
ACIT5930

MASTER’S THESIS

in

Applied Computer and Information
Technology (ACIT)

May 2023

Robotics and Control

Visual-inertial-pressure SLAM for Low-cost
Remotely Operated Vehicles

Einar Sobrevega Tomter

Department of Computer Science
Faculty of Technology, Art, and Design

Preface

I have always liked building and experimenting with things ever since I was little.

However, I did not know what the term was for those who built all these amazing

inventions and technologies. In fact, it was not until the age of 16 that I realized what

the term "Engineer" really meant. That is also when my journey into the realm of

technology began. During my bachelor’s study at OsloMet, I was fortunate enough

to come across like-minded individuals who also had a passion for learning and

discovery, from my fellow classmates and professors alike. That was also when I first

encountered robotics, and that is when I knew exactly what I wanted to pursue.

For my project, I wanted something that involved math (I know) and was visually

intriguing. When I discovered what SLAM was, I knew I wanted to learn more about

it and see how far I could take it.

With that, I would like to thank firstly my supervisor, Alex Alcocer, for encouraging

me not just in my thesis, but in all things robotics. Secondly, I would also like to thank

my classmates and fellow researchers in Oceanlab, especially Erik skultety, Pierre Odin

Boniface, Jan-Philip Radicke, and Aksel Johan Frafjord. The course would not have

been as enjoyable without you guys. Thirdly, I want to thank Daniel Gomez Ibanez,

my earlier co-supervisor, who helped me in writing my paper even after he returned

to the US. Finally, but most certainly not least, I would like to thank my closest friends

and family, who have supported me to their fullest extent and helped me get through

the hardest of times.

Einar Tomter

Enebakkveien, 15.05.2023

i

ii

Abstract

In recent years, underwater robots have become cheaper and more readily accessible,

allowing smaller companies and even private individuals to conduct their own

research and explore the underwater domain.

This thesis presents two main contributions to the field of underwater robotics. The

first contribution is the development of an underwater simulation environment using

Unreal Engine and Gazebo, designed for visual SLAM and other robotic applications.

The environment generates visually realistic scenarios that closely resemble real-world

underwater conditions, serving as a valuable tool for research and development in

robotics. The second contribution is the adaptation of ORB-SLAM3 for underwater

environments using visual-pressure and visual-inertial-pressure configurations. These

configurations demonstrate improved performance in the underwater domain through

modifications to the visual component, pose estimation, local bundle adjustment

algorithms, new vocabularies, and various initialization procedures.

While both the simulation environment and the modified ORB-SLAM configura-

tions show promising results, there remain several challenges and opportunities for

future work. For the simulation environment, usability and sensor data synchroniza-

tion are areas for improvement. Expanding the evaluation, implementing new envir-

onments, additional sensors, and a GUI would further enhance the simulation’s value.

For the adapted ORB-SLAM configurations, refining scale estimation, addressing tra-

jectory drift, and improving loop closure capabilities are crucial next steps. More tests

in different environments and potential applications of deep learning techniques can

also enhance the system’s performance.

By making the simulation and SLAM system implementations openly available

online, this thesis aims to increase accessibility to underwater robotics for the public,

fostering continued development and innovation in the field.

iii

iv

Contents

Preface i

Abstract iii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Underwater robots . 1

1.1.2 Underwater localization . 3

1.1.3 Instrumentation for underwater localization 3

1.1.4 Simultaneous localization and mapping 5

1.1.5 Simulation environment for Visual SLAM 8

1.2 Problem statement . 9

1.3 Scope and limitations . 9

1.4 Ethical Considerations . 10

2 Underwater Simulation Environment for Visual SLAM 11

2.1 Introduction . 11

2.2 Related works . 12

2.2.1 Simulation platforms . 12

2.2.2 Underwater simulators . 13

2.2.3 Summary and project direction . 14

2.3 Methodology . 15

2.3.1 Hardware and software configuration 15

2.3.2 Back-end . 16

2.3.3 Front-end . 19

2.3.4 Simulation environment . 21

v

2.4 Results . 27

2.4.1 Simulation performance . 27

2.4.2 User Experience and Usability . 29

2.5 Discussion . 31

2.5.1 Limitations . 32

2.5.2 Suggestions for future work . 32

2.6 Conclusion . 33

3 Underwater Visual SLAM 35

3.1 Introduction . 35

3.2 Background and related Works . 37

3.2.1 Underwater SLAM . 37

3.2.2 Visual SLAM . 40

3.2.3 Loop closure . 42

3.2.4 Summary and project direction . 44

3.3 Theory . 44

3.3.1 Coordinate frame notation . 45

3.3.2 Factor graphs . 46

3.3.3 Least-squares optimization . 47

3.4 Methology: Overview . 51

3.5 ORB-SLAM3 . 51

3.5.1 Tracking . 53

3.5.2 Local mapping . 54

3.5.3 Loop closing . 54

3.5.4 ORB-SLAM3 setup . 55

3.6 Visual-Pressure SLAM . 56

3.6.1 Tracking . 56

3.6.2 Local mapping . 62

3.6.3 Loop closing . 62

3.6.4 Initialization . 65

3.7 Visual-Inertial-Pressure SLAM . 70

3.7.1 Challenges of visual-inertial SLAM underwater 70

3.7.2 Tracking . 71

vi

3.7.3 Local mapping . 73

3.7.4 Loop closure . 74

3.7.5 Initialization . 74

3.8 Results . 77

3.8.1 Image preprocessing . 77

3.8.2 Trajectory analysis . 82

3.8.3 Loop closure . 91

3.9 Discussion . 94

3.9.1 Image preprocessing . 94

3.9.2 Trajectory analysis . 94

3.9.3 Loop closure analysis . 100

3.9.4 Comparison to other SLAM systems 100

3.9.5 Limitations . 101

3.9.6 Suggestions for future work . 101

3.10 Conclusion . 103

4 Project Conclusion 105

A Underwater simulation 115

A.1 Code . 115

A.2 ROV implementation . 115

B Underwater Visual SLAM 119

vii

viii

List of Figures

1.1 Examples of underwater robots . 2

1.2 Graphical representation of the SLAM problem. Source (Bailey &

Durrant-Whyte, 2006) . 7

2.1 Simulation overview . 15

2.2 Control scheme . 20

2.3 X3 ROV. Gazebo uses the low-poly version to reduce computational load 21

2.4 UE effects to simulate an underwater environment 23

2.5 Images from sequence 1. Top row: RGB, bottom row: grayscale 25

2.6 Sequence 1 trajectory . 25

2.7 Images from sequence 2. Top row: RGB, bottom row: grayscale 26

2.8 Sequence 2 trajectory . 26

2.9 Comparison between relatively feature-less areas in both engines 28

2.10 Synchronization issue as seen in Rqt Bag. Blue vertical lines indicate

when the message is published to ROS. The red line highlights a section

where the clock cycle is not published at a regular interval. 28

2.11 Comparison between caustics in the real-world and simulation. Real-

world image sourced online . 29

3.1 Reference system Source: (UZ-SLAMLab, 2022) 46

3.2 Factor graph example . 47

3.3 Redrawn ORB-SLAM3 overview. Original: (Campos et al., 2021) 52

3.4 CLAHE . 57

3.5 Misalignment effect. θ is the angle of error between the initial pose

estimate and the world reference frame. 60

3.6 Graph representation of the pose optimization function 61

ix

3.8 Initialization procedure. The poses are kept fixed. 67

3.9 VIP optimization function . 72

3.10 VIP initialization procedure . 75

3.11 Sample images from the chosen sequences 79

3.12 Harbor 1 . 80

3.13 Harbor 4 . 80

3.14 UwUE 1 . 81

3.15 Mean tracked points and inliers per dataset with standard deviation

(black lines) . 81

3.16 Harbor 1 . 84

3.17 Harbor 2 . 84

3.18 Harbor 3 . 85

3.19 Harbor 4. Note that the trajectory shown here is the best trajectory out

of 10 runs. 85

3.20 Harbor 5 . 86

3.21 Harbor 6 . 86

3.22 Harbor 7 . 87

3.23 UwUE 1 . 87

3.24 Mean APE as a percentage of trajectory length [%] 88

3.25 Harbor 1 . 92

3.26 Harbor 5 . 93

3.27 summary of results for each trajectory . 93

3.28 Side-view of the map produced by the base monocular configuration. . . 98

3.29 Side-view of the map produced by the visual-inertial-pressure configur-

ation. Notice how the map does not overlap like in Figure 3.28. 98

x

List of Tables

2.1 PC specifications . 16

2.2 Back-end software specification . 16

2.3 Front-end software specification . 16

2.4 Sensor specifications . 22

2.5 Details on underwater sequences . 24

3.1 ORB-SLAM3 libraries . 55

3.2 CLAHE values . 57

3.3 Universal vocabulary parameters . 63

3.4 Summary of different vocabularies . 63

3.5 Strategy 1B criteria . 67

3.6 Strategy 2B criteria . 68

3.7 VIP Initialization procedure . 76

3.8 Default visual parameters . 77

3.9 CLAHE configurations . 78

3.10 Absolute trajectory error (RMSE) [m] on AQUALOC harbor (H) dataset

as well as sequence 1 of UwUE (U) . 83

3.11 RPE for all sequences. All units are measured in centimeters [cm] 89

3.12 Scale error as percentage of actual scale [%] 90

3.13 Rotation error in degrees [°] . 91

3.14 Initialization time in seconds [s] . 91

A.1 Simulated X3 properties . 116

A.2 Thruster properties . 116

A.3 Sensor specifications . 116

A.4 Camera parameters . 117

xi

xii

Chapter 1

Introduction

1.1 Motivation

Our oceans, covering more than 70% of the Earth’s surface, represent a vast and

largely unexplored frontier. In recent years, advances in underwater technology have

enabled us to better understand and monitor the underwater world, allowing us to

manage and utilize ocean resources more responsibly. Underwater robotics, including

Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs),

have played a crucial role in this progress, allowing us to explore and conduct research

in places that were once inaccessible or too dangerous for human divers.

1.1.1 Underwater robots

ROVs and AUVs are used to survey seabeds, monitor the environment, perform

maintenance on man-made structures and perform other similar tasks. They are also

better designed to navigate difficult environments with no risk to human safety. ROVs

are versatile robots tethered to a topside unit and can be tele-operated. AUVs on the

other hand operate autonomously using onboard sensors and run on their own power

sources. Both classes of underwater robots can be configured in various ways to suit

the specific tasks they are designed to accomplish.

ROVs are more commonly found due to their tele-operability, making them more

versatile towards a wider variety of tasks. They will typically fall into one of these

classes:

1

• Observation class: Small-sized ROVs mainly for exploration and observation of

shallower waters such as the coast, rivers, and small lakes.

• Light work class: Small to medium-sized ROVs able to carry light payloads and

manipulate small objects. Can be used in medium to deep waters.

• Heavy work class: Large-sized ROVs able to carry heavy payloads and several

tools for manipulation. Can operate in the deepest depths and reach the ocean

floor.

(a) AUV: Slocum glider (Teledyne Mar-

ine, 2023)

(b) Observer class ROV: BlueROV2 (Blu-

eRobotics, 2023)

(c) Light work class ROV: eNovus

(Oceaneering, 2023)

(d) Heavy work class ROV: Schilling

UHD III (ROVOP, 2023)

Figure 1.1: Examples of underwater robots

Observation class and light work class ROVs are easier to find and acquire

commercially, whereas heavy work class ROVs are typically only found within oil

and gas industries. The relatively low cost of smaller ROVs have enabled smaller

2

companies, research groups and even private individuals to acquire these robots and

perform their own experiments.

1.1.2 Underwater localization

Localization is crucial in robotics for proper navigation within the environment.

Underwater, localization is usually achieved using acoustic positioning systems (APS)

or by dead reckoning (DR). Acoustic positioning systems use beacons spaced away

from each other to trilaterate the position of the robot, which will typically have

a transponder mounted. Dead reckoning involves the estimation of the robot’s

state using onboard sensors to perform localization. The following section discusses

the most commonly used instrumentation for underwater localization. Most of the

information here originates from (Paull et al., 2014). We highly advise interested

readers to check the authors’ work as it contains more information regarding this topic.

1.1.3 Instrumentation for underwater localization

Global and Acoustic Positioning Systems

Global Positioning Systems can estimate the position of a vessel by using the time-of-

flight signals from visible satellites. GPS signals however cannot penetrate deep into

the water. Acoustic positioning systems function as the underwater equivalent to these

and use a similar working principle. Typically, an acoustic position system will make

use of at least 3 beacons to trilaterate the position of a robot, where a transponder is

typically mounted on the robot.

Acoustic positioning systems can generally be split into 3 categories; Long

Baseline (LBL), Short Baseline (SBL), and Ultra Short Baseline (USBL). LBL systems

typically install fixed beacons that are widely spaced from one another. The position

of these beacons are usually known during operation. SBL and USBL systems

function similarly to LBLs by measuring the time of flight and phase shift between

measurements. As their name implies, they have a much shorter baseline between

beacons, with USBLs having the shortest baselines. The shorter the baseline is, the

lower the accuracy, but it is also cheaper to set up compared to LBLs and can be

mounted on a mobile platform such as a ship.

3

Proprioceptive sensors

Proprioceptive sensors provide measurements regarding the internal state of the robot

and can be used for localization. Here, we refer to proprioceptive sensors as the

instrumentation onboard the robot. These types of sensors do not gather information

regarding the surrounding environment. Proprioceptive sensors by themselves are

sufficient in providing localization estimates, but suffer from unbounded drift the

longer they operate.

Pressure sensor Pressure sensors measure the amount of pressure applied by the

water column above it, which scale linearly as depth increases. The pressure

gradient in water is steeper than in air, which results in high accuracy in the

measurements. In practical applications we are often more interested in knowing the

depth measurement, which can easily be computed due to its linear relationship with

pressure.

Inertial measurement unit Inertial measurement units (IMUs) are typically made up

of an accelerometer and a gyroscope. Accelerometers measure the linear acceleration

of the system while gyroscopes measure the angular velocity. These measurements can

be used to calculate the position, speed, and orientation of an object in motion. IMUs

are subject to drift over a period of time and sensor noise. To recover the position

estimate, it is necessary to integrate the accelerometer twice. The noise and drift will

therefore lead to a rapid accumulation of error in the estimate. They typically have to

be paired with other sensors to compensate for this.

Compass Some IMUs also have a magnetometer integrated as part of the package.

Magnetometers measures the magnetic field of the environment and can be used

to estimate the global heading of the system, ultimately functioning as a compass.

However, they are very susceptible to magnetic disturbances that may be present in

the environment.

Doppler velocity log Doppler Velocity Logs are sensors, usually with 3 or 4 beams,

that emit acoustic pulses towards a static object, such as the seabed. By measuring the

wave’s shift in frequency, the sensor is able to determine its velocity.

4

Exteroceptive sensors

Unlike proprioceptive sensors, exteroceptive sensors measure the state of the environ-

ment, which can for example be used for mapping. LiDAR, sonar, and cameras are the

most commonly used to do this, although LiDAR is used to a more limited extent un-

derwater. Range scan sensors like LiDAR and sonar can directly measure the geometry

of the environment.

Sonar Sonars use sound to detect and locate objects underwater. In the context of

localization and mapping, we generally refer to the use of active sonars to produce an

image of the surrounding environment. Active sonars emit sound pulses and measure

the echoes to detect and locate objects in the environment. This is in contrast to passive

sonars which only listen to the sound in the environment. These sensors come in

many forms, such as forward-looking sonars, side-scan sonars and many more, but

all operate under the same principle. Compared to cameras, sonars are not affected

by water turbidity. However, they generally have lower acquisition rates and produce

less detailed images.

Camera Cameras function by allowing light to pass through an optical lens which

can then be captured by a light-sensitive surface, thus generating an image. They come

in a variety of configurations and specifications to best tackle a specific task. Image

quality often degrades significantly underwater, due to factors such as poor lighting

conditions and turbidity, resulting in limited visibility range.

1.1.4 Simultaneous localization and mapping

Acoustic positioning systems tend to be expensive to deploy and operate. They also

have a limited range, only functioning when the robot is within the area covered by

the beacons. Mobile solutions exist that involve mounting the beacons on support

vessels, but this also increases the costs of deployment and operation. Dead reckoning

solutions are able to operate using only the robot’s instrumentation and are therefore

cheaper. However, these solutions suffer from unbounded growth in their estimation

error due to uncertainties from measurement noise and biases.

5

Simultaneous Localization and Mapping (SLAM) offers an alternative to dead

reckoning that limits the growth in uncertainties while maintaining independence to

the use of external instrumentation. SLAM algorithms estimate the robot’s pose in a

manner similar to dead reckoning solutions. At the same time, it constructs a map of its

surroundings. If the system is able to recognize a previously explored location, it can

correct the estimated trajectory and any drift caused by measurement uncertainties.

This process is known as loop-closure. A lot of attention has been directed towards

the development of SLAM as it has been considered a keystone for enabling fully

autonomous navigation.

SLAM formulation

SLAM is typically formulated using two models: the motion model, which describes

the state of the robot, and the observation model, which describes the environment.

The motion model can be estimated using the robot’s proprioceptive sensors such

as an IMU or by observing known landmarks and calculating its position relative to

these landmarks. Conversely, the observation model can be constructed using the

robot’s exteroceptive sensors such as cameras or raw range scan sensors like LiDAR

and sonar. A map of the robot’s surroundings can be gradually built up, provided

that the same landmarks can be re-observed. Both models are updated iteratively

and also use the output of the other as input. Each model introduces uncertainties

to the system due to sensor noise and inaccuracies in the model estimations. Since

neither the motion nor the observations are actually known and are instead calculated

with a certain probability, SLAM is probabilistic in nature and is often described as a

probability distribution.

P(xk, m|Z0:k, U0:k, x0) (1.1)

Equation 1.1 describes the probability distribution of the state of the robot xk

computed at time k and the map m given the previous observations Z0:k, input controls

U0:k, and the initial state of the vehicle x0 (Bailey & Durrant-Whyte, 2006). Figure 1.2

provides a graphical representation of the problem.

6

Figure 1.2: Graphical representation of the SLAM problem. Source (Bailey & Durrant-

Whyte, 2006)

In this context, xk represents the state vector of the robot, uk is the control vector

applied at time k − 1 to move the robot to the state xk, mi is a vector containing

information about the ith landmark, and zik is the observation of the ith landmark at

time k. Many if not all SLAM algorithms in the literature are based on a probabilistic

Bayesian approach.

Visual SLAM

Cameras have no way of directly measuring depth by themselves. Instead, camera-

based SLAM, more commonly referred to as Visual SLAM (VSLAM), rely on structure

from motion (SfM) to recover depth from the images. However, monocular cameras

still cannot properly recover scale, which must be arbitrarily set during initialization.

Cameras would have to be either paired up to produce stereoscopic vision or combined

with additional sensors such as range sensors (e.g., RGBD cameras) to recover depth

and consequently the scale of the environment. Despite this, a large body of literature

has been released dedicated to solving the SLAM problem using normal monocular

cameras. The main motivation is that monocular configurations are considerably

7

cheaper and easier to work with.

Many works have also been done to fuse cheaper sensors that are often already

integrated within the robot, such as IMUs. These sensors also allow for the scale to

be recovered. Many state-of-the-art systems have demonstrated that these low-cost

configurations can reliably and accurately track the robot’s trajectory and map the

environment.

Recently, underwater SLAM has also seen this type of development and a desire

for low-cost configurations. We note that most of the literature of underwater SLAM

mainly use sonar, but these sensors tend to be expensive and difficult to work with in

SLAM due to the low acquisition rate and resolution. Cameras have been investigated

as an alternative due to their ability to provide more information at a much higher

acquisition rate. Most ROVs also come configured with a camera.

However, cameras have some clear disadvantages underwater, including poor

lighting conditions, low contrast, and backscattering. Many underwater environments

also have repetitive features, and can make it difficult to differentiate one location

from another. A study has nonetheless been conducted testing various state-of-the-

art visual SLAM algorithms in underwater environments (Hidalgo Herencia, 2019).

Some algorithms perform surprisingly well in structured environments like harbors

but need to stay close to these structures or the seabed to maintain tracking. It

is important to note that these algorithms were originally designed for aerial and

terrestrial environments.

Building on the idea of using low-cost sensors for SLAM, we also consider incor-

porating depth measurements from pressure sensors to further enhance localization.

Many low-cost ROVs have a camera, IMU and pressure sensor as part of their onboard

instrumentation. This approach makes the SLAM configuration suitable for a wide

range of ROV configurations.

1.1.5 Simulation environment for Visual SLAM

To facilitate the development and evaluation of the underwater visual SLAM

algorithm, a simulation environment will be created. This environment will serve

as a platform for testing the algorithm in various underwater scenarios, providing

a controlled and efficient approach to fine-tuning and analyzing the algorithm’s

8

performance. By using the simulation environment, we can more easily replicate

conditions and scenarios that would be challenging to prepare and test in the real

world. The simulation environment will be a key component of the algorithm’s

development process and will be discussed in detail in a dedicated chapter of this

thesis.

