., 2016). When nerve cells become active during tasks 

like thinking or sensing, they release chemical messengers called neurotransmitters 

(e.g., glutamate). As the neurons become more active, they need more energy in the 

form of oxygen and nutrients. This increased demand leads to higher oxygen 

consumption in the brain (Krishnamoorthy-Natarajan & Koide, 2016). 

To meet this energy demand, our brain increases local cerebral blood flow (CBF) to 

deliver more oxygen. Neurotransmitters activate specific receptors on star-shaped 

cells called astrocytes. This causes a chain reaction within the astrocytes, increasing 

calcium levels in their branch-like extensions (endfeet) that wrap around small blood 

vessels in the brain (Krishnamoorthy-Natarajan & Koide, 2016). 

The increase in calcium levels in the astrocyte endfeet causes the nearby small 

blood vessels to widen, allowing more blood to flow through the brain. This increase 

in blood flow delivers more oxygen and nutrients to the active nerve cells 

(Krishnamoorthy-Natarajan & Koide, 2016). During this process, the levels of oxygen-

carrying molecules in the blood change. There is an increase in oxygenated HbO and 

a smaller decrease in HbR. As a result, the total amount of hemoglobin (HbT) in the 

blood increases (Lloyd-Fox et al., 2010). 

Since neuronal activity is correlated with these hemodynamic changes, fNIRS can be 

used to measure brain activity by detecting these changes in blood oxygenation 

(Reddy et al., 2021).  

While research on AB using fNIRS is limited, one investigation, using a CW-fNIRS 

equipment with 8 sources (690 nm and 830 nm wavelengts) and 9 detectors 

mounted at PFC region, observed alterations in HbO concentrations in both the 

medial PFC and bilateral PFC during congruent and incongruent trials in a dot-probe 

task involving fearful faces (Torrence, 2015). This finding implies that fNIRS might be 

a valuable tool for examining AB. 
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8 METHODS 

To ensure a successful experimental process, we began by setting up the test lab, 

which involves installing all the necessary hardware and software components. Once 

the lab infrastructure was in place, we proceeded to design the experiment, carefully 

outlining the objectives, variables, and controls. To facilitate smooth execution, a 

step-by-step guide detailing the experimental procedures will be prepared. 

Before conducting the actual experiment, we did a test-run to verify the functionality 

of the hardware and software, as well as the intuitiveness of the lab procedures. This 

test-run helped identify any potential issues, enabling us to make improvements 

based on the findings. By refining the lab setup and procedures, we aimed to create 

a robust and user-friendly pipeline that will promote efficiency, reliability, and 

repeatability in the experimental process. 

We couldn't set up a hybrid EEG/ET and hybrid fNIRS/ET in the beginning as it was 

not possible to move the ET to the same lab as the EEG and fNIRS equipment was. 

Consequently, for the test-run, we simply conducted each imaging method 

separately. Later, we acquired an ET for the lab, and were then able to create the 

hybrid setups for the experiment.  

8.1 SETTING UP THE LAB 

Our research team has been granted permission to establish a laboratory in the 

Medtech.testlab, located in building P35 at OsloMet University. In anticipation of 

relocating the ET to the Medtech.testlab for the experiment, we purposefully 

designed the lab to cater to this requirement. Within this lab, we have set up both the 

EEG and fNIRS systems. Additionally, we have installed a dedicated computer with 

all necessary software installed. This computer is connected via an HDMI cable and 

a USB cable to a 53x30cm 1080p monitor and keyboard on the left side of the lab, 

where participants will be seated during the dot-probe task. The ET was set up at the 

interaction Lab in building P35 at OsloMet University. 

The fNIRS equipment we installed is the NIRScout system, manufactured by NIRx 

(Berlin, Germany). This equipment utilizes CW technology to measure Hb levels. 
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This system applies two wavelengths of 760nm and 850nm with optical fibres. Our 

experimental setup employs a 42-channel, 16x16 prefrontal and occipital cortex 

montage, adhering to the standard 10/20 arrangement [See figure 8-1]. The sampling 

rate for our study is set at initially set to 3.91 Hz after doing the test-run (it was set to 

7.81 Hz before the test-run). The probes on the NIRScout are wired, we have 

therefore attached a cable holder to the table to alleviate the weight of the wires on 

the participant's head, ensuring their comfort.  

 

Figure 8-1 A visualization of our montage configuration, with LEDs as red and 

photodiodes as green, as depicted in the NIRStar 15-3 software interface. 

 

 

The NIRStar 15-3 software, developed by NIRx, is included with the NIRScout 

system. This software not only calibrates the equipment but also gathers the fNIRS 

data. NIRStar offers a user-friendly interface that enables customization of the 

sampling rate, cap montage setup, participant age input, and trigger connection 

establishment. It also features real-time fNIRS signal monitoring and stores data in its 
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raw format. As a specialized software for fNIRS systems, NIRStar serves as a 

comprehensive solution for our data collection requirements. 

The EEG equipment we setup is the g.Nautilus 32 channel system by g.tec medical 

engineering, which features 32 active electrodes and a medium-sized cap (54-58cm) 

with a sampling rate of 500Hz. The cap montage setup is based on the widely used 

10/20 international standard for EEG research and clinical settings. The highest 

accepted impedance is 25 ohm, enabling us to accurately capture the electrical 

activity in the brain with minimal noise. 

The system is delivered with the g.Recorder Version 1.20.03 software, which we 

are using for the recording of EEG data. The software is user friendly and highly 

customizable, enabling us to configure the system to our specific needs. It includes a 

range of user-defined tools to ensure the precise and accurate acquisition and 

recording of data, such as support for different sampling rates, filtering, and montage 

configurations. 

The ET system we setup is the EyeLink Portable Duo by SR Research, which is 

designed to capture precise eye movement data. This device features a high-speed 

infrared camera and a Host-PC, which is a laptop equipped with a dedicated 

operating system tailored for the ET. The operating system is optimized to achieve 

exceptional temporal precision. To ensure the accuracy of our data collection, we 

utilize a sampling rate of 1000 Hz and the provided head mount to minimize 

participant movement during the experiment. 

To ensure consistent environmental conditions for all participants, we paid close 

attention to factors such as sound and lighting. For instance, one study demonstrated 

that light conditions can significantly impact task performance, response time, and 

accuracy (Yuan et al., 2021). Moreover, changes in lighting can affect the ET and 

fNIRS signals. Consequently, we have installed lightproof curtains to maintain a 

consistent level of light for each participant. We also included a light measurer, to 

further make sure the lighting conditions was the same for each participant. 

We also attempted to minimize noise from external sounds. We ensured that the air 

conditioning unit was switched off during the experiment and placed posters outside 

the test lab to remind passers-by to remain quiet while an experiment was in 

progress. Although we could not fully eliminate all external noise, the sound of the 
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tram will be barely audible and infrequent. Also, a wall has been set up between the 

researcher and participant areas to prevent any distraction during the testing 

process.  

Due to the EEG's sensitivity to electronic devices (Usakli, 2010), we have positioned 

the computer and other devices at least 1.5 meters away from the participant's 

testing area (excluding the stimulus screen and keyboard). 

 

8.2 EXPERIMENT PARADIGM DESIGN 

When conducting a study concerning cognitive neuroscience, there is often a need 

for a stimulus program. The stimulus program has two roles: Presenting stimuli to the 

participant and communicating what and when stimuli is presented to the recording-

program (more on this under the time and signal synchronization section). 

Psychopy is a free open-source stimulus program that uses the python coding 

language. There are two ways to create experiment paradigm with Psychopy: using 

pure coding or with the builder, which is a graphical user interface (GUI). For this 

experiment, Psychopy-Builder was used. The reason is that it is easy to learn and 

simultaneously able to create complex and precise paradigms. Psychopy-Builder is 

also able to generate a complete pyton code of the experiment, which can be edited 

manually. 

The way an experiment paradigm is created is by first setting up routines [see figure 

8-2]. It is then possible to add different components to each routine. It could be 

stimulus components (e.g., image, sound, text) or response components (e.g., 

keyboard pressed, mouse clicked). There is also a code component where custom 

python codes can be written. All these components are highly customizable (e.g., 

timing, what to present). A loop function can be added if it is required for some of the 

routines to run multiple times. 
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Figure 8-2 Illustration of Routines and Loops in a Dot-Probe Task. Each 

routine is depicted as a rectangular box, with the program sequentially 

executing them from left to right. A single pass through all four boxes 

constitutes a trial. The loop is represented by the 'thisTrial' box, allowing the 

user to specify the desired number of trial repetitions. Image sourced from a 

dot-probe task created using PsychoPy. 

 

The experiment paradigm designed is a dot-probe task. There are many variants of 

the dot-probe-task that uses different stimulus present time (between 17ms and up to 

2000ms) and different kind of stimuli that is presented (words, faces, colours). The 

paradigm used in this experiment is almost a replica of the dot-probe-task used in 

this study (Andrzejewski & Carlson, 2020), which uses face pairs (fearful vs. neutral) 

with different facial emotions as stimuli and a 200ms stimulus present time. The 

following changes were implemented: elimination of sounds and addition of pairs of 

happy vs. neutral facial expressions. 

The dot-probe-task for EEG and eye tracking are identical. The only thing that is 

different for fNIRS is the use of a slow-event-design, which means a longer rest-time 

in between each trail. This is due to the hemodynamic response having lower 

temporal characteristics (Meryem A. Yücel, 2021). We employed the same rest-time 

of 7 seconds for our fNIRS paradigm, as utilized in the fNIRS dot-probe experiment 

conducted by (Torrence, 2015). 

Here is an explanation of the paradigm: 

The participant is first presented with a text that tells them to press a key when they 

are ready, this will start a 30s timer which appears on the screen. This is done to 

reduce stress in the participant before the task starts.  

After 30s has passed, the dot-probe task will begin. First a fixation cross will appear 

for 1000ms. This is done to make the participant focus on the middle of the screen. 
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After that, two emotional faces will appear on the screen (one on each side) for 

200ms. There are three types of face pairs: neutral/neutral, happy/neutral, 

fearful/neutral (figure 8-3 shows a fearful/neutral pair). 

Then, a dot will appear on one side of the screen. There are two types of tasks: 

Congruent, which means that the dot is behind the most negative emotional face 

(e.g.: behind the neutral face if the face pair is happy/neutral). Or Incongruent, which 

means that the dot is behind the most positive emotional face [See figure 8-3].  

The participant has been instructed beforehand to push ‘z’ if dot appears on left side 

and ‘m’ if on right side. When one of the keys is pressed, the program goes into 

rest/pause and the screen will turn black for 1000ms (7000ms for fNIRS).  

Then, the task starts over again with a new set of face pairs. This is repeated 160 

times (80 times for fNIRS due to longer rest).  

When 160 (80) trails have passed, the text “Experiment is over, thank you” will show 

up on the screen, before closing the program. The total experiment will last 

approximately 10 minutes. 

 

Figure 8-3 Overview of the dot-probe task, picture taken from (Andrzejewski & 

Carlson, 2020) with some edits to fit our setup. 

 

To accommodate the differences between each imaging modality (EEG, fNIRS, ET), 

we have created an individual dot-probe-task for each of them. This was necessary 

because each modality employs a different recording program, requiring adjustments 
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to establish a connection between Psychopy (stimulus program) and the respective 

recorder program to send triggers. 

The task was designed to be as similar as possible across all image-modalities, to 

enable comparisons and identify potential correlations between fNIRS, EEG, and ET 

results. By using the same stimulus program (Psychopy) for all modalities, we 

ensured consistency in delays and "errors", making it easier to use a hybrid approach 

in the future. 

An Excel document was created to contain the various conditions for each trial. 

These conditions specify the type of images to be presented, the location of the dot, 

and other relevant variables. There are a total of 80 different conditions, with each 

row representing one condition [refer to Figure 8-4]. Each time the dot-probe trial is 

repeated, a row is randomly selected from the Excel document, and its values are 

assigned to the variables in the program (e.g., Dot_Location = left). The selection 

process ensures that all conditions are used once before any are repeated. The EEG 

and ET modalities undergo all 80 conditions twice, resulting in a total of 160 trials, 

while fNIRS only undergoes them once, resulting in a total of 80 trials. This is 

because fNIRS requires a longer rest time between each trial and repeating all 80 

conditions twice would make the experiment excessively long. 

Randomization further strengthens the experiment by minimizing the impact of 

confounding factors, such as the learning effect, which could otherwise lead to 

misleading conclusions. By randomly selecting a condition from the Excel document 

for each trial, the experiment prevents systematic improvement in performance due 

to increased familiarity or practice with the task, or so called ‘practice-effect’ (Duff et 

al., 2007).  
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Figure 8-4 An Excel file containing PsychoPy variables, as sourced from an 

Excel spreadsheet. 

 

The conditions are divided like this: 

• Half of the trials are split male / female. 

• Half of the trials are split Incongruent / Congruent. 

• 32 is Happy/Neutral, 32 is Fearful/Neutral and 16 is Neutral/Neutral. 

• Image pairs shown is always the same person on each side. 

• There is a different persons face on each trial (In total 80 different people is 

included). 

 

The experimental design incorporates several elements to enhance its validity and 

control for potential confounds. The same person's face is displayed in each image 

pair to ensure that no individual automatically draws more attention due to more 

pronounced facial features. This approach helps maintain a consistent level of 

attention across all trials. The experiment also ensures an equal representation of 

male and female faces, as studies have indicated the importance of gender balance. 

For instance, one study found that adult male participants tend to allocate more 

attention to female faces compared to male faces (Okazaki et al., 2010).  
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Incorporating 80 unique individuals faces in the experiment mitigates the 'learning' 

effect that may arise from repeated exposure to the same stimulus. This approach is 

supported by findings from a previous study, which demonstrated that responses to 

the dot probe were faster when it emerged in a location signalled by a predictive 

stimulus, as opposed to a location indicated by a nonpredictive stimulus (Mogg et al., 

2007). 

Incorporating neutral-neutral face pair trials, the study draws inspiration from an 

adapted dot-probe task (Pfabigan et al., 2014). These baseline trials serve as a 

reference point, to better comprehend the influence of emotional stimuli on the 

results. The decision to use happy stimuli is based on studies that highlight their 

connection to depression (Thomas Armstrong & Bunmi O. Olatunji, 2012). By 

incorporating happy stimuli, the experiment can explore AB associated with mood 

disorders. Fearful faces are chosen over angry ones, as they have been 

demonstrated to produce similar dot-probe RT and ET biases (Mogg et al., 2007) and 

hold broader implications for fear perception. Fearful faces suggest a more general, 

undefined threat, while angry faces may be perceived as a threat specific to social 

situations (Price et al., 2014). This selection ensures a more comprehensive 

examination of AB related to various forms of threat. 

Upon completion of the experiment, a new Excel document is generated, which 

includes each trial condition along with reaction time and whether the participant 

pressed the correct button [see figure 8-5]. This is done to incorporate reaction time 

into the analysis and provide a comprehensive overview of the conditions presented 

in each specific trial. Consequently, the researcher can easily examine which images 

were displayed on the right or left, the location of the dot, gender of face stimulus and 

whether the participant responded correctly. This gives the opportunity to later do a 

more in-depth evaluation of the experiment's results. 
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Figure 8-5 An Excel list produced by PsychoPy, as extracted from an Excel 

spreadsheet. 

 

8.2.1 Time and signal synchronization 

During the analysis of data, it is crucial to determine the type of stimulus presented to 

the participants at any given time. This is typically achieved by sending a trigger 

signal, which can either be manually generated within the recording program or 

automatically generated by a stimulus program. In this experiment, triggers were 

exclusively sent from the stimulus program to ensure maximum precision. Given the 

high temporal resolution of both EEG and ET technologies, which can detect 

changes occurring over a few milliseconds, minimizing the delay between stimulus 

presentation and trigger signal is essential. Although fNIRS has a lower sampling 

rate, it's still important to keep the trigger delay as low as possible, even though it 

may not be as critical as in other methods. The stippled line in Figure 8-6 provides an 

example of how a trigger signal appears during signal acquisition. 

It is worth noting that different trigger signals can be used, with both the EEG and 

fNIRS systems allowing for up to eight different triggers, while the ET system has the 

capability to receive an infinite number of triggers. 
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Figure 8-6 Exemplifies a trigger event (stippled line) in NirStar 15-3, as 

presented in the NIRx Trigger Manual (NIRx, 2019b). 

 

Each image modality requires different ways to setup connection and send 

triggers:  

nirScout (fNIRS) uses lab-stream-layer (LSL), which establishes a digital connection 

between the two softwares NirsStar 15-3 and Psychopy. This is done by adding this 

code at the start of the experiment using the code-component in Psychopy-Builder: 

from pylsl import StreamInfo, StreamOutlet # import required classes 

info = StreamInfo( 'TriggerStream', type='Markers', channel_count=1, 

channel_format='int32', source_id='Example') # sets variables for object info 

outlet = StreamOutlet(info) 

 

It is then possible to send triggers with the code component using this code (x can 

range from 1 to 8): outlet.push_sample([x]). 
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g.Nautulus (EEG) does not need any additional code since it is using a hardware 

connection via a parallel port. Psychopy has a built-in parallel port component in the 

Psychopy-builder. Here triggers are sent using binary whole binary numbers (1, 2, 4, 

16, 32, 64, 128). 

 

EyeLink Portable Duo (ET) need much more code in Psychopy to connect to the 

Host-PC (See A.4 for code). This code is added in a code component at the start of 

the Psychopy experiment. It is then possible to send triggers with this code: 

el_tracker.sendMessage('trigger'). The ET can receive whole sentences as triggers. 

 

Stimulus fNIRS EEG ET 

Experiment 

Start/Stop 

1 1 ‘Experiemtn_Start’ / ‘_Stop’ 

Fixation Cross 2 2 ‘Fixation_Cross_Start’ / ‘_Stop’ 

Face Pairs: 

Neutral/Neutral 

3 4 ‘Face_Pairs_Neutral_Neutral_Start’ 

/ ‘_Stop’ 

Face Pairs: 

Happy/Neutral 

4 8 ‘Face_Pairs_Happy_Neutral_Start’/ 

‘_Stop’ 

Face Pairs: 

Fearful/Neutral 

5 16 ‘Face_Pairs_Fearful_Neutral_Start’ 

/ ‘_Stop’ 

Dot Congruent 6 32 ‘Dot_Congruent_Start’ / ‘_Stop’ 

Dot Incongruent 7 64 ‘Dot_Incongruent_Start’ / ‘_Stop’ 

Reaction 

(keyboard 

pushed) 

8 128 ‘Reaction’ 
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Table 8-1 An overview of the relationship between trigger signals and stimuli . 

It is important to note that the complete commands for the fNIRS and ET are 

not displayed in this figure, specifically outlet.push_sample([x]) for fNIRS and  

el_tracker.sendMessage('trigger') for the ET. The triggers for EEG and fNIRS 

are only sent at the beginning of each stimulus, whereas the ET sends 

triggers for both the start and end of each stimulus.  

 

8.3 EXPERIMENT PROTOCOL 

8.3.1 Step-by-step guide 

A step-by-step guide for all image modalities was developed to ensure a seamless 

experiment process for participants. This guide is essential due to the numerous 

details to recall, and the possibility of overlooking crucial elements that could 

jeopardize the experiment. Furthermore, other students will be trained to assist with 

the experiment, necessitating a well-structured lab pipeline for current and future 

experiments. Refer to Appendix 1 for the complete guide; however, note that it is the 

refined and finalized version and may not precisely align with the test-run version. 

8.3.2 Experiment Order 

The experiment maintains a fixed sequence for experimental measurements: ET, 

fNIRS, and EEG. While randomization could enhance experimental control, as 

suggested by (Suresh, 2011), it also presents practical challenges: 

After EEG measurements, participants are advised to shower for comfort, which 

would require disassembling and cleaning the fNIRS cap after each participant. If 

participants shower between measurements, it could prolong the experiment and 

potentially induce fatigue during subsequent assessments. By positioning EEG as 

the final measurement, participants can wash their hair after the experiment without 

time constraints or shower at home if preferred. 

ET measurements took place in a separate laboratory, and scheduling these as a 

second measure would require additional travel time for participants, increasing the 

experiment's duration and potential fatigue. 
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Given these considerations, randomizing the measurements was deemed 

counterproductive, as it could increase the experiment's length and potentially lead to 

participant fatigue. Instead, a fixed order was determined to be the most time-efficient 

and comfortable for participants: ET first, followed by fNIRS, and finally EEG. 

8.3.3 Procedure for each modality 

To ensure the correct cap size is used for the fNIRS measurement, the 

circumference of the participant's head is first measured. This is done by measuring 

around the head from the Nasion, over the ears, and to the Inion [see figure 8-7]. 

There are three different cap sizes to choose from (54cm, 56cm, and 58cm), and the 

appropriate size is selected by rounding down the head circumference measurement. 

For example, if the head circumference is 55.3cm, a cap size of 54cm will be used. 

This ensures that the probes do not hang loosely while still providing comfort to the 

participant. 

 

 

Figure 8-7 Displays the head coordinate system utilized by both EEG and 

fNIRS setups, as depicted in the NIRx NIRSCap User Guide (NIRx, 2019).  
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Once the correct cap size is selected, the participant is positioned approximately 70 

cm away from the computer screen. The cap is then placed on the participant's head, 

ensuring proper probe placement and skin contact. The distance between the Nasion 

and the first probe (Fz) should be 3cm, and the probes in the center (Cz) should align 

with the middle of the head. The cap is fastened with a strap under the chin to 

prevent movement during the experiment. 

To achieve proper contact between the LED/photodiode (emitter/detector) and the 

skin, any hairs obstructing the probes are pushed away using a Q-tip. The goal is to 

remove any potential obstacles that may interfere with the signal. A light-proof hood 

is then placed over the fNIRS cap to prevent noise from external light sources. 

 

 

Figure 8-8 (left) Demonstrates the technique for utilizing a q-tip to clear away 

hair, as presented in the NIRx Troubleshooting Signal Quality Getting Started 

Guide (NIRx, 2017). 

Figure 8-9 (right) Depicts a participant engaged in the dot-probe task, wearing 

the fNIRS cap with shower-cap, captured during the test-run. 

 

Calibration is carried out via the NIRStar 15-3 software, which checks for signal 

sufficiency. During calibration, diodes touching the skin should result in excellent 

contact, but sometimes this may not be the case due to factors such as poor contact, 

dark skin, thick hair, or the participant moving the cap. Calibration results are 
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indicated by color codes: white for no contact, red for poor contact, yellow for ok 

contact, and green for excellent contact. If necessary, probes can be removed and 

repositioned with a Q-tip to improve the signal. 

The aim is to achieve as many green signals as possible, but this can be challenging 

for some participants. Therefore, a maximum time of 35 minutes is allotted for 

calibration. If calibration takes longer than 35 minutes, all channels that are not green 

are noted in the log. 

To ascertain the appropriate positioning of the EEG cap, the participant's head mid-

point (Cz) must first be determined. This involves measuring the distance between 

the pre-auricular points (ear-to-ear) and the distance between the nasion and inion, 

dividing both measurements by 2 to find the respective mid-points, and marking 

these with lipliner [see figure 8-7]. 

Once the Cz is marked, the participant is seated approximately 70 cm away from the 

computer screen. The EEG cap is placed on the participant's head, ensuring that the 

Cz (number 16 on the cap) aligns with the mid-point marked by lipliner and the ears 

are free from hair. The cap is secured with a strap under the chin to provide a 

comfortable fit and prevent movement during the experiment. 

To establish an effective connection between the electrodes and the skin, any hairs 

obstructing the electrodes are gently moved away using a syringe tip. The objective 

is to eliminate any barriers that could interfere with the signal. EEG gel is then 

applied with a syringe to each electrode to get contact with the scalp. An impedance 

check is then conducted using the g.recorder software. During this process, all 

electrodes should ideally have an impedance value below 25kΩ before starting the 

experiment. 
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Figure 8-10 (left) Illustrates the process of applying EEG gel to the electrode, 

captured during the test-run.  

Figure 8-11 (right) Displays the screen view while conducting an impedance 

measurement, as seen in g.recorder. 

 

It is important to be cautious of bridging when applying the EEG gel. Bridging occurs 

when the gel applied on two nearby electrodes comes in contact with each other, 

potentially affecting the signal quality. 

However, achieving a low impedance for all electrodes can sometimes prove 

challenging due to factors such as hair thickness. In such cases, the electrodes can 

be carefully refilled with gel or repositioned using a syringe tip to enhance the signal. 

A maximum time of 35 minutes is allowed for impedance adjustment. If the 

impedance remains unsatisfactory after this time, all channels with higher impedance 

values are noted in the log, and the experiment proceeds. 

To ensure accurate eye tracker adjustment, the participant is first asked to lean into 

the headstand, which is seated approximately 70 cm away from the computer 

screen. If they wear glasses, the glasses should be pushed up as far as possible to 

avoid interference. In cases where glasses or lenses cause significant issues, they 

can be removed, with a note made in the experiment log. The aim is to have both 

pupils clearly visible on the display. 

The eye tracker is then adjusted by turning the red button and dragging the red 

circles over each eye. Sharpness is fine-tuned using the wheel under the eye tracker, 
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and the left and right arrows are used to display each eye for optimal focus. The 

participant is asked to look at the four corners of the screen to confirm that the teal-

dot part has minimal white, indicating proper alignment. 

Pre-calibration of the eye tracker is performed on the host computer by using the 

auto detect threshold function. This process finds the ideal threshold values for the 

corneal reflection (CR) and pupil measurements, with the threshold CR ideally 

ranging between 215 to 240, and the pupil threshold between 60 to 140. The pupil 

threshold refers to the level of sensitivity at which the ET system detects the pupil, 

while the corneal reflection threshold pertains to the sensitivity level at which an ET 

system can accurately detect and differentiate the corneal reflection from other 

reflections or background noise. 

Adjustments to the illumination level may be required to achieve the desired 

threshold values. The participant's gaze at the four corners of the screen helps to 

verify if the signal is good, as demonstrated in figure 8-12. 

 

Figure 8-12 This illustration demonstrates the optimal appearance when the 

participant gazes at the corner of the screen. A deviation of the teal dot from 

the eye indicates a potentially poor signal robustness, taken from SR 

Research EyeLink Portable Duo User Manual (SR-research, 2017) 

 

Calibration and validation of the eye tracker require the participant to concentrate on 

a series of dots that appear on the screen. Throughout this process, the eye tracker 

maps the location of the participant's pupils in relation to the position of the dots. Nine 

distinct dots are used, situated in each corner and the center of the screen, to create 

a comprehensive map of the individual's gaze in relation to the screen. Following the 
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calibration, a validation is conducted to double-check that the measured pupil gaze 

remains consistent with the calibration data, ensuring accurate ET results. 

 

8.4 TEST-RUN AND IMPROVEMENTS MADE 

We recruited a total of 5 participants from our student group. Given that the primary 

goal of this initial phase was to test the equipment and protocol, we did not place 

significant emphasis on the demographic composition of the participants. Each 

participant took part in a single session of each modality. We also trained two of the 

students to conduct the experiment, this to get feedback on the lab protocol. The 

experiment was conducted following the step-by-step guide in appendix 1, note that it 

is the refined and finalized version and may not precisely align with the test-run 

version. 

 

8.4.1 Hybrid lab setup 

Following the test-run, we relocated an ET to the Medtec test lab. Setting up the 

hybrid fNIRS/ET and EEG/ET systems was relatively simple, as we had already 

integrated all modalities within the same stimulus software (PsychoPy) and designed 

the test lab with the ET in mind. Both paradigm programs now initiate the ET setup 

(calibration/validation) before starting the dot-probe experiment. This hybrid 

configuration enabled us to shorten the experiment to 2 hours, as participants only 

needed to complete two dot-probe tasks instead of three, and there was no need for 

them to visit separate rooms for the experiment.  

However, we had to consider two factors when using the hybrid setup. First, the ET 

can impact the fNIRS and EEG signals. The infrared light emitted from the ET may 

strike the fNIRS photodiodes, generating substantial noise. We addressed this issue 

by applying a light-proof shower cap. Second, the ET can produce electrical noise on 

the EEG signal. While we cannot eliminate this interference, we accept it as a 

consistent factor across all EEG data collected. 
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8.4.2 Decreasing fNIRS sampling rate 

During the test-run, we encountered an error message indicating cross-talk between 

channels. The fNIRS system collects data by sequentially activating and deactivating 

LEDs, a process referred to as the illumination pattern (NIRx, 2018). This is done to 

ensure accurate measurement, as simultaneous activation of all LEDs would make it 

difficult for the fNIRS to determine the source of the detected light. At a sampling rate 

of 3.91 Hz, only one LED is active at a time, as illustrated on the left in Figure 8-13. 

To increase the sampling rate to 7.82 Hz, two LEDs must be activated 

simultaneously, as illustrated on the right in Figure 8-13. 

LEDs 1-8 are located in the occipital area, while LEDs 9-16 are in the prefrontal area. 

Given their distance from each other, we did not anticipate cross-talk detection 

between them. Cross-talk can potentially compromise the data quality. However, this 

error message appeared for only two of the five participants. Unable to resolve the 

issue, we opted to decrease the sampling rate to 3.91 Hz. This decision resulted in 

acquiring half the data, but it ensured the elimination of cross-talk between channels. 

  

Figure 8-13 Depicts the illumination patterns at different sampling rates; on 

the left side, a 3.91 Hz sampling rate is shown with only one LED active at 

any given moment, while on the right side, a 7.81 Hz sampling rate is 

illustrated with two LEDs simultaneously active, where LED No. 1 is active 

concurrently with LED No. 9, LED No. 2 with LED No. 10, LED No. 3 with LED 

No. 12, and so forth. Images are sourced from NIRStar 15-3. 
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8.4.3 Changing fNIRS paradigm to block design 

Upon inspecting the fNIRS data, we observed that our event and rest-time durations 

were considerably short, with approximately 2 seconds (depending on reaction time) 

of stimulus and 7 seconds of rest-time. Considering that the hemodynamic response 

function (HRF) takes about 1-2 seconds to start rising and 5-6 seconds to reach its 

peak, our measurements essentially captured the decline of the HRF from the 

previous event at the beginning of the current event. Moreover, (Friston et al., 1994) 

suggest that the total duration of the HRF impulse is around 26-28 seconds. The low 

sampling rate of fNIRS further necessitates a longer stimulus and rest time. 

Taking these factors into account, we decided to modify the fNIRS paradigm to a 

block-design, consisting of four trials in each block. Each block will last for 

approximately 15-16 seconds (dependent on participants' reaction time), followed by 

a 15-second rest-time. This change results in a total duration of 30 seconds from the 

presentation of a stimulus to the commencement of the next block. The paradigm will 

then last approximately 10 min, which is the same as our previous paradigm [See 

figure 9-4 in results section for illustration of new paradigm]. 

This alteration is further justified by the fact that the hemodynamic response takes 

about ten seconds to return to baseline levels after reaching its peak (Nogueira et al., 

2022). Moreover, recent research by (Zhang et al., 2021) suggests that a 15-second 

stimulation duration within an appropriate experimental setup allows researchers to 

obtain optimal fNIRS signal quality. 

 

8.4.4 Reducing fNIRS trigger setup 

We also noticed, when looking at the fNIRS data, that some of the triggers registered 

were redundant. We used the same trigger setup as the EEG, which sends a trigger 

e.g., when the fixation cross appears, and when the face stimuli appear. This results 

in a gap between these two triggers of 1s, which makes sense for the EEG data, 

since its sampling rate is 1000 Hz. However, for fNIRS with a sampling rate of 7.81 

Hz there is almost no data in this gap. Therefore, we changed the trigger setup for 

the fNIRS so it now only sends a trigger with all the information of the trials at the 

start of each block. 
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8.4.5 Integrating ET data with analysis software 

We noticed that when looking at the ET data in the EyeLink Data Viewer (ET analysis 

software), our stimulus wasn't showing up, and the data wasn't divided into separate 

trials. Our variables also weren't visible in the software. Although analysis og the data 

could be done using other software like Python or MATLAB, we wanted to use 

EyeLink Data Viewer to make the analysis process as easy as possible for future 

researchers. 

To do this, we first needed to split the dataset into individual trials. We sent a specific 

input at the beginning of each trial to let the software know when a new trial started: 

el_tracker.sendMessage('TRIALID %d' % trial_index). 

Then, we added the variables to the software by sending another input for each 

variable, such as the one for face pairs: el_tracker.sendMessage('!V TRIAL_VAR 

Face_Pairs %s' % Face_Pairs). We did this for all variables, including reaction time 

and accuracy, at the end of each trial. 

Next, we wanted to show the images from the experiment in the Data Viewer. We 

figured out the size and location of each image and sent the input with the necessary 

information: el_tracker.sendMessage('!V IMGLOAD CENTER %s %d %d %d %d' % 

(image_face_left, left_image_center_x_axis, image_center_y_axis, image_width, 

image_height)). 

We also needed to define "areas of interest" – in our case, the face images – to 

analyze when participants looked at each image and for how long. We did this by 

sending an input with the appropriate information: el_tracker.sendMessage('!V 

IAREA RECTANGLE %d %d %d %d %d %s' % ia_image_left). 

However, we faced a problem with message errors because the software received 

multiple messages at the same time. To fix this, we added a counter to control the 

message sending rate and prevent them from being sent simultaneously. 
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8.4.6 Figure size and location 

In our experiment, the picture sizes and locations for our paradigm were not correctly 

set up, causing the pictures to be too large and too close to each other. To address 

this issue, we adopted the sizes and locations used in the dot-probe paradigm from 

the study by (Andrzejewski & Carlson, 2020). They used facial stimuli subtending 5° 

× 7° of the visual angle, with the innermost borders of the two facial stimuli separated 

by approximately 14° of the visual angle. 

To calculate the appropriate sizes, we first determined the distance from the screen 

at which participants would sit, taking into account the requirements of the ET. We 

used SR-Research's Trackable Range Calculator (SR-Research, 2023) to determine 

the optimal distance, ensuring that the ET could effectively track the participant's 

gaze when looking at the corners of the screen. For our 53 cm wide and 30 cm tall 

monitor, the recommended distance was 115 cm. 

 

Figure 8-14 Visual representation of the angular measurements displayed on 

the screen, adapted from (SR-Research, 2023). 

 

PsychoPy utilizes pixels for specifying the location and size of images, necessitating 

the conversion of the dimensions to pixels. Our screen has a resolution of 1080p 

(1920x1080), and by dividing the width of the screen in pixels by the width in 

centimeters, we determined that there are 36.2 pixels per centimeter (1080 / 53 = 

36.2 pixels per cm). 
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We then calculated the dimensions of the images on the screen using the following 

formula: w = arctan(α) * d, where w represents the width of the picture on the screen, 

α is the visual angle, and d is the distance from the eyes to the screen (115 cm in our 

case). 

Calculating the height of the images in centimeters (h = arctan(7) * 115), we arrived 

at 13.98 cm. Converting this to pixels, we obtained a height of approximately 506 

pixels (h_pixel = 36.2 * 13.98 ≈ 506 pixels). Similarly, we calculated the width of the 

images as 10.01 cm (w = arctan(5) * 115) and converted it to pixels, yielding a width 

of approximately 362 pixels (w_pixel = 36.2 * 10.01 ≈ 362 pixels). 

To determine the distance from the center of the screen to the innermost border of 

the picture (left border for the right picture and vice versa), we accounted for 

PsychoPy's center-to-center measurement by adding half of the width in pixels to the 

distance. With the picture being 7° from the center to the nearest picture border, we 

knew that 7° corresponded to 506 pixels. Therefore, the pictures should be placed 

687 pixels from the center (506 + 362/2 = 687 pixels). 

The participant will now sit 115cm from the screen, instead of 70cm. 

 

8.4.7 Making the experiment more engaging 

Upon the completion of the experiment, we got feedback from the participants. They 

expressed that the test was monotonous, causing them to lose interest. They also 

mentioned that they could nearly predict the pattern of the program due to consistent 

durations. Furthermore, they suggested that the task's introduction could be more 

comprehensible. 

To address the issue of boredom, we drew inspiration from (Carlson & Fang, 2020). 

In their study, participants received feedback on their reaction times after each block 

to encourage accurate and rapid responses. Consequently, we incorporated a 

display that presents the participant's fastest reaction time achieved so far at the end 

of each trial. For fNIRS/ET, this occurs after each block, while for EEG/ET, it appears 

at the end of each trial. To allow participants sufficient time to read their reaction 

times, we extended the pause between trials from 1 second to 1.5 seconds. In order 
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to maintain consistency between the hybrid fNIRS/ET and EEG/ET paradigms, we 

also included this pause in the fNIRS/ET paradigm. 

To eliminate the predictable "rhythm" of the paradigm, we took cues from 

(Kappenman et al., 2015), who introduced a time jitter intertrial interval of 750–1250 

ms during the fixation cross section of the dot-probe task. This approach not only 

makes the paradigm more engaging by introducing unpredictability, but also helps to 

pseudorandomized the length of the inter-trial interval. This, in turn, avoids any 

temporary physiological correlations with the stimulus, such as breathing patterns, 

thus strengthening the experiment's robustness (Meryem A. Yücel, 2021). 

Lastly, we provided a straightforward explanation of the dot-probe task before the 

test commenced, allowing participants to initiate the task by pressing a button once 

they fully understood the instructions and were prepared to begin. 

 

8.4.8 Stimuli duration 

Upon examining the ET data, we observed that participants' eye movements were 

minimal. Factors such as the size and spacing of the face stimuli pictures probably 

contributed to this outcome. However, further review of the relevant literature 

indicated that our face stimulus duration of 200ms might have been too brief (Price et 

al., 2015; Stevens et al., 2011). Studies have demonstrated better results with longer 

durations such as 600ms (Stevens et al., 2011) when using electrooculogram, and 

2000ms (Price et al., 2015). By increasing the presentation duration to 1200ms, we 

aim to enhance the accuracy and reliability of our study, while keeping the overall 

length of the paradigm manageable. 

 

8.4.9 Tiredness VAS-scale 

Several participants reported experiencing fatigue prior to the commencement of the 

test. In order to monitor and control for tiredness, a Visual Analog Scale (VAS) score 

will be incorporated at the start each of the experiments. The VAS scale is employed 

to gauge the participants' level of tiredness by posing the question, "How tired are 

you?" Participants respond using the scale, which ranges from 0 to 9, with 9 
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representing the highest level of fatigue and 0 signifying complete alertness. This 

approach ensures a comprehensive understanding of the participants' fatigue levels 

throughout the testing process, allowing for more accurate data interpretation.  

 

8.4.10 Response-box 

We have substituted the traditional keyboard with a high-precision button box, which 

comes bundled with the ET. This response device boasts millisecond accuracy and 

features four buttons. Minimizing delay is crucial for obtaining reliable data from the 

EEG and ET systems, as they possess exceptionally high sampling rates. 

To enhance user experience and reduce confusion, we have labelled one button with 

an 'L' for 'left' and another with an 'R' for 'right.' This ensures that participants can 

easily identify the appropriate buttons to press during the study. 

 

 

Figure 8-15 This image showcases the response box, as utilized in our study. 

The photograph has been captured from the MedTec test Lab. 

 

8.5 CONDUCTING EXPERIMENT 

Having completed the laboratory setup, experimental paradigm, and experimental 

protocol, we were fully prepared to commence data collection. Before initiating this 

process, we trained seven undergraduate and graduate students from OsloMet 
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University to assist in conducting the experiment. A comprehensive description of the 

experimental paradigm employed will be provided in the subsequent Results and 

Discussion sections. 

8.5.1 Ethics and storing of data 

Collecting experimental data from participants requires careful consideration of 

ethical issues to ensure that their rights, well-being, and privacy are protected. 

Informed consent, which involves explaining the nature and purpose of the study, 

potential risks, and benefits, as well as participants' right to withdraw, is crucial. 

Researchers should obtain written consent before starting the study. To minimize any 

potential harm or discomfort, the study should be designed and conducted in a way 

that does not cause undue physical or emotional stress. Confidentiality of personal 

information and research data is critical and should be maintained using secure 

storage and access controls. 

Before starting the study, ethical approval from an institutional review board or ethics 

committee is necessary. In our case, we applied for ethical approval from the 

Regional Committee for Medical and Health Research Ethics (REK) and stated that 

only "healthy" participants would be included. To protect privacy, each participant 

was assigned a unique ID number, and personal information was stored in a 

separate paper document under lock and key. All data will be initially stored on a 

local device and then uploaded to a cloud service called "Tjenester for sensitive data" 

(TSD), designed specifically for sensitive data storage. Consent forms will also be 

stored separately and deleted from the researcher's email inbox. 

