
ACIT5900 

MASTER THESIS 

in 

Applied Computer and Information 
Technology (ACIT) 

May 2023 
 

Applied Artificial Intelligence 

 

XMask Clustering: Leveraging eXplainable 

AI and Clustering for Medical Knowledge 

Discovery  

 

 

 

Håvard Horgen Thunold 

Department of Computer Science 

Faculty of Technology, Art and Design 

 



Preface

I hereby present my master’s thesis "XMask Clustering: Leveraging eXplainable
AI and Clustering for Medical Knowledge Discovery." It is written as part of the
Applied Computer and Information Technology master’s program at Oslo Metropolitan
University, where I followed the Applied Artificial Intelligence specialization. Artificial
intelligence (AI) is a field in growth with what seems like endless possibilities for positive
impact. That is why I decided to pursue AI studies and center my thesis around AI for
medical knowledge discovery.

I would like to thank my supervisor, Hugo Lewi Hammer, for their continued support
and guidance throughout this work. I am incredibly grateful for the knowledge and ex-
pertise that you have shared. I would also like to thank my co-supervisors, Anis Yazidi
of Oslo Metropolitan University and Michael Riegler of SimulaMet. Lastly, I also want
to express my gratitude to my fellow students and friends for engaging discussions that
kept me motivated during my studies and thesis work.

Håvard Horgen Thunold
Oslo, May 2023

1



Abstract

Deep Learning, a subset of machine learning, has shown great ability in supervised
medical image classification tasks. Although there are significant advantages, DL
models have low interpretability and are considered black-boxes. The black-box
nature of these models affects trust and hinders adoption in critical domains. The
field of eXplainable AI aims to address these problems by creating human-centered
explanations that give insight into a model and its predictions.

This thesis answers whether the aggregation of explanations extracted from black-
box models can be leveraged for medical knowledge discovery. This is done by
exploring the use of explanations not only to explain the model’s predictions themselves
but also as a tool to reveal previously unknown properties of the data. This is done in
the context of medical imaging for the purpose of extracting new medical knowledge. A
novel methodology is proposed for this purpose which we call eXplanation-masked
clustering (XMask Clustering). With this methodology, explanations extracted from
black-box classifiers are used as masks, revealing only the areas that contributed
to a prediction. This gives insight into the model’s learned knowledge. Further, the
masked images are clustered to uncover subclasses existing within the labeled class.
Experiments with the proposed methodology resulted in explanations that accurately
locate real and pseudo-real pathological identifiers. Experiments also show that XMask
Clustering results in higher-quality clusters when using a combination of real and
pseudo-real gastrointestinal images.
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Chapter 1

Introduction

Artificial intelligence in its simplest form came to be in the late 1940s with links to
theories that date back to as early as the 1800s (Schmidhuber, 2015). Since then,
artificial intelligence has been applied to a wide range of applications. During the
last years of the 1990s, most projects utilized what today would be called classical or
traditional machine learning techniques. In the early 2000s, this changed with artificial
neural networks becoming more practical as the hardware improved significantly, the
amounts of data increased, and new algorithms and architectures allowed for larger
and deeper neural networks. This new class of algorithms created a new subcategory
of machine learning called deep learning (DL).

In DL-enabled tasks, finding patterns in large amounts of unstructured data is
important. One such task is the classification of medical images. DL has been
shown to accurately detect identifiers of disease in various medical imaging such as
chest radiology imaging, mammograms, and magnetic resonance imaging (Senaras
& Gurcan, 2018; Tahmassebi et al., 2018). To accurately make such predictions, the
DL model extracts medical knowledge from the images and associates this knowledge
with the pre-defined labels. This is limiting in that the model only makes classifications
based on the labels given during the learning phase (existing medical knowledge).
One can, however, build upon a DL model’s ability to extract medical knowledge
from images by applying methods of knowledge discovery on top of the knowledge
extraction components. This has the potential to bring new medical discoveries while
being time and resource-saving by moving away from traditional methods that rely on
hand-crafted features (Zhang et al., 2022). This is highly relevant for data coming
from medical institutions that are not manually labeled. The data may be retrospective
data, with some data simply marked as disease and others not. This could be
from routine checkups such as a colonoscopy exam. In such cases, it is unknown
which characteristics of the images resulted in the separation of healthy and diseased.
Automatically finding these characteristics and leveraging this for knowledge discovery
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using DL is a challenging and less researched area and is, therefore, the focus of this
thesis.

Although there are potential benefits, there are also downsides that come with using
DL models for knowledge discovery that will be addressed in this thesis. DL models
are inherently difficult to interpret and are often referred to as black-box models. This
can pose a problem in industries where AI is used to make critical decisions. In the
medical domain, there must be appropriate levels of trust in the AI system, both from
the medical experts and the patients. To solve these problems of black-box models,
a new field called eXplainable Artificial Intelligence (XAI) has been created (Adadi &
Berrada, 2018). XAI provides techniques for creating explanations of DL models and
their predictions. This can be visual explanations showing which part of the image
had the most influence on the AI’s prediction. In the context of medical imaging,
such explanations show the model’s learned medical knowledge. Ribeiro et al., 2016
showed that visual explanations also adjust a user’s trust in the model to a level that is
more appropriate relative to its performance.

In this thesis, we provide a comprehensive look into how these explanations can
be utilized by unsupervised training algorithms to provide a more complete insight into
the medical data in which the DL method was trained on. In other words, this thesis
explores the use of explanations not only to explain the model predictions themselves
but also as a tool to potentially reveal previously unknown properties of the data. This
is done in the context of medical imaging and with the aim of extracting new medical
knowledge from such data. A new methodology is proposed for this purpose which we
call eXplanation-masked clustering (XMask Clustering).

1.1 Goals & Objectives

The goal of this thesis is to answer the following two research questions. First, can
explanations of a black-box model be leveraged to reveal new medical knowledge
while addressing the problems hindering the adoption of deep learning in the medical
domain? Second, is using pseudo-real medical data, adding a synthetic layer on top
of real medical images, useful for the evaluation of such a technique? To answer these
questions, the following objectives have been identified:

Objective 1 Research the current state of deep learning for new medical knowledge
discovery and any links to XAI in the existing literature.

Objective 2 Develop and implement a methodology for new medical knowledge
discovery using visual explanations extracted by XAI techniques.
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Objective 3 Evaluate the performance of the method using a combination of pseudo-
real and real medical data.

1.2 Main Contributions

The research conducted in this thesis aimed to provide valuable insights and contribute
to a highly unexplored area of research. By experimenting with new ideas for XAI,
medical knowledge discovery, and data, we have received insights that we believe are
of importance to the field. The contributions can be summarized for each research
question (RQ) from Section 1.1.

RQ 1 Can explanations of a black-box model be leveraged to reveal new medical

knowledge while addressing the problems hindering the adoption of deep learning in

the medical domain?

A novel methodology is proposed called XMask Clustering. The methodology is
shown to accurately uncover subclasses of medical image data by leveraging the
information revealed by XAI for improved clustering. Baked in XAI forces interpretability,
increased trust, and model insights and thereby addresses some of the problems that
hindered the adoption of black-box models in the medical domain.

RQ 2 Is using pseudo-real medical data, adding a synthetic layer on top of real

medical images, useful for the evaluation of such a technique?

A pseudo-real medical dataset is created using the gastrointestinal dataset
HyperKvasir at its base. Experiments showed that pseudo-real data is suitable for
evaluating visual explanations and revealing errors that may be difficult to find when
using real medical data.

1.3 Thesis Structure

This thesis is structured using seven chapters. Immediately following the introduction
is Chapter 2, which provides details on the concepts necessary for understanding the
technological base that this thesis builds upon. Chapter 3 presents a review of related
research, covering deep learning for knowledge discovery and eXplainable AI in the
medical domain. Chapter 4 details the data and experiments. Chapter 5 then presents
the results of the experiments along with an interpretation and evaluation. Chapter 6
gives an analysis of the work along with a discussion on ethical considerations. Lastly,
future work and some concluding remarks.
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Chapter 2

Underlying Concepts

This chapter covers important concepts used in this work. In order to get a complete
understanding of the literature and research conducted in this thesis, it is essential to
have a thorough understanding of these underlying concepts. Advanced readers could
consider jumping to the related work in Chapter 3.

2.1 Machine Learning

Figure 2.1: High-level overview of a small subset of Machine Learning concepts with
green indicating concepts relevant to this thesis and red-dashed rectangles indicating
non-relevant concepts.

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) where the goal
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is to build computer programs that can learn from experience, in the form of data,
and make predictions based on what has been learned (Mitchell, 1997). Machine
Learning can be categorized into four main categories: (1) supervised learning, (2)
unsupervised learning, (3) semi-supervised learning, and (4) reinforcement learning
(Das & Behera, 2017). In supervised learning, the data is labeled meaning that each
data point includes information about the class to which it belongs prior to learning. A
model is then trained to best fit the data points to the labels. Unsupervised learning, on
the other hand, does not use labeled data. In unsupervised learning, machine learning
algorithms are used to learn patterns and groupings in the data without requiring
human-made labels. Semi-supervised learning combines the two approaches by
using both labeled and unlabeled data. The last major category is reinforcement
learning where the data comes from interactions with the environment and learning
occurs based on a reward signal. This thesis focuses on supervised and unsupervised
learning with further sub-categories as seen in Figure 2.1.

Going deeper into the hierarchy of machine learning and looking at the evolution
of ML, hardware, and data, a broader category of ML was born called deep learning
(DL). DL can be defined by the number of layers in an Artificial Neural Network (ANN).
For an ANN to be considered deep it must have three or more layers although other
definitions also exist (Schmidhuber, 2015). Deep Neural Networks (DNN) combined
with more data has shown to perform better than classical ML algorithms (Dong et
al., 2021). DL also differs from classical ML in that feature extraction is done by the
model itself. It has revolutionized the field and has enabled applications in speech
processing, natural language processing, computer vision, generative AI, and more.
DNN models do however come with the caveat that they are black-boxes meaning
they are inherently uninterpretable. This spawned a new field called explainable AI
(XAI) with the goal of explaining these black-boxes and their predictions. As this
thesis focuses on using such black-box Deep Neural Networks (DNN) trained in a
supervised manner for image classification in the medical domain, this section starts
by providing background on supervised image classification, architectures important
for this work, and training and evaluation concepts. This is followed by concepts
related to unsupervised image classification to provide the necessary background for
understanding how ML can be used to identify new sub-labels in data. Further, a key
part of this work is extracting human-centered explanations from the black-box image
classifier. This section, therefore, completes by detailing the concepts of XAI that are
most important to this thesis.
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2.2 Supervised Image Classification

Image classification is the task of learning to assign a label to an image. In this
section, there is an assumption of the existence of labels. This thesis also explores how
unknown sub-labels can be identified. Finding these different groupings of images in
an unsupervised manner is called clustering and is detailed in Section 2.5. Assuming
a set of image and label pairs a model can be trained in a supervised manner to
best predict the labels of images that are new to the model. This has use cases in a
wide range of domains, such as the medical domain where image classification can
differentiate between healthy and pathological images. The implementation of such
an image classifier could be done using a fully-connected DNN, but this would require
an extreme amount of parameters when handling images. As image sizes increase it
becomes infeasible to use a fully-connected DNN for this task. To efficiently learn to
classify images, a more efficient architecture such as the Convolutional Neural Network
is needed.