1.2 Problem statement

In this thesis, the aim is to develop a visual SLAM algorithm using a camera, IMU, and

pressure sensor for the underwater domain, and to create a simulation environment to

facilitate the development and evaluation of the proposed algorithm. We can split the

objectives into the following:

• Develop and evaluate a simulation environment for underwater visual SLAM

algorithm testing and validation

• Improve the visual pipeline of the SLAM algorithm to enhance camera perform-

ance underwater

• Implement a visual-pressure SLAM configuration

• Implement a visual-inertial-pressure SLAM configuration

• Investigate loop closure capabilities in the underwater domain

The system and its various configurations will be tested on open-source datasets as

well as custom datasets acquired from live testing. Each configuration should be able

to run real-time with minimal configuration needed from the operators.

1.3 Scope and limitations

We will use an existing, open-source SLAM algorithm as our base configuration and

implement our own changes to it. Designing the system from scratch was considered

but was later changed to better fit the scope and timeframe of the project. The system

will mostly be evaluated on structured underwater environments.

9

1.4 Ethical Considerations

The project is mostly the development of software. Regardless, there are some ethical

implications of the technology both directly and indirectly. The following are some

ethical considerations associated with the project.

Environmental impact Underwater robots have the potential to disturb natural

habitats and marine life during their operation. It is crucial to ensure that real-life

tests and experiments related to underwater SLAM minimize any negative impact on

the environment of ecosystems.

Privacy and data security The collection of data, especially images and sensor

readings, during the testing and development of underwater SLAM algorithms raises

concerns about privacy and data security. While it is unlikely that any sensitive data

is gathered in the project, it is still important to handle all collected data responsibly,

ensuring that it is stored securely and not used for purposes other than those intended

in the project.

Dual-use technology While the primary goal of this thesis is to advance the field

of underwater robotics for scientific, exploration, and maintenance purposes, it is

essential to be aware that the technology developed could be used for other purposes,

such as military or surveillance applications.

Accessibility and fairness As technology continues to develop, it is important to

ensure that the benefits of these advancements are accessible to a wide range of

users and applications. By focusing on low-cost sensor configurations, this project

aims to make underwater SLAM more accessible and affordable to researchers and

organizations with limited resources. We also make all the software developed in this

project open-source and available online for the benefit of the community.

10

Chapter 2

Underwater Simulation Environment

for Visual SLAM

2.1 Introduction

Simulations play a key role in the development and testing of robotic systems and

have recently become increasingly important for training machine learning algorithms

designed for robotics. This allows researchers to test different systems and algorithms

without the need for expensive and time-consuming real-world deployments, in

turn allowing for a more efficient development cycle. Underwater environments,

in particular, pose unique challenges such as complex hydrodynamics, limited

visibility, and communication constraints, making simulations even more crucial for

the development of underwater robots. In this chapter, we present the development of

an underwater simulation environment that can be used for visual SLAM algorithms

for underwater robots. To achieve this, we integrate Unreal Engine and Gazebo.

The main objective of the simulation is to provide a framework to let other

researchers build upon it, extending its capabilities to support the dynamic elements

of the underwater domain. We will evaluate the simulation by creating a dataset

that can be used for the development and verification of underwater visual SLAM

algorithms. The visual component is the most crucial aspect of these systems, which is

why we leverage the photorealistic rendering capabilities of Unreal Engine. We use it

together with Gazebo, as it provides a more accurate physics-based simulation of the

underwater environment.

11

2.2 Related works

2.2.1 Simulation platforms

Several simulation platforms have been used by the robotics community. We discuss

some of the most popular platforms in the community as well as some notable

implementations.

Gazebo

Gazebo is a widely-used, open-source simulator that provides realistic rendering and

physics-based dynamics. Gazebo has been used for aerial, terrestrial, and underwater

robot and supports a wide range of sensors and actuators (Koenig & Howard, 2004;

Open Robotics, 2021). Gazebo integrates seamlessly with ROS and is part of the reason

for its widespread popularity in the robotics community. Several packages also exist

that further extend its capabilities, allowing for more advanced simulations.

There are numerous implementations of robotics simulators for Gazebo. One of

the most well-known practical ground-based simulators is the TurtleBot simulator,

presented by Open Robotics themselves (Open Robotics, 2023). The turtleBot is a

low-cost, personalized robot kit often used for education and research. The simulator

replicates the robot’s sensors and actuators that allow for users to develop and test

various robotics systems such as SLAM, navigation, object manipulation and more.

For aerial simulations, two examples include the works of (Furrer et al., 2016; Meyer

et al., 2012). In the first paper, the authors present a simulation framework for micro-

aerial vehicles (MAVs), allowing for the development and testing of higher level tasks

such as path planning, obstacle avoidance, and SLAM. The second paper presents a

similar framework, but focuses on quadrotor unmanned aerial vehicles (UAVs).

Unity

Unity is a powerful game engine increasingly used for robotics simulations due to

its high-quality rendering capabilities and support for various sensors and physics

models. The Unity developers have also acknowledged the increased interest in its

use as a robotics simulation platform and have released the Unity Robotics Hub. The

12

Robotics Hub is a collection of tools, tutorials, and resources for robotics simulations

in Unity (Unity Technologies, 2022), and enables ROS integration in the engine.

The most well known robotics implementation using Unity is Isaac Sim developed

by NVIDIA (NVIDIA Corporation, 2023b). It offers realistic rendering, physics,

and perception capabilities for various robotic platforms, including mobile robots,

manipulators, and drones. It has been designed to function seamlessly with

NVIDIA’s Isaac SDK, an SDK for developing AI-powered robotic applications

(NVIDIA Corporation, 2023a).

Unreal Engine

Unreal Engine is another popular game engine that offers photorealistic rendering and

physics-based dynamics. Unreal Engine has also seen use in simulating robots and

vehicles. As of the time of writing, no official tools have been released that provide

an easy way of integrating the engine with ROS, but third-party plugins have been

developed to accomplish this.

Two notable simulators use Unreal Engine, namely Microsoft’s AirSim and

CARLA. AirSim is an open-source simulator designed for the development of

autonomous systems for aerial vehicles (Shah et al., 2018). CARLA (Car Learning

to Act) is used primarily for research in autonomous driving (Dosovitskiy et al.,

2017). Both of these simulators offer high fidelity in visual and behavioral realism

and support a large set of sensor modalities. They also support ROS integration.

2.2.2 Underwater simulators

One of the earliest underwater simulators to gain traction is UWSim (Prats et al., 2012),

which is built on top of OpenSceneGraph and integrated with ROS. The simulator

supports the addition of various scene elements as well as multiple underwater

vehicles and manipulators and also offer support for multiple sensor modalities. The

simulator is somewhat limited because it cannot be easily extended with custom

sensors and interfaces. Additionally, setting up a new simulation is a time consuming

task, as everything needs to be defined in a single XML description file (Manhães et al.,

2016).

UUV Simulator introduces an underwater vehicle simulator based on ROS and

13

Gazebo (Manhães et al., 2016). It contains a set of plugins for simulating underwater

dynamics and sensor models in Gazebo. Perhaps one of the most attractive features

of this simulator is its support for Fossen’s equations of motion for marine vehicles

(Fossen, 2011). This set of equations is often used in modelling the hydrodynamics

of marine vehicles and its inclusion is therefore an attractive feature to those familiar

with the field. As of the time of writing, this simulator has not received any updates

since June 2020. Project Dave can be thought of as an unofficial successor to UUV

Simulator, further extending its feature set with support for a greater variety of vehicles

and manipulator configurations, better simulations of underwater specific sensors, and

parameterized representations of the ocean environment (Field Robotics Lab, 2022).

Project Dave has also been developed to support the latest release of ROS1, ROS Noetic.

The greatest limitation of these simulators is the visual fidelity which often do not

reflect how underwater environments look in the real-world.

Underwater simulations have also been developed using Unity. The first example

of this is presented by (Katara et al., 2019). Here, the authors use Unity for rendering

and modelling the physics of an underwater environment as well as certain sensor

modalities. It communicates with ROS using ROSBridge and allows the simulator

to interface with other systems (e.g., path planning algorithms). (Chaudhary et al.,

2021) present a similar framework, where Unity is also responsible for rendering

the environment and simulating the hydrodynamics. Additionally, they provide

support for multibeam SONAR. Both simulators offer higher visual fidelity than those

previously mentioned. However, they do not provide a "universal" parameterization

of the vehicle’s hydrodynamic properties such as presented in UUV simulator.

2.2.3 Summary and project direction

To address the challenges associated with underwater simulations, our project aims

to combine the strengths of both Gazebo and Unreal Engine. We use Gazebo for

its accurate physics-based simulations and ROS integration, with the main attraction

being Project Dave and its implementation of Fossen’s equations. We then pair this

with Unreal Engine for its photorealistic rendering. This combination enables the

development of a more realistic and versatile underwater simulation environment.

14

2.3 Methodology

The simulation comprises of two primary components: the back-end and the front-end.

The back-end, running on Ubuntu Linux, leverages Gazebo for physics simulation

and generating measurements for proprioceptive sensors attached to the robot. The

front-end, running on Windows, utilizes Unreal Engine to enable direct user control

and display the camera feed from the robot’s perspective. The simulation was earlier

designed to run on two separate PCs, with the front-end on one machine and the back-

end on another. The newest iteration allows the user to run the entire setup on a single

PC, but requires WSL2 to run Ubuntu. Figure 2.1 shows the system architecture of

the simulation. We first present the hardware and software configuration used in

developing the simulation. Next, we discuss the implementation of the back-end,

followed by the implementation of the front-end. Finally, we describe the practical

implementation of a simulation environment and create a dataset that can be used for

the development and evaluation of visual SLAM.

Figure 2.1: Simulation overview

2.3.1 Hardware and software configuration

The simulator has been tested and developed on two main PC configurations as shown

in Table 2.1.

15

Component PC1 (stationary) PC2 (laptop)

CPU AMD Ryzen 2600x Intel i5-8300H

RAM 16 GB 16 GB

GPU Nvidia Gtx 1060 6 GB Nvidia Gtx 1050Ti 4 GB

Table 2.1: PC specifications

The stationary PC (PC1) is primarily used for development due to the simulator’s

higher computational demands. The laptop (PC2) is used to run the front-end and

back-end on separate machines, with the front-end on PC1 and the back-end on PC2.

The software specifications for the back-end and front-end are shown in Tables 2.2

and 2.3, respectively.

Software Version

Ubuntu 20.04

ROS Noetic

Project Dave 4.3.1

Gazebo 11.12

ROSBridge 0.11.16

Table 2.2: Back-end software specification

Software Version

Windows 11 22H2

Unreal engine 4.27

Visual studio Community 2019

ROSIntegration custom

Table 2.3: Front-end software specification

2.3.2 Back-end

The primary component of the back-end is Gazebo. Gazebo offers tighter integration

with ROS, making it easier to translate the code to the real-world counterpart of

16

whatever is being simulated. We extend Gazebo with the Project Dave package by

adding plugins and ROS applications to simulate underwater robots. Project Dave is

chosen over UUV Simulator as it has better compatibility with ROS Noetic. Keep in

mind however that we mostly use the features of the original UUV Simulator.

Level setup

We set Gazebo up to open an empty underwater world in which we run our simulation.

Ideally, the Gazebo world would match the level used in Unreal engine such that we

can also model collisions and interactions with the environment. However, there is no

easy way to translate the levels between the two engines. Since everything we see is in

Unreal engine, we only model the level within there. This remains an open topic left

for future work.

With the world ready, we can spawn in the desired vehicle to operate in the

environment. The vehicles that come with Project Dave have been designed to receive

either a twist or wrench vector as input used for motion. These vectors are translated

into the the thrust forces ft for each individual thruster according to the vehicle’s thrust

allocation matrix (TAM). The back-end itself does not generate the input messages.

Rather, it waits for the input from the front-end which are further sent to Gazebo.

Gazebo then calculates the necessary parameters for motion to occur. We call a

service request to Gazebo to fetch the pose of the robot. This needs to be converted

into a pose message, which we then send to the front-end.

The measurements coming from the sensors are directly published to ROS. The

topics from Gazebo relevant to the project are shown below. Topics above the line are

what Gazebo subscribes to, while topics below the line are what Gazebo publishes. To

ensure that both systems are synchronized as closely as possible, we also publish the

simulation time used in Gazebo (also referred to as the clock).

geometry_msgs/Twist /cmd_vel

rosgraph_msgs/Clock /clock

geometry_msgs/Pose /x3/pose_raw

sensor_msgs/Imu /x3/imu

sensor_msgs/FluidPressure /x3/pressure

17

Ground truth

The same transform message that we send to the front-end is also used for generating

the ground truth of the robot. We perform further calculations to the pose such that

it is viewed relative to the initial position of the vehicle. We can view this in Rviz

or similar software to visualize the robot’s pose. In addition, we use a ROS library,

hector-trajectory-server, that keeps track of the entire trajectory. We use this package

for visualizing both the ground truth as well as the estimated trajectory generated by

the SLAM system.

ROSBridge

Communication is established using ROSbridge. ROSbridge provides an API to ROS

functionality for non-ROS programs. We establish a ROSbridge server that opens up

the back-end to the front-end and enables two-way communication using TCP. We

enable BSON in ROSBridge. BSON is a binary encoded version of the popular JSON

(Javascript Object Notation) format and is more efficient as it uses less space. It also

improves performance by reducing the overhead in parsing and encoding the data.

Sequence of operations

The back-end involves several steps that are not as straightforward to the unfamiliar

user. Therefore, we summarize here the procedure to set up and run the back-end of

the simulation.

1. Launch ROSBridge server with BSON enabled.

2. Open an empty underwater world in Gazebo.

3. Upload desired underwater vehicle to Gazebo.

4. Run thrust allocator converter for the vehicle.

5. Run python node to transform Gazebo pose message to a transform message.

18

2.3.3 Front-end

The front-end of the simulation is built using Unreal Engine, which is responsible

for providing the user with direct control and displaying the camera feed from the

robot’s perspective. Unreal Engine is chosen for its high-quality rendering capabilities,

making the simulation visually more realistic and better suited for testing visual SLAM

algorithms.

ROSIntegration

We use the ROSIntegration Plugin for Unreal Engine to support ROS features (code-iai,

2023). We are using a custom version of this plugin to fix some of the issues that we

encountered, which we have included in the appendix. The main issue was an error in

the "camera info" message topic, which stopped the message from being published to

ROS.

The connection itself is done using the ROSBridge suite as described in Section 2.3.2.

ROSIntegration only supports Unreal Engine 4 and is the main reason for choosing

Unreal Engine 4 over the newer and more photorealistic Unreal Engine 5.

In the engine itself, we need to create a custom game instance provided by

the plugin, specifically a ROSIntegrationGameInstance. This instance handles

communication with ROS and also allows for the engine to publish the simulation

time. In our case, we use the clock published by Gazebo in the back-end.

ROS pawn

We created a custom pawn using the base Pawn class in Unreal Engine. Any sensors

the user wishes to model can be attached to this class. The ROS Pawn is subscribed

to a transform topic that is used to update the pose and orientation of the robot

within Unreal Engine. This ensures that the visual representation in Unreal Engine

is consistent with the simulated physics in Gazebo. It is also subscribed to the clock

such that any component attached to the pawn can use it as a reference if necessary.

All topics the pawn subscribes and publishes to are shown below.

geometry_msgs/Pose /x3/pose_raw

rosgraph_msgs/Clock /clock

19

geometry_msgs/Twist /cmd_vel

sensor_msgs/Image /unreal_ros/image_color

Control input The ROS Pawn contains a component that provides a control interface

for the end user. The input commands are set up in Unreal Engine’s settings, and each

input key is converted to the appropriate value in a twist vector. We have implemented

a basic control scheme which can be seen in Figure 2.2. The mouse can also be used to

rotate around the pawn’s yaw.

Figure 2.2: Control scheme

Camera For each sensor attached to the ROS Pawn, we create a corresponding ROS

publisher. The sensor data generated in the Unreal Engine simulation is converted

into the appropriate ROS message type and published on a dedicated topic. We use

the subscribed clock topic when creating timestamps.

In our case, we only implement a monocular camera attached to the ROS pawn

that captures the images from the perspective of the robot. These images are converted

into ROS image messages and published together with the camera information. To

minimize latency and maximize performance, we limit the images to their grayscale

equivalent using OpenCV’s RGB-to-grayscale conversion (OpenCV, 2023). We can see

this in Equation 2.1:

Y = 0.299 · R + 0.587 · G + 0.114 · B (2.1)

where Y is the grayscale value, and R, G, B are the red, green, and blue pixel

intensities respectively for the given pixel.

20

2.3.4 Simulation environment

This section discusses the practical implementation of the simulation environment,

including the ROV and level used for analysis.

ROV implementation

We implement a custom ROV based on Blueye Robotics’ X3 ROV. The hydrodynamic

parameters of the ROV are not readily available, so the values used here are only

approximations. We use the estimated model parameters of its predecessor, the Blueye

Pioneer, presented by (Bellingmo, 2020) as our baseline. However, some values are

missing, notably values related to the roll and pitch axes, as they were not relevant to

the authors. We derived these values through empirical testing and by looking at the

URDF descriptions of the vehicles included in UUV Simulator.

(a) Official render of the X3 ROV (b) Low poly version

Figure 2.3: X3 ROV. Gazebo uses the low-poly version to reduce computational load

The vehicle description is provided in a standard ROS URDF format using plugins

provided by UUV Simulator to model hydrodynamics, actuators, and sensors. The

sensor suite includes a camera, a pressure sensor, and an IMU. Their specifications can

be found in Table 2.4. The camera is the only sensor implemented in Unreal Engine,

while the rest are modeled in Gazebo. We highly recommend interested readers

to read the original publication of (Fossen, 2011) for detailed information regarding

hydrodynamic parameters. A detailed description of the ROV is provided in Appendix

Section A.2 for those interested in specific implementations. Here, we only provide the

21

sensor specifications. These values do not reflect the actual sensor specifications of the

X3. The values have changed during the project as part of the testing and development

process, and the values shown in the table represent the latest iteration.

Camera

Resolution 960 × 540 px

Frames per second 20 fps

Field of view 90°

Pressure sensor

Frequency 10 Hz

Noise 1 × 10−3 m

Inertial measurement unit

Gyroscope frequency 200 Hz

Gyroscope noise 3.08 × 10−5 rad/s

Gyroscope bias 1.7 × 10−2 rad/s

Accelerometer frequency 200 Hz

Accelerometer noise 3.08 × 10−2 m/s2

Accelerometer bias 6.8 × 10−6 m/s2

Table 2.4: Sensor specifications

Scene and level design

In Unreal Engine, a level is a self-contained environment in which the user can interact

with objects and simulate physics. For our underwater simulation, we create a custom

level that represents the desired underwater environment.

The level presented here has been designed with consideration for the specific task

of visual SLAM. We have therefore included various environmental features, such as

rocks, seaweed, corals, and a few man-made debris. We have split these into distinct

areas in the level to accommodate several typical environments. Additionally, we have

added particle effects in the water to provide a more dynamic scene.

We have also changed the lighting and post-processing effects to simulate different

underwater conditions. We can see how they affect the world in Figure 2.4. The

22

lighting and post-processing techniques used are key for replicating an underwater

environment as accurately as possible.

(a) Base landscape (b) Post processing enabled

(c) Post processing + exponential height fog

Figure 2.4: UE effects to simulate an underwater environment

Dataset creation

Two sequences are created for the dataset. We use the same level but model different

circumstances. Both sequences are recorded using PC1 with a 1-PC configuration and

the back-end running on WSL2. The data is recorded into rosbags with the following

topics:

rosgraph_msgs/Clock /clock

geometry_msgs/Pose /x3/pose_raw

geometry_msgs/Twist /cmd_vel

sensor_msgs/Imu /x3/imu

sensor_msgs/FluidPressure /x3/pressure

sensor_msgs/Image /unreal_ros/image_color

The 1-PC configuration offers less latency compared to running the front-end and

back-end on separate machines. We further process the rosbags to better synchronize

23

the sensor measurements, namely the image feed from Unreal Engine. We replace the

timestamps of the images to instead use the time at which they were published to ROS.

We further offset the time by a set value to account for the time from when the image

was generated to when it gets published to ROS. We discuss this further in the results

section.

Sequence 1 Sequence 1 simulates a situation with greater turbidity and, thus, a lower

range of vision. The overall environment is darker and offers less contrast. Outside of

moving particles and seagrass, the environment is relatively static. The total length of

the trajectory is 155 meters, with a duration of 200 seconds. The trajectory starts and

ends within the same location and in view of an Apriltag placed in the level. Apriltags

are usually used to calibrate cameras, but in this case it simply serves as a landmark.

The motion of the ROV is relatively close to the seafloor to provide the best opportunity

for identifying features in the environment. The start contains motion along the depth-

aligned axis, which should make it suitable for initialization procedures using depth

sensors.

Sequence 2 Sequence 2 features less turbidity and more illumination. However, this

causes the particles in the water to be more visible. Additionally, we add caustics to

the level. This results in a highly dynamic and challenging environment for visual

SLAM algorithms. The trajectory has a total length of 120 meters and a duration of 157

seconds. Similar to the previous environment, the trajectory starts and ends near the

same area with an observable Apriltag for reference. We keep the ROV motion close

to the seafloor, as in the previous environment, and also introduce motion along the

depth-aligned axis during the start of the trajectory.

