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Abstract

Electroencephalogram (EEG) data has shown great promise but requires sophisticated methods due to

the complex spatial and temporal patterns found in such data, so this research was conducted with

the objective to investigate the efficiency of different types of deep learning models that includes

Convolutional Neural Networks (CNNs), Long Short-Term Memory(LSTMs), Hybrid CNNs and

Siamese LSTMs in classifying EEG data associated with schizophrenia. What was demonstrated was

that these models were able to capture the intricate patterns within EEG data exceptionally well leading

to accurate predictions about the patient’s condition, and results from evaluating different models indicate

that the Hybrid (CNN+LSTM) architecture offers optimal suitability for this specific application because

of improved outcomes. Important implications regarding the improvement of diagnosis and treatment for

schizophrenia and other neurological disorders can be achieved through deep learning models as shown

by this research.
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Chapter 1

Introduction

Including natural language processing and voice recognition among others, DNNs have shown

remarkable results in multiple areas including image categorization. DNNs can achieve accurate

predictions by learning from massive, annotated datasets despite the challenge of creating and analyzing

large datasets, but in cases of scarce or insufficient resources, data collection, and analysis might take

considerable time. DNNs can learn from a few annotated samples with N-shot learning without requiring

large datasets this is a promising approach.

The goal of this research is to examine if n-shot learning can be used with time series data which is a

group of observations taken at regular intervals over time, and it will compare the performance of n-shot

learning against traditional DNNs. Time series data is unique compared to images or text. It’s used in

all sorts of fields, like finance, meteorology, and healthcare. But because there are often connections

between events over time variables and conditions that affect its efficacy such as similarity metrics and

number of samples per class. This research aims at answering three fundamental questions:

• Under what circumstances can we accurately classify or forecast time-series using n-shot learning?

• What factors contribute to affecting the efficiency of n-shot-learning techniques for these cases?

• What compromises one must make if they want an improved performance through altered/exten-

ded versions of already developed models?

we will analyze the obtained results and assess their performance using recognized evaluation measures.

This will enable us to address commonly raised questions in this field. Additionally, ascertaining both

benefits and shortcomings of using n-shot learning for time-series data is crucial in making consequential

judgments while ruminating future investigations’ probable outcomes. To accurately measure the

efficacy of margin-based techniques versus traditional ones concerning future studies’ recommendations,

several metric assessment tools shall be utilized for thorough performance analysis.

5
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1.1 Background

Deep neural networks (DNNs) are foundational components of modern artificial Intelligence applica-

tions. These models leverage their multi-layered structure to identify intricate patterns and relationships

by connecting numerous nodes in their internal structure. With that ability, they have proven highly ef-

fective in tasks such as image classification, natural language processing (NLP), and speech recognition

[1].

The accuracy of a Deep Neural Network (DNN) model is largely determined by the size and quality of the

dataset used. For training, datasets contain sample inputs related to the problem which are associated with

labels representing the correct output for those inputs [2]. The DNN adjusts connections between nodes

based on discrepancies between predicted outputs and correct labels, thereby improving its performance

when applied to new data sets. In other words, it refines predictions made by recognizing patterns in

existing data sets by means of constant updates to relevant parameters [3].

Collecting and labeling extensive datasets can be a challenging task to accomplish as it requires

significant amounts of time, effort, and resources [4]. Even if the data is available, there may still

be issues such as data scarcity or imbalance which could reduce the effectiveness of a Deep Neural

Network (DNN). Furthermore, acquiring the needed amount might turn out to be expensive depending

on the domain. The larger and more diverse a dataset is however, the higher level of accuracy DNNs can

reach in their predictions [3].

The study by[5] delved into how class imbalances can cause decreased performance for Convolutional

Neural Networks (CNN). These researchers analyzed several strategies geared towards correcting the

data discrepancy including methods that operated at a data level such as oversampling or undersampling,

algorithmic level tactics which they termed cost-sensitive learning, and likewise hybrid approaches

formulated out of combining many different techniques.

To address the problem of limited or imbalanced datasets in deep neural networks (DNN) numerous

approaches have been developed. Some of these include Transfer learning, N-shot learning, data

augmentation, and active learning [6, 7], which are used for leveraging outside knowledge and data

as well as generating synthetic training data in order to build more robust models that perform better

on unfamiliar datasets. These techniques can be an effective means of augmenting existing resources

in deep neural networks with related but less biased or smaller sources thus yielding accurate outcomes

amid scarce information.

Mental illness can have a powerful effect on our minds, emotions, and behavior. Thankfully with

the right diagnosis and proper treatment plans in place, psychological disorders can be managed

for improved outcomes [8]. One of the more effective ways to measure brain activity is through

Electroencephalography( EEG) which is used as an aid to diagnose epilepsy, sleep disturbances, and

Attention deficit hyperactivity disorder(ADHD)[9].

In spite of this, analyzing this data can be challenging due to its varied nature between individuals over
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time; furthermore, exterior features such as skull conductivity might affect reading accuracy [10] making

it a complex process requiring neurological expertise. To that end, researchers are employing advanced

machine learning models like Deep Neural Networks(DNNs), Siamese networks, and N-shot learning

technologies in diagnosing schizophrenia through detailed analysis of EEG signals research showing

great potential when dealing with illnesses affecting thousands around the world[11].

N-shot Learning doesn’t require vast amounts of labeled datasets but rather a few samples from

trained professionals who help train AI algorithms better understand mental health afflictions while still

providing meaningful results amidst a lack of luster datasets thus giving us hope towards efficiently

tackling future diseases also.