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) for classification traditionally consist of convolu-
tional layers, pooling layers, and fully connected final layers called classification heads.
The convolutional layers are the heart of a CNN and take advantage of the mathemat-
ical convolution operator. An nxn pixel window called a kernel slides across the input
extracting features that are local to the kernel window resulting in feature maps. The
weights of the kernel are learned with training of the CNN. This is followed by the pool-
ing layer. This is a layer that serves two main purposes. The first is that pooling reduces
the model’s sensitivity to a feature’s position. This is called local translation invariance.
The other is downsampling of the feature map by running a pooling operation such as
taking the maximum or the average value. A similar effect to that of max pooling has
been shown to occur if one uses a convolutional layer where the kernels are moved
across the image with a stride greater than or equal to 2 (Springenberg et al., 2015).
By applying necessary padding and using a stride of 2, the image will halve in size,
and over multiple layers, the input will be reduced significantly. The result is then fed
into a fully-connected layer where the last layer has K neurons where K is the num-
ber of classes in the dataset. This gives a prediction for each K classes and forms a
basic image classifier. For state-of-the-art image classification, the Convolutional Neu-
ral Network and its convolutional layers have become a standard backbone of many
more advanced architectures such as VGGNets, ResNet, Inception, and Xception. For
this thesis, the ResNet architecture is used and is therefore further detailed in the next
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section.

2.2.2 ResNet

Deep convolutional neural networks have a problem: there is a point where increasing
the number of layers causes a degradation of training accuracy and an increase in
training error. He et al., 2016 introduced Residual Networks (ResNet), an architecture
for deep networks that allow for an increased amount of layers without the degradation
problem. ResNet is a CNN-based architecture that introduced the concept of a residual
block and skip connections. A residual block is a stack of two or more convolutional
layers with a skip connection that connects the input of the first layer in the block with
the output of the last layer. A ResNet is a stack of these residual blocks with average
pooling and a fully connected layer forming the final two layers. The authors showed
that ResNets have improved accuracy as the depth increases and do not suffer from the
same degradation problem that plain networks do when tested on two major datasets.

2.3 Supervised Image Classification - Training

The training of an image classification model in a supervised setting is an optimization
problem where the aim is to find the minimum loss or error between the true values and
the predicted values. Commonly gradient descent or a variant of gradient descent is
used as the optimizer. This is an iterative method that updates the values of the network
in the opposite direction of the gradient. This is the derivative of the loss with respect
to the weights in the network. By applying the chain-rule one can get the derivatives
with respect to weights all the way back through the network allowing the network as
a whole to be updated based on the loss, this is called backpropagation (LeCun et al.,
2012). This is the basis of training ML models, but there is a multitude of other concepts
that play a role and need to be considered, such as the initialization of the network, the
selected optimizer, activation functions, generalization, and regularization.

2.3.1 Optimizers

Since the inception of gradient descent, many variants have been created such as
Adagrad, RMS Prop, and Adam. These optimizers are smarter in the sense that they
provide functionality for variable rates of learning. This gives significant improvements
to training speed by allowing for larger changes to occur when far away from the target
and smaller changes when close to the target. Although there is no one optimizer that
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is best in all scenarios, Adam is currently recommended as a default optimizer for many
deep learning problems (Godbole et al., 2023).

2.3.2 Activation Functions

Activation functions are mathematical functions applied at the output step of each
neuron in an ANN with the purpose of bringing nonlinearity to the network. Nonlinearity
is required in order to solve real-world problems which are often nonlinear (Dong et
al., 2021). A multitude of activation functions have been proposed such as logistic
sigmoid, tanh, and variants of rectified linear units (ReLU) (Dubey et al., 2022).
Sigmoid and tanh were traditionally used extensively, but the saturated gradients at
the two tails showed to be problematic in training deep neural networks. Variations
of these activation functions, such as scaled hyperbolic tangent, scaled sigmoid, and
parametric sigmoid, have therefore been made as an attempt to solve these problems.
Although these variants minimize the problem, the vanishing gradient problem can still
be observed. Rectified activation functions, however, do not have the same problems.
ReLU is a simple and computationally efficient activation function that is linear for
positive values and zero otherwise. Negative values always being zero may cause a
problem where neurons become inactive and only output zero, this is called the dying
ReLU problem. A solution is to use leaky ReLU where a slope is added on the negative
side which allows for utilization of the negative values (Maas et al., 2013).

2.3.3 Initialization

An ANN needs an initial set of values for the weights in the network. How these values
are initialized can affect how quickly a model will converge or if it will converge at all.
Initializing too low will result in minimal changes to the network due to the vanishing
gradient problem. Initializing too high will results in the inverse called the exploding
gradient problem. Uniformly and normally distributed random has also been shown
to not be ideal. The solution is a more specialized initialization method. When using
the tanh activation function Xavier initialization, also called Glorot initialization, has
shown good results (Glorot & Bengio, 2010). It ensures that the mean of the activations
are zero and the variance is constant throughout the layers. This prevents vanishing
and exploding gradients. Another initialization method that has shown similarly good
properties when using ReLU activation function is He initialization (He et al., 2015).
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2.3.4 Generalization and Regularization

During the training process of a deep neural network, one may encounter overfitting.
Overfitting refers to when the model too closely focuses on the training data and thereby
does not perform well on new data. In other words, the model does not generalize well.
Methods for reducing overfitting are called regularization techniques (Goodfellow et al.,
2016). There are a host of methods in the literature that try to combat this problem
such as increasing the amount of data through data augmentation, dropout, batch
normalization, and early stopping.

A model will more easily learn the noise and random fluctuations in the data, rather
than the general pattern, in small amounts of data (Li et al., 2019). The amount of
training data can therefore be seen as crucial in preventing overfitting. One technique
for increasing the amount of data available under training is data augmentation
(Shorten & Khoshgoftaar, 2019). In computer vision applications, data augmentation
can be simple augmentations such as flipping, rotating, shifting, and scaling images.
It can also include more advanced techniques such as using Generative Adversarial
Networks to create new data (Perez & Wang, 2017).

For neural networks, dropout is a simple and effective method for reducing
overfitting (Srivastava et al., 2014). Dropout effectively changes the model’s
architecture by randomly selecting neurons that will not be part of an iteration.
This prevents neurons from learning the noise in the training data and improves
generalization. For Convolutional Neural Networks there is evidence that dropout
can be replaced by using batch normalization layers (Garbin et al., 2020). Batch
normalization normalizes the inputs of all layers which has been shown to be effective
in improving training efficiency by allowing for larger learning rates to be used. It has
also been shown to have a regularization effect.

Another simple regularization technique is early stopping. Continued training
increases the model’s accuracy on the training set, but there comes a point where
there is no improvement on the validation or test set. Further training results in
overfitting. A simple countermeasure is therefore to stop training when there has been
no improvement for a select number of iterations.

2.3.5 Transfer Learning

Modern neural networks require a large amount of data to be trained. In some domains,
such as the medical domain, getting large amounts of data may not be possible
(Waisberg et al., 2023). Transfer learning can be a solution to this problem across
many domains with this work focusing on transfer learning for computer vision. Transfer
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learning is a research area where the premise is to use the knowledge that has been
learned on one task and transfer that knowledge onto another task where you may
have a limited amount of data (Brodzicki et al., 2020). In transfer learning, one selects
a source model that is pre-trained on a source dataset. This model is then used as
the source for training the target model in the target domain using the target dataset.
Further one must decide on one of two strategies for transfer learning: (1) feature
extraction, and (2) fine-tuning. With the feature extraction strategy all layers are frozen,
meaning that they are not updated during backpropagation, while the classification
head is replaced and trained to fit the target task. This strategy is appropriate when
the target dataset is small. Another strategy is that of fine-tuning. With fine-tuning one
or more layers are unfrozen. Here the pre-trained weights are serving a similar purpose
to other network initializations but give a significantly improved starting point. This is
most often an appropriate method if the target dataset is of sufficient size to train the
entire network. Larger data sizes are needed to train larger networks and with transfer
learning as the size of the data grows the returns on using transfer learning diminish
logarithmically (Sun et al., 2017). Further research on transfer learning for computer
vision with large, small, and highly detailed datasets, has revealed more elaborate
methods.

Cui et al., 2018 proposed a transfer learning method where the pre-trained network
is trained on a specifically calibrated source dataset. This stands in contrast to the
more traditional method of using a pre-trained model trained on a large and general
source dataset. In their work, they use ImageNet (Russakovsky et al., 2015) as
the basis of their source dataset containing millions of images across thousands of
classes. For their target dataset, they used the iNaturalist (iNat) dataset containing
fine-grained images of nature (Van Horn et al., 2018). To further select the subset
for use in the training of the source model, they calculate the Earth Mover’s Distance
between the ImageNet images and their iNet target dataset. Two subsets were used
in their experiments taking the top 20% and 40% most similar classes from ImageNet.
They show that using these subsets can increase the accuracy of the target model by
about one percentage point. Another key takeaway is that transfer learning from a less
detailed source is beneficial also when targeting fine-grained domains. Although it gave
an overall performance increase, some classes of the target dataset were negatively
impacted.

Research focusing on transfer learning in medical imagining has shown similar
results. Alzubaidi et al., 2020 experimented with using medical images of one domain
as the source and medical images of another domain as the target. An experiment
outside of the medical domain using images of animals was also made for comparison.
Their experiments showed performance increases when the source and target datasets
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are in the same domain. Their experiments also showed that a very large source
dataset, such as ImageNet, that is slightly related to the target dataset is better than
using a small source dataset that is closely related to the target dataset. A large
general dataset can therefore be a good alternative if one is not available in the target
domain. Another paper using transfer learning in the medical domain showed that
using a source dataset that visually seems similar to the target dataset may not provide
the best results indicating that the importance of having visually similar source and
target datasets is task dependent (Moran et al., 2021). Both source datasets tested
do, however, show improved results over not using transfer learning at all. A common
conclusion on the importance of similarity between the source and target dataset is
not directly present. One thing that is shared across all of the research, however, is
that using transfer learning is beneficial to the performance of the model although with
fewer benefits being seen as the target dataset increases in size.