Sequence Length Duration Comments

Sequence 1 155 m 200 s Low visibililty, relatively static

Sequence 2 120 m 157 s Higher visibility and caustics, highly dynamic

Table 2.5: Details on underwater sequences

24

Figure 2.5: Images from sequence 1. Top row: RGB, bottom row: grayscale

Figure 2.6: Sequence 1 trajectory

25

Figure 2.7: Images from sequence 2. Top row: RGB, bottom row: grayscale

Figure 2.8: Sequence 2 trajectory

26

2.4 Results

In this section, we present the results of the evaluation of the underwater simulation

implementation. Our focus is on assessing the performance, user experience, and

usability of the simulation in the two created environments, as well as discussing

any limitations and potential future work. Most of the results here are qualitative

in nature. The evaluation is conducted mainly for the 1-PC configuration unless

otherwise specified, with the back-end running on WSL2.

2.4.1 Simulation performance

Simulation performance is evaluated by looking at each sequence. First, we examine

how accurately the environment represents an actual scenario in real-life. This mostly

comes down to visual inspection of the camera feed. Next, we examine the quality

of the sensor data and if they accurately model their real-life equivalent. We then

discuss the user experience for operating the simulation. Finally, we look at some of

the technical aspects of the sequence such as the framerate and any latency issues.

Sequence 1

In Sequence 1, the environment sufficiently represents typical underwater areas.

Located within a relatively small level, it is easy to test the performance of visual SLAM

algorithms against these common scenarios without reloading the simulation. The

visuals are enough to emulate the underwater domain, and somewhat ironically, the

low-resolution camera enhances the environment’s realism. It can however be argued

that the visuals are too dark. Figure 2.9 shows a significant improvement in visuals

compared to Gazebo. The sensor data generated in this environment provides a good

representation of the challenging conditions, with realistic noise and degradation in

the camera feed.

The control inputs from the user are responsive and accurately translates into the

simulated robot’s movements. However, some issues with lateral movement arises

when combined with other inputs, causing the ROV to rotate instead of moving

laterally. This seems to be an issue related to the accuracy of the hydrodynamic

parameters in the X3’s description.

27

(a) Gazebo (b) Unreal Engine

Figure 2.9: Comparison between relatively feature-less areas in both engines

The simulation demonstrates stable performance with minimal frame drops or

latency issues for most of the trajectory. It is important to note that the target framerate

is limited to the camera acquisition rate, as described in table 2.4. We tested emulating

a camera with a higher framerate, but the hardware configuration for PC1 could not

keep up, especially in areas with a higher particle count.

The synchronization between the back-end and front-end did not work as expected.

We noticed that the Gazebo clock being published was not sent at regular intervals.

Although the image feed was published consistently, their timestamps made it seem

as though they were published in bulk. This is problematic as their timestamps no

longer represent their time of acquisition. Further processing was necessary to fix these

issues, as described in the dataset creation section. Figure 2.10 showcases a part of the

synchronization issues.

Figure 2.10: Synchronization issue as seen in Rqt Bag. Blue vertical lines indicate when

the message is published to ROS. The red line highlights a section where the clock cycle

is not published at a regular interval.

28

Sequence 2

For sequence 2, we only discuss the implementation of the environment and the

simulation performance. All other aspects remain the same since we use the same

ROV configuration.

For this sequence, the visuals are not as representative of underwater environ-

ments, as caustics are typically found only in shallower waters. In the simulation

environment, not enough attention is given to the rest of the level that would better

reflect a shallow environment outside of the use of caustics. Notably, the upper re-

gions are darker than what they would be like in the real world, and the water surface

is not visible.

(a) Real-world (b) Simulation

Figure 2.11: Comparison between caustics in the real-world and simulation. Real-

world image sourced online

The simulation performance remained stable in this sequence, with only a slight

increase in computational load due to the improved visibility. The caustics did not

cause any noticeable performance drops.

2.4.2 User Experience and Usability

The user experience of the simulation is as a whole quite challenging, especially for

those who want to make any changes. The user is expected to have knowledge

of all the different components, meaning they need to be familiar with basic Linux

commands (especially when running WSL2), ROS, Gazebo, the Project Dave package,

and Unreal Engine. Additionally, to successfully implement a custom ROV, the user

needs some knowledge of vehicle hydrodynamics. If users want to generate a reusable

29

dataset (e.g., creating a rosbag), extra steps must be taken. As such, it is not a simple

plug-and-play solution even for experienced developers.

For those who simply wish to run the simulation and leave everything in the default

configuration, the process is still cumbersome. To start the back-end, the user needs to

open ROSBridge and run the launch file to initiate the Gazebo simulation. On the

front-end, the user needs to start the level once the back-end is up and running.

Once the simulation is running, the user experience is fairly acceptable. The

controls are intuitive, and the low latency makes it easy to operate the robot and

navigate in the environment, despite the issues related to lateral movement. However,

there is no built-in UI to provide information to the user. Visualization of the trajectory

or reading sensor measurements must instead be viewed using external software such

as Rviz or Rqt.

Overall, the user experience and usability of the simulation could be significantly

improved with more user-friendly interfaces and streamlined setup processes. This

would make the system more accessible to a wider range of users, including those

with limited experience in the various components required to run the simulation.

Furthermore, resolving issues with synchronization and lateral movement would

enhance the performance and reliability of the simulation, creating a more robust and

practical tool for researchers and developers in the underwater robotics field.

30

2.5 Discussion

Overall, the results indicate that the simulation is able to provide a realistic

and challenging environment for evaluating visual SLAM algorithms and other

underwater robotic applications. The visuals, such as the underwater lighting, particle

effects, terrain, and sensor data generated are largely representative of real-world

conditions. The low resolution of the camera and realistic noise levels contribute to the

challenging nature of the simulation. This supports the potential use of the simulation

for research and development purposes in the field of underwater robotics. We believe

that the work done here serves as a good groundwork for further development.

Looking closer at Sequence 2, we note that the environment itself is not as accurate

of a representation of an underwater scenario. The main reason for its creation is to

make use of caustics which we typically do not see in similar datasets. Underwater

datasets for SLAM are already limited, and to the best of the author’s knowledge, no

other datasets include caustic disturbances. We believe that this is still valuable for

developing visual SLAM systems that are robust towards any and all disturbances

that can be found underwater.

By far the most lacking aspect of the simulation is in its usability, both for end

users and developers alike. The development pipeline is split between the back-end

and front-end which is inefficient and requires a broad range of understanding of all

the different parts to implement any significant changes. Moreover, further processing

of a dataset is necessary for it to be fully usable. Ideally, development would only

be required for one side of the simulation. This split between the two systems also

introduces heavy latency due to the encoding and decoding of data. The Unity

Robotics Hub developers have stated that using their custom TCP-endpoint reduced

latency by an order of magnitude (Unity Technologies, 2022).

The end user would also benefit from having a simplified system for launching

the simulation. Additionally, the inclusion of a GUI would make the simulation more

intuitive.

31

2.5.1 Limitations

Some limitations of our study include the qualitative nature of the results, the

hardware configuration used for the evaluation, and the scope of the implementation.

The qualitative assessment may not capture all aspects of the simulation’s performance

and may be subject to personal interpretation. The hardware configuration, specifically

the use of the 1-PC setup and WSL2, are likely to have affected the results, as different

configurations could yield different performance characteristics. Additionally, our

implementation focused on a limited set of features and scenarios specifically catered

to visual SLAM.

2.5.2 Suggestions for future work

To address the limitations and further improve the simulation, several avenues for

future work can be explored. This includes a more thorough quantitative evaluation

of the simulation performance and testing on different hardware configurations.

Specifically for quantitative evaluation, the computational performance of the system

is key. Another metric that is important is the latency between the simulation and

ROS. The simulation should also be expanded to cover new environments and support

additional sensors such as sonar and LiDAR. A GUI would also be beneficial for the

end-users.

Another avenue is to move the entire simulation to Unreal Engine exclusively.

This would eliminate many issues related to sensor synchronization and reduce

computational demand since the computer would only require running one engine.

Doing so would also bypass the need for ROSIntegration, and the simulation can

instead be implemented in Unreal Engine 5. To allow the simulation to interface better

with other robotics systems, it should still maintain proper ROS integration.

For other applications, this type of simulation environment is highly beneficial to

facilitate the training of machine learning techniques such as reinforcement learning

for underwater robots.

32

2.6 Conclusion

In this chapter, we presented the design, implementation, and evaluation of an

underwater simulation environment for visual SLAM and other robotic applications.

The simulation was developed using Unreal Engine and Gazebo and focused

on providing realistic visuals and challenging conditions that mimic real-world

underwater scenarios. Our evaluation covered the performance, user experience,

usability, and limitations of the simulation in two different environments.

The results show that the simulation is capable of generating realistic and

challenging environments for evaluating visual SLAM algorithms. The visuals

and sensor data closely resemble real-world underwater conditions, supporting the

potential use of the simulation for research and development in the field of underwater

robotics. However, usability remains a significant challenge, both for end users and

developers, due to the split between the back-end and front-end and the broad range

of knowledge required to implement changes.

There are several avenues that can be taken for future work, including quantitative

evaluations, testing on different hardware configurations, expanding the evaluation to

cover a wider range of scenarios and features, and implementing new environments,

additional sensors, and a GUI. Moving the entire simulation to Unreal Engine

exclusively while maintaining ROS integration is another possibility to streamline the

development pipeline and reduce computational demand.

33

34

Chapter 3

Underwater Visual SLAM

3.1 Introduction

Simultaneous Localization and Mapping (SLAM) is a critical component in the

development of autonomous robotics. It enables a robot to estimate its position and

orientation in an unknown environment while simultaneously constructing a map of

its surroundings. In the context of underwater robotics, SLAM algorithms face unique

challenges due to the dynamic nature of the underwater environment and the inherent

limitations of underwater sensors. Low-cost sensor configurations are an especially

interesting category for underwater SLAM, one that has not been explored to the same

extent as other configurations.

In this chapter, we investigate the adaptation of an existing visual SLAM

algorithm, namely ORB-SLAM, for visual-pressure and visual-inertial-pressure SLAM

configurations. We aim to accomplish the following objectives from our project

description:

• Improve the visual pipeline of the SLAM algorithm to enhance camera perform-

ance underwater

• Implement a visual-pressure SLAM configuration

• Implement a visual-inertial-pressure SLAM configuration

• Investigate loop closure capabilities in the underwater domain

35

The chapter can be outlined as follows:

1. Introduction (this section): We provide a basic introduction to the subject and

outline the rest of the chapter.

2. Background and related works: We provide an in-depth discussion on the

principles of SLAM and its evolution over the years. We also provide examples

of SLAM used in underwater robotics. This section also covers topics such as

image processing and loop closure for the underwater domain.

3. Theory: We delve into the most important theoretical concepts that underpin

the SLAM implementations in this chapter. The topics include coordinate frame

notation, factor graphs, and least squares optimization.

4. Methodology: We discuss the adaptation of the ORB-SLAM algorithm for visual-

pressure and visual-inertial-pressure SLAM configurations, detailing the steps

taken to enhance the algorithm’s performance in the underwater domain.

5. Results: We present the results of our implementation of the visual-pressure and

visual-inertial-pressure SLAM configurations, comparing their performance to

that of the original ORB SLAM.

6. Discussion: We delve deeper into the results, analyzing the performance of our

proposed configurations and how they compare to existing literature.

7. Conclusion: We summarize our findings, discuss the implications of our work,

and suggest possible avenues for future research in the field of underwater SLAM

using low-cost sensor configurations.

36

3.2 Background and related Works

This Related works section aims to provide a comprehensive review of the existing

literature and state-of-the-art techniques in the field of underwater SLAM. The main

topics covered in this section include various SLAM frameworks such as Extended

Kalman Filter (EKF) and Graph SLAM, visual SLAM techniques and image processing

methods to enhance the quality of visual data; and loop closure algorithms for reliable

place recognition.

3.2.1 Underwater SLAM

Underwater SLAM presents unique challenges that differentiate it from aerial and

terrestrial SLAM applications. Some underwater environments are highly dynamic

due to moving elements such as seagrass and dust particles kicked up from the

seabed. Other environments have very uniform bathymetry and few distinct features,

making it challenging to differentiate one area from another. Despite these challenges,

significant progress has been made in developing SLAM algorithms specifically

tailored for the underwater domain. The SLAM algorithms generally fall under three

main frameworks: Extended Kalman Filter SLAM, FastSLAM, and Graph SLAM. The

main goal of this section is to provide an overview of how these frameworks have

been applied in the context of underwater SLAM, without delving into the in-depth

explanation of how the algorithms work. For more detailed explanations, we refer the

interested reader to (Hidalgo & Bräunl, 2015).

EKF SLAM

Extended Kalman Filter (EKF) SLAM has been widely used in the literature due

to the extensive body of work on EKFs and its many variations. Localization and

mapping estimates are stored in a state space model. This framework has 2 major

drawbacks. Firstly, its computational complexity scales quadratically with the number

of landmarks stored in the map. Secondly, the integration of linearization errors

can cause the system to drift over time. Although studies continue to improve EKF

approaches, they have fallen out of favor in recent years due to these limitations.

Some examples of its application underwater are presented in (E. Chen & Guo,

37

2014; Ribas et al., 2006). In (Ribas et al., 2006), the authors propose a two-stage

EKF SLAM framework using an imaging sonar for partially structured underwater

environments. The paper by (E. Chen & Guo, 2014) presents a real-time map

generation method for unmanned underwater vehicles using sidescan sonar for

estimating the vehicle’s trajectory and creating a consistent map of the environment.

FastSLAM (Particle SLAM)

FastSLAM algorithms use particle filters in their design to address some of the

limitations of EKF SLAM and was first introduced by (Montemerlo et al., 2002, 2003).

Localization and mapping are estimated through particles, while the map itself is

represented and updated using a separate Extended Kalman filter. Computational

complexity increases by N · log(m), where N is the number of particles and m is the

number of landmarks. FastSLAM approaches do not require linearization, but are

prone to sampling degeneracy over time.

Some underwater implementations include and (L. Chen et al., 2020; He et al.,

2012). In (He et al., 2012), the authors present a modified FastSLAM algorithm using

a mechanical scanning forward-looking sonar, showing improved results over the

traditional FastSLAM algorithm. (L. Chen et al., 2020) introduces a Rao-Blackwellized

Particle Filter (RBPF) for SLAM using a slow mechanical scanning imaging sonar,

providing accurate localization and a consistent map of the environment.

Graph SLAM

Graph SLAM introduces an intuitive method for solving the SLAM problem, with

localization and mapping represented as nodes in a graph and edges as constraints

based on sensor measurements and landmark observations. Current estimates take

into account previous estimations, limiting system drift. The graph is solved by

minimizing a cost function through a non-linear least squares problem. Graph SLAM

is more computationally expensive than filter-based approaches but can produce more

accurate maps. Its flexibility allows for easy integration of new sensor modalities

without major redesign. Computational complexity scales linearly with the number

of nodes and edges rather than landmarks, allowing for the possibility of solving

a sparser graph to reduce computational load at the expense of accuracy. Early

38

works generally declared graph SLAM as an offline-only algorithm due to how

computationally expensive it is.

(Klein & Murray, 2007) presents a parallel tracking and mapping (PTAM) algorithm

for small AR workspaces, which laid the foundation for real-time graph SLAM

algorithms. PTAM splits the system into a tracking and mapping thread. The tracking

thread operates in real-time and processes new sensor information. A simplified

motion model is also calculated to track the current pose and velocity. The mapping

thread handles the computationally demanding task of correcting the map as new

information is received. Today, many start-of-the-art SLAM algorithms use the

concepts behind PTAM and graph SLAM in their system.

In underwater robotics, one notable work includes (Rahman, Li et al., 2018,

2019). In their first publication, (Rahman, Li et al., 2018) introduces a tightly-

coupled multi-sensor fusion-based SLAM framework that combines monocular visual,

inertial, and sonar data for underwater environments, employing a factor graph-

based optimization approach. (Rahman et al., 2019) is the continuation of the

previous work, adding depth measurements, image preprocessing, and real-time loop

closure and relocalization capabilities. Their work presents one of the most robust

implementations of underwater SLAM thus far.

AI SLAM

Using AI in SLAM is a relatively new concept that has emerged due to the surge in AI-

related studies. Many of the studies conducted here implement hybrid approaches,

only replacing sections of the SLAM pipeline with machine learning techniques.

Monocular visual SLAM algorithms are the most attractive candidates, as machine

learning could enable the system to recover depth and scale more reliably without

additional sensor fusion. This branch is currently limited by the data it can use for

training as well as its real-time performance, but nonetheless remains an interesting

point for future works.

There is little in terms of literature where AI SLAM has been used in underwater

environments, although one is presented here by (Teixeira et al., 2020). This paper

proposes a Recurrent Neural Network (RNN) using supervised learning on visual

odometry and inertial measurements. At inference time, the system is only fed

39

the visual odometry pose estimates, which are processed by a separate estimation

algorithm. The algorithm shows promising results but currently is unable to run in

real-time.

3.2.2 Visual SLAM

Visual SLAM has become increasingly popular in recent years, with cameras being

used as the primary sensors to perform SLAM. This branch is particularly interesting

for underwater robotics, due to the increasing affordability and availability of low-

cost underwater robots. As previously mentioned, using cameras as primary sensors

in underwater environments presents challenges such as limited visibility, light

attenuation, and image distortion caused by refraction.

Visual SLAM algorithms are typically categorized as either direct or indirect,

depending on their image processing methods. Direct approaches look at the pixel

intensities of an image and attempt to match it in the next frame, while indirect

approaches, also known as feature-based approaches, extract distinct features from

images and attempt to find and match them in the following frame.

Direct approaches tend to be more robust toward noise in images and are

computationally more efficient compared to indirect solutions. This efficiency allows

the system to produce denser maps. Due to the inherent challenges of underwater

environments, such as noise and low contrast, direct approaches might at first

glance be more appropriate for underwater VSLAM. Direct approaches are typically

constructed using a basic feature detector such as the popular Harris-Stephens (Harris)

(Harris, Stephens et al., 1988) and Kanade-Lucas-Tomasi (KLT) detectors (Shi &

Tomasi, 1994).

On the other hand, feature descriptors in indirect approaches allow for better data

association, making them more robust towards short-term visual loss and essential

for recognizing loop closures. Some examples of well-known feature descriptors

include BRIEF (Calonder et al., 2012), BRISK (Leutenegger et al., 2011), FAST (Rosten &

Drummond, 2006), ORB (Rublee et al., 2011), SIFT (Lowe, 2004), and SURF (Bay et al.,

2006).

There have been recent attempts to create feature descriptors using deep learning

techniques (Georgiou et al., 2020; Noh et al., 2017; Tian et al., 2017). These show

40

promising results compared to classical methods but are computationally expensive

and perform well only within their trained datasets. Investigating how these

descriptors perform underwater when trained with an appropriate dataset would be

interesting, although their real-time performance might still be limited.

Visual SLAM algorithms tend to support various camera configurations, such as

monocular, stereo, and RGBD. Monocular setups are the most common due to their

cost and simplicity but suffer from an inability to recover depth information from

images, leading to scale drift. Stereo configurations can recover depth information

by comparing images taken by each camera, while RGBD cameras combine an

RGB camera with a depth sensor to recover depth information. Despite the

advantages of stereo and RGBD cameras, they present additional challenges such

as increased hardware complexity, synchronization issues, and potential impact on

power consumption.

Visual-inertial SLAM (VISLAM) is another popular technique that fuses visual

SLAM algorithms with inertial measurements. This fusion is especially beneficial for

monocular setups, as it enables the system to recover the correct scale of the trajectory

and align it with the world reference frame.

Keyframe-based SLAM

Modern implementations of visual SLAM are more likely to use graph-based

approaches, as they are better suited for handling the large number of features that are

tracked at any given moment. Many of these take a specialized "Keyframe" approach.

A "Frame" is created for every image that is processed by the system containing

information such as the current pose of the robot and the features observed. However,

frames can contain redundant information, especially when the robot moves slowly.

Saving all this information is also memory intensive and adds greater computational

requirements for the system. Certain frames containing the most valuable information

for a specific section of the trajectory are chosen instead. These frames are then

referred to as keyframes. Almost all state-of-the-art visual SLAM algorithms fall in

this category (Engel et al., 2018; Forster et al., 2017; Leutenegger et al., 2016; Mur-Artal

et al., 2015; Newcombe et al., 2011; Qin et al., 2018).

Although most visual SLAM algorithms have been designed for aerial and

41

terrestrial robots, some research shows that they can be applied to underwater

robotics as well (Hidalgo Herencia, 2019). More specialized algorithms for underwater

environments have also been developed. Notably, the works by Ferrera (Ferrera,

2019) and (Rahman et al., 2019) are highly relevant to this project, as they both

fuse inertial and pressure measurements. (Ferrera, 2019) proposes UW-VO, a visual-

inertial-pressure SLAM configuration using direct feature extraction using KLT. The

paper shows very promising results but lacks loop closure capabilities. We mentioned

(Rahman et al., 2019) earlier in section 3.2.1 which uses visual, inertial, sonar, and depth

measurements. However, the system is also able to operate in a visual-inertial-pressure

configuration.