Recent advances in one-shot learning algorithms for EEG data classification and signal detection have

brought about new prospects, thanks to their unique architectural design that leverages similarity

comparison between inputs rather than computing absolute values for each input in isolation making

Siamese neural network architectures extremely powerful even when dealing with unbalanced and small

datasets. By incorporating techniques like convolutional neural networks (CNNs) or long short-term

memory (LSTM), researchers have obtained a better understanding of how individual patients respond

differently in diverse scenarios. Similarly, transfer learning and meta-learning strategies add additional

layers of difficulty but have shown excellent promise in producing very precise results even with a lack of

resources; there are also alternatives through Generative-Adversarial Networks or GANs that work well

with these given application domains. The findings from these studies show that one-shot learning can be

achieved through the accessible use of EEG data, and from identifying patients to classifying objects and

even recognizing faces despite small datasets Siamese networks can do it all. To make sure the model can

perform its best amid challenges like overfitting or computational complexity approaches such as transfer

learning[12] and data augmentation [13] may be employed to yield desired results. Moreover, studies

on EEG signal detection associated with epilepsy seizures show success through Siamese architectures

[14] while Li Guan Li’s research has revealed that event-related potentials can also be detected via these

models[15]. This method owes much of its acclaimed power to contrastive loss functions which further

deepen similarity among samples from similar labels; hence establishing it as useful in many domains

where accuracy is key.

Consequently, the use of Siamese Network models has shown promising results with regard to the

diagnosis and treatment of neurological disorders. One-shot learning utilizing EEG data was capable

to attain impressive performance for the diagnosis and classification of depression [11] and an autism

spectrum disorder(ASD) [16]; A few-shot learning to EEG classification achieved excellent performance

[17]. Improvements in feature extraction facilitated by Spuler’s novel loss function provided a more

accurate way of diagnosing neurological diseases than what had ever been previously known [18]. Better

understanding provides expectations for future healthcare improvements through simpler diagnostic

procedures as well as much fewer human biases.
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The thesis is structured as follows: This chapter 1 presents the motivation and introduction to the topics.

Chapter 2 offers an in-depth background and state-of-the-art review, discussing the relevant theories

and experimental considerations for machine learning and deep learning tools. Chapter 3 outlines the

methodology and the dataset, describing the proposed approach and the steps taken to achieve the

research objectives. Chapter 4 presents the results while Chapter 5 presents the summary and outlook of

the thesis.



Chapter 2

Theory

AI and machine learning are transforming every aspect of our lives, from healthcare to
transportation to entertainment.

JENSEN HUANG, CEO OF NVIDIA

Machine learning is a branch of artificial intelligence that uses the process of training a model on data to

identify hidden patterns that can be used to make predictions. The machine learning process consists of

3 main components as shown in Figure: the model, the optimizer, and the dataset. The model includes

a function for inputting data which it processes according to adjustable parameters; this output is used

by the optimizer during one or multiple optimization steps. The optimizer adjusts these parameters

to improve performance while relying on real-world data as provided by the stringently pre-processed

datasets for accurate representation in machine understanding. By using this technique, computers are

able to imitate certain behaviors of systems based on their given properties after running through an

extensive and iterative setup program [3].

Optimiser

Dataset Model

Figure 2.1: In machine learning, information is typically conveyed from the dataset to the optimizer only in learning techniques
that involve feedback. Figure adapted from Ref.[19].

9
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The optimization method used in machine learning includes different approaches such as unsupervised,

reinforcement, and supervised. Unsupervised learning emphasizes deciphering patterns without

reference to known, predetermined output values or labels [20]. Reinforcement and unsupervised

learning approaches use feedback to guide the learning process and develop predictive models.

Reinforcement learning utilizes evaluative feedback from a reward system to explore all possible inputs,

actions, or outputs, which can be a slow and exhaustive process [21].

Supervised learning calls on data with considerations made about true output labels or values to converge

on a solution faster. Deep Learning attempts to fit complex results by training multiple models one after

the other in an effort to achieve a specific goal from the initial input signals received.

Machine
 Learning

Artificial
 Intelligence

Deep
Learning

Figure 2.2: The hierarchical relationship between AI, ML, and deep learning. Deep learning is a subset of machine learning,
which is a subset of AI.

Artificial intelligence (AI), machine learning (ML), and deep learning are dramatically impacting the

world today [22]. Artificial Intelligence is a greater concept that encompasses machines that can act

with human-like intelligence across multiple domains. Machine Learning is a related field focused on

developing algorithms to enable computers to learn autonomously from training datasets without explicit

programming [23]. Deep Learning involves using multilayer neural networks to extract features and

insights of large amounts of data in order to achieve more advanced results than those achievable by other

methods. All three fields are closely intertwined; AI is the uppermost branch, from which stems machine

learning followed by deep learning at the lowest level in the hierarchy as shown in figure 2.2. Combinedly

these disciplines are leading to pioneering advancements in continually advancing operations such as

image recognition, natural language processing, and autonomous automobiles [3]. The relationship

between AI, ML, and deep learning is that deep learning is a subset of machine learning, which in

turn is a subset of AI [23]. Their combined symbiosis further influences how technology interacts daily

with humans’ lives now more than ever before.
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2.1 Model

2.1.1 Artificial neural networks

The McCulloch-Pitts model of a neuron has been improved over numerous decades and several technical

updates have been added to the simple model such as adding time delay, introducing adaptive weights,

incorporating additional inputs and outputs beyond binary signals, alteration of parameters or input

functions to actively learn from changing data and introducing memory structures for further analysis or

categorization of data [24], and a host of other technical updates that make this simple model more robust

in its capabilities as an artificial brain cell. The seminal mathematical model for neurons developed by

Warren McCulloch and Walter Pitts back in 1943 paved the way for significant developments in artificial

intelligence, if the stimulus exceeded an established threshold value with no inherent delay in processing

data then the original McCulloch Pitts Neuron could have one of its two outcomes: either a ’1’ or ’0’.

Simplistic as they may have been at first glance, however, they evolved into sophisticated models that

more closely mirrored actual neurons over time.

Innovation has led to the implementation of advanced techniques such as introducing various delay times

between inputs and outputs along with including several feedback or input variables that lead to better

learning. With the incorporation of innovative techniques by artificial intelligence such as introducing

variable delays between input and output signals or equipping learning algorithms to modify themselves

based on acquired datasets; along with memory architectures that enable the preservation and become

possible for artificial intelligence to bring many modern conveniences into our lives.

