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Abstract 

The purpose of this study was to explore if it is possible to simulate participant responding in a 

stimulus equivalence experiment, using the enhanced equivalence projective simulation model 

from Mofrad et al. (2021). Five human participants and 45 simulated participants, characterized 

by different model parameter values, were exposed to the same matching to sample procedure. In 

both experiments, the participants in average did not attain the criterion of 90% correct trials 

during equivalence test. The mean human participant equivalence test score was 84%, while the 

mean simulated equivalence test score was 82%. Human participants passed the baseline and 

symmetry tests with a mean score of 97%, against a mean score among simulated participants of 

89%. The simulated participants, when using the same parameter values, were homogenous in 

terms of their response patterns, while the human participants exhibited a larger variation. A 

suggestion for further work, groups of simulated participants with different sets of parameter 

values, could perhaps yield inter-group responding similar to the observed responding in human 

experiments. A practical application of these findings is to explore how simulations and human 

experiments can be compared at a larger scale. A possible solution could be to add the simulation 

code to the MTS software that is used in the human experiments, so that simulations are 

automatically run and compared to human responding. 

 

Keywords: Stimulus equivalence, simulation, connectionism, artificial neural network, enhanced 

equivalence projective simulation, machine learning 
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Introduction 

The aim of this paper is to understand whether results from a stimulus equivalence 

experiment with human participants can be simulated successfully using a computer model based 

on an algorithm called enhanced equivalence projective simulation. This research problem was 

introduced in the paper “Equivalence Projective Simulation as a Framework for Modeling 

Formation of Stimulus Equivalence Classes” (Mofrad et al., 2021).  

Stimulus equivalence 

Stimulus equivalence is relationship between stimuli that emerge without directly 

reinforced training. These relationships are called emergent relations and emerge as a 

consequence of the conditional discrimination procedure (Sidman, 1994, 2000). Unlike other 

stimuli classes that can form, stimulus equivalence classes are not formed based on topographic 

similarities or stimulus generalization, and they do not necessarily share the same behavioral 

functions (Green & Saunders, 1998).  

Murray Sidman and William Tailby introduced the different characteristics of stimulus 

equivalence in their paper from 1982. To be able to call a conditional relation an equivalence 

relation, the relation must, according to Sidman, be shown to be reflexive, symmetrical, and 

transitive (Sidman, 1992). To this end, researchers use conditional discrimination procedures. A 

conditional discrimination procedure is defined by the relationship between discriminative 

stimulus and conditional stimulus, in a four-term contingency. The behavior is produced only in 

the presence of the stimuli in a given context. A matching to sample protocol is an example of a 

conditional discrimination procedure used to demonstrate stimulus equivalence (Sidman, 1992; 

Sidman & Tailby, 1982). The relation between two stimuli is reflexive if both stimuli have the 
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same relationship to themselves as to each other. For the relationship to be called symmetrical, 

sample stimuli and comparison stimuli must be functionally interchangeable. Furthermore, the 

relationship must be transitive, if one has a conditional relationship between a sample stimulus A 

and a comparison stimulus B and between a sample stimulus B and a comparison stimulus C, 

then a condition arises between A and C. If a relation has formed between C and A, i.e., the 

transitive relation is symmetrical, then global equivalence has been achieved (Sidman et al., 

1974; Sidman & Tailby, 1982). 

To pass the global equivalence test, the symmetry and transitivity tests must also be 

passed. Research has shown that the definition and the tests hold, and where inconsistent results 

have been found, they can be explained by weaknesses in the experimental design (Sidman, 

1992).  

In a matching to sample procedure where the goal is to demonstrate stimulus equivalence, we 

often use abstract (symbolic) stimuli. That is, stimuli are not meaningful i.e., they do not belong 

to an established stimulus class in the participants in advance. If they do, previous learning 

history associated with the stimulus will affect the results of the experiment, and it will be 

difficult to conclude about the lack or achievement of equivalence.  

Simulating emergent relations using machine learning 

  Artificial neural networks (ANN) 

An artificial neural network (ANN) is a type of machine learning algorithm that is 

inspired by the biological brain and how learning happens (could happen) in human/animal 

brains (Goodfellow et al., 2016, p. 13). ANNs consist of layers of interconnected "neurons," 

which process and transmit information. In a biological neural network the neurons receive 
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stimulus, change them via synaptic weights, combine them and produce a single response 

(output) dissimilar to the combination, typically a prediction or classification based on the input. 

(Guresen & Kayakutlu, 2011). ANNs are trained using large amounts of data and an algorithm 

that adjusts the connection weights between neurons based on the input data. Haykin (1999) 

defines an ANN as “a massively parallel combination of simple processing units which can 

acquire knowledge from environment through a learning process and store the knowledge in its 

connections.”   

The performance of an ANN is based on finding the right set of weights, i.e., the strength 

of the connections between the processing units. The network uses algorithms to calculate the 

right weights for different tasks. Initially the weights are set at a random value, then the 

algorithm adjusts the weights gradually in the direction needed to approach the correct output 

values seen during training. The algorithm repeats this approximation towards the correct output 

for a given number of times, or until it correctly produces correct output for all given inputs in 

the training data set. A successful training will also entail that the network can use what it has 

learned from the training data set to find correct new outputs for a new set of input values, 

analogous to stimulus generalization in humans (Ninness et al., 2018).  

Connectionist models 

Parallel to the research and application of ANNs in the fields of natural 

sciences/computer science, the research within connectionist networks within the behavioural 

science has been focused on the use of these methods to simulate emergent relations. This field 

of study is called connectionism and had its early beginning in the late nineteen eighties and the 

early nineties. Connectionism is a field within cognitive science that seek to explain cognitive 
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processes using artificial neural networks, inspired by the biological neural networks part of the 

human brain (Bechtel & Abrahamsen, 1991). 

When training an ANN to predict class identity for a given stimulus, there are a few 

components in the training protocol that differs from the training protocol used in human 

participant experiments. In a typical human experiment, the participant is exposed to abstract 

symbols. In a ANN training, these stimuli is expressed as a series of binary activation units that 

are either on (1) or off (0) (Ninness et al., 2018). 