 

8.5.2 Participants and recruitment process 

Ensuring that the demographic of the participants is as similar as possible is crucial 

in conducting a psychology experiment. In this project we have decided to recruit 60 

healthy adult females between the ages of 18 to 30 years. A higher participant value 

of 60 is beneficial because it increases the statistical power of the study, making it 

easier to detect meaningful effects.  

To ensure the participants are representative of the general population, we have 

established some exclusion criteria, including medication use, severe 



   

 

53 

 

psychopathology, brain injury, and neurological disorder. These exclusion criteria 

were put in place to minimize the potential confounding variables that could affect the 

results of the study.  

To recruit participants for the experiment, we used multiple methods such as 

personal networks, social media, and Instagram ads. Participants were directed to an 

online survey portal called "Nettskjema" by scanning a QR code. This service, 

provided by the University of Oslo (UiO), allowed for secure data storage with 

restricted access limited to researchers and students related to the project. Upon 

meeting eligibility criteria, participants were contacted by the researcher to schedule 

an appropriate time for testing. A consent form was sent to the participants, and they 

were asked to return a signed form before the scheduled experiment. 

8.5.3 Procedure 

Participants were instructed to convene with the researcher in the lobby of Building 

P35 at OsloMet University. Upon arrival, they were escorted to the medtech test 

laboratory. Here, they first engaged in the hybrid fNIRS/ET experiment, followed by 

the hybrid EEG/ET experiment. The procedures outlined in Appendix 1's step-by-step 

guide were strictly adhered to throughout the process. Upon completion, each 

participant received a gift card valued at 500 NOK as a token of appreciation. 

8.6 PRE-PROCESSING AND ANALYSIS OF FNIRS DATA 

For fNIRS data pre-processing and analysis, we employ the Satori software, 

developed collaboratively by Brain Innovation and NIRx. Satori was designed with a 

strong emphasis on user-friendliness, facilitating effortless analysis of fNIRS data. 

The software supports the standardized near-infrared file format (sNIRF) and is 

compatible with earlier NIRScout header-based formats. Moreover, Satori's flexible 

interfaces enable third-party applications to access processed data and computed 

statistics, but since our goal was to make an easy to use pipeline for pre-processing 

and analysis, we opted to only use the methods available in Satori. 

Satori's Workflow Manager option allows us to pre-process and analyse multiple 

fNIRS datasets using identical parameters. The order of steps can be adjusted freely 

within the manager, which is divided into two sections—the workspace and the 
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toolbox. Workflow items can be effortlessly dragged and dropped into the workspace 

and connected in a specific sequence. Available items encompass Input/Output, 

Transformations, Preprocessing, Postprocessing, Analysis, and Tools. The Event 

Manager item permits alterations in condition durations within the protocol, while the 

Trim Data item enables the removal of undesired data. 

fNIRS signals are influenced by biological factors such as respiration and movement, 

which can introduce noise and artifacts, including motion artifacts that cause sudden 

spikes and baseline shifts (data abruptly jumps to a new value and remains there). 

To address these issues, pre-processing is necessary to eliminate artifacts, correct 

signal drift, and normalize the data. Detaild explanation of the pre-processing is 

presented in the Result and Discussion section. 

After pre-processing the data, we conducted an analysis using a multi-subject 

General Linear Model (GLM) approach, where we followed the Satori Multi-Subject 

GLM Guide (Lührs et al., 2022) and Satori user manual (Brain-Inovation, 2023). We 

have used these guides to give an simple explanation of the logic behind the GLM 

analysis in Satori: 

fNIRS measures brain activity by looking at changes in blood oxygenation levels in 

specific regions of the brain. The GLM aims to understand how these changes are 

related to different experimental conditions. 

In simple terms, the GLM tries to explain the observed fNIRS time course (dependent 

variable) as a combination of several reference functions (independent variables). 

These reference functions represent the expected fNIRS responses for different 

experimental conditions. They are sometimes called predictors, regressors, 

explanatory variables, covariates, or basis functions. 

The GLM uses a design matrix, which is a table that contains the reference functions 

(predictors). Each predictor is associated with a coefficient or beta weight, which 

quantifies its contribution in explaining the observed fNIRS time course. The model 

also accounts for error values, which represent the difference between the actual 

data and the predicted data. 

To summarize, the GLM tries to find the best combination of predictor time courses 

and their corresponding beta weights to explain the observed fNIRS time course. The 
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resulting beta weights can provide insights into the brain's response to different 

experimental conditions. 

Here's a simplified explanation of the GLM equation: 

𝑦 = 𝑏0 + 𝑏1 ∗ 𝑋1 + 𝑏2 ∗ 𝑋2+ . . +𝑏𝑝 ∗ 𝑋𝑝 + 𝑒 

 

y: the observed fNIRS time course (dependent variable) 

b0, b1, b2, ... bp: beta weights (coefficients) for each predictor 

X1, X2, ... Xp: predictor time courses (independent variables) 

e: error values (difference between the actual data and predicted data) 

The goal of the GLM is to estimate the best beta weights for each predictor so that 

the model can accurately explain the observed fNIRS time course. Once the beta 

weights are determined, they can be used to interpret the brain's response to 

different experimental conditions. A large positive beta weight indicates strong 

activation during the condition, while a large negative beta weight indicates strong 

deactivation. 

Correction for serial correlations is a crucial step in the analysis of fNIRS data using 

the General Linear Model (GLM). The GLM assumes that the residuals (the noise in 

the data) are uncorrelated. However, fNIRS data often contain serial correlations due 

to trends or physiological noise. To improve the accuracy of the GLM, these 

correlations need to be removed. Satori uses a process called pre-whitening to 

remove these, more info about this can be found in the Satori user manual (Brain-

Inovation, 2023). 

We selected Separate Subject Analysis, which involves estimating subject-specific 

beta values for each subject and condition within the Multi-Study GLM list. This 

approach follows the classical methodology for calculating a Random Effects GLM, 

which allows for potential generalization of effects beyond the measured sample. 
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9 RESULTS AND DISCUSSION 

9.1 THE FINISHED LAB SETUP AND PROTOCOL 

We established a state-of-the-art test lab, accompanied by a detailed lab protocol 

(refer to Appendix 1). After conducting an initial test-run, we were able to identify and 

implement several significant improvements. These enhancements have led to the 

development of a highly efficient, user-friendly test lab environment. We have 

collected valuable data from a total of 60 participants using this optimized setup. 

The test lab is fully equipped with a single PC containing all the necessary software 

to operate the three modalities and the stimulus software. Additionally, all the 

required hardware components are connected to this central PC. This streamlined 

configuration allows for seamless integration and ease of use, making it an ideal 

platform for future researchers to conduct further experiments. 

The images below provide a visual representation of the lab setup: 

The first image provides an overview of the test lab, illustrating two distinct sections. 

On the left side, we see the researcher's workstation and Host-PC for ET, while the 

right side displays the seating arrangement for the participant. These sections are 

separated by a small wall. Throughout the experiment, a researcher would occupy 

the left side, closely monitoring the signal graphs to ensure a smooth process without 

any complications. 
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Figure 9-1 Overview of the test lab. 

 

The second image illustrates the participant's viewpoint during the experiment. It 

offers a comprehensive perspective of the three modalities: the EEG system 

positioned to the left of the screen, the fNIRS setup with a mechanical arm to the 

right, and the ET placed directly in front of the screen. On the left side of the image, 

the step-by-step lab protocol is prominently displayed. Meanwhile, the response box 

and headstand are conveniently positioned at the center. 
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Figure 9-2 Showcase of the test lab, illustrating the participant's seating 

arrangement during testing. 

In the third image, we observe a participant who is resting their head on a headstand 

while wearing a securely mounted fNIRS cap. This setup indicates that the 

participant is ready for the calibration process of the fNIRS system. 
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Figure 9-3 Showcase a person during the pre-calibration of fNIRS. 

 

9.2 THE FINISHED EXPERIMENT PARADIGM DESIGN 

We have developed two dot-probe task paradigms in Psychopy: one integrated with 

the hybrid fNIRS/ET system and the other integrated with the hybrid EEG/ET system. 

Both paradigms were designed to be as similar as possible, enabling a comparison 

of data between the two hybrid modalities. However, they have been fine-tuned to 

accommodate the specific requirements and characteristics of each modality. 

Here is an explanation of the two paradigms, starting with what is common between 

the two: 
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At the beginning of the paradigm, the ET pre-calibration is automatically initiated. 

Once the ET calibration is completed, a VAS for tiredness appears, prompting 

participants to rate their level of tiredness on a scale of 0 to 9 (with 9 indicating the 

highest level of tiredness). Following the completion of the tiredness rating, the 

experiment is ready to commence. 

The experiment starts by providing participants with information about the dot-probe 

task and instructing them to press any key when they are prepared to begin. A 30-

second countdown timer appears on the screen before the experiment initiates. 

Each trial starts with a white fixation cross displayed at the center of the screen for a 

randomized duration of either 750ms or 1250ms. The fixation cross remains visible 

until the dot disappears. Two faces (happy/neutral, fearful/neutral, or neutral/neutral 

pairs) are presented for 1200ms, spanning 5° × 7° of the visual field, with roughly 14° 

separating the innermost borders of the facial stimuli. Immediately after the faces 

vanish, a white dot appears behind either the left or right image, centered within the 

picture. Trials are categorized as congruent if the dot is behind the face with the most 

negative emotion (e.g., behind the neutral face in happy/neutral pairs), and 

incongruent otherwise. 

Participants are required to indicate the dot's location by pressing the 'left' or 'right' 

button on the response box with their index finger. Following their response, a black 

screen is displayed for 1500ms, marking the end of the trial. 

For fNIRS/ET paradigm the participants complete twenty blocks, each consisting of 

four trials. Each condition is presented an equal number of times (four instances per 

condition): neutral/neutral, happy/neutral congruent, happy/neutral incongruent, 

fearful/neutral congruent, and fearful/neutral incongruent. Each block maintains an 

equal ratio of male to female faces, dot locations (left/right), and time jitter 

(750ms/1250ms). Additionally, a unique face is displayed in every trial, ensuring no 

repetitions. The participant goes through a total of 80 different trials. 

After completing each block, participants are shown their best reaction time, followed 

by a 15-second rest period. The order of blocks and trials within them is 

counterbalanced across participants. 

The complete code for the fNIRS/ET paradigm is available in Appendix 3. 
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Figure 9-4 Illustration of the hybrid fNIRS/ET paradigm design. 

 

For the EEG/ET paradigm it’s the same procedure, but without the blocks and 15sec 

rest periods. Participant is presented with the exact same conditions and the same 

ratio of male to female faces, dot locations (left/right), and time jitter 

(750ms/1250ms). The participant completed a total of 160 trials, where all of them 

where psudoranomised. The participants RT was displayed after each trial.   

 

 

Figure 9-5 Illustration of the hybrid EEG/ET paradigm design. 
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The complete code for the fNIRS/ET paradigm is available in Appendix 4. It is worth 

mentioning that the code includes additional components such as a resting-state task 

and a visual search task. These were not elaborated upon in the explanation as they 

were part of a separate project undertaken by other researchers and do not 

contribute to the primary objective of the master thesis. 

 

Here is a showcase of the new trigger setup for the modalitites: 

 

Stimulus FNIRS 

Experiment Start 1 

Neutral/Neutral Block 2 

Happy/Neutral Congurent Block 3 

Happy/Neutral Incongruent Block 4 

Fearful/Neutral Congurent Block 5 

Fearful/Neutral Incongruent Block 6 

End of Block 7 

Experiment Ended 8 

Table 9-1 Overview of the new and improved fNIRS trigger setup. 

 

Stimulus EEG ET (See section 8.4.5 for more in 

depth about integration with analysis 

software) 
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Experiment 

Start/Stop 

1 ‘Experiemtn_Start’ / ‘_Stop’ 

Fixation Cross 2 ‘Fixation_Cross_Start’ / ‘_Stop’ 

Face Pairs: 

Neutral/Neutral 

4 ‘Face_Pairs_Neutral_Neutral_Start’ / 

‘_Stop’ 

Face Pairs: 

Happy/Neutral 

8 ‘Face_Pairs_Happy_Neutral_Start’/ 

‘_Stop’ 

Face Pairs: 

Fearful/Neutral 

16 ‘Face_Pairs_Fearful_Neutral_Start’ / 

‘_Stop’ 

Dot Congruent 32 ‘Dot_Congruent_Start’ / ‘_Stop’ 

Dot Incongruent 64 ‘Dot_Incongruent_Start’ / ‘_Stop’ 

Reaction 

(keyboard pushed) 

128 ‘Reaction’ 

Table 9-2 Overview of the EEG and ET trigger setup. 

 

9.3 FNIRS PRE-PROCESSING PIPELINE 

A standardized workflow has been developed, and all datasets have been processed 

using the same procedure. The sequence of pre-processing steps follows the 

recommendations outlined in the Satori user manual (Brain-Inovation, 2023) and the 

guide made by (Pinti et al., 2019). Each stage of the pre-processing process will be 

detailed in this section, adhering to the workflow order. We implemented two distinct 

workflows for this purpose. 

The first workflow included removal of masked channels, trimming, channel rejection, 

conversion, and event editing. Once completed, all data was saved in a folder named 

"data_ready_for_pre_processing." Subsequently, we renamed each file to include 
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only the participant number. This was done based on Satori's recommendation to 

remove the date and time from filenames, as it could cause confusion during analysis 

by making the software perceive two different subjects as the same (Lührs et al., 

2022). Moreover, this simplified the process of experimenting with various pre-

processing techniques. 

 

Figure 9-6 Illustration of workflow one (Methods Employed Enclosed in 

Parentheses). 

 

The second workflow contained motion artifact removal, temporal filtering, and 

normalization. 

 

Figure 9-7 Illustration of workflow two (Methods Employed Enclosed in 

Parentheses). 

 

9.3.1   Remove masked channels 

The fNIRS data file reports that it comprises 256 channels. Nonetheless, only 42 of 

those channels are relevant to our analysis, as the remaining channels do not 

contain any data. Fortunately, our analysis software, Satori, automatically masks 

channels without data. 

Remove 
masked 
channels

Trimming of 
data

Channel 
rejection (CV)

Conversion of 
data

(Raw →
Concentration 

Changes)

Edit events

Save and 
rename files 

to 
participantID 

only

Motion artefact 
removal (TDDR)

Physiological noise 
removal 

(Temporal bandpass 
filter [0.01, 0.09] Hz)

Normalization 
(z-normalization)
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During the visualization stage, both 2D and 3D representations display all 256 

channels, including the masked channels. This approach tends to complicate the 

visualization and hinder interpretation. To enhance the analysis and visualization, we 

removed all masked channels at the beginning of the pre-processing phase. This 

method enables us to solely analyse and visualize the 42 channels of interest and 

produce a clearer and more interpretable outcome. 

 

9.3.2   Trimming of data 

Trimming data is a necessary step in improving the quality of subsequent analyses. 

To ensure that we only analyse relevant data, we use a standardized approach that 

involves sending a trigger 1 at the beginning and a trigger 8 at the end of each 

experiment. This approach enables us to identify the actual experiment and remove 

all data that is not relevant to it. 

Consequently, we remove all data before trigger 1 and after trigger 8 to eliminate any 

unnecessary data. This step is crucial as unnecessary data can lead to the removal 

of good channels and false results. By removing all unnecessary data, we can 

ensure that our analyses are based on high-quality data that accurately reflects the 

actual experiment. 

 

9.3.3   Channel rejection 

The quality of data acquired in fNIRS experiments can sometimes be inadequate, 

leading to the need for removal of one or more channels from further analysis. This is 

achieved through the channel rejection option, which offers two criteria for identifying 

channels that require rejection: the Coefficient of Variation (CV) and the Scalp 

Coupling Index (SCI). 

CV is a measure of the variation in the signal, calculated as the percentage ratio of 

the standard deviation to the mean of the raw data. A threshold value is set, typically 

7% for conservative estimates, while a threshold of 10% or higher is used for more 

liberal estimates. Only the raw data is used to calculate the CV. Here is the formula: 
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 𝐶𝑉(%) =  100 ×
𝑠𝑡𝑑(𝑑𝑎𝑡𝑎)

𝑚𝑒𝑎𝑛(𝑑𝑎𝑡𝑎)
  

 

SCI involves filtering the signal to preserve only the heartbeat band and 

subsequently filtering the data in the frequency range of 0.5-2.5 Hz before calculating 

the correlation between the optical density (OD) wavelengths. A correlation 

coefficient below 0.75 is deemed too low and warrants channel rejection. 

If the sampling rate is adequately high, such as 10 Hz, the heartbeat can serve as a 

reliable indicator of the coupling between the optode and the scalp. Therefore, SCI 

can be used as a quality control metric for the fNIRS signal (Meryem A. Yücel, 2021). 

In our case we have a sampling rate of 3.9Hz, which is low, therefore we use CV as 

our method of rejecting channels. 

When determining the maximum acceptable coefficient of variation (CVmax%) for an 

fNIRS experiment, it is essential to consider the type of test being performed. In tests 

where the participant is highly active, such as those involving physical exercise or 

movements, the contact between the detector and the scalp is more susceptible to 

change, leading to more noise and signal distortion (Piper et al., 2014). If a CVmax% 

value that is too high is accepted, the likelihood of noise and distorted signals 

increases. Conversely, if the value is too low, valuable information may be excluded 

by rejecting channels unnecessarily. 

In a study involving infants, a CVmax% of 10% was used (Blasi et al., 2014), while 

another study involving physical activity (cycling) used a CVmax% of 15% (Seidel et 

al., 2019). In both cases, it was assumed that the participants were highly active. 

In our study, participants move their fingers, but are otherwise still with their head 

resting on a headstand. Based on these examples and our own experiment, we have 

selected a CVmax% value of 7%. 

To ensure that our chosen technique met the required standards and that our 

analysis did not include poor quality channels, we performed the following validation 

steps: 

- We inspected the 10 worst-performing channels based on the channel 

rejection method. 
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- Upon examination, all of the "Bad" (red) channels were rejected, along with 

many of the "Acceptable" (yellow) channels. 

Based on these findings, we concluded that manual channel rejection was not 

necessary. The automatic CV channel rejection technique effectively eliminated the 

bad channels and retained only the good quality data for our analysis. 

 

9.3.4   Conversion of data 

It is essential to transform raw data into valuable information about oxygenated and 

deoxygenated hemoglobin levels (HbO and HbR). This is done by analyzing light 

intensity changes from the emitter and detector positions. Doing so helps us interpret 

fNIRS signals and comprehend the neural activities being investigated. The steps 

involved include converting intensity time-series into attenuation shifts (optical 

density) and then into concentration changes of HbO and HbR. Although Satori 

doesn't reveal its calculation method, it's typically done using the modified Beer-

Lambert law (Delpy et al., 1988). 

9.3.5 Edit events 

In the edit event section, users can modify the triggers within their data. To clarify the 

distinction between triggers and events, a trigger refers to the signal sent during data 

collection that indicates when an important stimulus is presented, while an event 

specifies the duration of each of these triggers. For simplicity, we will refer to both as 

"events" in the following sections. 

Initially, the first and last events are removed, as these simply indicate the start and 

end of the experiment and are not necessary for the analysis. Their primary purpose 

is to aid in data trimming. 

Next, we specify the duration of each event. However, there is a challenge in this 

step. Since reaction times vary for each trial, the events in the experiment have 

different durations. Satori, unfortunately, only allows setting all events to the same 

duration. Manually adjusting the duration for each event is time-consuming, as it 

involves going through 20 different events for 60 participants. 
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To overcome this issue, we calculated the mean duration of each event by finding the 

mean reaction time of all 60 participants and then used that to determine the duration 

of each event. The mean event time was found to be 16.1 seconds, with a standard 

deviation of 0.37 seconds. 

 

Figure 9-8 Illustration of data processing in Workflow 1, showcasing the 

significant trimming of prominent motion artifacts at the beginning and end of 

the raw data (dashed lines). The data is now segmented into distinct events, 

represented by colored blocks corresponding to five different conditions 

(happy/neutral congruent, neutral/neutral, etc.). Image made in Satori and 

edited in PowerPoint. 

 

This discrepancy may potentially affect the fNIRS analysis results as some blocks 

could inadvertently include data from the rest periods, while others might exclude 

valuable data. Despite this issue, there are several reasons to believe that the impact 

on the overall analysis is minimal. First, the fNIRS technology inherently has a low 

sampling rate, which means that the number of data points collected within the short 

time windod. Consequently, the potential loss or inclusion of data points due to the 

fixed 16.1-second block duration is relatively small. 
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Second, the variation in the actual duration of each block is minimal, as the standard 

deviation is only 0.37 seconds. This small deviation means that any discrepancies 

introduced by the fixed block duration are unlikely to significantly distort the results of 

the fNIRS analysis.  

9.3.6 Motion Correction 

Head movements can introduce noise into recorded data, particularly affecting 

neuroimaging techniques. Although fNIRS signals are more resistant to motion 

artifacts compared to fMRI and EEG/MEG methods, they are still susceptible to 

disturbances caused by head and skin movements (Pinti et al., 2019).  

Motion artifacts display various shapes, frequency content, and timing, ranging from 

easily detectable high-amplitude, high-frequency spikes to low-frequency content that 

is difficult to distinguish from normal HRF. These artifacts can be classified into three 

groups: spikes, baseline shifts, and low-frequency variations (Pinti et al., 2019). 

Baseline shifts may occur when the optode settles on a different location after 

motion, while slow head movements can generate low-frequency artifacts (Jahani et 

al., 2018). 

These artifacts may be isolated events or temporally correlated with the HRF. 

Consequently, the effectiveness of motion artifact correction techniques varies 

depending on the type of artifact, making the optimal approach data-dependent 

(Brigadoi et al., 2014). Due to the broad range of frequencies encompassed by 

motion artifacts, correcting them solely through frequency filtering is challenging 

without affecting HRF estimation (Jahani et al., 2018). 

In the process of addressing motion artifacts, it is essential to balance the need for 

artifact removal with the risk of inadvertently eliminating valuable data. In our 

experiment, participants were instructed to move only their index fingers and sit as 

still as possible. To further minimize head movement, they rested their heads on a 

headstand. As a result, we expected minimal motion artifacts in our data, except for 

those caused by eyebrow movement. 

Satori offers four methods for addressing MA: the spike removal algorithm, manual 

spike removal, the Temporal Derivative Distribution Repair (TDDR), and the 

Correlation Based Signal Improvement (CBSI). Initially, we tried the spike correction 
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algorithm, as we anticipated minimal motion artifacts. However, after examining the 

pre-processed data, we observed that the baseline shift in the raw data was replaced 

by a significant spike. We had hoped that spike correction combined with filtering 

would resolve this issue, but it did not. 

Manual spike removal can be time-consuming and subjective, and the Satori 

software's interface is not ideal for this task, increasing the likelihood of 

compromising the signal quality. 

CBSI, as proposed by (Cui et al., 2010), is based on the negative correlation 

between HbO and HbR concentrations. The method assumes that positively 

correlated features in the signal arise from motion and should be removed. However, 

(Balardin et al., 2017) demonstrated that only eyebrow movement significantly 

disrupts the expected negative correlation between oxy-Hb and deoxy-Hb.  

TDDR is a motion correction technique based on robust regression, effectively 

removing baseline shift and spike artifacts. Moreover, (Fishburn et al., 2019) found 

that TDDR outperforms CBSI in activation detection, as CBSI relies on assumptions 

that do not always hold true concerning the relationships between HbO and HbR. 

However, TDDR has limitations: its effectiveness is significantly reduced when high-

frequency components are present in the signal (Fishburn et al., 2019). Satori 

therefore filters out the higher frequencies before applying the TDDR. 

Given the choice between manual motion correction, TDDR, or CBSI, we opted for 

TDDR. We also considered using spike correction to remove the high frequency 

spikes, but TDDR effectively corrects motion artifacts in frequencies up to 0.5 Hz 

(Fishburn et al., 2019), and our low-pass filter is set at 0.09 Hz, making TDDR 

suitable for our frequency range. 
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Figure 9-9 Comparative visualization of TDDR and spike-correction methods, 

illustrating the superior spike reduction achieved by TDDR. Data has been 

filtered and normalized to enhance the clarity of differences between the two 

techniques. Image made in Satori and edited in PowerPoint. 

 

9.3.7 Physiological Noise removal 

Physiological noise, such as heartbeat, respiration, and low-frequency content from 

blood pressure fluctuations, can contaminate neuroimaging data. These unwanted 

signals can obscure underlying neural activity, making data interpretation and 

accurate conclusions about brain function challenging (Klein & Kranczioch, 2019). 

Hence, removing physiological noise is crucial for improving neuroimaging studies' 

reliability and validity. 

Satori provides an array of strategies to address the issue at hand, including Short-

Channel Regression, Global Component Regression, and Temporal Filtering. In our 

study, we opted to only employ Temporal Filtering as the sole method for eliminating 

physiological noise. This approach effectively mitigates both low- and high-frequency 

noise by applying filters to the data, isolating the frequency range pertinent to our 

research, and subsequently eliminating undesired signals. 

We refrained from utilizing Short-Channel Regression in our analysis, as our 

montage setup does not incorporate short-channels. This technique is advantageous 
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when the montage includes short-channels, as it facilitates noise reduction by 

leveraging spatial information derived from these channels. 

Moreover, we decided against implementing Global Component Regression. While 

this method can offer benefits under certain conditions, Satori advises its application 

in cases involving large montage setups with numerous channels, some of which 

may not be relevant to the study. Our montage configuration consists of a 

moderately-sized 16x16 arrangement, with all channels bearing significance to our 

research. Consequently, Global Component Regression was not considered the 

most appropriate choice for our analysis. 

In selecting the appropriate cut-off frequencies for the filter, we followed the 

guidelines provided by (Pinti et al., 2019). The initial step involved determining the 

stimulation frequency to ensure it would not be filtered out. To accomplish this, we 

calculated the stimulation frequency by summing the duration of our stimulation block 

and the rest time. Given that the stimulation block's duration varied, we found the 

minimum and maximum time using the mean plus or minus the standard deviation, 

resulting in values of 15.73 seconds and 16.47 seconds, respectively. With a rest 

time of 15 seconds, we estimated the stimulus frequency range to be approximately 

[0.0317, 0.0325] Hz. 

Subsequently, we pinpointed the specific frequencies that we aim to include and 

exclude. In cognitive task we want to look at changes in hemodynamic due to 

neurovascular coupling (Phillips et al., 2016), but there is physiological noise, such 

as cardiovascular oscillations that contaminate these changes. These include 

heartbeats (approximately 1 Hz), respiration (approximately 0.3 Hz), and Mayer 

waves (approximately 0.1 Hz), all which impact fNIRS data (Naseer & Hong, 2015; 

Pinti et al., 2019). Mayer waves represent spontaneous arterial blood pressure 

oscillations (Luke et al., 2021). Furthermore, three very low- cardiovascular -

frequency oscillations, one at approximately 0.04 Hz linked to neurogenic activity in 

vessel walls and two others at approximately 0.01 and 0.007 Hz related to vascular 

endothelial function, should also be considered (Stefanovska, 2007). 

Taking all these factors into account, we selected a frequency range of [0.01, 0.09] 

Hz, which aimed to encompass the highest passband while still eliminating the 

aforementioned frequency oscillations. We could not remove neurogenic frequency 
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oscillation because it was too close to our stimulation frequency. Furthermore, we 

included the second harmonic of our stimulation frequency, which contains significant 

relevant information (Pinti et al., 2019). To achieve this, we employed a Gaussian 

smoothing low-pass filter with a cut-off frequency of 0.09 Hz and a Butterworth high-

pass filter with a cut-off frequency of 0.01 Hz. 

The Gaussian smoothing low-pass filter is employed to eliminate high-frequency 

noise while retaining lower-frequency content in the data. The Gaussian filter is 

preferred over Butterworth low-pass filters, because it maintains more frequencies in 

the data, which is crucial for subsequent general linear model (GLM) analysis (Brain-

Inovation, 2023). 

The Butterworth high-pass filter is used to remove low-frequency drifts in fNIRS data, 

which can vary considerably across subjects (Brain-Inovation, 2023). This filter 

allows for direct specification of the cut-off frequency in Hz and is implemented as a 

second-order filter in Satori. The Butterworth filter offers a smooth frequency 

response, ensuring that the filtered signal retains essential information relevant to the 

neural activity of interest (Brain-Inovation, 2023). 

 

9.3.8 Normalization 

In fNIRS data analysis, it is essential to normalize the data to enable meaningful 

comparisons across various channels and subjects. This is due to the significant 

differences in signal levels between channels, which arise from the physical and 

physiological properties of fNIRS measurements. Notably, the results of the general 

linear model (GLM), such as the significance of betas and contrasts, are not 

influenced by signal levels. However, normalizing data remains vital for comparing 

effect sizes across channels and conducting multi-subject analyses where signal 

levels can differ considerably among corresponding channels (Brain-Inovation, 

2023). 

For this study, we utilized the z-normalization technique. This method involves mean-

centring the signal in a channel by subtracting the mean and relating it to the signal's 

standard deviation fluctuations. By representing signal fluctuations in units of 
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standard deviation, the deviation of individual values or mean effects can be more 

easily understood and interpreted within standard statistical frameworks. 

 

9.3.9 Finished pre-processed data 

Here is a image showcasing the comparative visualization showcases the impact of 

applying Workflow 2 to preprocess the data. The figure demonstrates the removal of 

baseline drift through highpass filtering, illustrated by the black stippled line. As a 

result, the signal now fluctuates around the stippled line instead of being influenced 

by baseline drift. Additionally, the application of lowpass frequency filtering has 

significantly improved the clarity of the signal by removing rapid fluctuations. Also, 

the the baselinedrift and spikes has been removed with TDDR. Moreover, the z-

normalization process has transformed the signal range from -190 to 190 to a 

narrower range of -2 to 2.5, enhancing comparability, and also it made the amplitude 

of HbR (blue) equal to HbO. 

 

Figure 9-10 The comparative visualization showcases the impact of applying 

Workflow 2 to preprocess the data. 
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9.4 RESULTS FROM ANALYSIS 

In our study, we analyzed the fNIRS data from 60 participants, each tested under 5 

different conditions and with 42 fNIRS channels. Due to the large number of 

statistical tests performed (12,600 tests), we encountered the multiple comparisons 

problem, which could potentially increase the likelihood of false positives in our 

results. 

To address the multiple comparisons problem in our data analysis, we applied the 

False Discovery Rate (FDR) correction method by (Benjamini & Hochberg, 1995). 

This method controls the proportion of false positives among the significant results, 

rather than the overall number of false positives, making it a suitable choice for fNIRS 

data analysis (Lührs et al., 2022). 

By using the FDR correction, we aimed to identify truly significant channels while 

accounting for the multiple comparisons problem. The FDR method adapts to the 

amount of activity in the data and maintains a high sensitivity to detect true effects. 

As a result, we minimized the risk of false positives and ensured more accurate 

results in our fNIRS data analysis. With this approach, we were able to draw more 

reliable conclusions from our study. 

We proceeded to create several contrast maps. A contrast map is a statistical map 

that highlights brain regions with significant differences or relationships between 

conditions. The contrast map is then generated by applying the contrast to the beta 

weights across all channels, resulting in a statistical value, t-value, for each location. 

In GLM contrasts, the '>' symbol compares the effects of two conditions. A positive t-

value, colored red in 3D and 2D views, indicates the left side has a stronger effect, 

while a negative t-value, colored blue, means the right side has a stronger effect.  

 

Our GLM analysis looked at 4 different contrast maps: 

1. Happy/Neutral Congruent > Happy/Neutral Incongruent  

(Dot behind happy emotion vs. behind neutral emotion) 
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2. Fearful/Neutral Congurent > Fearful/Neutral Incongruent  

(Dot behind fearful emotion vs. behind neutral emotion) 

 

3. Happy/Neutral Congruent + Fearful/Neutral Congruent >  

Happy/Neutral Incongruent + Fearful/Neutral Incongruent  

(Dot behind most negative emotion > Dot behind most positive emotion) 

 

4. Happy/Neutral Incongruent + Fearful/Neutral Congruent >  

Happy/Neutral Congruent + Fearful/Neutral Incongruent 

(Dot behind emotional face > Dot behind neutral face) 

 

We found a significant difference in contrast map number 2 and 4. Here are the 

result: 

 

Contrast Map 2: This map identified a statistically significant difference in HbR 

concentration between two conditions: Fearful/Neutral Congruent trials > 

Fearful/Neutral Incongruent trials. The observed t-value of 2.544812 represents the 

magnitude of the difference between the conditions in terms of standard errors. The 

corresponding p-value of 0.01357, which is less than the commonly used threshold of 

0.05, suggests that this difference is unlikely to have occurred by chance alone. In 

practical terms, this result implies that there is a higher HbR concentration in the right 

ventral medial PFC when the dot is located behind the fearful face compared to when 

it is behind the neutral face. See images bellow to see the contrast map in 3D and 2D 

view. 
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Figure 9-11 3D illustration of significant differences in contras map 2. 

 

 

 

Figure 9-12 2D illustration of significant differences in contras map 2. 
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Contrast Map 4: This map revealed a statistically significant difference in HbR 

concentration at channel 15-15 between two conditions: Happy/Neutral Incongruent + 

Fearful/Neutral Congruent > Happy/Neutral Congruent + Happy/Neutral Incongruent. 

With a t-value of 2.961729 and a p-value of 0.004403 (which is below the commonly 

used threshold of 0.05), the observed difference is unlikely to be due to chance 

alone. In practical terms, this result indicates a higher HbR concentration in the right 

dorsal PFC when the dot is positioned behind a face expressing emotion compared 

to when it is behind a neutral face. See images bellow to see the contrast map in 3D 

and 2D view. 

 

 

Figure 9-13 3D illustration of significant differences in contras map 4.  
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Figure 9-14 2D illustration of significant differences in contras map 4. 
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10  CONCLUSION 

This master's thesis has successfully achieved its objectives by establishing a state-

of-the-art test laboratory, setting up a hybrid fNIRS/ET and hybrid EEG/ET system, 

designing an effective dot-probe experiment paradigm, and creating a 

comprehensive experiment procedure pipeline. The research was further 

strengthened by the large-scale experiment conducted using the combined approach 

of the two hybrid systems with the dot-probe task. Additionally, the study has 

developed a straightforward pipeline for fNIRS data pre-processing. 

The results of the multi-subject GLM analysis revealed two significant findings. First, 

there is a higher HbR concentration in the left orbitofrontal/ventral medial prefrontal 

cortex when the dot is located behind the fearful face compared to when it is behind 

the neutral face. Second, there is a higher HbR concentration in the left dorsal/ventral 

medial prefrontal cortex when the dot is positioned behind a face expressing emotion 

compared to when it is behind a neutral face. 

While the results are interesting, there is still a lot more to learn in this area. 

However, the progress made in this thesis shows that using fNIRS to study AB can 

help us get a better understanding of the underlying neural processes. 
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11  FUTURE WORK 

While the current study has provided some valuable insights into the neural 

mechanisms of AB by employing fNIRS systems, its main focus was to lay ground for 

future research. There are several promising avenues for future research that could 

further enhance our understanding of AB. 

 

1. Correlation analysis between hybrid fNIRS, ET data, and reaction time data: 

As a next step, it would be beneficial to perform an analysis that investigates 

the correlation between the hybrid fNIRS and ET data, and reaction time data 

on each participant. This could shed light on the relationship between neural 

activation, gaze patterns, and response times, and potentially reveal specific 

patterns of neural and behavioural activity that could serve as markers for AB. 

 

2. Correlation analysis between hybrid EEG, ET data, and reaction time data: 

Similarly, an analysis could be conducted that examines the correlation 

between the hybrid EEG and ET data, and reaction time data on each 

participant. This would allow for a more comprehensive understanding of the 

electrocortical dynamics underlying AB and the interplay between neural 

activity, gaze behaviour, and response times. 

 

3. Cross-modal correlation analysis of EEG and fNIRS signals using ET data as 

common ground: To further investigate the neural mechanisms of AB, it would 

be valuable to examine the correlation between the EEG and fNIRS signals, 

using the ET data as a common ground between them. This analysis could 

enable the identification of potential associations between the two modalities 

and allow for a more in-depth understanding of the underlying neural 

processes that contribute to AB. 
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13  APPENDIX 

 

A.1 STEP-BY-STEP GUIDE FOR EXPERIMENT PROCEDURE 

BEFORE PARTICIPANT ARRIVE 

1) Turn on equipment 

 “Cyber power” (black box under desk) 

  NIRScout [se photo] 10-15min before experiment start 

(ON-button is the green button on lower left corner) 

2) Prepare participant folder on experimenter PC (to the left), 

password: infrared 

 Go to desktop → Data → “participant ID”  

 Fill out experiment log  

 Check “Oversikt deltakere” on teams for age and participantID 

3) Make sure you have this equipment ready (hint to code: Bond) 

 

 

 

4) Set up fNIRS software  

 On experimenter PC (to the left) 

 Start program called NIRx NIRStar 15.2 

 Make sure the program is connected to the NIRScout. It should say online 

in the upper right corner. (If it says offline, try restart the program) 

 Double check if the right montage is selected. 

Configure Hardware --> Predefined Montages --> Choose montage: 

OccPrefr_16x16  

EEG EQUIPMENT 

 EEG-CAP, AMPLIFYER & 

BASESTATION 

 BOX FOR CLEANING EEG  

 SHAMPOO,CONDITIONER & 

HAIRDRYER 

 TOOTHBRUSH 

 GEL AND SYRINGES 

 MARKER (RED LIPLINER) 

 MEASURING TAPE 

 PAPERTOWELS AND TOWELS 

 

FNIRS EQUIPMENT 

 FNIRS CAPS (54, 56 AND 

58CM), NOTE WHICH CAP 

SIZE IS MOUNTED. WE 

MIGHT NEED TO 

CHANGE MONTAGE 

DURING EXPERIMENT 

 SHOWERCAP 

 HEADLIGHT 

 Q-TIP 



   

 

95 

 

 Choose storage directory  

File Options --> choose desktop\Data\ Participant ID .  

Name the file “[participant ID]_fnirs”  --> click save 

 Change file prefix 

Name the file prefix “[ParticipantID]_NIRS” 

 Make sure  exports data to Homer2 format is checked 

 Click “ok” 

 Write the participants’ age 

Configure hardware --> [Hb] Parametes --> Subject age. Click “ok 

 

5) Set up eye-tracking  

 Turn on the host-pc (laptop on the right) 

 After 30-60s the display should look like this [see 

photo]. That means the eye-tracker is ready for use. 

 

 

 Take light measurement 

 Close curtains and close the door 

 Put the light measure on the headstand and face the 

sensor towards the screen 

 Make sure you are not covering the light with your 

body 

 Measurements should be between 70-140 (usually its 

130±5) 

 If light measure over threshold, note it in experiment log 

 

6) Prepare syringes with gel 

 

7) Have wireless keyboard turned on and placed on the participant table 

 

8) Check that fNIRS caps looks fine (all 3 of them): 

 

 If the plastic clips are broken (the plastic holding the probes together): 

 Replace it. 

Note: Spare parts are in bag [see photo] 
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WHEN PARTICIPANT ARRIVE 

9) One experimenter meets participant and follow them to the lab 

10) Let them leave their stuff in the closets outside of the room  

 Turn off phone / watch 

 Take off earrings (if they are big) 

 Lock closet 

 Make sure they do not have makeup, if they do give them makeup 

remover. 

11) Read these instructions:   

Welcome to the experiment and thank you for participating. We will be in this room 

where we will conduct three different measurements, eyetracking, fNIRS and EEG. 

You will be given the opportunity to use the restroom between the tasks. If you need 

to use the restroom now, please let me know 

Before we begin, I need to make sure you have signed the consent form and filled 

out questionnaires in Nettskjema.  

o If not, don’t worry, you can do it now. The experiment will be a bit 

delayed because of this (it takes 10-15 minutes to fill out the forms). 

You should have received a link to the “Samtykkeskjema” via mail.  

Any questions? 

let us begin with the first measurement: eye-tracking and fNIRS 
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PREPARATIONS FOR FNIRS  

12)  Choose cap size  

 Ask participant to sit down on the chair  

 Measure around the head including inion and middle 

between eyebrows [se photo] 

 Choose cap size 54, 56 OR 58cm. If between sizes: 

Always round to closest size, preferably down! 

13) Write down head circumference size in the 

experimental log  

14) If fNIRS cap need to be changed,  

 One researcher starts recapping (takes 15.min) 

 The other researcher adjusts headstand and chair to match participant 

 Participant can go out of the testroom and chill om their phone 

 Remember to ensure that the cables are organized and arranged in a 

neat and orderly manner [see phot of fNIRS cap bellow]. 