These advancements have made it so AI-generated results can be produced authentically by efficiently

identifying patterns across larger amount of data. Ultimately these innovations are responsible for

us being able to experience all the benefits artificial intelligence provides in modern society today.

The McCulloch-Pitts model has proven to be an indispensable tool in a wide range of applications,

from pattern recognition tasks like image and voice recognition, to binary classification such as spam

filtering and diagnosing diseases. It’s also been used to construct digital circuits that can perform logical

operations similar to AND, OR, and NOT functions. This model has made its way into studies regarding

artificial neural networks which are integral components of AI research. Neuroscientists have endeavored

to make use of the model too, gaining insights about how biological neurons work as well as their role in

processing information within the brain [24]. It’s flexibility makes it valuable for research in many fields

inspiring further exploration on many fronts.

The Perceptron

Research into artificial neural networks started with the development of the McCulloch-Pitts neuron

in 1943, which was a mathematical model that represented how simple biological neurons collect and

process information. This research was carried forward by Frank Rosenblatt when he proposed the

first modern artificially intelligent network called “Perceptron” in 1957[25]. Perceptron introduced the

concept of associating weights to input values, allowing more sophisticated operations compared to



12 CHAPTER 2. THEORY

standard function machines. The output generated from this model is calculated using an activation

function that might be step or sigmoid depending upon user preference, and based on its final value

will determine whether 0 or 1 should be returned as a result. Primarily used for binary classification

problems, Perceptron’s learning algorithm works by evaluating errors through gradient descent and then

it adjusts parameters/weights so as to minimize them in successive iterations thereby providing accurate

results over time. By utilizing such kinds of algorithms aided by systematic weighting systems, artificial

neural networks have found much success across multiple applications with the potential to transform

the decision-making process forever.

The Perceptron model was developed in the context of binary classification tasks, where two classes are

defined as 1 (positive) and -1 (negative) [25]. The activation function of the Perceptron, ϕ(Z), can be

written using two if statements as follows:

ϕ(Z) =

1, if Z ≥ θ

−1, if Z < θ

where Z is the net input and θ is the defined threshold. If the net input Z is greater than or equal to the

threshold θ, the activation function outputs 1, indicating a positive class prediction. Otherwise, if Z is

less than the threshold, the activation function outputs -1, indicating a negative class prediction.

The activation function of the Perceptron, ϕ(Z), takes the net input, z, and predicts a class of 1 if z is

greater than a defined threshold θ, and -1 otherwise. This is implemented using a variant of the unit step

function [25]. The net input of a function is expressed as the linear combination of the input features and

the corresponding weights.

The net input of a Perceptron, denoted as z, is expressed as the linear combination of the input features x

and their corresponding weights w [25].

z = w1x1 + ... + wmxm (2.1)

where:

w =


w1
...

wm

 , x =


x1
...

xm


The Perceptron is used when there are two separate classes labeled as "positive" and "negative". The

mathematical formula for the activation function of the Perceptron model takes inputs, represented by

the variable phi(z), to calculate if the predicted class should be a 1 or -1. In this calculation, an evaluation

value known as θ acts as a predetermined threshold that must be exceeded in order for a class result of

1 to be determined. If however, the proposed input does not exceed θ, then a class result of -1 will be

calculated. For example, values greater than (or equal to) θ will produce an output signal of 1 while

lower values below it will generate an output signal of –1. To sum it up, the main goal of this revised
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version of unit step function is accurately predicting outcomes based on given classification criteria with

either ’+’ or ’-’ values assigned accordingly.

ϕ(z) =

1, if z ≥ θ

−1, otherwise
(2.2)

By introducing a new constant term w0x0 to z, the definition can be simplified to (Rosenblatt, 1957):

z = w0x0 + w1x1 + ... + wmxm = wTx (2.3)

Where w0 = −θ and x0 = 1, leading to:

ϕ(z) =

1, if z ≥ 0

−1, otherwise
(2.4)

In this formulation, w0 is typically referred to as the bias unit. A diagram depicting the model’s function

is shown in Figure 2.3.

Figure 2.3: The perceptron model. Figure taken from Ref. [19].

Adaline (Adaptive Linear Neuron or Adaptive Linear Element)

Adaline (Adaptive Linear Neuron or Adaptive Linear Element) is an artificial neural network model first

proposed in the early 1960s by Bernard Widrow and his student Ted Hoff [26]. It is a single-layer,

feedforward architecture built on supervised learning principles that allow neurons to adapt their weights

based on minimizing the discrepancy between predicted output and desirable result. This adaptation

process follows what is known as the Widrow-Hoff rule which dictates that every neuron should be

updated according to its contribution towards a given outcome. The Adaline model can therefore

prove useful for both regression and classification problems across various domains. The novel paper

introducing this concept described how components necessary for such networks could potentially be

used to construct adaptive switching circuits, hence it provided substantial detail about how these systems

are constructed from scratch along with important insights into how they should learn effectively.
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Non-linear activation

Artificial neural networks incorporate nonlinear activation functions to introduce more complexity into

the model. This is necessary when understanding interactions between input and output variables since

linear connections cannot provide a complete representation of real-world problems. Typically, sigmoid,

tanh (hyperbolic tangent),and Rectified Linear Unit (ReLU) are used as the activation function; however,

many variations of ReLU can also be implemented such as Leaky ReLU, Parametric ReLU (PReLU),

or Exponential Linear Unit (ELU). By employing these different types of non-linear activation functions

within an ANN model it allows for deeper insight into complexities that could not have been revealed

through only linear connections.

The sigmoid function [27] is a widely used non-linear activation function in artificial neural networks.

It is defined as:

f (x) = σ(x) =
1

1 + exp(−x)
(2.5)

Given an input of x to a neuron, the sigmoid function is often used as it can map out any value of x

between 0 and 1. This creates an S-shaped curve that demonstrates how even minor changes near the

origin have large differences in the output. This advantage can be useful especially when dealing with

probability and binary classification issues. Unfortunately, however, there are also some drawbacks to

using this type of function such as the vanishing gradient issue - wherein inputs beyond certain limits

lead to very small gradients hence slowing down learning performance and asymmetry at origin which

also causes bias in models.