2.4 Supervised Image Classification - Evaluation

Evaluating a Machine Learning (ML) model is the act of measuring the performance
of a model on a given task using estimation techniques such as K-fold cross-validation
and quality metrics like accuracy, precision and recall, or F1-score (Stąpor, 2018).
ML models should be evaluated continuously throughout training using an appropriate
metric and dataset. Generally, when training an ML model the dataset is split into a
training set, a validation set, and a test set. The model is evaluated using the validation
set and is used to further tune any hyperparameters. The validation set can leak into
the model and is therefore not independent and cannot be used to get an unbiased
evaluation of the model’s performance. The test set sometimes called the hold-out set,
is therefore used for this purpose. An improvement over this is to use K-fold cross-
validation. This is a resampling technique where buckets of training and validation data
are created K-times. The model is then evaluated on all K-buckets of validation data.
This provides a more representative picture of the data and a less biased evaluation
of the model’s performance. How the performance is measured is using a metric. For
classification problems, which are the focus here, performance is often measured using
accuracy, precision and recall, or F1. Accuracy is the most simple representing the
amount of correctly classified samples over the total samples. This poses a problem
in cases where the data is not balanced as skewed data will also skew the accuracy.
An accuracy of 95% does not represent a high-performing model on a dataset where
one class represents 95% of the data. A better metric in such cases would be to use
precision and recall or F1-score. Precision represents true positives over predicted
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positives and recall represents true positives over actual positives. This means that
for cases where false positives must be avoided at all costs, one should focus on high
precision and low recall while in cases where false negatives should be avoided one
needs to focus on high recall and low precision. The F1-score can simplify this by
creating a single number from precision and recall.

2.5 Unsupervised Learning - Clustering

Clustering is an unsupervised machine learning technique where the task is to find
groupings in unlabeled data. It has a wide range of use cases, such as anomaly
detection, compression, or revealing interesting properties of image data. In this work,
the focus is on clustering for image classification using Spectral clustering and K-
Means.

2.5.1 Spectral Clustering

Spectral clustering is a technique for improved clustering that comes as a consequence
of The Curse of Dimensionality (Ng et al., 2001). That is, the problems arising when
working with high-dimensional data, are apparent when working with image data.
Clustering a flattened version of the image directly is not practical. Common practice
is therefore to cluster on features extracted from the images. This can be done using
traditional manual methods for shape retrieval, such as extracting edges using a Prewitt
kernel, or color features using a color histogram. A more modern approach is to
leverage the automatic feature extraction of deep convolutional neural networks. The
output of a convolutional layer can be used to get a lower-dimensional feature vector
representation of an image. This feature vector may still be larger than one wants. With
spectral clustering, dimensionality reduction techniques are used prior to applying the
clustering algorithm. Spectral clustering is thereby not a clustering algorithm in itself,
but rather an extra step for improved efficiency and reduced computation time. An
algorithm such as K-Means can then be used to cluster this lower-dimensional data.

2.5.2 K-Means and X-Means

K-Means is a simple clustering algorithm with a time complexity of O(n) using big-O
notation. The algorithm starts by initializing a centroid for each K clusters. There are
various strategies for this initialization. A simple strategy is to take K random points
from the dataset and use these as the initial centroids. This step causes K-Means to
be dependent on a good initialization for convergence. To minimize this issue one can
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run K-Means multiple times. Another strategy called K-Means++ has shown to be a
more robust initialization scheme that outperforms standard K-Means in both accuracy
and time (Arthur & Vassilvitskii, 2007). K-Means++ chooses the initial centroids by
using a probability that is based on a point’s distance to the current centroids. With the
initialization in place, all points are assigned to their nearest centroid. The algorithm’s
main loop is then run by shifting the centroids towards the mean of the points attached
to the centroid and re-assigning each point to the nearest centroid. K-Means can also
be formulated as an optimization problem that minimizes the squared distance between
points and centroids for each cluster.

One downside of K-Means is that K, the number of clusters, must be defined. When
the number of clusters is unknown, one can use a technique called X-Means. With X-
Means, the K-Means algorithms are run with different values for K. The number of
clusters that are most appropriate for a dataset can then be found by analyzing various
clustering performance metrics.

2.6 Unsupervised Learning - Clustering Performance

Evaluation

Clustering performance evaluation metrics can be split into two main categories, those
requiring labeled data and those that do not. For this work the most important of which
are Rand Index, Silhouette Coefficient, and Davies-Bouldin Index (Fahad et al., 2014;
Shutaywi & Kachouie, 2021).

Rand Index is a way of measuring the similarity between the labels that the cluster
has assigned to data points and the ground truth labels. This differs from standard
accuracy measures as with clustering the label of the cluster that a data point is
assigned to may not be the same as its label. To properly measure the accuracy of
a clustering one must therefore ignore permutations. Rand Index can properly give a
score in the range [0, 1] indicating the number of matching pairs between the cluster
labels and ground truth. It is highly interpretable, but when there are no labels available
other methods must be used.

Silhouette Coefficient is a metric that can be used when no labels are available. It
gives a value that increases as the clusters become more defined. More defined here
refers to the distance between the points within the cluster being low while the distance
to other clusters is high. It gives a value that is easily interpretable in the range [−1, 1]

where −1 indicates an incorrect clustering while 1 indicates the highly dense clusters
that are well separated.

The Davies-Bouldin Index differs from Silhouette Coefficient in that it focuses less
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on the quality of the clusters and more on the separation of clusters. A low Davies-
Bouldin index indicates a high degree of separation between clusters with 0 being the
lowest possible value with no upper bound.

The within-cluster-sum-of-squares, known as inertia, is a calculation of the distance
between points in a cluster and its mean point. Lower values indicate better clusters,
but it does give large values to elongated clusters even though they may be of high
density.

2.7 Explainable AI

Explainable AI (XAI) is a field of artificial intelligence that aims to give deeper
insights into black-box models and their predictions. Researchers have cited trust,
performance, legal (regulation), and ethical considerations as reasons for XAI (Barredo
Arrieta et al., 2020). This has become increasingly important as the adoption of AI has
reached critical areas such as the medical domain. How this is done for models that
are not inherently interpretable through external XAI techniques.

External XAI techniques can be explanations of single predictions in the form of
text or visualizations, or explanations of models in their entirety using examples, local
changes, or transformations to more interpretable models. Text and visualization
explanations provide a direct and human-understandable explanation, but normally
only for a specific prediction. Using examples can provide a more general
understanding of a model by providing similar examples and predictions to the
prediction that one wants to understand. This does, however, not provide a direct
explanation for a prediction of interest. Local explanations look at a subset of the
problem and attempt to provide explanations within that simplified context. The last
method is leveraging more interpretable models either by using a mimic model where
the mimic model is an interpretable model that learns the behavior of the black-box
model or by replacing the black-box model entirely. In this thesis, visual explanations
are used.

Hoffman et al., 2018 provide definitions for four techniques that can explain image
classifiers by altering the input. The first technique is the method of concomitant
variation where the authors suggest the use of image processing filters to create
contrast cases. The altered image is then used as input to the model and any variation
in the model output can then be assessed by a human observer. The method of
agreement is the second technique. This technique explains the model’s behavior
by checking the degree of agreement between the model and the human. The human
must with this technique hand-craft images where parts of the image, that the human
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believes should be of importance in the classification, are removed. When this image
is given to the model a drop in confidence is expected symbolizing that the model and
the human agree on the importance of the removed part for the given class. The third
technique is the method of difference. Here a correctly classified image is fused with an
image that the model should not know to classify. A decrease in prediction confidence
is expected and can reveal a model’s inner focus by observing the parts of the original
image that was changed. With an increase or flat confidence, one must ask which
parts of the overlaid image gave the model an indication of the original image class.
This technique could also lead to fused images where the original class is no longer
identifiable by a human. In such cases, the model should, similarly to a human, not
be able to identify the image. The fourth and last technique proposed is the method of
adjustment. The goal of this technique is to evaluate a model’s robustness in seeing
an unknown image. This can provide a further understanding of the model such as the
degree to which the context surrounding an object is used.

The technical implementation for extracting visual explanations from an image
classifier contains two parts: (1) an attribution algorithm that provides the data for
the explanation and (2) the visualization which uses the data to show a human-
understandable explanation. Attribution algorithms for image classification can
generally be split into two categories: (1) gradient-based methods and (2) occlusion-
based methods. Gradient-based methods look at a specific layer in the model and
calculate the influence of an input feature on the output of the layer by applying
tiny changes to the input. This method allows for the evaluation of any given layer
in a model and can provide a deeper understanding of the inner workings of the
model, such as the convolutional layer that has the highest influence on the prediction.
Occlusion-based methods apply squares, often gray or black in color, onto the input
image and record any changes in the prediction. The process is repeated until the
entire image has been occluded. The result is an occlusion sensitivity map that shows
the importance of each pixel. This is a human-understandable explanation that does
not expect the same expertise of the end-user as with the gradient-based methods.
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Chapter 3

Related Work

This chapter presents relevant research with the aim of building a context for which
this thesis fits. First focusing on a core component of this work, eXplainable AI (XAI),
and its use in the medical domain. Lastly, the role of AI and XAI in medical knowledge
discovery.

3.1 Explainable AI

Explainable AI (XAI) techniques targeting image classifiers contain two parts: (1) the
attribution algorithm, and (2) visualization. This section looks at what the current
knowledge is for each part for general use cases. This is further narrowed down to
XAI in the medical domain in the next section.

3.1.1 Occlusion-Based Methods

Occlusion-based methods, also called perturbation-based methods, were first intro-
duced by Zeiler and Fergus, 2014. In their paper, they showed that by systematically
applying a gray square to the input image of a CNN they could create explanations for
individual classifications. The explanation is an occlusion-sensitivity map which con-
tains the confidence difference between the original image and the occluded image for
each pixel. Further, they use the occlusion-sensitivity maps to show that a properly
trained CNN focuses on the object and only uses the surrounding context to a minimal
extent. They did so with state-of-the-art networks and multiple datasets. Although the
authors exclusively used CNNs in their research, the proposed method of explanation
is model agnostic as it only relies on altering model input and recording model output.
The proposed method does, however, also come with one main downside, computa-
tion cost. The authors do not cover this limitation, but later research has identified it as
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a problem.
Randomized Input Sampling for Explanation of Black-box Models (RISE) proposes

an occlusion-based method to tackle the large computation previously associated with
occlusion-based methods (Petsiuk et al., 2018). With the original method, a square
mask is moved across the image with some stride defining the amount of movement.
With a small mash and a small stride, this will result in a large number of masked
images and thus a large number of inferences required for a single explanation. RISE
attempts to solve this by applying N random masks where N is a hyperparameter. The
masks are upsampled using bilinear upsampling providing smoother edges in the mask
and thus smoother occlusion sensitivity maps. The resulting explanation is a weighted
sum of the difference in prediction by the black-box model, here a ResNet50 model.
The authors showed that this requires significantly less computation than the previous
method by Zeiler and Fergus, 2014, but still higher than gradient-based methods.
RISE does, however, have a limitation that is inherent in its random nature, it cannot
guarantee that all parts of the image will have been masked as part of the N masks.