 

15) Apply fNIRS-cap  

 Remember to adjust the arm holding the fNIRS cap 

 Let the participant attach the strap below the chin, should not be too 

tight/loose. <you should have room for a finger> 

 Distance between channel 12 and 13 (3cm) should be the same as 

distance between 13 and middle of the eyebrows  

 “Does this feel ok?” 

 If the plastic clips breaks (the plastic holding the probes together): 

 Remove fNIRS cap 

 Replace it. 

Note: Spare parts are in bag [see photo] 

 

 Arm should be above and close to the head [see picture right] 

 Ensure that the cables are organized and arranged in a neat and orderly 

manner [see photo left] 
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16) Calibration 

 Drag the Nirstar program over to the participant screen. 

 NB: Turn off the light before every calibration 

 Click the calibrate button in the NIRStar program 

Note: The participant need to stay completely still during 

calibration 

 All sections should be green, if problem, remove hair, twist on the 

detectors/sources to get better contact or use gel if it does not improve 

 

17) Put on shower cap  

 Run another calibration 

 If it does not improve after several attempts, note down acceptable (yellow 

or red) channels in the experimental log 

 Note down any error-messages in experimental log  

 Remember to drag the Nirstar program over to the experimenter 

screen. 
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PREPARATIONS FOR EYE TRACKER 

18) Start Psychopy program: 

 Go to desktop → Open program in desktop with name “FNIRS_psychopy” 

(Its in the red square under fNIRS programs) 

 Click run experiment in Psychopy  

 Type in [ParticipantID] 

 Make sure Psychopy is selected 

 Hover over psychopy icon at the taskbar. 

 Click on the grey window with text [see photo] (If no text in the 

window, choose the left-most grey window). 

 

 Go to the participant screen. 

 Check that the participants screen is grey with the text: “Ready for 

eye-tracking calibration, press enter two times to continue”. 

 Use the wireless keyboard. 

1. Press ‘enter’ two times to display eye-tracking camera. 

2. Use left and right arrow to change view to show the whole 

face. 

Hint: other navigation keys are displayed at the top left 

corner. 

 

19) Adjusting the eye tracker: 

 Ask participant to lean into the headstand. 

 If headstand not yet adjusted: 

 Ask participant to adjust chair so it is comfortable. 

 Adjust headstand so it is comfortable for participant. 

 If they have glasses, make sure they are tucked up as far as possible. 

 Note: If the glasses cause to much problem, remove them, and 

note it in experiment log 

 Make sure both pupils are visible on the display. 

 Turn red button to adjust eye-tracker 
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 Drag the red circles over each eye [see left photo] 

 Use the wheel under the eye-tracker (to the left) to adjust 

the sharpness: 

 Use left and right arrow to display each eye. 

 Adjust until you get as sharp picture as possible. 

 Ask participant to look at four corners. 

 The teal-dot part should have as little white as possible [see left on 

photo bellow] (Do this with each eye in focus in the display) 

 

 

20) Pre-Calibrating the eye tracker (done on the host-pc/laptop): 

 Find the perfect threshold --> in the grey rectangle --> click 

Auto [See photo] 

 Threshold CR should be between 215 to 240 

 Pupil threshold should be between 60 to 140 

 If thresholds are too high: 

  change illumination level to 75% 

 Try go through step 18 again. 

 If values still not in threshold → note down in 

experiment log. 

 To check if that threshold is good: 

 Participant should look to the four corners of the screen  

 The cross with the teal dot in the middle should keep pointing to 

the teal dot that is closest to the pupil [Middle and right on photo 

above illustrates what to avoid, Left shows how it should look] 

 

21) Calibrating and validating the eye-tracker (done on the host-pc/laptop): 

 “We will now run a quick calibration, please look at the dot at all times. 

Stare at the dot until it disappears. Do it slowly”. 

 Press C to initiate calibration mode. 

 Press Space to start calibration. 

 The figures/crosses should be aligned [see photo].  

 If calibration failed 

 Click restart and run calibration again 

Note: The reason it failed could be that 

participant  

22) Validate the calibration 

 Press V for validating the calibration. 

 Press space to start validation. 

 Both eyes should have a GOOD validation (Is written in the bottom left 

corner) 

 If not, run calibration and validation again: 

1. Click abort and then ‘c’ to restart calibration. 
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2. If does not work after several times, note values in 

experiment log. 

 Press ‘enter’ when validation is finished. 

23)  

 

24) When calibration is done 

 Make sure Psychopy is selected 

 Hover over psychopy icon at the taskbar (same as in section 17). 

(If no text in the window, choose the left-most grey window). 

 Click on the grey window with eye-tracker displayed. 

 Go to participant screen and use the wireless keyboard.  

 Press ‘O’ , wait 3 seconds and then ‘enter’. 

The participant screen should then turn black with the text: “From a scale 

to 0-9, how tired are you?”  Note: If the screen just stays black, exit 

psychopy and start from section 17) again. 

 Ask the participant and push the number they say. 

 The text “Researcher will start data collection now …. “ should then 

appear. 

Note: If the  
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START TASKS AND RECORDING (1/2) 

25) Double check that triggers are sent 

 In NIRStar, go to Configure Hardware --> Data streaming --> Receive 

triggers(LSL) --> Test connection (should be ok).  

26) Read these instructions: 

We will now begin the task on the computer. This task takes about 10 minutes. There 

will be instructions on the screen, but here is a short explanation: 

This is a reaction test, in each trial of the experiment will start with a small ‘+’ (plus 

sign) in the center of the screen. At all times keep your eyes fixated on the plus sign. 

After an initial period of fixation two stimuli will be briefly presented: one on each side 

of the screen. After these stimuli disappear, a small dot will appear either on the left 

or on the right side of the screen.  

Your task is to locate this dot: left or right. Use your left index finger on the “L” button 

on the keyboard to indicate leftsided target dots. Use your right index finger on the 

“R” button on the keyboard to indicate right-sided target dots.  

IT IS IMPORTANT THAT YOU RESPOND AS QUICKLY AS POSSIBLE. AS SOON 

AS YOU LOCATE THE DOT MAKE A RESPONSE. 

You can take a small break after this test if you like. One of us will stay in the room, 

just let us know when you are done.   

DO YOU HAVE ANY QUESTIONS? 
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27) Start the data collection: 

 Click the record button in NIRstar  

 NB: Make sure to have NIRstar signal graph in background 

 Click on the psychopy screen with black background and white text (If 

participant do not get the keyboard to work, this is because you have not 

clicked on the psychopy window) [See picture] 

 

 

 

 When ready, press ‘space’ on wireless keyboard. 

 Turn off the wireless keyboard and put it out of sight. 

 The text “The task goes as follows…” should appear 

 

28) One researcher must stay in the room to check: 

 No problem with the data collection (keep an eye on the graph) 

 Triggers are being sent (vertical dotted lines appearing on the graph) 

 No vertical lines: Cancel and call Sven (Phone: 99258430)  

 Know when the participant is done with the task. 

 NB: Be completely silent during the experiment and make sure phone is 

out of the room 

 

29) The participant can now start the experiment. 

 

WHEN PARTICIPANT IS DONE WITH TASKS (1/2) 

30) Stop recordings  

 On eyetracker (should be done automatically [screen should look like 

photo in section 5]) 

 On fNIRS (Nirstar → Stop button on right side) 

 Click ‘ok’ on message saying “Could not export coordinates ..”  
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 Shut down NirScout (Green button) 

 Shut down “Cyber power” (black box under desk) 

 Close all programs. 

31) Say to participant  

 “Thank you, first part out of two is done. Now we are going to take off the 

equipment” 

32) Take cap off participant  

 Do you want a break, or do you need to use the restroom? 

33) fNIRS equipment 

 Place fNIRS cap on Robscar 

 Lower arm holding fNIRS equipment 

34) Turn on wireless keyboard and place on participant table. 

 

PREPARATION FOR EEG 

Lower fNIRS arm, and place it a nice 

place 

35) Find mid-point (Cz) of the head 

 Measure distance between 

pre-auricular points (ear- 

ear) 

 divide by 2 to find middle 

 Mark with lipliner 

 Measure distance between nasion and inion 

 divide by 2 to find middle  

 Mark with lipliner 

 

36)  Apply EEG-cap  

 Put Cz (nr. 16 on cap) on the middle of the head (--where you have 

marked with the lipliner.) Keep ears free from hair.  

 Let the participant attach the strap below the chin, should not be too 

tight/loose.  

 

37) Connect reference to earlobe 

 Apply gel to silver plate before 

 

38) Connect cap to amplifier and turn on 

amplifier 

 Hold for 5 seconds or more 
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 When the receiver and the amplifier is connected, the blinking turns from a 

fast blinking to a slower blinking.  

 If it is blinking fast, it means it is not connected with the basestation 

 In data acquisition mode, the led is permanently on.  

 

39)  Set up EEG software  

 Open g.tec suite 

 Go to: Applications --> g.recorder 

 In g.recorder, choose setup  

File --> Load setup... --> choose DOT_PROBE_SETUP 

 add the EEG equipment 

 Settings --> select hardware --> g.Nautilus --> click arrow to right --> Click 

ok 

 Select montage 

File --> Load electrode montage --> select the file: gNautulus_32ch 

 

 

40) Start impedance check: 

  Go to Tools --> Impedance measurements. 

 Change topography to 2D topographic. 

 Under display option --> display mode --> choose Impedance values 

Click Start 

 Drag the impedance measurement window over to the participant screen.  

 

41) Improve impedance: 

 Start with the ground (GND) electrode before you do the other 

electrodes. 

 Remove hair carefully with the tip of the syringe (butterfly!!)  

 Fill the electrode with gel so you can see the gel coming up from the hole. 

 All electrodes should be green and have an impedance value below 25-30 

kΩ before starting experiment. 

 Experience a lot of problem with getting a good value? note it 

down in research log --> procced with the experiment 

 BE CAREFUL OF BRIDGING: The gel applied on two nearby 

electrodes may come in contact with each other, this Is called 

bridging 

1. How to notice: 

a. Nearby electrodes have the same value 

b. Nearby electrodes change value at the same time 

Note: If all electrodes turn black → Get better connection on ground 

electrode 

 

42) When impedance measurement is done: 



   

 

106 

 

 Click stop.  

 Drag it back to the experimenter screen. 

 Close impedance check 

 

43) Start dataviewing 

 TURN OFF FNIRS AND REMOVE ALL PHONES/ELECTRONIC OUTSIDE OF THE 

ROOM! 

 Press the dataviewing button (play button) 

 Press autoscale each channel to its individual min/max amplitudes 

If you have time, pull the screen over to the participant so they can look. They usually 

think this is cool  

44) Ask participant to: 

 Sit calm and look at screen (don’t talk and don’t move) 

 Blink 3 times --> look for frontal electrodes activation (Upper one at the 

screen) 

 Bite for 2 sec --> electrodes near middle should show more activity 

 Close eyes --> alpha activity on electrodes at the back of the head (more 

activation on bottom electrodes) 

45) Pause dataviewing (if relevant, pull the screen back to the experimenter pc) 

 

PREPARATIONS FOR EYE TRACKER 

46) Start Psychopy program: 

 Go to desktop → Open program in desktop with name “EEG_Psychopy” 

(Its in the red square under EEG programs) 

 Click run experiment in Psychopy  

 Type in [ParticipantID] 

 Hover over psychopy icon at the taskbar. 

 Click on the grey window with text [see photo] (If no text in the window, 

choose the left-most grey window). 

 
 Go to the participant screen. 
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 Check that the participants screen is grey with the text: “Ready for eye-

tracking calibration, press enter two times to continue”. 

 Use the wireless keyboard. 

 Press ‘enter’ two times to display eye-tracking camera. 

 Use left and right arrow to change view to show the whole face. 

 Other navigation keys are displayed at the top left corner. 

 

47) Adjusting the eye tracker: 

 Ask participant to lean into the headstand. 

 If they have glasses, make sure they are tucked up as far as possible. 

 Note: If the glasses cause to much problem, remove them, and 

note it in experiment log 

 Make sure both pupils are visible on the display. 

 Turn red button to adjust eye-tracker. 

 Drag the red circles over each eye [see left photo] 

 Use the wheel under the eye-tracker (to the left) to adjust 

the sharpness: 

 Use left and right arrow to display each eye. 

 Adjust until you get as sharp picture as possible. 

 Ask participant to look at four corners. 

 The teal-dot part should have as little white as possible [see left on 

photo bellow] (Do this with each eye in focus in the display) 

 

 

 

 

48) Pre-Calibrating the eye tracker (done on the host-pc/laptop): 
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 Find the perfect threshold --> in the grey rectangle --> click 

Auto [See photo] 

 Threshold CR should be between 215 to 240 

 Pupil threshold should be between 60 to 140 

 If thresholds are too high: 

  change illumination level to 75% 

 If values still not in threshold → note down in 

experiment log. 

 To check if that threshold is good: 

 Participant should look to the four corners of the screen  

 The cross with the teal dot in the middle should keep pointing to 

the teal dot that is closest to the pupil [Middle and right on photo 

above illustrates what to avoid, Left shows how it should look] 

 

49) Calibrating and validating the eye-tracker (done on the host-pc/laptop): 

 “We will now run a quick calibration, please look at the dot at all times. 

Stare at the dot until it disappears”. 

 Press C to initiate calibration mode. 

 Press Space to start calibration. 

 The figures/crosses should be aligned [see photo].  

 

50) Validate the calibration: 

 Press V for validating the calibration. 

 Press space to start validation. 

 Both eyes should have a GOOD validation (Is written in the bottom left 

corner) 

 If not, run calibration and validation again: 

1. Click abort and then ‘c’ restart calibration 

2. If does not work after several times, note values in 

experiment log. 

 Press ‘enter’ when validation is finished.  

 

51) When calibration is done 

 Hover over psychopy icon at the taskbar (same as in section 17). 

 Click on the grey window with eye-tracker displayed. 

 Go to participant screen and use the wireless keyboard.  

 Press ‘O’, wait 3 seconds and then ‘enter’. 

 The participant screen should then turn black with the text: “From a scale 

to 0-9, how tired are you?” Note: If the screen just stays black, exit 

psychopy and start from section 17) again. 

 Ask the participant and push the number they say. 

 The text “Researcher will start data collection now …. “ should then 

appear. 
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START TASKS AND RECORDING (2/2) 

52) Read these instructions: 

We will now begin the final out of two tasks on the computer. This tasks takes about 

20 minutes. There will be instructions on the screen, but here is a short explanation: 

The first task requires you to sit still and relax while looking at a fixation cross (‘+’ 

sign). This task will take 2,5minutes. 

The second next task is the same, but with closed eyes. You will hear a beep when it 

is done.   

The third is the same as the one you did before with the two images, the reaction 

test. In the reaction test, IT IS IMPORTANT THAT YOU RESPOND AS QUICKLY AS 

POSSIBLE. AS SOON AS YOU LOCATE THE DOT MAKE A RESPONSE. 

The fourth is a number of short visual tasks which consists of following you a dot with 

your gaze, looking at pictures and ‘find Waldo’ tasks. 

DO YOU HAVE ANY QUESTIONS? 

 

53) Start the data collection: 

 Click the record button in g.recorder  

 Choose path for the patticipant folder   

1. Skrivebord→Data → Participant ID  

 Filename “ParticipantID_EEG_” 

 NB: Make sure to have g.recorder signal graph in background 

 Turn volume to 40% 

 

 Click on the psychopy screen with black background and white text (If 

participant do not get the keyboard to work, this is because you have not 

clicked on the psychopy window) [See picture] 
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 When ready, press ‘space’ on wireless keyboard. 

 Turn off the keyboard and put it out of sight. 

 The text “You are now going to go through a number of tasks…” should 

appear 

 

54) One researcher leaves the room the other must stay in the room to check: 

 Don’t click anything on the experimenter PC, this will disrupt the 

program! 

 No problem with the data collection (keep an eye on the graph) 

 Triggers are being sent (vertical dotted lines appearing on the graph) 

 No vertical lines: Cancel and call Sven (Phone: 99258430)  

 Know when the participant is done with the task. 

 NB: Be completely silent during the experiment and no phone inside the 

lab  

 

55) When one researcher has left, let the participant know they can start the 

experiment. 
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WHEN PARTICIPANT IS DONE WITH TASKS (2/2) 

56) STOP EEG recording. 

57) Close all programs (including psychopy) 

58) Help participant take off the cap: 

 Reference electrode on the earlobe 

 Disconnect cap from amplifier. 

 Turn off amplifier.  

 Take off cap gently 

59) Give participant giftcard 

 Ask participant to note down giftcard number and sign paper.  

 get giftcard-paper from participant and store it in the pink folder. 

60) Give participant: 

 Towel 

 Shampoo 

 Conditioner  

 And guide to shower (in basement downstairs) 

61) Say thank you and goodbye. 
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AFTER EXPERIMENT  

STORE DATA TO TSD (TAKES ~20 MIN TO UPLOAD DATA, SO 

DO THIS BEFORE COMPLETING OTHER TASKS) 

62) Copy and drag data into the participant folder 

 Go to Eye_FNIRS → “[ParticipantID]_NIR_time 

 Copy from file with name “[ParticipantID]_NIR_time.EDF 

“(EyeLink Data File). 

 Go to Eye_EEG → “[ParticipantID]_EEG_time 

 Copy file with name “[ParticipantID]_EEG_time.EDF “(EyeLink 

Data File). 

 Go to folder with name “EEG_Data_Psychopy” 

 Copy excel file named “[ParticipantID]_EEG_DP_time” 

  Go to folder with name “FNIRS_Data_Psychopy” 

 Copy excel file named “[ParticipantID]_FNIRS_DP_time” 

 

63) Make sure all this data is inside the participant folder (7 in total) :  

1. Folder with name “[ParticipantID]_fNIRS “ 

2. [ParticipantID]_EEG_date_time.hdf5” 

3. [ParticipantID]_NIR_time.EDF 

4. [ParticipantID]_EEG_time.EDF  

5. [ParticipantID]_EEG_DP_time.csv 

6. [ParticipantID]_FNIRS_DP_time.csv 

7. Log_ParticipantID.docx 

64) Create ZIP file  

 Go to desktop → data  

 Mark folder with name «Participant ID» → right click → choose “Send til» 

→ choose «komprimmert zippet mappe» 

65) Go to TSD to import files  

 Go to desktop → Click the TSD icon (under “data storage and experimental 

log”) 

 If it does not work, go to this link in chrome :  

 https://data.tsd.usit.no/i/30b8a851-1476-440c-b20d-

916a03ae5a81 

 Click “login”  

https://data.tsd.usit.no/i/30b8a851-1476-440c-b20d-916a03ae5a81
https://data.tsd.usit.no/i/30b8a851-1476-440c-b20d-916a03ae5a81
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 Click “Import Files”  and add the ZIP folder in desktop → data → 

“[ParticipantID].z” 

 Press “Import” and wait for the data to be uploaded  
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66) Put EEG amplifier to charging:  

 Turn device off. Remove from housing to ensure direct connection.  Put on 

charging plate  The LED turns on when charging, with a bit different color. 

Batteri can measure 10 hours conitnius recording. 2-2,5 hours to recharge 

again. Can be on charging plate.  

67) Cleaning the EEG cap: 

 Attach the EEG cap to the neckband (always have around your neck when 

you are cleaning!) 

 Get the washing bowl, toothbrush and small brushes 

 Fill bowl with lukewarm water/ or use the sink in the toilet (if not too busy) 

 Use the toothbrush and small brushes to clean the EEG 

 START TO CLEAN REF and GND 

 Clean both sides of each electrode thoroughly (also in the holes) 

 Can use hair dryer If you need to dry quickly, don’t be too close. Half a 

meter. 

 Clean the top of gel flask 

 Clean syringes 

 Make sure NO GEL is left, this will dry out and ruin the electrodes 

 

68) EyeT 

 Clean stativ with wipes 

If relevant: collect towel from participant in shower in basement 

 

Fill out giftcard file  

Teams channel “datacollection 23” --> giftcard 
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CHECKLIST AFTER EXPERIMENT  

•  Experiment log is filled out  
• All equipment is turned off   

o Computers   
o fNIRS   
o EEG amplifier  
o Eye-tracker   

• Equipment is cleaned  
o EEG cap (all electrodes including reference)  
o Syringes  
o Top of gel   

• All equipment is placed inside the grey drawer and locked   
• Amplifier for EEG is charging   
• Cabins are clean   

o Clean table   
o No food/other stuff   

• Make sure the file has been stored correctly. (Check participant folder).   
It should contain:  

o Folder with name “[ParticipantID]_fNIRS “  
o [ParticipantID]_EEG_date_time.hdf5”  
o [ParticipantID]_NIR_time.EDF  
o [ParticipantID]_EEG_time.EDF   
o [ParticipantID]_EEG_DP_time.csv  
o [ParticipantID]_FNIRS_DP_time.csv 
Log_ParticipantID.docx  

• Participant folder is imported into TSD  
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Electronic and Chemical Engineering, Pilestredet 35, Oslo, Norway, 0166 
bOslomet-Oslo Metropolitan University, Faculty of Health Sciences, Department of Nursing and Health 

Promotion, Pilestredet 32, Oslo, Norway, 0166 

 

 

 

Abstract. Over the past decade, there has been a notable increase of 13% in mental health issues. Approximately 

one in five children and adolescents globally suffer from a mental health problem. Cognitive biases, such as 

attentional bias (AB), may contribute to the onset and persistence of mental health disorders. AB can be defined 

as the tendency to selectively attend to or focus on certain stimuli while ignoring others, where someone with a 

negative AB have a disproportional attention to negative stimuli. Understanding the underlying neural processes 

involved in AB and identifying reliable biomarkers may be important in developing successful interventions for 

mental health disorders. The dot-probe task is one of the most widely experiments used to detect AB, where it uses 

reaction time as a measurement of AB. However, traditional methods for assessing AB using RT indices have 

demonstrated weak internal consistency and limited test-retest dependability. This suggest using other 

measurements in combination with the dot-probe task could help enhance our understanding of AB. A large-scale 

experiment on 60 healthy women between 18-30 was conducted, using functional near-infrared spectroscopy 

(fNIRS) in combination with the dot-probe task. A multi-subject GLM analysis was done on the fNIRS data, which 

focused on detecting significant variations in oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) concentrations 

between congruent (dot behind the face with the most negative emotion) and incongruent dot-probe trials in the 

prefrontal cortex (PFC) and visual cortex regions of the brain. The results of the multi-subject general linear model 

(GLM) analysis revealed two significant findings: (1) a higher HbR concentration in the right ventral medial PFC 

when the dot is located behind the fearful face compared to when it is behind the neutral face, and (2) a higher 

HbR concentration in the right dorsal PFC when the dot is positioned behind a face expressing emotion compared 

to when it is behind a neutral face. These findings highlight the potential of using fNIRS to study AB. 

 
Keywords: functional near-infrared spectroscopy (fNIRS), Attentional bias (AB), dot-probe task, Prefrontal 

cortex (PFC). 

 
*Peyman Mirtaheri, E-mail: peymanm@oslomet.no  

 

Introduction 

Over the past decade, there has been a notable increase of 13% in mental health issues. 

Approximately one in five children and adolescents globally suffer from a mental health 

problem, with suicide ranking as the second most common cause of death for individuals aged 

15-29. Depression and anxiety have a combined economic impact of US$ 1 trillion annually 

(WHO, 2023). 

  

Cognitive biases, such as AB, may contribute to the onset and persistence of mental health 

disorders. AB can be defined as the tendency to selectively attend to or focus on certain 

stimuli while ignoring others, where someone with a negative AB pays disproportional 

attention to negative stimuli. For instance, individuals with depression often focus 

disproportionately on dysphoric stimuli, while those with anxiety are prone to being easily 

side-tracked by potential threats (Barry et al., 2015; Disner et al., 2011).  

mailto:peymanm@oslomet.no
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Understanding the underlying neural processes involved in AB and identifying reliable 

biomarkers may be important in developing successful interventions for mental health 

disorders. By incorporating cost-efficient and portable cognitive and neurofunctional 

measures of AB alongside conventional mental health evaluations, we can potentially enhance 

the accuracy of individualized treatment response predictions (Barry et al., 2015). 

 

Numerous computerized experimental tasks have been utilized by researchers to investigate 

AB. The tasks employed include spatial cueing-, visual search-, Stroop-, and dot-probe tasks 

(Chew, 2015). Among these, the dot-probe task is regarded as the "gold standard" by some 

experts, as it remains the most widely employed technique in AB research (Kappenman et al., 

2014; Torrence & Troup, 2018). The task employs reaction time (RT) as an indicator of AB.  

However, traditional methods for assessing AB using RT indices have demonstrated weak 

internal consistency and limited test-retest dependability, as reported in various studies 

(Brown et al., 2014; Schmukle, 2005; Staugaard, 2009). Researchers have also investigated 

other RT-based metrics, such as those based on variability, but these alternatives have proven 

to be inconsistent as well (Carlson & Fang, 2020; Naim et al., 2015; Price et al., 2015). 

Incorporating supplementary assessment methods could offer additional insights into AB 

(Carlson, 2021; Carlson & Fang, 2020).  

 

To better understand AB, measurement of different brain activities has been used in 

combination with the dot-probe task, mainly electrical and perfusion. Electrical activity refers 

to the changes in electrical potentials generated by neurons, which can be measured using 

Electroencephalography (EEG). Perfusion changes refer to the changes in blood flow and 

oxygenation levels in the brain, which can be measured using functional magnetic resonance 

imaging (fMRI) and fNIRS (Carlson & Fang, 2020; Price et al., 2014; Torrence, 2015). 

Electrical and perfusion changes are linked together through neurovascular coupling, where 

an increase in neuronal activity drives changes in blood flow and oxygenation to meet the 

demands of active brain regions, resulting in concentration changes in HbO and HbR (Khan et 

al., 2021). 

 

Although fNIRS is relatively new and unexplored in AB research, it presents several 

advantages over fMRI, including measurements of both HbO and HbR, superior temporal 

resolution, substantially cheaper equipment, and the capacity to assess changes in cortical 

regions   in more natural settings compared to fMRI machines (Ehlis et al., 2014). fNIRS uses 

at least two wavelengths of light to measure concentration changes in HbO and HbR. The 

procedure involves sending near-infrared light into the brain tissue through the skull, where 

Hb absorbs it in the blood. Depending on the oxygenation status of the Hb, different amounts 

of light are absorbed by it. fNIRS can determine which regions of the brain are active during a 

specific task or at rest by observing these changes (Quaresima & Ferrari, 2019). 

 

While research on AB using fNIRS is limited, one investigation observed alterations in HbO 

concentrations in both the medial PFC and bilateral PFC during congruent and incongruent 

trials in a dot-probe task involving fearful faces (Torrence, 2015). This finding suggests that 

fNIRS might be a valuable tool for examining AB. In addition, a recent systematic review on 

AB recommended a multimodal approach to measuring AB to improve the reliability and 

validity of assessments (Carlson, 2021). By combining multiple measures, it may be possible 

to gain a more comprehensive understanding of AB and its underlying neural processes. 
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Methods 

Participants 

Sixty healthy adult female participants, selected from a random population, took part in the 

experiment. All participants were within the age range of 18 to 30 years. As part of our 

inclusion criteria, all participants were required to be in good health and not on any 

medication. Normal vision or vision corrected to normal was a prerequisite for participation. 

The exclusion criteria were established to eliminate potential confounding variables that could 

influence the study outcomes. These included severe psychopathology, brain injury, 

neurological disorder, or any medication use. We aimed to ensure that our sample was as 

representative as possible of the general population, excluding any factors that could 

potentially skew the results.  

 

Recruitment and ethics 

To recruit participants for the experiment, we used multiple methods such as personal 

networks, social media, and Instagram ads. Participants were directed to an online survey 

portal called "Nettskjema" by scanning a QR code. This service, provided by the University 

of Oslo (UiO), allowed for secure data storage with restricted access limited to researchers 

and students related to the project. Upon meeting eligibility criteria, participants were 

contacted by the researcher to schedule an appropriate time for testing. A consent form was 

sent to the participants, and they were asked to return a signed form before the scheduled 

experiment. 

 

We applied for ethical approval from the Regional Committee for Medical and Health 

Research Ethics (REK) and stated that only "healthy" participants would be included. To 

protect privacy, each participant was assigned a unique ID number, and personal information 

was stored in a separate paper document under lock and key. All data will be initially stored 

on a local device and then uploaded to a cloud service called "Tjenester for sensitive data" 

(TSD), designed specifically for sensitive data storage. Consent forms was stored separately 

and deleted from the researcher's email inbox. 

 

Instrumentation 

The fNIRS equipment used is the NIRScout system, manufactured by NIRx (Berlin, 

Germany). This equipment utilizes continuous-wave technology to measure Hb levels. This 

system applies two wavelengths of 760nm and 850nm with optical fibres. Our experimental 

setup employs a 42-channel, 16x16 prefrontal and occipital cortex montage, adhering to the 

standard 10/20 arrangement. The sampling rate for our study is set to 3.91 Hz. The probes on 

the NIRScout are wired, we have therefore attached a cable holder to the table to alleviate the 

weight of the wires on the participant's head, ensuring their comfort. The NIRStar 15-3 

software, which is included with the NIRScout system, was used for the data-acquisition. 
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Fig. 1: (a) fNIRS montage setup and (b) experimental setup. 

 

 

Experimental setup and instruction 

The experiment was conducted in a carefully controlled setting. We maintained consistent 

lighting conditions for all participants and utilized a shower cap on the fNIRS device to shield 

it from outside light. Although we minimized external noise as much as possible, we were 

unable to eliminate the low hum of a nearby tram. However, we anticipated that this faint 

noise would not significantly affect the results. A 1080p monitor, measuring 53x30cm, was 

used for the experiment. Participants were seated comfortably in a chair with their heads 

resting on a headstand, positioned approximately 115cm away from the screen. Before the 

experiment began, we provided them with a clear verbal explanation of the task they would be 

undertaking. This was supplemented with written instructions displayed prior to the start of 

the experiment. To record participants' responses, we employed a response box created by 

SR-research. The buttons were labelled 'L' for left and 'R' for right. Participants were 

instructed to rest their left index finger on the left button and their right index finger on the 

right button. 

 

Experiment design 

Each trial starts with a white fixation cross displayed at the center of the screen for a 

randomized duration of either 750ms or 1250ms. The fixation cross remains visible until the 

dot disappears. Two faces (happy/neutral, fearful/neutral, or neutral/neutral pairs) are 

presented for 1200ms, spanning 5° × 7° of the visual field, with roughly 14° separating the 

innermost borders of the facial stimuli. Immediately after the faces vanish, a white dot 

appears behind either the left or right image, centered within the picture. Trials are 

categorized as congruent if the dot is behind the face with the most negative emotion (e.g., 

behind the neutral face in happy/neutral pairs), and incongruent otherwise. 

(a

) 

(b

) 
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Participants are required to indicate the dot's location by pressing the 'left' or 'right' button on 

the response box with their index finger. Following their response, a black screen is displayed 

for 1500ms, marking the end of the trial. 

 

The participants completed twenty blocks, each consisting of four trials. Each condition is 

presented an equal number of times (four instances per condition): neutral/neutral, 

happy/neutral congruent, happy/neutral incongruent, fearful/neutral congruent, and 

fearful/neutral incongruent. Each block maintains an equal ratio of male to female faces, dot 

locations (left/right), and time jitter (750ms/1250ms). Additionally, a unique face is displayed 

in every trial, ensuring no repetitions. The participant goes through a total of 80 different 

trials. 

 

After completing each block, participants are shown their best reaction time, followed by a 

15-second rest period. The order of blocks and trials within them is counterbalanced across 

participants. 

 

 
Fig. 2: Illustration of the experiment paradigm. 

 

Signal pre-processing 

For fNIRS data pre-processing and analysis, we employed the Satori software, developed 

collaboratively by Brain Innovation and NIRx. Satori was used for diverse tasks such as 

removing discontinuities, spikes, and truncation of the data points before and after the first 

and last stimuli appeared, respectively.  

 

Bad channels were identified using the criterion of the coefficient of variation (CV) of 7%. 

The coefficient of variation is equal to a hundred times the standard deviation divided by the 

mean value of the raw data measurements. A large value for CV is an indication of high 

noise.  

 

Next, we converted the data. The steps involved include converting intensity time-series into 

attenuation shifts (optical density) and then into concentration changes of HbO and HbR. 
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Although Satori doesn't reveal its calculation method, it's typically done using the modified 

Beer-Lambert law (Delpy et al., 1988). 

 

Determining event block duration is challenging due to varying reaction times across trials. 

Satori only allows setting a uniform duration for all events, making individual adjustments 

laborious with 20 different events for 60 participants. To resolve this, we calculated an 

average event duration using the mean reaction time of all participants, which turned out to be 

16.1 seconds (with a standard deviation of 0.37 seconds). This uniform duration might 

influence the fNIRS analysis results as some blocks may include rest period data or exclude 

relevant data. However, the impact is likely minimal due to the low sampling rate of fNIRS 

technology, which limits potential data loss or inclusion within the 16.1-second block. 

Moreover, the small standard deviation of 0.37 seconds suggests that the fixed block duration 

is unlikely to significantly alter the fNIRS analysis results. 

 

We then used Temporal Derivative Distribution Repair (TDDR) to correct motion artefacts 

like spikes and baseline shifts. This is a motion correction technique developed by (Fishburn 

et al., 2019). 

 

We calculated our filter's cut-off frequencies following guidelines by (Pinti et al., 2019). We 

first determined the stimulation frequency range. Given that the stimulation block's duration 

varied, we found the minimum and maximum time using the mean plus or minus the standard 

deviation, resulting in values of 15.73 seconds and 16.47 seconds, respectively. With a rest 

time of 15 seconds, we estimated the stimulus frequency range to be approximately [0.0317, 

0.0325] Hz. Then we identified frequencies to include and exclude, such as heartbeats (1 Hz), 

respiration (0.3 Hz), and Mayer waves (0.1 Hz). Considering these factors, we selected a 

frequency range of [0.01, 0.09] Hz.  

 

We used a Gaussian smoothing low-pass filter (cut-off frequency of 0.09 Hz) to eliminate 

high-frequency noise, and a 2. Order Butterworth high-pass filter (cut-off frequency of 0.01 

Hz) to remove low-frequency drifts. The Gaussian filter preserves more frequencies, which 

was recommended in the Satori manual for subsequent GLM analysis (Brain-Inovation, 

2023). 

 

We utilized the z-normalization technique, which involves mean-centring the signal in a 

channel, relating it to the standard deviation fluctuations. This helps in understanding the 

deviation of individual values or mean effects within standard statistical frameworks. 

 

Analysis 

We conducted an analysis using a multi-subject GLM approach in Satori, where we followed 

the Satori Multi-Subject GLM Guide (Lührs et al., 2022) and Satori user manual (Brain-

Inovation, 2023). The GLM analysis assumes that the residuals (the noise in the data) are 

uncorrelated. However, fNIRS data often contain serial correlations due to trends or 

physiological noise. To improve the accuracy of the GLM, these correlations were removed. 

Satori uses a process called pre-whitening to remove these, more info about this can be found 

in the Satori user manual (Brain-Inovation, 2023).  

 

We selected Separate Subject Analysis, which involves estimating subject-specific beta 

values for each subject and condition within the Multi-Study GLM list. This approach follows 
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the classical methodology for calculating a Random Effects GLM, which allows for potential 

generalization of effects beyond the measured sample. 

 

To address the multiple comparisons problem in our data analysis, we applied the False 

Discovery Rate (FDR) correction method by (Benjamini & Hochberg, 1995). This method 

controls the proportion of false positives among the significant results, rather than the overall 

number of false positives, making it a suitable choice for fNIRS data analysis (Lührs et al., 

2022). By using the FDR correction, we aimed to identify truly significant channels while 

accounting for the multiple comparisons problem. The FDR method adapts to the amount of 

activity in the data and maintains a high sensitivity to detect true effects. As a result, we 

minimized the risk of false positives and ensured more accurate results in our fNIRS data 

analysis.  

 

We proceeded to create several contrast maps. A contrast map is a statistical map that 

highlights brain regions with significant differences or relationships between conditions. The 

contrast map is then generated by applying the contrast to the beta weights across all 

channels, resulting in a statistical value, t-value, for each location. In GLM contrasts, the '>' 

symbol compares the effects of two conditions. A positive t-value, colored red in 3D and 2D 

views, indicates the left side has a stronger effect, while a negative t-value, colored blue, 

means the right side has a stronger effect.  

 

Results 

 

Our GLM analysis looked at 4 different contrast maps: 

 

1. Happy/Neutral Congruent > Happy/Neutral Incongruent  

(Dot behind happy emotion vs. behind neutral emotion) 

 

2. Fearful/Neutral Congruent > Fearful/Neutral Incongruent  

(Dot behind fearful emotion vs. behind neutral emotion) 

 

3. Happy/Neutral Congruent + Fearful/Neutral Congruent >  

Happy/Neutral Incongruent + Fearful/Neutral Incongruent  

(Dot behind most negative emotion > Dot behind most positive emotion) 

 

4. Happy/Neutral Incongruent + Fearful/Neutral Congruent >  

Happy/Neutral Congruent + Fearful/Neutral Incongruent 

(Dot behind emotional face > Dot behind neutral face) 

 

We found a significant difference in contrast map number 2 and 4. Here are the result: 

 

Contrast Map 2: This map identified a statistically significant difference in HbR 

concentration between two conditions: Fearful/Neutral Congruent trials > Fearful/Neutral 

Incongruent trials. The observed t-value of 2.544812 represents the magnitude of the 

difference between the conditions in terms of standard errors. The corresponding p-value of 

0.01357, which is less than the commonly used threshold of 0.05, suggests that this difference 

is unlikely to have occurred by chance alone. In practical terms, this result implies that there 

is a higher HbR concentration in the right ventral medial PFC when the dot is located behind 



   

 

123 

 

the fearful face compared to when it is behind the neutral face. See images below to see the 

contrast map in 3D and 2D view. 

 
 

 
Fig. 3: Illustration of significant differences in contras map 2: (a) 3D and (b) 2D. 

 

 

Contrast Map 4: This map revealed a statistically significant difference in HbR 

concentration at channel 15-15 between two conditions: Happy/Neutral Incongruent + 

Fearful/Neutral Congruent > Happy/Neutral Congruent + Happy/Neutral Incongruent. With a 

t-value of 2.961729 and a p-value of 0.004403 (which is below the commonly used threshold 

of 0.05), the observed difference is unlikely to be due to chance alone. In practical terms, this 

result indicates a higher HbR concentration in the right dorsal PFC when the dot is positioned 

behind a face expressing emotion compared to when it is behind a neutral face. See images 

bellow to see the contrast map in 3D and 2D view. 

 

 
 

 
 

Fig. 4: Illustration of significant differences in contras map 4: (a) 3D and (b) 2D. 

 

 

 

 

(a
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Discussion 

 

The findings of the study are consistent with prior research suggesting that distinct neural 

activation patterns underpin AB, as observed through neuroimaging approaches such as EEG 

with event-related potentials (ERP) and fMRI (Britton et al., 2013; Carlson & Fang, 2020; 

Price et al., 2014; Torrence & Troup, 2018).  

 

Neural chronometry of AB implies that distinct ERP components from EEG correspond to 

separate stages of information processing. Early stages of sensory processing are associated 

with the P1, N1, N170 (N1 component linked to processing of faces), and N2pc (N2 

component linked to selective attention) components, typically seen in posterior or sensory 

regions. In contrast, later stages of strategic processing, such as engagement and 

disengagement processes, are linked to P2, N2, and P3 components, usually detected in 

anterior or frontal areas (Carlson, 2021; Gupta et al., 2019; Torrence & Troup, 2018). 

 

Recent literature reviews indicate a growing interest in using ERPs as an AB outcome 

measure, with some components showing potential for valid and reliable measurements 

(Carlson, 2021; Torrence & Troup, 2018). For instance, the N2pc component has been 

recognized as a more dependable outcome measure than reaction time (Kappenman et al., 

2015; Reutter et al., 2017). However, the relevance of certain ERP components as indices of 

AB remains questionable. One study found no connection between the N2pc component and 

trait anxiety (Kappenman et al., 2014) . The P1 component has also been investigated, 

yielding inconsistent results (Carlson, 2021). Additional research is needed to corroborate and 

generalize these findings.  