The input layer consists of the processing units in the network that accept input stimuli, 

while the output layer consists of processing units outputting values from the network. Between 

the input and the output layer we find one or more layer, the hidden layer(s). These layers only 

interact with the input or the output layer or each other, the way they interact is by means of 

synaptic connections or weights. These weights enable the network to learn the relationship 

between the input and output stimuli (Ninness et al., 2018). 

As the ANN is repeatedly exposed to the different input strings of ones and zeroes and 

uses feed forward back propagation to adjust the weights, it recognizes unique patterns in the 

input stimuli, just as human participants learn the relationship between the different abstract 

stimuli after being exposed to the MTS training protocols several times (Ninness et al., 2018). 

To assess if the ANN has successfully acquired stimulus equivalence, we introduce the 

generalization test as a new set of input strings. If the ANN successfully predicts the correct 

output, the ANN has acquired the equivalence relations, just as the human participants is said to 

have acquired equivalence when correctly matching the not trained emergent relations during the 

test phase of MTS (Ninness et al., 2018). 
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There are mainly two variations of ANNS employed in the connectionist stimulus 

equivalence research, RELNET and EVA (Ninness et al., 2018). RELNET, short for Network for 

Relational Responding, was introduced by Barnes and Hampson (1993) in their paper “Stimulus 

equivalence and connectionism: Implications for behavior analysis and cognitive science” in 

1993. Here Barnes & Hampson maintain that the stimulus equivalence research area within 

behaviour analysis and the connectionist area within the cognitive sciences could benefit from 

taking a connectionist approach to the stimulus equivalence research. In this paper they seek to 

point out an intersection between connectionism and stimulus equivalence by successfully 

simulating emergent equivalence relations using a connectionist network/ artificial neural 

network. In this case it was the study by Steele and Hayes (1991), where the researchers 

demonstrated contextual control of derived stimulus relations in human responding to 

nonarbitrary stimuli. Using a RELNET model, Barnes and Hampson (1993) demonstrated that 

they could successfully run simulations of the Steele and Hayes study (1991) and end up with 

similar results to the results of the human participants in the original study. It was a starting point 

for later papers that uses RELNETs to simulate stimulus equivalence and transfer of function. In 

the last three decades there are several research papers published on how we can simulate 

emergent stimulus relations in humans using RELNET (e.g., Lyddy & Barnes-Holmes, 2007; 

Lyddy et al., 2001; Tovar & Chávez, 2012; Tovar & Westermann, 2017; Vernucio & Debert, 

2016). 

A special feature of the RELNET is that the input layer also includes so-called sample 

marking duplicators, three elements that informs the network how identify the contextual stimuli. 

This unique among ANNS. Thus, RELNET does not acquire the contextual relations on its own, 
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it is rather pre-wired to acquire them due to the sample marking duplicators. This is remarked as 

a possible flaw with RELNET (Barnes & Hampson, 1993). The models employed by Barnes and 

Hampton in 1993 and the subsequent studies Lyddy et al. (2001), Lyddy and Barnes-Holmes 

(2007), Tovar and Chávez (2012), and Vernucio and Debert (2016) employed versions of the 

previously described RELNET connectionist model.  

Another feature of the RELNET network is that it includes a training set that is meant to 

compensate for human experience outside the experiment setting. In Ninness et al. (2018), the 

researchers introduce a new type of ANN, called EVA. With the EVA (emergent virtual 

analytics) the researchers abandon this compensatory training. and the sample marking 

duplicators. In this paper, the researchers present the results from replicating the study by Tovar 

and Chávez (2012) and replicated by Vernucio and Debert (2016) using an evolved connectionist 

model they call EVA (emergent virtual analytics). They go on to show that this network is able 

to yield the same performance (i.e. acquire derived stimulus relations) as the RELNET employed 

in the Tovar and Chávez (2012) and Vernucio and Debert (2016) studies. Ninness et al. (2018) 

maintains that ANNs “are capable of performing in ways that are very similar to those seen 

among human participants” (p. 141). The EVA algorithm continues to of interest within 

connectionist research (Ninness et al., 2019; Ninness et al., 2021). 

Enhanced Equivalence Projective Simulation (EEPS) 

Projective Simulation (PS) is a new machine learning model that incorporates principles from 

physics, and was introduced in 2012 (Briegel & De las Cuevas). It is a reinforcement learning 

algorithm that can perceive stimuli, execute actions, and learn through trial and error. PS has a 

neural network structure that serves as its physical basis, with a memory system called Episodic 
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& Compositional Memory (ECM). ECM is a directed and weighted network of clips, each 

representing a remembered percept, action, or sequence. The recall of memories in PS is 

understood as a dynamic replay of an excitation pattern, leading to episodic sequences. The 

learning program in PS is updated by adjusting connection weights and adding new clips through 

Bayesian rules and interactions with the environment (Melnikov et al., 2017). 

In the paper “Equivalence Projective Simulation as a Framework for Modeling Formation 

of Stimulus Equivalence Classes” (Mofrad et al., 2020), the authors simulate nine different MTS 

protocols using a EPS algorithm, among others the same protocol used in the Sidman and Tailby 

experiment (1982). Based on the results of these experiments, the authors concluded that they 

work as a proof of concept that the EPS algorithm can be successful in modelling different 

aspects of human responding during MTS experiments given more study, for instance by tuning 

of parameters to model specific behaviour (Mofrad et al., 2020). 

In Mofrad et al. (2021), the paper from which the algorithm employed in the simulated 

experiments described in this paper, the build upon their findings in the 2020 paper, and 

introduces Enhanced Equivalence Projective Simulation (EEPS). The original EPS model 

assumes that relations between elements in a trial are generated on demand during testing and 

updated during training. However, the assumption is changed so that these relations are formed 

at the end of the training phase, resulting in a noisy version of the agent's memory network. By 

using a denoising method, the network can be cleaned up to better display information about 

equivalence class formation. This is called network enhancement, and the aim is to identify the 

most reliable connections in the network and eliminate weak or false links, resulting in a more 

robust representation of the biological processes underlying the network (Wang et al., 2018). The 
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resulting denoised network can be used in testing and to evaluate the agent's performance on 

equivalence tests.  