Building on the work of RISE is Morphological Fragmental Perturbation Pyramid
(MFPP) (Yang et al., 2021). Similarly to RISE, they apply occlusion randomly, but
they do so to segments (superpixels). These segments are used to leverage the
full morphology of the objects in the image. The authors argue that previous work
only takes advantage of two of three identifiers of objects, color and texture, while
morphological theory says that shape is just as important. This makes the patches
of previous work less ideal. Superpixels, on the other hand, can align with the edges
of objects. MFPP occludes these segments and creates occlusion sensitivity maps in
the same manner as previous work. With this base, the authors extend their method
by using a pyramid of segmented images where each image uses a different scale of
segmented regions. This can catch features at different levels of detail. The authors
argue that the use of superpixels allows their method to take full advantage of the
morphology of the classified objects and combined with the hierarchical segmentation
can provide explanations in a computationally efficient manner.

Another attempt at solving the problem of computational cost for occlusion-based
methods is Hierarchical Occlusion (HihO) (Monroe et al., 2021). Their method relies
on capturing features that cover a large space rather than creating explanations that
exaggerate small features. They apply occlusion by setting zeroing pixels covering the
full length of the image in one dimension and half the length in the other dimension.
The size of the occlusion is always the full length in one dimension while it halves
for each iteration in the other dimension. The method is executed until the change in
the resulting confidence difference is lower than a predefined threshold. The authors
have found that this method requires orders of magnitude fewer iterations than other
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occlusion-based methods. They cite a difference of 65 thousand iterations versus their
12 iterations. It should be noted, however, that they use a naive approach when
representing the original occlusion-based method by using a stride of 1. This would
have given an explanation that is significantly more detailed than that of the proposed
HihO method.

Fong and Vedaldi, 2017 takes a different approach than the previously mention
occlusion-based methods by applying blurring to represent a deleted part of the image.
Their approach is to learn to find the minimal region of the image that needs to be
blurred in order to reduce the model’s confidence by 99%. By focusing on minimal
occlusion, the authors argue that their explanations can visualize what differentiates
the classified object from other objects in the dataset. They showed that this can give
highly detailed occlusion sensitivity maps on common datasets in computer vision.

3.1.2 Gradient-Based Methods

Gradient-based methods are another set of attribution methods that, as the name
implies, utilize gradients to measure the importance of changing the model’s input.
The first such method, within the field of image classification, was proposed in the
paper "Deep Inside Convolutional Networks: Visualizing Image Classification Models
and Saliency Maps (Simonyan et al., 2014)." Similarly to the first paper on occlusion-
sensitivity maps, the goal was to explain a CNN. The difference, however, is that the
gradient-based methods are not model agnostic. The proposed method is to take the
derivative of the output (model’s confidence for the class in question) with respect to
the input. In short, the method is similar to backpropagation in training but takes the
derivative with respect to the input rather than the weights of the network. The result is
a gray-scale image where individual pixels are lit-up indicating their importance to the
classification. These images do, however, include quite a bit of noise.

Sundararajan et al., 2017 proposed integrated gradients (IG) as a new attribution
method for improved visualization and better insight into a model. The first step of
their method is to create a linear interpolation between a baseline image, such as a
zero-valued image, and the target image. The number of steps in the interpolation is
defined by a parameter m. Gradients are then calculated m times and summed. The
authors empirically show that this gives better explanations, compared to earlier input-
gradient methods, across multiple network types. This does, however, come at the cost
of computation time with the authors estimating between 20 to 300 calls. This is still
significantly lower than that of some occlusion-based methods.

Further work on integrated gradients aims to reduce noise found in explanations.
Guided Integrated Gradient (GIG) by Kapishnikov et al., 2021 proposes adjusting the
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straight-line path from IG. Similarly to IG, there is an interpolation from the baseline
to the input explanation. The difference is that with IG every pixel is moved at every
step while with GIG only the 10% of pixels that have the lowest partial derivative are
moved to be closer in value to that of the input. A step parameter m, like with IG, is
used to define the amount of movement. A larger number of steps, and thus higher
computation needs, results in more accurate explanations. Visually GIG results in
explanations that have less noise than IG.

Another attempt at reducing noise in explanations from gradient-based explanations
is SmoothGrad (Smilkov et al., 2017). The authors argue that the direct use of gradients
as explanations of the importance of features (pixels in the case of images) can
be misleading as a strong feature may saturate the gradient. They also argue that
networks commonly use ReLU activation functions that will have fluctuating derivatives
causing noisy explanations. The proposal is therefore to take a local average which will
result in a smoother result. A Gaussian random sample of the neighborhood is taken as
direct computation would be costly. Using a CNN-based network and common image
datasets, they show that this method produces less noisy explanations -compared to
vanilla input-gradient and integrated gradient- that more directly match that which is
expected by a human observer.

Other work on gradient-based methods takes a different approach to visualization
that is close to that of the occlusion-based methods. Grad-CAM proposes taking the
gradients at the last convolutional layer of the network, rather than the output of the
network seen in previous work, and using this as the basis of the explanation (Selvaraju
et al., 2017). They argue that the spatial information preserved by the convolutional
layer is not found in the fully-connected classification head and therefore makes it a
better choice. Further, Grad-CAM requires global average pooling as the penultimate
layer. The resulting Grad-CAM explanations highlight the regions that have the most
effect on the prediction. The idea of creating visualizations by taking gradients at
the convolutional layer is built upon by FullGrad (Srinivas & Fleuret, 2019). FullGrad
aggregates the gradients across all convolutional layers to create the final visualization.
They show that this provides sharper visualizations that are also more accurate.

3.1.3 Visualization

Visualizations are the resulting explanations of the attribution methods detailed in the
previous sections. In the literature, there are conflicting opinions on what constitutes
a good explanation. The authors of Grad-CAM define a good explanation as an
explanation that provides justification for a classification by localizing the parts of the
image that contributed the most to the given classification (Selvaraju et al., 2017).
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Further, they say that the explanation must be of an appropriate resolution. These
conditions for good explanations are vague and open to different interpretations. With
the occlusion-based methods suggestions for decreasing computation time came at
the cost of a more rough visualization showing larger regions rather than smaller
attribution details. Here the authors focused more on the first point of a good
explanation. The gradient-based methods showed problems with noise in the resulting
visualizations. These explanations are of high resolution, but may not provide the
expected justification for the classification as the authors of SmoothGrad see only
a rough overlap between these explanations and a human’s expectation (Smilkov
et al., 2017). To create visualizations more aligned with expectations, SmoothGrad
proposes smoothing values by taking a local average and capping values to produce
more intelligible visualizations at the cost of correctness. Srinivas and Fleuret, 2019
suggests that the trade-offs seen in visual explanations are an inherent limitation of 2D
visualizations. They argue that limitations and trade-offs made must be explicitly stated
when using visual explanations as a 2D visualization will never fully represent a model.

Other works on improved visualization suggest that previous work has focused too
heavily on what parts of an input image change the classification for the positive without
considering how the change affects in the negative direction (Rudin, 2019; Zintgraf
et al., 2017). The argument is that both are needed to provide a user with a full
explanation and are necessary for the adoption of AI in critical fields.

3.2 Explainable AI in the Medical Domain

A significant amount of research on XAI points to the advancements of deep learning
and its applications in the medical domain as reasons for XAI (Kapishnikov et al., 2021;
Petsiuk et al., 2018; Smilkov et al., 2017; Sundararajan et al., 2017; Yang et al., 2021).
The research introducing these XAI methods does, however, not use datasets from
the medical domain but rather benchmark datasets for computer vision. This section,
therefore, reviews research on how XAI has been used in the medical domain.

Gecer et al., 2018 used XAI as a sanity check, to ensure that their black-box model’s
understanding matches their expected understanding. They used an occlusion-based
method similar to that of Petsiuk et al., 2018 with randomly placed occlusion patches.
This was run on their cancer classifier for breast histopathology images. They did,
however, not have the necessary expertise to say whether the visualization provided is
correct from a medical perspective. Papanastasopoulos et al., 2020 also used XAI for
a similar purpose showing that gradient-based methods can be useful in understanding
the lower-level features learned by a model when trained on medical images. This is
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a common usage of XAI in research on the classification of medical images (van der
Velden et al., 2022).

Xie et al., 2020 takes this one step further and uses the explanations to create
alternate visualizations meant for a physician. They train a binary classifier on normal
and abnormal brain ultrasound images and use Grad-CAM, described in Section 3.1.1,
to provide explanations for abnormal images. The explanations are then used to draw
bounding boxes on top of the original image to localize the abnormalities. The authors
deem this useful but also identify that Grad-CAM’s accuracy is a limitation as parts of
the abnormalities lie outside of the highlighted areas. This method has similar aspects
to the first few steps of the work presented in this thesis in that it uses a binary classifier
and then focuses on localizing abnormalities using explanations. It does, however, stop
prior to the knowledge discovery step which is central to this thesis.

Other works on XAI in the medical domain look at how XAI can reveal hidden bias.
Mahmoudi et al., 2022 used both gradient and occlusion-based methods to evaluate a
model trained to detect Covid-19. They used multiple state-of-the-art architectures and
fine-tuned from ImageNet to the target X-ray images. They showed that XAI can reveal
bias as all XAI visualizations showed a strong focus on parts of the image that should
not be used for the classification. This is with a model achieving 96% accuracy and
showed that one cannot select a model purely based on performance metrics as the
model may have hidden biases. Given that the explanations showed a focus outside
of the lungs, which is the area of focus, the researchers segmented the lungs prior to
further analysis. This limited the biases.

Although the reviewed work has shown that there are benefits to using XAI in
the medical domain, work also shows that it is important to select the appropriate
attribution method and visualization for the task. Guided Integrated Gradients showed
an improvement in visualization as compared to previous gradient-based methods on
ImageNet, but there is a downside noted by the authors. The downside comes with the
removal of noise that is central to the method. For medical imaging, where identifiers
of disease may be small and spread throughout the image, GIG may remove important
identifiers (Kapishnikov et al., 2021).

The importance of attribution method selection is also evident in other research.
Ehrhardt et al., 2019 found that gradient-based methods, such as guided integrated
gradient and Grad-CAM, provided poor explanations on pathological retinal OCT and
brain lesion MRI images while occlusion-based methods resulted in more plausible
explanations. The Guided Integrated Gradient and Grad-CAM papers both argued
that their XAI method provides improved explanations, but this was on the ImageNet
dataset. Ehrhardt et al., 2019 showed that this result was not transferable to the
medical domain.
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3.3 New Medical Knowledge Discovery

This section looks at the role of artificial intelligence in new medical knowledge
discovery. Literature on AI-based drug discovery is excluded to keep the review
focused. The goal is rather to showcase the approach that researchers have taken
toward this problem by going over some of the relevant work.

3.3.1 Image-to-Image Translation

Image-to-image (I2I) translation is the process of learning to map from one image to
another image (Alotaibi, 2020). This could be a mapping from a healthy image to an
image with pathological identifiers. The differences between the input and the output
images can then be used to reveal medical knowledge. For this Generative Adverserial
Networks (GAN) or Variational Auto Encoders (VAE) are used.