 

fMRI has been used to investigate neural activation patterns connected to AB in populations 

experiencing anxiety, depression and those who are healthy (Britton et al., 2013; Hilland et 

al., 2020; Monk et al., 2006; Price et al., 2014). These studies have linked AB to activation in 

the limbic regions, anterior cingulate cortex (ACC), and prefrontal cortex (PFC). One study 

using an fMRI slow event dot-probe paradigm found reduced activation in the bilateral 

parahippocampal/hippocampal limbic region for non-anxious participants during incongruent 

trials, while anxious participants showed heightened activation during the same trials. A 

decrease in rdACC activity was observed for both groups during incongruent trials, 

suggesting that anxious individuals may have more difficulty regulating limbic responses 

when attention is shifted away from threats (Price et al., 2014). 

 

Research involving healthy participants performing the dot-probe task has revealed consistent 

activation in the ventral PFC and amygdala across two separate trials. The ventral PFC was 

activated when participants were exposed to 500ms of face-pair stimuli, while the amygdala 

was activated upon exposure to 17ms of face-pair stimuli. The study was unable to 

differentiate between incongruent and congruent trials (Britton et al., 2013). It has been 

suggested that the connectivity strength between the amygdala, ACC, and PFC is positively 

associated with the level of AB (Carlson et al., 2014; Carlson et al., 2013).  

 

Additional studies have shown relationships between the amygdala and visual cortex, with 

correlated activity when exposed to fearful faces (Morris et al., 1996; Pessoa et al., 2002). The 

visual cortex has also exhibited increased activity when exposed to emotional faces during the 

dot-probe task (Carlson et al., 2011; Pourtois et al., 2006).  
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In summary, investigations using EEG and fMRI techniques have so far connected the brain's 

emotional attention system to the amygdala, PFC, ACC and visual cortex, with the amygdala 

being the primary center (Torrence & Troup, 2018). 

 

fNIRS are not able to measure the deep brain structure, but since PFC has been linked to the 

deeper areas, we are able to measure the ‘shadows’ of these deeper processes. The contrast 

maps generated from our data reveal variations in HbR concentration in different PFC regions 

under different conditions. These findings align with the patterns observed in fMRI studies, 

where AB was associated with distinct activation in limbic regions, the ACC, and the PFC 

(Britton et al., 2013; Hilland et al., 2020; Monk et al., 2006; Price et al., 2014). Particularly, 

the higher HbR concentration in the ventral medial PFC observed in our study may mirror the 

activation patterns of the ventral PFC seen in fMRI studies. 

 

The fourth contrast map revealed a higher HbR concentration in the right dorsal PFC when 

the dot was positioned behind a face expressing emotion compared to when it was behind a 

neutral face. This finding aligns with studies that have suggested that the PFC plays a role in 

processing emotional stimuli, contributing to AB (Carlson et al., 2014; Carlson et al., 2013). 

 

The use of fNIRS in this study offers a unique perspective in the field dominated by eye-

tracking, EEG, and fMRI methods. Each of these methodologies has its strengths and 

limitations. For instance, ET provides valuable insights into overt behavior but may not fully 

capture covert attentional processes (Armstrong & Olatunji, 2012). EEG boasts high temporal 

resolution, but the functional significance of certain event-related potential components, such 

as P1 and N2pc, remains contentious (Carlson, 2021; Kappenman et al., 2014; Kappenman et 

al., 2015). fMRI provides detailed spatial resolution of brain activity but has limitations with 

regards to temporal resolution and ecological validity. 

 

In contrast, fNIRS offers a balance between spatial and temporal resolution and is less 

susceptible to movement artifacts (Quaresima & Ferrari, 2019). These results might suggest 

that fNIRS, despite its relative novelty, could provide a valuable and cost-effective tool for 

investigating AB. It offers the advantage over fMRI, measuring both HbO and HbR compared 

to only being able to measure total Hb (Ehlis et al., 2014). Our findings underscore the 

promise of fNIRS in identifying neural biomarkers of AB and suggest that it may provide a 

valuable supplement to existing methodologies. 

 

The current findings should be interpreted in the context of a growing body of literature 

advocating for a multimodal approach to measuring AB (Carlson, 2021). Such an approach 

could involve integrating data from ET, EEG, fMRI, and fNIRS to gain a more 

comprehensive understanding of the neural underpinnings of AB. 

 

 

Conclusion 

This study provides preliminary evidence for the detection of AB biomarkers using fNIRS. 

The observed hemodynamic differences in the PFC under varying conditions of the dot-probe 

task contribute to our understanding of the neural correlates of AB. However, further research 

is needed to replicate these findings and investigate their potential clinical implications in 

anxiety and depression. 
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Fig. 2 Illustration of the experiment paradigm. 
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A.3 FNIRS/ET PSYCHOPY CODE 

# --- Import packages --- 

from psychopy import locale_setup 

from psychopy import prefs 

from psychopy import sound, gui, visual, core, data, event, logging, clock, colors, 

layout, parallel 

from psychopy.constants import (NOT_STARTED, STARTED, PLAYING, PAUSED, 

                                STOPPED, FINISHED, PRESSED, RELEASED, FOREVER) 

 

import numpy as np  # whole numpy lib is available, prepend 'np.' 

from numpy import (sin, cos, tan, log, log10, pi, average, 

                   sqrt, std, deg2rad, rad2deg, linspace, asarray) 

from numpy.random import random, randint, normal, shuffle, choice as randchoice 

import os  # handy system and path functions 

import sys  # to get file system encoding 

 

import psychopy.iohub as io 

from psychopy.hardware import keyboard 

 

# Run 'Before Experiment' code from Start_and_end_code 

import __future__   

import pylink 

import os 

import platform 

import random 

import time 



   

 

130 

 

import sys 

from EyeLinkCoreGraphicsPsychoPy import EyeLinkCoreGraphicsPsychoPy 

from psychopy import visual, core, event, monitors, gui 

from PIL import Image  # for preparing the Host backdrop image 

from string import ascii_letters, digits 

 

 

#Setting up gloabl variable for reaction time and vas-scale 

global Reaction_Time_Display 

Reaction_Time_Display = 0 

global Reaction_Time_Record 

Reaction_Time_Record = 10 

global VAS 

global trigger_sent  

trigger_sent = False 

 

# Switch to the script folder 

script_path = os.path.dirname(sys.argv[0]) 

if len(script_path) != 0: 

    os.chdir(script_path) 

 

# Show only critical log message in the PsychoPy console 

from psychopy import logging 

logging.console.setLevel(logging.CRITICAL) 

 

#List to later be stored in excel document (this is the heading) 
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excel_list = 

[['Trial_Number','Participant_ID','Face_Stimuli_Left','Face_Stimuli_Right','Type','Face

_Pairs','Gender','Dot_Location','Response_Accuracy','Reaction_Time','Experiemnt_Ti

me', 'Time_Jitter', 'VAS']] 

 

 

#Variable  that is later combined with timer to decide when and what dot will show 

show_dot_left = False 

show_dot_right = False 

 

 

Trial_Number = 0 

 

 

# Set this variable to True if you use the built-in retina screen as your 

# primary display device on macOS. If have an external monitor, set this 

# variable True if you choose to "Optimize for Built-in Retina Display" 

# in the Displays preference settings. 

use_retina = False 

 

# Set this variable to True to run the script in "Dummy Mode" 

dummy_mode = False 

 

# Set this variable to True to run the task in full screen mode 

# It is easier to debug the script in non-fullscreen mode 

full_screen = True 

 



   

 

132 

 

 

# Set up EDF data file name and local data folder 

# 

# The EDF data filename should not exceed 8 alphanumeric characters 

# use ONLY number 0-9, letters, & _ (underscore) in the filename 

edf_fname = '' 

 

# Prompt user to specify an EDF data filename 

# before we open a fullscreen window 

dlg_title = 'Enter ParticipantID' 

dlg_prompt = 'Please enter a file name with 8 or fewer characters\n' + \ 

             '[letters, numbers, and underscore].' 

 

# loop until we get a valid filename 

while True: 

    dlg = gui.Dlg(dlg_title) 

    dlg.addText(dlg_prompt) 

    dlg.addField('ParticipantID:', edf_fname) 

    # show dialog and wait for OK or Cancel 

    ok_data = dlg.show() 

    if dlg.OK:  # if ok_data is not None 

        print('EDF data filename: {}’.format(ok_data[0])) 

    else: 

        print('user cancelled') 

        core.quit() 

        sys.exit() 



   

 

133 

 

 

    # get the string entered by the experimenter 

    tmp_str = dlg.data[0] 

    # strip trailing characters, ignore the ".edf" extension 

    edf_fname = tmp_str.rstrip().split('.')[0] 

 

    # check if the filename is valid (length <= 8 & no special char) 

    allowed_char = ascii_letters + digits + '_' 

    if not all([c in allowed_char for c in edf_fname]): 

        print('ERROR: Invalid EDF filename') 

    elif len(edf_fname) > 8: 

        print('ERROR: EDF filename should not exceed 8 characters') 

    else: 

        break 

 

 

# Set up a folder to store the EDF data files and the associated resources 

# e.g., files defining the interest areas used in each trial 

results_folder = 'Eye_FNIRS' 

if not os.path.exists(results_folder): 

    os.makedirs(results_folder) 

 

# We download EDF data file from the EyeLink Host PC to the local hard 

# drive at the end of each testing session, here we rename the EDF to 

# include session start date/time 

time_str = time.strftime("_%Y_%m_%d_%H_%M", time.localtime()) 
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session_identifier = edf_fname + "_FNIRS" + time_str 

 

# create a folder for the current testing session in the "results" folder 

session_folder = os.path.join(results_folder, session_identifier) 

if not os.path.exists(session_folder): 

    os.makedirs(session_folder) 

 

# Step 1: Connect to the EyeLink Host PC 

# 

# The Host IP address, by default, is "100.1.1.1". 

# the "el_tracker" objected created here can be accessed through the Pylink 

# Set the Host PC address to "None" (without quotes) to run the script 

# in "Dummy Mode" 

if dummy_mode: 

    el_tracker = pylink.EyeLink(None) 

else: 

    try: 

        el_tracker = pylink.EyeLink("100.1.1.1") 

    except RuntimeError as error: 

        print('ERROR:', error) 

        core.quit() 

        sys.exit() 

 

# Step 2: Open an EDF data file on the Host PC 

edf_file = edf_fname + "_FNIRS" + ".EDF" 
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try: 

    el_tracker.openDataFile(edf_file) 

except RuntimeError as err: 

    print('ERROR:', err) 

    # close the link if we have one open 

    if el_tracker.isConnected(): 

        el_tracker.close() 

    core.quit() 

    sys.exit() 

 

# Add a header text to the EDF file to identify the current experiment name 

# This is OPTIONAL. If your text starts with "RECORDED BY " it will be 

# available in DataViewer's Inspector window by clicking 

# the EDF session node in the top panel and looking for the "Recorded By:" 

# field in the bottom panel of the Inspector. 

preamble_text = 'RECORDED BY %s' % os.path.basename(__file__) 

el_tracker.sendCommand("add_file_preamble_text '%s'" % preamble_text) 

 

# Step 3: Configure the tracker 

# 

# Put the tracker in offline mode before we change tracking parameters 

el_tracker.setOfflineMode() 

 

# Get the software version:  1-EyeLink I, 2-EyeLink II, 3/4-EyeLink 1000, 

# 5-EyeLink 1000 Plus, 6-Portable DUO 
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eyelink_ver = 0  # set version to 0, in case running in Dummy mode 

if not dummy_mode: 

    vstr = el_tracker.getTrackerVersionString() 

    eyelink_ver = int(vstr.split()[-1].split('.')[0]) 

    # print out some version info in the shell 

    print('Running experiment on %s, version %d' % (vstr, eyelink_ver)) 

 

# File and Link data control 

# what eye events to save in the EDF file, include everything by default 

file_event_flags = 

'LEFT,RIGHT,FIXATION,SACCADE,BLINK,MESSAGE,BUTTON,INPUT' 

# what eye events to make available over the link, include everything by default 

link_event_flags = 

'LEFT,RIGHT,FIXATION,SACCADE,BLINK,BUTTON,FIXUPDATE,INPUT' 

# what sample data to save in the EDF data file and to make available 

# over the link, include the 'HTARGET' flag to save head target sticker 

# data for supported eye trackers 

if eyelink_ver > 3: 

    file_sample_flags = 

'LEFT,RIGHT,GAZE,HREF,RAW,AREA,HTARGET,GAZERES,BUTTON,STATUS,IN

PUT' 

    link_sample_flags = 

'LEFT,RIGHT,GAZE,GAZERES,AREA,HTARGET,STATUS,INPUT' 

else: 

    file_sample_flags = 

'LEFT,RIGHT,GAZE,HREF,RAW,AREA,GAZERES,BUTTON,STATUS,INPUT' 

    link_sample_flags = 'LEFT,RIGHT,GAZE,GAZERES,AREA,STATUS,INPUT' 
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el_tracker.sendCommand("file_event_filter = %s" % file_event_flags) 

el_tracker.sendCommand("file_sample_data = %s" % file_sample_flags) 

el_tracker.sendCommand("link_event_filter = %s" % link_event_flags) 

el_tracker.sendCommand("link_sample_data = %s" % link_sample_flags) 

 

# Optional tracking parameters 

# Sample rate, 250, 500, 1000, or 2000, check your tracker specification 

# if eyelink_ver > 2: 

#     el_tracker.sendCommand("sample_rate 1000") 

# Choose a calibration type, H3, HV3, HV5, HV13 (HV = horizontal/vertical), 

el_tracker.sendCommand("calibration_type = HV9") 

# Set a gamepad button to accept calibration/drift check target 

# You need a supported gamepad/button box that is connected to the Host PC 

el_tracker.sendCommand("button_function 5 'accept_target_fixation'") 

 

# Step 4: set up a graphics environment for calibration 

# 

# Open a window, be sure to specify monitor parameters 

#mon = monitors.Monitor('myMonitor', width=53.0, distance=115.0) 

win = visual.Window(size=(1920,1080), 

                    pos=(1920,0), 

                    winType='pyglet', 

                    units='pix') 

 

# get the native screen resolution used by PsychoPy 

scn_width, scn_height = win.size 
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# resolution fix for Mac retina displays 

if 'Darwin' in platform.system(): 

    if use_retina: 

        scn_width = int(scn_width/2.0) 

        scn_height = int(scn_height/2.0) 

 

# Pass the display pixel coordinates (left, top, right, bottom) to the tracker 

# see the EyeLink Installation Guide, "Customizing Screen Settings" 

el_coords = "screen_pixel_coords = 0 0 %d %d" % (scn_width - 1, scn_height - 1) 

el_tracker.sendCommand(el_coords) 

 

# Write a DISPLAY_COORDS message to the EDF file 

# Data Viewer needs this piece of info for proper visualization, see Data 

# Viewer User Manual, "Protocol for EyeLink Data to Viewer Integration" 

dv_coords = "DISPLAY_COORDS  0 0 %d %d" % (scn_width - 1, scn_height - 1) 

el_tracker.sendMessage(dv_coords) 

 

# Configure a graphics environment (genv) for tracker calibration 

genv = EyeLinkCoreGraphicsPsychoPy(el_tracker, win) 

print(genv)  # print out the version number of the CoreGraphics library 

 

# Set background and foreground colors for the calibration target 

# in PsychoPy, (-1, -1, -1)=black, (1, 1, 1)=white, (0, 0, 0)=mid-gray 

foreground_color = (-1, -1, -1) 

background_color = win.color 

genv.setCalibrationColors(foreground_color, background_color) 
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# Set up the calibration target 

# 

# The target could be a "circle" (default), a "picture", a "movie" clip, 

# or a rotating "spiral". To configure the type of calibration target, set 

# genv.setTargetType to "circle", "picture", "movie", or "spiral", e.g., 

# genv.setTargetType('picture') 

# 

# Use gen.setPictureTarget() to set a "picture" target 

# genv.setPictureTarget(os.path.join('images', 'fixTarget.bmp')) 

# 

# Use genv.setMovieTarget() to set a "movie" target 

# genv.setMovieTarget(os.path.join('videos', 'calibVid.mov')) 

 

# Use a picture as the calibration target 

genv.setTargetType('picture') 

genv.setPictureTarget(os.path.join('images', 'fixTarget.bmp')) 

 

# Configure the size of the calibration target (in pixels) 

# this option applies only to "circle" and "spiral" targets 

# genv.setTargetSize(24) 

 

# Beeps to play during calibration, validation and drift correction 

# parameters: target, good, error 

#     target -- sound to play when target moves 

#     good -- sound to play on successful operation 
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#     error -- sound to play on failure or interruption 

# Each parameter could be ''--default sound, 'off'--no sound, or a wav file 

genv.setCalibrationSounds('', '', '') 

 

# resolution fix for macOS retina display issues 

if use_retina: 

    genv.fixMacRetinaDisplay() 

 

# Request Pylink to use the PsychoPy window we opened above for calibration 

pylink.openGraphicsEx(genv) 

 

 

# define a few helper functions for trial handling 

 

 

def clear_screen(win): 

    """ clear up the PsychoPy window""" 

 

    win.fillColor = genv.getBackgroundColor() 

    win.flip() 

 

 

def show_msg(win, text, wait_for_keypress=True): 

    """ Show task instructions on screen""" 

 

    msg = visual.TextStim(win, text, 
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                          color=genv.getForegroundColor(), 

                          wrapWidth=scn_width/2) 

    clear_screen(win) 

    msg.draw() 

    win.flip() 

 

    # wait indefinitely, terminates upon any key press 

    if wait_for_keypress: 

        event.waitKeys() 

        clear_screen(win) 

 

 

def terminate_task(): 

    """ Terminate the task gracefully and retrieve the EDF data file 

 

    file_to_retrieve: The EDF on the Host that we would like to download 

    win: the current window used by the experimental script 

    """ 

 

    el_tracker = pylink.getEYELINK() 

 

    if el_tracker.isConnected(): 

        # Terminate the current trial first if the task terminated prematurely 

        error = el_tracker.isRecording() 

        if error == pylink.TRIAL_OK: 

            abort_trial() 
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        # Put tracker in Offline mode 

        el_tracker.setOfflineMode() 

 

        # Clear the Host PC screen and wait for 500 ms 

        el_tracker.sendCommand('clear_screen 0') 

        pylink.msecDelay(500) 

 

        # Close the edf data file on the Host 

        el_tracker.closeDataFile() 

 

        # Show a file transfer message on the screen 

        msg = 'EDF data is transferring from EyeLink Host PC...' 

        show_msg(win, msg, wait_for_keypress=False) 

 

        # Download the EDF data file from the Host PC to a local data folder 

        # parameters: source_file_on_the_host, destination_file_on_local_drive 

        local_edf = os.path.join(session_folder, session_identifier + '.EDF') 

        try: 

            el_tracker.receiveDataFile(edf_file, local_edf) 

        except RuntimeError as error: 

            print('ERROR:', error) 

 

        # Close the link to the tracker. 

        el_tracker.close() 
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    # close the PsychoPy window 

    win.close() 

 

    # quit PsychoPy 

    core.quit() 

    sys.exit() 

 

 

def abort_trial(): 

    """Ends recording """ 

 

    el_tracker = pylink.getEYELINK() 

 

    # Stop recording 

    if el_tracker.isRecording(): 

        # add 100 ms to catch final trial events 

        pylink.pumpDelay(100) 

        el_tracker.stopRecording() 

 

    # clear the screen 

    clear_screen(win) 

    # Send a message to clear the Data Viewer screen 

    bgcolor_RGB = (116, 116, 116) 

    el_tracker.sendMessage('!V CLEAR %d %d %d' % bgcolor_RGB) 

 

    # send a message to mark trial end 
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    el_tracker.sendMessage('TRIAL_RESULT %d' % pylink.TRIAL_ERROR) 

 

    return pylink.TRIAL_ERROR 

 

visual.Window(size=(1920,1080),pos=(1920,0),screen=2) 

 

# Step 5: Set up the camera and calibrate the tracker 

 

# Show the task instructions 

task_msg = 'Ready for eye tracker calibration\n'  

if dummy_mode: 

    task_msg = task_msg + '\nNow, press ENTER to start the task' 

else: 

    task_msg = task_msg + '\nNow, press ENTER twice to calibrate tracker' 

show_msg(win, task_msg) 

 

# skip this step if running the script in Dummy Mode 

if not dummy_mode: 

    try: 

        el_tracker.doTrackerSetup() 

    except RuntimeError as err: 

        print('ERROR:', err) 

        el_tracker.exitCalibration() 
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# Ensure that relative paths start from the same directory as this script 

_thisDir = os.path.dirname(os.path.abspath(__file__)) 

os.chdir(_thisDir) 

# Store info about the experiment session 

psychopyVersion = '2022.2.4' 

expName = 'FNIRS_DP'  # from the Builder filename that created this script 

expInfo = {} 

# --- Show participant info dialog -- 

dlg = gui.DlgFromDict(dictionary=expInfo, sortKeys=False, title=expName) 

if dlg.OK == False: 

    core.quit()  # user pressed cancel 

expInfo['date'] = data.getDateStr()  # add a simple timestamp 

expInfo['expName'] = expName 

expInfo['psychopyVersion'] = psychopyVersion 

 

# Data file name stem = absolute path + name; later add .psyexp, .csv, .log, etc 

filename = _thisDir + os.sep + u'data/%s_%s_%s' % (edf_fname, expName, 

expInfo['date']) 

 

# An ExperimentHandler isn't essential but helps with data saving 

thisExp = data.ExperimentHandler(name=expName, version='', 

    extraInfo=expInfo, runtimeInfo=None, 

    originPath='C:\\Users\\Sven Ivar Ougendal\\OneDrive - OsloMet\\Master - Brain 

Health projects - Sandra Klonteig et al. - Sven Master Thesis\\3 - Experiment 

paradigm\\FNIRS_Data_Psychopy\\FNIRS_Psychopy.py', 

    savePickle=True, saveWideText=False, 

    dataFileName=filename) 
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# save a log file for detail verbose info 

logFile = logging.LogFile(filename+'.log', level=logging.EXP) 

logging.console.setLevel(logging.WARNING)  # this outputs to the screen, not a file 

 

endExpNow = False  # flag for 'escape' or other condition => quit the exp 

frameTolerance = 0.001  # how close to onset before 'same' frame 

 

# Start Code - component code to be run after the window creation 

 

# --- Setup the Window --- 

win = visual.Window( 

    size=[1920, 1080], fullscr=True, screen=1,  

    winType='pyglet', allowStencil=False, 

    monitor='testMonitor', color='black', colorSpace='rgb', 

    blendMode='avg', useFBO=True,  

    units='height') 

win.mouseVisible = False 

# store frame rate of monitor if we can measure it 

expInfo['frameRate'] = win.getActualFrameRate() 

if expInfo['frameRate'] != None: 

    frameDur = 1.0 / round(expInfo['frameRate']) 

else: 

    frameDur = 1.0 / 60.0  # could not measure, so guess 

# --- Setup input devices --- 

ioConfig = {} 
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# Setup iohub keyboard 

ioConfig['Keyboard'] = dict(use_keymap='psychopy') 

 

ioSession = '1' 

if 'session' in expInfo: 

    ioSession = str(expInfo['session']) 

ioServer = io.launchHubServer(window=win, **ioConfig) 

eyetracker = None 

 

# create a default keyboard (e.g. to check for escape) 

defaultKeyboard = keyboard.Keyboard(backend='iohub') 

 

# --- Initialize components for Routine "start_and_eyetracking_calibration" --- 

# Run 'Begin Experiment' code from Start_and_end_code 

#Fetching ID for the excel document 

Participant_ID = edf_fname 

 

#Functin to map cordianates from psychopy 

def map_cord(x,y): 

    return (x-scn_width/2, y-scn_height/2) 

     

     

 

#Setting up LSL for sending triggers (for fNIRS) 

from pylsl import StreamInfo, StreamOutlet # import required classes 
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info = StreamInfo( 'TriggerStream', type='Markers', channel_count=1, 

channel_format='int32', source_id='Example') # sets variables for object info 

outlet = StreamOutlet(info) 

 

 

#Code for blockdesign 

global random_blocks_counter 

random_blocks_counter = 0 

 

global list_random_blocks 

list_random_blocks = [] 

a = 0 

b = 4 

 

for i in range(20): 

    list_random_blocks.append(range(a, b)) 

    a = b 

    b = a + 4 

 

random.shuffle(list_random_blocks) 

 

 

 

#list_random_blocks = [(0,3), (4, 7), (8, 11), (12, 15), (16, 19), (20, 23), (24, 27), (28, 

31), (32, 35), (36, 39), (40, 43), (44, 47), (48, 51), (52, 55), (56, 59), (60, 63), (64, 67), 

(68, 71), (72, 75), (76, 79)] 
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# --- Initialize components for Routine "vas_measure" --- 

vas_text = visual.TextStim(win=win, name='vas_text', 

    text='From a scale from 0 - 9, how tired are you?\n(Higher number = more tired)', 

    font='Open Sans', 

    pos=(0, 0), height=0.05, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=-1.0); 

vas_response = keyboard.Keyboard() 

 

# --- Initialize components for Routine "start_fnirs_reminder" --- 

reminder_eeg_data_collection_text = visual.TextStim(win=win, 

name='reminder_eeg_data_collection_text', 

    text='Researcher will start data collection now\n\nThe experiment will then start 

soon', 

    font='Open Sans', 

    pos=(0, 0), height=0.05, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=0.0); 

eeg_data_collection_on_key = keyboard.Keyboard() 

 

# --- Initialize components for Routine "dot_probe_task_info" --- 

task_info_text = visual.TextStim(win=win, name='task_info_text', 

    text="The next task goes as follows:\n1. A fixation cross will apear, followed by two 

pictures on each side of the screen. \n2. After a short time, the pictures will disapear 

and a DOT will apear on either side of the screen. \n3. You objective is to press 'L' or 
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'R' as fast a possible when the DOT apears. \n4. Your reaction time will apear on the 

screen.\n5. Then the task repeats itself. It will take aproximatly 10min\n6. You will 

then get informaition on the next task\n\nTo get ready, but your left indexfinger on 'L' 

and right indexfinger on 'R'\nPress 'L' or 'R' to start the task", 

    font='Open Sans', 

    pos=(0, 0), height=0.04, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=0.0); 

task_info_response = keyboard.Keyboard() 

 

# --- Initialize components for Routine "dot_probe_start_counter" --- 

dot_probe_text_counter = visual.TextStim(win=win, name='dot_probe_text_counter', 

    text='', 

    font='Open Sans', 

    pos=(0, -0.1), height=0.1, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=0.0); 

dot_probe_start_text = visual.TextStim(win=win, name='dot_probe_start_text', 

    text='Relax. The test starts in:', 

    font='Open Sans', 

    pos=(0, 0.1), height=0.1, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=-1.0); 
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# --- Initialize components for Routine "Fixation_Cross" --- 

fixation_cross = visual.ShapeStim( 

    win=win, name='fixation_cross', vertices='cross',units='pix',  

    size=(35, 35), 

    ori=0.0, pos=(0, 0), anchor='center', 

    lineWidth=0.02,     colorSpace='rgb',  lineColor='white', fillColor='white', 

    opacity=None, depth=-1.0, interpolate=True) 

 

# --- Initialize components for Routine "Faces_Stimuli" --- 

image_left = visual.ImageStim( 

    win=win, 

    name='image_left', units='pix',  

    image='sin', mask=None, anchor='center', 

    ori=0.0, pos=(-687, 0), size=(362, 506), 

    color=[1,1,1], colorSpace='rgb', opacity=None, 

    flipHoriz=False, flipVert=False, 

    texRes=128.0, interpolate=True, depth=-1.0) 

image_right = visual.ImageStim( 

    win=win, 

    name='image_right', units='pix',  

    image='sin', mask=None, anchor='center', 

    ori=0.0, pos=(687, 0), size=(362, 506), 

    color=[1,1,1], colorSpace='rgb', opacity=None, 

    flipHoriz=False, flipVert=False, 

    texRes=128.0, interpolate=True, depth=-2.0) 

fixation_cross_2 = visual.ShapeStim( 
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    win=win, name='fixation_cross_2', vertices='cross',units='pix',  

    size=(35, 35), 

    ori=0.0, pos=(0, 0), anchor='center', 

    lineWidth=0.02,     colorSpace='rgb',  lineColor='white', fillColor='white', 

    opacity=None, depth=-3.0, interpolate=True) 

 

# --- Initialize components for Routine "Dot_Stimuli" --- 

key_reaction = keyboard.Keyboard() 

dot1_left = visual.ShapeStim( 

    win=win, name='dot1_left',units='pix',  

    size=(25, 25), vertices='circle', 

    ori=0.0, pos=(-687, 0), anchor='center', 

    lineWidth=1.0,     colorSpace='rgb',  lineColor='white', fillColor='white', 

    opacity=None, depth=-2.0, interpolate=True) 

dot1_right = visual.ShapeStim( 

    win=win, name='dot1_right',units='pix',  

    size=(25, 25), vertices='circle', 

    ori=0.0, pos=(687, 0), anchor='center', 

    lineWidth=1.0,     colorSpace='rgb',  lineColor='white', fillColor='white', 

    opacity=None, depth=-3.0, interpolate=True) 

fixation_cross_3 = visual.ShapeStim( 

    win=win, name='fixation_cross_3', vertices='cross',units='pix',  

    size=(35, 35), 

    ori=0.0, pos=(0, 0), anchor='center', 

    lineWidth=0.02,     colorSpace='rgb',  lineColor='white', fillColor='white', 

    opacity=None, depth=-4.0, interpolate=True) 
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# --- Initialize components for Routine "Rest" --- 

reaction_time_text = visual.TextStim(win=win, name='reaction_time_text', 

    text=None, 

    font='Open Sans', 

    pos=(0, 0), height=0.05, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=-1.0); 

 

# --- Initialize components for Routine "inter_trial_interval" --- 

text = visual.TextStim(win=win, name='text', 

    text=None, 

    font='Open Sans', 

    pos=(0, 0), height=0.05, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=-1.0); 

reaction_time_text_2 = visual.TextStim(win=win, name='reaction_time_text_2', 

    text='Your best reaction time:', 

    font='Open Sans', 

    pos=(0, 0), height=0.05, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=-2.0); 
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reaction_time_numbers_2 = visual.TextStim(win=win, 

name='reaction_time_numbers_2', 

    text='', 

    font='Open Sans', 

    pos=(0, -0.1), height=0.05, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=-3.0); 

 

# --- Initialize components for Routine "experiment_ended" --- 

dot_probe_ended_text = visual.TextStim(win=win, name='dot_probe_ended_text', 

    text='Experiment is over\n\nThank you ', 

    font='Open Sans', 

    pos=(0, 0), height=0.05, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=0.0); 

 

# Create some handy timers 

globalClock = core.Clock()  # to track the time since experiment started 

routineTimer = core.Clock()  # to track time remaining of each (possibly non-slip) 

routine  

 

# --- Prepare to start Routine "start_and_eyetracking_calibration" --- 

continueRoutine = True 

routineForceEnded = False 
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# update component parameters for each repeat 

# keep track of which components have finished 

start_and_eyetracking_calibrationComponents = [] 

for thisComponent in start_and_eyetracking_calibrationComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "start_and_eyetracking_calibration" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 
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        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in start_and_eyetracking_calibrationComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "start_and_eyetracking_calibration" --- 

for thisComponent in start_and_eyetracking_calibrationComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# Run 'End Routine' code from Start_and_end_code 

#Hides the mouse when the experiment is running 

event.Mouse(visible=False) 
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# the Routine "start_and_eyetracking_calibration" was not non-slip safe, so reset the 

non-slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "vas_measure" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

vas_response.keys = [] 

vas_response.rt = [] 

_vas_response_allKeys = [] 

# keep track of which components have finished 

vas_measureComponents = [vas_text, vas_response] 

for thisComponent in vas_measureComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "vas_measure" --- 
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while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *vas_text* updates 

    if vas_text.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: 

        # keep track of start time/frame for later 

        vas_text.frameNStart = frameN  # exact frame index 

        vas_text.tStart = t  # local t and not account for scr refresh 

        vas_text.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(vas_text, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'vas_text.started') 

        vas_text.setAutoDraw(True) 

     

    # *vas_response* updates 

    waitOnFlip = False 

    if vas_response.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: 

        # keep track of start time/frame for later 

        vas_response.frameNStart = frameN  # exact frame index 

        vas_response.tStart = t  # local t and not account for scr refresh 

        vas_response.tStartRefresh = tThisFlipGlobal  # on global time 
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        win.timeOnFlip(vas_response, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'vas_response.started') 

        vas_response.status = STARTED 

        # keyboard checking is just starting 

        waitOnFlip = True 

        win.callOnFlip(vas_response.clock.reset)  # t=0 on next screen flip 

        win.callOnFlip(vas_response.clearEvents, eventType='keyboard')  # clear 

events on next screen flip 

    if vas_response.status == STARTED and not waitOnFlip: 

        theseKeys = vas_response.getKeys(keyList=['1','2','3','4','5','6','7','8','9'], 

waitRelease=False) 

        _vas_response_allKeys.extend(theseKeys) 

        if len(_vas_response_allKeys): 

            vas_response.keys = _vas_response_allKeys[-1].name  # just the last key 

pressed 

            vas_response.rt = _vas_response_allKeys[-1].rt 

            # a response ends the routine 

            continueRoutine = False 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 
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        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in vas_measureComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "vas_measure" --- 

for thisComponent in vas_measureComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# Run 'End Routine' code from vas_code 

VAS = vas_response.keys 

# check responses 

if vas_response.keys in ['', [], None]:  # No response was made 

    vas_response.keys = None 

thisExp.addData('vas_response.keys',vas_response.keys) 

if vas_response.keys != None:  # we had a response 

    thisExp.addData('vas_response.rt', vas_response.rt) 

thisExp.nextEntry() 

# the Routine "vas_measure" was not non-slip safe, so reset the non-slip timer 

routineTimer.reset() 
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# --- Prepare to start Routine "start_fnirs_reminder" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

eeg_data_collection_on_key.keys = [] 

eeg_data_collection_on_key.rt = [] 

_eeg_data_collection_on_key_allKeys = [] 

# keep track of which components have finished 

start_fnirs_reminderComponents = [reminder_eeg_data_collection_text, 

eeg_data_collection_on_key] 

for thisComponent in start_fnirs_reminderComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "start_fnirs_reminder" --- 

while continueRoutine: 

    # get current time 
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    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *reminder_eeg_data_collection_text* updates 

    if reminder_eeg_data_collection_text.status == NOT_STARTED and tThisFlip >= 

0.0-frameTolerance: 

        # keep track of start time/frame for later 

        reminder_eeg_data_collection_text.frameNStart = frameN  # exact frame index 

        reminder_eeg_data_collection_text.tStart = t  # local t and not account for scr 

refresh 

        reminder_eeg_data_collection_text.tStartRefresh = tThisFlipGlobal  # on global 

time 

        win.timeOnFlip(reminder_eeg_data_collection_text, 'tStartRefresh')  # time at 

next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'reminder_eeg_data_collection_text.started') 

        reminder_eeg_data_collection_text.setAutoDraw(True) 

     

    # *eeg_data_collection_on_key* updates 

    waitOnFlip = False 

    if eeg_data_collection_on_key.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 

        eeg_data_collection_on_key.frameNStart = frameN  # exact frame index 
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        eeg_data_collection_on_key.tStart = t  # local t and not account for scr refresh 

        eeg_data_collection_on_key.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(eeg_data_collection_on_key, 'tStartRefresh')  # time at next scr 

refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'eeg_data_collection_on_key.started') 

        eeg_data_collection_on_key.status = STARTED 

        # keyboard checking is just starting 

        waitOnFlip = True 

        win.callOnFlip(eeg_data_collection_on_key.clock.reset)  # t=0 on next screen 

flip 

        win.callOnFlip(eeg_data_collection_on_key.clearEvents, eventType='keyboard')  

# clear events on next screen flip 

    if eeg_data_collection_on_key.status == STARTED and not waitOnFlip: 

        theseKeys = eeg_data_collection_on_key.getKeys(keyList=['space'], 

waitRelease=False) 

        _eeg_data_collection_on_key_allKeys.extend(theseKeys) 

        if len(_eeg_data_collection_on_key_allKeys): 

            eeg_data_collection_on_key.keys = _eeg_data_collection_on_key_allKeys[-

1].name  # just the last key pressed 

            eeg_data_collection_on_key.rt = _eeg_data_collection_on_key_allKeys[-1].rt 

            # a response ends the routine 

            continueRoutine = False 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 
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    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in start_fnirs_reminderComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "start_fnirs_reminder" --- 

for thisComponent in start_fnirs_reminderComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# check responses 

if eeg_data_collection_on_key.keys in ['', [], None]:  # No response was made 

    eeg_data_collection_on_key.keys = None 

thisExp.addData('eeg_data_collection_on_key.keys',eeg_data_collection_on_key.ke

ys) 

if eeg_data_collection_on_key.keys != None:  # we had a response 

    thisExp.addData('eeg_data_collection_on_key.rt', eeg_data_collection_on_key.rt) 
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thisExp.nextEntry() 

# the Routine "start_fnirs_reminder" was not non-slip safe, so reset the non-slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "dot_probe_task_info" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

task_info_response.keys = [] 

task_info_response.rt = [] 

_task_info_response_allKeys = [] 

# keep track of which components have finished 

dot_probe_task_infoComponents = [task_info_text, task_info_response] 

for thisComponent in dot_probe_task_infoComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "dot_probe_task_info" --- 
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while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *task_info_text* updates 

    if task_info_text.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: 

        # keep track of start time/frame for later 

        task_info_text.frameNStart = frameN  # exact frame index 

        task_info_text.tStart = t  # local t and not account for scr refresh 

        task_info_text.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(task_info_text, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'task_info_text.started') 

        task_info_text.setAutoDraw(True) 

     

    # *task_info_response* updates 

    waitOnFlip = False 

    if task_info_response.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 

        task_info_response.frameNStart = frameN  # exact frame index 

        task_info_response.tStart = t  # local t and not account for scr refresh 
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        task_info_response.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(task_info_response, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'task_info_response.started') 

        task_info_response.status = STARTED 

        # keyboard checking is just starting 

        waitOnFlip = True 

        win.callOnFlip(task_info_response.clock.reset)  # t=0 on next screen flip 

        win.callOnFlip(task_info_response.clearEvents, eventType='keyboard')  # clear 

events on next screen flip 

    if task_info_response.status == STARTED and not waitOnFlip: 

        theseKeys = task_info_response.getKeys(keyList=['1','2'], waitRelease=False) 

        _task_info_response_allKeys.extend(theseKeys) 

        if len(_task_info_response_allKeys): 

            task_info_response.keys = _task_info_response_allKeys[-1].name  # just the 

last key pressed 

            task_info_response.rt = _task_info_response_allKeys[-1].rt 

            # a response ends the routine 

            continueRoutine = False 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 
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        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in dot_probe_task_infoComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "dot_probe_task_info" --- 

for thisComponent in dot_probe_task_infoComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# check responses 

if task_info_response.keys in ['', [], None]:  # No response was made 

    task_info_response.keys = None 

thisExp.addData('task_info_response.keys',task_info_response.keys) 

if task_info_response.keys != None:  # we had a response 

    thisExp.addData('task_info_response.rt', task_info_response.rt) 

thisExp.nextEntry() 

# the Routine "dot_probe_task_info" was not non-slip safe, so reset the non-slip timer 

routineTimer.reset() 
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# --- Prepare to start Routine "dot_probe_start_counter" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

# Run 'Begin Routine' code from start_eye_track_recording_and_clock_code 

#Trigger for start baseline for fnirs 

outlet.push_sample([1]) 

 

# get a reference to the currently active EyeLink connection 

el_tracker = pylink.getEYELINK() 

 

# put the tracker in the offline mode first 

el_tracker.setOfflineMode() 

 

# clear the host screen before we draw the backdrop 

el_tracker.sendCommand('clear_screen 0') 

 

trial_index = 0 

 

 

# put tracker in idle/offline mode before recording 

el_tracker.setOfflineMode() 

 

# Start recording 

# arguments: sample_to_file, events_to_file, sample_over_link, 

# event_over_link (1-yes, 0-no) 
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try: 

    el_tracker.startRecording(1, 1, 1, 1) 

except RuntimeError as error: 

    print("ERROR:", error) 

    abort_trial() 

     

 

# keep track of which components have finished 

dot_probe_start_counterComponents = [dot_probe_text_counter, 

dot_probe_start_text] 

for thisComponent in dot_probe_start_counterComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "dot_probe_start_counter" --- 

while continueRoutine and routineTimer.getTime() < 30.0: 

    # get current time 

    t = routineTimer.getTime() 
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    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *dot_probe_text_counter* updates 

    if dot_probe_text_counter.status == NOT_STARTED and tThisFlip >= 0-

frameTolerance: 