The Hyperbolic Tangent (tanh) function is a commonly used non-linear activation function that maps

the inputs to the range [-1, 1]. It can be expressed as follow:

tanh(x) =
ex − e−x

ex + e−x (2.6)

where x is the function’s input. The function may be used to describe data negative and positive values

since its output ranges from -1 to 1. Similar to the sigmoid function, the hyperbolic tangent function

exhibits steeper gradients near 0 and is symmetric about the origin. By doing so, the vanishing gradient

issue that might arise with the sigmoid function can be avoided and the model can learn more faster.

When the input values are too high, the tanh function might still experience the expanding gradient

issue.

The Rectified Linear Unit (ReLU) function is an often-used non-linear activation function that has a

definition described as follows:

f (x) = max(0, x) (2.7)

when the input value, x, is greater than zero then the output of the ReLU function carries that same value.
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However, if x is less than zero the output will be set to zero. This simple yet computationally efficient

form has made it a preferred choice for deep learning models within artificial neural networks and other

related machine learning algorithms. A key advantage of using this type of function over functions such

as sigmoid or tanh which have derivatives as fractions is that its derivative can range from 0 to 1 thereby

allowing for faster gradient calculations during backpropagation by reducing computational complexity.

The only potential issue with using ReLU could come in regards to neurons becoming “dead” after

repeatedly receiving negative inputs forcing their outputs to remain zero due to their definitions. To

counter this certain variants such as Leaky ReLU, Parametric ReLRU (PReLU), and Exponential Linear

Units (ELUs) were developed which allow some small degree of variation while having positive gradient

descent results even with negative input values.

The Leaky Rectified Linear Unit (Leaky ReLU) function is an alternative to the traditional Rectified

Linear Unit (ReLU) that reduces the chance of "dead neurons" occurring when negative inputs are used.

This improved version involves a slight slope for any input under 0, preventing neurons from entering

into a dormant state. The Leaky ReLU takes on the form of:

f (x) =

ax when x < 0,

x when x ≥ 0.

For Leaky ReLU it is important to set the parameter ’a’ - often referred to as "the leakage rate," which

is typically set between 0 and 1; commonly being 0.01 or less with some exceptions depending on

application demands. In comparison tests for deep learning models, The Leaky ReLU has been known

to perform more efficiently than its predecessor due to its ability to better deal with what’s known as

"dying neurons"; where certain neuron miss their opportunity in the zero zone and thus unable learn

anything further downstream leading them become useless neuron cells within complex layers networks

of artificial neural networks architecture.

The Exponential Linear Unit (ELU) function is a non-linear activation function used to improve the

representational power of deep neural networks. This function offers an alternative to techniques like

Rectified Linear Units or their variants and have demonstrated improvements in results. Essentially,

ELU takes an input x and produces an output according to the formula:

f (x) =

x if x > 0

α · (exp(x)− 1) if x ≤ 0
(2.8)

where α is a small positive number usually set at one. This activation behaves similarly to ReLU with

sloping gradients for negative inputs but features its own lower asymptote that helps reduce issues

associated with "dying ReLU". Taking advantage of these functions carries a lot of mathematical

principles behind it, including linear activations, regularization schemes, and Adaline discrimination

models. As such technology develops more into areas like image recognition, audio processing, and

natural language analysis numerous improvement occur across many elements from predictive modeling
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to data extraction.

2.1.2 Artificial neural networks (ANNs)

This research concentrates on the architecture of artificial neural networks, which are computer systems

designed to emulate the structures and functionalities of biological brains. A model of an ANN is which

consists of a number of interconnected nodes, each representing an artificial neuron. The structure of

such systems involves input and output layers, as well as hidden layers that determine how information

is processed through them.

In Figure 2.4 we can see, an ANNs typically consist of interconnected nodes simulating neurons;

input and output layers that determine data entry points and outputs respectively; hidden layers where

computing occurs; an activation function that explains how information is encoded within nodes; size

elements defining the scope of computation carried out by parameters that can also be trained. The

combination of these components works together to define appropriate networks for specific tasks.

Activation functions are key determining factors in neuronal connectivity which information is

relayed between neurons. The number and size of trainable parameters within a network are also

important in improving it’s performance with regard to tasks like image recognition, natural language

processing(NLP), or forecasting.

Figure 2.4: A schematic representation of a neural network. The network consists of interconnected nodes, each of which
represents an artificial neuron. The connections between nodes are indicated by arrows, mimicking the structure of the brain’s
neurons [28].

Individual neuron

In artificial neural networks, each unit is an individual neuron that takes the same input but responds

differently depending on its weight vector within that particular layer. The output value of a unit is

determined by multiplying the value of its input strength with the weight vector and then applying

a nonlinear transformation via an activation function. All units within a given layer will have the
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exact same activation function yet they are able to produce different levels of output by being trained

independently through backpropagation - a process where gradients of loss functions relative to weights

are calculated and adjusted using stochastic gradient descent optimization methods in order to improve

model performance.

Hidden Layers:

In a multilayer artificial neural network, there is one layer that lies between the input and output layers

which we refer to as the hidden layer. This hidden layer can consist of any number of units, along with an

additional bias unit. Each unit in a given hidden layer has connections to all units in the adjacent lower

or higher layer - with each connection forming its own weight depending on how heavily it influences

predicting the end result. All these weights create what is known as a Dense Layer effect – where every

single neuron present exhibits activity that contributes to achieving some outcome from both outside

information and within existing content stored earlier. The overall value generated by this collective

combination then serves as a bias for the whole task in order for us to arrive at our desired output through

multiple stages or ‘hidden’ computations from our neuronal layers before arriving at our final solution.