The h-values, also known as projective simulation values, are a critical component of the 

Enhanced Equivalence Projective Simulation (EEPS) algorithm. They serve as an indicator of 

the equivalence between nodes in a network, where higher h-values signify a stronger 

equivalence. Compared to Mofrad et al. (2020), the 2021 paper introduces new updates to 

memory retrieval during testing, control over symmetry and transitivity relations, improved 

network enhancement, fewer parameters to fine-tune, a new method of deriving relations using a 

diffusion model using the updated network as a cognitive map, as well as reducing computation 

during testing (Mofrad et al., 2021). 

The research problem 

The goal of this study is to further understand if it is possible to simulate human responding in 

stimulus equivalence experiments accurately, using computers. If it is possible, it could entail a 

reduction of research resources, as experiments run on computers are done in seconds instead of 

hours. Another advantage of computer simulation is the possibility of complete experimental 

control. With human participants in the lab, there are always factors from outside the laboratory 

that can or cannot influence the performance in the experiment, while with simulated participants 

the setting is under experimental control and participants are not prone to physiological error 

sources such as hunger, fatigue etc. (Ninness et al., 2018). This is also pointed out by Lyddy and 

Barnes-Holmes (2007), were they observe that computational modeling could be one alternative 

source of understanding how the emergent stimulus relations are formed, due to the fact that 

most sources of error from human experiments can be ruled out (Lyddy & Barnes-Holmes, 
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2007). The long-term goal for this line of research is that computer simulated experiments can 

provide a more complete and unified understanding of underlying mechanisms of stimulus 

equivalence.  

 

 

General method 

Design 

The overall design was a between-group design, one group consisting of five human 

participants (experiment 1) and nine groups each consisting of five participants simulated by an 

EEPS-model (experiment 2). Experiment 1 followed an AB design. All groups started by 

completing a training phase where baseline relations were trained. Then they completed the 

testing phase.  

Procedure 

The protocol was simultaneous matching-to sample (MTS). All participants were 

presented with one sample stimulus and three comparison stimuli. The measured response was 

the participant’s choice of comparison stimulus they believed matched the sample stimulus. The 

procedure consisted of two phases. Establishing and maintaining baseline relations (training) and 

testing for emergent relations (testing). 

Mastery Criteria 

The mastery criterion was set to 90% correct responses. To progress to the next phase of 

the experiment the participants had to select the correct comparison stimulus in at least 90% of 
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the trials in a block. The criterion was used consistently throughout the training phase, when 

establishing and maintaining baseline relations. 

Experiment 1 

Method 

Participants 

The participants ranged in age from 30-55, three male and two female. Prior to starting 

the experiment each participant was given a document to read, stating the background for the 

project, describing the experiment situation, and presenting the researchers responsible for the 

experiment. Furthermore, the document described the ethical considerations and how the data 

collection in the experiment was anonymous so that no individual data can be traced back to a 

specific participant. It also stated the terms of withdrawing the consent given to use the data that 

was produced during the experiment. They were also informed that a debriefing session would 

be given after completion of the experiment.    

The consent form was part of the computer program used for the experiment procedure 

and had to be accepted before the participants could start the experiment. Each participant was 

also given a document regarding the treatment of contact information in research experiments at 

the institute of behaviour science at OsloMet University, prior to starting the experiment. 

Setting 

The experiments were performed in a quiet meeting room, with dimmed lights, to ensure 

the participants ability to concentrate on the task. 

Apparatus 
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The experiment was performed using a custom MTS software, on a 15 inches Hewlett 

Packard laptop computer with Windows 8 (64 bit). The software controlled the presentation of 

all the stimuli and recorded the results of the experiments as excel files. An external mouse 

connected to the laptop was provided for the participants to use, to click on the stimuli presented 

on the screen during the experiment. During the experiment, the custom software placed a 

sample stimulus in the middle of the computer screen, while placing the three comparison stimuli 

randomly in three of the four corners of the screen. 

Instructions  

All participants were presented with the following instructions on the screen prior to 

starting the experiment: "A symbol will appear in the centre of the screen. You have to click on 

this with the mouse. Three other symbols will appear. Select one of these by clicking with the 

mouse. If you select the one defined as correct it will say "good", "great", etc. on the screen. If 

you press incorrectly, "error" will appear on the screen. Throughout the experiment, the 

computer will give less and less feedback on whether your choices are right or wrong, but from 

what you have learned you can get all the tasks right. Do your best to get most correct answers as 

possible. Good luck!" 

Consequence thinning 

When establishing the baseline relations, the participants were presented with a 

programmed consequence for all trials (100% of the time) informing them if their response is 

correct or not. When the participant met the mastery criterion, the baseline relations was defined 

as established. The training changed to maintaining the established baseline relations, by 

introducing consequence thinning. The participants were presented with a programmed 
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consequence three out of four trials (75%), in blocks of 18 trials. When the mastery criterion of 

90% correct trials was reached, the programmed consequences was introduced for one out of two 

trials (50%). If the participant reached the mastery criterion in the following block the 

programmed consequences would go to 0 percent for the next block, else the feedback rate 

dropped to 25 percent. Programmed consequences were displayed on the screen for 500 

milliseconds, followed by an inter-trial interval of 1000 milliseconds. 

MTS training 

During the training phase, six sets of conditional relations were trained in a simultaneous 

training protocol (table 1). The baseline relations AC and BC were presented in blocks consisting 

of 18 trials, where all six baseline relations were trained in random order within each block.  

 A set of nine abstract stimuli (figure 1) was employed. The stimuli consisted of three 

classes (1,2,3) with three members (A, B, C) in each class (figure 1): a. (A1, B1, C1), b. (A2, B2, 

C2) and c. (A3, B3, C3). The training structure was MTO (many to one) where the participants 

were trained to choose stimulus C1 in the presence of A1 and C1 in the presence of B1, and so 

on. The sample presentation was simultaneous MTS (SMTS) which means that selection and 

comparison stimuli were simultaneously presented on the screen. 

MTS test 

After the participants met the 90 percent mastery criterion with no programmed 

consequences during training, they progressed to the test phase, which consisted of testing for 

symmetry- transitive and equivalence relations, as well as the baseline relations.  

The test block contained 54 trials, where 18 trials tested baseline relations (AC, BC), 18 

trials tested whether symmetry relations (CA, CB) were established during training and 18 
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relations were tested for stimulus equivalence (AB, AC, BA, BC, CA, CB) (table 1). During the 

test there were no programmed consequences, and relations were tested in random order.  