        # keep track of start time/frame for later 

        dot_probe_text_counter.frameNStart = frameN  # exact frame index 

        dot_probe_text_counter.tStart = t  # local t and not account for scr refresh 

        dot_probe_text_counter.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(dot_probe_text_counter, 'tStartRefresh')  # time at next scr 

refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'dot_probe_text_counter.started') 

        dot_probe_text_counter.setAutoDraw(True) 

    if dot_probe_text_counter.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > dot_probe_text_counter.tStartRefresh + 30-frameTolerance: 

            # keep track of stop time/frame for later 

            dot_probe_text_counter.tStop = t  # not accounting for scr refresh 

            dot_probe_text_counter.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'dot_probe_text_counter.stopped') 

            dot_probe_text_counter.setAutoDraw(False) 
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    if dot_probe_text_counter.status == STARTED:  # only update if drawing 

        dot_probe_text_counter.setText(round(30.0 - t, ndigits = 0) 

 

 

, log=False) 

     

    # *dot_probe_start_text* updates 

    if dot_probe_start_text.status == NOT_STARTED and tThisFlip >= 0-

frameTolerance: 

        # keep track of start time/frame for later 

        dot_probe_start_text.frameNStart = frameN  # exact frame index 

        dot_probe_start_text.tStart = t  # local t and not account for scr refresh 

        dot_probe_start_text.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(dot_probe_start_text, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'dot_probe_start_text.started') 

        dot_probe_start_text.setAutoDraw(True) 

    if dot_probe_start_text.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > dot_probe_start_text.tStartRefresh + 30-frameTolerance: 

            # keep track of stop time/frame for later 

            dot_probe_start_text.tStop = t  # not accounting for scr refresh 

            dot_probe_start_text.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'dot_probe_start_text.stopped') 

            dot_probe_start_text.setAutoDraw(False) 
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    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in dot_probe_start_counterComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "dot_probe_start_counter" --- 

for thisComponent in dot_probe_start_counterComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# Run 'End Routine' code from start_eye_track_recording_and_clock_code 

#Starting timer. It starts when the image routines begins.  

expClock = core.Clock() 
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#send message to Dataviewer the routine is starting  

el_tracker.sendMessage('beginExperiment') 

 

 

#Trigger for start experiment 

outlet.push_sample([1]) 

# using non-slip timing so subtract the expected duration of this Routine (unless 

ended on request) 

if routineForceEnded: 

    routineTimer.reset() 

else: 

    routineTimer.addTime(-30.000000) 

 

# set up handler to look after randomisation of conditions etc 

trials = data.TrialHandler(nReps=20.0, method='random',  

    extraInfo=expInfo, originPath=-1, 

    trialList=[None], 

    seed=None, name='trials') 

thisExp.addLoop(trials)  # add the loop to the experiment 

thisTrial_2 = trials.trialList[0]  # so we can initialise stimuli with some values 

# abbreviate parameter names if possible (e.g. rgb = thisTrial_2.rgb) 

if thisTrial_2 != None: 

    for paramName in thisTrial_2: 

        exec('{} = thisTrial_2[paramName]'.format(paramName)) 
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for thisTrial_2 in trials: 

    currentLoop = trials 

    # abbreviate parameter names if possible (e.g. rgb = thisTrial_2.rgb) 

    if thisTrial_2 != None: 

        for paramName in thisTrial_2: 

            exec('{} = thisTrial_2[paramName]'.format(paramName)) 

     

    # set up handler to look after randomisation of conditions etc 

    thisTrial = data.TrialHandler(nReps=1.0, method='random',  

        extraInfo=expInfo, originPath=-1, 

        

trialList=data.importConditions('picture_setup_dot_probe_fnirs_eye_tracker.xlsx', 

selection=list_random_blocks[random_blocks_counter]), 

        seed=None, name='thisTrial') 

    thisExp.addLoop(thisTrial)  # add the loop to the experiment 

    thisThisTrial = thisTrial.trialList[0]  # so we can initialise stimuli with some values 

    # abbreviate parameter names if possible (e.g. rgb = thisThisTrial.rgb) 

    if thisThisTrial != None: 

        for paramName in thisThisTrial: 

            exec('{} = thisThisTrial[paramName]'.format(paramName)) 

     

    for thisThisTrial in thisTrial: 

        currentLoop = thisTrial 

        # abbreviate parameter names if possible (e.g. rgb = thisThisTrial.rgb) 

        if thisThisTrial != None: 

            for paramName in thisThisTrial: 
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                exec('{} = thisThisTrial[paramName]'.format(paramName)) 

         

        # --- Prepare to start Routine "Fixation_Cross" --- 

        continueRoutine = True 

        routineForceEnded = False 

        # update component parameters for each repeat 

        # Run 'Begin Routine' code from fixation_cross_code 

        #Sending trail info to the eye tracker 

        el_tracker.sendMessage('TRIALID %d' % trial_index) 

         

        trial_index += 1 

         

        #el_tracker.sendMessage(trial_initial_info) 

        el_tracker.sendMessage('Fixation_Cross_Start') 

         

        el_tracker.sendMessage('!V DRAWLINE 255 255 255 960 505 960 575') 

        el_tracker.sendMessage('!V DRAWLINE 255 255 255 925 540 995 540') 

         

        #Sending triggers at the start of the first trial in each block 

        if trigger_sent == False: 

         

            #Trigger for neutral/neutral face stiumlus 

            if Face_Pairs == 'neutral/neutral': 

                outlet.push_sample([2]) 

             

            #Trigger for happy/neutral congurent 
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            if Face_Pairs == 'happy/neutral' and Type == 'Congurent': 

                outlet.push_sample([3]) 

                 

            #Trigger for happy/neutral incongurent 

            if Face_Pairs == 'happy/neutral' and Type == 'Incongurent': 

                outlet.push_sample([4]) 

                 

            #Trigger for fearful/neutral congurent 

            if Face_Pairs == 'fearful/neutral' and Type == 'Congurent': 

                outlet.push_sample([5]) 

                 

            #Trigger for fearful/neutral incongurent 

            if Face_Pairs == 'fearful/neutral' and Type == 'Incongurent': 

                outlet.push_sample([6]) 

             

            trigger_sent = True 

             

             

         

         

         

        # record trial variables to the EDF data file, for details, see Data 

        # Viewer User Manual, "Protocol for EyeLink Data to Viewer Integration" 

        #el_tracker.sendMessage('!V TRIAL_VAR Trial_Number %s' % Trial_Number) 

        #el_tracker.sendMessage('!V TRIAL_VAR Participant_ID %s' % Participant_ID) 
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        #el_tracker.sendMessage('!V TRIAL_VAR Face_Stimuli_Left %s' % 

Face_Stimuli_Left) 

        #el_tracker.sendMessage('!V TRIAL_VAR Face_Stimuli_Right %s' % 

Face_Stimuli_Right) 

        #el_tracker.sendMessage('!V TRIAL_VAR Type %s' % Type) 

        #el_tracker.sendMessage('!V TRIAL_VAR Face_Pairs %s' % Face_Pairs) 

        #el_tracker.sendMessage('!V TRIAL_VAR Gender %s' % Gender) 

        #el_tracker.sendMessage('!V TRIAL_VAR Dot_Location %s' % Dot_Location) 

        #el_tracker.sendMessage('!V TRIAL_VAR Reaction_Time %.10f' % 

Reaction_Time) 

        #el_tracker.sendMessage('!V TRIAL_VAR Response_Accuracy %d' % 

Response_Accuracy) 

        # keep track of which components have finished 

        Fixation_CrossComponents = [fixation_cross] 

        for thisComponent in Fixation_CrossComponents: 

            thisComponent.tStart = None 

            thisComponent.tStop = None 

            thisComponent.tStartRefresh = None 

            thisComponent.tStopRefresh = None 

            if hasattr(thisComponent, 'status'): 

                thisComponent.status = NOT_STARTED 

        # reset timers 

        t = 0 

        _timeToFirstFrame = win.getFutureFlipTime(clock="now") 

        frameN = -1 

         

        # --- Run Routine "Fixation_Cross" --- 
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        while continueRoutine: 

            # get current time 

            t = routineTimer.getTime() 

            tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

            tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

            frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

            # update/draw components on each frame 

            # Run 'Each Frame' code from fixation_cross_code 

            if t > Time_Jitter: 

                break 

             

            # *fixation_cross* updates 

            if fixation_cross.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

                # keep track of start time/frame for later 

                fixation_cross.frameNStart = frameN  # exact frame index 

                fixation_cross.tStart = t  # local t and not account for scr refresh 

                fixation_cross.tStartRefresh = tThisFlipGlobal  # on global time 

                win.timeOnFlip(fixation_cross, 'tStartRefresh')  # time at next scr refresh 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'fixation_cross.started') 

                fixation_cross.setAutoDraw(True) 

             

            # check for quit (typically the Esc key) 

            if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

                core.quit() 
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            # check if all components have finished 

            if not continueRoutine:  # a component has requested a forced-end of 

Routine 

                routineForceEnded = True 

                break 

            continueRoutine = False  # will revert to True if at least one component still 

running 

            for thisComponent in Fixation_CrossComponents: 

                if hasattr(thisComponent, "status") and thisComponent.status != 

FINISHED: 

                    continueRoutine = True 

                    break  # at least one component has not yet finished 

             

            # refresh the screen 

            if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

                win.flip() 

         

        # --- Ending Routine "Fixation_Cross" --- 

        for thisComponent in Fixation_CrossComponents: 

            if hasattr(thisComponent, "setAutoDraw"): 

                thisComponent.setAutoDraw(False) 

        # Run 'End Routine' code from fixation_cross_code 

        el_tracker.sendMessage('Fixation_Cross_Stop') 

        # the Routine "Fixation_Cross" was not non-slip safe, so reset the non-slip timer 

        routineTimer.reset() 
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        # --- Prepare to start Routine "Faces_Stimuli" --- 

        continueRoutine = True 

        routineForceEnded = False 

        # update component parameters for each repeat 

        # Run 'Begin Routine' code from code_faces_stimuli 

        #To find ratio from psychopy take use this formula:(scn_width/2)- 

(psychopy_width * scn_height) 

        left_image_center_x_axis = int((scn_width/2)-(687))  

        right_image_center_x_axis = int((scn_width/2)+(687))  

        image_center_y_axis = int(scn_height/2.0) 

        image_width = int(362) 

        image_height = int(506) 

         

        #'!V IMGLOAD CENTER %s %d %d %d %d' % (bg_image, int(scn_width/2.0), 

int(scn_height/2.0), int(scn_width), int(scn_height)) 

        #!V IMGLOAD CENTER <relative_image_path> <x_position> <y_position> 

[width] [height] 

        image_face_left = "../../" + Face_Stimuli_Left 

        image_face_right = "../../" + Face_Stimuli_Right 

         

        el_tracker.sendMessage('!V IMGLOAD CENTER %s %d %d %d %d' % 

(image_face_left, left_image_center_x_axis, image_center_y_axis, image_width, 

image_height)) 

        el_tracker.sendMessage('!V IMGLOAD CENTER %s %d %d %d %d' % 

(image_face_right, right_image_center_x_axis, image_center_y_axis, image_width, 

image_height)) 
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        left_image_left_border = left_image_center_x_axis - image_width/2 #left left 

        left_image_right_border= left_image_center_x_axis + image_width/2 #left right 

        right_image_left_border= right_image_center_x_axis - image_width/2 #right left 

        right_image_right_border= right_image_center_x_axis + image_width/2 #right 

right 

        top = image_center_y_axis + image_height/2  #top 

        bottom= image_center_y_axis - image_height/2  #bottom 

         

        # send interest area messages to record in the EDF data file 

        # here we draw a rectangular IA, for illustration purposes 

        # format: !V IAREA RECTANGLE <id> <left> <top> <right> <bottom> [label] 

        # for all supported interest area commands, see the Data Viewer Manual, 

        # "Protocol for EyeLink Data to Viewer Integration" 

        ia_image_left = (1, left_image_left_border, top, left_image_right_border, bottom 

, 'square') 

        ia_image_right = (2, right_image_left_border, top, right_image_right_border, 

bottom , 'square') 

         

        el_tracker.sendMessage('!V IAREA RECTANGLE %d %d %d %d %d %s' % 

ia_image_left) 

        el_tracker.sendMessage('!V IAREA RECTANGLE %d %d %d %d %d %s' % 

ia_image_right) 

         

         

        el_tracker.sendMessage('Faces_Stimuli_Start') 

        image_left.setImage(Face_Stimuli_Left) 

        image_right.setImage(Face_Stimuli_Right) 
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        # keep track of which components have finished 

        Faces_StimuliComponents = [image_left, image_right, fixation_cross_2] 

        for thisComponent in Faces_StimuliComponents: 

            thisComponent.tStart = None 

            thisComponent.tStop = None 

            thisComponent.tStartRefresh = None 

            thisComponent.tStopRefresh = None 

            if hasattr(thisComponent, 'status'): 

                thisComponent.status = NOT_STARTED 

        # reset timers 

        t = 0 

        _timeToFirstFrame = win.getFutureFlipTime(clock="now") 

        frameN = -1 

         

        # --- Run Routine "Faces_Stimuli" --- 

        while continueRoutine and routineTimer.getTime() < 1.2: 

            # get current time 

            t = routineTimer.getTime() 

            tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

            tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

            frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

            # update/draw components on each frame 

             

            # *image_left* updates 

            if image_left.status == NOT_STARTED and tThisFlip >= 0-frameTolerance: 

                # keep track of start time/frame for later 
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                image_left.frameNStart = frameN  # exact frame index 

                image_left.tStart = t  # local t and not account for scr refresh 

                image_left.tStartRefresh = tThisFlipGlobal  # on global time 

                win.timeOnFlip(image_left, 'tStartRefresh')  # time at next scr refresh 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'image_left.started') 

                image_left.setAutoDraw(True) 

            if image_left.status == STARTED: 

                # is it time to stop? (based on global clock, using actual start) 

                if tThisFlipGlobal > image_left.tStartRefresh + 1.2-frameTolerance: 

                    # keep track of stop time/frame for later 

                    image_left.tStop = t  # not accounting for scr refresh 

                    image_left.frameNStop = frameN  # exact frame index 

                    # add timestamp to datafile 

                    thisExp.timestampOnFlip(win, 'image_left.stopped') 

                    image_left.setAutoDraw(False) 

             

            # *image_right* updates 

            if image_right.status == NOT_STARTED and tThisFlip >= 0-frameTolerance: 

                # keep track of start time/frame for later 

                image_right.frameNStart = frameN  # exact frame index 

                image_right.tStart = t  # local t and not account for scr refresh 

                image_right.tStartRefresh = tThisFlipGlobal  # on global time 

                win.timeOnFlip(image_right, 'tStartRefresh')  # time at next scr refresh 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'image_right.started') 
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                image_right.setAutoDraw(True) 

            if image_right.status == STARTED: 

                # is it time to stop? (based on global clock, using actual start) 

                if tThisFlipGlobal > image_right.tStartRefresh + 1.2-frameTolerance: 

                    # keep track of stop time/frame for later 

                    image_right.tStop = t  # not accounting for scr refresh 

                    image_right.frameNStop = frameN  # exact frame index 

                    # add timestamp to datafile 

                    thisExp.timestampOnFlip(win, 'image_right.stopped') 

                    image_right.setAutoDraw(False) 

             

            # *fixation_cross_2* updates 

            if fixation_cross_2.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

                # keep track of start time/frame for later 

                fixation_cross_2.frameNStart = frameN  # exact frame index 

                fixation_cross_2.tStart = t  # local t and not account for scr refresh 

                fixation_cross_2.tStartRefresh = tThisFlipGlobal  # on global time 

                win.timeOnFlip(fixation_cross_2, 'tStartRefresh')  # time at next scr refresh 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'fixation_cross_2.started') 

                fixation_cross_2.setAutoDraw(True) 

            if fixation_cross_2.status == STARTED: 

                # is it time to stop? (based on global clock, using actual start) 

                if tThisFlipGlobal > fixation_cross_2.tStartRefresh + 1.2-frameTolerance: 

                    # keep track of stop time/frame for later 
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                    fixation_cross_2.tStop = t  # not accounting for scr refresh 

                    fixation_cross_2.frameNStop = frameN  # exact frame index 

                    # add timestamp to datafile 

                    thisExp.timestampOnFlip(win, 'fixation_cross_2.stopped') 

                    fixation_cross_2.setAutoDraw(False) 

             

            # check for quit (typically the Esc key) 

            if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

                core.quit() 

             

            # check if all components have finished 

            if not continueRoutine:  # a component has requested a forced-end of 

Routine 

                routineForceEnded = True 

                break 

            continueRoutine = False  # will revert to True if at least one component still 

running 

            for thisComponent in Faces_StimuliComponents: 

                if hasattr(thisComponent, "status") and thisComponent.status != 

FINISHED: 

                    continueRoutine = True 

                    break  # at least one component has not yet finished 

             

            # refresh the screen 

            if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

                win.flip() 
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        # --- Ending Routine "Faces_Stimuli" --- 

        for thisComponent in Faces_StimuliComponents: 

            if hasattr(thisComponent, "setAutoDraw"): 

                thisComponent.setAutoDraw(False) 

        # Run 'End Routine' code from code_faces_stimuli 

        el_tracker.sendMessage('Faces_Stimuli_Stop') 

         

        # Send a message to clear the Data Viewer screen 

        bgcolor_RGB = (0, 0, 0) 

        el_tracker.sendMessage('!V CLEAR %d %d %d' % bgcolor_RGB) 

         

         

        # using non-slip timing so subtract the expected duration of this Routine (unless 

ended on request) 

        if routineForceEnded: 

            routineTimer.reset() 

        else: 

            routineTimer.addTime(-1.200000) 

         

        # --- Prepare to start Routine "Dot_Stimuli" --- 

        continueRoutine = True 

        routineForceEnded = False 

        # update component parameters for each repeat 

        # Run 'Begin Routine' code from code_dot_stimuli 

        el_tracker.sendMessage('Dot_Stimuli_Start') 
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        if Dot_Location == 'left': 

            show_dot_left = True 

             

            #Drawing left dot to edf file 

            el_tracker.sendMessage('!V DRAWLINE 255 255 255 %d %d %d %d' % 

(left_image_center_x_axis, (image_center_y_axis - 20), left_image_center_x_axis, 

(image_center_y_axis + 20))) 

            el_tracker.sendMessage('!V DRAWLINE 255 255 255 %d %d %d %d' % 

((left_image_center_x_axis - 20), image_center_y_axis, (left_image_center_x_axis + 

20), image_center_y_axis)) 

         

                        

        if Dot_Location == 'right': 

            show_dot_right = True 

             

            #Drawing right dot to edf 

            el_tracker.sendMessage('!V DRAWLINE 255 255 255 %d %d %d %d' % 

(right_image_center_x_axis, (image_center_y_axis - 20), right_image_center_x_axis, 

(image_center_y_axis + 20))) 

            el_tracker.sendMessage('!V DRAWLINE 255 255 255 %d %d %d %d' % 

((right_image_center_x_axis - 20), image_center_y_axis, 

(right_image_center_x_axis + 20), image_center_y_axis)) 

         

        key_reaction.keys = [] 

        key_reaction.rt = [] 

        _key_reaction_allKeys = [] 

        # keep track of which components have finished 



   

 

189 

 

        Dot_StimuliComponents = [key_reaction, dot1_left, dot1_right, fixation_cross_3] 

        for thisComponent in Dot_StimuliComponents: 

            thisComponent.tStart = None 

            thisComponent.tStop = None 

            thisComponent.tStartRefresh = None 

            thisComponent.tStopRefresh = None 

            if hasattr(thisComponent, 'status'): 

                thisComponent.status = NOT_STARTED 

        # reset timers 

        t = 0 

        _timeToFirstFrame = win.getFutureFlipTime(clock="now") 

        frameN = -1 

         

        # --- Run Routine "Dot_Stimuli" --- 

        while continueRoutine: 

            # get current time 

            t = routineTimer.getTime() 

            tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

            tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

            frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

            # update/draw components on each frame 

             

            # *key_reaction* updates 

            waitOnFlip = False 

            if key_reaction.status == NOT_STARTED and tThisFlip >= 0-frameTolerance: 

                # keep track of start time/frame for later 
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                key_reaction.frameNStart = frameN  # exact frame index 

                key_reaction.tStart = t  # local t and not account for scr refresh 

                key_reaction.tStartRefresh = tThisFlipGlobal  # on global time 

                win.timeOnFlip(key_reaction, 'tStartRefresh')  # time at next scr refresh 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'key_reaction.started') 

                key_reaction.status = STARTED 

                # keyboard checking is just starting 

                waitOnFlip = True 

                win.callOnFlip(key_reaction.clock.reset)  # t=0 on next screen flip 

                win.callOnFlip(key_reaction.clearEvents, eventType='keyboard')  # clear 

events on next screen flip 

            if key_reaction.status == STARTED and not waitOnFlip: 

                theseKeys = key_reaction.getKeys(keyList=['1','2'], waitRelease=False) 

                _key_reaction_allKeys.extend(theseKeys) 

                if len(_key_reaction_allKeys): 

                    key_reaction.keys = _key_reaction_allKeys[0].name  # just the first key 

pressed 

                    key_reaction.rt = _key_reaction_allKeys[0].rt 

                    # a response ends the routine 

                    continueRoutine = False 

             

            # *dot1_left* updates 

            if dot1_left.status == NOT_STARTED and show_dot_left == True: 

                # keep track of start time/frame for later 

                dot1_left.frameNStart = frameN  # exact frame index 
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                dot1_left.tStart = t  # local t and not account for scr refresh 

                dot1_left.tStartRefresh = tThisFlipGlobal  # on global time 

                win.timeOnFlip(dot1_left, 'tStartRefresh')  # time at next scr refresh 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'dot1_left.started') 

                dot1_left.setAutoDraw(True) 

             

            # *dot1_right* updates 

            if dot1_right.status == NOT_STARTED and show_dot_right == True: 

                # keep track of start time/frame for later 

                dot1_right.frameNStart = frameN  # exact frame index 

                dot1_right.tStart = t  # local t and not account for scr refresh 

                dot1_right.tStartRefresh = tThisFlipGlobal  # on global time 

                win.timeOnFlip(dot1_right, 'tStartRefresh')  # time at next scr refresh 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'dot1_right.started') 

                dot1_right.setAutoDraw(True) 

             

            # *fixation_cross_3* updates 

            if fixation_cross_3.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

                # keep track of start time/frame for later 

                fixation_cross_3.frameNStart = frameN  # exact frame index 

                fixation_cross_3.tStart = t  # local t and not account for scr refresh 

                fixation_cross_3.tStartRefresh = tThisFlipGlobal  # on global time 

                win.timeOnFlip(fixation_cross_3, 'tStartRefresh')  # time at next scr refresh 
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                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'fixation_cross_3.started') 

                fixation_cross_3.setAutoDraw(True) 

             

            # check for quit (typically the Esc key) 

            if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

                core.quit() 

             

            # check if all components have finished 

            if not continueRoutine:  # a component has requested a forced-end of 

Routine 

                routineForceEnded = True 

                break 

            continueRoutine = False  # will revert to True if at least one component still 

running 

            for thisComponent in Dot_StimuliComponents: 

                if hasattr(thisComponent, "status") and thisComponent.status != 

FINISHED: 

                    continueRoutine = True 

                    break  # at least one component has not yet finished 

             

            # refresh the screen 

            if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

                win.flip() 

         

        # --- Ending Routine "Dot_Stimuli" --- 

        for thisComponent in Dot_StimuliComponents: 



   

 

193 

 

            if hasattr(thisComponent, "setAutoDraw"): 

                thisComponent.setAutoDraw(False) 

        # Run 'End Routine' code from code_dot_stimuli 

        el_tracker.sendMessage('Dot_Stimuli_Stop') 

         

        #Getting time for when the button is pushed. 

        Experiment_Time = expClock.getTime() 

         

        #Getting the reactiontime for excel document 

        Reaction_Time = key_reaction.rt 

         

        #Check if participant pressed the right button (1 = right, 0 = wrong) 

        if ((Dot_Location == 'left') and (key_reaction.keys == '1')) or ((Dot_Location == 

'right') and (key_reaction.keys == '2')): 

            Response_Accuracy = 1 

        else: 

            Response_Accuracy = 0 

         

         

        show_dot_left = False 

        show_dot_right = False 

         

        #Gets the highest reaction time 

        if Response_Accuracy == 1 and (Reaction_Time < Reaction_Time_Record): 

            Reaction_Time_Record = Reaction_Time 
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        #Putting all the info in the list 

        

excel_list.append([Trial_Number,Participant_ID,Face_Stimuli_Left,Face_Stimuli_Rig

ht,Type,Face_Pairs,Gender,Dot_Location,Response_Accuracy,Reaction_Time,Expe

riment_Time, Time_Jitter, VAS]) 

         

        # check responses 

        if key_reaction.keys in ['', [], None]:  # No response was made 

            key_reaction.keys = None 

        thisTrial.addData('key_reaction.keys',key_reaction.keys) 

        if key_reaction.keys != None:  # we had a response 

            thisTrial.addData('key_reaction.rt', key_reaction.rt) 

        # the Routine "Dot_Stimuli" was not non-slip safe, so reset the non-slip timer 

        routineTimer.reset() 

         

        # --- Prepare to start Routine "Rest" --- 

        continueRoutine = True 

        routineForceEnded = False 

        # update component parameters for each repeat 

        # Run 'Begin Routine' code from code_rest 

        el_tracker.sendMessage('Pause_Start') 

         

         

        #Making a list for eye tracking messages (used to send messages at a slower 

paste) 

        et_message_list = [] 
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        et_message_list.append('!V TRIAL_VAR Participant_ID %s' % Participant_ID) 

        et_message_list.append('!V TRIAL_VAR Trial_Number %s' % Trial_Number) 

        et_message_list.append('!V TRIAL_VAR Face_Stimuli_Left %s' % 

Face_Stimuli_Left) 

        et_message_list.append('!V TRIAL_VAR Face_Stimuli_Right %s' % 

Face_Stimuli_Right) 

        et_message_list.append('!V TRIAL_VAR Type %s' % Type) 

        et_message_list.append('!V TRIAL_VAR Face_Pairs %s' % Face_Pairs) 

        et_message_list.append('!V TRIAL_VAR Gender %s' % Gender) 

        et_message_list.append('!V TRIAL_VAR Dot_Location %s' % Dot_Location) 

        et_message_list.append('!V TRIAL_VAR Time_Jitter %d' % Time_Jitter) 

        et_message_list.append('!V TRIAL_VAR Emotion_Side %s' % Emotion_Side) 

        et_message_list.append('!V TRIAL_VAR Reaction_Time %.10f' % 

Reaction_Time) 

        et_message_list.append('!V TRIAL_VAR Response_Accuracy %d' % 

Response_Accuracy) 

         

         

        t2 = 0.1 

        counter = 0 

         

        # keep track of which components have finished 

        RestComponents = [reaction_time_text] 

        for thisComponent in RestComponents: 

            thisComponent.tStart = None 

            thisComponent.tStop = None 

            thisComponent.tStartRefresh = None 
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            thisComponent.tStopRefresh = None 

            if hasattr(thisComponent, 'status'): 

                thisComponent.status = NOT_STARTED 

        # reset timers 

        t = 0 

        _timeToFirstFrame = win.getFutureFlipTime(clock="now") 

        frameN = -1 

         

        # --- Run Routine "Rest" --- 

        while continueRoutine and routineTimer.getTime() < 1.5: 

            # get current time 

            t = routineTimer.getTime() 

            tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

            tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

            frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

            # update/draw components on each frame 

            # Run 'Each Frame' code from code_rest 

            #Timer to send eye tracking messages at a slower paste 

            t1 = t 

              

            if t1 > t2 and counter < 10: 

                el_tracker.sendMessage(et_message_list[counter]) 

                t2 = t + 0.1 

                counter += 1 
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            # *reaction_time_text* updates 

            if reaction_time_text.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

                # keep track of start time/frame for later 

                reaction_time_text.frameNStart = frameN  # exact frame index 

                reaction_time_text.tStart = t  # local t and not account for scr refresh 

                reaction_time_text.tStartRefresh = tThisFlipGlobal  # on global time 

                win.timeOnFlip(reaction_time_text, 'tStartRefresh')  # time at next scr 

refresh 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'reaction_time_text.started') 

                reaction_time_text.setAutoDraw(True) 

            if reaction_time_text.status == STARTED: 

                # is it time to stop? (based on global clock, using actual start) 

                if tThisFlipGlobal > reaction_time_text.tStartRefresh + 1.5-frameTolerance: 

                    # keep track of stop time/frame for later 

                    reaction_time_text.tStop = t  # not accounting for scr refresh 

                    reaction_time_text.frameNStop = frameN  # exact frame index 

                    # add timestamp to datafile 

                    thisExp.timestampOnFlip(win, 'reaction_time_text.stopped') 

                    reaction_time_text.setAutoDraw(False) 

             

            # check for quit (typically the Esc key) 

            if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

                core.quit() 
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            # check if all components have finished 

            if not continueRoutine:  # a component has requested a forced-end of 

Routine 

                routineForceEnded = True 

                break 

            continueRoutine = False  # will revert to True if at least one component still 

running 

            for thisComponent in RestComponents: 

                if hasattr(thisComponent, "status") and thisComponent.status != 

FINISHED: 

                    continueRoutine = True 

                    break  # at least one component has not yet finished 

             

            # refresh the screen 

            if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

                win.flip() 

         

        # --- Ending Routine "Rest" --- 

        for thisComponent in RestComponents: 

            if hasattr(thisComponent, "setAutoDraw"): 

                thisComponent.setAutoDraw(False) 

        # Run 'End Routine' code from code_rest 

        el_tracker.sendMessage('Pause_Stop') 

         

        #End trial for eye-tracker 

        el_tracker.sendMessage('TRIAL_RESULT %d' % pylink.TRIAL_OK) 
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        # using non-slip timing so subtract the expected duration of this Routine (unless 

ended on request) 

        if routineForceEnded: 

            routineTimer.reset() 

        else: 

            routineTimer.addTime(-1.500000) 

        thisExp.nextEntry() 

         

    # completed 1.0 repeats of 'thisTrial' 

     

    # get names of stimulus parameters 

    if thisTrial.trialList in ([], [None], None): 

        params = [] 

    else: 

        params = thisTrial.trialList[0].keys() 

    # save data for this loop 

    thisTrial.saveAsExcel(filename + '.xlsx', sheetName='thisTrial', 

        stimOut=params, 

        dataOut=['n','all_mean','all_std', 'all_raw']) 

    thisTrial.saveAsText(filename + 'thisTrial.csv', delim=',', 

        stimOut=params, 

        dataOut=['n','all_mean','all_std', 'all_raw']) 

     

    # --- Prepare to start Routine "inter_trial_interval" --- 

    continueRoutine = True 

    routineForceEnded = False 
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    # update component parameters for each repeat 

    # Run 'Begin Routine' code from trial_end_trigger_code 

    #Trigger for rest start 

    outlet.push_sample([7]) 

     

    #Go to next block 

    random_blocks_counter += 1 

     

    #Resets trigger variable 

    trigger_sent = False 

     

    #Removes decimals from reaction time to display 

    Reaction_Time_Display = str(Reaction_Time_Record)[:-11] 

    reaction_time_numbers_2.setText(Reaction_Time_Display) 

    # keep track of which components have finished 

    inter_trial_intervalComponents = [text, reaction_time_text_2, 

reaction_time_numbers_2] 

    for thisComponent in inter_trial_intervalComponents: 

        thisComponent.tStart = None 

        thisComponent.tStop = None 

        thisComponent.tStartRefresh = None 

        thisComponent.tStopRefresh = None 

        if hasattr(thisComponent, 'status'): 

            thisComponent.status = NOT_STARTED 

    # reset timers 

    t = 0 
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    _timeToFirstFrame = win.getFutureFlipTime(clock="now") 

    frameN = -1 

     

    # --- Run Routine "inter_trial_interval" --- 

    while continueRoutine and routineTimer.getTime() < 15.0: 

        # get current time 

        t = routineTimer.getTime() 

        tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

        tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

        frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

        # update/draw components on each frame 

         

        # *text* updates 

        if text.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: 

            # keep track of start time/frame for later 

            text.frameNStart = frameN  # exact frame index 

            text.tStart = t  # local t and not account for scr refresh 

            text.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(text, 'tStartRefresh')  # time at next scr refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'text.started') 

            text.setAutoDraw(True) 

        if text.status == STARTED: 

            # is it time to stop? (based on global clock, using actual start) 

            if tThisFlipGlobal > text.tStartRefresh + 15-frameTolerance: 

                # keep track of stop time/frame for later 
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                text.tStop = t  # not accounting for scr refresh 

                text.frameNStop = frameN  # exact frame index 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'text.stopped') 

                text.setAutoDraw(False) 

         

        # *reaction_time_text_2* updates 

        if reaction_time_text_2.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

            # keep track of start time/frame for later 

            reaction_time_text_2.frameNStart = frameN  # exact frame index 

            reaction_time_text_2.tStart = t  # local t and not account for scr refresh 

            reaction_time_text_2.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(reaction_time_text_2, 'tStartRefresh')  # time at next scr 

refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'reaction_time_text_2.started') 

            reaction_time_text_2.setAutoDraw(True) 

        if reaction_time_text_2.status == STARTED: 

            # is it time to stop? (based on global clock, using actual start) 

            if tThisFlipGlobal > reaction_time_text_2.tStartRefresh + 2.5-frameTolerance: 

                # keep track of stop time/frame for later 

                reaction_time_text_2.tStop = t  # not accounting for scr refresh 

                reaction_time_text_2.frameNStop = frameN  # exact frame index 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'reaction_time_text_2.stopped') 
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                reaction_time_text_2.setAutoDraw(False) 

         

        # *reaction_time_numbers_2* updates 

        if reaction_time_numbers_2.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

            # keep track of start time/frame for later 

            reaction_time_numbers_2.frameNStart = frameN  # exact frame index 

            reaction_time_numbers_2.tStart = t  # local t and not account for scr refresh 

            reaction_time_numbers_2.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(reaction_time_numbers_2, 'tStartRefresh')  # time at next scr 

refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'reaction_time_numbers_2.started') 

            reaction_time_numbers_2.setAutoDraw(True) 

        if reaction_time_numbers_2.status == STARTED: 

            # is it time to stop? (based on global clock, using actual start) 

            if tThisFlipGlobal > reaction_time_numbers_2.tStartRefresh + 2.5-

frameTolerance: 

                # keep track of stop time/frame for later 

                reaction_time_numbers_2.tStop = t  # not accounting for scr refresh 

                reaction_time_numbers_2.frameNStop = frameN  # exact frame index 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'reaction_time_numbers_2.stopped') 

                reaction_time_numbers_2.setAutoDraw(False) 

         

        # check for quit (typically the Esc key) 

        if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 
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            core.quit() 

         

        # check if all components have finished 

        if not continueRoutine:  # a component has requested a forced-end of Routine 

            routineForceEnded = True 

            break 

        continueRoutine = False  # will revert to True if at least one component still 

running 

        for thisComponent in inter_trial_intervalComponents: 

            if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

                continueRoutine = True 

                break  # at least one component has not yet finished 

         

        # refresh the screen 

        if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

            win.flip() 

     

    # --- Ending Routine "inter_trial_interval" --- 

    for thisComponent in inter_trial_intervalComponents: 

        if hasattr(thisComponent, "setAutoDraw"): 

            thisComponent.setAutoDraw(False) 

    # using non-slip timing so subtract the expected duration of this Routine (unless 

ended on request) 

    if routineForceEnded: 

        routineTimer.reset() 

    else: 
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        routineTimer.addTime(-15.000000) 

    thisExp.nextEntry() 

     

# completed 20.0 repeats of 'trials' 

 

# get names of stimulus parameters 

if trials.trialList in ([], [None], None): 

    params = [] 

else: 

    params = trials.trialList[0].keys() 

# save data for this loop 

trials.saveAsExcel(filename + '.xlsx', sheetName='trials', 

    stimOut=params, 

    dataOut=['n','all_mean','all_std', 'all_raw']) 

trials.saveAsText(filename + 'trials.csv', delim=',', 

    stimOut=params, 

    dataOut=['n','all_mean','all_std', 'all_raw']) 

 

# --- Prepare to start Routine "experiment_ended" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

# Run 'Begin Routine' code from end_dot_probe_code 

#Trigger for experiment ended 

outlet.push_sample([8]) 
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#Message to eyetracker 

el_tracker.sendMessage('endExperiment') 

 

 

# keep track of which components have finished 

experiment_endedComponents = [dot_probe_ended_text] 

for thisComponent in experiment_endedComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "experiment_ended" --- 

while continueRoutine and routineTimer.getTime() < 5.0: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 
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    # *dot_probe_ended_text* updates 

    if dot_probe_ended_text.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 

        dot_probe_ended_text.frameNStart = frameN  # exact frame index 

        dot_probe_ended_text.tStart = t  # local t and not account for scr refresh 

        dot_probe_ended_text.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(dot_probe_ended_text, 'tStartRefresh')  # time at next scr 

refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'dot_probe_ended_text.started') 

        dot_probe_ended_text.setAutoDraw(True) 

    if dot_probe_ended_text.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > dot_probe_ended_text.tStartRefresh + 5-frameTolerance: 

            # keep track of stop time/frame for later 

            dot_probe_ended_text.tStop = t  # not accounting for scr refresh 

            dot_probe_ended_text.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'dot_probe_ended_text.stopped') 

            dot_probe_ended_text.setAutoDraw(False) 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 
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    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in experiment_endedComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "experiment_ended" --- 

for thisComponent in experiment_endedComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# Run 'End Routine' code from end_dot_probe_code 

#Saves the info from dot-probe experment list in a excel document 

np.savetxt(Participant_ID + "_" + expName + "_" + expInfo['date'] + ".csv", excel_list, 

delimiter = ",", fmt ='% s') 

 

el_tracker.stopRecording() 
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# using non-slip timing so subtract the expected duration of this Routine (unless 

ended on request) 

if routineForceEnded: 

    routineTimer.reset() 

else: 

    routineTimer.addTime(-5.000000) 

# Run 'End Experiment' code from Start_and_end_code 

# Step 7: disconnect, download the EDF file, then terminate the task 

terminate_task() 

 

# --- End experiment --- 

# Flip one final time so any remaining win.callOnFlip()  

# and win.timeOnFlip() tasks get executed before quitting 

win.flip() 

 

# these shouldn't be strictly necessary (should auto-save) 

thisExp.saveAsPickle(filename) 

logging.flush() 

# make sure everything is closed down 

if eyetracker: 

    eyetracker.setConnectionState(False) 

thisExp.abort()  # or data files will save again on exit 

win.close() 

core.quit() 
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A.4 EEG/ET PSYCHOPY CODE 

Note that this one also contains a resting state task and a few visual search tasks. 

 

# --- Import packages --- 

from psychopy import locale_setup 

from psychopy import prefs 

from psychopy import sound, gui, visual, core, data, event, logging, clock, colors, 

layout, parallel 

from psychopy.constants import (NOT_STARTED, STARTED, PLAYING, PAUSED, 

                                STOPPED, FINISHED, PRESSED, RELEASED, FOREVER) 

 

import numpy as np  # whole numpy lib is available, prepend 'np.' 

from numpy import (sin, cos, tan, log, log10, pi, average, 

                   sqrt, std, deg2rad, rad2deg, linspace, asarray) 

from numpy.random import random, randint, normal, shuffle, choice as randchoice 

import os  # handy system and path functions 

import sys  # to get file system encoding 

 

import psychopy.iohub as io 

from psychopy.hardware import keyboard 

 

# Run 'Before Experiment' code from Start_and_end_code 

import __future__   

import pylink 

import os 

import platform 
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import random 

import time 

import sys 

from EyeLinkCoreGraphicsPsychoPy import EyeLinkCoreGraphicsPsychoPy 

from psychopy import visual, core, event, monitors, gui 

from PIL import Image  # for preparing the Host backdrop image 

from string import ascii_letters, digits 

 

 

#Setting up gloabl variable for reaction time and vas-scale 

global Reaction_Time_Display 

global Reaction_Time 

global Response_Accuracy 

global VAS 

 

 

# Switch to the script folder 

script_path = os.path.dirname(sys.argv[0]) 

if len(script_path) != 0: 

    os.chdir(script_path) 

 

# Show only critical log message in the PsychoPy console 

from psychopy import logging 

logging.console.setLevel(logging.CRITICAL) 

 

#List to later be stored in excel document (this is the heading) 
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excel_list = 

[['Trial_Number','Participant_ID','Face_Stimuli_Left','Face_Stimuli_Right','Type','Face

_Pairs','Gender','Dot_Location','Response_Accuracy','Reaction_Time','Experiemnt_Ti

me', 'Time_Jitter', 'VAS']] 

 

 

#Variable  that is later combined with timer to decide when and what dot will show 

show_dot_left = False 

show_dot_right = False 

 

 

Trial_Number = 0 

 

 

# Set this variable to True if you use the built-in retina screen as your 

# primary display device on macOS. If have an external monitor, set this 

# variable True if you choose to "Optimize for Built-in Retina Display" 

# in the Displays preference settings. 

use_retina = False 

 

# Set this variable to True to run the script in "Dummy Mode" 

dummy_mode = False 

 

# Set this variable to True to run the task in full screen mode 

# It is easier to debug the script in non-fullscreen mode 

full_screen = True 
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# Set up EDF data file name and local data folder 

# 

# The EDF data filename should not exceed 8 alphanumeric characters 

# use ONLY number 0-9, letters, & _ (underscore) in the filename 

edf_fname = '' 

 

# Prompt user to specify an EDF data filename 

# before we open a fullscreen window 

dlg_title = 'Enter ParticipantID' 

dlg_prompt = 'Please enter a file name with 8 or fewer characters\n' + \ 

             '[letters, numbers, and underscore].' 