Input and output layers:

The input and output layers of an artificial neural network (ANN) are two important components that

play a critical role in the success of the model [3, 29, 30]. The initial dataset is accepted by the input

layer and it processes this information using its various hidden layers. This processed information is

then sent to the output layer for generating a result. Firstly, before being fed into the ANN, data must be

pre-processed and standardized. Then every feature from this dataset will have its own neuron in order

to feed these features into each respective neuron within the input layer. Following this one or more

hidden layers do calculations with respect to these features before sending them onto the output layer

which handles producing a final outcome decision or prediction of some sort. In classification tasks such

as binary classification or multiclass classification, there needs to be an appropriate activation function

used within this output layer for normalizing values produced by all its neurons along with varying

degrees between 0 and 1 since other combinations lead to not ideal results due to instability factors

[3]. In comparison for regression tasks, you simply want as many outputs that match your target’s

continuous variables whereupon also have similar characteristics but require less effort when utilizing

different activation functions making sigmoid generally easier than softmax.

Activation by Forward Propagation:

The process of training artificial neural networks involves forward propagation. It follows a sequence of

computational steps based on tensor multiplication and activation, starting at the input layer and periodic

activations in between. In each neuron or node within the layer, incoming values are multiplied by

their specific weight before being summed together. This data then flows through an activation function

to activate the next layer and begin again with tensor multiplication operations. When constructing a

deep learning model it is important to keep track of the total number of weights that need to be tuned
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(these are called trainable parameters). Generally speaking, as more layers are added when creating

an ANN, the complexity increases exponentially thereby resulting in significantly higher numbers of

tunable parameters which have the potential for overfitting if not inadequately managed. To prevent

machine learning models from memorizing all training samples rather than discovering certain patterns,

regularisation methods for instance, the L1(lasso regression) and L2 (Ridge regression) need to be

combined with backpropagation into a cost function so these weights can be accurately adjusted then

minimizing the error rate during the inferencing stage.

Network Capacity

An Artificial Neural Network (ANN) is capable of learning and representing complex models. As the

number of trainable parameters in a model increases, however, so too does the capability for it to overfit

data that is presented during training. To clarify, with more trainable parameters incorporated into a

model, there will be higher chances of obtaining higher accuracy when trained on existing datasets-

because it might attempt to remember even anomalies or irregularities found within those datasets -

but this could result in poorer generalization performance in unseen scenarios. In order to counter this

possibility from becoming a reality, regularization techniques such as L1 and L2 can be added onto the

loss function for penalizing larger weights; thus decreasing overfitting effects as a result maintaining

satisfactory levels of accuracy and also improving model flexibility when exposed to new data points in

future inferences.

2.1.3 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are an advanced type of artificial neural network designed to process

sequences of input data. To do this, RNNs maintain a “memory” using internal states calculated from

each time step, containing information extracted by the network about prior inputs during the same

sequence. This is accomplished through connections between neurons in higher and lower layers that

form a circular shape as well as optional self-feedback connections which enable these networks to

pass data to later stages of processing based on earlier parts of the sequence. These recurrent linkage

structures give RNNs their unique ability to retain experience and knowledge within their memory while

they handle current inputs, allowing them to outperform other traditional methods in processing lengthy

series of information.

The internal state of an RNN at each time step t may be expressed mathematically as a function of the

previous internal state h(t-1) and the current input x(t), as seen below:

h(t) = f (h(t − 1), x(t)) (2.9)

Here, f is a non-linear function that maps the input and previous internal state to the current internal

state. The output of the network at each time step can also be computed as a function of the current

internal state, as shown below:
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y(t) = g(h(t)) (2.10)

At every time step, there’s an output generated by applying a non-linear function g to the current internal

state.

Recurrent Neural Networks (RNNs) are intended to maintain an internal state during each sequence

classification stage when processing sequential input data, however, in order to train an RNN network, the

basis lies in backpropagation through time (BPTT). BPTT adjusts the classic back-propagation technique

to account for sequential inputs, as part of the training process an array of inputs is given to the network

which is then compared to the desired output. By backpropagating the mistake, the network’s weights

get updated.

RNNs have a susceptibility towards vanishing gradients that occur when there is an extremely small value

of gradient used in updating network weights leading to difficulty in learning long-term relationships,

but many types of recurrent neural networks have been developed including Long Short-Term Memory

(LSTM) networks and Gated Recurrent Units (GRUs).

Gated Recurrent Units (GRUs) and the level of connectivity in RNN design can vary from part to

fully linked. There are two commonly used RNN architectures called Elman and Jordan networks that

have been presented in the literature, and Elman Networks and 3 layered Neural Networks maintain

comparable structures except for context cells storing outputs from the buried layer. The corresponding

hidden neurons receive both the outputs from every context cell as well as an initial signal, and the

network can store previously learned information and apply that knowledge when dealing with new

inputs.

In order to describe mathematically how an Elman network operates at any given time step one must

consider factors for instance, current input x(t), the prior internal state h(t − 1), and the output of the

related context cell c(t − 1), as seen below:

h(t) = f (Vx(t) + Wh(t − 1) + Rc(t − 1) + b) (2.11)

c(t) = g(Uh(t) + d) (2.12)

Here, f and g are non-linear activation functions, and V, W, R, U are weight matrices, and b and d are

bias terms.

Training of Elman networks with additional input from context cell’s output can be achieved using

standard error backpropagation, while being trained a range of inputs are fed into the system followed

by analyzing those outputs against their expected results. Modifying the network’s weights involves

backpropagating the mistake over time.

The combined result of each context cell’s output makes its way back to its relevant hidden neurons,
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in addition to its fundamental 3-layer neural network-like architecture, Elman nets also contain extra

context cells which keep track of output signals in its hidden layers. This leads to the ability of the

system to retain historical information on input and use it for effective guidance during future processing

the contrary to Elman Networks which do not use their own output as input, Jordan Networks do. For

every timestep t in an operating Jordan Network, one can express its internal state by using variables

such as current input x(t), prior internal state h(t − 1), and the network output y(t − 1).

h(t) = f (Wx(t) + Uh(t − 1) + Vc(t − 1) + b) (2.13)

y(t) = g(Wc(h(t)) + by) (2.14)

Conventional error backpropagation applied with extra inputs derived from the network’s output can

train both Elman and Jordan networks, but when updating network weights with a very small gradient

in RNNs, it might become difficult to learn long-term relationships which is known as the vanishing

gradient issue. There are two types of recurrent neural network models designed to solve this problem:

Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs)[31].