The participants were defined as responding in accordance with stimulus equivalence if 

they reached a minimum of 90% correct responses on the equivalence test. 

 

Results  

Establishing baseline 

When we examine the response pattern for each participant, we find that three (18552, 

18554 and 18555) of the five participants consistently increase the number of correct trials for 

each block, of which two had the fewest number of trials to meet the mastery criterion during 

training. The mean number of trials to establish the baseline relations was 159. There is a 

relatively large variation in responding within the group, with a standard deviation of 162 trials, 

a value slightly higher than the mean. The participant with the largest number of trials had 432 

trials distributed over 24 blocks. On the other end we had one participant with 36 trials, less than 

10% of the maximum observed number of trials (figure 3).  

The group average number of errors is 53, which provides a mean error rate of 33 

percent. The error rate was calculated by dividing the mean number of errors by the mean 

number of trials. The error rate ranged over an interval of 11 percent to 37 percent in this phase 

of the experiment (figure 4). 

Maintaining baseline 

In this phase of the experiment the participants have reached the mastery criterion of 90 

percent correct baseline relations. In the maintaining phase of the training the feedback was 
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thinned (consequence thinning). The mean number of trials needed to reach the mastery criterion 

in one block, with no feedback, was 61, with 72 being the largest number of trials observed. The 

minimum trials observed was 54, the minimum number of trials possible in this phase, as each 

participant at least had to finish one block of 18 trials for each level of programmed consequence 

(75,50,0) (table 1). 

Equivalence class formation  

As a group, the participants in experiment 1 did not attain the criterion of 90% correct trials 

during the equivalence test, with an average score of 84% (figure 4), while they obtained a score 

of 97% when testing the baseline and symmetry relations. Three out of the five participants 

(60%) formed equivalence classes (table 4). The two participants that did not reach the 

equivalence formation criterion earned an equivalence test score of 0,5 and 0,84 respectively. 

Four out of five participants (80%) formed symmetry relations. The one participant not 

showing symmetry relation mastery (1853) had a correct response rate 89%, one percent point 

below the test criterion of 90. Likewise, four out of our five participants maintained their 

baseline relations. The one participant (1853) not meeting the baseline test criterion scored 89% 

(table 2). 

Error patterns 

Within MTS-protocol there are three different types of errors; random, experimenter 

defined (correct responses) and participant defined (systematic incorrect responses). Participants 

18551 and 18553 had a strong tendency towards choosing C1 in the presence of B2. This 

tendency is not observable in the response patterns of other participants. On the other hand, 
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18554 seems to have errors spread out relatively even over the different sample stimuli (figure 

5). 

 

Discussion 

The goal of this experiment was to measure how five human participants performed in 

terms of learning rate (number of trials) and formation equivalence relations. The results show 

large variations between the participants both in terms of class formation and number of trails. It 

is interesting to observe that the participant with the greatest number of trials in both the 

establishing and maintaining phase, and subsequently the highest error rate, was one of the three 

participants that formed equivalence classes, with an overall score on baseline, symmetry, and 

equivalence of 98%. On the other hand, the participant with the fewest trails (36) in the 

establishing phase of the training, did not form equivalence relations according to our criterion of 

90%, scoring only 50% in the equivalence test. 

In terms of the variation in participant responding during training, findings are somewhat 

in keep with earlier findings from matching to sample experiments with similar procedural 

variables. When comparing experiment 1 to a high impact experimental study where the protocol 

is like the one used in experiment 1, for instance Sidman & Tailby (1982), simulated in Mofrad 

et al (2020), we find larger variation in responding our experiment. This could be explained by 

the characteristics of participants, in the Sidman & Tailby study children of similar age, and in 

experiment 1 adults ranging from 30 to mid-fifties with variation in education and profession. 

In Sidman & Tailby (1982) 75% of the participants formed equivalence relations. Given 

this, as well as the protocol used in experiment 1, there would be reason to expect that a higher 
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share of participants would form equivalence relations. The training response pattern for 

participant 1854 could be interpreted as a mastery criterion set too low, resulting in baseline 

relations not being properly established before testing started (Arntzen, 2012). 

 

Experiment 2  

In this experiment the goal is to simulate nine groups of five participants with an EEPS 

algorithm. The simulation code is downloaded from a GitHub repository (Mofrad et al., 2021).  

Method 

Participants 

The different participants are characterized by a set of adjustable parameters in the 

algorithm. Changing these parameters will change the simulated participant’s responding. There 

are six parameters that can be adjusted in the simulation interface. A key feature in the EEPS is 

the directed network enhancement (DNE) method, that is proven to be appropriate when using 

EEPS to model emergent symmetry and transitivity relations (Mofrad et al., 2021, p. 503). For 

this experiment DNE is set as a default for all the simulated participants. Furthermore, the 

gamma damping parameter (γ), that controls learning decay, is set at default value γ = 0,001 for 

all participants, considering this parameter analogous to the maintaining baseline phase in the 

training protocol in experiment 1. The value of γ = 0,001 was used in Mofrad et al. 2021 for all 

experiments except the one that studies the effect of changing this parameter (experiment 4). 

Lastly, K is a positive value that controls the symmetry relation. K was set to one throughout the 

experiment, which means that the network is symmetric at the end of the training phase (Mofrad 

et al., 2021, p. 493). 
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Groups of five participants were simulated with the same set of parameter conditions in 

each group. Nine different parameter conditions were used (table 3). I refer to the source paper 

(Mofrad et al., 2021) for detailed descriptions of the mathematics behind the EEPS algorithm and 

its adjustable parameters.  

Apparatus 

The simulation ran in Python 3.9.10 on a Lenovo ThinkPad computer, 11th Gen Intel(R) 

Core(TM) i7-1165G7 @ 2.80GHz , 32,0 GB RAM, Windows 10 64x. 

Procedure 

Instructions 

Although the simulated participant did not receive instructions like the human 

participants, they are in fact receiving strict instructions from the experimenter through the 

python source code downloaded from GitHub (Mofrad et al., 2021). When performing machine 

instructed (coded) experiments it is important to understand how even slight changes in the 

source code can influence the results. In this experiment only one alteration was made to the 

source code used in Mofrad et al. (2021), which consisted of adjusting the coded protocol to 

match the protocol used in experiment 1.  