Image processing

Visual SLAM algorithms require high-quality visual data to function optimally. Several

studies have focused on enhancing underwater images, many of which are presented

in this survey (Ahamed et al., 2019). The algorithms presented here improve images by

reducing noise, increasing exposure in darker regions, correcting color, and enhancing

contrast to make details and edges more distinct. Many of these have not been

designed to operate in real-time. Instead, many visual SLAM approaches use simple

histogram equalization (HE) techniques to improve the contrast of the images, which

are efficient enough to run in real-time. However, directly applying HE may cause

overexposure in certain areas of the image. Contrast limited adaptive histogram

equalization (CLAHE) aims to solve this by dividing the image into a grid of local

patches before equalizing them, ensuring better overall contrast (Pizer et al., 1987).

Keep in mind that histogram equalization will do nothing to remove noise, and will in

certain cases cause it to be more prevalent in the image.

The survey also reviews machine learning techniques for image enhancement, such

as in (Anwar et al., 2018; Wang et al., 2017). Their results are impressive, but they

cannot run in real-time and are limited to the domain of their training data.

3.2.3 Loop closure

Loop closure refers to a system’s ability to recognize previously visited locations,

which is essential for correcting accumulating errors in the trajectory. Without loop

42

closure, a system may regard a previously visited location as new and duplicate the

map. Loop closure is typically achieved using a place recognition algorithm.

An earlier study by (Williams et al., 2009) describes three approaches typically used

for visual SLAM place recognition: map-to-map, image-to-image, and image-to-map.

Map-to-map approaches look for correspondences between features in two submaps.

Image-to-image methods compare the current image with previously seen images.

Finally, image-to-map methods look for correspondences between the latest image and

the features in a map. The authors conclude that image-to-image and image-to-map

approaches work best in visual SLAM. Image-to-map returned the highest number of

true positives, but does not scale well to larger environments due to its computational

demand. Image-to-image methods work well and scale better but require additional

steps to check for geometric consistency, as they are susceptible to perceptual aliasing,

where similar-looking locations may be wrongly associated as being the same place.

Image-to-image place recognition algorithms

In the literature, image-to-image (or appearance-based) techniques are the most

popular for visual SLAM. The basic principle behind this is to build a database from

the images collected during the operation, which can later be retrieved and compared

with the latest image. If the images have enough similarities, a loop closure can be

formed. To make the process more efficient, images are converted into a bag-of-words

(BoW) representation, allowing for the development of quick and effective matching

algorithms. However, images suffer from perceptual aliasing, so appearance-based

techniques require an additional geometric validation step.

By far the most popular appearance-based place recognition algorithm is DBoW2

(Gálvez-López & Tardos, 2012). DBoW2 creates a bag of binary words based on the

images received. This has proven to be very efficient for place recognition, enabling

real-time operation. DBoW2 is frequently found in many state-of-the-art systems such

as ORB-SLAM (Mur-Artal et al., 2015) and and SVIn2 (Rahman et al., 2019).

Alternative appearance-based place recognition methods have been proposed that

may be better suited for the underwater domain. The approach using DBoW2 tends

to be most effective only in structured environments. A novel cluster-based approach

is presented by (Negre et al., 2016). The idea is to cluster tracked features in an image

43

using Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester

et al., 1996). These clusters are transformed into a global signature using hash-based

loop closure detection (HALOC) (Negre Carrasco et al., 2016), in contrast to the usual

bag-of-words approaches such as DBoW2. HALOC has shown to be better suited for

labeling and recognizing places in underwater environments. These signatures are

then used to build a database similar to the bag-of-words process.

Loop closure candidates are queried based on their proximity to the clusters in the

frame and by comparing their signatures. Geometric validation is performed once

again before deciding whether a valid loop closure has been identified or not. The

cluster-based approach presented by (Negre et al., 2016) shows promising results in

underwater environments, offering an alternative to DBoW2 for underwater SLAM

systems.

3.2.4 Summary and project direction

In summary, this related works section has provided an extensive overview of

various methods and techniques employed in the field of underwater SLAM. The

discussion has highlighted the unique challenges posed by underwater environments

and the ways in which different SLAM frameworks, visual SLAM techniques, image

processing methods, and loop closure algorithms address these challenges. Building

on the insights gained from this review, this project aims to develop an underwater

SLAM algorithm based on ORB-SLAM. Inspired by the work of Ferrera (Ferrera, 2019),

we will introduce a visual-pressure and visual-inertial-pressure configuration. For

comparison, our proposed system will employ a feature-based approach using ORB

descriptors, as opposed to the direct approach presented by Ferrera. Moreover, ORB-

SLAM includes a loop closure system which will enhance long-term data associations.

The proposed algorithm aims to provide a more accurate and reliable solution for

underwater visual SLAM applications.

3.3 Theory

In this section, we introduce a brief discussion on the relevant theory used throughout

the project. This is to orient the reader on the most important concepts used throughout

44

the rest of the paper.

3.3.1 Coordinate frame notation

We are working in a 3-dimensional coordinate frame to represent the pose of the robot

and landmarks in the map. These are described with respect to a given coordinate

frame, such as the world reference frame W. A 3D position p with respect to a

coordinate frame A can be written as a 3-element vector pA. A transformation between

frames can be described using a homogeneous transformation matrix TAB ∈ SE(3),

that transforms points from frame B to A. This transformation matrix is composed

of a 3 × 3 rotation matrix RAB ∈ SO(3) and a 3-element translation vector tAB. To

summarize, we use the following notation:

• W: world reference frame

• A: given coordinate frame

• pA: 3d position with respect to coordinate frame A

• TAB: homogeneous transformation matrix from frame B to A

• RAB: rotation matrix from frame B to A

• tAB: translation vector from frame B to A

The pose is described using a transformation from the robot to the world reference

denoted as TWR. In visual SLAM, R can be either the camera frame C, which is the

coordinate frame attached to the camera, resulting in the transformation TWC, or the

IMU, also referred to as the body frame B with transformation TWB. Additionally,

extrinsic calibration between the camera and IMU is required to properly perform

sensor fusion, as it helps in aligning the data from both sensors. The transformation

TBC must therefore be found using calibration software such as Kalibr (Rehder et al.,

2016).

45

Figure 3.1: Reference system Source: (UZ-SLAMLab, 2022)

The world reference W is set as the first pose of the SLAM system when using a

purely visual configuration (mono, stereo, or RGBD). With an IMU, W has its zW axis

aligned with the gravity vector g but pointing in the opposite direction. Translation

and yaw are arbitrarily defined during initialization and become fixed once initialized

For the camera frame C, zC points forward along the optical axis of the camera, yC

points down and xC points to the right. Both are aligned with the image directions u

and v.

3.3.2 Factor graphs

Graph SLAM employs the use of the concept of factor graphs to represent an

optimization problem, where we maximize the posterior probability of the variables

(poses and landmarks) given a set of measurements. Typically, we minimize a

cost function by reducing the error between the estimates and the relevant sensor

measurements. In most cases, this error term only involves a small subset of

parameters of the total cost function. Factor graphs provide a very intuitive way

of modeling this structure and can be used to represent a wide variety of problems.

Nodes represent variables of our system that we wish to optimize, and factors or edges

46

connect them. These represent functions that describe the relation between the nodes.

Edges can connect any number of nodes, depending on their relationships. Likewise,

unary edges, which involve only one node, can also be constructed, for instance when

constraining states in a node with direct measurements or a prior, which is a known

probability distribution.

Different sensor modalities can also be easily added to the graph without having to

change the underlying structure.

Figure 3.2 shows an example of a simple factor graph formulation. Circles represent

nodes (3 pose states and 2 landmarks) while the squares represent edges linking the

different nodes.

Figure 3.2: Factor graph example

In the context of our project, factor graphs are employed for pose optimization,

local bundle adjustment, and global bundle adjustment. These methods are essential

for refining the estimates of the robot’s trajectory and the positions of the landmarks

in the environment. The specific implementation details of these techniques will be

further discussed in the methodology section.

3.3.3 Least-squares optimization

Factor graphs provide an intuitive way of constructing a model consisting of the

robot’s poses and landmarks. We can then optimize our model using a nonlinear least-

squares approach. By minimizing the sum of squared errors between all observations

and the predicted model, we can estimate a solution that best represents the trajectory

and map. The information presented here is based on the description provided by G2O

(Kümmerle et al., 2011); we refer the reader to the authors’ work for a more detailed

47

explanation.

The function F(x) that we wish to optimize can be expressed in the form:

x∗ = argmin
x

F(x) (3.1)

F(x) = ∑
k∈C

e(xk, zk)
⊤Ωke(xk, zk)︸ ︷︷ ︸

Fk

(3.2)

where:

• x: vector of parameters to be optimized.

• xk: subset of parameters involved in the kth constraint.

• zk: constraint for the parameters xk, usually a sensor measurement.

• Ω: information matrix of a constraint representing uncertainty in the system

(e.g., sensor noise). The information matrix is also sometimes referred to as the

precision or concentration matrix.

• e(xk, zk): the error function measuring how well the parameters xk satisfy the

constraint zk. It is equal to 0 when the parameters perfectly match the constraint.

To simplify the notation, we will instead refer to this term in the form ek(x, z).

The error term ek can also be defined as the Mahalanobis distance such that

ek(x, z) = ||h(xk)− zk||Σ (3.3)

where h is the observation model relating the parameters xk to the constraint zk and

Σ is the covariance of the measurement, and is equal to the inverse of the information

matrix Ω. Note that this expression is identical to Fk from Equation 3.2. Both notations

are used in this paper when describing error terms. When used in a factor graph, the

error term is equivalent to the edge connecting relevant nodes.

Gauss-Newton

The Gauss-Newton method can be used to find the solution of a system given a good

initial guess of its parameters x̆. A good initial guess is required, as the method may

48

otherwise fail to converge or settle to a local minimum if the guess is too far from the

true solution. We linearize the error function ek using a first-order Taylor expansion

around the initial guess such that

ek(x̆k + ∆xk) = ek(x̆ + ∆x) (3.4)

≃ ek + Jk∆x (3.5)

where Jk is the Jacobian of ek. Substituting in equation 3.2, we get the form:

Fk(x̆ + ∆x) = ek(x̆ + ∆x)TΩkek(x̆ + ∆x) (3.6)

≃ (ek + Jk∆x)TΩk(ek + Jk∆x) (3.7)

= eT
k Ωkek︸ ︷︷ ︸

ck

+2 eT
k Ωk Jk︸ ︷︷ ︸

bk

∆x + ∆xT JT
k ΩJk︸ ︷︷ ︸

Hk

∆x (3.8)

= ck + 2bk∆x + ∆xT Hk∆x (3.9)

Taking the derivative of 3.9 with respect to ∆x, we get:

∂

∂∆x
(ck + 2bk∆x + ∆xT Hk∆x) = 0 (3.10)

from which we can obtain the linear system:

Hk∆x∗ = −bk (3.11)

where x∗ is the updated parameters of the solution. Equation 3.9 can therefore be

minimized in ∆x by solving for the linear system in equation 3.11. The optimal update

is found by searching the local gradient of the cost function, defined by the Hessian Hk.

The linearized solution is obtained by adding the computed increments to the initial

guess such that x∗ = x̆ + ∆x. In every iteration, the previous solution is used as the

new linearization point.

Levenberg-Marquardt

The Gauss-Newton method requires a good initial estimate for it to converge to the

correct solution. Otherwise, the system will fall into a local minimum. The Levenberg-

Marquardt method attempts to solve this issue by adding a damping factor λ to control

49

the convergence of the system, which balances the optimization between the Gauss-

Newton method and the gradient descent method.

(H + λI)∆x∗ = −b (3.12)

The larger λ becomes, the smaller the change ∆x will be. In practice, the

optimization acts more like a gradient descent algorithm for large values in λ and

more like Gauss-Newton for smaller values. If the error is lower than in the previous

iteration, the lambda is decreased. Otherwise, the solution is reverted, and the lambda

increased.

On-manifold optimization

Optimization over the pose’s rotational component R is performed along the SO(3)

manifold to preserve the constraints imposed by the SO(3) group, ensuring that the

estimated rotations are valid. These rotations are then mapped back to the Euclidean

space. The mapping functions are the following:

An exponential mapping from the Euclidean space to the manifold

exp : so(3) → SO(3) (3.13)

and a logarithm mapping from the manifold back to the Euclidean space

log : SO(3) → so(3) (3.14)

The exact details on how mapping is performed have not been included here. We

refer the reader to (Blanco-Claraco, 2022; Kümmerle et al., 2011) for more information

regarding this topic.

50

3.4 Methology: Overview

The methodology can be divided into three main parts:

1. ORB-SLAM Overview (3.5): The first part familiarizes the reader with the various

components of ORB-SLAM3. This is important to understand where we make

our modifications. Its general structure follow the tracking, local mapping, and

loop closing systems.

2. Visual-pressure configuration (3.6): Here, we introduce our implementation of

the visual-pressure configuration with ORB-SLAM as the base. It can be split into

image preprocessing, tracking, local mapping, loop closing, and initialization.

3. Visual-inertial-pressure configuration (3.7): This describes the visual-inertial-

pressure implementation. Here, we first give an overview of oRB-SLAM’s visual-

inertial configuration before discussing the implementation of tracking, local

mapping, loop closing, and initialization.

3.5 ORB-SLAM3

We have included a section on ORB-SLAM for the reader to better understand the

modifications that we will make on this algorithm. Specifically, we use ORB-SLAM3

as our starting point. The details have been condensed as much as possible. For

more details, we highly recommend the reader to check the published literature of

the original authors (ORB-SLAM (Mur-Artal et al., 2015), ORB-SLAM2 (Mur-Artal &

Tardós, 2017a), ORB-SLAM-VI (Mur-Artal & Tardós, 2017b), ORB-SLAM3 (Campos et

al., 2021)).

Over the years, ORB-SLAM, an open-source SLAM algorithm that uses ORB feature

descriptors when processing images, has consistently proven to be among the top

performers in visual SLAM. The system generates relatively sparse maps, which in

turn allows for longer operations. The original ORB-SLAM algorithm only supports

monocular camera configurations. ORB-SLAM2 extends this to include stereo and

RGBD. ORB-SLAM-VI builds upon ORB-SLAM2 by fusing inertial measurements to

the system, allowing for monocular setups to recover scale. ORB-SLAM3 refines

51

the inertial initialization procedure of ORB-SLAM-VI to allow for faster convergence.

Additionally, the authors add a new system referred to as the atlas. Essentially, the

atlas allows the system to save and reuse previously generated maps. If previously

explored regions are recognized, the system will merge them with the current map.

ORB-SLAM can be split into 4 major parts: tracking, local mapping, loop closing,

and the atlas, the latter being present only in ORB-SLAM3. An overview of the system

is provided in Figure 3.3. We will only discuss the first 3 parts as implemented in

ORB-SLAM3, as they are the ones relevant to the project. Each part runs on a separate

thread. There is also an extra thread dedicated to performing global bundle adjustment

which is controlled by the loop closure thread. This is done to prevent bottlenecks in

the system, as the operation is costly

ORB-SLAM uses least-squares optimization across several areas of the system. We

reference the cost functions for these when relevant. However, we do not provide the

full details of every component as it is outside the scope of the project.

Figure 3.3: Redrawn ORB-SLAM3 overview. Original: (Campos et al., 2021)

52

3.5.1 Tracking

The tracking thread serves as the front-end, processing sensor data and computing

the robot’s pose at framerate. It decides whether to turn a frame into a keyframe,

which is then sent to the local mapping thread. The tracking thread also handles map

initialization and relocalization.

The tracking process starts by extracting ORB features from the image. An initial

pose estimation is calculated based on the motion model of the previous frame and

the features observed in the previous and current frame. A wider search window is

used if not enough matches are found. In the inertial case, the initial pose estimate is

instead calculated based on the preintegrated inertial measurements and bypasses the

check for map point correspondences. This is computationally more efficient than the

non-inertial case, as it does not require solving an optimization problem.

If the estimate still fails to meet the minimum number of matches, the thread will

attempt to relocalize. The frame is converted into a bag-of-words representation and

compared with the database for any keyframe candidates. If enough correspondences

are found among one of the keyframes, the system will once again attempt to estimate

an initial pose of the robot.

If an initial estimate is found, the system will refine its estimation by projecting

a local map onto the frame to search for more correspondences. The pose will then

be refined using all found map points. This process is run regardless of whether the

pose was estimated using map point correspondences of the previous frame or inertial

measurements.

Finally, the thread will decide whether the current frame is to be converted into

a keyframe or not, based on a set of criteria: more than 20 frames must have passed

since the last global relocalization (1), the local mapping thread is idle or more than 20

frames passed since the last keyframe insertion (2), the current frame tracks at least 50

points (3), and the current frame tracks at least 90% of points not found in the reference

keyframe (4).

53

3.5.2 Local mapping

The local mapping thread is responsible for managing the local map, which consists

of a set of keyframes and map points. It processes keyframes sent by the tracking

thread, updating the covisibility graph and computing the bag of words vector for each

keyframe. A covisibility graph connects keyframes with overlapping observations,

making it easier to associate keyframes with each other. The local mapping thread then

performs map point culling and creation based on their alignment with the current

trajectory.

The trajectory and map are refined using local bundle adjustment, which optimizes

the current keyframe, connected keyframes in the covisibility graph, and all map

points observed by those keyframes. Other keyframes observing the same map points

but not connected remain fixed during optimization. In the inertial case, local bundle

adjustment instead takes place using a sliding window of keyframes and their points.

Covisible keyframes are included but kept fixed during optimization. This sliding

window optimization approach is designed to reduce computational complexity while

maintaining accurate mapping.

Keyframe culling is performed to maintain a compact reconstruction and prevent

the trajectory from becoming intractable. A keyframe is discarded if 90% of its map

points have been seen in at least three other keyframes with the same or finer scale.

This policy ensures that map points maintain keyframes from which they are measured

with the highest accuracy.

In inertial mode, the system’s initialization procedure, which estimates the initial

inertial variables, scale, and gravity direction, is also performed within the local

mapping thread. We provide more details on this in Section 3.7.5.

3.5.3 Loop closing

The loop closure thread is responsible for handling loop closures and map merging.

Every time the local mapping thread processes a keyframe, the loop closure thread will

try to detect a loop or a merge. This is done by computing its bag of words similarity

vector with its neighbors in the covisibility graph using the DBoW2 bag-of-words place

recognition system.

54

For each potential loop or merge candidate, a series of geometric verification steps

is performed to achieve 100% precision. The geometric verification process involves

computing the similarity transform to account for drift in translation and rotation (and

scale in the purely monocular case), and checking for inliers with a reprojection error

below a threshold. If a valid loop is found, the covisibility graph is updated to close

the loop, and all keyframes in the loop including their neighbors are corrected using

pose graph optimization. Finally, a full bundle adjustment process is run that includes

all keyframes to further refine the estimate. This is done on a separate thread so as not

to create a bottleneck in the system.

When a map merge is detected, a similar process is performed, but instead of

closing a loop within the active map, a merge involves integrating multiple maps.

The algorithm finds the aligning transformation between the maps and updates the

covisibility graph accordingly. Subsequently, a global bundle adjustment process is

run to refine the estimate, similar to the loop closure case.

3.5.4 ORB-SLAM3 setup

ORB-SLAM3 is originally designed to work with ROS Melodic, which runs on Ubuntu

18.04. A ROS-focused implementation of ORB-SLAM3 is however presented within

this repository (thien94, 2023), which also happens to support Ubuntu 20.04 and ROS

Noetic. The project already requires several other ROS libraries, and thus we use

this version of ORB-SLAM3 in our development process. Table 3.1 lists the packages

needed and the versions used in this project.

Package Version

ORB-SLAM3 1.0

CMake 3.26

OpenCV 4.2

Pangolin 0.8.0

Eigen 3.3.7-2

Table 3.1: ORB-SLAM3 libraries

55

3.6 Visual-Pressure SLAM

In this section, we present the configuration that fuses visual and pressure sensor data

to perform SLAM. The structure follows the outline of ORB-SLAM3 in 3.5, describing

tracking, local mapping, and loop closing. Additionally, we include a section detailing

the initialization procedure for this configuration.

Depth measurements obtained from pressure sensors provide an absolute value

for the z-axis translational component, invariant to changes in time. By comparing

these depth measurements to the estimated z-coordinate of the pose, we can scale the

trajectory accordingly.

The current implementation of this visual-pressure SLAM system is designed to

work with the monocular configuration of ORB-SLAM. In future work, this approach

can be extended to accommodate stereo and RGBD configurations as well.

3.6.1 Tracking

We first make some additions to the visual component by preprocessing the images

before feeding it to the rest of the system.

Improving the visual component

There are a few modifications that can be done to improve the visual component of

the algorithm. One way of doing this is by preprocessing the images before feeding it

to as input to SLAM. Underwater images often suffer from a lack of contrast and poor

image quality, making it difficult to track distinct features. One of the most well known

preprocessing techniques for underwater images is CLAHE as discussed in the related

works (section 3.2.2).

OpenCV contains a C++ library to easily implement CLAHE. There are two

parameters that affect its behavior: the clipping limit and the grid size to divide the

image by. The clip limit sets the threshold for the contrast enhancement. The higher

this value is, the greater the contrast of the image patch. The grid size dictates how

many sections to divide the image by. Each of these sections are the aforementioned

patches.

There are no set rules for how to decide the values for these parameters as it is

56

completely dependent on the images that you work with. These values have been

chosen through empirical testing and by examining the number of features that the

SLAM system can track. The suggested values can be seen in Table 3.2. The default

values show good results across the board, but can be tweaked according to the range

shown to fine-tune the system according to the environment.