 

# loop until we get a valid filename 

while True: 

    dlg = gui.Dlg(dlg_title) 

    dlg.addText(dlg_prompt) 

    dlg.addField('ParticipantID:', edf_fname) 

    # show dialog and wait for OK or Cancel 

    ok_data = dlg.show() 

    if dlg.OK:  # if ok_data is not None 

        print('EDF data filename: {}'.format(ok_data[0])) 

    else: 

        print('user cancelled') 

        core.quit() 

        sys.exit() 
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    # get the string entered by the experimenter 

    tmp_str = dlg.data[0] 

    # strip trailing characters, ignore the ".edf" extension 

    edf_fname = tmp_str.rstrip().split('.')[0] 

 

    # check if the filename is valid (length <= 8 & no special char) 

    allowed_char = ascii_letters + digits + '_' 

    if not all([c in allowed_char for c in edf_fname]): 

        print('ERROR: Invalid EDF filename') 

    elif len(edf_fname) > 8: 

        print('ERROR: EDF filename should not exceed 8 characters') 

    else: 

        break 

 

 

# Set up a folder to store the EDF data files and the associated resources 

# e.g., files defining the interest areas used in each trial 

results_folder = 'Eye_EEG' 

if not os.path.exists(results_folder): 

    os.makedirs(results_folder) 

 

# We download EDF data file from the EyeLink Host PC to the local hard 

# drive at the end of each testing session, here we rename the EDF to 

# include session start date/time 

time_str = time.strftime("_%Y_%m_%d_%H_%M", time.localtime()) 
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session_identifier = edf_fname + "_EEG" + time_str 

 

# create a folder for the current testing session in the "results" folder 

session_folder = os.path.join(results_folder, session_identifier) 

if not os.path.exists(session_folder): 

    os.makedirs(session_folder) 

 

# Step 1: Connect to the EyeLink Host PC 

# 

# The Host IP address, by default, is "100.1.1.1". 

# the "el_tracker" objected created here can be accessed through the Pylink 

# Set the Host PC address to "None" (without quotes) to run the script 

# in "Dummy Mode" 

if dummy_mode: 

    el_tracker = pylink.EyeLink(None) 

else: 

    try: 

        el_tracker = pylink.EyeLink("100.1.1.1") 

    except RuntimeError as error: 

        print('ERROR:', error) 

        core.quit() 

        sys.exit() 

 

# Step 2: Open an EDF data file on the Host PC 

edf_file = edf_fname + "_EEG"+ ".EDF" 
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try: 

    el_tracker.openDataFile(edf_file) 

except RuntimeError as err: 

    print('ERROR:', err) 

    # close the link if we have one open 

    if el_tracker.isConnected(): 

        el_tracker.close() 

    core.quit() 

    sys.exit() 

 

# Add a header text to the EDF file to identify the current experiment name 

# This is OPTIONAL. If your text starts with "RECORDED BY " it will be 

# available in DataViewer's Inspector window by clicking 

# the EDF session node in the top panel and looking for the "Recorded By:" 

# field in the bottom panel of the Inspector. 

preamble_text = 'RECORDED BY %s' % os.path.basename(__file__) 

el_tracker.sendCommand("add_file_preamble_text '%s'" % preamble_text) 

 

# Step 3: Configure the tracker 

# 

# Put the tracker in offline mode before we change tracking parameters 

el_tracker.setOfflineMode() 

 

# Get the software version:  1-EyeLink I, 2-EyeLink II, 3/4-EyeLink 1000, 

# 5-EyeLink 1000 Plus, 6-Portable DUO 
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eyelink_ver = 0  # set version to 0, in case running in Dummy mode 

if not dummy_mode: 

    vstr = el_tracker.getTrackerVersionString() 

    eyelink_ver = int(vstr.split()[-1].split('.')[0]) 

    # print out some version info in the shell 

    print('Running experiment on %s, version %d' % (vstr, eyelink_ver)) 

 

# File and Link data control 

# what eye events to save in the EDF file, include everything by default 

file_event_flags = 

'LEFT,RIGHT,FIXATION,SACCADE,BLINK,MESSAGE,BUTTON,INPUT' 

# what eye events to make available over the link, include everything by default 

link_event_flags = 

'LEFT,RIGHT,FIXATION,SACCADE,BLINK,BUTTON,FIXUPDATE,INPUT' 

# what sample data to save in the EDF data file and to make available 

# over the link, include the 'HTARGET' flag to save head target sticker 

# data for supported eye trackers 

if eyelink_ver > 3: 

    file_sample_flags = 

'LEFT,RIGHT,GAZE,HREF,RAW,AREA,HTARGET,GAZERES,BUTTON,STATUS,IN

PUT' 

    link_sample_flags = 

'LEFT,RIGHT,GAZE,GAZERES,AREA,HTARGET,STATUS,INPUT' 

else: 

    file_sample_flags = 

'LEFT,RIGHT,GAZE,HREF,RAW,AREA,GAZERES,BUTTON,STATUS,INPUT' 

    link_sample_flags = 'LEFT,RIGHT,GAZE,GAZERES,AREA,STATUS,INPUT' 
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el_tracker.sendCommand("file_event_filter = %s" % file_event_flags) 

el_tracker.sendCommand("file_sample_data = %s" % file_sample_flags) 

el_tracker.sendCommand("link_event_filter = %s" % link_event_flags) 

el_tracker.sendCommand("link_sample_data = %s" % link_sample_flags) 

 

# Optional tracking parameters 

# Sample rate, 250, 500, 1000, or 2000, check your tracker specification 

# if eyelink_ver > 2: 

#     el_tracker.sendCommand("sample_rate 1000") 

# Choose a calibration type, H3, HV3, HV5, HV13 (HV = horizontal/vertical), 

el_tracker.sendCommand("calibration_type = HV9") 

# Set a gamepad button to accept calibration/drift check target 

# You need a supported gamepad/button box that is connected to the Host PC 

el_tracker.sendCommand("button_function 5 'accept_target_fixation'") 

 

# Step 4: set up a graphics environment for calibration 

# 

# Open a window, be sure to specify monitor parameters 

#mon = monitors.Monitor('myMonitor', width=53.0, distance=115.0) 

win = visual.Window(size=(1920,1080), 

                    pos=(1920,0), 

                    winType='pyglet', 

                    units='pix') 

 

# get the native screen resolution used by PsychoPy 

scn_width, scn_height = win.size 
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# resolution fix for Mac retina displays 

if 'Darwin' in platform.system(): 

    if use_retina: 

        scn_width = int(scn_width/2.0) 

        scn_height = int(scn_height/2.0) 

 

# Pass the display pixel coordinates (left, top, right, bottom) to the tracker 

# see the EyeLink Installation Guide, "Customizing Screen Settings" 

el_coords = "screen_pixel_coords = 0 0 %d %d" % (scn_width - 1, scn_height - 1) 

el_tracker.sendCommand(el_coords) 

 

# Write a DISPLAY_COORDS message to the EDF file 

# Data Viewer needs this piece of info for proper visualization, see Data 

# Viewer User Manual, "Protocol for EyeLink Data to Viewer Integration" 

dv_coords = "DISPLAY_COORDS  0 0 %d %d" % (scn_width - 1, scn_height - 1) 

el_tracker.sendMessage(dv_coords) 

 

# Configure a graphics environment (genv) for tracker calibration 

genv = EyeLinkCoreGraphicsPsychoPy(el_tracker, win) 

print(genv)  # print out the version number of the CoreGraphics library 

 

# Set background and foreground colors for the calibration target 

# in PsychoPy, (-1, -1, -1)=black, (1, 1, 1)=white, (0, 0, 0)=mid-gray 

foreground_color = (-1, -1, -1) 

background_color = win.color 

genv.setCalibrationColors(foreground_color, background_color) 
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# Set up the calibration target 

# 

# The target could be a "circle" (default), a "picture", a "movie" clip, 

# or a rotating "spiral". To configure the type of calibration target, set 

# genv.setTargetType to "circle", "picture", "movie", or "spiral", e.g., 

# genv.setTargetType('picture') 

# 

# Use gen.setPictureTarget() to set a "picture" target 

# genv.setPictureTarget(os.path.join('images', 'fixTarget.bmp')) 

# 

# Use genv.setMovieTarget() to set a "movie" target 

# genv.setMovieTarget(os.path.join('videos', 'calibVid.mov')) 

 

# Use a picture as the calibration target 

genv.setTargetType('picture') 

genv.setPictureTarget(os.path.join('images', 'fixTarget.bmp')) 

 

# Configure the size of the calibration target (in pixels) 

# this option applies only to "circle" and "spiral" targets 

# genv.setTargetSize(24) 

 

# Beeps to play during calibration, validation and drift correction 

# parameters: target, good, error 

#     target -- sound to play when target moves 

#     good -- sound to play on successful operation 
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#     error -- sound to play on failure or interruption 

# Each parameter could be ''--default sound, 'off'--no sound, or a wav file 

genv.setCalibrationSounds('', '', '') 

 

# resolution fix for macOS retina display issues 

if use_retina: 

    genv.fixMacRetinaDisplay() 

 

# Request Pylink to use the PsychoPy window we opened above for calibration 

pylink.openGraphicsEx(genv) 

 

 

# define a few helper functions for trial handling 

 

 

def clear_screen(win): 

    """ clear up the PsychoPy window""" 

 

    win.fillColor = genv.getBackgroundColor() 

    win.flip() 

 

 

def show_msg(win, text, wait_for_keypress=True): 

    """ Show task instructions on screen""" 

 

    msg = visual.TextStim(win, text, 
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                          color=genv.getForegroundColor(), 

                          wrapWidth=scn_width/2) 

    clear_screen(win) 

    msg.draw() 

    win.flip() 

 

    # wait indefinitely, terminates upon any key press 

    if wait_for_keypress: 

        event.waitKeys() 

        clear_screen(win) 

 

 

def terminate_task(): 

    """ Terminate the task gracefully and retrieve the EDF data file 

 

    file_to_retrieve: The EDF on the Host that we would like to download 

    win: the current window used by the experimental script 

    """ 

 

    el_tracker = pylink.getEYELINK() 

 

    if el_tracker.isConnected(): 

        # Terminate the current trial first if the task terminated prematurely 

        error = el_tracker.isRecording() 

        if error == pylink.TRIAL_OK: 

            abort_trial() 
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        # Put tracker in Offline mode 

        el_tracker.setOfflineMode() 

 

        # Clear the Host PC screen and wait for 500 ms 

        el_tracker.sendCommand('clear_screen 0') 

        pylink.msecDelay(500) 

 

        # Close the edf data file on the Host 

        el_tracker.closeDataFile() 

 

        # Show a file transfer message on the screen 

        msg = 'EDF data is transferring from EyeLink Host PC...' 

        show_msg(win, msg, wait_for_keypress=False) 

 

        # Download the EDF data file from the Host PC to a local data folder 

        # parameters: source_file_on_the_host, destination_file_on_local_drive 

        local_edf = os.path.join(session_folder, session_identifier + '.EDF') 

        try: 

            el_tracker.receiveDataFile(edf_file, local_edf) 

        except RuntimeError as error: 

            print('ERROR:', error) 

 

        # Close the link to the tracker. 

        el_tracker.close() 
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    # close the PsychoPy window 

    win.close() 

 

    # quit PsychoPy 

    core.quit() 

    sys.exit() 

 

 

def abort_trial(): 

    """Ends recording """ 

 

    el_tracker = pylink.getEYELINK() 

 

    # Stop recording 

    if el_tracker.isRecording(): 

        # add 100 ms to catch final trial events 

        pylink.pumpDelay(100) 

        el_tracker.stopRecording() 

 

    # clear the screen 

    clear_screen(win) 

    # Send a message to clear the Data Viewer screen 

    bgcolor_RGB = (116, 116, 116) 

    el_tracker.sendMessage('!V CLEAR %d %d %d' % bgcolor_RGB) 

 

    # send a message to mark trial end 
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    el_tracker.sendMessage('TRIAL_RESULT %d' % pylink.TRIAL_ERROR) 

 

    return pylink.TRIAL_ERROR 

 

visual.Window(size=(1920,1080),pos=(1920,0),screen=2) 

 

# Step 5: Set up the camera and calibrate the tracker 

 

# Show the task instructions 

task_msg = 'Ready for eye tracker calibration\n'  

if dummy_mode: 

    task_msg = task_msg + '\nNow, press ENTER to start the task' 

else: 

    task_msg = task_msg + '\nNow, press ENTER twice to calibrate tracker' 

show_msg(win, task_msg) 

 

# skip this step if running the script in Dummy Mode 

if not dummy_mode: 

    try: 

        el_tracker.doTrackerSetup() 

    except RuntimeError as err: 

        print('ERROR:', err) 

        el_tracker.exitCalibration() 
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# Ensure that relative paths start from the same directory as this script 

_thisDir = os.path.dirname(os.path.abspath(__file__)) 

os.chdir(_thisDir) 

# Store info about the experiment session 

psychopyVersion = '2022.2.4' 

expName = 'EEG_DP'  # from the Builder filename that created this script 

expInfo = {} 

# --- Show participant info dialog -- 

dlg = gui.DlgFromDict(dictionary=expInfo, sortKeys=False, title=expName) 

if dlg.OK == False: 

    core.quit()  # user pressed cancel 

expInfo['date'] = data.getDateStr()  # add a simple timestamp 

expInfo['expName'] = expName 

expInfo['psychopyVersion'] = psychopyVersion 

 

# Data file name stem = absolute path + name; later add .psyexp, .csv, .log, etc 

filename = _thisDir + os.sep + u'data/%s_%s_%s' % (edf_fname, expName, 

expInfo['date']) 

 

# An ExperimentHandler isn't essential but helps with data saving 

thisExp = data.ExperimentHandler(name=expName, version='', 

    extraInfo=expInfo, runtimeInfo=None, 

    originPath='C:\\Users\\Sven Ivar Ougendal\\OneDrive - OsloMet\\Master - Brain 

Health projects - Sandra Klonteig et al. - Sven Master Thesis\\3 - Experiment 

paradigm\\EEG_Data_Psychopy\\EEG_Psychopy.py', 

    savePickle=True, saveWideText=False, 

    dataFileName=filename) 
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# save a log file for detail verbose info 

logFile = logging.LogFile(filename+'.log', level=logging.EXP) 

logging.console.setLevel(logging.WARNING)  # this outputs to the screen, not a file 

 

endExpNow = False  # flag for 'escape' or other condition => quit the exp 

frameTolerance = 0.001  # how close to onset before 'same' frame 

 

# Start Code - component code to be run after the window creation 

 

# --- Setup the Window --- 

win = visual.Window( 

    size=[1920, 1080], fullscr=True, screen=1,  

    winType='pyglet', allowStencil=False, 

    monitor='testMonitor', color='black', colorSpace='rgb', 

    blendMode='avg', useFBO=True,  

    units='height') 

win.mouseVisible = False 

# store frame rate of monitor if we can measure it 

expInfo['frameRate'] = win.getActualFrameRate() 

if expInfo['frameRate'] != None: 

    frameDur = 1.0 / round(expInfo['frameRate']) 

else: 

    frameDur = 1.0 / 60.0  # could not measure, so guess 

# --- Setup input devices --- 

ioConfig = {} 
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# Setup iohub keyboard 

ioConfig['Keyboard'] = dict(use_keymap='psychopy') 

 

ioSession = '1' 

if 'session' in expInfo: 

    ioSession = str(expInfo['session']) 

ioServer = io.launchHubServer(window=win, **ioConfig) 

eyetracker = None 

 

# create a default keyboard (e.g. to check for escape) 

defaultKeyboard = keyboard.Keyboard(backend='iohub') 

 

# --- Initialize components for Routine "start_and_eyetracking_calibration" --- 

# Run 'Begin Experiment' code from Start_and_end_code 

#Fetching ID for the excel document 

Participant_ID = edf_fname 

 

#Functin to map cordianates from psychopy 

def map_cord(x,y): 

    return (x-scn_width/2, y-scn_height/2) 

     

     

 

 

 

# --- Initialize components for Routine "vas_measure" --- 
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vas_text = visual.TextStim(win=win, name='vas_text', 

    text='From a scale from 0 - 9, how tired are you?\n(Higher number = more tired)', 

    font='Open Sans', 

    pos=(0, 0), height=0.05, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=-1.0); 

vas_response = keyboard.Keyboard() 

 

# --- Initialize components for Routine "start_eeg_reminder" --- 

reminder_eeg_data_collection_text = visual.TextStim(win=win, 

name='reminder_eeg_data_collection_text', 

    text='Researcher will prepare recordings\n\nThe experiment will start soon', 

    font='Open Sans', 

    pos=(0, 0), height=0.05, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=0.0); 

eeg_data_collection_on_key = keyboard.Keyboard() 

 

# --- Initialize components for Routine "rest_state_OPEN_eye_info" --- 

rest_state_open_text = visual.TextStim(win=win, name='rest_state_open_text', 

    text="You are now going to go through a number of tasks.\n\nThe first task is to sitt 

still and look at a fixation cross.\nThe task will take 2,5 min\n\nYou will get 15 

secounds before the task to place your hands comfortably.\n\nPlease relax and focus 

on the cross.\n\nPress 'L' or 'R' when you are ready.\n\n", 

    font='Open Sans', 
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    pos=(0, 0), height=0.04, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=0.0); 

rest_state_open_key = keyboard.Keyboard() 

 

# --- Initialize components for Routine "rest_state_OPEN_eye_start_counter" --- 

 

# --- Initialize components for Routine "rest_state_OPEN_eye_TASK" --- 

 

# --- Initialize components for Routine "rest_state_CLOSED_eye_info" --- 

rest_state_closed_text = visual.TextStim(win=win, name='rest_state_closed_text', 

    text="You are now going to go through a number of task.\n\nThe first task is to sitt 

still and close your eyes\nThe task will take 2,5 min\n\nYou will get 15 secounds 

before the task to place your hands comfortably.\n\nYou will hear a 'beep' sound 

when the task is finished \n\nPlease relax and close your eyes.\n\nPress 'L' or 'R' 

when you are ready.\n\n", 

    font='Open Sans', 

    pos=(0, 0), height=0.04, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=0.0); 

rest_state_closed_key = keyboard.Keyboard() 

 

# --- Initialize components for Routine "rest_state_CLOSED_eye_start_counter" --- 

 

# --- Initialize components for Routine "rest_state_CLOSED_eye_TASK" --- 



   

 

231 

 

 

# --- Initialize components for Routine "dot_probe_task_info" --- 

task_info_text = visual.TextStim(win=win, name='task_info_text', 

    text="The next task goes as follows:\n1. A fixation cross will apear, followed by two 

pictures on each side of the screen. \n2. After a short time, the pictures will disapear 

and a DOT will apear on either side of the screen. \n3. You objective is to press 'L' or 

'R' as fast a possible when the DOT apears. \n4. Your reaction time will apear on the 

screen.\n5. Then the task repeats itself. It will take aproximatly 10min\n6. You will 

then get informaition on the next task\n\nTo get ready, but your left indexfinger on 'L' 

and right indexfinger on 'R'\nPress 'L' or 'R' to start the task", 

    font='Open Sans', 

    pos=(0, 0), height=0.04, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=0.0); 

task_info_response = keyboard.Keyboard() 

 

# --- Initialize components for Routine "dot_probe_start_counter" --- 

Start_experiment = parallel.ParallelPort(address='0x3FF8') 

dot_probe_text_counter = visual.TextStim(win=win, name='dot_probe_text_counter', 

    text='', 

    font='Open Sans', 

    pos=(0, -0.1), height=0.1, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=-1.0); 

dot_probe_start_text = visual.TextStim(win=win, name='dot_probe_start_text', 
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    text='The test starts in:', 

    font='Open Sans', 

    pos=(0, 0.1), height=0.1, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=-2.0); 

 

# --- Initialize components for Routine "Fixation_Cross" --- 

fixation_cross = visual.ShapeStim( 

    win=win, name='fixation_cross', vertices='cross',units='pix',  

    size=(35, 35), 

    ori=0.0, pos=(0, 0), anchor='center', 

    lineWidth=0.02,     colorSpace='rgb',  lineColor='white', fillColor='white', 

    opacity=None, depth=-1.0, interpolate=True) 

fixation = parallel.ParallelPort(address='0x3FF8') 

 

# --- Initialize components for Routine "Faces_Stimuli" --- 

image_left = visual.ImageStim( 

    win=win, 

    name='image_left', units='pix',  

    image='sin', mask=None, anchor='center', 

    ori=0.0, pos=(-687, 0), size=(362, 506), 

    color=[1,1,1], colorSpace='rgb', opacity=None, 

    flipHoriz=False, flipVert=False, 

    texRes=128.0, interpolate=True, depth=-1.0) 

image_right = visual.ImageStim( 
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    win=win, 

    name='image_right', units='pix',  

    image='sin', mask=None, anchor='center', 

    ori=0.0, pos=(687, 0), size=(362, 506), 

    color=[1,1,1], colorSpace='rgb', opacity=None, 

    flipHoriz=False, flipVert=False, 

    texRes=128.0, interpolate=True, depth=-2.0) 

faceStim_neutral_neutral = parallel.ParallelPort(address='0x3FF8') 

faceStim_happy_neutral = parallel.ParallelPort(address='0x3FF8') 

faceStim_fearful_neutral = parallel.ParallelPort(address='0x3FF8') 

fixation_cross_2 = visual.ShapeStim( 

    win=win, name='fixation_cross_2', vertices='cross',units='pix',  

    size=(35, 35), 

    ori=0.0, pos=(0, 0), anchor='center', 

    lineWidth=0.02,     colorSpace='rgb',  lineColor='white', fillColor='white', 

    opacity=None, depth=-6.0, interpolate=True) 

 

# --- Initialize components for Routine "Dot_Stimuli" --- 

dotStim_congurent = parallel.ParallelPort(address='0x3FF8') 

dotStim_incongurent = parallel.ParallelPort(address='0x3FF8') 

key_reaction = keyboard.Keyboard() 

dot1_left = visual.ShapeStim( 

    win=win, name='dot1_left',units='pix',  

    size=(25, 25), vertices='circle', 

    ori=0.0, pos=(-687, 0), anchor='center', 

    lineWidth=1.0,     colorSpace='rgb',  lineColor='white', fillColor='white', 
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    opacity=None, depth=-4.0, interpolate=True) 

dot1_right = visual.ShapeStim( 

    win=win, name='dot1_right',units='pix',  

    size=(25, 25), vertices='circle', 

    ori=0.0, pos=(687, 0), anchor='center', 

    lineWidth=1.0,     colorSpace='rgb',  lineColor='white', fillColor='white', 

    opacity=None, depth=-5.0, interpolate=True) 

fixation_cross_3 = visual.ShapeStim( 

    win=win, name='fixation_cross_3', vertices='cross',units='pix',  

    size=(35, 35), 

    ori=0.0, pos=(0, 0), anchor='center', 

    lineWidth=0.02,     colorSpace='rgb',  lineColor='white', fillColor='white', 

    opacity=None, depth=-6.0, interpolate=True) 

 

# --- Initialize components for Routine "Rest" --- 

reaction = parallel.ParallelPort(address='0x3FF8') 

reaction_time_text = visual.TextStim(win=win, name='reaction_time_text', 

    text='Reaction time:', 

    font='Open Sans', 

    pos=(0, 0), height=0.05, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=-2.0); 

reaction_time_numbers = visual.TextStim(win=win, name='reaction_time_numbers', 

    text='', 

    font='Open Sans', 
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    pos=(0, -0.1), height=0.05, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=-3.0); 

 

# --- Initialize components for Routine "dot_probe_ended_new_experiment_start" --- 

dot_probe_ended_text = visual.TextStim(win=win, name='dot_probe_ended_text', 

    text="Reaction time experiment finnished.\n\nPress 'L' or 'R' to continue.", 

    font='Open Sans', 

    pos=(0, 0), height=0.04, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=0.0); 

Experiment_ended = parallel.ParallelPort(address='0x3FF8') 

experiment_phase_2_key = keyboard.Keyboard() 

 

# --- Initialize components for Routine "smooth_pursuit_info" --- 

smooth_pursuit_info_text = visual.TextStim(win=win, 

name='smooth_pursuit_info_text', 

    text="Next experiement starts:\n\nIn the next task please follow the dot as best you 

can.\n\nPress 'L' or 'R' when ready", 

    font='Open Sans', 

    pos=(0, 0), height=0.04, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=0.0); 
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smooth_pursuit_info_keyboard = keyboard.Keyboard() 

 

# --- Initialize components for Routine "smooth_pursuit" --- 

polygon_smooth = visual.ShapeStim( 

    win=win, name='polygon_smooth', 

    size=(0.05, 0.05), vertices='circle', 

    ori=0.0, pos=(0, 0), anchor='center', 

    lineWidth=1.0,     colorSpace='rgb',  lineColor='white', fillColor='white', 

    opacity=None, depth=0.0, interpolate=True) 

 

# --- Initialize components for Routine "saccade" --- 

polygon_saccade = visual.ShapeStim( 

    win=win, name='polygon_saccade', 

    size=(0.05, 0.05), vertices='circle', 

    ori=0.0, pos=(0, 0), anchor='center', 

    lineWidth=1.0,     colorSpace='rgb',  lineColor='white', fillColor='white', 

    opacity=None, depth=-1.0, interpolate=True) 

 

# --- Initialize components for Routine "intro_waldo" --- 

intro_waldo_picture = visual.ImageStim( 

    win=win, 

    name='intro_waldo_picture',  

    image='AI_lab_exp/Intro.png', mask=None, anchor='center', 

    ori=0.0, pos=(0, 0), size=(1, 1), 

    color=[1,1,1], colorSpace='rgb', opacity=None, 

    flipHoriz=False, flipVert=False, 



   

 

237 

 

    texRes=128.0, interpolate=True, depth=0.0) 

intro_waldo_keyboard = keyboard.Keyboard() 

 

# --- Initialize components for Routine "waldo" --- 

image = visual.ImageStim( 

    win=win, 

    name='image',  

    image='AI_lab_exp/wiw1.jpg', mask=None, anchor='center', 

    ori=0.0, pos=(0, 0), size=(1, 1), 

    color=[1,1,1], colorSpace='rgb', opacity=None, 

    flipHoriz=False, flipVert=False, 

    texRes=128.0, interpolate=True, depth=0.0) 

image_2 = visual.ImageStim( 

    win=win, 

    name='image_2',  

    image='AI_lab_exp/wiw2.png', mask=None, anchor='center', 

    ori=0.0, pos=(0, 0), size=(1, 1), 

    color=[1,1,1], colorSpace='rgb', opacity=None, 

    flipHoriz=False, flipVert=False, 

    texRes=128.0, interpolate=True, depth=-1.0) 

image_3 = visual.ImageStim( 

    win=win, 

    name='image_3',  

    image='AI_lab_exp/wiw3.jpg', mask=None, anchor='center', 

    ori=0.0, pos=(0, 0), size=(1,1), 

    color=[1,1,1], colorSpace='rgb', opacity=None, 
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    flipHoriz=False, flipVert=False, 

    texRes=128.0, interpolate=True, depth=-2.0) 

image_4 = visual.ImageStim( 

    win=win, 

    name='image_4',  

    image='AI_lab_exp/wiw4.jpg', mask=None, anchor='center', 

    ori=0.0, pos=(0, 0), size=(1, 1), 

    color=[1,1,1], colorSpace='rgb', opacity=None, 

    flipHoriz=False, flipVert=False, 

    texRes=128.0, interpolate=True, depth=-3.0) 

image_5 = visual.ImageStim( 

    win=win, 

    name='image_5',  

    image='AI_lab_exp/wiw5.jpg', mask=None, anchor='center', 

    ori=0.0, pos=(0, 0), size=(1, 1), 

    color=[1,1,1], colorSpace='rgb', opacity=None, 

    flipHoriz=False, flipVert=False, 

    texRes=128.0, interpolate=True, depth=-4.0) 

image_6 = visual.ImageStim( 

    win=win, 

    name='image_6',  

    image='AI_lab_exp/wiw6.jpg', mask=None, anchor='center', 

    ori=0.0, pos=(0, 0), size=(1, 1), 

    color=[1,1,1], colorSpace='rgb', opacity=None, 

    flipHoriz=False, flipVert=False, 

    texRes=128.0, interpolate=True, depth=-5.0) 



   

 

239 

 

 

# --- Initialize components for Routine "intro_rand_pix" --- 

text_3 = visual.TextStim(win=win, name='text_3', 

    text="Look carefully at the following images.\n\nPress 'L' or 'R' when you are 

ready.", 

    font='Open Sans', 

    pos=(0, 0), height=0.05, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  

    languageStyle='LTR', 

    depth=0.0); 

key_resp_2 = keyboard.Keyboard() 

 

# --- Initialize components for Routine "rand_pix" --- 

image_7 = visual.ImageStim( 

    win=win, 

    name='image_7',  

    image='AI_lab_exp/randpix0.jpg', mask=None, anchor='center', 

    ori=0.0, pos=(0, 0), size=(1, 1), 

    color=[1,1,1], colorSpace='rgb', opacity=None, 

    flipHoriz=False, flipVert=False, 

    texRes=128.0, interpolate=True, depth=0.0) 

image_8 = visual.ImageStim( 

    win=win, 

    name='image_8',  

    image='AI_lab_exp/randpix1.jpg', mask=None, anchor='center', 

    ori=0.0, pos=(0, 0), size=(1, 1), 
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    color=[1,1,1], colorSpace='rgb', opacity=None, 

    flipHoriz=False, flipVert=False, 

    texRes=128.0, interpolate=True, depth=-1.0) 

image_9 = visual.ImageStim( 

    win=win, 

    name='image_9',  

    image='AI_lab_exp/randpix2.jpg', mask=None, anchor='center', 

    ori=0.0, pos=(0, 0), size=(1, 1), 

    color=[1,1,1], colorSpace='rgb', opacity=None, 

    flipHoriz=False, flipVert=False, 

    texRes=128.0, interpolate=True, depth=-2.0) 

image_10 = visual.ImageStim( 

    win=win, 

    name='image_10',  

    image='AI_lab_exp/randpix4.jpg', mask=None, anchor='center', 

    ori=0.0, pos=(0, 0), size=(1, 1), 

    color=[1,1,1], colorSpace='rgb', opacity=None, 

    flipHoriz=False, flipVert=False, 

    texRes=128.0, interpolate=True, depth=-3.0) 

 

# --- Initialize components for Routine "End" --- 

End_text = visual.TextStim(win=win, name='End_text', 

    text='Experiment is over\nThank you ', 

    font='Open Sans', 

    pos=(0, 0), height=0.1, wrapWidth=None, ori=0.0,  

    color='white', colorSpace='rgb', opacity=None,  
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    languageStyle='LTR', 

    depth=0.0); 

 

# Create some handy timers 

globalClock = core.Clock()  # to track the time since experiment started 

routineTimer = core.Clock()  # to track time remaining of each (possibly non-slip) 

routine  

 

# --- Prepare to start Routine "start_and_eyetracking_calibration" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

# keep track of which components have finished 

start_and_eyetracking_calibrationComponents = [] 

for thisComponent in start_and_eyetracking_calibrationComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 
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# --- Run Routine "start_and_eyetracking_calibration" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in start_and_eyetracking_calibrationComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 



   

 

243 

 

 

# --- Ending Routine "start_and_eyetracking_calibration" --- 

for thisComponent in start_and_eyetracking_calibrationComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# Run 'End Routine' code from Start_and_end_code 

#Hides the mouse when the experiment is running 

event.Mouse(visible=False) 

         

 

 

# the Routine "start_and_eyetracking_calibration" was not non-slip safe, so reset the 

non-slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "vas_measure" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

vas_response.keys = [] 

vas_response.rt = [] 

_vas_response_allKeys = [] 

# keep track of which components have finished 

vas_measureComponents = [vas_text, vas_response] 

for thisComponent in vas_measureComponents: 

    thisComponent.tStart = None 
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    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "vas_measure" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *vas_text* updates 

    if vas_text.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: 

        # keep track of start time/frame for later 

        vas_text.frameNStart = frameN  # exact frame index 

        vas_text.tStart = t  # local t and not account for scr refresh 

        vas_text.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(vas_text, 'tStartRefresh')  # time at next scr refresh 
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        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'vas_text.started') 

        vas_text.setAutoDraw(True) 

     

    # *vas_response* updates 

    waitOnFlip = False 

    if vas_response.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: 

        # keep track of start time/frame for later 

        vas_response.frameNStart = frameN  # exact frame index 

        vas_response.tStart = t  # local t and not account for scr refresh 

        vas_response.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(vas_response, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'vas_response.started') 

        vas_response.status = STARTED 

        # keyboard checking is just starting 

        waitOnFlip = True 

        win.callOnFlip(vas_response.clock.reset)  # t=0 on next screen flip 

        win.callOnFlip(vas_response.clearEvents, eventType='keyboard')  # clear 

events on next screen flip 

    if vas_response.status == STARTED and not waitOnFlip: 

        theseKeys = vas_response.getKeys(keyList=['1','2','3','4','5','6','7','8','9'], 

waitRelease=False) 

        _vas_response_allKeys.extend(theseKeys) 

        if len(_vas_response_allKeys): 

            vas_response.keys = _vas_response_allKeys[-1].name  # just the last key 

pressed 
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            vas_response.rt = _vas_response_allKeys[-1].rt 

            # a response ends the routine 

            continueRoutine = False 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in vas_measureComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "vas_measure" --- 

for thisComponent in vas_measureComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 
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# Run 'End Routine' code from vas_code 

VAS = vas_response.keys 

# check responses 

if vas_response.keys in ['', [], None]:  # No response was made 

    vas_response.keys = None 

thisExp.addData('vas_response.keys',vas_response.keys) 

if vas_response.keys != None:  # we had a response 

    thisExp.addData('vas_response.rt', vas_response.rt) 

thisExp.nextEntry() 

# the Routine "vas_measure" was not non-slip safe, so reset the non-slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "start_eeg_reminder" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

eeg_data_collection_on_key.keys = [] 

eeg_data_collection_on_key.rt = [] 

_eeg_data_collection_on_key_allKeys = [] 

# keep track of which components have finished 

start_eeg_reminderComponents = [reminder_eeg_data_collection_text, 

eeg_data_collection_on_key] 

for thisComponent in start_eeg_reminderComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 
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    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "start_eeg_reminder" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *reminder_eeg_data_collection_text* updates 

    if reminder_eeg_data_collection_text.status == NOT_STARTED and tThisFlip >= 

0.0-frameTolerance: 

        # keep track of start time/frame for later 

        reminder_eeg_data_collection_text.frameNStart = frameN  # exact frame index 

        reminder_eeg_data_collection_text.tStart = t  # local t and not account for scr 

refresh 

        reminder_eeg_data_collection_text.tStartRefresh = tThisFlipGlobal  # on global 

time 
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        win.timeOnFlip(reminder_eeg_data_collection_text, 'tStartRefresh')  # time at 

next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'reminder_eeg_data_collection_text.started') 

        reminder_eeg_data_collection_text.setAutoDraw(True) 

     

    # *eeg_data_collection_on_key* updates 

    waitOnFlip = False 

    if eeg_data_collection_on_key.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 

        eeg_data_collection_on_key.frameNStart = frameN  # exact frame index 

        eeg_data_collection_on_key.tStart = t  # local t and not account for scr refresh 

        eeg_data_collection_on_key.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(eeg_data_collection_on_key, 'tStartRefresh')  # time at next scr 

refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'eeg_data_collection_on_key.started') 

        eeg_data_collection_on_key.status = STARTED 

        # keyboard checking is just starting 

        waitOnFlip = True 

        win.callOnFlip(eeg_data_collection_on_key.clock.reset)  # t=0 on next screen 

flip 

        win.callOnFlip(eeg_data_collection_on_key.clearEvents, eventType='keyboard')  

# clear events on next screen flip 

    if eeg_data_collection_on_key.status == STARTED and not waitOnFlip: 
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        theseKeys = eeg_data_collection_on_key.getKeys(keyList=['space'], 

waitRelease=False) 

        _eeg_data_collection_on_key_allKeys.extend(theseKeys) 

        if len(_eeg_data_collection_on_key_allKeys): 

            eeg_data_collection_on_key.keys = _eeg_data_collection_on_key_allKeys[-

1].name  # just the last key pressed 

            eeg_data_collection_on_key.rt = _eeg_data_collection_on_key_allKeys[-1].rt 

            # a response ends the routine 

            continueRoutine = False 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in start_eeg_reminderComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 
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        win.flip() 

 

# --- Ending Routine "start_eeg_reminder" --- 

for thisComponent in start_eeg_reminderComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# check responses 

if eeg_data_collection_on_key.keys in ['', [], None]:  # No response was made 

    eeg_data_collection_on_key.keys = None 

thisExp.addData('eeg_data_collection_on_key.keys',eeg_data_collection_on_key.ke

ys) 

if eeg_data_collection_on_key.keys != None:  # we had a response 

    thisExp.addData('eeg_data_collection_on_key.rt', eeg_data_collection_on_key.rt) 

thisExp.nextEntry() 

# the Routine "start_eeg_reminder" was not non-slip safe, so reset the non-slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "rest_state_OPEN_eye_info" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

rest_state_open_key.keys = [] 

rest_state_open_key.rt = [] 

_rest_state_open_key_allKeys = [] 

# keep track of which components have finished 
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rest_state_OPEN_eye_infoComponents = [rest_state_open_text, 

rest_state_open_key] 

for thisComponent in rest_state_OPEN_eye_infoComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "rest_state_OPEN_eye_info" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *rest_state_open_text* updates 

    if rest_state_open_text.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 
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        # keep track of start time/frame for later 

        rest_state_open_text.frameNStart = frameN  # exact frame index 

        rest_state_open_text.tStart = t  # local t and not account for scr refresh 

        rest_state_open_text.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(rest_state_open_text, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'rest_state_open_text.started') 

        rest_state_open_text.setAutoDraw(True) 

     

    # *rest_state_open_key* updates 

    waitOnFlip = False 

    if rest_state_open_key.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 

        rest_state_open_key.frameNStart = frameN  # exact frame index 

        rest_state_open_key.tStart = t  # local t and not account for scr refresh 

        rest_state_open_key.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(rest_state_open_key, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'rest_state_open_key.started') 

        rest_state_open_key.status = STARTED 

        # keyboard checking is just starting 

        waitOnFlip = True 

        win.callOnFlip(rest_state_open_key.clock.reset)  # t=0 on next screen flip 

        win.callOnFlip(rest_state_open_key.clearEvents, eventType='keyboard')  # clear 

events on next screen flip 
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    if rest_state_open_key.status == STARTED and not waitOnFlip: 

        theseKeys = rest_state_open_key.getKeys(keyList=['1','2'], waitRelease=False) 

        _rest_state_open_key_allKeys.extend(theseKeys) 

        if len(_rest_state_open_key_allKeys): 

            rest_state_open_key.keys = _rest_state_open_key_allKeys[-1].name  # just 

the last key pressed 

            rest_state_open_key.rt = _rest_state_open_key_allKeys[-1].rt 

            # a response ends the routine 

            continueRoutine = False 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in rest_state_OPEN_eye_infoComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 
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        win.flip() 

 