Training Recurrent Neural Networks

The presence of feedback connections in Recurrent Neural Networks (RNNs) can pose difficulty while

training due to the issue of vanishing or growing gradient, but the principal techniques employed for the

training of RNNs include BPTT and Real-Time Recurrent Learning (RTRL).

Training RNNs usually involves using BPTT that exploits the characteristic of having identical feed-

forward neural networks during a certain period, so a feed-forward neural network can be obtained

through temporal unrolling of the RNN. Conventional backpropagation technique can be used for training

the unfolded network. During training inputs are presented to the network which produces outputs

that must be matched to their intended output, and backpropagation over time is used to correct errors

and adjust network weights. The weight updates for this recurrent network involve summing up their

individual deltas at each time step and Backpropagation proceeds by taking discrete iterative steps

forward from an initial state up to its final destination [32]. Here is how the weight updates within

BPTT can be written using mathematical notation:

∆w(t) =
−η∂E
∂w(t)

(2.15)

where ∂w(t) is the weight update at time step t, η is the learning rate, E is the error, and ∂E
∂w(t) is the

derivative of the error with respect to the weight at time step t.

In essence, you can view the unfolded Neural Network similarly to a Feedforward Neural Network with

different layers corresponding to each individual timestep, and identical weights used in both network

types (feed-forward and RNN) result in similar behaviour.
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A well-established mathematical foundation supports the extensive use of BPTT reported in the literature

and effective training of RNNs is possible through the use of BPTT which has a proven track record in

diverse applications like speech recognition.Real-time recurrent learning: uncovering its computational

and mathematical foundations through research theory, which is the algorithm used to train RNNs in

real-time and with minimal error propagation requirements, works by computing the gradient essential

for weight updates as inputs are given.As such there is no need for a standalone training time period

which makes it an improved algorithm that is quicker than Backpropagation Through Time (BPTT), but

the computational expenses involved per update cycle combined with a high level of memory usage in

storing non-local data make RTRL more burdensome. Real-Time Recurrent Learning (RTRL) will be

given a thorough theoretical and computational foundation in this paper[32]. .

The training objective of RTRL is to minimize the overall network error given by Equation 1:

E(τ) =
1
2 ∑

k∈U
(dk(τ)− yk(τ))

2 (2.16)

Where is the label at every time τ for every non-input unit k, and is the output of unit k at time τ. The

gradient of the total error is the sum of the gradient for all previous time steps and the current time step,

given by Equation 2.

∇θ L =
T

∑
t=1

∂Lt

∂ht

∂ht

∂θ
=

T

∑
t=1

∂Lt

∂ht

(
∂ht

∂θ
+

∂ht

∂ht−1

∂ht−1

∂θ

)
(2.17)

To compute the weight changes, RTRL requires calculating the sensitivity of the output of each unit to a

small change in the weight. The sensitivity is given by

pk
uv(τ) =

∂yk(τ)

∂W[u,v]
(2.18)

In RTRL, the gradient information is forward-propagated. The output yk(t + 1) at time step t + 1 is

given by Equation

yk(t + 1) = f k(zk(t + 1)) (2.19)

where f k is the activation function and zk(t + 1) is the weighted input. Differentiating Equations 2.17,

2.18, and 2.18, we can calculate the sensitivity for all time steps ≥ t + 1 using Equation 2.18:

pk
uv(τ) = f ′k(zk(t + 1)

[
δu,kXu,v(t + 1) + ∑

l∈U
W[k,l]p

l
uv(t)

]
. (2.20)

where δuk is the Kronecker delta.
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Knowing the initial value of p

pk
uv(τ) =

∂yk(τ)

∂W[u,v]
(2.21)

we can recursively calculate the values for all subsequent time steps using Equation 2. 18. Finally, the

negative error gradient

∇WE(τ) (2.22)

can be

calculated using Equation 2.21, and the final weight change for W[u, v] can be calculated using Equations

2.21 and 2.20.

Vanishing error problem

The Vanishing Error Problem is a well-noted issue when training Recurrent Neural Networks (RNNs).

RNNs are designed to process sequence data and are utilized for tasks such as speech recognition,

language modeling, and time series predictions. The problem occurs as the input sequence grows longer

RNNs may experience either vanishing or exponential increases in error gradients with each respective

timestep [33]. To fully understand the issue mathematically we will delve into error propagation through

the network during training. Weights of the neural networks can be adjusted using the Backpropagation

Algorithm which efficiently calculates errors from output layer neurons down through successive layers

decreasingly leading back to the initial inputs of these units. However, when dealing with long sequences

certain dependencies between older timesteps become more difficult to update due to previous signals

being too diminished or noisy by earlier propagated errors making it impossible to update weights

appropriately creating issues that affect an effective network learning model. The weight update formula

is given by:

∆W[u, v] = −η
∂Etotal(t0, t)

∂W[u, v]
(2.23)

where ∆W[u, v] is the change in weight between neurons u and v, η is the learning rate, Etotal(t0, t) is

the total error of the network from time t0 to time t, and ∂Etotal(t0,t)
∂W[u,v] is the partial derivative of the error

with respect to the weight between neurons u and v.