Parameter Default Operating range

Clip limit 3 1 - 10

Grid size (n × n) 6 4 - 20

Table 3.2: CLAHE values

(a) Original (b) CLAHE clip limit 10

Figure 3.4: CLAHE

Pressure sensor

Pressure sensors measure the pressure exerted by the fluid as well as atmospheric

pressure. Pressure scales linearly as we go deeper into the fluid. Depth measurements

are related to pressure through the equation,

p = ρ · g · d + patm (3.15)

where p and patm represent the measured pressure at depth d and atmospheric

pressure, respectively, ρ denotes the fluid density, and g is the gravitational constant. In

this model, we consider pressure measurement noise to follow a zero-mean Gaussian

distribution.

57

p = p + v , v ∼ N (0, , σ2) (3.16)

By rearranging Equation3.15, we can directly obtain the expression for depth

measurements. Incorporating noise from Equation3.16, we arrive at the following

expression:

draw =
p − patm

ρ · g
+ v , v ∼ N (0, , σ2) (3.17)

where v‘ is the depth measurement noise derived from pressure measurement

noise.

Since ORB-SLAM calculates its trajectory relative to its initial position, we need

to compute the depth measurement relative to the initial position. Therefore, it is

more convenient to refer to the depth measurement relative to its initial value when

performing calculations. Thus, the final expression for depth d is given by:

d = draw − d0 (3.18)

Fetching depth measurements

Ideally, every captured image is associated with a unique depth measurement.

However, this may not always be possible, primarily due to a mismatch in the

sampling rate of the sensors. Typically, cameras have a higher sampling rate than

pressure sensors. To assign depth measurements to each image, we make a few

assumptions. The first assumption is that, although pressures sensor and cameras

may have different sampling rates, they are likely to be within the same range. For

example, the pressure sensor and camera may have sampling rates of 20 Hz and 30

Hz, respectively. Additionally, we assume that, due to the relatively slow motions of

ROVs underwater, the changes between sensor measurements are relatively small.

In cases where an image cannot be associated with a unique depth measurement,

we can simply assign the previous depth measurement taken at timestep t − 1 to

the current image at timestep t. Practically speaking, the error between the copied

measurement and what would have been the actual measurement is so small that

it should have no noticeable impact in the system’s performance. If the sampling

rate of the pressure sensor is too low (e.g., 1 Hz), this method will not work. If the

58

sampling rate of the pressure sensor is greater than the camera and more than one

depth measurement is taken between images, we take the newest measurement.

The practical implementation of this process is done using a ROS node. A

subscriber listens to an image topic (the camera feed) and a pressure topic (the pressure

sensor). Pressure sensor readings are saved as a vector and retrieved in a first-in-first-

out (FIFO) manner. Whenever an image is received, we check the pressure sensor

vector and use the first measurement with a timestamp later than the image. As

mentioned earlier, if no such measurement is found in the vector, we instead reuse

the previous measurement. With this approach, we can synchronize the sensors. The

synchronized data is then passed on to ORB-SLAM.

The node supports both depth measurements and raw pressure measurements but

needs to be specified beforehand.

The data received from ROS is passed on to the tracking thread and used to generate

a frame. If the system is passed pressure readings, we first perform the conversion to

depth here. The depth d saved per frame is relative to the initial depth as mentioned

earlier. If the map has not been initialized yet, we set the initial depth d0 equal to the

raw depth draw.

Pose estimation

We fuse depth measurements during both pose estimation procedures in the tracking

step, resulting in a tightly coupled fusion. The original cost function from ORB-SLAM

estimates the pose X and follow the form:

X∗
i = argmin

Xi

(evisual(Xi)) (3.19)

where evisual(Xi) is defined as

evisual(Xi) = ∑
j∈i

ρh

(
eT

ij · Σ−1
ij · eij

)
(3.20)

where Xi is the pose at frame i, ρh is the robust Huber cost function, eij is the

reprojection error of a map point j in the frame i, and Σij is the covariance matrix. When

running the pure visual configuration of ORB-SLAM, the error term evisual is the only

element of the cost function. Here, all map points are kept fixed during optimization.

59

We modify the cost function to include depth measurements, constraining the

depth-aligned translation of the pose. The depth-aligned axis needs to be provided by

the user before runtime, which we here denote as dalign. This parameter is a 3-element

normalized unit vector that we can multiply to the translation, thus recovering the

depth estimate. This parameterization allows the user to specify how the camera and

depth sensor are oriented relative to each other without having to modify the code

directly. This also reduces the ambiguity for the system when correcting the trajectory.

We can describe the depth estimate dest as:

dest = tT
wc · dalign (3.21)

where twc is the estimated translation vector of the pose Xi.

We also need to take into account the potential misalignment between the

estimated trajectory and the global reference frame. Misalignment occurs when the

estimated trajectory does not align itself with the gravity vector of the world frame.

This can happen for any camera-based setup since they have no way of relating

their measurements with regards to the gravity vector. Depth measurements are

always taken with regards to the gravity vector, thus a shift in the alignment of

the estimated trajectory can create wrong correlations between the translation and

measured depth. We can minimize this by aligning the trajectory with the world

frame for example during the initialization procedure, but we cannot guarantee that

the system will always converge towards the correct alignment. Figure 3.5 showcases

the misalignment effect.

Figure 3.5: Misalignment effect. θ is the angle of error between the initial pose estimate

and the world reference frame.

60

To increase the robustness towards misalignment, we have chosen to adopt the

same strategy implemented in UW-VO (Ferrera, 2019). The strategy uses relative depth

measurements between two consecutive frames, which we denote using drel. We then

denote absolute depth measurements as just d. The relative depth can be expressed

mathematically as:

drel = di − di−1 (3.22)

where i is the index of the current frame. Finally, we can write an expression for

our error term edepth for depth measurements as the squared Mahalanobis distance:

edepth−rel(Xi) = ∥drel−meas − drel−est∥2
2σ2 (3.23)

Additionally, we increase the weight of this error term during optimization. This is

to compensate for the fact that the visual residuals are relatively high compared to the

depth.

The new cost function can therefore be written as:

X∗
i = argmin

Xi

(
evisual(Xi) + edepth−rel(Xi)

)
(3.24)

The graphical representation can be seen in Figure 3.6. Note that we only add our

error term if the difference between consecutive depth measurements is less than 0.5

meters. We noticed occasionally in some datasets that the depth measurement spikes

in its readings. Although this is more an issue with regards to the dataset, we have

nonetheless included this check as part of the system permanently. The check is also

applied to any other optimization procedure that uses the depth error term.

(a) Visual (b) Visual-pressure

Figure 3.6: Graph representation of the pose optimization function

61

3.6.2 Local mapping

The main changes to local mapping involve the local bundle adjustment algorithm.

Visual-pressure initialization also occurs within this thread, but we cover this in a

dedicated section in 3.6.4.

The original local bundle adjustment algorithm uses a similar error term evisual as

described in Equation3.20, but optimization occurs over a set of keyframes. The map

points are also optimized, and some of the keyframes are kept fixed as described in

section 3.5.2. The cost function is therefore in the form:

X∗ = argmin
Xk

(evisual(X)) (3.25)

where evisual(X) is defined as:

evisual(X) = ∑
i∈k

(evisual(Xi)) (3.26)

where k is the set of keyframes involved in the optimization. We have to update

our error term for depth in the same manner, taking the sum of errors for the set of all

keyframes k that are included.

edepth−rel(X) = ∑
i∈k

(
edepth−rel(Xi)

)
(3.27)

The new local bundle adjustment equation can then be written as:

X∗ = argmin
Xk

(
evisual(X) + edepth−rel(X)

)
(3.28)

3.6.3 Loop closing

Bag of Words

We primarily implement our changes to the loop closure algorithm by building a new

ORB vocabulary tree for the system. ORB-SLAM3 uses DBoW2 for maintaining the

place-recognition database. The vocabulary for this must be built offline.

Vocabulary training is a fairly straightforward process. Training requires a dataset

of images and the same feature descriptor that will be used in SLAM, in this case,

the ORB descriptor. ORB features are extracted from the image, and the image gets

62

converted to a bag-of-words vector. This bag-of-words vector uses the vocabulary to

describe the contents of the image. The larger the vocabulary is, the more specific the

place recognition algorithm can be at describing images, but this also increases the

computational demand. The size of the vocabulary is dictated by the depth level (L)

and k-branch factor (K), for which the total size of the vocabulary is equal to KL. We

refer interested readers to (Gálvez-López & Tardos, 2012) for more details regarding

this algorithm.

We trained four different vocabularies to compare them with the base vocabulary.

We use the default values for the depth and k-branch factor, as these have been found to

be a good baseline for real-time place recognition algorithms (Gálvez-López & Tardos,

2012). These values are shown in Table 3.3. Table 3.4 summarizes the information

regarding the different vocabularies.

Parameter Value

Vocabulary depth level (L) 6

Vocabulary branch factor (K) 10

Table 3.3: Universal vocabulary parameters

Vocabulary name Total Images Training data Comments

AH-Voc 6688 AQUALOC harbor Highly fitted

AH-Voc-C 6711 AQUALOC harbor CLAHE version

UW-Voc 11663
AQUALOC

AFRL-VI
Universal

UW-Voc-C 11571
AQUALOC

AFRL-VI
CLAHE version

Table 3.4: Summary of different vocabularies

Aqualoc Harbor Vocabulary (AH-Voc) This vocabulary has been trained on the

AQUALOC harbor dataset (Ferrera et al., 2019). A majority of testing and development

has been done using this dataset. We wanted to see if a well-fitted vocabulary would

help establish loop closures more effectively. The training data is composed of each

sequence having images taken at a rate of 10 Hz, resulting in a total of 6688 images.

63

Aqualoc Harbor Vocabulary CLAHE (AH-Voc-C) This dataset is the CLAHE

equivalent of the Aqualoc Harbor Vocabulary. We performed a separate run for

collecting images from each sequence with CLAHE applied to them. This vocabulary

is trained on a total of 6711 images.

Underwater Vocabulary (UW-Voc) This vocabulary has been trained on the harbor

and archaeological sites of the AQUALOC dataset and the bus and cave sequences of

AFRL-VI (Rahman, Karapetyan et al., 2018). Images are taken at an acquisition rate of 5

Hz, resulting in a total of 11663 images. This results in a more general vocabulary, and

research has shown that general vocabularies tend to yield good results (Mur-Artal &

Tardós, 2014).

Underwater Vocabulary CLAHE (UW-Voc-C) This is the CLAHE equivalent of the

underwater vocabulary. The images are collected in a separate run with CLAHE

applied, with a total of 11571 images.

(a) AQUALOC - Harbor (b) AQUALOC - Archaeological site

(c) AFRL - Bus (d) AFRL - Cave

64

3.6.4 Initialization

The sensor fusion described shows how the system operates normally, but we must

first calculate the scale and alignment of the trajectory. The error would otherwise

be too high for the system to function nominally and thus produce an inaccurate

trajectory. SLAM initialization is therefore one of the most important aspects for

producing accurate trajectories.

We present 2 main categories of initialization, each with 2 variations, totaling 4

types of initialization strategies.

Strategy 1A: Iterative depth average

The first strategy is similar to the one presented in UW-VO and involves the following

steps: A scale factor is calculated every time the system creates a new keyframe. The

scale factor is taken as the average ratio between the absolute depth measurement and

depth-aligned translation of the pose over the first N number of valid keyframes. By

default, we set N to 10 keyframes. A keyframe is considered valid if it has depth value

greater than the desired threshold, which we here set to 0.01 meters. The scale factor s

can be expressed in the form:

s =
1
N

N

∑
i∈k

dmeas

dest
, N ≥ 10 (3.29)

where N is the number of valid keyframes in the current map. The factor s is then

applied on the map. This processed is repeated until the scale factor is within 2% of

its estimation and remains within the margin 10 times consecutively. Once the scale

has been solved, we attempt to calculate the rotation matrix R needed to align the

trajectory. We pose this is an optimization problem in the form:

R∗ = argmin
R

(einit−r(X)) (3.30)

einit−r(X) =
N

∑
i∈k

∥dmeas − (Rwc · twc)
T · dalign∥2

σ2 (3.31)

where Rwc is the estimated rotation matrix to align the trajectory, dmeas is the depth

absolute measurement and twc is the estimated pose translation. All terms except for

65

Rwc is kept fixed during optimization. Rwc is part of the SO(3) group and optimization

is performed on the manifold. The rotation is then applied on the map.

Solving for the rotation matrix is a later addition to this strategy, hence why it is

solved separate from the scale. We believe that this is sub-optimal as the scale and

rotation are correlated to each other when minimizing the error in the trajectory.

We finally run a global bundle adjustment procedure to correct the trajectory and

allow the fusion of depth measurements. It is similar to the bundle adjustment

equation (Equation 3.28), with a few key differences. We use absolute depth

measurements and we optimize over the entire trajectory instead.

X∗ = argmin
X0:k

(
evisual(X) + edepth(X)

)
(3.32)

edepth(X) = ∑
i∈k

(
edepth(Xi)

)
(3.33)

edepth(Xi) = ∥dmeas − dest∥2
σ2 (3.34)

After running this procedure once, we allow the system to add depth error terms

in pose estimation and local bundle adjustment as described in Section 3.6.1 and 3.6.2

respectively.

Strategy 1B: Set depth average

The second variation is very similar to the first one. We still calculate the average

in the same manner. The difference is that we no longer calculate the scale at every

iteration but instead at set intervals. This has the benefit of reducing computational

load, even if the strategy is already fairly efficient, as well as prevent a situation where

the calculated scale fluctuates too heavily, resulting in less reliable initialization.

The procedure here runs twice given a set of criteria. The first procedure happens

after the system acquires 15 keyframes with depth measurements greater than 0.01 m.

The second procedure occurs once we have a minimum of 30 keyframes with depth

measurements greater than 0.02 m. Table 3.5 summarizes these criteria.

Strategy 1 advantages and disadvantages The greatest advantage to this strategy

is its simple implementation as well as its computational efficiency. Its major

66

Procedure Minimum keyframes Threshold [m]

1 15 0.01

2 30 0.02

Table 3.5: Strategy 1B criteria

disadvantage is that it is not easy to expand. Notably, we would prefer to solve for

scale and rotation at the same time. The implementation here also does not take into

account sensor noise, and is highly sensitive to any outliers in the calculation.

Strategy 2A: Iterative depth optimization

This strategy addresses some of the shortcomings of the previous strategy. The

main advantage is that here, we pose the initialization problem entirely as a graph

optimization problem. This makes it easier to tightly integrate different representations

of the parameters, in this case the scale and rotation matrices. This also makes it

easier to expand in case we want to solve for additional parameters or integrate new

measurements. Finally, the sensor’s noise parameters can also be taken into account.

The cost function is very similar to Equation 3.30 but this time the scale s is also

added as an optimization variable. Only s and R are optimized, the rest are kept fixed.

s∗, R∗ = argmin
s,R

(
einit−vp(X)

)
(3.35)

einit−vp(X) =
N

∑
i∈k

∥dmeas − s · dest∥2
σ2 (3.36)

dest = (Rwc · twc)
T · dalign (3.37)

Figure 3.8: Initialization procedure. The poses are kept fixed.

67

Note that we do not actually apply the estimated rotation at every step. Instead, it

is only applied after we obtain a consistent scale value. For some reason, ORB-SLAM3

does not keep track of any rotation that has been applied previously to the map, and

we can therefore only apply it once. Nonetheless, we still solve for the rotation matrix

jointly with the scale to improve accuracy.

After running the procedure once, we allow for depth to be fused in pose

optimization and local bundle adjustment. The procedure is repeated until the

scale factor is within 2% of its estimation and remains within this margin 10 times

consecutively, after which we run global bundle adjustment.

This strategy has one major concern, namely that due to its use of non-linear least

squares optimization, it becomes relatively expensive to compute at every iteration.

Similar to Strategy 1A, it may also be susceptible to unreliable initialization if the scale

fluctuates too heavily.

Strategy 2B: Set depth optimization

The final strategy combines the ideas of Strategy 1B and 2A. The procedure instead

only takes place twice given a set criteria, and the procedure itself is posed as an

optimization problem. This should significantly reduce the computational load of the

system.

To reiterate, the procedure only runs when the given criteria has been met, namely

with regards to the number of valid keyframes. Table 3.6 summarizes the criteria. We

note that the values are identical to strategy 1B.

Procedure Minimum keyframes Threshold [m]

1 15 0.01

2 30 0.02

Table 3.6: Strategy 2B criteria

Strategy 2 advantages and disadvantages Since the initialization procedure here is

posed as an optimization problem, it retains the advantages and disadvantages of

using a factor graph. Setting it up is intuitive and can easily be expanded with new

measurements. The disadvantage is that it can become computationally expensive.

68

Ideal motion for initialization

Typically, the proposed initialization strategies are able to correctly estimate scale and

rotation close to the true values as long as there is some motion in the depth-aligned

axis. Even minimal motion here is enough for successful initialization. Mainly, the

issue arises when there is considerable misalignment between the trajectory and world

reference frame, or when the pressure sensor acquisition rate is very low. We can

maximize the reliability and accuracy of these initialization procedures given a few

guidelines on how the ROV should move.

It is optimal for the system to have some translational motion across all axes and

preferably avoid motion where the measured depth values are close to zero. This holds

especially true when there is considerable misalignment between the trajectory and

the world reference frame. This allows for the system to initialize much faster and

more reliably. Translation across multiple axes reduces the ambiguity especially for

estimating rotation, where several configurations oftentimes satisfy the constraints set

during graph optimization.

69

3.7 Visual-Inertial-Pressure SLAM

In this section, we address the challenge of integrating visual, inertial, and pressure

sensor modalities to perform SLAM. Although depth measurements have proven

effective in recovering the correct scale, they face limitations when there is little to

no motion along the depth axis. Moreover, the misalignment between the estimated

trajectory and the world reference scale can further compound these limitations. IMUs

offer a solution to these issues, as they can easily recover the correct alignment by

aligning the gravity vector measured by the accelerometer, even in scenarios with

limited motion. When initialized successfully, IMUs can accurately estimate the up-

to-scale trajectory and motions of an underwater vehicle, allowing it to operate for

limited periods with low visual information.

3.7.1 Challenges of visual-inertial SLAM underwater

The primary challenge in utilizing the visual-inertial configuration of ORB-SLAM

underwater is the unreliable initialization procedure. Proper initialization requires

determining the initial bias of the IMU, which is crucial for accurately estimating the

ROV’s motions. Typically, the initial bias can be reliably recovered by exciting the IMU

across all axes through translational and rotational motion. However, this becomes

difficult underwater, where ROVs are constrained by slower motions. The challenge is

further exacerbated in monocular configurations, where the system must also estimate

the scale.

To overcome these challenges, depth measurements are incorporated into the

initialization procedure. The additional depth constraints assist in determining the

correct scale and alignment, indirectly constraining the bias during optimization. As

a result, the system can successfully initialize even when there is limited motion,

provided there is sufficient variation along the depth axis.

We use the visual-inertial configuration of ORB-SLAM3 as our baseline for

integrating these sensor modalities. Since the alignment can be reliably corrected,

we also employ absolute depth measurements when optimizing the cost functions,

which should lead to a more accurate overall trajectory compared to the relative depth

measurements used in the visual-pressure configuration.

70

The following sections discuss key components of the visual-inertial-pressure (VIP)

SLAM configuration, including tracking, local mapping, and loop closure, as well as

the initialization procedure.

3.7.2 Tracking

For the first pose estimation, the base visual-inertial configuration uses the estimated

motions of the IMU to predict the current pose and velocity in the robot. Since

the system does not need to perform graph optimization, it is considerably less

computationally expensive. This does come at a cost of some accuracy. However,

in the underwater domain, it was much more prone to tracking loss, likely due to the

slow motions of the robot. We have therefore opted to use the same pose optimization

as in the previous section, reusing Equation 3.24 which only uses visual and depth

error terms.

X∗
i = argmin

Xi

(
evisual(Xi) + edepth−rel(Xi)

)
(3.24 revisited)

In the second pose estimation step, we fuse all three components: visual, inertial,

and depth measurements. The addition of inertial and depth measurements allow us

to lower the number of visually matched inliers for tracking to be considered a success.

The equation to be optimized is shown below:

The original visual-inertial pose estimation function is written as:

X∗
i = argmin

Xi

(evisual(Xi) + einertial(Xi)) (3.38)

where

evisual(Xi) = ∑
j∈i

ρh

(
eT

ij · Σ−1
ij · eij

)
(3.20 revisited)

einertial(Xi) =
[
e∆Ri−1,i , e∆vi−1,i , e∆pi−1,i

]
(3.39)

The terms in the vector einertial are the error terms for the preintegrated rotation,

velocity, and position measurements denoted as e∆Ri−1,i , e∆vi−1,i and e∆pi−1,i respectively.

einertial also includes a covariance matrix Σi−1,i. Their full definitions have not been

71

included here. Instead, we refer the reader to the paper on ORB-SLAM3 (Campos et

al., 2021).