RegGAN has shown to be to most effective I2I solution on medical data (Kong et al.,
2021). The problem with I2I, in the medical domain, is that it is difficult to find aligned
image pairs in the real world. The authors used magnetic resonance images of the
brain, which they augmented with varied levels of noise and synthetic misalignment by
scaling and rotating the image. RegGAN outperformed previous state-of-the-art both
for aligned and unaligned pairs as well as from no noise to heavy noise.

Within I2I translation there is also work taking advantage of newer architectures,
such as the Transformer. The Swin transformer-based GAN showed promising results
on medical data with experiments outperforming RegGAN on the same dataset (Yan
et al., 2022).

3.3.2 Data Mining Techniques

Data mining is the process of extracting knowledge from big data by finding relevant
patterns and relationships (Neha & Vidyavathi, 2015). One such technique is
clustering, which is central to this thesis. This has been used in various aspects of
knowledge discovery in the medical domain but rarely directly in medical imaging.

Erro et al., 2013 found that K-Means clustering could be used to find subgroups of
patients that had not yet been treated. Four new unique subgroups were revealed. This
showed promising results for K-Means clustering but the research did not use images.
Dy et al., 2003 proposed a system for medical image retrieval by first searching for
the image given a major class (known class) and then by the learned identifiers that
were not previously labeled. They showed that using clustering, unlabeled subclasses
could be revealed and used to find similar images. This was useful as it increased the
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accuracy of a doctor’s diagnosis from 30% to 63%.
Other work looks at how data mining techniques can be used not to directly

provide new medical knowledge by AI but rather to use AI to provide a user with
better information such that the user can extract new medical knowledge. Schultz
and Kindlmann, 2013 proposed a visual solution for practitioners that uses spectral
clustering at its base to provide information about 2D and 3D medical data. Although
they make use of spectral clustering they acknowledge that there is no clustering
method that is best in all cases.

3.3.3 Explainable AI

Research on XAI in the medical domain is dominated by usage for ethical and legal
reasons, to increase trust and privacy, or to expose bias in models (Sheu & Pardeshi,
2022). The use of XAI for medical knowledge discovery is rarer although some see it
as an area with great potential (Nagahisarchoghaei et al., 2023).

Ghorbani et al., 2019 showed that one could cluster images, give the groups of
images importance scores, and thereby get explanations as to what parts are important
across a whole class. The method uses super-pixel segmentation to cut the image into
smaller chunks. This is done for all images in a class. The segments are then clustered
and the importance of each segment group is calculated. This results in explanations
that contain information about the features that are of importance across each class as
a whole. The authors used a general dataset to evaluate their method but it does not
seem to be a stretch to apply it to the medical domain. In such a case, this work could
potentially reveal medical knowledge by grouping types of identifiers. This is similar to
the goals of this thesis, however, using a different method. In this method, explanations
are the result. This stands in contrast to the work done in this thesis where explanations
are an integrated part of the method that works to improve the grouping.

Hicks et al., 2021 showed that one could leverage XAI for medical knowledge
discovery. They used a ResNet to automatically analyze ECG data. With their model,
they could predict the sec of the subject with an accuracy of 86%, something they
say is nearly impossible for a human cardiologist. To reveal this medical knowledge
learned by the model, the authors used XAI. They chose to modify Grad-CAM, the
method detailed in Section 3.1.2, to work on the plotted ECG data. This gave a visual
explanation of the parts the model finds important for the prediction and revealed what
the authors called "new insight into electrophysiology". Although this paper does not
use images, like the work in this thesis, it does use 2D visual explanations to reveal new
medical knowledge. No papers were found to directly use the explanations of image
classifiers in a similar manner to the work in this thesis.
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Chapter 4

Methodology

Medical institutions sit on a large amount of electronic medical data. This data has
historically been underutilized (Liao et al., 2010). Recent literature on the topic,
however, has shown that deep learning is a promising direction for making use of
this data. This data may be labeled in a rudimentary way, such as healthy and not
healthy. The challenge targeted in this thesis is, therefore, to find the characteristics
that provide a deeper understanding of the characteristics of the different classes, such
as diseased and healthy. In this chapter, a new methodology is proposed to address
this problem.

4.1 Overview

Suppose that we have a deep learning method that automatically classifies individuals
as either healthy or sick. We can imagine that individuals can be classified as sick for
many different reasons. For instance, the gastrointestinal tract can consist of several
different malformations, all being within the broader class of sick. In this thesis, we
suggest a method that will use a combination of DL, XAI, and clustering to get further
insight into the properties of the broader classes such as sick and healthy.

An overview of the method developed and implemented in this thesis can be seen
in Figure 4.1. The green border represents healthy data while the red with a dotted
border represents the flow of pathological data. The flow shown in the figure is for
revealing subclasses of the pathological data, but the method could be used for the
same purpose on healthy data as well. The method follows four main steps with each
step summarized below.

Step 1 Train a black-box image classifier on healthy and pathological data (binary
classification). The data is detailed in Section 4.2 and Section 4.3 while Section
4.4 presents the selected black-box classifier.
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Figure 4.1: Overview showing the four main steps of the proposed method.

Step 2 Extract explanations for each prediction on the pathological data using XAI
techniques as set out in Section 4.5.

Step 3 Create a final version of the images by using the explanations as a mask
applied to the pathological images to highlight areas of importance for the
classifier to separate between the two classes and reduce the noise.

Step 4 Steps 2 and 3 identify important characteristics when predicting the sick
images. However, to further get a better overview of the characteristics of
subclasses of the pathological data, we suggest clustering the images masked by
their respective explanation. We refer to this as Explanation-masked Clustering
(XMASK Clustering), which will be described in Section 4.6.

We evaluate this method using two sets of experiments. Each experiment compares
the proposed method with its traditional counterpart (no explanations). Section 4.7
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contains experiment-specific details.

4.2 Data

Figure 4.2: A sample from the HyperKvasir dataset showing images from the upper-
and lower GI tract.

The data source used as the base for all experiments in this work is the HyperKvasir
dataset compiled by SimulaMet (Borgli et al., 2020). This is a large image dataset of
the gastrointestinal tract taken from gastro- and colonoscopy examinations performed
at Bærum Hospital in Norway. The images were taken using a Pentax colonoscope
(Pentax Medical Europe, Germany). Some images contain extra information in the
form of a picture-in-picture located in the bottom left corner recognizable by its distinct
green background. These are images taken by an Olympus ScopeGuide™, a device
used to image the colon (Olympus Europe, Germany).

The dataset contains 10,662 labeled and 99,417 unlabeled images where every
label is reviewed by more than one expert in the field and is therefore assumed
to be highly accurate. The dataset also includes videos containing 889,372 video
frames. This is a large amount of medical data from an unknown amount of patients.
Medical data requires special care when it comes to privacy (Price & Cohen, 2019).
The Norwegian Data Protection Authority (Datatilsynet) deemed this dataset fully
anonymous which allowed it to be openly available. No extraordinary security or privacy
measures have therefore been taken when working with this dataset. Figure 4.2 shows
a sample from this dataset.
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Figure 4.3: Pseudo-real data samples.

4.3 Pseudo-Real Data

Pseudo-real datasets created using the HyperKvasir dataset as its base are used in all
experiments. The datasets are partially synthetic meaning some samples are real while
others are real with a synthetic overlay. Images labeled as healthy are kept as is while
those representing pathological findings are pseudo-real in that the real image is used
as the base with a colored shape applied on top of the image. The pseudo-real images
use the same images as those in the healthy dataset, thus only differing in the colored
shapes applied on top. Figure 4.3 shows what this can look like with yellow rectangles
and blue ellipses as synthetic pathological identifiers. Applying colored shapes to
represent a pathological identifier serves three main purposes. Firstly, it increases
the differences between healthy and pathological images. This is important as it
allows a classifier trained on the data to learn the differences between the classes, a
problem that becomes increasingly difficult with more classes and obscure differences.
A classifier that can make out these differences is required for the experiments on
explanation-based knowledge discovery detailed in Section 4.7 which is the core focus
of this thesis. Secondly, since we know the true explanation, given by the presence or
absence of the colored shapes, it allows evaluation of a model’s performance, in terms
of accuracy or in terms of explanations of predictions, to be evaluated by those who do
not have sufficient medical expertise. Lastly, it allows for customization and opens for a
wider range of experiments. With the number of possible synthetic classes only being
limited by the combinations of colors and shapes, the researcher is given the power to
make a problem as simple or complex as needed. Commonly, healthcare-related data,
such as this, is unbalanced. The pseudo-real dataset allows us to dynamically change
the data to be as balanced or unbalanced as one wishes and enables experiments that
the original dataset could not.
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4.4 Classification

The image classification part of this method is done using a black-box image
classifier that solves the binary classification problem of differentiating healthy and
pathological images. The purpose of the classifier is to automatically learn the
characteristics that define these classes. This is leveraged in later steps. To do this
a model appropriate for the task must be chosen. The ResNet architecture with 50
layers was selected for the experiments done in this work. Table 4.1 provides details
on the architecture. All input images are scaled to 224 × 224 pixels with all three RGB
color channels being used. Further, the model architecture follows that of ResNet50
until the classification head. The classification head is task-specific and is replaced
with a single neuron giving a prediction in the form ŷ ∈ R | 0 ≤ ŷ ≤ 1 after softmax is
applied. This architecture was chosen as it has shown good results on classification
tasks within medical imaging. It is also a model that previous research on XAI has
used to extract explanations and can therefore be seen as a safe base model to select
for the experiments in this work. The proposed method does, however, not require a
specific architecture.
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Input x ∈ R224×224×3

Conv 64, 7×7, stride=2, BN, ReLU

Max Pool, 3×3, stride=2

Residual Block × 16

Average Pool, 2×2, stride=2

Fully-connected 1

Output ŷ ∈ R | 0 ≤ ŷ ≤ 1

Table 4.1: Classifier architecture overview

4.5 Explanations

This section describes the approach used for creating explanations. It is based on the
literature review as well as a judgment based on the target case of this thesis as well as
the data and selected model. This is necessary as the literature review did not reveal
an XAI technique that is universally best.

A multitude of methods for extracting explanations from image classifiers was found,
each with its benefits and trade-offs. The occlusion-based method by Zeiler and
Fergus, 2014 was selected and built upon to create the explanations used here. An
occlusion-based method was selected as they have properties that are wanted when
creating explanations for critical applications and trade-offs that are acceptable in the
target use case.