MTS training 

The protocol was simultaneous matching-to sample (MTS), identical to the procedure 

used in experiment 1. However, the training is done without the phase aimed at maintaining 

baseline using consequence thinning. The gamma damping parameter could possibly be 

interpreted as analogous to this phase of training, as it directly affects the simulated participant’s 

ability to remember baseline relations during the test phase, but this remains untested. 
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Like experiment 1, the training is set up in blocks with 18 trials per block. Both the order 

of comparison stimuli and the order of trials in the block were randomly presented to the 

simulated agent.  

MTS test 

The same test protocol was used for both experiments (table 1) 

 

Results  

Establishing baseline 

On average (for all 45 participants) it took 149 trials to establish baseline, with a standard 

deviation of 6; less than half the mean value. The standard deviation varied across groups, where 

α=0,001 and 0,05 and βh = 0,01 stood out with no variation in number of trials among the five 

participants in each group. On the other end, βt=3 had the highest within group standard 

deviation with 29 trials (table 4). 

The maximum number of trials during training was 216. Almost one in three participants 

used 216 trials to establish baseline. On the other end we had five participants with 54 trials. 

These participants belong to the α = 0,01 group, with zero variation in number of trials across the 

five participants in the group (figure 6). 

α conditions  

This parameter controls how the network enhancement affects the trained network before the 

testing starts. Smaller values of α indicates strong baseline relations, as well as the symmetry and 

reflexivity relations after training, while higher values of α value reinforces the transitive and 

equivalence relations (Mofrad et al., 2021, p. 494). The 15 participants simulated with variation 
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in the α-condition exhibited small variation within each parameter value group (figure 7), with 

only α=0,1 having any variation in number of trials to establish baseline. For all 15 participants 

having three different values of α, the min-max interval is [54-90], with a standard deviation of 

13,9 (table 4).  

βh conditions 

This parameter controls how the model converts h-values to probabilities during training. The h-

values are adjusted continuously as the EEPS algorithm progresses and are used to steer network 

exploration and the merging of nodes. These values are instrumental in ensuring the EEPS 

algorithm reaches a solution that is both correct and efficient. The parameter is also used for the 

network enhancement, by generating its input matrix. The higher this parameter is, the higher the 

probability if choosing the connection with the largest h-value (Mofrad et al., 2021, p. 494). 

Again, there is one parameter value (βh=0,01) exhibiting no inter-group variation in number of 

trials (figure 8). For the βh parameter groups, the number of trials increased compared to the 

number of trials in the α-groups. The min-max interval is [144,216], with a standard deviation of 

30,0 (table 4). 

βt conditions 

The βt-parameter controls how the participant perform in a trial during testing. By decreasing the 

value of this parameter, the probability of forming any of the tested relations decreases as well 

(Mofrad et al., 2021, p. 510). For these groups the inter-group variation in number of trials is 

higher than for the other six groups (figure 9). For βt = 3 we find the largest inter-group standard 

deviation of all the nine groups. For all 15 participants in the βt-groups, the min-max interval 

was [144,216] with a standard deviation of 22,5 (table 4). 
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Equivalence class formation 

As a group, the participants in experiment 2 did not attain the criterion of 90% correct trials 

during test with an average score of 82%, while they obtained a score of 89% when testing the 

baseline and symmetry relations. 18 out of the 45 participants (40%) formed equivalence classes. 

32 out of 45 participants (70%) formed symmetry relations. 34 out of the 45 participants 

maintained their baseline relations (76%), (figure 10).  

α conditions 

Across the three α groups, one in three formed equivalence relations, with three out of 

five forming equivalence relations with α = 0,05. The variation in response patterns during 

equivalence testing was low, with a standard deviation of 0,03 point (out of the [0-1] test score 

scale) (table 4 and figure 11). 

βh conditions 

Across the three βh groups, there is large variation, having one parameter yielding no 

equivalence formation (βh = 0,01), while for the two other parameter values (βh =0,05, βh =0,1) 

all participants formed equivalence relations. An equal pattern was observed with both the 

baseline and symmetry relations tested, for βh=0,01 all the participants scored well below the 

criterion for relation formation (90%), while all participants in the other two groups scored well 

over 90% (table 4 and figure 12). 

βt conditions 

As for the βh groups, there is large variation in the βt groups, having two parameter 

values yielding no equivalence formation (βt = 3, βt =4), while for the βh = 5, three out of five 

participants formed equivalence relations. While the standard deviation for participants in βh 
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groups was higher (0,22), the standard deviation of 0,15 for the βt groups was more evenly 

distributed (table 4 and figure 13). This indicates a higher inter-group variation for the βt 

conditions than the βh conditions. 

 

Discussion 

We observe that within groups of simulated participants with the same parameter values, 

there was little variation in terms of number of trials to establish baseline. Parameter βt exhibits 

the largest variation between participants. Going from βt=3 to βt =4 decreased the standard 

deviation from 29 to 26 trials, while going from 4 to 5 decreased the standard variation to seven. 

The inverse pattern can be observed for βh, increasing the value for βh increases the standard 

deviation. 

In terms of equivalence formation, the variation in responding between the nine groups is 

relatively high, with three groups having no participants forming equivalence relations, while 

there were two groups where all participants attained equivalence. 

It is interesting to note that the parameter βh shows extreme values when set to 0.01, with 

no participants attaining a minimum of 0,9 score during equivalence testing. This underlines the 

comment from Mofrad et al. (2021), saying that it is extremely important for the model that this 

parameter value is chosen correctly. On the other hand, we observe that all participants in the 

groups with βh =0,5 and βh =1 formed equivalence relations, with test scores on equivalence 

higher than 95% across all 10 participants. These parameter values also yielded a larger variation 

in terms of trials needed to establish baseline relations during training. 
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The results for the parameter βh also highlight another important take away. One 

parameter value for βh was tested in the α group (βh=0,1, α = 0,05). As all other parameters were 

the same, the results from this α group can also be seen as an additional βh group testing the 

value βh=0,1. With βh=0,1 and α  = 0,05 the mean number of trials was 72, which was lower 

than the mean number of trials for the lower parameter value βh = 0,05 (mean=205) and also 

lower than the higher parameter value βh= 1 (mean=166). In other words, the relationship 

between this parameter and number of trials is non-linear. For a mathematician this is obvious by 

taking a look at the algorithm. For researchers within behavior science on the other hand, this is 

not necessarily obvious, but it is beneficial for this line of research that we are aware of the 

mathematical complexity of the model we are working with. This avoids wasted resources and 

mistakes when trying to tune the model parameters to produce simulations that resemble human 

responding. 