Adding our depth term to the cost function, we get:

X∗
i = argmin

Xi

(
evisual(Xi) + einertial(X) + edepth(Xi)

)
(3.40)

edepth(Xi) = ∥dmeas − dest∥2
σ2 (3.34 revisited)

Note the use of absolute depth measurements. We can use this as initialization

is able to reliably recover scale and alignment. Absolute measurements are therefore

able to constrain the pose estimation globally, resulting in an overall more accurate

trajectory.

Figure 3.9: VIP optimization function

When it comes to the second pose estimation step, it creates a local map using map

points found from previous frames that are used for evaluating the current frame.

These map points are projected into the frame for comparison. The visual-inertial

configuration for ORB-SLAM searches points over a wider projection. This results

in a coarser search and thus more map points. For reference, the base monocular

configuration has a search threshold of 1 while the visual-inertial configuration has

a search threshold of 10 when the IMU is uninitialized, 6 when partially initialized,

and 2 during normal operation. While the value for normal operation is reasonable,

we found that the values of 10 and 6 before proper initialization greatly diminished the

accuracy of the pose prediction for our configuration. We have therefore set our values

to 2, 2, and 1 respectively.

72

We also implement a modified motion estimation procedure using the IMU and

depth measurements for situations with little visual information. Usually, the IMU

motion prediction calculates the pose and velocity according to the IMU readings and

accumulated bias. We scale the delta between the previous pose and current pose

according to the ratio between the current and previous depth measurement versus

the current and previous depth-aligned translation.

twb−∆−corrected = s · twb−∆ (3.41)

s = dmeas/dest (3.42)

Due to the rapid accumulation of bias, the system is only able to operate in this

state for a short time (about 1-2 seconds).

3.7.3 Local mapping

We modify the implementation of the inertial local bundle adjustment process of ORB-

SLAM by adding absolute depth measurements to the cost function. Equations 3.43

and 3.45 show the original and new cost functions respectively.

X∗ = argmin
X

(evisual(X) + einertial(X)) (3.43)

where

evisual(X) = ∑
i∈k

(evisual(Xi)) (3.26 revisited)

einertial(X) = ∑
i∈k

(einertial(Xi)) (3.44)

Adding in the absolute depth error term, we get:

X∗ = argmin
X

(
evisual(X) + einertial(X) + edepth(X)

)
(3.45)

edepth(X) = ∑
i∈k

(
edepth(Xi)

)
(3.33 revisited)

73

3.7.4 Loop closure

We implement the same changes to loop closure as described in Section 3.6.3. The

default ORB vocabulary is simply replaced with the custom-trained vocabularies.

3.7.5 Initialization

The initialization procedure described here is inspired by the visual-inertial initializa-

tion procedure shown in ORB-SLAM3. To summarize how it works, it initializes the

visual and inertial systems separately before doing joint optimization once each system

attains good initial estimates.

The steps can be enumerated as follows:

1. Vision-only estimation: The system initializes running only pure monocular

SLAM. We continue this until we have 15 keyframes in the map meeting the

minimum measured depth threshold. The poses are then transformed and

observed with respect to its body frame instead of the camera frame.

2. Inertial-depth estimation: Here, we estimate the optimal inertial variables (biases

and velocities) as well as the scale and alignment. We use depth measurements

to aid in this process. The variables can be stacked into the state vector Yk such

that:

Yk = {s, Rwg, b, v̄0:k} (3.46)

where s is the scale factor, Rwg is the rotation matrix needed to align the trajectory

with the world reference frame, b is the bias for the accelerometer and gyroscope,

assumed to be constant during initialization, and v̄0:k is the up-to-scale body

velocities starting from the first keyframe, initially estimated from the Vision-

only estimation step.

3. Visual-inertial-pressure estimation: With good initial estimates for the inertial

and visual parameters, we perform a joint visual-inertial-pressure optimization

procedure to refine the solution. This is achieved by running a global bundle

adjustment procedure.

The state vector Yk is originally solved in ORB-SLAM3 with the following cost

function:

74

Y∗
k = argmin

Yk

(
||b||2

Σ−1
b

+
k

∑
i=1

(einertial(Xi))

)
(3.47)

We add a similar error term as in section 3.6.4. The difference is that we compare

it with the z-translational component of the body pose twb. Since the depth is

taken relative to the camera pose, we need to take into account the translational

offset between the camera and the body frame, which we can retrieve from the

transformation matrix Tcb. We will refer to its translational component as tcb.

einit−depth(Xi) = ∥dmeas − s · dest − tT
cb · dalign∥2

σ2 (3.48)

dest = (Rwc · twb)
T · dalign (3.49)

Adding it to 3.47, the new cost function can be written in the form:

Y∗
k = argmin

Yk

(
||b||2

Σ−1
b

+
k

∑
i=1

(einertial(Xi)) +
k

∑
i=1

(
einit−depth(Xi)

))
(3.50)

The factor graph representation of this is found in Figure 3.10.

Figure 3.10: VIP initialization procedure

For the joint optimization in step 3, we simply add the absolute depth error term

to the bundle adjustment procedure. The global bundle adjustment is very similar

to Equation 3.45, but uses common biases for all keyframes, includes the same prior

information for biases, and optimizes all keyframes currently stored in the map.

X∗ = argmin
X0:k

(
evisual(X) + einertial(X) + edepth(X)

)
(3.51)

75

After running this procedure once, we allow the system to run its normal VIP

configuration. We repeat steps 2 and 3 twice to improve the initial estimates further.

This occurs after the system contains a certain number of keyframes that meet the

minimum measured depth threshold similar to the step 1. Table 3.7 provides a quick

summary of the steps performed, the number of keyframes required, and the depth

threshold.

Procedure
Minimum

keyframes

Threshold

[m]

Time since

last proc. [s]
Step 1 Step 2 Step 3

1 15 0.01 5 ✓ ✓ ✓

2 20 0.03 5 ✓ ✓

3 20 0.05 5 ✓ ✓

Table 3.7: VIP Initialization procedure

This initialization procedure is more robust in the underwater environment

compared to the visual-inertial initialization of ORB-SLAM3, which would in most

cases fail to initialize at all or was unable to converge towards an accurate solution.

Initialization for this configuration is also more consistent compared to the visual-

pressure configuration since there is less ambiguity when solving for the scale and

alignment.

76

3.8 Results

In this section, we analyse the performance of the proposed SLAM configurations.

First, we assess the impact of image preprocessing on tracking performance. Next,

we evaluate how well the system can estimate the given trajectory. This is the most

comprehensive section, covering the accuracy of the trajectory, how much the system

drifts, and how well the initialization procedures work. Finally, we discuss the changes

to loop closure.

The majority of the tests were conducted on the AQUALOC Harbor dataset

(Ferrera et al., 2019). AQUALOC is an underwater dataset for visual-inertial-pressure

localization. It contains three primary environments; a harbor environment, and two

archaeological sites. The ground truth for these datasets have been reconstructed using

Colmap, a state-of-the-art SfM reconstruction algorithm (Schonberger & Frahm, 2016).

We will simply refer to AQUALOC Harbor as the Harbor dataset. For some of the

tests, we include Sequence 1 from the simulation presented in Chapter 2. we will refer

to this dataset as UwUE. All results are gathered over the course of 10 runs for each

sequence included in the tests.

We also attempted testing the system on other datasets, such as the archaelogical

sites in AQUALOC. However, we found that our system was unable to properly

operate in these environments as they exhibit a large amount of dynamic disturbances.

We elaborate on this further in the discussion section (3.9).

Unless otherwise specified, we use the parameters for the visual component

detailed in Table 3.8 in all our tests.

Parameter Value

Number of tracked points 1500

CLAHE grid size 6 x 6

CLAHE clip limit 10

Table 3.8: Default visual parameters

3.8.1 Image preprocessing

In this section, we review the results of preprocessing the image using CLAHE.

77

We evaluate our implementation by measuring how consistently the system is

able to extract features from images and how many inliers it can find. The number

of extracted features decreases the likelihood of losing track due to low texture and

low contrast present underwater. However, this metric by itself is not sufficient to

describe an improvement in tracking. Ultimately, the number of inliers provide a better

indication to the performance of the system; the more inliers there are, the more map

points that can be added to the map and the more accurate the trajectory estimation can

be. This is still not a perfect metric as it can in certain cases cause noise to be registered

as a feature in the environment.

We test a total of four CLAHE configurations to evaluate the effectiveness of

different CLAHE values. The details regarding each configuration is shown in Table

3.9.

Parameter No-CLAHE CLAHE-1 CLAHE-3 CLAHE-10

Number of tracked points 3000 3000 3000 3000

CLAHE grid size - 6 x 6 6 x 6 6 x 6

CLAHE clip limit - 1 3 10

Table 3.9: CLAHE configurations

The number of features have been set higher than usual. In normal operations, the

system usually manages to maintain a stable number of tracked features. We have

increased this value to better highlight the results of each configuration.

We have chosen Harbor sequences 1 and 4, as well as UwUE sequence 1 to collect

our results. Sample images of the environments are given in Figure 3.11. The first

harbor sequence contains a section with a very uniform seabed, making it difficult

to identify distinct features. The fourth sequence contains a section where the ROV

travels high above the seabed, obscuring the view below due to the haziness of the

water. In normal operations, the system will usually fail to relocalize in this section.

The UwUE sequence contains very low illumination and contrast. Unlike in the harbor

datasets, the modelled ROV here uses a forward-facing camera.

CLAHE-3 AND CLAHE-10 are used for the harbor sequences while CLAHE-1

AND CLAHE-3 are used for the UwUE sequence. The UwUE uses more conservative

values due to some inherent limitations of the simulation. Namely, when the CLAHE

78

clip limit is too high, an unwanted halo is projected onto the center of the camera view.

Using too high of a clip limit causes the system to falsely assume that it is a feature in

the environment (Figure 3.11d).

(a) Harbor 1: low-texture area (b) Harbor 4: ROV high above the seabed

(c) UwUE 1: Dark environment

(d) UwUE 1: Halo effect. The halo is mis-

taken for a landmark in the environment.

Figure 3.11: Sample images from the chosen sequences

The results shown in Figures 3.12, 3.13 and 3.14 plot the mean number of tracked

points and inliers over the course of the trajectory. The data has been resampled at a

rate of 1 Hz, down from the camera framerate of 20 Hz for all sequences.

79

Figure 3.12: Harbor 1

Figure 3.13: Harbor 4

80

Figure 3.14: UwUE 1

Figure 3.15: Mean tracked points and inliers per dataset with standard deviation (black

lines)

We can see based on Figures 3.12 to 3.14 that increased values of CLAHE are

correlated with a greater number of tracked points. Harbor 1 and 4 consistently

maintain the required number of tracked points. The spikes at the very start of the

81

trajectories indicate the initialization of the map and is part of the usual initialization

procedure.

Despite the increase in tracked points, higher CLAHE values do not directly

correlate to a higher number of inliers. In fact, we can see on Figure 3.12 that CLAHE-

10 caused a decrease in the number of inliers. Figure 3.13 also shows that both CLAHE

configurations actually performed slightly worse than the base configuration. The only

period where they performed better was in the 100-second mark, but not by much.

On the other hand, we can see a significant improvement in the UwUE sequence

the higher the CLAHE value was, even though the number of inliers are still relatively

low.

Figure 3.15 summarizes the results for each dataset, showcasing the mean number

of tracked points and inliers as well as their standard deviation. We can easily see here

that the number of tracked points greatly benefit from CLAHE. Performance varies

depending on the dataset if we look at the number of inliers.

3.8.2 Trajectory analysis

This section presents the analysis of the trajectories for the proposed SLAM config-

urations. First, we analyze the estimated global trajectories of each configuration by

comparing them to the relevant ground truth values. We also test the configurations

for drift, and analyze their initialization procedures.

The majority of the data gathered here is from the Harbor dataset. We do however

include UwUE sequence 1 in Table 3.10, which shows the absolute trajectory error for

each configuration. It is not included in any further analysis, the reason for which is

given in Section 3.8.2.

Absolute trajectory error

The absolute trajectory error (ATE) provides a quantitative metric for evaluating the

overall accuracy of the trajectory.

Each trajectory is compared with its corresponding ground truth and aligned

using Umeyama alignment (Umeyama, 1991), but without scaling the trajectory. The

practical process of analysing these trajectories is achieved with the help of the Evo

Python package (Grupp, 2017). Table 3.10 shows the median root mean squared error

82

(RMSE) calculated for each configuration. Values marked with X indicate that the

configuration was unable to successfully complete the sequence.

We have also included the results from UW-VO (Ferrera, 2019) in the AQUALOC

dataset. However, note that their values are based on an older version of the ground

truth. It has since been adjusted to be more accurate. As such, we cannot make a

proper one-to-one comparison.

The trajectories have also been plotted for each sequence, which can be seen from

Figures 3.16 to 3.22 for the Harbor dataset. Figure 3.23 shows the trajectory for UwUE

sequence 1. These figures also include ORB-SLAM’s base monocular configuration.

UW-VO ORB-SLAM

Seq Length [m] VP VIP VP-1A VP-1B VP-2A VP-2B VIP

H1 36.725 0.490 0.420 0.371 0.166 0.801 0.723 0.234

H2 68.920 0.360 0.370 0.583 0.560 0.444 0.526 0.489

H3 23.025 0.250 0.260 0.138 0.148 0.235 0.222 0.079

H4 47.645 X 1.560 X X X X X

H5 27.045 0.130 0.090 0.515 0.592 1.279 1.107 0.369

H6 11.711 0.040 0.060 0.645 0.224 0.395 0.115 0.069

H7 23.868 X 1.160 X X X X 1.612

U1 155.022 - - 5.081 4.595 4.956 4.570 5.207

Table 3.10: Absolute trajectory error (RMSE) [m] on AQUALOC harbor (H) dataset as

well as sequence 1 of UwUE (U)

We can see based on Table 3.10 that the proposed configurations are comparable, if

not slightly underperforming compared to UW-VO. Again, their values reflect an older

version of the ground truth and therefore cannot be compared directly.

None of the visual-pressure configurations were able to successfully complete

Harbor sequences 4 and 7. These sequences are the most challenging in the Harbor

dataset, as they contain sections with very little visual information. Both sequences

also contain collisions, which frequently cause the systems to fail.

The visual-inertial-pressure configuration shows better overall results compared

to the visual-pressure configuration. Unfortunately, it was still unable to consistently

complete sequence 4. Figure 3.19 shows the best trajectory it managed to complete,

83

which as we can see still diverges significantly from the ground truth. The

configuration also diverges by a considerable margin in Harbor 7, but showed more

consistent performance here than in Harbor 4.

The results for UwUE sequence 1 show very high values for the ATE. However,

the issues here are more than likely due to the sensor measurements not being

synchronized. The values are therefore not indicative of the system’s performance

for any configuration. We have decided to keep the result for the ATE here, but further

analysis in this section no longer uses UwUE sequence 1.

Figure 3.16: Harbor 1

Figure 3.17: Harbor 2

84

Figure 3.18: Harbor 3

Figure 3.19: Harbor 4. Note that the trajectory shown here is the best trajectory out of

10 runs.

85

Figure 3.20: Harbor 5

Figure 3.21: Harbor 6

86

Figure 3.22: Harbor 7

Figure 3.23: UwUE 1

87

Since the values presented in Table 3.10 usually increases according to the length of

the trajectory, it can be difficult to compare the error of each configuration directly

across all sequences. Figure 3.24 shows the mean APE for all configurations as a

percentage relative to the trajectory length. We do not include the values for Harbor

4 and 7, as their errors are too high. From this, we can better compare how each

system performs relative to each sequence. For instance, while it seemed at first that

all configurations had a high ATE for Harbor 2, we can actually see here that they all

achieved relatively good results compared to the other sequences.

Figure 3.24: Mean APE as a percentage of trajectory length [%]

Relative pose error

The relative pose error (RPE) provides information on how the trajectory drifts over

time by comparing the motion between poses. It is also a useful metric to measure the

system when it is operating normally. Unlike the ATE, it is more useful to evaluate the

RPE by scaling up the trajectory. This allows for a more direct comparison between

configurations. This also means that the initialization procedure is not relevant in

this examination. Since the different visual-pressure configurations only differ in

their initialization procedure, their normal operations will produce the same result.

Therefore, we choose only one of them for comparison. Specifically, we choose the

values for configuration VP-1B, which, for this section, we will simply refer to as VP.

88

We include the base visual configuration in our comparison as well. Table 3.11 shows

the mean RPE for each sequence, including its standard deviation. We use centimeters

due to the small values.

V VP VIP

Seq Mean Std. Mean Std. Mean Std.

H1 2.4 1.7 1.9 0.1 17.1 0.6

H2 9.5 0.3 9.5 0.2 19.3 0.3

H3 1.3 0.04 1.3 0.04 11.5 0.5

H4 - - - - 18.7 2.8

H5 1.9 0.04 2.0 0.1 9.4 2.7

H6 1.1 0.2 1.0 0.03 6.8 0.1

H7 - - - - 10.5 1.4

Avg 3.24 0.45 3.14 0.094 13.33 1.2

Table 3.11: RPE for all sequences. All units are measured in centimeters [cm]

We can see that both the base monocular and visual-pressure configurations exhibit

very little drift. On the other hand, the visual-inertial-pressure configuration shows

much higher drift than the others, which is a somewhat surprising result. We discuss

this further in the discussion section.

Initialization

Here, we analyze the results of the different initialization procedures. We look at the

accuracy in scale, alignment, and initialization time. The scale is the most important

factor among these, as it has the greatest impact on the accuracy of the trajectory.

However, since the project uses a sensor that relies on accurate alignment, the rotation

of the trajectory relative to the world reference frame plays a bigger role than in most

other cases. Initialization time is the least important in this context and is most useful

in real-time operations, where faster initialization leads to useful localization and

mapping information more quickly. In the following sections, each metric is presented

in a table containing the mean and standard deviation for each configuration, as

measured for each sequence. We calculate each metric by scaling and aligning the

trajectory with the ground truth using Umeyama alignment.

89

Scale The scale error is measured as a percentage of the actual scale, the results of

which can be found in Table 3.12. Looking at the visual-pressure configurations, we

can see that using depth measurements alone is generally good enough to recover the

scale, although their performance varies considerably.

For the visual-inertial-pressure configuration, we see that the initialization proced-

ure is extremely effective at recovering scale, with an average error below 3%.

VP-1A VP-1B VP-2A VP-2B VIP

Seq Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

1 20.80 26.75 8.66 10.27 14.62 9.93 9.40 25.22 1.74 11.49

2 6.40 18.94 6.43 20.47 6.98 17.43 7.52 6.18 0.23 10.68

3 8.82 1.73 8.98 1.88 14.62 3.04 14.21 1.61 3.40 12.28

5 4.57 23.52 6.16 25.83 41.43 7.78 33.85 4.46 3.66 34.94

6 54.67 51.35 34.18 37.45 70.42 170.85 8.89 13.55 4.31 10.67

Ave. 19.06 24.46 12.88 19.18 29.62 41.81 14.78 10.21 2.67 16.01

Table 3.12: Scale error as percentage of actual scale [%]

Alignment The rotation error measures the difference in alignment between the

estimated trajectory and the ground truth. The values shown in Table 3.13 show the

normalized pitch and roll angles as a single value. We do not take yaw into account,

as it is always arbitrarily set during initialization. The only reliable way of recovering

the yaw is if the system has some way to measure the global heading, such as with a

compass. We show the values in degrees as it is easier to interpret.

The values do not follow quite the same trend as the scale. The overall results are

decent, with all configurations able to recover the rotation within 10 degrees of the true

alignment.

Unsurprisingly, the visual-inertial-pressure configuration shows extremely good

results for recovering the alignment. The procedure is very accurate and reliable,

highlighting how useful the IMU is for calculating rotation.

Initialization time The initialization time is measured from when the system first

creates a map until the initialization procedure finishes. The time is measured in

seconds, and the results can be seen in Table 3.14.

90

VP-1A VP-1B VP-2A VP-2B VIP

Seq Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

1 20.82 13.31 14.25 2.10 10.48 2.51 20.59 20.25 2.05 0.49

2 7.50 11.59 6.10 8.48 8.56 10.70 4.53 1.66 0.57 0.54

3 1.89 1.17 5.56 1.89 5.43 0.95 6.27 1.56 1.02 0.10

5 13.47 2.28 12.36 3.70 11.48 3.97 13.00 2.82 1.00 0.62

6 3.27 1.02 2.45 0.98 6.97 6.62 2.91 1.80 1.05 0.16

Ave. 9.40 5.88 8.14 3.43 8.58 4.95 9.46 5.62 1.14 0.38

Table 3.13: Rotation error in degrees [°]

For the visual-pressure configurations, we see that the average initialization times

are very similar across the board, with all of them managing to initialize in under 20

seconds. The A configurations have higher standard deviations, but this is expected as

their criteria for a successful initialization are more dynamic compared to B.

The visual-inertial-pressure configuration has on average longer initialization

times, which is expected given the increased number of steps in the procedure.