Given an image I ∈ RW×H×3 and a black-box classifier f(I) → ŷ ∈ R | 0 ≤ ŷ ≤ 1, an
explanation is received by altering I and recording changes in ŷ for each pixel j. The
alteration is a 2D patch of pixels P of size PW ×PH moved over the image with stride s.
The patch is applied N times until all pixels have been covered. Each patch is applied
to a copy of the original image. The colors of the touched pixels are replaced with
gray color values (128 in all color channels for RGB 0-255). As the stride increases,
the computation decreases, but with the cost of decreased detail. Gray was selected
as this is the color used in most research found on the topic. There is, however, some
research using black pixels. The color does not fundamentally change this method. Let
this color be represented by the constant C. To simplify the calculation, the patch P
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can be represented with the same dimensions as the image in the first two dimensions
with 0’s in the position of the patch and 1’s in all other positions. This allows for matrix
multiplication to be done cleanly. Occluded input using a given patch can then be
represented by:

g(I, P ) = f(I ⊙ P + (1− P )⊙ C) (4.1)

The importance map Y showing the importance of each pixel, j, can then be
mathematically formulated as the following:

Y = ∀j ∈ I =
1

|P (j) = 0|

N∑
i=1

f(I)− g(I, Pi) (4.2)

These raw values do not make good visualizations. Common practice is therefore to
normalize between 0 and 1 prior to visualization. Since Y contains both negative and
positive values, representing pixels that affect the model’s confidence both negatively
and positively for the current class, Y is normalized between 0 and 1 for all positive
values and 0 and -1 for all negative values. The attribution methods found in
the literature review only keep the positive values but in Section 3.1.3 research
on visualizations showed that negative values are important for creating complete
explanations and are therefore also used in this method. The mathematical formulation
of the normalization procedure is left out for brevity. Further, a smoothing function,
S, is applied to the importance map to remove noise from lesser important pixels
and to boost those of higher importance. This step was inspired by (Sundararajan
et al., 2019) where they clip the values, creating a hard boundary between important
and unimportant pixels. In this work, however, it was found that a smoothing function
provided better visualizations. The smoothing function takes three arguments. First,
the value to smooth, x, second the offset θ, and third the strength s. The formula can
then be defined as:

S(x, θ, σ) =

 xσ

θσ−1 , if x ≤ θ

1− (1−x)σ

(1−θ)σ−1 , otherwise
(4.3)

The final explanation can then be defined as S(Y, θ, σ) where θ and σ are
hyperparameters that need to be selected for each use case. The function is visualized
in Figure 4.4 with θ = 0.1 and σ = 8.

As shown in detail above, this method relies only on altering the input of the model
and recording changes in output and can therefore be seen as model-agnostic. This
is important for the future applications of this method. It allows for the best model to
be selected based on its ability to identify characteristics in medical imaging rather
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Figure 4.4: Visualization of the smoothing function applied to the explanations.

than based on its compatibility with the XAI method. This stands in contrast to the
tight coupling that some gradient-based methods can have to the model architecture.
Another reason for using Zeiler and Fergus, 2014 occlusion-based method as a starting
point for the method presented here is that it was found to have the highest ease of use
in terms of a human’s understanding of the explanation (van der Velden et al., 2022).
This is critical in the medical domain where various non-XAI experts must make sense
of an explanation.

This method does, however, have a downside in terms of computational efficiency.
In Section 3.1.1 of the literature review, a host of other occlusion-based methods
were reviewed. These mostly aimed to decrease computation time. Significant
improvements were made but it came with the cost of decreased detail in the
visualizations and in some cases decreased faithfulness to the model’s predictions.
In this work, higher-detail explanations are considered more important than low
computation time.

37



4.6 Explanation-Masked Clustering

Explanation-masked clustering (XMask Clustering) is a novel method of clustering
where visual explanations are used to mask images prior to clustering. As the
explanations represent the importance of each pixel in an image, using this as a mask
results in an image that is simplified by removing unimportant parts. Clustering can
then be done on images that only represent characteristics of importance. In this work,
clustering is done to reveal groupings of pathological identifiers. The importance map,
Y , contains information about the importance of each pixel for both the pathological
and healthy classes. To get the importance map for only the pathological class the
following must therefore be done:

Y pathological = ∀j ∈ Y =

j, if x ≥ 0

0, otherwise
(4.4)

A mask for images in the pathological class can then be created from the
explanation for this class. The mask, M , is then mathematically formulated as the
following:

M = S(Y pathological, θ, σ) (4.5)

The resulting mask is then a matrix M ∈ RW×H | 0 ≤ M ≤ 1 where W and H are
equal to the width and height of the original image. The masked image is then received
by element-wise multiplication of the mask and the image: I ⊙M . Direct clustering of
the masked images is not practical with 50 thousand features for a 224x224 image or
more than a million for higher definition images such as 1024x1024. A form of feature
extraction is required. This is done by running the masked image through an image
classifier and taking the output prior to the classification layer. For the classifier detailed
in Section 4.4, the penultimate layer is the average pooling layer outputting a 256-
dimensional vector. This vector could be clustered directly, however, 256 dimensions
is larger than ideal in terms of computation and clustering accuracy. It is therefore
reduced to a lower dimension using Singular Value Decomposition prior to clustering.
Clustering is done using K-Means. As K-Means requires the number of clusters, K, to
be given, this does not work directly with our method as the number of clusters that may
exist within the pathological data is unknown. The number of clusters must therefore be
found by clustering multiple times with an increasing amount of clusters and evaluating
the cluster metrics. The K with the highest Silhouette Coefficient is selected. The
Silhouette Coefficient is used as the metric as it gives a direct, measurable, number
representing how well-defined the clusters are. The intuition behind this is that well-
defined clusters (high Silhouette Coefficient) indicate that the data is correctly clustered
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as it is difficult to separate a well-defined cluster while poorly defined clusters (low
Silhouette Coefficient) indicate that there may exist multiple clusters in the given cluster.
This can produce more than one viable solution depending on the data but this is also
true for other methods of selecting K, such as the Elbow method where the inertia is
plotted and the elbow point in the graph represents the correct number of clusters.

With the data clustered, groups of pathological identifiers in the images are
revealed. A medical professional would then have access to an explanation as to
why the classifier predicted an image as pathological, an image masked with this
explanation that highlights the areas of importance, and a grouping based on the
characteristics of the pathological data.

4.7 Experiments

This section contains details on the experiments with the new methodology. The
aim of the experimentation is to evaluate the feasibility and viability of the proposed
methodology.

4.7.1 Datasets

Two datasets are used for experimentation. The datasets differ in size and content.
They do, however, follow the same data preparation procedure.

Preprocessing Some preprocessing is required to prepare the dataset for use in
machine learning applications. The raw images have an aspect ratio of 4:5. The
classifiers used in these experiments, however, use squared images. The images
are therefore cropped to a 1:1 aspect ratio. A bottom left crop ensures that the entire
Olympus ScopeGuide™ image is included. This does remove 20% from the top of the
images and thereby creates some information loss. This is acceptable and aligns with
the methods used in the official experiments by the HyperKvasir dataset creators. The
images are then scaled to 224x224 pixels, as expected by the classifier. Finally, the
images are normalized between 0 and 1.

Augmentation All datasets follow the same data augmentation procedure. This is
a standard procedure used to combat overfitting and increase the generalizability of
the model. The training data is augmented in the following way: 50% chance of
randomly flipping the image horizontally or vertically and uniform randomly rotated up
to 90 degrees.
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Figure 4.5: Dataset A

Figure 4.6: Dataset B

Dataset A Dataset A, visualized in Figure 4.5, contains 20,000 images evenly split
between the healthy and pathological classes. The healthy class uses all 10,000
HyperKvasir images without any edits. The pathological class contains pseudo-real
data created by taking the same 10,000 images and applying colored shapes. A single
yellow rectangle or blue ellipse, with a width and height randomly set between 20-25%,
is added to the image, each at a rate of 50%.

Dataset B Dataset B, visualized in Figure 4.6, contains 2,056 images labeled as
healthy in the HyperKvasir dataset and 2,056 images with half being real pathological
images and half being pseudo-real. The first 1,028 images of the pathological set
are real images of polyps. The other 1,028 are healthy images with a blue ellipse,
representing another pathological identifier, added in a similar manner as Dataset A.
The blue ellipse was chosen as it has similarities to polyps in terms of size and shape,
adding to the challenge of this dataset.

4.7.2 Classifiers

The experiments require three classifiers: one general pre-trained classifier and two
classifiers trained on their respective datasets. This section covers experiment-specific
details on the classifiers not covered in Section 4.4.
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Pre-trained Classifier The pre-trained classifier is a ResNet50 trained on 1,000
classes of ImageNet (Russakovsky et al., 2015). Model weights are downloaded from
Pytorch 1. This model serves two purposes: (1) being the source model for transfer
learning and (2) being a general feature extractor.

Classifier A & B Classifier A is trained on dataset A using transfer learning to fine-
tune from the ImageNet pre-trained classifier. Classifier B differs only in that it uses
dataset B. Both classifiers are trained using the same procedure and only differ in the
dataset.

Training The goal of the classifier in these experiments is to get a well-performant
model for the sake of explanations and feature extraction prior to clustering, not to
find the best possible model. Safe and well-established choices have therefore been
made. The classifiers are fine-tuned on their respective datasets. The data is split into
training, validation, and test sets with 64%, 16%, and 20% of the data respectively. The
data is batched with a batch size of 64. Loss is calculated for each batch using Binary
Cross Entropy loss function. Stochastic Gradient Descent with a learning rate of 0.001
and a momentum of 0.9 is used. The learning rate is decayed by a multiplicative factor
of 0.1 every 7 epochs. With these parameters, the model is trained until early stopping
based on no change in the F1 score on the validation set using a patience of 5 epochs.
The models are trained on a V100 GPU.

4.7.3 Experiment Baseline

The baseline is meant to represent the traditional method of clustering and is the
method of comparison. In order to accurately compare the methods, all parts except
for XMask Clustering specific elements are kept constant between the baseline and
experiments, allowing for precise measurements of any differences. With the baseline
method, the images are kept as, this stands in contrast to XMask Clustering where
the images are masked based on the explanations for the given image. Features are
then extracted from these images using the same feature extractor as with the XMask
Clustering experiment. The clustering procedure of these features also matches that
of the experiment, further detailed in the respective experiment section.

1https://pytorch.org/vision/stable/models.html
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4.7.4 Experiment A

Experiment A is an experiment with the proposed methodology using dataset A and
classifier A. The purpose of this experiment is to evaluate the proposed methodology’s
ability to reveal subclasses in pseudo-real medical data as compared to the traditional
method of clustering (baseline). The baseline differs in that it does not use
explanations. The proposed methodology is followed as previously detailed. This
requires setting some hyperparameters for the explanations. A patch size of PW , PH =

24 and a stride s = 8 is set. For the smoothing function, θ = 0.1 and σ = 8 are used.
The clustering also requires setting a hyperparameter, the number of dimensions to
reduce down to before clustering. For this experiment, 32 dimensions are used.

4.7.5 Experiment B

Experiment B uses dataset B and classifier B. This experiment goes beyond pseudo-
real by having one real pathological identifier (polyps). This is one step closer to the
targeted real-world scenario and allows for a more robust evaluation of the method.
The hyperparameters used for the explanations in this experiment are as follows. A
patch size of PW , PH = 64 and a stride s = 16 is set. For the smoothing function,
θ = 0.1 and σ = 8 are used. Lastly, the features are reduced to 32 dimensions.
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Chapter 5

Results

This chapter presents the outcome of this thesis work. The results from the
experiments, detailed in Section 4.7, are presented and analyzed by looking at each
individual logical step outlined in the proposed methodology.