The results from experiment 2 are in line with the findings of the first connectionist study 

using an ANN (RELNET) to simulate human stimulus equivalence formations (Barnes & 

Hampson, 1993) in terms of proving that simulations can form equivalence relations comparable 

to humans. However, this paper is not comparable to experiment 2 in terms of training and 

testing protocols, nor is the same algorithm used. Similarly, the results from experiments 2 

replicates Ninness et al. (2018) in terms of showing that it is possible for an ANN (EVA) to form 

equivalence relations, though not comparable in terms of protocol and algorithm. Furthermore, 

the variation in responding between the simulated participants are not reported in either paper.  

In Ninness et al., (2019) they compare a human experiment against a simulated 

experiment, while both the protocol and algorithm from that of experiment 2. By comparing the 
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graphs in figure 6 and figure 8 visual analysis shows that the EVA algorithm used in the 

experiment produces similar response patterns between human and simulated participants, 

(Ninnes et al, 2019). This is not in line with the findings in this experiment, where we observe 

small variations in responding within the simulated participants, while the opposite is observed 

in the human participants. 

 

 

General discussion 

In experiment 1 the mean number of trials to establish the baseline relations was 158 

while the mean for experiment 2 is 149. While the max-min interval for experiment 1 was 

[36,432], the same interval for experiment 2 was much smaller, being [54-216]. This is reflected 

in the difference in standard deviation between the experiments, being 162 in experiment 1 and 

only 61 in experiment 2 (figure 14). 

When comparing the participants in experiment 1 with any of the nine groups of 

participants simulated in experiment 2, it becomes evident that the simulated participants, when 

using the same parameter values, are homogenous in terms of their responding. On the other 

hand, we find similarities in responding between experiment 1 and experiment 2 when 

comparing the relative test results from the for experiment 1 with the relative results for all the 

participants in experiment 2. In both experiment 1 and 2, the participants in average did not 

attain the criterion of 90% correct trials during equivalence test. For experiment 1 the mean score 

was 84% while the mean score in experiment 2 was 82%. While the participants in experiment 1 

passed the baseline and symmetry test with score of 97% in average, the participants in 
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experiment 2 scored 89%, which is slightly less than the required 90%. Still the results are too 

far apart (the difference is not tested for statistical significance, though for further studies it 

would be recommended). Furthermore, the pattern of scoring similarly in baseline and symmetry 

relations (in average) is observable in both experiments.  

While 60% formed equivalence classes in experiment 1, only 40% formed equivalence 

classes in experiment 2. However, some of the parameter values used in Experiment 2 caused 

extreme values, with all participants scoring less than 80% on all relations tested. When 

excluding these extreme values (βh =0,01, βt=3) the percentage of participants forming 

equivalence relations increases from 40% to 51%. 

Experiment 2 demonstrated response patterns similar to human responding when looking 

at mean results, in keeping with Mofrad et al. (2020). When looking at inter-group participant 

responding however, Experiment 2 demonstrated how the variation for simulated participants 

with the same parameter value is much lower than we find in groups of participants in human 

stimulus equivalence experiments. Furthermore, experiment 2 demonstrated how the model is 

sensitive to the parameter values, where some settings yielded a result dissimilar to human 

responding, while other combinations of parameter values yield responding in keep with human 

responding in stimulus equivalence experiments. 

Limitations 

One possible weakness with Experiment 1 is that it was performed in a meeting room in 

the participants office environment. It is possible that work related stress and/or time constraints 

may have affected the participants performance. Another weakness is that the experiments were 

not performed at the same time for each participant, due to practical constraints.  
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Given the response patterns of participant 1854, experiment 1 might have benefitted from 

a higher mastery criterion, i.e., 95-100% (Arntzen, 2012). Furthermore, the heterogeneity of the 

participants in experiment 1 makes it is difficult to find earlier studies to compare the results 

with, if participant characteristics as well as training and testing characteristics has to be 

comparable. For the research question in this paper it does not signify, or rather, it could well be 

considered an advantage. As the aim is to explore whether human responding in equivalence 

experiments can be simulated accurately in general, the diversity of the participants is beneficial, 

assuming that the diversity implies that a larger portion of the natural variation found in human 

responding in the total population is represented.  

In experiment 1 the protocol included a maintaining baseline phase. This is not replicated 

in the simulation; an assumption has been made that holding the gamma damping parameter 

constant throughout all simulations will “replace” the maintaining baseline phase done in the 

human experiment. This is a weakness because this assumption may not hold. 

Although the results of these experiments indicate, like the equivalence projective 

simulation and connectionist studies have done before, that machine learning algorithms 

successfully simulate human responding during stimulus equivalence experiments, there are 

some caveats. With the RELNET studies there was a need for a pre-programming of the network 

to “compensate” for human learning history in order for the findings to hold (Lyddy & Barnes-

Holmes, 2007; Lyddy et al., 2001; Tovar & Chávez, 2012; Vernucio & Debert, 2016). 

Furthermore, with the EVA studies, there are indications in the paper that the parameter tuning 

of the ANN-algorithm is done post human experiments, using the human responding as a guide 

for finding the correct parameter values (Ninness et al., 2019). In this experiment they add 
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another hidden layer to the EVA algorithm and introduces mastery criteria/stopping rule that stop 

training after reaching a MSE of 0,0006 or 100 training epochs (Ninness et al., 2019, p. 346). 

The reasoning behind this MSE threshold value was that they observed a mastery level in the 

simulated participant analogous to the mastery level with the human participants for this 

configuration of the EVA algorithm. This illustrates how the responding of the human 

participants is used to calibrate the EVA algorithm in order for it to be comparable to the human 

experiment. Had they chosen their parameter values more at random, perhaps they would have 

gotten different results. Although the line of research requires that we understand the role of the 

parameter value settings of the algorithm on the simulated results, we need more data to 

conclude. 