The backpropagated error signal at time τ (with t0 ≤ τ < t) of the unit u is given by:

θu(τ) = f ′u(zu(τ))
∗ ∑

v∈U
W[v, u]∗θv(τ + 1) (2.24)

where f ′u(zu(τ)) is the derivative of the activation function of neuron u, zu(τ) is the weighted sum of the

inputs to neuron u at time τ, U is the set of non-input neurons, W[v, u] is the weight between neurons v

and u, and θv(τ + 1) is the backpropagated error signal from neuron v at time τ + 1.
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As the error signal propagates through the network, it can either vanish or explode. The problem occurs

when the error signal vanishes, which makes the learning process slow or impossible. The error signal

vanishes if the product of the weights and derivatives of the activation functions is less than one for all

time steps[34]:

| f ′u(zu(τ)) · W[v, u]| < 1, ∀τ (2.25)

To address the vanishing error, it is possible to employ a few different techniques. One of the most

reliable strategies is to incorporate Long Short-Term Memory networks into the structure. LSTM

networks typically include different types of gates which play an essential role in managing information

for various objectives [34]. For instance, through input and output gates, these models are able to store

relevant information over longer time intervals without facing difficulties from errors that tend to vanish

quickly during this process. Additionally, forget gates can be used to take charge of deleting any data

or learning experience which may no longer be needed by intelligent systems within LSTM networks.

In order to provide an additional approach towards adjusting outputs so as not to pick up on minor

changes or fluctuations upon future inputs in recurrent neural network architectures when controlling the

Vanishing Error phenomenon, residual connections could also come into place with successful results

[35]. As compared with non-residual models where the system reverts back directly after receiving new

parameters via its activation function layers before passing further onto other layers (which has been

linked with adding some difficulties). Residual connection within these particular settings allows one’s

incoming data across such synaptic components conducive for gradient accumulation flow capabilities

while enabling useful patterns contained in certain inputs prior to recalibration processes automatically

if added accurately and appropriately.

Gradient clipping is a technique used to help regulate gradients during training, and ultimately counteract

the vanishing error problem. This approach involves setting an upper limit for gradient size or magnitude,

as too high and too low of gradients can both be problematic. If the threshold for the size of the gradient

has been exceeded, then it will be scaled down [34]. This helps to avoid having extremely small gradients

that would vanish altogether helping with potential problems caused by vanishing errors.

2.1.4 LSTM

Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural Network (RNN) developed

to tackle the issues with traditional RNNs in processing and modeling sequential data. Originally

introduced by [36].these networks can learn dependencies over extended periods of time, as well as

combat vanishing gradient problems which tend to arise during training processes involving very long

sequences. This has led LSTMs to become popular for tasks such as natural language processing, speech

recognition, and time-series prediction among many other uses [37, 38].
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LSTM Architecture

Long-Short Term Memory (LSTM) networks are a type of Recurrent Neural Network (RNN) that contain

memory cells that manage information over time [36]. These memory cells are composed of three

elements: the input gate, forget gate, and output gate which control the flow of data within the network

[39]. The input gate is used to decide how much information from the current input should be stored in the

cell’s memory [34], and this control is derived through mathematical equations. The forget gate controls

what facts remain relevant in future cases and those upon which previous calculations must still hold true.

Lastly, the output gates determine when an iteration’s results will be transferred forward to subsequent

iterations as well as what amount of these results should be passed on. By regulating both, retrieval and

forgetting capabilities within a recurrent neural network structure, Long-Short Term Memory (LSTM)

has successfully addressed problems associated with traditional RNNs such as vanishing gradients or

difficulty learning long-term dependencies[33, 40]. Equations govern the input gate:

it = σ(Wi · [ht−1, xt] + bi)

čt = tanh(Wc · [ht−1, xt] + bc)
(2.26)

where it represents the input gate, čt represents the candidate cell state, σ is the sigmoid activation

function, and tanh is the hyperbolic tangent activation function.

Forget Gate: This gate decides which information should be discarded from the memory cell [41] . The

forget gate is defined by the equation:

it = σ(Wi · [ht−1, xt] + bi) (2.27)

ĉt = tanh(Wc · [ht − 1, xt] + bc) (2.28)

where it represents the input gate, ĉt represents the candidate cell state, σ is the sigmoid activation

function, and tanh is the hyperbolic tangent activation function.

Forget Gate: This gate decides which information should be discarded from the memory cell [41] . The

forget gate is defined by the equation:

ft = σ(W f · [ht−1, xt] + b f ) (2.29)

where ft represents the forget gate.

Output Gate: This gate controls the output generated by the memory cell, which is based on the cell state

and the input [41] . The output gate is given by the following equations:
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ot = σ(Wo · [ht−1, xt] + bo) (2.30)

ct = ft · ct−1 + it · ĉt (2.31)

ht = ot · tanh(ct) (2.32)

where ot represents the output gate, ct represents the cell state, and ht represents the hidden state.

The LSTM cell’s mathematical formulation can be broken down into four primary equations,

encompassing input, output, and forget gate activations, as well as cell state, updates [41] :

Input Gate

it = σ(Wi · [ht−1, xt] + bi) (2.33)

Forget Gate

ft = σ(W f · [ht−1, xt] + b f ) (2.34)

Output Gate

ot = σ(Wo · [ht−1, xt] + bo) (2.35)

Cell State Update

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc · [ht−1, xt] + bc) (2.36)

Hidden State Update

ht = ot ⊙ tanh(ct) (2.37)

where σ denotes the sigmoid activation function, ◦ denotes element-wise multiplication, W denotes the

weight matrices, b denotes the bias vectors, and xt, ht, and ct represent the input, hidden state, and cell

state at time step t, respectively [39].

Variants and Extensions of LSTM Networks

Several modifications and expansions of the original Long Short-Term Memory (LSTM) architecture

have been suggested in order to increase its performance and usability. Examples of these include

peephole links [42], bidirectional LSTMs [43] and attention mechanisms [44]. The important

characteristic of an LSTM is its continuous error carousel (CEC). The CEC enables long-term data

storage without input, as constant backflow finds its way through the system [36]. However, when
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instated within a neural network framework, clashes can arise due to this process as not only is conduction

within the cell itself occurring but also between cells in the network. Incoming connections lead to

updates whilst information must be stored simultaneously resulting in inconsistencies regarding weight

changes for neurons. Output connectivity from neurons is also convoluted; weights making up both

retrieval functions for content flow and limitations for other neuron outputs can clash with each other left

unchecked.