5.1 Overview

The results are presented in three parts. First, results on the training and evaluation of
the experiment classifiers. Second, the created explanations and an analysis of their
accuracy and limitations. Third, results from clustering with and without the proposed
XMask Clustering technique. The results can be summarized as the following:

1. Classifier Results The black-box classifiers both learned to classify their
respective datasets with a perfect score on the test set.

2. Explanation Results The explanations visually show that the classifiers correctly
focus on the expected areas of the image. Experimentation also showed that the
best results are highly reliant on the selected hyperparameter values.

3. Clustering Results Experiments with the proposed XMask Clustering technique
showed that it results in higher-quality clusters. The clustering correctly groups
subclasses of the pathological data and with that reveals medical knowledge.

5.2 Classifiers

The classifiers detailed in Section 4.7.2 both achieved a perfect 1.0 F1-score on their
respective test datasets. Classifier A must learn to differentiate gastrointestinal images
with and without yellow rectangles and blue ellipses. The added noise from the base
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images on the pseudo-real data makes this a more difficult problem than with fully
synthetic data but the ResNet50 fine-tuned from the pre-trained classifier learns quickly
and perfectly classifies all test samples after 3 epochs.

Classifier B, trained on dataset B, requires learning more complex features with one
of the two pathological identifiers being real images of polyps and the other being blue
ellipses. The polyps are both larger and smaller than the previously applied rectangles
and ellipses and have significant variations in shape with colors that are similar to the
rest of the colon. This is a more complex challenge than dataset A that the classifier
manages to overcome. Classifier B reaches a perfect 1.0 F1-score after 8 epochs.
Training takes longer than classifier A, in epochs, likely due to dataset B being more
complex and one-fifth of the size. The end result is the same across both classifiers as
they successfully classify the test data. It can, therefore, be assumed that the models
have extracted knowledge from the datasets. These classifiers are thus fit for further
use in creating explanation masks and for extracting features for clustering.

5.3 Explanations

Explanations visualize what the models see and focus on for a prediction. Creating
these explanations is step two in the methodology, seen in Figure 4.1. As the method
only uses explanations for the pathological data, the resulting explanations shown here
only focus on this class.

An important question of interest for the explanations is whether they show a focus
on the expected areas of the images. A visual analysis of images overlaid with their
respective explanations was done to answer this question. The experiment classifiers
A and B, detailed in Section 4.7.2, were used for extracting explanations for images in
datasets A and B. The results are here presented using two samples of typical cases
that display the observed findings well.

The first case is that of the pseudo-real data. Figure 5.1 shows two images with
the left image showing a pseudo-real sample image with a blue ellipse representing
a pathological identifier. The image on the right shows the explanation overlaid on
the image. Green areas represent areas that affect the model’s prediction of the
pathological class positively while red areas represent a negative effect. Higher
brightness and visibility of the colors represent higher importance. The explanation
shows that there is a large focus on the expected area (the blue ellipse). This shows
that the classifier has correctly learned the identifiers of the pathological class. This
remains true across a visual analysis of a larger number of samples. The insight
that the explanations provide reveals no obvious bias in the classifier. A medical
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Figure 5.1: Left: A pseudo-real data sample. Right: The sample overlaid with its
explanation.

Figure 5.2: Left: A real data sample of a polyp. Right: The sample overlaid with its
explanation.

professional utilizing this method could with this get an appropriate amount of trust
in the model. This is something the classification F1-score itself cannot provide. The
explanations can therefore be said to be a useful tool.

The second case is real medical imaging data. Figure 5.2 shows an image of a
polyp (the small growth in the upper right corner of the image) with and without the
explanation overlaid. The explanation shows the strongest and largest focus area
on the upper part of the polyp. The base of the polyp gets little attribution for the
classification. In contrast to the explanation for the pseudo-real sample, this sample
shows attribution areas in multiple places. These areas are less bright indicating less
importance. No stance can be taken on whether they are relevant from a medical
diagnosis perspective as this would require a medical professional.

Although the focus is on the right area, the samples in Figure 5.1 and 5.2 also show
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Figure 5.3: Visualization of how the patch size affects the explanation.

that it is slightly offset towards the top left of the pathological identifier. This is likely
due to a combination of the selected attribution method, applying the gray rectangles
from top-left to bottom-right, the selected patch size, and the classifier architecture.
This can be deduced from the fact that this offset is present in all classes and across
explanations from both classifiers A and B. Further research would be required to
narrow down the source of the offset. How it aligns with the expected focus and the
amount of detail is also dependent on the hyperparameters used. Figure 5.3 shows
the correlation between the patch size and the accuracy of the explanation. The top
row of images shows the image with the gray patch for size reference. The bottom row
shows the corresponding explanations. The figure starts on the left with a patch size
of 64 pixels, then 48, 32, and lastly 24 pixels. The first patch is roughly 150% the size
of the ellipse and causes significant attribution on areas outside of the ellipse. The
next patch is roughly the same size as the ellipse and still causes large areas outside
of the ellipse to give attribution, although less than the previous patch. Reducing the
patch to 75% of the size of the ellipse gives a more accurate attribution area. Further
reducing the patch size to 50% of the size of the ellipse further reduces the amount
of attribution outside of the ellipse but also removes some correct attribution from the
ellipse itself. From this one can see that the explanations are highly reliant on the
selected hyperparameter for patch size. One can say that as the patch size increases
the recall increases and as the patch size decreases the precision increases. There
is therefore a trade-off that must be made. To ensure that all parts of the pathological
identifier are in focus, it is advisable to choose a larger patch size. On the other hand, if
you want to avoid inaccuracies in the explanation, it is better to choose a smaller patch
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size.
The explanations showing the areas of importance are not only for detecting bias

or insight into the model for increased trust but also for medical knowledge discovery.
As the data is simply labeled as pathological, the explanations showing the model’s
learned medical knowledge can be an aid in knowledge discovery through the medium
of a visual explanation. The explanations are further used for more direct medical
knowledge discovery in the XMask Clustering experiments detailed in Section 5.4.

5.4 Explanation-masked Clustering Experiments

In Section 4.7 two experiments were outlined. These experiments follow the proposed
methodology of XMask Clustering for two different datasets using two different
classifiers. In this section, the experiments are presented chronologically, beginning
with Experiment A and then proceeding to Experiment B. Each experiment is run
twice, once using the experiment classifier for feature extraction and once using the
pre-trained classifier. This is to assess whether using masked input images would
yield better or worse results for feature extraction. Additionally, the reliance on the
experiment classifier for feature extraction can be determined.

5.4.1 Experiment A

This experiment, detailed in Section 4.7.4, evaluates the proposed XMask Clustering
methodology for pseudo-real data. A few samples from Dataset A used here can be
seen with and without the explanation masks in Figure 5.4. The figure shows that
the masks have accurately removed the areas surrounding the synthetic pathological
identifiers. Whether this helps in clustering is evaluated using the following two
experiments.

The first experiment clusters features extracted using classifier A. Table 5.1 shows
the results of clustering with the baseline technique and using XMask Clustering. Both
found two clusters through X-Means. The clustering is evaluated on classification
ability (assigning a data point to the correct cluster) using a test set that is 20% of
dataset A and has never previously been seen by the cluster. Rand index is used to
measure the accuracy of the clustering. The classification test results show no change
in classification ability with XMask Clustering as both methods correctly classified all
data points in the test set. The next metrics used to evaluate the method are the cluster
quality metrics inertia, Silhouette Coefficient, and Davies-Bouldin Index. The metrics
show a 7.4% decrease in inertia, a 13% increase in Silhouette Coefficient, and a 15.6%
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Figure 5.4: Unmasked (left) and masked (right) image samples from dataset A.

Methodology Classification Cluster Quality

(Rand index) (Inertia / Silhouette / Davies-Bouldin)

Baseline 1.0 43,741 / 0.484 / 0.858

XMask 1.0 40,485 / 0.548 / 0.724

Improvement ±0.0 -3,256 / +0.064 / -0.134

Table 5.1: Clustering results for experiment A using classifier A as the feature extractor.
The first column represents the methodology that is used. The second column
represents the results of a classification test using samples previously not seen by
the cluster. The third column shows cluster quality metrics. Bold indicates the best
values.

decrease in Davies-Bouldin Index. With this, it is safe to say that the clustering quality
is improved across all metrics when using XMask Clustering.

The second experiment uses the general pre-trained classifier as a feature
extractor. This experiment aims to show the method’s sensitivity to changes to the
feature extractor. Table 5.2 shows the results of the clustering. X-Means resulted in
two clusters for both although more distinctly for the XMask Clustering method. The
baseline method, clustering unmasked images, had close to a random result on the
classification test with a Rand Index of 0.498 meaning that it could not cluster the
features in any meaningful way. The XMask Clustering method, however, managed a
0.995 Rand Index. This is likely because the masked images are significantly simpler
and thus the method is less sensitive to changes in the feature extractor.
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Methodology Classification Cluster Quality

(Rand index) (Inertia / Silhouette / Davies-Bouldin)

Baseline 0.498 82,819 / 0.152 / 2.181

XMask 0.995 13,715 / 0.485 / 0.840

Improvement +0.497 -69,104 / +0.333 / -1.341

Table 5.2: Clustering results for experiment A using the general feature extractor. The
first column represents the methodology that is used. The second column represents
the results of a classification test using samples previously not seen by the cluster. The
third column shows cluster quality metrics. Bold indicates the best values.

5.4.2 Experiment B

This experiment, detailed in 4.7.5, evaluates the proposed XMask Clustering
methodology for a combination of pseudo-real data and real data from the HyperKvasir
dataset. Figure 5.5 shows samples from the dataset used for clustering. It shows that it
can be difficult to correctly isolate the pathological identifiers when they have significant
variations in shape. These experiments aim to see whether XMask Clustering also
shows benefits in such cases. It follows the same procedure as experiment A with
two sub-experiments. These experiments also matched experiment A in that X-Means
correctly resulted in two clusters (one cluster for polyps and one cluster for the synthetic
identifiers).

Table 5.3 shows the results of the first experiment. Using classifier B as the feature
extractor both the baseline and XMask methods get a high score on the classification
test with the XMask method correctly clustering all images getting a Rand Index of 1.0
compared to the baseline method’s 0.967. The XMask method also created higher-
quality clusters with a 12.9% decrease in inertia, a 15.5% increase in Silhouette
Coefficient, and a 15.6% decrease in Davies-Bouldin Index. These are significant
improvements in all measured clustering quality metrics. This shows that although the
masking visually is not perfect it has an improvement on the clustering. There is also
no information loss in terms of medical knowledge discovery as all of the clustered,
masked, images can be linked to an unmasked image.

The result of the second experiment using the general feature extractor is presented
in Table 5.4. The XMask method showed a significant improvement on the classification
test compared to the baseline. Similarly to experiment A, XMask Clustering seems to
be less sensitive to the feature extractor.
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Figure 5.5: Unmasked (left) and masked (right) image samples from dataset B.