# --- Ending Routine "rest_state_OPEN_eye_info" --- 

for thisComponent in rest_state_OPEN_eye_infoComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# check responses 

if rest_state_open_key.keys in ['', [], None]:  # No response was made 

    rest_state_open_key.keys = None 

thisExp.addData('rest_state_open_key.keys',rest_state_open_key.keys) 

if rest_state_open_key.keys != None:  # we had a response 

    thisExp.addData('rest_state_open_key.rt', rest_state_open_key.rt) 

thisExp.nextEntry() 

# the Routine "rest_state_OPEN_eye_info" was not non-slip safe, so reset the non-

slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "rest_state_OPEN_eye_start_counter" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

# keep track of which components have finished 

rest_state_OPEN_eye_start_counterComponents = [] 

for thisComponent in rest_state_OPEN_eye_start_counterComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 
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    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "rest_state_OPEN_eye_start_counter" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 
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    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in rest_state_OPEN_eye_start_counterComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "rest_state_OPEN_eye_start_counter" --- 

for thisComponent in rest_state_OPEN_eye_start_counterComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# the Routine "rest_state_OPEN_eye_start_counter" was not non-slip safe, so reset 

the non-slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "rest_state_OPEN_eye_TASK" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

# keep track of which components have finished 

rest_state_OPEN_eye_TASKComponents = [] 

for thisComponent in rest_state_OPEN_eye_TASKComponents: 

    thisComponent.tStart = None 
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    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "rest_state_OPEN_eye_TASK" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 
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        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in rest_state_OPEN_eye_TASKComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "rest_state_OPEN_eye_TASK" --- 

for thisComponent in rest_state_OPEN_eye_TASKComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# the Routine "rest_state_OPEN_eye_TASK" was not non-slip safe, so reset the non-

slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "rest_state_CLOSED_eye_info" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

rest_state_closed_key.keys = [] 

rest_state_closed_key.rt = [] 

_rest_state_closed_key_allKeys = [] 
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# keep track of which components have finished 

rest_state_CLOSED_eye_infoComponents = [rest_state_closed_text, 

rest_state_closed_key] 

for thisComponent in rest_state_CLOSED_eye_infoComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "rest_state_CLOSED_eye_info" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *rest_state_closed_text* updates 
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    if rest_state_closed_text.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 

        rest_state_closed_text.frameNStart = frameN  # exact frame index 

        rest_state_closed_text.tStart = t  # local t and not account for scr refresh 

        rest_state_closed_text.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(rest_state_closed_text, 'tStartRefresh')  # time at next scr 

refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'rest_state_closed_text.started') 

        rest_state_closed_text.setAutoDraw(True) 

     

    # *rest_state_closed_key* updates 

    waitOnFlip = False 

    if rest_state_closed_key.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 

        rest_state_closed_key.frameNStart = frameN  # exact frame index 

        rest_state_closed_key.tStart = t  # local t and not account for scr refresh 

        rest_state_closed_key.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(rest_state_closed_key, 'tStartRefresh')  # time at next scr 

refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'rest_state_closed_key.started') 

        rest_state_closed_key.status = STARTED 

        # keyboard checking is just starting 

        waitOnFlip = True 
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        win.callOnFlip(rest_state_closed_key.clock.reset)  # t=0 on next screen flip 

        win.callOnFlip(rest_state_closed_key.clearEvents, eventType='keyboard')  # 

clear events on next screen flip 

    if rest_state_closed_key.status == STARTED and not waitOnFlip: 

        theseKeys = rest_state_closed_key.getKeys(keyList=['1','2'], 

waitRelease=False) 

        _rest_state_closed_key_allKeys.extend(theseKeys) 

        if len(_rest_state_closed_key_allKeys): 

            rest_state_closed_key.keys = _rest_state_closed_key_allKeys[-1].name  # 

just the last key pressed 

            rest_state_closed_key.rt = _rest_state_closed_key_allKeys[-1].rt 

            # a response ends the routine 

            continueRoutine = False 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in rest_state_CLOSED_eye_infoComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 
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    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "rest_state_CLOSED_eye_info" --- 

for thisComponent in rest_state_CLOSED_eye_infoComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# check responses 

if rest_state_closed_key.keys in ['', [], None]:  # No response was made 

    rest_state_closed_key.keys = None 

thisExp.addData('rest_state_closed_key.keys',rest_state_closed_key.keys) 

if rest_state_closed_key.keys != None:  # we had a response 

    thisExp.addData('rest_state_closed_key.rt', rest_state_closed_key.rt) 

thisExp.nextEntry() 

# the Routine "rest_state_CLOSED_eye_info" was not non-slip safe, so reset the 

non-slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "rest_state_CLOSED_eye_start_counter" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

# keep track of which components have finished 

rest_state_CLOSED_eye_start_counterComponents = [] 
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for thisComponent in rest_state_CLOSED_eye_start_counterComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "rest_state_CLOSED_eye_start_counter" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 
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    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in rest_state_CLOSED_eye_start_counterComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "rest_state_CLOSED_eye_start_counter" --- 

for thisComponent in rest_state_CLOSED_eye_start_counterComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# the Routine "rest_state_CLOSED_eye_start_counter" was not non-slip safe, so 

reset the non-slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "rest_state_CLOSED_eye_TASK" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

# keep track of which components have finished 
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rest_state_CLOSED_eye_TASKComponents = [] 

for thisComponent in rest_state_CLOSED_eye_TASKComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "rest_state_CLOSED_eye_TASK" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 
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    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in rest_state_CLOSED_eye_TASKComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "rest_state_CLOSED_eye_TASK" --- 

for thisComponent in rest_state_CLOSED_eye_TASKComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# the Routine "rest_state_CLOSED_eye_TASK" was not non-slip safe, so reset the 

non-slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "dot_probe_task_info" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 



   

 

268 

 

task_info_response.keys = [] 

task_info_response.rt = [] 

_task_info_response_allKeys = [] 

# keep track of which components have finished 

dot_probe_task_infoComponents = [task_info_text, task_info_response] 

for thisComponent in dot_probe_task_infoComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "dot_probe_task_info" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 
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    # *task_info_text* updates 

    if task_info_text.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: 

        # keep track of start time/frame for later 

        task_info_text.frameNStart = frameN  # exact frame index 

        task_info_text.tStart = t  # local t and not account for scr refresh 

        task_info_text.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(task_info_text, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'task_info_text.started') 

        task_info_text.setAutoDraw(True) 

     

    # *task_info_response* updates 

    waitOnFlip = False 

    if task_info_response.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 

        task_info_response.frameNStart = frameN  # exact frame index 

        task_info_response.tStart = t  # local t and not account for scr refresh 

        task_info_response.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(task_info_response, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'task_info_response.started') 

        task_info_response.status = STARTED 

        # keyboard checking is just starting 

        waitOnFlip = True 

        win.callOnFlip(task_info_response.clock.reset)  # t=0 on next screen flip 
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        win.callOnFlip(task_info_response.clearEvents, eventType='keyboard')  # clear 

events on next screen flip 

    if task_info_response.status == STARTED and not waitOnFlip: 

        theseKeys = task_info_response.getKeys(keyList=['1','2'], waitRelease=False) 

        _task_info_response_allKeys.extend(theseKeys) 

        if len(_task_info_response_allKeys): 

            task_info_response.keys = _task_info_response_allKeys[-1].name  # just the 

last key pressed 

            task_info_response.rt = _task_info_response_allKeys[-1].rt 

            # a response ends the routine 

            continueRoutine = False 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in dot_probe_task_infoComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 
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    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "dot_probe_task_info" --- 

for thisComponent in dot_probe_task_infoComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# check responses 

if task_info_response.keys in ['', [], None]:  # No response was made 

    task_info_response.keys = None 

thisExp.addData('task_info_response.keys',task_info_response.keys) 

if task_info_response.keys != None:  # we had a response 

    thisExp.addData('task_info_response.rt', task_info_response.rt) 

thisExp.nextEntry() 

# the Routine "dot_probe_task_info" was not non-slip safe, so reset the non-slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "dot_probe_start_counter" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

# Run 'Begin Routine' code from start_eye_track_recording_and_clock_code 

# get a reference to the currently active EyeLink connection 

el_tracker = pylink.getEYELINK() 
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# put the tracker in the offline mode first 

el_tracker.setOfflineMode() 

 

# clear the host screen before we draw the backdrop 

el_tracker.sendCommand('clear_screen 0') 

 

trial_index = 0 

 

 

# put tracker in idle/offline mode before recording 

el_tracker.setOfflineMode() 

 

# Start recording 

# arguments: sample_to_file, events_to_file, sample_over_link, 

# event_over_link (1-yes, 0-no) 

try: 

    el_tracker.startRecording(1, 1, 1, 1) 

except RuntimeError as error: 

    print("ERROR:", error) 

    abort_trial() 

# keep track of which components have finished 

dot_probe_start_counterComponents = [Start_experiment, dot_probe_text_counter, 

dot_probe_start_text] 

for thisComponent in dot_probe_start_counterComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 
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    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "dot_probe_start_counter" --- 

while continueRoutine and routineTimer.getTime() < 15.0: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

    # *Start_experiment* updates 

    if Start_experiment.status == NOT_STARTED and tThisFlip >= 15-

frameTolerance: 

        # keep track of start time/frame for later 

        Start_experiment.frameNStart = frameN  # exact frame index 

        Start_experiment.tStart = t  # local t and not account for scr refresh 

        Start_experiment.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(Start_experiment, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 
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        thisExp.timestampOnFlip(win, 'Start_experiment.started') 

        Start_experiment.status = STARTED 

        win.callOnFlip(Start_experiment.setData, int(1)) 

    if Start_experiment.status == STARTED: 

        if frameN >= (Start_experiment.frameNStart + 2.0): 

            # keep track of stop time/frame for later 

            Start_experiment.tStop = t  # not accounting for scr refresh 

            Start_experiment.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'Start_experiment.stopped') 

            Start_experiment.status = FINISHED 

            win.callOnFlip(Start_experiment.setData, int(0)) 

     

    # *dot_probe_text_counter* updates 

    if dot_probe_text_counter.status == NOT_STARTED and tThisFlip >= 0-

frameTolerance: 

        # keep track of start time/frame for later 

        dot_probe_text_counter.frameNStart = frameN  # exact frame index 

        dot_probe_text_counter.tStart = t  # local t and not account for scr refresh 

        dot_probe_text_counter.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(dot_probe_text_counter, 'tStartRefresh')  # time at next scr 

refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'dot_probe_text_counter.started') 

        dot_probe_text_counter.setAutoDraw(True) 

    if dot_probe_text_counter.status == STARTED: 
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        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > dot_probe_text_counter.tStartRefresh + 15-frameTolerance: 

            # keep track of stop time/frame for later 

            dot_probe_text_counter.tStop = t  # not accounting for scr refresh 

            dot_probe_text_counter.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'dot_probe_text_counter.stopped') 

            dot_probe_text_counter.setAutoDraw(False) 

    if dot_probe_text_counter.status == STARTED:  # only update if drawing 

        dot_probe_text_counter.setText(round(15.0 - t, ndigits = 0) 

 

 

, log=False) 

     

    # *dot_probe_start_text* updates 

    if dot_probe_start_text.status == NOT_STARTED and tThisFlip >= 0-

frameTolerance: 

        # keep track of start time/frame for later 

        dot_probe_start_text.frameNStart = frameN  # exact frame index 

        dot_probe_start_text.tStart = t  # local t and not account for scr refresh 

        dot_probe_start_text.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(dot_probe_start_text, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'dot_probe_start_text.started') 

        dot_probe_start_text.setAutoDraw(True) 

    if dot_probe_start_text.status == STARTED: 
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        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > dot_probe_start_text.tStartRefresh + 15-frameTolerance: 

            # keep track of stop time/frame for later 

            dot_probe_start_text.tStop = t  # not accounting for scr refresh 

            dot_probe_start_text.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'dot_probe_start_text.stopped') 

            dot_probe_start_text.setAutoDraw(False) 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in dot_probe_start_counterComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 
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# --- Ending Routine "dot_probe_start_counter" --- 

for thisComponent in dot_probe_start_counterComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

if Start_experiment.status == STARTED: 

    win.callOnFlip(Start_experiment.setData, int(0)) 

# Run 'End Routine' code from start_eye_track_recording_and_clock_code 

#Starting timer. It starts when the image routines begins.  

expClock = core.Clock() 

 

#send message to Dataviewer the routine is starting  

el_tracker.sendMessage('beginExperiment') 

 

# using non-slip timing so subtract the expected duration of this Routine (unless 

ended on request) 

if routineForceEnded: 

    routineTimer.reset() 

else: 

    routineTimer.addTime(-15.000000) 

 

# set up handler to look after randomisation of conditions etc 

thisTrial = data.TrialHandler(nReps=2.0, method='random',  

    extraInfo=expInfo, originPath=-1, 

    trialList=data.importConditions('picture_setup_dot_probe_eeg_eye_tracker.xlsx'), 

    seed=None, name='thisTrial') 
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thisExp.addLoop(thisTrial)  # add the loop to the experiment 

thisThisTrial = thisTrial.trialList[0]  # so we can initialise stimuli with some values 

# abbreviate parameter names if possible (e.g. rgb = thisThisTrial.rgb) 

if thisThisTrial != None: 

    for paramName in thisThisTrial: 

        exec('{} = thisThisTrial[paramName]'.format(paramName)) 

 

for thisThisTrial in thisTrial: 

    currentLoop = thisTrial 

    # abbreviate parameter names if possible (e.g. rgb = thisThisTrial.rgb) 

    if thisThisTrial != None: 

        for paramName in thisThisTrial: 

            exec('{} = thisThisTrial[paramName]'.format(paramName)) 

     

    # --- Prepare to start Routine "Fixation_Cross" --- 

    continueRoutine = True 

    routineForceEnded = False 

    # update component parameters for each repeat 

    # Run 'Begin Routine' code from fixation_cross_code 

    #Sending trail info to the eye tracker 

    el_tracker.sendMessage('TRIALID %d' % trial_index) 

     

    trial_index += 1 

     

    #el_tracker.sendMessage(trial_initial_info) 

    el_tracker.sendMessage('Fixation_Cross_Start') 
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    el_tracker.sendMessage('!V DRAWLINE 255 255 255 960 505 960 575') 

    el_tracker.sendMessage('!V DRAWLINE 255 255 255 925 540 995 540') 

     

     

    # keep track of which components have finished 

    Fixation_CrossComponents = [fixation_cross, fixation] 

    for thisComponent in Fixation_CrossComponents: 

        thisComponent.tStart = None 

        thisComponent.tStop = None 

        thisComponent.tStartRefresh = None 

        thisComponent.tStopRefresh = None 

        if hasattr(thisComponent, 'status'): 

            thisComponent.status = NOT_STARTED 

    # reset timers 

    t = 0 

    _timeToFirstFrame = win.getFutureFlipTime(clock="now") 

    frameN = -1 

     

    # --- Run Routine "Fixation_Cross" --- 

    while continueRoutine: 

        # get current time 

        t = routineTimer.getTime() 

        tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

        tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

        frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 
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        # update/draw components on each frame 

        # Run 'Each Frame' code from fixation_cross_code 

        if t > Time_Jitter: 

            break 

         

        # *fixation_cross* updates 

        if fixation_cross.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

            # keep track of start time/frame for later 

            fixation_cross.frameNStart = frameN  # exact frame index 

            fixation_cross.tStart = t  # local t and not account for scr refresh 

            fixation_cross.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(fixation_cross, 'tStartRefresh')  # time at next scr refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'fixation_cross.started') 

            fixation_cross.setAutoDraw(True) 

        # *fixation* updates 

        if fixation.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: 

            # keep track of start time/frame for later 

            fixation.frameNStart = frameN  # exact frame index 

            fixation.tStart = t  # local t and not account for scr refresh 

            fixation.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(fixation, 'tStartRefresh')  # time at next scr refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'fixation.started') 

            fixation.status = STARTED 
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            win.callOnFlip(fixation.setData, int(2)) 

        if fixation.status == STARTED: 

            if frameN >= (fixation.frameNStart + 2.0): 

                # keep track of stop time/frame for later 

                fixation.tStop = t  # not accounting for scr refresh 

                fixation.frameNStop = frameN  # exact frame index 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'fixation.stopped') 

                fixation.status = FINISHED 

                win.callOnFlip(fixation.setData, int(0)) 

         

        # check for quit (typically the Esc key) 

        if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

            core.quit() 

         

        # check if all components have finished 

        if not continueRoutine:  # a component has requested a forced-end of Routine 

            routineForceEnded = True 

            break 

        continueRoutine = False  # will revert to True if at least one component still 

running 

        for thisComponent in Fixation_CrossComponents: 

            if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

                continueRoutine = True 

                break  # at least one component has not yet finished 
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        # refresh the screen 

        if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

            win.flip() 

     

    # --- Ending Routine "Fixation_Cross" --- 

    for thisComponent in Fixation_CrossComponents: 

        if hasattr(thisComponent, "setAutoDraw"): 

            thisComponent.setAutoDraw(False) 

    # Run 'End Routine' code from fixation_cross_code 

    el_tracker.sendMessage('Fixation_Cross_Stop') 

    if fixation.status == STARTED: 

        win.callOnFlip(fixation.setData, int(0)) 

    # the Routine "Fixation_Cross" was not non-slip safe, so reset the non-slip timer 

    routineTimer.reset() 

     

    # --- Prepare to start Routine "Faces_Stimuli" --- 

    continueRoutine = True 

    routineForceEnded = False 

    # update component parameters for each repeat 

    # Run 'Begin Routine' code from code_faces_stimuli 

    #To find ratio from psychopy take use this formula:(scn_width/2)- (psychopy_width 

* scn_height) 

    left_image_center_x_axis = int((scn_width/2)-(687))  

    right_image_center_x_axis = int((scn_width/2)+(687))  

    image_center_y_axis = int(scn_height/2.0) 

    image_width = int(362) 
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    image_height = int(506) 

     

    #'!V IMGLOAD CENTER %s %d %d %d %d' % (bg_image, int(scn_width/2.0), 

int(scn_height/2.0), int(scn_width), int(scn_height)) 

    #!V IMGLOAD CENTER <relative_image_path> <x_position> <y_position> [width] 

[height] 

    image_face_left = "../../" + Face_Stimuli_Left 

    image_face_right = "../../" + Face_Stimuli_Right 

     

    el_tracker.sendMessage('!V IMGLOAD CENTER %s %d %d %d %d' % 

(image_face_left, left_image_center_x_axis, image_center_y_axis, image_width, 

image_height)) 

    el_tracker.sendMessage('!V IMGLOAD CENTER %s %d %d %d %d' % 

(image_face_right, right_image_center_x_axis, image_center_y_axis, image_width, 

image_height)) 

     

    left_image_left_border = left_image_center_x_axis - image_width/2 #left left 

    left_image_right_border= left_image_center_x_axis + image_width/2 #left right 

    right_image_left_border= right_image_center_x_axis - image_width/2 #right left 

    right_image_right_border= right_image_center_x_axis + image_width/2 #right right 

    top = image_center_y_axis + image_height/2  #top 

    bottom= image_center_y_axis - image_height/2  #bottom 

     

    # send interest area messages to record in the EDF data file 

    # here we draw a rectangular IA, for illustration purposes 

    # format: !V IAREA RECTANGLE <id> <left> <top> <right> <bottom> [label] 

    # for all supported interest area commands, see the Data Viewer Manual, 
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    # "Protocol for EyeLink Data to Viewer Integration" 

    ia_image_left = (1, left_image_left_border, top, left_image_right_border, bottom , 

'square') 

    ia_image_right = (2, right_image_left_border, top, right_image_right_border, 

bottom , 'square') 

     

    el_tracker.sendMessage('!V IAREA RECTANGLE %d %d %d %d %d %s' % 

ia_image_left) 

    el_tracker.sendMessage('!V IAREA RECTANGLE %d %d %d %d %d %s' % 

ia_image_right) 

     

     

    el_tracker.sendMessage('Faces_Stimuli_Start') 

     

     

     

    image_left.setImage(Face_Stimuli_Left) 

    image_right.setImage(Face_Stimuli_Right) 

    # keep track of which components have finished 

    Faces_StimuliComponents = [image_left, image_right, faceStim_neutral_neutral, 

faceStim_happy_neutral, faceStim_fearful_neutral, fixation_cross_2] 

    for thisComponent in Faces_StimuliComponents: 

        thisComponent.tStart = None 

        thisComponent.tStop = None 

        thisComponent.tStartRefresh = None 

        thisComponent.tStopRefresh = None 

        if hasattr(thisComponent, 'status'): 
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            thisComponent.status = NOT_STARTED 

    # reset timers 

    t = 0 

    _timeToFirstFrame = win.getFutureFlipTime(clock="now") 

    frameN = -1 

     

    # --- Run Routine "Faces_Stimuli" --- 

    while continueRoutine: 

        # get current time 

        t = routineTimer.getTime() 

        tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

        tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

        frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

        # update/draw components on each frame 

        # Run 'Each Frame' code from code_faces_stimuli 

        if t > 1.2: 

            break 

         

        # *image_left* updates 

        if image_left.status == NOT_STARTED and tThisFlip >= 0-frameTolerance: 

            # keep track of start time/frame for later 

            image_left.frameNStart = frameN  # exact frame index 

            image_left.tStart = t  # local t and not account for scr refresh 

            image_left.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(image_left, 'tStartRefresh')  # time at next scr refresh 

            # add timestamp to datafile 
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            thisExp.timestampOnFlip(win, 'image_left.started') 

            image_left.setAutoDraw(True) 

         

        # *image_right* updates 

        if image_right.status == NOT_STARTED and tThisFlip >= 0-frameTolerance: 

            # keep track of start time/frame for later 

            image_right.frameNStart = frameN  # exact frame index 

            image_right.tStart = t  # local t and not account for scr refresh 

            image_right.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(image_right, 'tStartRefresh')  # time at next scr refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'image_right.started') 

            image_right.setAutoDraw(True) 

        # *faceStim_neutral_neutral* updates 

        if faceStim_neutral_neutral.status == NOT_STARTED and Face_Pairs == 

'neutral/neutral': 

            # keep track of start time/frame for later 

            faceStim_neutral_neutral.frameNStart = frameN  # exact frame index 

            faceStim_neutral_neutral.tStart = t  # local t and not account for scr refresh 

            faceStim_neutral_neutral.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(faceStim_neutral_neutral, 'tStartRefresh')  # time at next scr 

refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'faceStim_neutral_neutral.started') 

            faceStim_neutral_neutral.status = STARTED 

            win.callOnFlip(faceStim_neutral_neutral.setData, int(4)) 
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        if faceStim_neutral_neutral.status == STARTED: 

            # is it time to stop? (based on global clock, using actual start) 

            if tThisFlipGlobal > faceStim_neutral_neutral.tStartRefresh + 2.0-

frameTolerance: 

                # keep track of stop time/frame for later 

                faceStim_neutral_neutral.tStop = t  # not accounting for scr refresh 

                faceStim_neutral_neutral.frameNStop = frameN  # exact frame index 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'faceStim_neutral_neutral.stopped') 

                faceStim_neutral_neutral.status = FINISHED 

                win.callOnFlip(faceStim_neutral_neutral.setData, int(0)) 

        # *faceStim_happy_neutral* updates 

        if faceStim_happy_neutral.status == NOT_STARTED and Face_Pairs == 

'happy/neutral': 

            # keep track of start time/frame for later 

            faceStim_happy_neutral.frameNStart = frameN  # exact frame index 

            faceStim_happy_neutral.tStart = t  # local t and not account for scr refresh 

            faceStim_happy_neutral.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(faceStim_happy_neutral, 'tStartRefresh')  # time at next scr 

refresh 

            faceStim_happy_neutral.status = STARTED 

            faceStim_happy_neutral.setData(int(8)) 

        if faceStim_happy_neutral.status == STARTED: 

            if frameN >= (faceStim_happy_neutral.frameNStart + 2.0): 

                # keep track of stop time/frame for later 

                faceStim_happy_neutral.tStop = t  # not accounting for scr refresh 

                faceStim_happy_neutral.frameNStop = frameN  # exact frame index 
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                faceStim_happy_neutral.status = FINISHED 

                faceStim_happy_neutral.setData(int(0)) 

        # *faceStim_fearful_neutral* updates 

        if faceStim_fearful_neutral.status == NOT_STARTED and Face_Pairs == 

'fearful/neutral': 

            # keep track of start time/frame for later 

            faceStim_fearful_neutral.frameNStart = frameN  # exact frame index 

            faceStim_fearful_neutral.tStart = t  # local t and not account for scr refresh 

            faceStim_fearful_neutral.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(faceStim_fearful_neutral, 'tStartRefresh')  # time at next scr 

refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'faceStim_fearful_neutral.started') 

            faceStim_fearful_neutral.status = STARTED 

            win.callOnFlip(faceStim_fearful_neutral.setData, int(16)) 

        if faceStim_fearful_neutral.status == STARTED: 

            if frameN >= (faceStim_fearful_neutral.frameNStart + 2.0): 

                # keep track of stop time/frame for later 

                faceStim_fearful_neutral.tStop = t  # not accounting for scr refresh 

                faceStim_fearful_neutral.frameNStop = frameN  # exact frame index 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'faceStim_fearful_neutral.stopped') 

                faceStim_fearful_neutral.status = FINISHED 

                win.callOnFlip(faceStim_fearful_neutral.setData, int(0)) 

         

        # *fixation_cross_2* updates 
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        if fixation_cross_2.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

            # keep track of start time/frame for later 

            fixation_cross_2.frameNStart = frameN  # exact frame index 

            fixation_cross_2.tStart = t  # local t and not account for scr refresh 

            fixation_cross_2.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(fixation_cross_2, 'tStartRefresh')  # time at next scr refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'fixation_cross_2.started') 

            fixation_cross_2.setAutoDraw(True) 

         

        # check for quit (typically the Esc key) 

        if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

            core.quit() 

         

        # check if all components have finished 

        if not continueRoutine:  # a component has requested a forced-end of Routine 

            routineForceEnded = True 

            break 

        continueRoutine = False  # will revert to True if at least one component still 

running 

        for thisComponent in Faces_StimuliComponents: 

            if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

                continueRoutine = True 

                break  # at least one component has not yet finished 
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        # refresh the screen 

        if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

            win.flip() 

     

    # --- Ending Routine "Faces_Stimuli" --- 

    for thisComponent in Faces_StimuliComponents: 

        if hasattr(thisComponent, "setAutoDraw"): 

            thisComponent.setAutoDraw(False) 

    # Run 'End Routine' code from code_faces_stimuli 

    el_tracker.sendMessage('Faces_Stimuli_Stop') 

     

    # Send a message to clear the Data Viewer screen 

    bgcolor_RGB = (0, 0, 0) 

    el_tracker.sendMessage('!V CLEAR %d %d %d' % bgcolor_RGB) 

     

     

    if faceStim_neutral_neutral.status == STARTED: 

        win.callOnFlip(faceStim_neutral_neutral.setData, int(0)) 

    if faceStim_happy_neutral.status == STARTED: 

        faceStim_happy_neutral.setData(int(0)) 

    if faceStim_fearful_neutral.status == STARTED: 

        win.callOnFlip(faceStim_fearful_neutral.setData, int(0)) 

    # the Routine "Faces_Stimuli" was not non-slip safe, so reset the non-slip timer 

    routineTimer.reset() 

     

    # --- Prepare to start Routine "Dot_Stimuli" --- 
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    continueRoutine = True 

    routineForceEnded = False 

    # update component parameters for each repeat 

    # Run 'Begin Routine' code from code_dot_stimuli 

    el_tracker.sendMessage('Dot_Stimuli_Start') 

     

     

    if Dot_Location == 'left': 

        show_dot_left = True 

         

        #Drawing left dot to edf file 

        el_tracker.sendMessage('!V DRAWLINE 255 255 255 %d %d %d %d' % 

(left_image_center_x_axis, (image_center_y_axis - 20), left_image_center_x_axis, 

(image_center_y_axis + 20))) 

        el_tracker.sendMessage('!V DRAWLINE 255 255 255 %d %d %d %d' % 

((left_image_center_x_axis - 20), image_center_y_axis, (left_image_center_x_axis + 

20), image_center_y_axis)) 

     

                    

    if Dot_Location == 'right': 

        show_dot_right = True 

         

        #Drawing right dot to edf 

        el_tracker.sendMessage('!V DRAWLINE 255 255 255 %d %d %d %d' % 

(right_image_center_x_axis, (image_center_y_axis - 20), right_image_center_x_axis, 

(image_center_y_axis + 20))) 
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        el_tracker.sendMessage('!V DRAWLINE 255 255 255 %d %d %d %d' % 

((right_image_center_x_axis - 20), image_center_y_axis, 

(right_image_center_x_axis + 20), image_center_y_axis)) 

     

    key_reaction.keys = [] 

    key_reaction.rt = [] 

    _key_reaction_allKeys = [] 

    # keep track of which components have finished 

    Dot_StimuliComponents = [dotStim_congurent, dotStim_incongurent, 

key_reaction, dot1_left, dot1_right, fixation_cross_3] 

    for thisComponent in Dot_StimuliComponents: 

        thisComponent.tStart = None 

        thisComponent.tStop = None 

        thisComponent.tStartRefresh = None 

        thisComponent.tStopRefresh = None 

        if hasattr(thisComponent, 'status'): 

            thisComponent.status = NOT_STARTED 

    # reset timers 

    t = 0 

    _timeToFirstFrame = win.getFutureFlipTime(clock="now") 

    frameN = -1 

     

    # --- Run Routine "Dot_Stimuli" --- 

    while continueRoutine: 

        # get current time 

        t = routineTimer.getTime() 

        tThisFlip = win.getFutureFlipTime(clock=routineTimer) 
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        tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

        frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

        # update/draw components on each frame 

        # *dotStim_congurent* updates 

        if dotStim_congurent.status == NOT_STARTED and Type == 'Congurent': 

            # keep track of start time/frame for later 

            dotStim_congurent.frameNStart = frameN  # exact frame index 

            dotStim_congurent.tStart = t  # local t and not account for scr refresh 

            dotStim_congurent.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(dotStim_congurent, 'tStartRefresh')  # time at next scr refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'dotStim_congurent.started') 

            dotStim_congurent.status = STARTED 

            win.callOnFlip(dotStim_congurent.setData, int(32)) 

        if dotStim_congurent.status == STARTED: 

            if frameN >= (dotStim_congurent.frameNStart + 2.0): 

                # keep track of stop time/frame for later 

                dotStim_congurent.tStop = t  # not accounting for scr refresh 

                dotStim_congurent.frameNStop = frameN  # exact frame index 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'dotStim_congurent.stopped') 

                dotStim_congurent.status = FINISHED 

                win.callOnFlip(dotStim_congurent.setData, int(0)) 

        # *dotStim_incongurent* updates 

        if dotStim_incongurent.status == NOT_STARTED and Type == 'Incongurent': 

            # keep track of start time/frame for later 
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            dotStim_incongurent.frameNStart = frameN  # exact frame index 

            dotStim_incongurent.tStart = t  # local t and not account for scr refresh 

            dotStim_incongurent.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(dotStim_incongurent, 'tStartRefresh')  # time at next scr 

refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'dotStim_incongurent.started') 

            dotStim_incongurent.status = STARTED 

            win.callOnFlip(dotStim_incongurent.setData, int(64)) 

        if dotStim_incongurent.status == STARTED: 

            if frameN >= (dotStim_incongurent.frameNStart + 2.0): 

                # keep track of stop time/frame for later 

                dotStim_incongurent.tStop = t  # not accounting for scr refresh 

                dotStim_incongurent.frameNStop = frameN  # exact frame index 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'dotStim_incongurent.stopped') 

                dotStim_incongurent.status = FINISHED 

                win.callOnFlip(dotStim_incongurent.setData, int(0)) 

         

        # *key_reaction* updates 

        waitOnFlip = False 

        if key_reaction.status == NOT_STARTED and tThisFlip >= 0-frameTolerance: 

            # keep track of start time/frame for later 

            key_reaction.frameNStart = frameN  # exact frame index 

            key_reaction.tStart = t  # local t and not account for scr refresh 

            key_reaction.tStartRefresh = tThisFlipGlobal  # on global time 
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            win.timeOnFlip(key_reaction, 'tStartRefresh')  # time at next scr refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'key_reaction.started') 

            key_reaction.status = STARTED 

            # keyboard checking is just starting 

            waitOnFlip = True 

            win.callOnFlip(key_reaction.clock.reset)  # t=0 on next screen flip 

            win.callOnFlip(key_reaction.clearEvents, eventType='keyboard')  # clear 

events on next screen flip 

        if key_reaction.status == STARTED and not waitOnFlip: 

            theseKeys = key_reaction.getKeys(keyList=['1','2'], waitRelease=False) 

            _key_reaction_allKeys.extend(theseKeys) 

            if len(_key_reaction_allKeys): 

                key_reaction.keys = _key_reaction_allKeys[0].name  # just the first key 

pressed 

                key_reaction.rt = _key_reaction_allKeys[0].rt 

                # a response ends the routine 

                continueRoutine = False 

         

        # *dot1_left* updates 

        if dot1_left.status == NOT_STARTED and show_dot_left == True: 

            # keep track of start time/frame for later 

            dot1_left.frameNStart = frameN  # exact frame index 

            dot1_left.tStart = t  # local t and not account for scr refresh 

            dot1_left.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(dot1_left, 'tStartRefresh')  # time at next scr refresh 
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            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'dot1_left.started') 

            dot1_left.setAutoDraw(True) 

         

        # *dot1_right* updates 

        if dot1_right.status == NOT_STARTED and show_dot_right == True: 

            # keep track of start time/frame for later 

            dot1_right.frameNStart = frameN  # exact frame index 

            dot1_right.tStart = t  # local t and not account for scr refresh 

            dot1_right.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(dot1_right, 'tStartRefresh')  # time at next scr refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'dot1_right.started') 

            dot1_right.setAutoDraw(True) 

         

        # *fixation_cross_3* updates 

        if fixation_cross_3.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

            # keep track of start time/frame for later 

            fixation_cross_3.frameNStart = frameN  # exact frame index 

            fixation_cross_3.tStart = t  # local t and not account for scr refresh 

            fixation_cross_3.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(fixation_cross_3, 'tStartRefresh')  # time at next scr refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'fixation_cross_3.started') 

            fixation_cross_3.setAutoDraw(True) 
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        # check for quit (typically the Esc key) 

        if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

            core.quit() 

         

        # check if all components have finished 

        if not continueRoutine:  # a component has requested a forced-end of Routine 

            routineForceEnded = True 

            break 

        continueRoutine = False  # will revert to True if at least one component still 

running 

        for thisComponent in Dot_StimuliComponents: 

            if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

                continueRoutine = True 

                break  # at least one component has not yet finished 

         

        # refresh the screen 

        if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

            win.flip() 

     

    # --- Ending Routine "Dot_Stimuli" --- 

    for thisComponent in Dot_StimuliComponents: 

        if hasattr(thisComponent, "setAutoDraw"): 

            thisComponent.setAutoDraw(False) 

    # Run 'End Routine' code from code_dot_stimuli 

    el_tracker.sendMessage('Dot_Stimuli_Stop') 
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    #Getting time for when the button is pushed. 