VP-1A VP-1B VP-2A VP-2B VIP

Seq Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

1 18.85 5.85 16.31 0.79 16.06 4.86 16.37 1.06 30.05 2.44

2 18.87 1.56 15.41 0.34 19.95 4.33 15.64 0.53 17.78 0.76

3 13.50 0.31 15.77 0.21 17.65 0.49 16.01 0.42 25.91 0.52

5 14.58 0.85 15.84 0.66 17.66 1.11 15.48 0.37 20.69 4.22

6 14.08 0.90 17.56 1.43 18.61 9.46 17.93 1.46 42.42 5.74

Ave. 16.00 1.89 16.18 0.69 17.99 4.05 16.29 0.77 27.37 2.73

Table 3.14: Initialization time in seconds [s]

3.8.3 Loop closure

In this section, we analyze the results of the custom ORB vocabularies. The ORB

vocabulary is mostly relevant when querying the database for matching keyframes.

There are several other geometric verification steps that are unaffected by the change

of vocabulary, which have not been included here. Our analysis simply looks for a

91

correlation between the number of BoW matches and loop closures found.

We conduct the tests on Harbor sequences 1 and 5. These two sequences triggered

loop closures most often and have therefore been chosen as candidates for testing,

although loop closure across all datasets we have tested on has generally been rare.

Figure 3.25: Harbor 1

Figures 3.25 and 3.26 plot the values of the number of BoW matches and loop

closures found over the course of the trajectory. Looking at the number of BoW

matches, it is difficult to see any noticeable improvement in the number of matches

for each configuration. UW-Voc is the only configuration that shows a mild increase in

BoW matches, although this is only for Harbor 1.

The system did not manage to find a loop closure for Harbor 1 over the course of

10 runs. We can see that the number of BoW matches spikes when it returns to its

starting position but does not trigger a loop closure. In Harbor 5, the system is able

to recognize the loop when returning. Here, we see a noticeable improvement in the

number of loop closures found for the AH-Voc configuration.

Looking at Figure 3.27a, we can more easily see that UW-Voc-C does detect more

92

BoW matches, but only for Harbor 1. In Harbor 5, all other configurations actually

show fewer matches. Despite this, AH-Voc managed to find the most loop closures.

Figure 3.26: Harbor 5

(a) Mean number of BoW matches (b) Number of loops found

Figure 3.27: summary of results for each trajectory

93

3.9 Discussion

In this section, we discuss the results of the previous section. We also provide here a

brief section on the limitations of the study as well as suggestions for further work.

3.9.1 Image preprocessing

The results show that applying CLAHE greatly correlates to a higher and more stable

number of tracked points. This is greatly beneficial in areas with low texture. However,

the number of inliers did not benefit as much from higher CLAHE values. In fact, it was

sometimes the opposite. One hypothesis regarding this is that the adaptive nature of

the histogram equalization can make the same feature in consecutive images appear as

being different due to a change of exposure. Another thing to point out is that applying

CLAHE reduced the standard deviation for the inliers, which suggests that CLAHE is

beneficial in that it provides a more consistent performance for feature recognition.

Based on the results, it is difficult to decide which configuration had the best

performance. Rather, the data suggests that to what degree CLAHE should be applied

is highly dependent on the environment where it is used. We can see that even for the

same dataset, its performance does not clearly indicate that one should be used over

another. The rule of thumb here seems to be to use as minimal amount of CLAHE as is

feasible to increase the contrast of the image. It may also be interesting to dynamically

change the clip limit of CLAHE in the system during operation.

It is also important to note that CLAHE will not help against highly dynamic

environments. We briefly mentioned at the start of the results that we wanted to test the

system on other datasets, but we found that it could not handle the visual disturbances.

3.9.2 Trajectory analysis

Based on the ATE results in Section 3.8.2, we can note that fusing depth measurements

does aid the system in reducing the error by correctly scaling the trajectory. In

our discussion, we will look at the visual-pressure and visual-inertial-pressure

configurations separately.

94

Visual-pressure configuration

We can see how much influence the initialization procedures have on the accuracy

of the trajectory by looking at the results of the different visual-pressure configur-

ations. Surprisingly, the depth average-based strategies (VP-1X) outperforms the

optimization-based strategies (VP-2X) most of the time. The B-configurations also

exhibit better overall results, implying that scale and rotation calculations are bet-

ter solved at set intervals instead of an iterative process. The configurations using

iteration-based initialization techniques struggle particularly with Harbor 6. This se-

quence contains very little motion along the z-axis, which we believe is the reason for

the poorer performance here. VP-1B showcases the best overall results in trajectory es-

timation for the visual-pressure configuration, although VP-2B does not fall far behind

either.

The results of the ATE are further supported when we look at the RPE in Section

3.8.2 as well as the initialization results in Section 3.8.2. First, we analyze more deeply

the results for RPE.

The changes to the pose estimation and local bundle adjustment algorithms did

not change the RPE by a noticeable amount, except for the decrease in the standard

deviation. This indicates that the depth measurements help constrain the trajectory

even if the contribution is small. However, this is because the base monocular

configuration already shows excellent performance with very little drift. We believe

that the values are low due to the slow movement of the ROV. Because of this, the

results of the RPE analysis might not properly represent the performance of the system

if we were to generalize it. Monocular configurations usually tend to suffer from

scale drift over time, especially during rotational motions. Testing for datasets with

faster motions should therefore be done to better verify if the depth measurements can

properly constrain the drift in scale.

When looking at the initialization procedures, we can clearly see that the error

in scale directly correlates to the error in the trajectory. Set interval strategies (VP-

XB) are better than the iterative strategies in almost all cases, and VP-1B shows the

most accurate scale estimates in the visual-pressure category. VP-2B however does not

fall far behind, and shows a more consistent initialization procedure with less overall

standard deviation. In fact, it was the only strategy that managed to recover the scale

95

within 10% of the true value for Harbor 6. We note that this sequence has very little

initial motion along the depth-aligned axis, which implies that this strategy is better

suited for these types of situations compared to the others. VP-2A has by the worst

results and does not generalize well to all sequences, although we are unsure as to the

specific reason for its inconsistent behavior.

All visual-pressure configurations were generally able to calculate the alignment

reliably. We can however notice that they all struggle with Harbor 1. This is likely

due to the fact that in this sequence, the ROV has limited motions along one of the

translational axes until much later on. The initialization procedure is therefore unable

to correct for this. Harbor 5 also has similar issues. VP-1B again shows the lowest

error, but not by a considerable amount compared to the other configurations. Since

the trend does not quite follow the same pattern as the scale or ATE, we can see that

recovering the alignment does not play as significant a factor in the accuracy of the

trajectory.

For the initialization times, all configurations have very similar values. VP-1A has

the shortest initialization period, although the other configurations are not too far off.

This indicates that all configurations are able to reliably finish their initialization within

the span of the trajectory. The consistent initialization times are also a good sign if the

user were to conduct live testing, as they are in almost all cases guaranteed to get

nominal localization and mapping information within an expected amount of time.

Visual-inertial-pressure configuration

The visual-inertial-pressure configuration is noticeably better than the visual-pressure

configurations in that its results are more consistent. However, this configuration was

still unable to complete Harbor 4 and 7, meaning that the system is still not sufficiently

robust towards short-term visual loss. This suggests that the modified pose estimation

step described in Section 3.7.2 is not sufficient to counteract the accumulation of bias in

the system. To a certain extent, this is not surprising given that the modification simply

scales the entire pose delta based on the ratio between the depth and z-axis translation.

Alternative methods must therefore be explored to counteract this, although this may

be difficult without adding new sensor modalities.

By examining its RPE and initialization results, we see that its main weakness

96

is with regards to drift in trajectory. Surprisingly, the visual-inertial-pressure

configuration exhibits much higher drift than the others. There are two likely causes

for this. The first is that the movements are simply too slow, which makes it difficult for

the system to accurately calculate the inertial parameters. The second possible cause

might be the local bundle adjustment algorithm used. Although it has been proven to

be more efficient and demonstrated comparable accuracy in indoor environments, it

might not be as well suited for the underwater domain.

Looking at initialization, the configuration is extremely reliable at recovering scale

and alignment. The initialization time is longer than the visual-pressure configuration,

but this is expected due to its extensive procedure. However, the long initialization

time of 42 seconds for Harbor 6 is still unusual. The trajectory only has a duration of

113 seconds, which means that it uses over a third of the trajectory to fully initialize.

The sequence contains very slow motions overall, even compared to the rest of the

dataset. We can reasonably assume that this is the main issue behind the long

initialization period.

Map quality

We provide a brief qualitative analysis of the map quality, which is heavily tied to the

accuracy of the trajectory.

For the AQUALOC Harbor dataset, the map is surprisingly detailed despite the fact

that ORB-SLAM creates a sparse map reconstruction. We believe that this is likely due

to the slow motions of the ROV and the downward-facing camera, which allows for

many of the same features to be re-observed (given that there are no visual occlusions).

We can also notice that there are many stray map points, likely due to particles in the

water that are mislabeled as features.

The maps of the base configuration and visual-pressure configuration are more

consistent. This is also supported by the fact that they drift very slowly from the actual

trajectory (section 3.8.2). Likewise, we can see that the drift in trajectory for the visual-

inertial-pressure configuration is noticeable on the map. Figure 3.29 shows where the

ROV revisits a previous location, but the map does not align with itself.

97

Figure 3.28: Side-view of the map produced by the base monocular configuration.

Figure 3.29: Side-view of the map produced by the visual-inertial-pressure configura-

tion. Notice how the map does not overlap like in Figure 3.28.

98

Reliability

The system is generally reliable in performing localization and mapping. Occasionally,

the system will lose track for no apparent reason, but we are unsure whether this is

an issue with the system or the data that is being fed to it. Usually, it can recover

from these anomalies. However, the visual-pressure configuration is less reliable in

recovering from tracking loss midway through the session. Usually, it is unable to

initialize successfully afterward, likely because it no longer has ideal motions for

successful initialization. The visual-inertial-pressure configuration is better in that

regard.

One thing to keep in mind with the visual-inertial-pressure configuration is that

it is highly reliant on accurate timestamps between the visual and inertial data. The

performance degrades considerably even if the offset is only in the tens of milliseconds.

Practically, it makes it much more difficult to use this configuration for live testing

without proper software or hardware synchronization.

Computation time

One metric that has not been quantitatively analyzed is the computation time for the

different parts of the system. We remark that there is no noticeable decrease in the

perceived performance of the system. However, a quantitative analysis should still be

conducted on this at some point. The specific areas of interest include the impact of

image preprocessing and the various optimization algorithms changed in the system.

Summary of trajectory analysis

The visual-pressure configuration shows good overall performance specifically due to

the low amount of drift. The initialization procedures, while sufficient, still contain

room for improvement. Scale is clearly the most important factor for initialization, and

the different procedures have on average an error of 20%. We believe that this can be

improved if the dataset contain the ideal motions for initialization as we described in

Section 3.6.4. However, the system should still be sufficiently robust that it can handle

these non-ideal situations.

The visual-inertial-pressure configuration show the opposite results, exhibiting

highly accurate initialization estimates but suffering from high drift. This means that

99

the pose estimations and local bundle adjustment procedures need to be revisited and

improved upon. As it stands, the ideal configuration seems to be using the inertial

measurements only during initialization and letting the system operate in its base

configuration afterwards.

3.9.3 Loop closure analysis

The results on our loop closure analysis show that there is no inherent improvement

to the number of BoW matches between the different custom configurations and the

base configuration. Although the number of loops might have improved slightly with

one of the configurations, namely AH-Voc, this improvement seems to fall within the

margin of error. We can see that all other configurations only differ by 1 or 2 loops.

Therefore, it might not be advantageous to invest time and effort into creating a new

vocabulary based on these results alone.

To a certain extent, these results are perhaps not that surprising. We can clearly

see that the BoW matches spike whenever the system recognizes a previous location,

which if we were to compare with the trajectory, lines up reasonably well on the

timeline. However, BoW matches are prone to false positives, hence the reason for the

geometric verification procedure. The geometric verification steps should therefore be

further investigated to see if it can be better tailored to the underater domain.

3.9.4 Comparison to other SLAM systems

UW-VO is the best SLAM system to compare to ours and is the only one with

data associated with a public dataset. In our comparisons, we see that UW-vo

generally performed better, again keeping in mind that its results are based on an

older ground truth configuration. However, we still believe that our project presents

some interesting insights on other factors such as the different initialization procedures

explored and the analysis on different vocabularies for place recognition.

Given that Svin2 supports the visual-inertial-pressure configuration, it would have

been interesting to have added it to our comparison as well. However, setting it up

took longer than expected and we had to drop it in favor of other developments in the

project.

100

3.9.5 Limitations

One of the main limitations of this study is the datasets used for testing and

experimentation. The majority of tests were done for the AQUALOC Harbor dataset

which only model a limited area, and do not encompass the full range of possible

environments and conditions of the underwater domain. We tested to a very limited

extent the archaeological dataset but our system was unable to handle the challenges

present in these sequences.

There are plenty other combinations of the different parts of our system that

have not been explored exhaustively, such as testing CLAHE parameters over a

much broader range of values, or testing and changing all the different initialization

parameters. The DBoW2 vocabularies were also not tested much with other

configurations of the system.

Further analysis of the results could also be done, such as presenting any possible

correlations between the variables in image preprocessing and initialization. As we

explained earlier, it would also be of interest to perform a quantitative analysis of the

system’s computational performance.

3.9.6 Suggestions for future work

The biggest challenge of the configurations presented still lies within the visual

pipeline. Further work should be done to improve the performance of the visual

component, either through image preprocessing techniques or a complete overhaul of

the system. Deep learning techniques seem like a highly interesting avenue to explore

to accomplish this.

More work should be done to improve the visual-pressure and visual-inertial-

pressure configurations to address the main issues described in Section 3.9.2. Another

alternative is to explore other sensor modalities that could be integrated to the

system, although they must be chosen carefully if the goal is to support low-cost

configurations.

The loop closure capabilities are perhaps the weakest link in this configuration.

Further work should be done to improve the loop closure capabilities. Exploring

other alternative methods such as the cluster-based loop closure approach presented

101

by (Negre et al., 2016) earlier could be interesting, although this would also require

overhauling other parts of the system.

102

3.10 Conclusion

In this chapter, we presented the development of a visual-pressure and visual-inertial-

pressure configuration using ORB-SLAM3 as our basis. We implemented changes

to the visual component by adding image preprocessing. We modified the pose

estimation and local bundle adjustment algorithms to include depth measurements

in the tracking and local mapping threads respectively. We also presented several

initialization procedures for the visual-pressure configuration. Finally, for the visual-

pressure configuration, we created several ORB vocabularies trained in the underwater

domain.

We modified the visual-inertial configuration of ORB-SLAM to create the visual-

inertial-pressure configuration. Here, we also modified the visual component in the

same manner, and also made changes to the tracking and local mapping threads

respectively. We created a new initialization procedure for the visual-inertial-pressure

configuration.

The results showed that these configurations were able to successfully adapt ORB-

SLAM to work better in the underwater environment. Applying CLAHE helped

increase the number of tracked points, although care must be taken as setting the value

too high negatively impacts the number of inliers the system is able to find.

The depth measurements were sufficient to recover the scale, although more work

is needed to refine the scale estimation for the visual-pressure configuration. On the

other hand, the visual-inertial-pressure configuration showed remarkable results when

recovering scale and aligning the trajectory, but suffered from a drift in the trajectory

during normal operation.

The new underwater vocabularies did not show a noticeable improvement in the

system’s ability to form loop closures. Further work should be done to improve this

part of the system.

There are several paths that can be taken for future work. Firstly, more tests

should be conducted to verify the performance of the system in different environments,

although we note that it currently cannot handle environments with too many dynamic

disturbances. The visual component, as is the case with any visual SLAM algorithm,

can be further improved to better handle the underwater domain, either through

new image preprocessing techniques or a complete overhaul of the visual pipeline.

103

Deep learning techniques could be especially interesting here. New sensor modalities

should also be considered. For this project, we wanted to make sure that the system

is applicable to a wide variety of low-cost configurations. Those who wish to continue

with the same line of reasoning should therefore be mindful on what other sensor

modalities could be included. Finally, more work on the place recognition algorithm

would greatly improve the performance of the system. Alternative place recognition

systems should also be explored that may be better suited for the underwater domain.

104

Chapter 4

Project Conclusion

In this thesis, we presented two main contributions to the field of underwater

robotics. The first contribution was the design, implementation, and evaluation

of an underwater simulation environment for visual SLAM and other robotic

applications. This environment was developed using Unreal Engine and Gazebo,

focusing on generating visually realistic environments that closely resemble real-

world underwater conditions. The second contribution involved the adaptation of

ORB-SLAM3 for underwater environments using visual-pressure and visual-inertial-

pressure configurations. This was achieved by modifying the visual component with

image preprocessing, implementing changes to the pose estimation and local bundle

adjustment algorithms, creating new vocabularies, and designing several initialization

procedures for the visual-pressure configuration.

The results of our work show that both the simulation environment and the

modified ORB-SLAM configurations are capable of providing valuable tools for

research and development in the field of underwater robotics. The simulation

environment offers realistic visuals and sensor data, while the adapted ORB-SLAM

configurations demonstrate improved performance in the underwater domain.

However, there remain several challenges and opportunities for future work. For

the simulation environment, usability remains a significant challenge, and further

development should focus on streamlining the development pipeline and reducing

computational demand. Perhaps the most important aspect that should be focused

on first is synchronizing the sensor data properly, which would greatly increase the

usefulness of the simulation. Moreover, expanding the evaluation to cover a wider

105

range of scenarios and features, implementing new environments, additional sensors,

and a GUI would increase the value of the simulation for researchers and developers.

For the adapted ORB-SLAM configurations, further work is needed to refine the

scale estimation for the visual-pressure configuration, address drift in the trajectory

for the visual-inertial-pressure configuration, and improve the system’s ability to form

loop closures. Additionally, more tests should be conducted in different environments,

and further improvements to the visual component should be explored, including the

potential application of deep learning techniques.

We hope to make the realm of underwater robotics more accessible to the public.

To that end, the implementations of the simulation and SLAM system have been made

readily available online in the following github repositories (Tomter, 2023a, 2023b).

Those who wish to continue the development of these systems are also welcome to do

so.

106

Bibliography

Ahamed, J., Abas, P. E., & De Silva, L. (2019). Review of underwater image restoration

algorithms. IET Signal Processing, 13. https://doi.org/10.1049/iet-ipr.2019.0117

Anwar, S., Li, C., & Porikli, F. (2018). Deep underwater image enhancement. arXiv

preprint arXiv:1807.03528.

Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localization and mapping (slam):

Part i the essential algorithms. IEEE Robotics and Automation Magazine, 13(2), 99–

110.

Bay, H., Tuytelaars, T., & Van Gool, L. (2006). Surf: Speeded up robust features. In A.

Leonardis, H. Bischof & A. Pinz (Eds.), Computer vision – eccv 2006 (pp. 404–417).

Springer Berlin Heidelberg.

Bellingmo, P. R. (2020). Dp control system for blueye pioneer (Master’s thesis). NTNU.

Blanco-Claraco, J. L. (2022). A tutorial on SE(3) transformation parameterizations and

on-manifold optimization.

BlueRobotics. (2023). Bluerov2 [Accessed: 08.05.2023]. https : / / bluerobotics . com /

store/rov/bluerov2/

Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., & Fua, P. (2012). Brief:

Computing a local binary descriptor very fast. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 34(7), 1281–1298. https://doi.org/10.1109/

TPAMI.2011.222

Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M. M., & Tardós, J. D. (2021). Orb-

slam3: An accurate open-source library for visual, visual–inertial, and multimap

slam. IEEE Transactions on Robotics, 37(6), 1874–1890. https://doi.org/10.1109/

TRO.2021.3075644

Chaudhary, A., Mishra, R., Kalyan, B., & Chitre, M. (2021). Development of an

underwater simulator using unity3d and robot operating system. OCEANS

107

https://doi.org/10.1049/iet-ipr.2019.0117
https://bluerobotics.com/store/rov/bluerov2/
https://bluerobotics.com/store/rov/bluerov2/
https://doi.org/10.1109/TPAMI.2011.222
https://doi.org/10.1109/TPAMI.2011.222
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/TRO.2021.3075644

2021: San Diego – Porto, 1–7. https://doi.org/10.23919/OCEANS44145.2021.

9706012

Chen, E., & Guo, J. (2014). Real time map generation using sidescan sonar scanlines for

unmanned underwater vehicles. Ocean Engineering, 91, 252–262. https://doi.

org/https://doi.org/10.1016/j.oceaneng.2014.09.017

Chen, L., Yang, A., Hu, H., & Naeem, W. (2020). Rbpf-msis: Toward rao-blackwellized

particle filter slam for autonomous underwater vehicle with slow mechanical

scanning imaging sonar. IEEE Systems Journal, 14(3), 3301–3312. https://doi .

org/10.1109/JSYST.2019.2938599

code-iai. (2023). Rosintegration plugin for unreal engine 4 [Accessed: 10.12.2022]. https:

//github.com/code-iai/ROSIntegration

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An

open urban driving simulator. Proceedings of the 1st Annual Conference on Robot

Learning, 1–16.

Engel, J., Koltun, V., & Cremers, D. (2018). Direct sparse odometry. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 40(3), 611–625. https://doi.org/10.

1109/TPAMI.2017.2658577

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for

discovering clusters in large spatial databases with noise. kdd, 96(34), 226–231.

Ferrera, M. (2019). Monocular visual-inertial-pressure fusion for underwater localization and

3d mapping. (Doctoral dissertation). Université Montpellier.