Methodology Classification Cluster Quality

(Rand index) (Inertia / Silhouette / Davies-Bouldin)

Baseline 0.967 59,017 / 0.373 / 1.124

XMask 1.0 51,406 / 0.431 / 0.979

Improvement +0.033 -7,611 / +0.058 / -0.145

Table 5.3: Clustering results for experiment B using classifier B as the feature extractor.
The first column represents the tested methodology. The second column represents
the results of a classification test using samples previously not seen by the cluster. The
third column shows cluster quality metrics.

Methodology Classification Cluster Quality

(Rand index) (Inertia / Silhouette / Davies-Bouldin)

Baseline 0.702 75,746 / 0.197 / 1.850

XMask 0.919 55,312 / 0.259 / 1.567

Improvement +0.217 -20,434 / +0.062 / -0.283

Table 5.4: Clustering results for experiment B using the general feature extractor. The
first column represents the tested methodology. The second column represents the
results of a classification test using samples previously not seen by the cluster. The
third column shows cluster quality metrics.
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Chapter 6

Discussion

A new methodology called XMask Clustering was proposed in this thesis. The main
contribution is the integration of XAI into the workflow and the use of the relationship
between explanations and a deep learning model’s knowledge to mask images such
that only areas of importance are clustered. This resulted in medical knowledge
discovery in two of the stages. First, as the result of the visual explanation revealing
the learned knowledge of the black-box model. Using pseudo-real data, and overlaying
the explanations on top of such data as seen in Figure 5.1, the explanations could
be evaluated for correctness without the need for medical experts. An explanation
revealing anything beyond the expected, known pathological identifiers, that a model
may have learned, could be seen as a mistake in the explanation method or model.
For instance, Figure 5.2 shows that there is a focus on the polyp but that this focus
also extends slightly off the poly to the left. This could indicate that there is something
of importance in that part of the image. Looking at the explanations for the pseudo-
real data in Figure 5.1 however shows a similar offset towards the left. Evaluating
the explanations on pseudo-real data may therefore be a method of exposing errors
in the model or in the explanation as well as increasing the trust in the correctness of
the method prior to using it for real medical data. This is a step that can be taken to
ensure that new medical knowledge revealed by the explanations is knowledge and
not an error. With this, the second research question can be answered by carefully
saying that pseudo-real medical data can be useful in the evaluation of explanations.
The second stage where medical knowledge is revealed is with the clustering. As
the results show high-quality clustering, according to multiple metrics for quality, that
correctly reveals subclasses of the pathological data.

Further discussion related to the work is given in this chapter. The chapter
starts by covering discussion points on the proposed methodology, followed by ethical
considerations that must be made when working with AI in the medical domain, and
lastly, motivation and recommendations for future work.
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6.1 Faithfulness vs Interpretability

An essential aspect of the method proposed in this thesis is the visual explanation.
Within the world of visual explanations, it is important to discuss faithfulness and
interpretability. The concept of faithfulness in visual explanations relates to the
model’s capacity to provide an accurate representation of the learned function. It is
worth noting that a certain trade-off exists between faithfulness and interpretability.
Despite the importance of faithfulness, it is equally essential to ensure that the
explanations are clear and easily understandable to enable effective communication.
Interpretability can be difficult for raw explanations. The literature review revealed that
it is common to do some processing to clean up the explanation for the purpose of
improved interpretability. In this work, a smoothing function was therefore applied
to the explanation, removing noise and boosting the brightness of important pixels.
Sundararajan et al., 2019 argue that humans cannot see colors linearly and therefore
boosting values to make them more visible to human eyes is fair as one may have
otherwise missed the importance of an area of the image. In their work, the pixels in
the top end of attribution were clipped. With this technique, there is a low amount of
gradient between the pixels at the top end. In order to allow for more gradient between
the attributed pixels, this work opted for a smoothing function that boosts the values
based on a function instead. A hyperparameter can then steer the level of boosting
and, thereby, the level of faithfulness in the visualization. Striking a balance between
faithfulness and interpretability is critical in producing visual explanations that are both
accurate and comprehensible.

6.2 Strengths and Weaknesses

The research done in this thesis has both strengths and weaknesses. As the use of XAI
for medical knowledge discovery is a highly unexplored area of research, a strength of
this work is in the novelty of the research. On the research methodology side, the use
of pseudo-real data is notable. The results are much more accessible to the wider AI
community when using pseudo-real data, as it does not require medical knowledge to
understand. This allows for the work to be accurately evaluated and to generalize to
other domains. There is, however, also a weakness that comes with this use. Pseudo-
real data does not fully show the usefulness of the proposed methodology on real
medical images. No medical professionals took part in this research, and therefore
evaluations on real medical data were limited. On the side of the proposed method,
this study has demonstrated two distinct advantages that come with XMask Clustering
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over the more traditional approach to clustering. The first is that explanations are built
into the method. This forces the benefits of XAI onto the user rather than being an
optional addition to other methodologies. The experiments in Section 5.4 also showed
that the method could create higher-quality clusters while maintaining the same link to
the original images.

6.3 Ethical Considerations

When it comes to the use and research of artificial intelligence, particularly black-box
deep learning models utilized in this thesis targeting the medical domain, it is imperative
to take into account the numerous ethical considerations that must be made. These
considerations must tackle issues ranging from bias and transparency in the system to
the protection of patient privacy in the data to the potential societal impact.

One of the main concerns is the potential for bias in AI algorithms, which could
lead to unequal healthcare outcomes for different groups of patients. This is not only
important after a model has been deployed for use in healthcare but also in the medical
knowledge discovery phase as this propagates to later stages. This must therefore be
tackled early. Other ethical considerations include the need for transparency in the
development and use of AI systems, the protection of patient privacy and data security,
and the responsibility of healthcare providers to ensure that AI technology is used in a
safe and effective manner. A part of the XMask Clustering methodology presented in
this work includes the direct inclusion of explanations. As presented in Section 5.3, the
explanations can provide a healthcare professional or medical researcher with visual
explanations that give insight into the models. Previous research has shown that this
can expose bias and creates an appropriate level of trust in the AI model (Mahmoudi
et al., 2022; Ribeiro et al., 2016).

There is an additional matter that warrants attention, and that is the preservation
of patient confidentiality through data privacy protection. Deep learning algorithms
necessitate the use of extensive data sets for their training, which can have significant
privacy ramifications if the data is not managed properly. In this work, all data is
deemed fully anonymous by The Norwegian Data Protection Authority (Datatilsynet)
(Borgli et al., 2020). The privacy implications are, therefore, low.

The societal impact of the work must also be considered. This research is done
with the aim of having a positive societal impact. It is assessed that the downsides
of using black-box models in the medical domain have been reduced with the help
of eXplainable AI and that the potential for positive impact in medical diagnosis and
knowledge discovery outweigh the unfortunate downsides. To ensure a positive
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societal impact of this work and future work, it is vital to carefully consider these ethical
issues as we continue to explore the potential of AI in the medical domain.

6.4 Future Work

The importance of the continued work on bringing XAI to the medical domain is a view
that is shared by a multitude of researchers on the subject (van der Velden et al., 2022).
Some of the motivations for this are as follows. First, explanations can reduce mistakes
in medical diagnoses done on the basis of, or with the aid of, a deep learning model’s
predictions (Hicks et al., 2021). Second, medical knowledge revealed by machine
learning techniques may be difficult for a medical professional to trust and use without
explanations (Hicks et al., 2021). One should therefore consider always including XAI
in research on medical knowledge discovery. Lastly, the potential for improved medical
diagnosis either through new medical knowledge or through improved medical care
by increased efficiency of diagnoses (Monroe et al., 2021). With these motivations in
mind, a few areas of future work related to this thesis is proposed.

In Section 6.2, one of the weaknesses identified in this work was related to the data.
The first continuation of this work in relation to data is to increase the number of classes
in the pseud-real data. The results in Section 5.4 showed that the proposed method
improved clustering and knowledge discovery for two classes but in the real world
there may be a higher number of classes and the amount of data in each class may
be unbalanced. It would be interesting to see whether the method upholds the good
results in such cases. To get closer to a real-world scenario, an area of development
that could be explored in the future is the integration of more real data with multiple
classes and the inclusion of medical professionals in the evaluation of results. This
approach would ensure that the findings are accurate, reliable, and relevant to medical
research and the healthcare industry. By incorporating expert insights and knowledge,
we can enhance the quality of the data and make more informed decisions. This is
a promising direction for the future of healthcare research and innovation. Another
avenue that could be explored further is the data format. In this work, 2D image data
was used, but medical imaging, such as MRI, can often be 3D data. Some work on
3D MRI data reduces such data down to two dimensions prior to using XAI (Monroe
et al., 2021). It would be an interesting future approach to see whether the proposed
methodology could leverage such data and find more complex pathological identifiers.

Other areas could also be of interest for future work. It would be interesting to
conduct additional experiments to explore the use of deep learning in clustering. Ex-
perimentation with XMask Clustering using state-of-the-art Deep Clustering techniques
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would be exciting and have the potential for more significant improvements. Although
the experiments here showed that XMask Clustering was less sensitive to changes in
the feature extraction process than the baseline, it is still a significant factor in clustering
and could likely benefit from refinement.
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Chapter 7

Conclusion

The research conducted here aimed to explore the role of eXplainable AI (XAI) and
deep learning in medical knowledge discovery. This is done through the following
research questions:

1. Can explanations of a black-box model be leveraged to reveal new medical

knowledge while addressing the problems hindering the adoption of deep

learning in the medical domain?

2. Is using pseudo-real medical data, adding a synthetic layer on top of real medical

images, useful for the evaluation of such a technique?

In support of research question 1, we showed that explanations of black-box models
combined with clustering effectively reveal medical knowledge. We demonstrated this
through a novel methodology that we called XMask Clustering. This results from a
review of relevant literature and experimentation with the new methodology using a
high-quality medical dataset. The experiments showed that visual explanations of the
black-box model are effective as masks for the medical images and that clustering
such explanation-masked images result in better clusters. These clusters are groups
of similar identifiers not found in the data labels but rather extracted from the black-box
model’s learned medical knowledge. Further, to cover the second part of research
question 1, the problems hindering the adoption of deep learning in the medical
domain, XAI is baked into the methodology. XMask Clustering has the additional
benefit of addressing ethical concerns, such as transparency, bias, and trust, through
the deep link with XAI. The result is a more reliable and trustworthy solution.

The experimentation also revealed that explanations accurately and correctly
highlight areas of importance in real and pseudo-real gastrointestinal medical images.
Using pseudo-real data throughout the experimentation phase revealed that it is helpful
for the evaluation of explanations as it can uncover errors that may be difficult to detect
in real data. This acts in support of research question 2.
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As we move forward, it would be valuable to expand on this study by exploring more
complex categories and involving medical professionals in the assessment phase.
This would enable us to gain a more comprehensive understanding and provide more
accurate insights into our findings from a medical perspective. We hope that future
researchers will carry on this work with the aim of making a positive impact.
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