Further work 

The code for the EEPS simulations does not provide results on a lower granularity than 

what was reported in experiment 2 (number of trials, time, and average mastery level) for the 

training phase. It would be interesting to adapt the code so that we can extract the response 

patterns per participant. With that data it would be valuable to analyze the training phase trial by 

trial, as well as error patterns per participant and stimulus, similar to the analysis done for 

experiment 1. The possibility to study the simulated participant’s response patterns during 

training and testing would make it possible for us to compare machine and human responding at 

a lower granularity, thus making it easier to understand if a random machine simulated 

participant is analogous in their responding to a random human participant.  

Furthermore, it would be interesting to adapt the code so that the groups of participants 

are modelled with different sets of parameters within each group, for example that each 
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simulated participant is given a random value for each of the relevant parameters, within a 

relevant interval (i.e., the parameter values used results in simulations that are comparable to 

human responding, and not values that produces response patterns not found in humans). 

Adapting the code as suggested would possibly produce simulations with inter-group responding 

more in keep with observed responding in human experiments.  

Furthermore, the simulation code could be improved to model consequence thinning. In 

these experiments that would have allowed the training protocols for human and simulated 

participants to be identical, thus eliminating a weakness in this experimental setup.  

Application 

A practical application of these findings could be to see how simulations and human 

experiments can be compared at a larger scale, as there is not yet enough data to support a 

conclusion that using enhanced equivalence projective simulation can replicate human 

responding accurately in a representative way. A possible solution to this is to add the EEPS 

simulation code to the MTS software that is used in human experiments. Each time a human 

participant performs an experiment with the MTS software, a series of simulations could be run 

with different combinations of parameter value settings, using all the same training and testing 

parameters as the human participant. 

 

Conclusion 

Experiment 2 demonstrated that the EEPS model can simulate the formation of stimulus 

equivalence through an MTS procedure. This is in keep with the findings in Mofrad et al. 2020 

and 2021, that showed that advances in mathematical modeling methods can be applied to the 
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behavioral sciences, continuing, and improving the connectionists work on simulating emerging 

relations in humans using ANNs. While Mofrad et al. (2020) demonstrated group level 

responding similar to group results from known human studies, the inter-group results remained 

unexplored.  

To be able to use results from simulated experiments in research on stimulus equivalence, 

we need to generalize the findings. In my opinion the only way forward is to continue to 

systematically compare responding between human participants and simulated participants. By 

gathering more comparable data, in order to understand the connection between the algorithm 

parameter values and human responding, we might able to verify if computer simulated 

experiments can provide an even better understanding of the underlying mechanisms of stimulus 

equivalence, by making experiments more efficient and increasing the experimental control. 
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Table 1  

Training and Test Protocol 

Phase Type  Relation 
Programmed 

consequences (%) 

Minimum 

trials 

 Mastery 

criterion (%) 

MTS Training 

Baseline 
A1C1, A2C2, A3C3 100 36 90 

  B1C1, B2C2, B3C3       

            

MTS test Baseline A1C1, A2C2, A3C3 0 54 90 

  B1C1, B2C2, B3C3       

  Symmetry C1A1, C2A2, C3A3       

  C1B1, C2B2, C3B3       

  Equivalence A1B1, A2B2, A3B3       

  B1A1, B2A2, B3A3       

 

Table 2  

Test Results - Equivalence Class Formation per Participant 

 

 

 

 

 

 

Table 3 

The Parameter Conditions used in Experiment 2 

Condition α K βh βt γ P# 

1 0,01 1,0 0,1 4,0 0,001 1-5 

2 0,05 1,0 0,1 4,0 0,001 6-10 

3 0,10 1,0 0,1 4,0 0,001 11-15 

4 0,05 1,0 0,01 4,0 0,001 16-20 

5 0,05 1,0 0,5 4,0 0,001 21-25 

6 0,05 1,0 1 4,0 0,001 26-30 

7 0,05 1,0 0,1 3,0 0,001 31-35 

8 0,05 1,0 0,1 4,0 0,001 36-40 

9 0,05 1,0 0,1 5,0 0,001 40-45 

#P Baseline% 
 

Symmetry% Equivalence% 
Equivalence 

attained 

1851 100   100  94  Y 

1852 100   100  94  Y 

1853 94   89  83  N 

1854 89   94  50  N 

1855 100   100  100  Y 

Mean 97  97 84 N 
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Note. The network enhancement parameter is set to "False", that is DNS was used as network 

enhancement method (Mofrad et al., 2021). 

 

Table 4  

Training Results per Parameter Value Group 

Parameter Parameter value Mean #Trials #Trial min-max interval #Trial standard deviation 

α 0,01 54 [54 - 54] 0 

α 0,05 72 [72 - 72] 0 

α 0,1 86 [72 - 90] 7 

βh 0,01 144 [144 - 144] 0 

βh 0,5 205 [198 - 216] 9 

βh 1 166 [144 - 198] 26 

βt 3 194 [144 - 216] 29 

βt 4 205 [162 - 216] 22 

βt 5 212 [198 - 216] 7 

Total 149 [54-216] 61 

 

Table 5  

Test Results, Equivalence Relations 

Parameter  
Parameter 

value 

 Mean 

BSL (%) 

Mean 

SYM (%) 

 Mean 

EQ (%) 
Equivalence 

attained (%) 

EQ Standard 

deviation (%) 

α   93,5 93,2 88,9 33,3 3,0 

  0.01 93,2 93,0 88,1 20,0 4,4 

  0.05 94,3 94,1 91,1 60,0 1,5 

  0.1 92,9 92,6 87,4 20,0 2,4 

βh   86,5 86,4 79,8 66,7 22,0 

  1,00 96,3 96,2 96,1 100,0 0,0 

  0.01 67,4 67,4 48,1 0,0 1,4 

  0.5 95,8 95,6 95,1 100,0 0,0 

βt   86,4 86,0 78,6 20,0 15,0 

  3,00 76,3 75,9 66,8 0,0 14,3 

  4,00 88,1 87,4 79,7 0,0 13,1 

  5,00 94,9 94,6 89,4 60,0 6,6 

Total   88,8 88,5 82,4 40,0 16,0 
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Figure 2  

Number of Correct Trials by Block in the Training Phase, by Participant 

 

Figure 1 

 The set of Stimuli Used in Experiment  

Note. Overview of stimuli used in the experiment. The numbers 1–3 indicate the three experimenter-defined classes, 

and the letters in the left column indicate the three members. The letter-number combination was not visible for the 

participants. 
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Figure 3 

Number of Trials to Establish Baseline Relations, per Participant  

 

 
Figure 4 

Error Rate When Establishing Baseline Relations, per Participant 

  

 

Note. Group mean in grey, dashed line. 