Ferrera, M., Creuze, V., Moras, J., & Trouvé-Peloux, P. (2019). Aqualoc: An underwater

dataset for visual–inertial–pressure localization. The International Journal of

Robotics Research, 38(14), 1549–1559.

Field Robotics Lab. (2022). Project dave repository [Accessed: 15.10.2022]. https : / /

github.com/Field-Robotics-Lab/dave

Forster, C., Zhang, Z., Gassner, M., Werlberger, M., & Scaramuzza, D. (2017). Svo:

Semidirect visual odometry for monocular and multicamera systems. IEEE

Transactions on Robotics, 33(2), 249–265. https://doi.org/10.1109/TRO.2016.

2623335

Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. John Wiley

& Sons.

108

https://doi.org/10.23919/OCEANS44145.2021.9706012
https://doi.org/10.23919/OCEANS44145.2021.9706012
https://doi.org/https://doi.org/10.1016/j.oceaneng.2014.09.017
https://doi.org/https://doi.org/10.1016/j.oceaneng.2014.09.017
https://doi.org/10.1109/JSYST.2019.2938599
https://doi.org/10.1109/JSYST.2019.2938599
https://github.com/code-iai/ROSIntegration
https://github.com/code-iai/ROSIntegration
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1109/TPAMI.2017.2658577
https://github.com/Field-Robotics-Lab/dave
https://github.com/Field-Robotics-Lab/dave
https://doi.org/10.1109/TRO.2016.2623335
https://doi.org/10.1109/TRO.2016.2623335

Furrer, F., Burri, M., Achtelik, M., & Siegwart, R. (2016). Rotors—a modular gazebo

mav simulator framework. In A. Koubaa (Ed.), Robot operating system (ros): The

complete reference (volume 1) (pp. 595–625). Springer International Publishing.

https://doi.org/10.1007/978-3-319-26054-9_23

Gálvez-López, D., & Tardos, J. D. (2012). Bags of binary words for fast place recognition

in image sequences. IEEE Transactions on Robotics, 28(5), 1188–1197.

Georgiou, T., Liu, Y., Chen, W., & Lew, M. (2020). A survey of traditional and

deep learning-based feature descriptors for high dimensional data in computer

vision. International Journal of Multimedia Information Retrieval, 9(3), 135–170.

Grupp, M. (2017). Evo: Python package for the evaluation of odometry and slam.

Harris, C., Stephens, M., et al. (1988). A combined corner and edge detector. Alvey

vision conference, 15(50), 10–5244.

He, B., Liang, Y., Feng, X., Nian, R., Yan, T., Li, M., & Zhang, S. (2012). Auv slam and

experiments using a mechanical scanning forward-looking sonar. Sensors, 12(7),

9386–9410. https://doi.org/10.3390/s120709386

Hidalgo, F., & Bräunl, T. (2015). Review of underwater slam techniques. 2015 6th

International Conference on Automation, Robotics and Applications (ICARA), 306–

311. https://doi.org/10.1109/ICARA.2015.7081165

Hidalgo Herencia, F. (2019). Simultaneous localization and mapping in underwater robots

(Doctoral dissertation). The University of Western Australia. https://doi.org/

10.26182/5c944ec20af50

Katara, P., Khanna, M., Nagar, H., & Panaiyappan, A. (2019). Open source simulator for

unmanned underwater vehicles using ros and unity3d. 2019 IEEE Underwater

Technology (UT), 1–7. https://doi.org/10.1109/UT.2019.8734309

Klein, G., & Murray, D. (2007). Parallel tracking and mapping for small ar workspaces.

2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality,

225–234. https://doi.org/10.1109/ISMAR.2007.4538852

Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an

open-source multi-robot simulator. 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 3, 2149–2154

vol.3. https://doi.org/10.1109/IROS.2004.1389727

109

https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.3390/s120709386
https://doi.org/10.1109/ICARA.2015.7081165
https://doi.org/10.26182/5c944ec20af50
https://doi.org/10.26182/5c944ec20af50
https://doi.org/10.1109/UT.2019.8734309
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/IROS.2004.1389727

Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W. (2011). G 2 o: A

general framework for graph optimization. 2011 IEEE International Conference on

Robotics and Automation, 3607–3613.

Leutenegger, S., Chli, M., & Siegwart, R. Y. (2011). Brisk: Binary robust invariant

scalable keypoints. 2011 International Conference on Computer Vision, 2548–2555.

https://doi.org/10.1109/ICCV.2011.6126542

Leutenegger, S., Forster, A., Furgale, P., Gohl, P., & Lynen, S. (2016). Okvis: Open

keyframe-based visual-inertial slam (ros version).

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Interna-

tional journal of computer vision, 60(2), 91–110.

Manhães, M. M. M., Scherer, S. A., Voss, M., Douat, L. R., & Rauschenbach, T. (2016).

UUV simulator: A gazebo-based package for underwater intervention and

multi-robot simulation. OCEANS 2016 MTS/IEEE Monterey. https://doi.org/

10.1109/oceans.2016.7761080

Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., & von Stryk, O. (2012).

Comprehensive simulation of quadrotor uavs using ros and gazebo. In I. Noda,

N. Ando, D. Brugali & J. J. Kuffner (Eds.), Simulation, modeling, and programming

for autonomous robots (pp. 400–411). Springer Berlin Heidelberg.

Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al. (2002). Fastslam: A factored

solution to the simultaneous localization and mapping problem. Aaai/iaai,

593598.

Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al. (2003). Fastslam 2.0:

An improved particle filtering algorithm for simultaneous localization and

mapping that provably converges. IJCAI, 3, 1151–1156.

Mur-Artal, R., Montiel, J. M. M., & Tardós, J. D. (2015). Orb-slam: A versatile and

accurate monocular slam system. IEEE Transactions on Robotics, 31(5), 1147–1163.

https://doi.org/10.1109/TRO.2015.2463671

Mur-Artal, R., & Tardós, J. D. (2014). Fast relocalisation and loop closing in keyframe-

based slam. 2014 IEEE International Conference on Robotics and Automation (ICRA),

846–853.

110

https://doi.org/10.1109/ICCV.2011.6126542
https://doi.org/10.1109/oceans.2016.7761080
https://doi.org/10.1109/oceans.2016.7761080
https://doi.org/10.1109/TRO.2015.2463671

Mur-Artal, R., & Tardós, J. D. (2017a). Orb-slam2: An open-source slam system for

monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics, 33(5), 1255–

1262. https://doi.org/10.1109/TRO.2017.2705103

Mur-Artal, R., & Tardós, J. D. (2017b). Visual-inertial monocular slam with map reuse.

IEEE Robotics and Automation Letters, 2(2), 796–803. https://doi.org/10.1109/

LRA.2017.2653359

Negre, P. L., Bonin-Font, F., & Oliver, G. (2016). Cluster-based loop closing detection

for underwater slam in feature-poor regions. 2016 IEEE International Conference

on Robotics and Automation (ICRA), 2589–2595. https://doi.org/10.1109/ICRA.

2016.7487416

Negre Carrasco, P. L., Bonin-Font, F., & Oliver-Codina, G. (2016). Global image

signature for visual loop-closure detection. Autonomous Robots, 40, 1403–1417.

Newcombe, R. A., Lovegrove, S. J., & Davison, A. J. (2011). Dtam: Dense tracking and

mapping in real-time. 2011 International Conference on Computer Vision, 2320–

2327. https://doi.org/10.1109/ICCV.2011.6126513

Noh, H., Araujo, A., Sim, J., Weyand, T., & Han, B. (2017). Large-scale image retrieval

with attentive deep local features. Proceedings of the IEEE International Conference

on Computer Vision (ICCV).

NVIDIA Corporation. (2023a). Isaac sdk [Accessed: 30.04.2023]. https :/ /developer.

nvidia.com/isaac-sdk

NVIDIA Corporation. (2023b). Isaac sim [Accessed: 30.04.2023]. https ://developer.

nvidia.com/isaac-sim

Oceaneering. (2023). Enovus rov [Accessed: 08.05.2023]. https://www.oceaneering.

com/rov-services/rov-systems/

Open Robotics. (2021). Gazebo [Accessed: 07.05.2023]. https://gazebosim.org/home

Open Robotics. (2023). Turtlebot [Accessed: 16.04.2023]. https://www.turtlebot.com/

OpenCV. (2023). Opencv color conversions [Accessed: 09.04.2023]. https : / / docs .

opencv.org/3.4/de/d25/imgproc_color_conversions.html

Paull, L., Saeedi, S., Seto, M., & Li, H. (2014). Auv navigation and localization: A

review. IEEE Journal of Oceanic Engineering, 39(1), 131–149. https ://doi .org/

10.1109/JOE.2013.2278891

111

https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/LRA.2017.2653359
https://doi.org/10.1109/LRA.2017.2653359
https://doi.org/10.1109/ICRA.2016.7487416
https://doi.org/10.1109/ICRA.2016.7487416
https://doi.org/10.1109/ICCV.2011.6126513
https://developer.nvidia.com/isaac-sdk
https://developer.nvidia.com/isaac-sdk
https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-sim
https://www.oceaneering.com/rov-services/rov-systems/
https://www.oceaneering.com/rov-services/rov-systems/
https://gazebosim.org/home
https://www.turtlebot.com/
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
https://doi.org/10.1109/JOE.2013.2278891
https://doi.org/10.1109/JOE.2013.2278891

Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T.,

ter Haar Romeny, B., Zimmerman, J. B., & Zuiderveld, K. (1987). Adaptive

histogram equalization and its variations. Computer vision, graphics, and image

processing, 39(3), 355–368.

Prats, M., Pérez, J., Fernández, J. J., & Sanz, P. J. (2012). An open source tool for

simulation and supervision of underwater intervention missions. 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2577–2582. https://doi.

org/10.1109/IROS.2012.6385788

Qin, T., Li, P., & Shen, S. (2018). Vins-mono: A robust and versatile monocular visual-

inertial state estimator. IEEE Transactions on Robotics, 34(4), 1004–1020. https :

//doi.org/10.1109/TRO.2018.2853729

Rahman, S., Karapetyan, N., Li, A. Q., & Rekleitis, I. (2018). A modular sensor suite

for underwater reconstruction. OCEANS 2018 MTS/IEEE Charleston, 1–6. https:

//doi.org/10.1109/OCEANS.2018.8604819

Rahman, S., Li, A. Q., & Rekleitis, I. (2018). Sonar visual inertial slam of underwater

structures. 2018 IEEE International Conference on Robotics and Automation (ICRA),

5190–5196. https://doi.org/10.1109/ICRA.2018.8460545

Rahman, S., Li, A. Q., & Rekleitis, I. (2019). Svin2: An underwater slam system using

sonar, visual, inertial, and depth sensor. 2019 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 1861–1868. https://doi.org/10.1109/

IROS40897.2019.8967703

Rehder, J., Nikolic, J., Schneider, T., Hinzmann, T., & Siegwart, R. (2016). Extending

kalibr: Calibrating the extrinsics of multiple imus and of individual axes. 2016

IEEE International Conference on Robotics and Automation (ICRA), 4304–4311.

https://doi.org/10.1109/ICRA.2016.7487628

Ribas, D., Ridao, P., Neira, J., & Tardos, J. D. (2006). Slam using an imaging sonar

for partially structured underwater environments. 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 5040–5045. https : / / doi . org / 10 .

1109/IROS.2006.282532

Rosten, E., & Drummond, T. (2006). Machine learning for high-speed corner detection.

In A. Leonardis, H. Bischof & A. Pinz (Eds.), Computer vision – eccv 2006 (pp. 430–

443). Springer Berlin Heidelberg.

112

https://doi.org/10.1109/IROS.2012.6385788
https://doi.org/10.1109/IROS.2012.6385788
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/OCEANS.2018.8604819
https://doi.org/10.1109/OCEANS.2018.8604819
https://doi.org/10.1109/ICRA.2018.8460545
https://doi.org/10.1109/IROS40897.2019.8967703
https://doi.org/10.1109/IROS40897.2019.8967703
https://doi.org/10.1109/ICRA.2016.7487628
https://doi.org/10.1109/IROS.2006.282532
https://doi.org/10.1109/IROS.2006.282532

ROVOP. (2023). Schilling uhd generation iii [Accessed: 08.05.2023]. https : / / www.

rovop.com/schilling-uhd-generation-iii/

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). Orb: An efficient alternative

to sift or surf. 2011 International Conference on Computer Vision, 2564–2571. https:

//doi.org/10.1109/ICCV.2011.6126544

Schonberger, J. L., & Frahm, J.-M. (2016). Structure-from-motion revisited. Proceedings

of the IEEE conference on computer vision and pattern recognition, 4104–4113.

Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2018). Airsim: High-fidelity visual and

physical simulation for autonomous vehicles. Field and Service Robotics: Results

of the 11th International Conference, 621–635.

Shi, J., & Tomasi. (1994). Good features to track. 1994 Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, 593–600. https ://doi .org/10 .1109/

CVPR.1994.323794

Teixeira, B., Silva, H., Matos, A., & Silva, E. (2020). Deep learning for underwater visual

odometry estimation. IEEE Access, 8, 44687–44701. https://doi.org/10.1109/

ACCESS.2020.2978406

Teledyne Marine. (2023). Slocum g3 glider [Accessed: 08.05.2023]. http : / / www .

teledynemarine.com/slocum-glider?ProductLineID=14

thien94. (2023). Orb-slam3-ros [Accessed: 10.10.2022]. https://github.com/thien94/

orb_slam3_ros

Tian, Y., Fan, B., & Wu, F. (2017). L2-net: Deep learning of discriminative patch

descriptor in euclidean space. Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

Tomter, E. (2023a). Orb-slam vip [Accessed: 15.05.2023]. https : / / github . com /

einatomter/orb_u

Tomter, E. (2023b). Underwater unreal simulation [Accessed: 15.05.2023]. https : / /

github.com/einatomter/UwUESim

Umeyama, S. (1991). Least-squares estimation of transformation parameters between

two point patterns. IEEE Transactions on Pattern Analysis & Machine Intelligence,

13(04), 376–380.

Unity Technologies. (2022). Unity robotics hub [Accessed: 11.12.2022]. https://github.

com/Unity-Technologies/Unity-Robotics-Hub

113

https://www.rovop.com/schilling-uhd-generation-iii/
https://www.rovop.com/schilling-uhd-generation-iii/
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/ACCESS.2020.2978406
https://doi.org/10.1109/ACCESS.2020.2978406
http://www.teledynemarine.com/slocum-glider?ProductLineID=14
http://www.teledynemarine.com/slocum-glider?ProductLineID=14
https://github.com/thien94/orb_slam3_ros
https://github.com/thien94/orb_slam3_ros
https://github.com/einatomter/orb_u
https://github.com/einatomter/orb_u
https://github.com/einatomter/UwUESim
https://github.com/einatomter/UwUESim
https://github.com/Unity-Technologies/Unity-Robotics-Hub
https://github.com/Unity-Technologies/Unity-Robotics-Hub

UZ-SLAMLab. (2022). Orb-slam3 github [Accessed: 01.04.2022]. https://github.com/

UZ-SLAMLab/ORB_SLAM3

Wang, Y., Zhang, J., Cao, Y., & Wang, Z. (2017). A deep cnn method for underwater

image enhancement. 2017 IEEE international conference on image processing (ICIP),

1382–1386.

Williams, B., Cummins, M., Neira, J., Newman, P., Reid, I., & Tardós, J. (2009).

A comparison of loop closing techniques in monocular slam [Inside Data

Association]. Robotics and Autonomous Systems, 57(12), 1188–1197. https://doi.

org/https://doi.org/10.1016/j.robot.2009.06.010

114

https://github.com/UZ-SLAMLab/ORB_SLAM3
https://github.com/UZ-SLAMLab/ORB_SLAM3
https://doi.org/https://doi.org/10.1016/j.robot.2009.06.010
https://doi.org/https://doi.org/10.1016/j.robot.2009.06.010

Appendix A

Underwater simulation

A.1 Code

We have included here the code that was used to create the simulation. These are

located in the "Simulation" folder.

"1_frontend" contains the code that is needed for the front-end, namely Unreal

Engine, including the fixed ROSIntegration plugin. All assets used for the simulation

is also included here. We recommend following the installation guide from

ROSIntegration to get this working (code-iai, 2023).

"2_backend" contains the code for the back-end, which mainly consists of the Project

Dave package and the custom X3 ROV. These need to be built using ROS "catkin build".

The packages are already located in a source folder, and can be simply be added to

an existing ROS workspace. Project Dave does however require further prerequisites

to run. We recommend checking the authors’ repository for how to install it (Field

Robotics Lab, 2022).

"3_datasets" contains the recorded sequences from the simulation. These are

the processed rosbags to save on space. The data included here still contains

synchronization issues, which the user should be mindful of.

A.2 ROV implementation

This section provides detailed information on the ROV implemented in Gazebo.

Table A.1 provides a brief overview of the physical properties of the X3 ROV. Table

115

A.2 shows the thruster parameters.

Physical properties Value

Mass 9 kg

Length (x) 0.485 m

Width (y) 0.257 m

Height (z) 0.354 m

Inertia Value

Ixx 0.1257 kg m2

Iyy 0.2704 kg m2

Izz 0.2081 kg m2

Table A.1: Simulated X3 properties

The following parameters are set for the thrusters of the X3.

Thruster property Value

Dynamic time constant 0.1

Rotor constant 5 × 10−5

Table A.2: Thruster properties

The sensors are provided in Table A.3. Table A.4 shows the camera parameters as

implemented in Unreal Engine.

Sensor Noise Update rate Bias

Pressure sensor 1 × 10−3 m 10 Hz

Accelerometer 3.08 × 10−2 m/s2 200 Hz 6.8 × 10−6 m/s2

Gyroscope 3.08 × 10−5 rad/s 200 Hz 1.7 × 10−2 rad/s

Magnetometer 1 × 10−3 m 200 Hz

Table A.3: Sensor specifications

116

Intrinsics

fx 480 px

fy 480 px

cx 480 px

cy 270 px

Distortion

k1 0.0

k2 0.0

p1 0.0

p2 0.0

Table A.4: Camera parameters

The hydrodynamic parameters of the ROV are given as shown below.

MA = −



6 0 0 0 0 0

0 20 0 0 0 0

0 0 8 0 0 0

0 0 0 2 0 0

0 0 0 0 1 0

0 0 0 0 0 2


(A.1)

Next, we have the linear damping matrix of the system.

D(v) = −



−25 0 0 0 0 0

0 −30 0 0 0 0

0 0 −28 0 0 0

0 0 0 −10 0 0

0 0 0 0 −5 0

0 0 0 0 0 −10


(A.2)

Finally, we have the thruster allocation matrix (TAM). The TAM translates the

desired output of the controller to the output of the thrusters. Project DAVE provides

a helper function to calculate the TAM for you which has been used here. Some of the

values have also been tweaked manually based on the drone’s behavior in simulation.

117

TAM =



−1 −1 0 0

0 0 1 0

0.045 −0.045 0 1

0 0 0 0

0 0 0 0

0.08 −0.08 0.085 0


(A.3)

118

Appendix B

Underwater Visual SLAM

The appendix here includes the implemented SLAM system. The contents are in the

"Underwater_slam" folder, which contains "1_orb_u" and "2_results".

"1_orb_u" is the implementation of the SLAM system shown in this paper. The

system contains configurations to run the AQUALOC dataset, UwUE, and a few others

as well. The visual-pressure configuration here uses initialization procedure "1-B".

"2_results" contains all the results gathered and used for analysis. This folder is

mostly unstructured, but most of the data are stored either as csv files or in the TUM

trajectory format, which is commonly used for recording the trajectory of a SLAM

system.

We also wanted to include the data used for training the new ORB vocabularies, but

the total dataset was too large (>60GB). We note however that the images we acquired

are from publicly available datasets online, which we described in our project.

119

	Preface
	Abstract
	Introduction
	Motivation
	Underwater robots
	Underwater localization
	Instrumentation for underwater localization
	Simultaneous localization and mapping
	Simulation environment for Visual SLAM

	Problem statement
	Scope and limitations
	Ethical Considerations

	Underwater Simulation Environment for Visual SLAM
	Introduction
	Related works
	Simulation platforms
	Underwater simulators
	Summary and project direction

	Methodology
	Hardware and software configuration
	Back-end
	Front-end
	Simulation environment

	Results
	Simulation performance
	User Experience and Usability

	Discussion
	Limitations
	Suggestions for future work

	Conclusion

	Underwater Visual SLAM
	Introduction
	Background and related Works
	Underwater SLAM
	Visual SLAM
	Loop closure
	Summary and project direction

	Theory
	Coordinate frame notation
	Factor graphs
	Least-squares optimization

	Methology: Overview
	ORB-SLAM3
	Tracking
	Local mapping
	Loop closing
	ORB-SLAM3 setup

	Visual-Pressure SLAM
	Tracking
	Local mapping
	Loop closing
	Initialization

	Visual-Inertial-Pressure SLAM
	Challenges of visual-inertial SLAM underwater
	Tracking
	Local mapping
	Loop closure
	Initialization

	Results
	Image preprocessing
	Trajectory analysis
	Loop closure

	Discussion
	Image preprocessing
	Trajectory analysis
	Loop closure analysis
	Comparison to other SLAM systems
	Limitations
	Suggestions for future work

	Conclusion

	Project Conclusion
	Underwater simulation
	Code
	ROV implementation

	Underwater Visual SLAM