    Experiment_Time = expClock.getTime() 

     

    #Getting the reactiontime for excel document 

    Reaction_Time = key_reaction.rt 

     

    #Check if participant pressed the right button (1 = right, 0 = wrong) 

    if ((Dot_Location == 'left') and (key_reaction.keys == '1')) or ((Dot_Location == 

'right') and (key_reaction.keys == '2')): 

        Response_Accuracy = 1 

    else: 

        Response_Accuracy = 0 

     

     

    show_dot_left = False 

    show_dot_right = False 

     

     

    #Putting all the info in the list 

    

excel_list.append([Trial_Number,Participant_ID,Face_Stimuli_Left,Face_Stimuli_Rig

ht,Type,Face_Pairs,Gender,Dot_Location,Response_Accuracy,Reaction_Time,Expe

riment_Time, Time_Jitter, VAS]) 

     

    if dotStim_congurent.status == STARTED: 

        win.callOnFlip(dotStim_congurent.setData, int(0)) 
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    if dotStim_incongurent.status == STARTED: 

        win.callOnFlip(dotStim_incongurent.setData, int(0)) 

    # check responses 

    if key_reaction.keys in ['', [], None]:  # No response was made 

        key_reaction.keys = None 

    thisTrial.addData('key_reaction.keys',key_reaction.keys) 

    if key_reaction.keys != None:  # we had a response 

        thisTrial.addData('key_reaction.rt', key_reaction.rt) 

    # the Routine "Dot_Stimuli" was not non-slip safe, so reset the non-slip timer 

    routineTimer.reset() 

     

    # --- Prepare to start Routine "Rest" --- 

    continueRoutine = True 

    routineForceEnded = False 

    # update component parameters for each repeat 

    # Run 'Begin Routine' code from code_rest 

    el_tracker.sendMessage('Pause_Start') 

     

    Reaction_Time_Display = str(Reaction_Time)[:-11] 

     

    #Making a list for eye tracking messages (used to send messages at a slower 

paste) 

    et_message_list = [] 

    et_message_list.append('!V TRIAL_VAR Participant_ID %s' % Participant_ID) 

    et_message_list.append('!V TRIAL_VAR Trial_Number %s' % Trial_Number) 
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    et_message_list.append('!V TRIAL_VAR Face_Stimuli_Left %s' % 

Face_Stimuli_Left) 

    et_message_list.append('!V TRIAL_VAR Face_Stimuli_Right %s' % 

Face_Stimuli_Right) 

    et_message_list.append('!V TRIAL_VAR Type %s' % Type) 

    et_message_list.append('!V TRIAL_VAR Face_Pairs %s' % Face_Pairs) 

    et_message_list.append('!V TRIAL_VAR Gender %s' % Gender) 

    et_message_list.append('!V TRIAL_VAR Dot_Location %s' % Dot_Location) 

    et_message_list.append('!V TRIAL_VAR Time_Jitter %d' % Time_Jitter) 

    et_message_list.append('!V TRIAL_VAR Emotion_Side %s' % Emotion_Side) 

    et_message_list.append('!V TRIAL_VAR Reaction_Time %.10f' % Reaction_Time) 

    et_message_list.append('!V TRIAL_VAR Response_Accuracy %d' % 

Response_Accuracy) 

     

     

    t2 = 0.1 

    counter = 0 

     

    # record trial variables to the EDF data file, for details, see Data 

    # Viewer User Manual, "Protocol for EyeLink Data to Viewer Integration" 

    #el_tracker.sendMessage('!V TRIAL_VAR Trial_Number %s' % Trial_Number) 

    #el_tracker.sendMessage('!V TRIAL_VAR Participant_ID %s' % Participant_ID) 

    #el_tracker.sendMessage('!V TRIAL_VAR Face_Stimuli_Left %s' % 

Face_Stimuli_Left) 

    #el_tracker.sendMessage('!V TRIAL_VAR Face_Stimuli_Right %s' % 

Face_Stimuli_Right) 

    #el_tracker.sendMessage('!V TRIAL_VAR Type %s' % Type) 
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    #el_tracker.sendMessage('!V TRIAL_VAR Face_Pairs %s' % Face_Pairs) 

    #el_tracker.sendMessage('!V TRIAL_VAR Gender %s' % Gender) 

    #el_tracker.sendMessage('!V TRIAL_VAR Dot_Location %s' % Dot_Location) 

    #el_tracker.sendMessage('!V TRIAL_VAR Reaction_Time %.10f' % 

Reaction_Time) 

    #el_tracker.sendMessage('!V TRIAL_VAR Response_Accuracy %d' % 

Response_Accuracy) 

    reaction_time_numbers.setText(Reaction_Time_Display) 

    # keep track of which components have finished 

    RestComponents = [reaction, reaction_time_text, reaction_time_numbers] 

    for thisComponent in RestComponents: 

        thisComponent.tStart = None 

        thisComponent.tStop = None 

        thisComponent.tStartRefresh = None 

        thisComponent.tStopRefresh = None 

        if hasattr(thisComponent, 'status'): 

            thisComponent.status = NOT_STARTED 

    # reset timers 

    t = 0 

    _timeToFirstFrame = win.getFutureFlipTime(clock="now") 

    frameN = -1 

     

    # --- Run Routine "Rest" --- 

    while continueRoutine and routineTimer.getTime() < 1.5: 

        # get current time 

        t = routineTimer.getTime() 
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        tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

        tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

        frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

        # update/draw components on each frame 

        # Run 'Each Frame' code from code_rest 

        #Timer to send eye tracking messages at a slower paste 

        t1 = t 

          

        if t1 > t2 and counter < 10: 

            el_tracker.sendMessage(et_message_list[counter]) 

            t2 = t + 0.1 

            counter += 1 

             

         

         

        # *reaction* updates 

        if reaction.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: 

            # keep track of start time/frame for later 

            reaction.frameNStart = frameN  # exact frame index 

            reaction.tStart = t  # local t and not account for scr refresh 

            reaction.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(reaction, 'tStartRefresh')  # time at next scr refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'reaction.started') 

            reaction.status = STARTED 

            win.callOnFlip(reaction.setData, int(128)) 
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        if reaction.status == STARTED: 

            if frameN >= (reaction.frameNStart + 2.0): 

                # keep track of stop time/frame for later 

                reaction.tStop = t  # not accounting for scr refresh 

                reaction.frameNStop = frameN  # exact frame index 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'reaction.stopped') 

                reaction.status = FINISHED 

                win.callOnFlip(reaction.setData, int(0)) 

         

        # *reaction_time_text* updates 

        if reaction_time_text.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

            # keep track of start time/frame for later 

            reaction_time_text.frameNStart = frameN  # exact frame index 

            reaction_time_text.tStart = t  # local t and not account for scr refresh 

            reaction_time_text.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(reaction_time_text, 'tStartRefresh')  # time at next scr refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'reaction_time_text.started') 

            reaction_time_text.setAutoDraw(True) 

        if reaction_time_text.status == STARTED: 

            # is it time to stop? (based on global clock, using actual start) 

            if tThisFlipGlobal > reaction_time_text.tStartRefresh + 1.5-frameTolerance: 

                # keep track of stop time/frame for later 

                reaction_time_text.tStop = t  # not accounting for scr refresh 
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                reaction_time_text.frameNStop = frameN  # exact frame index 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'reaction_time_text.stopped') 

                reaction_time_text.setAutoDraw(False) 

         

        # *reaction_time_numbers* updates 

        if reaction_time_numbers.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

            # keep track of start time/frame for later 

            reaction_time_numbers.frameNStart = frameN  # exact frame index 

            reaction_time_numbers.tStart = t  # local t and not account for scr refresh 

            reaction_time_numbers.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(reaction_time_numbers, 'tStartRefresh')  # time at next scr 

refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'reaction_time_numbers.started') 

            reaction_time_numbers.setAutoDraw(True) 

        if reaction_time_numbers.status == STARTED: 

            # is it time to stop? (based on global clock, using actual start) 

            if tThisFlipGlobal > reaction_time_numbers.tStartRefresh + 1.5-

frameTolerance: 

                # keep track of stop time/frame for later 

                reaction_time_numbers.tStop = t  # not accounting for scr refresh 

                reaction_time_numbers.frameNStop = frameN  # exact frame index 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'reaction_time_numbers.stopped') 

                reaction_time_numbers.setAutoDraw(False) 
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        # check for quit (typically the Esc key) 

        if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

            core.quit() 

         

        # check if all components have finished 

        if not continueRoutine:  # a component has requested a forced-end of Routine 

            routineForceEnded = True 

            break 

        continueRoutine = False  # will revert to True if at least one component still 

running 

        for thisComponent in RestComponents: 

            if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

                continueRoutine = True 

                break  # at least one component has not yet finished 

         

        # refresh the screen 

        if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

            win.flip() 

     

    # --- Ending Routine "Rest" --- 

    for thisComponent in RestComponents: 

        if hasattr(thisComponent, "setAutoDraw"): 

            thisComponent.setAutoDraw(False) 

    # Run 'End Routine' code from code_rest 

    el_tracker.sendMessage('Pause_Stop') 
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    #el_tracker.sendMessage('Trail_Ended: Reactiontime: ' + str(Reaction_Time) + ', 

Key_Pressed: ' + str(key_resp_1.keys) + ', Response_Accuracy: ' + 

str(Response_Accuracy)) 

     

    # record trial variables to the EDF data file, for details, see Data 

    # Viewer User Manual, "Protocol for EyeLink Data to Viewer Integration" 

    #el_tracker.sendMessage('!V TRIAL_VAR Trial_Number %s' % Trial_Number) 

    #el_tracker.sendMessage('!V TRIAL_VAR Participant_ID %s' % Participant_ID) 

    #el_tracker.sendMessage('!V TRIAL_VAR Face_Stimuli_Left %s' % 

Face_Stimuli_Left) 

    #el_tracker.sendMessage('!V TRIAL_VAR Face_Stimuli_Right %s' % 

Face_Stimuli_Right) 

    #el_tracker.sendMessage('!V TRIAL_VAR Type %s' % Type) 

    #el_tracker.sendMessage('!V TRIAL_VAR Face_Pairs %s' % Face_Pairs) 

    #el_tracker.sendMessage('!V TRIAL_VAR Gender %s' % Gender) 

    #el_tracker.sendMessage('!V TRIAL_VAR Dot_Location %s' % Dot_Location) 

    #el_tracker.sendMessage('!V TRIAL_VAR Reaction_Time %.10f' % 

Reaction_Time) 

    #el_tracker.sendMessage('!V TRIAL_VAR Response_Accuracy %d' % 

Response_Accuracy) 

     

    el_tracker.sendMessage('TRIAL_RESULT %d' % pylink.TRIAL_OK) 

    if reaction.status == STARTED: 

        win.callOnFlip(reaction.setData, int(0)) 
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    # using non-slip timing so subtract the expected duration of this Routine (unless 

ended on request) 

    if routineForceEnded: 

        routineTimer.reset() 

    else: 

        routineTimer.addTime(-1.500000) 

    thisExp.nextEntry() 

     

# completed 2.0 repeats of 'thisTrial' 

 

# get names of stimulus parameters 

if thisTrial.trialList in ([], [None], None): 

    params = [] 

else: 

    params = thisTrial.trialList[0].keys() 

# save data for this loop 

thisTrial.saveAsExcel(filename + '.xlsx', sheetName='thisTrial', 

    stimOut=params, 

    dataOut=['n','all_mean','all_std', 'all_raw']) 

thisTrial.saveAsText(filename + 'thisTrial.csv', delim=',', 

    stimOut=params, 

    dataOut=['n','all_mean','all_std', 'all_raw']) 

 

# --- Prepare to start Routine "dot_probe_ended_new_experiment_start" --- 

continueRoutine = True 

routineForceEnded = False 
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# update component parameters for each repeat 

experiment_phase_2_key.keys = [] 

experiment_phase_2_key.rt = [] 

_experiment_phase_2_key_allKeys = [] 

# keep track of which components have finished 

dot_probe_ended_new_experiment_startComponents = [dot_probe_ended_text, 

Experiment_ended, experiment_phase_2_key] 

for thisComponent in dot_probe_ended_new_experiment_startComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "dot_probe_ended_new_experiment_start" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 
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    # update/draw components on each frame 

     

    # *dot_probe_ended_text* updates 

    if dot_probe_ended_text.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 

        dot_probe_ended_text.frameNStart = frameN  # exact frame index 

        dot_probe_ended_text.tStart = t  # local t and not account for scr refresh 

        dot_probe_ended_text.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(dot_probe_ended_text, 'tStartRefresh')  # time at next scr 

refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'dot_probe_ended_text.started') 

        dot_probe_ended_text.setAutoDraw(True) 

    if dot_probe_ended_text.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > dot_probe_ended_text.tStartRefresh + 15-frameTolerance: 

            # keep track of stop time/frame for later 

            dot_probe_ended_text.tStop = t  # not accounting for scr refresh 

            dot_probe_ended_text.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'dot_probe_ended_text.stopped') 

            dot_probe_ended_text.setAutoDraw(False) 

    # *Experiment_ended* updates 

    if Experiment_ended.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 
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        Experiment_ended.frameNStart = frameN  # exact frame index 

        Experiment_ended.tStart = t  # local t and not account for scr refresh 

        Experiment_ended.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(Experiment_ended, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'Experiment_ended.started') 

        Experiment_ended.status = STARTED 

        win.callOnFlip(Experiment_ended.setData, int(1)) 

    if Experiment_ended.status == STARTED: 

        if frameN >= (Experiment_ended.frameNStart + 2.0): 

            # keep track of stop time/frame for later 

            Experiment_ended.tStop = t  # not accounting for scr refresh 

            Experiment_ended.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'Experiment_ended.stopped') 

            Experiment_ended.status = FINISHED 

            win.callOnFlip(Experiment_ended.setData, int(0)) 

     

    # *experiment_phase_2_key* updates 

    waitOnFlip = False 

    if experiment_phase_2_key.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 

        experiment_phase_2_key.frameNStart = frameN  # exact frame index 

        experiment_phase_2_key.tStart = t  # local t and not account for scr refresh 

        experiment_phase_2_key.tStartRefresh = tThisFlipGlobal  # on global time 
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        win.timeOnFlip(experiment_phase_2_key, 'tStartRefresh')  # time at next scr 

refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'experiment_phase_2_key.started') 

        experiment_phase_2_key.status = STARTED 

        # keyboard checking is just starting 

        waitOnFlip = True 

        win.callOnFlip(experiment_phase_2_key.clock.reset)  # t=0 on next screen flip 

        win.callOnFlip(experiment_phase_2_key.clearEvents, eventType='keyboard')  # 

clear events on next screen flip 

    if experiment_phase_2_key.status == STARTED and not waitOnFlip: 

        theseKeys = experiment_phase_2_key.getKeys(keyList=['1','2'], 

waitRelease=False) 

        _experiment_phase_2_key_allKeys.extend(theseKeys) 

        if len(_experiment_phase_2_key_allKeys): 

            experiment_phase_2_key.keys = _experiment_phase_2_key_allKeys[-

1].name  # just the last key pressed 

            experiment_phase_2_key.rt = _experiment_phase_2_key_allKeys[-1].rt 

            # a response ends the routine 

            continueRoutine = False 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 
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        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in dot_probe_ended_new_experiment_startComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "dot_probe_ended_new_experiment_start" --- 

for thisComponent in dot_probe_ended_new_experiment_startComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# Run 'End Routine' code from end_dot_probe_code 

#Saves the info from dot-probe experment list in a excel document 

np.savetxt(Participant_ID + "_" + expName + "_" + expInfo['date'] + ".csv", excel_list, 

delimiter = ",", fmt ='% s') 

 

el_tracker.sendMessage('Start_Experiment_Phase_2') 

 

 

if Experiment_ended.status == STARTED: 

    win.callOnFlip(Experiment_ended.setData, int(0)) 



   

 

313 

 

# check responses 

if experiment_phase_2_key.keys in ['', [], None]:  # No response was made 

    experiment_phase_2_key.keys = None 

thisExp.addData('experiment_phase_2_key.keys',experiment_phase_2_key.keys) 

if experiment_phase_2_key.keys != None:  # we had a response 

    thisExp.addData('experiment_phase_2_key.rt', experiment_phase_2_key.rt) 

thisExp.nextEntry() 

# the Routine "dot_probe_ended_new_experiment_start" was not non-slip safe, so 

reset the non-slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "smooth_pursuit_info" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

smooth_pursuit_info_keyboard.keys = [] 

smooth_pursuit_info_keyboard.rt = [] 

_smooth_pursuit_info_keyboard_allKeys = [] 

# keep track of which components have finished 

smooth_pursuit_infoComponents = [smooth_pursuit_info_text, 

smooth_pursuit_info_keyboard] 

for thisComponent in smooth_pursuit_infoComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 
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    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "smooth_pursuit_info" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *smooth_pursuit_info_text* updates 

    if smooth_pursuit_info_text.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 

        smooth_pursuit_info_text.frameNStart = frameN  # exact frame index 

        smooth_pursuit_info_text.tStart = t  # local t and not account for scr refresh 

        smooth_pursuit_info_text.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(smooth_pursuit_info_text, 'tStartRefresh')  # time at next scr 

refresh 

        # add timestamp to datafile 
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        thisExp.timestampOnFlip(win, 'smooth_pursuit_info_text.started') 

        smooth_pursuit_info_text.setAutoDraw(True) 

    if smooth_pursuit_info_text.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > smooth_pursuit_info_text.tStartRefresh + 15-

frameTolerance: 

            # keep track of stop time/frame for later 

            smooth_pursuit_info_text.tStop = t  # not accounting for scr refresh 

            smooth_pursuit_info_text.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'smooth_pursuit_info_text.stopped') 

            smooth_pursuit_info_text.setAutoDraw(False) 

     

    # *smooth_pursuit_info_keyboard* updates 

    waitOnFlip = False 

    if smooth_pursuit_info_keyboard.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 

        smooth_pursuit_info_keyboard.frameNStart = frameN  # exact frame index 

        smooth_pursuit_info_keyboard.tStart = t  # local t and not account for scr 

refresh 

        smooth_pursuit_info_keyboard.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(smooth_pursuit_info_keyboard, 'tStartRefresh')  # time at next 

scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'smooth_pursuit_info_keyboard.started') 

        smooth_pursuit_info_keyboard.status = STARTED 
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        # keyboard checking is just starting 

        waitOnFlip = True 

        win.callOnFlip(smooth_pursuit_info_keyboard.clock.reset)  # t=0 on next screen 

flip 

        win.callOnFlip(smooth_pursuit_info_keyboard.clearEvents, 

eventType='keyboard')  # clear events on next screen flip 

    if smooth_pursuit_info_keyboard.status == STARTED and not waitOnFlip: 

        theseKeys = smooth_pursuit_info_keyboard.getKeys(keyList=['1','2'], 

waitRelease=False) 

        _smooth_pursuit_info_keyboard_allKeys.extend(theseKeys) 

        if len(_smooth_pursuit_info_keyboard_allKeys): 

            smooth_pursuit_info_keyboard.keys = 

_smooth_pursuit_info_keyboard_allKeys[-1].name  # just the last key pressed 

            smooth_pursuit_info_keyboard.rt = _smooth_pursuit_info_keyboard_allKeys[-

1].rt 

            # a response ends the routine 

            continueRoutine = False 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 
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    for thisComponent in smooth_pursuit_infoComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "smooth_pursuit_info" --- 

for thisComponent in smooth_pursuit_infoComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# check responses 

if smooth_pursuit_info_keyboard.keys in ['', [], None]:  # No response was made 

    smooth_pursuit_info_keyboard.keys = None 

thisExp.addData('smooth_pursuit_info_keyboard.keys',smooth_pursuit_info_keyboar

d.keys) 

if smooth_pursuit_info_keyboard.keys != None:  # we had a response 

    thisExp.addData('smooth_pursuit_info_keyboard.rt', 

smooth_pursuit_info_keyboard.rt) 

thisExp.nextEntry() 

# the Routine "smooth_pursuit_info" was not non-slip safe, so reset the non-slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "smooth_pursuit" --- 
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continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

# Run 'Begin Routine' code from code_4 

el_tracker.sendMessage('smooth_pursuit_start') 

import math 

x=0 

y=0 

# keep track of which components have finished 

smooth_pursuitComponents = [polygon_smooth] 

for thisComponent in smooth_pursuitComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "smooth_pursuit" --- 

while continueRoutine and routineTimer.getTime() < 45.0: 

    # get current time 

    t = routineTimer.getTime() 
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    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *polygon_smooth* updates 

    if polygon_smooth.status == NOT_STARTED and tThisFlip >= 0-frameTolerance: 

        # keep track of start time/frame for later 

        polygon_smooth.frameNStart = frameN  # exact frame index 

        polygon_smooth.tStart = t  # local t and not account for scr refresh 

        polygon_smooth.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(polygon_smooth, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'polygon_smooth.started') 

        polygon_smooth.setAutoDraw(True) 

    if polygon_smooth.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > polygon_smooth.tStartRefresh + 45-frameTolerance: 

            # keep track of stop time/frame for later 

            polygon_smooth.tStop = t  # not accounting for scr refresh 

            polygon_smooth.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'polygon_smooth.stopped') 

            polygon_smooth.setAutoDraw(False) 

    # Run 'Each Frame' code from code_4 

    x = 0.5*math.sin(0.04*frameN) 
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    y = 0.3*math.sin(0.05*frameN) 

                     

    polygon_smooth.pos = (x,y) 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in smooth_pursuitComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "smooth_pursuit" --- 

for thisComponent in smooth_pursuitComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 
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# Run 'End Routine' code from code_4 

el_tracker.sendMessage('smooth_pursuit_end') 

# using non-slip timing so subtract the expected duration of this Routine (unless 

ended on request) 

if routineForceEnded: 

    routineTimer.reset() 

else: 

    routineTimer.addTime(-45.000000) 

 

# set up handler to look after randomisation of conditions etc 

saccade_trial = data.TrialHandler(nReps=2.0, method='sequential',  

    extraInfo=expInfo, originPath=-1, 

    trialList=[None], 

    seed=None, name='saccade_trial') 

thisExp.addLoop(saccade_trial)  # add the loop to the experiment 

thisSaccade_trial = saccade_trial.trialList[0]  # so we can initialise stimuli with some 

values 

# abbreviate parameter names if possible (e.g. rgb = thisSaccade_trial.rgb) 

if thisSaccade_trial != None: 

    for paramName in thisSaccade_trial: 

        exec('{} = thisSaccade_trial[paramName]'.format(paramName)) 

 

for thisSaccade_trial in saccade_trial: 

    currentLoop = saccade_trial 

    # abbreviate parameter names if possible (e.g. rgb = thisSaccade_trial.rgb) 

    if thisSaccade_trial != None: 
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        for paramName in thisSaccade_trial: 

            exec('{} = thisSaccade_trial[paramName]'.format(paramName)) 

     

    # --- Prepare to start Routine "saccade" --- 

    continueRoutine = True 

    routineForceEnded = False 

    # update component parameters for each repeat 

    # Run 'Begin Routine' code from code_5 

    el_tracker.sendMessage('saccade_start') 

    import math 

    import numpy as np 

    import psychopy.clock 

     

    x = 1 

    y = 0 

    frame_i = frameN 

    frames_p_s = 30 

    frames_peri = 1.0/frames_p_s 

     

    curr_time = 0 

    curr_index = 0 

     

    x0 = 0.5 

    y0= 0.3 
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    times = [0,1.2078598 , 2.19513117, 1.90718612, 1.85591199, 1.82492585, 

           1.64140316, 2.3855269 , 2.08878815, 1.62005794, 1.57281463, 

           1.75342754, 1.71885385, 1.53225212, 2.19249282, 2.64586055, 

           1.31651686, 2.87176734, 1.79632565, 2.10867142, 2.11795502, 

           1.5877191 , 2.07060512, 1.69428916, 1.83312158, 2.6838467,10000 ] 

            

    cumtimes = np.cumsum(times) 

    tot_time = np.sum(times) 

    #gpositions = [(0, 0),(-1, 0), (0, 0), (-1, 1),(0, 0), (1, 1),(0, 0), (0, -1), (0, 0), (1, -

1),(0, 0), (-1, -1), (0, 0),(0, 1),(0, 0), (1, 0),(1, -1), (0, 0), (-1, 1), (1, 0), (1, 1), (0, -1), 

(0, 1), (-1, -1), (-1, 0)] 

    gpositions = [(0*x0, 0),(0*x0, 0),(-1*x0, 0), (0*x0, 0), (-1*x0, 1*y0),(0*x0, 0), (1*x0, 

1*y0),(0, 0), (0, -1*y0), (0, 0), (1*x0, -1*y0),(0, 0), (-1*x0, -1*y0), (0, 0),(0, 1*y0),(0, 0), 

(1*x0, 0),(1*x0, -1*y0), (0, 0), (-1*x0, 1*y0), (1*x0, 0), (1*x0, 1*y0), (0, -1*y0), (0, 

1*y0), (-1*x0, -1*y0), (-1*x0, 0),(0, 0)] 

    timer = core.Clock() 

    timer.add(np.sum(times)) 

    # keep track of which components have finished 

    saccadeComponents = [polygon_saccade] 

    for thisComponent in saccadeComponents: 

        thisComponent.tStart = None 

        thisComponent.tStop = None 

        thisComponent.tStartRefresh = None 

        thisComponent.tStopRefresh = None 

        if hasattr(thisComponent, 'status'): 

            thisComponent.status = NOT_STARTED 
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    # reset timers 

    t = 0 

    _timeToFirstFrame = win.getFutureFlipTime(clock="now") 

    frameN = -1 

     

    # --- Run Routine "saccade" --- 

    while continueRoutine and routineTimer.getTime() < 25.0: 

        # get current time 

        t = routineTimer.getTime() 

        tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

        tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

        frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

        # update/draw components on each frame 

        # Run 'Each Frame' code from code_5 

         

        curr_time += frames_peri 

         

        if curr_time>cumtimes[curr_index]: 

            curr_index +=1 

            curr_pos = gpositions[curr_index] 

              

         

        polygon_saccade.pos = curr_pos 

             

         

        # *polygon_saccade* updates 
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        if polygon_saccade.status == NOT_STARTED and tThisFlip >= 0-

frameTolerance: 

            # keep track of start time/frame for later 

            polygon_saccade.frameNStart = frameN  # exact frame index 

            polygon_saccade.tStart = t  # local t and not account for scr refresh 

            polygon_saccade.tStartRefresh = tThisFlipGlobal  # on global time 

            win.timeOnFlip(polygon_saccade, 'tStartRefresh')  # time at next scr refresh 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'polygon_saccade.started') 

            polygon_saccade.setAutoDraw(True) 

        if polygon_saccade.status == STARTED: 

            # is it time to stop? (based on global clock, using actual start) 

            if tThisFlipGlobal > polygon_saccade.tStartRefresh + 25-frameTolerance: 

                # keep track of stop time/frame for later 

                polygon_saccade.tStop = t  # not accounting for scr refresh 

                polygon_saccade.frameNStop = frameN  # exact frame index 

                # add timestamp to datafile 

                thisExp.timestampOnFlip(win, 'polygon_saccade.stopped') 

                polygon_saccade.setAutoDraw(False) 

         

        # check for quit (typically the Esc key) 

        if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

            core.quit() 

         

        # check if all components have finished 

        if not continueRoutine:  # a component has requested a forced-end of Routine 
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            routineForceEnded = True 

            break 

        continueRoutine = False  # will revert to True if at least one component still 

running 

        for thisComponent in saccadeComponents: 

            if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

                continueRoutine = True 

                break  # at least one component has not yet finished 

         

        # refresh the screen 

        if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

            win.flip() 

     

    # --- Ending Routine "saccade" --- 

    for thisComponent in saccadeComponents: 

        if hasattr(thisComponent, "setAutoDraw"): 

            thisComponent.setAutoDraw(False) 

    # Run 'End Routine' code from code_5 

    el_tracker.sendMessage('saccade_end') 

    # using non-slip timing so subtract the expected duration of this Routine (unless 

ended on request) 

    if routineForceEnded: 

        routineTimer.reset() 

    else: 

        routineTimer.addTime(-25.000000) 

    thisExp.nextEntry() 
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# completed 2.0 repeats of 'saccade_trial' 

 

# get names of stimulus parameters 

if saccade_trial.trialList in ([], [None], None): 

    params = [] 

else: 

    params = saccade_trial.trialList[0].keys() 

# save data for this loop 

saccade_trial.saveAsExcel(filename + '.xlsx', sheetName='saccade_trial', 

    stimOut=params, 

    dataOut=['n','all_mean','all_std', 'all_raw']) 

saccade_trial.saveAsText(filename + 'saccade_trial.csv', delim=',', 

    stimOut=params, 

    dataOut=['n','all_mean','all_std', 'all_raw']) 

 

# --- Prepare to start Routine "intro_waldo" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

intro_waldo_keyboard.keys = [] 

intro_waldo_keyboard.rt = [] 

_intro_waldo_keyboard_allKeys = [] 

# keep track of which components have finished 

intro_waldoComponents = [intro_waldo_picture, intro_waldo_keyboard] 

for thisComponent in intro_waldoComponents: 
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    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "intro_waldo" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *intro_waldo_picture* updates 

    if intro_waldo_picture.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 

        intro_waldo_picture.frameNStart = frameN  # exact frame index 

        intro_waldo_picture.tStart = t  # local t and not account for scr refresh 
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        intro_waldo_picture.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(intro_waldo_picture, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'intro_waldo_picture.started') 

        intro_waldo_picture.setAutoDraw(True) 

     

    # *intro_waldo_keyboard* updates 

    waitOnFlip = False 

    if intro_waldo_keyboard.status == NOT_STARTED and tThisFlip >= 0.0-

frameTolerance: 

        # keep track of start time/frame for later 

        intro_waldo_keyboard.frameNStart = frameN  # exact frame index 

        intro_waldo_keyboard.tStart = t  # local t and not account for scr refresh 

        intro_waldo_keyboard.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(intro_waldo_keyboard, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'intro_waldo_keyboard.started') 

        intro_waldo_keyboard.status = STARTED 

        # keyboard checking is just starting 

        waitOnFlip = True 

        win.callOnFlip(intro_waldo_keyboard.clock.reset)  # t=0 on next screen flip 

        win.callOnFlip(intro_waldo_keyboard.clearEvents, eventType='keyboard')  # 

clear events on next screen flip 

    if intro_waldo_keyboard.status == STARTED and not waitOnFlip: 

        theseKeys = intro_waldo_keyboard.getKeys(keyList=['1','2'], 

waitRelease=False) 

        _intro_waldo_keyboard_allKeys.extend(theseKeys) 
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        if len(_intro_waldo_keyboard_allKeys): 

            intro_waldo_keyboard.keys = _intro_waldo_keyboard_allKeys[-1].name  # 

just the last key pressed 

            intro_waldo_keyboard.rt = _intro_waldo_keyboard_allKeys[-1].rt 

            # a response ends the routine 

            continueRoutine = False 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in intro_waldoComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "intro_waldo" --- 
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for thisComponent in intro_waldoComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# check responses 

if intro_waldo_keyboard.keys in ['', [], None]:  # No response was made 

    intro_waldo_keyboard.keys = None 

thisExp.addData('intro_waldo_keyboard.keys',intro_waldo_keyboard.keys) 

if intro_waldo_keyboard.keys != None:  # we had a response 

    thisExp.addData('intro_waldo_keyboard.rt', intro_waldo_keyboard.rt) 

thisExp.nextEntry() 

# the Routine "intro_waldo" was not non-slip safe, so reset the non-slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "waldo" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

# Run 'Begin Routine' code from code_6 

el_tracker.sendMessage('waldo_experiment_start') 

# keep track of which components have finished 

waldoComponents = [image, image_2, image_3, image_4, image_5, image_6] 

for thisComponent in waldoComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 
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    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "waldo" --- 

while continueRoutine and routineTimer.getTime() < 270.0: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *image* updates 

    if image.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: 

        # keep track of start time/frame for later 

        image.frameNStart = frameN  # exact frame index 

        image.tStart = t  # local t and not account for scr refresh 

        image.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(image, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'image.started') 

        image.setAutoDraw(True) 
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    if image.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > image.tStartRefresh + 45-frameTolerance: 

            # keep track of stop time/frame for later 

            image.tStop = t  # not accounting for scr refresh 

            image.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'image.stopped') 

            image.setAutoDraw(False) 

     

    # *image_2* updates 

    if image_2.status == NOT_STARTED and tThisFlip >= 45-frameTolerance: 

        # keep track of start time/frame for later 

        image_2.frameNStart = frameN  # exact frame index 

        image_2.tStart = t  # local t and not account for scr refresh 

        image_2.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(image_2, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'image_2.started') 

        image_2.setAutoDraw(True) 

    if image_2.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > image_2.tStartRefresh + 45-frameTolerance: 

            # keep track of stop time/frame for later 

            image_2.tStop = t  # not accounting for scr refresh 

            image_2.frameNStop = frameN  # exact frame index 
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            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'image_2.stopped') 

            image_2.setAutoDraw(False) 

     

    # *image_3* updates 

    if image_3.status == NOT_STARTED and tThisFlip >= 90-frameTolerance: 

        # keep track of start time/frame for later 

        image_3.frameNStart = frameN  # exact frame index 

        image_3.tStart = t  # local t and not account for scr refresh 

        image_3.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(image_3, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'image_3.started') 

        image_3.setAutoDraw(True) 

    if image_3.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > image_3.tStartRefresh + 45-frameTolerance: 

            # keep track of stop time/frame for later 

            image_3.tStop = t  # not accounting for scr refresh 

            image_3.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'image_3.stopped') 

            image_3.setAutoDraw(False) 

     

    # *image_4* updates 

    if image_4.status == NOT_STARTED and tThisFlip >= 135-frameTolerance: 
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        # keep track of start time/frame for later 

        image_4.frameNStart = frameN  # exact frame index 

        image_4.tStart = t  # local t and not account for scr refresh 

        image_4.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(image_4, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'image_4.started') 

        image_4.setAutoDraw(True) 

    if image_4.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > image_4.tStartRefresh + 45-frameTolerance: 

            # keep track of stop time/frame for later 

            image_4.tStop = t  # not accounting for scr refresh 

            image_4.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'image_4.stopped') 

            image_4.setAutoDraw(False) 

     

    # *image_5* updates 

    if image_5.status == NOT_STARTED and tThisFlip >= 180-frameTolerance: 

        # keep track of start time/frame for later 

        image_5.frameNStart = frameN  # exact frame index 

        image_5.tStart = t  # local t and not account for scr refresh 

        image_5.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(image_5, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 
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        thisExp.timestampOnFlip(win, 'image_5.started') 

        image_5.setAutoDraw(True) 

    if image_5.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > image_5.tStartRefresh + 45-frameTolerance: 

            # keep track of stop time/frame for later 

            image_5.tStop = t  # not accounting for scr refresh 

            image_5.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'image_5.stopped') 

            image_5.setAutoDraw(False) 

     

    # *image_6* updates 

    if image_6.status == NOT_STARTED and tThisFlip >= 225-frameTolerance: 

        # keep track of start time/frame for later 

        image_6.frameNStart = frameN  # exact frame index 

        image_6.tStart = t  # local t and not account for scr refresh 

        image_6.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(image_6, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'image_6.started') 

        image_6.setAutoDraw(True) 

    if image_6.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > image_6.tStartRefresh + 45-frameTolerance: 

            # keep track of stop time/frame for later 
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            image_6.tStop = t  # not accounting for scr refresh 

            image_6.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'image_6.stopped') 

            image_6.setAutoDraw(False) 

    # Run 'Each Frame' code from code_6 

    count = 0 

    if int(t / 45) > count: 

        el_tracker.sendMessage('waldo_picture_'+str(count)) 

        count = count + 1 

        el_tracker.sendMessage('waldo_experiment_change_pic = '+str(count)) 

     

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in waldoComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 
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    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "waldo" --- 

for thisComponent in waldoComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# Run 'End Routine' code from code_6 

el_tracker.sendMessage('waldo_experiment_end') 

# using non-slip timing so subtract the expected duration of this Routine (unless 

ended on request) 

if routineForceEnded: 

    routineTimer.reset() 

else: 

    routineTimer.addTime(-270.000000) 

 

# --- Prepare to start Routine "intro_rand_pix" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

key_resp_2.keys = [] 

key_resp_2.rt = [] 

_key_resp_2_allKeys = [] 

# keep track of which components have finished 
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intro_rand_pixComponents = [text_3, key_resp_2] 

for thisComponent in intro_rand_pixComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "intro_rand_pix" --- 

while continueRoutine: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *text_3* updates 

    if text_3.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: 

        # keep track of start time/frame for later 

        text_3.frameNStart = frameN  # exact frame index 
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        text_3.tStart = t  # local t and not account for scr refresh 

        text_3.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(text_3, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'text_3.started') 

        text_3.setAutoDraw(True) 

     

    # *key_resp_2* updates 

    waitOnFlip = False 

    if key_resp_2.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: 

        # keep track of start time/frame for later 

        key_resp_2.frameNStart = frameN  # exact frame index 

        key_resp_2.tStart = t  # local t and not account for scr refresh 

        key_resp_2.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(key_resp_2, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'key_resp_2.started') 

        key_resp_2.status = STARTED 

        # keyboard checking is just starting 

        waitOnFlip = True 

        win.callOnFlip(key_resp_2.clock.reset)  # t=0 on next screen flip 

        win.callOnFlip(key_resp_2.clearEvents, eventType='keyboard')  # clear events 

on next screen flip 

    if key_resp_2.status == STARTED and not waitOnFlip: 

        theseKeys = key_resp_2.getKeys(keyList=['1','2'], waitRelease=False) 

        _key_resp_2_allKeys.extend(theseKeys) 
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        if len(_key_resp_2_allKeys): 

            key_resp_2.keys = _key_resp_2_allKeys[-1].name  # just the last key 

pressed 

            key_resp_2.rt = _key_resp_2_allKeys[-1].rt 

            # a response ends the routine 

            continueRoutine = False 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in intro_rand_pixComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "intro_rand_pix" --- 
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for thisComponent in intro_rand_pixComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# check responses 

if key_resp_2.keys in ['', [], None]:  # No response was made 

    key_resp_2.keys = None 

thisExp.addData('key_resp_2.keys',key_resp_2.keys) 

if key_resp_2.keys != None:  # we had a response 

    thisExp.addData('key_resp_2.rt', key_resp_2.rt) 

thisExp.nextEntry() 

# the Routine "intro_rand_pix" was not non-slip safe, so reset the non-slip timer 

routineTimer.reset() 

 

# --- Prepare to start Routine "rand_pix" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

# Run 'Begin Routine' code from code_7 

el_tracker.sendMessage('start_rand_pix') 

# keep track of which components have finished 

rand_pixComponents = [image_7, image_8, image_9, image_10] 

for thisComponent in rand_pixComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 
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    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 

 

# --- Run Routine "rand_pix" --- 

while continueRoutine and routineTimer.getTime() < 120.0: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *image_7* updates 

    if image_7.status == NOT_STARTED and tThisFlip >= 0-frameTolerance: 

        # keep track of start time/frame for later 

        image_7.frameNStart = frameN  # exact frame index 

        image_7.tStart = t  # local t and not account for scr refresh 

        image_7.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(image_7, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'image_7.started') 

        image_7.setAutoDraw(True) 
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    if image_7.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > image_7.tStartRefresh + 30-frameTolerance: 

            # keep track of stop time/frame for later 

            image_7.tStop = t  # not accounting for scr refresh 

            image_7.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'image_7.stopped') 

            image_7.setAutoDraw(False) 

     

    # *image_8* updates 

    if image_8.status == NOT_STARTED and tThisFlip >= 30-frameTolerance: 

        # keep track of start time/frame for later 

        image_8.frameNStart = frameN  # exact frame index 

        image_8.tStart = t  # local t and not account for scr refresh 

        image_8.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(image_8, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'image_8.started') 

        image_8.setAutoDraw(True) 

    if image_8.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > image_8.tStartRefresh + 30-frameTolerance: 

            # keep track of stop time/frame for later 

            image_8.tStop = t  # not accounting for scr refresh 

            image_8.frameNStop = frameN  # exact frame index 
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            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'image_8.stopped') 

            image_8.setAutoDraw(False) 

     

    # *image_9* updates 

    if image_9.status == NOT_STARTED and tThisFlip >= 60-frameTolerance: 

        # keep track of start time/frame for later 

        image_9.frameNStart = frameN  # exact frame index 

        image_9.tStart = t  # local t and not account for scr refresh 

        image_9.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(image_9, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'image_9.started') 

        image_9.setAutoDraw(True) 

    if image_9.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > image_9.tStartRefresh + 30-frameTolerance: 

            # keep track of stop time/frame for later 

            image_9.tStop = t  # not accounting for scr refresh 

            image_9.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'image_9.stopped') 

            image_9.setAutoDraw(False) 

     

    # *image_10* updates 

    if image_10.status == NOT_STARTED and tThisFlip >= 90-frameTolerance: 
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        # keep track of start time/frame for later 

        image_10.frameNStart = frameN  # exact frame index 

        image_10.tStart = t  # local t and not account for scr refresh 

        image_10.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(image_10, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'image_10.started') 

        image_10.setAutoDraw(True) 

    if image_10.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > image_10.tStartRefresh + 30-frameTolerance: 

            # keep track of stop time/frame for later 

            image_10.tStop = t  # not accounting for scr refresh 

            image_10.frameNStop = frameN  # exact frame index 

            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'image_10.stopped') 

            image_10.setAutoDraw(False) 

    # Run 'Each Frame' code from code_7 

    count = 0 

    if int(t / 45) > count: 

        el_tracker.sendMessage('rand_pix'+str(count)) 

        count = count + 1 

        el_tracker.sendMessage('rand_pix_pic = '+str(count)) 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 
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        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in rand_pixComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "rand_pix" --- 

for thisComponent in rand_pixComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 

# Run 'End Routine' code from code_7 

el_tracker.sendMessage('end_rand_pix') 

# using non-slip timing so subtract the expected duration of this Routine (unless 

ended on request) 

if routineForceEnded: 

    routineTimer.reset() 
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else: 

    routineTimer.addTime(-120.000000) 

 

# --- Prepare to start Routine "End" --- 

continueRoutine = True 

routineForceEnded = False 

# update component parameters for each repeat 

# Run 'Begin Routine' code from experiment_over_code 

el_tracker.sendMessage('endExperiment') 

 

el_tracker.stopRecording() 

 

 

# keep track of which components have finished 

EndComponents = [End_text] 

for thisComponent in EndComponents: 

    thisComponent.tStart = None 

    thisComponent.tStop = None 

    thisComponent.tStartRefresh = None 

    thisComponent.tStopRefresh = None 

    if hasattr(thisComponent, 'status'): 

        thisComponent.status = NOT_STARTED 

# reset timers 

t = 0 

_timeToFirstFrame = win.getFutureFlipTime(clock="now") 

frameN = -1 
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# --- Run Routine "End" --- 

while continueRoutine and routineTimer.getTime() < 5.0: 

    # get current time 

    t = routineTimer.getTime() 

    tThisFlip = win.getFutureFlipTime(clock=routineTimer) 

    tThisFlipGlobal = win.getFutureFlipTime(clock=None) 

    frameN = frameN + 1  # number of completed frames (so 0 is the first frame) 

    # update/draw components on each frame 

     

    # *End_text* updates 

    if End_text.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: 

        # keep track of start time/frame for later 

        End_text.frameNStart = frameN  # exact frame index 

        End_text.tStart = t  # local t and not account for scr refresh 

        End_text.tStartRefresh = tThisFlipGlobal  # on global time 

        win.timeOnFlip(End_text, 'tStartRefresh')  # time at next scr refresh 

        # add timestamp to datafile 

        thisExp.timestampOnFlip(win, 'End_text.started') 

        End_text.setAutoDraw(True) 

    if End_text.status == STARTED: 

        # is it time to stop? (based on global clock, using actual start) 

        if tThisFlipGlobal > End_text.tStartRefresh + 5-frameTolerance: 

            # keep track of stop time/frame for later 

            End_text.tStop = t  # not accounting for scr refresh 

            End_text.frameNStop = frameN  # exact frame index 
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            # add timestamp to datafile 

            thisExp.timestampOnFlip(win, 'End_text.stopped') 

            End_text.setAutoDraw(False) 

     

    # check for quit (typically the Esc key) 

    if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): 

        core.quit() 

     

    # check if all components have finished 

    if not continueRoutine:  # a component has requested a forced-end of Routine 

        routineForceEnded = True 

        break 

    continueRoutine = False  # will revert to True if at least one component still running 

    for thisComponent in EndComponents: 

        if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: 

            continueRoutine = True 

            break  # at least one component has not yet finished 

     

    # refresh the screen 

    if continueRoutine:  # don't flip if this routine is over or we'll get a blank screen 

        win.flip() 

 

# --- Ending Routine "End" --- 

for thisComponent in EndComponents: 

    if hasattr(thisComponent, "setAutoDraw"): 

        thisComponent.setAutoDraw(False) 
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# using non-slip timing so subtract the expected duration of this Routine (unless 

ended on request) 

if routineForceEnded: 

    routineTimer.reset() 

else: 

    routineTimer.addTime(-5.000000) 

# Run 'End Experiment' code from Start_and_end_code 

# Step 7: disconnect, download the EDF file, then terminate the task 

terminate_task() 

 

 

 

 

 

# --- End experiment --- 

# Flip one final time so any remaining win.callOnFlip()  

# and win.timeOnFlip() tasks get executed before quitting 

win.flip() 

 

# these shouldn't be strictly necessary (should auto-save) 

thisExp.saveAsPickle(filename) 

logging.flush() 

# make sure everything is closed down 

if eyetracker: 

    eyetracker.setConnectionState(False) 

thisExp.abort()  # or data files will save again on exit 
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win.close() 

core.quit() 