Note. Group mean in grey, dashed line. 
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Figure 5  

Number of Errors per Sample Stimulus, per Participant 

Note. Sample stimulus in columns and the erroneously selected stimulus in 

rows. 

Note: Grey, dashed line depicts the mean. 

Figure 6  

Number of Trials to Establish Baseline, per Participant 



Human versus computer responding - Simulating stimulus equivalence experiments 

using Enhanced Equivalence Projective Simulation 

 

40 

 
Figure 7 

α Conditions - Number of Trials and sum of Time per Participant, by Parameter Value 

Note. The grey dashed line depicts the group mean. 

 

Figure 8  

βh Conditions - Number of Trials and sum of Time per Participant, by Parameter Value  

Note. Grey dashed line depicts the group mean value. 
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Figure 9 

βt Conditions - Number of Trials and sum of Time per Participant, by Parameter Value 

 

Note. Grey dashed line depicts the group mean value. 

 

 

 

 

 

 

Figure 10  

Test Results for Baseline, Symmetry and Equivalence Relations, by Participant 

Note. Score of 90 (equivalence formation criterion) as a gray dashed line. See table 3 for the 

parameter conditions for each participant. 
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Figure 11 

Test Results for the 15 Participants With Different α Conditions 

 

 

 

 

 

Figure 12  

Test Results for the 15 Participants with Different βh Conditions 

Note. Score of 90 (equivalence formation criterion) as a gray dashed line. See table 3 for the parameter 

conditions for each participant. 

Note. Score of 90 (equivalence formation criterion) as a gray dashed line. See table 3 for the 

parameter conditions for each participant. 
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Figure 14  

Boxplot of the Number of Trials Needed to Establish Baseline  

Note. Experiment 1 (left) and Experiment 2 (right, by parameter type). The x indicates the group mean. 

Figure 13  

Test Results for the 15 Participants With Different βt Conditions 

Note. Score of 90 (equivalence formation criterion) as a gray dashed line. See table 3 for the parameter 

conditions for each participant. 



Human versus computer responding - Simulating stimulus equivalence experiments 

using Enhanced Equivalence Projective Simulation 

 

44 

 

Etisk refleksjonsnotat 

Det ble ikke innhentet personopplysninger til eksperimentet utover epostadresse, fornavn og 

etternavn i forbindelse med gjennomføring av eksperimentet. Alle fem deltakere ble presentert 

med et dokument som beskrev deres rettigheter. Dokumentet beskrev at eksperimentet ikke 

innbar noen form klinisk behandling eller noe fysisk ubehag av noe slag. Videre ble det 

beskrevet at datainnsamlingen i forsøket er anonym slik at ingen individuelle data kan spores 

tilbake til en bestemt deltaker. Ingen vil kunne identifisere enkeltpersoner fra studien ved en 

eventuell publisering eller offentliggjøring av masteroppgaven.  Dokumentet oppga også 

vilkårene for å trekke tilbake samtykket gitt til å bruke dataene som er produsert under 

eksperimentet, det vil si at de kunne trekke seg fra eksperimentet når som helst under eller etter 

eksperimentet, uten konsekvenser. De ble også informert om at en debriefing-sesjon ville bli gitt 

etter at eksperimentet var fullført. De fikk kontaktinformasjonen min samt min veileders 

kontaktinformasjon.  

I etterkant av eksperimentet ble hver deltaker vist sine resultater og ble forklart formålet 

med eksperimentet. Fra et etisk perspektiv var det viktig å få frem at prestasjon i seg selv ikke 

var viktig for forskningsspørsmålet, men prosessen.  

Videre var jeg nøye med at navn og resultater ikke var koblet sammen i materiale 

oversendt min veileder, og at det dermed kun var meg som hadde kobling mellom responsdata og 

deltakernavn. Denne listen ble også slettet av meg med en gang eksperimentene var gjennomført. 

I denne oppgaven er det fokus på simulering av menneskelig respondering ved hjelp av 

maskinlæring. Dette stiller et viktig etisk spørsmål, nemlig om de etiske konsekvensene av å 

prøve å simulere mennesker ved hjelp av maskiner. Det er mange som mener at menneskets 
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streben etter kunstig intelligens, smarte roboter, vil ha uante konsekvenser for menneskeheten. 

Man ser også i dag betenkeligheter rundt teknologiens utvikling, med utvikling av autonome, 

«selvtenkende» våpen for eksempel. 

På en annen side er det alltid knyttet usikkerhet til teknologiske fremskritt, og man kan 

argumentere for at den klimakrisen vi står ovenfor i dag kan tilskrives industrialiseringen i de 

vestlige land på begynnelsen av 1800-tallet. Denne står samtidig for en forbedring av levekår for 

«mannen i gata» som mangler historisk sidestykke. Einsteins forskning som var banebrytende for 

fysikken førte også til utvikling av atombomber. 

Vitenskapelig forskning som springer ut av et ønske om å bringe fagfeltet videre, i alt fra 

forskning på atomer til kreft, er i mine øyne etisk forsvarlig, så fremt det skjer i henhold til lover, 

regler og vitenskapelige prinsipper. Når vi i dag har de teknologiske rammene til å bruke 

datamaskiner for å forstå grunnleggende menneskelige atferdsprinsipper så mener jeg at dette er 

en etisk forsvarlig forskningsretning å gå i. Dette til tross for at mulighetene for at denne type 

forskning potensielt kan ha store, negative konsekvenser slik vi ser med for eksempel 

oppfinnelsen av dampmaskinen og splitting av atomer. Jeg håper at den også vil ha store positive 

konsekvenser som muligens vil kunne avveie for de negative. 

 

 

 

 

 

 