In order to solve the challenge of conflicting weight updates, LSTM extends the CEC with input and

output gates connected to the network input layer and to other memory cells. This results in a more

complex LSTM unit called a memory block [36]. The input gates in a Constant Error Carousel (CEC)

network are sigmoid threshold units with an activation function range of [0, 1]. This allows these gates to

control the signals from the network to the memory cell effectively by scaling them accordingly. When

the gate is closed, its activation is close to zero and hence does not allow access. Also, this enables us to

learn how to protect against irrelevant signals disturbing what has been stored in u. The output gate works

similarly as it can control and limit who or what will gain access to the memory cell contents thus making

sure that other memory cells remain undisturbed by any disturbance originating from u. Additionally,

multiplicative gate units provide another level of protection because they are able to determine whether

error flow should be allowed or disallowed [36].

Recent advances in artificial neural networks have introduced designs that enable them to process

sequential data, such as time series and natural language. One of these designs is Recurrent Neural

Networks (RNNs). In spite of their potential, RNNs have difficulty because of the vanishing gradient

issue which makes it hard for them to learn long-term dependencies. In order to address this limitation

Long-Short Term Memory networks were developed and integrated into the RNN structure. The goal

of this work is twofold: firstly, providing a theoretical understanding of how LSTM-RNNs propagate

information forward and backward, especially through the mechanism of forget gates; secondly,

analyzing the merits and limits of LSTM-RNNs comparatively with other machine learning techniques.

The Forward Pass

The forward pass of a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) involves

propagating the information from each unit in the network to subsequent units. Specifically,M specifies

a set of memory blocks, where m is denoted as the c-th memory cell within that memory block [31].

The internal state of each memory cell at time τ + 1, denoted by smc(τ + 1), is calculated according

to both its state at time τ, represented by smc(τ), and an associated weighted input term, noted as

zmc(τ + 1). This weighted input term is multiplied by the activation value for one of two gates—the

output gate or input gate —associated with each specific memory block. For example, for any given

generic memory block m, labeled output gate and input gate can be denoted as respectively, where W

represents some weight connecting node u and node v.After determining this multiplicative outcome

between weighted inputs and either output/input gates correspondingly, it forms activation values which

are used to calculate final activation value(for specific cell ): ymc(τ + 1) all while updating internal state
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s accordingly [31].

The activation yinm of the input gate inm is computed as follows:

yinm(τ + 1) = finm(zinm(τ + 1)) (2.38)

where finm is the activation function of the input gate and zinm is the weighted sum of the inputs to the

input gate. The activation of the output gate zoutm(τ + 1) is computed as follows:

zoutm(τ + 1) = foutm(zoutm(τ)Woutm,ymc(τ+1)) (2.39)

where foutm is the activation function of the output gate and Woutm,ymc(τ+1) is the weight connecting the

output gate to the activation of the cell [31].

The activation of the cell ymc(τ + 1) is computed as follows:

ymc(τ + 1) = h(smc(τ + 1)) (2.40)

The activation function of the cell in this expression is denoted by h and typically takes either a hyperbolic

tangent or a sigmoid form. The output of this process, or the updated internal state of the cell smc(τ + 1),

is calculated by first multiplying together weighted input zmc(τ + 1) with the activation of its input

gate yinm(τ + 1). This product will then be added to that which results from multiplying together the

previous state smc(τ) with its corresponding forget gate’s activation value y f m(τ + 1) [31].

The activation of the forget gate y f m(τ + 1) is computed as follows:

y f m(τ + 1) = f f m(z f m(τ + 1)) (2.41)

where f f m is the activation function of the forget gate and z f m(τ + 1) is the weighted sum of the inputs

to the forget gate. The forget gate determines how much of the previous state should be retained and how

much should be forgotten, based on the current input and previous state [31].

Forget Gates

The forget gate in Long-short Term Memory Recurrent Neural Networks (LSTM-RNNs) is responsible

for effectively managing long-term memories which go beyond single timesteps. The purpose of this

gate is to balance the importance of short and long-term memory when making predictions. It selectively

adjusts, discards, or retains information based on its relevance to the task at hand through a sigmoid

activation function that results from weighted sums of inputs. This allows it to recognize patterns that are

important for future prediction while discarding those deemed irrelevant allowing for better accumulation

and retrieval of memories within these RNNs [31].
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Backward Pass

In the process of backpropagation, an LSTM-RNN calculates error signals for each weight. The purpose

of these calculations is to adjust the weights accordingly such that there is a decrease in the amount

of difference between actual output and desired output. To achieve this, calculus’s chain rule allows

mistakes to be transferred backward through layers in order to determine which adjustments should be

made to specific weights. These changes are done with a view toward minimizing any discrepancy

between what was being expected as compared with what had been delivered by the RNN network.

Updates to weights are made by propagating error signals back across the network. The objective is to

reduce the deviation between actual and desired output. As a consequence of the chain rule of calculus,

mistakes may spread in reverse across a network. By propagating error signals back across the structure,

new values for weights can be formulated which will help bring about precise results.

Let E(τ) be the error at time step τ, and let y(τ) be the output of the network at time step τ. The error

signal for the output gate outm at time step τ is computed as follows:

δoutm(τ) = E(τ) ∗ h′(ymc(τ + 1)) ∗ zoutm(τ + 1) (2.42)

where h′ is the derivative of the activation function of the cell, and zoutm(τ + 1) is the weighted sum of

the inputs to the output gate.

The error signal for the activation of the cell ymc(τ + 1) at time step τ is computed as follows:

δymc(τ + 1) = (δoutm(τ)Woutm,ymc(τ+1)) ∗ h′(ymc(τ + 1)) (2.43)

where Woutm,ymc(τ+1) is the weight connecting the output gate to the activation of the cell.

The error signal for the forget gate f m at time step τ is computed as follows:

δ f m(τ) = (δymc(τ + 1) ∗ smc(τ)) ∗ f ′(z f m(τ + 1)) (2.44)

where f ′ is the derivative of the activation function of the forget gate, and smc(τ) is the previous state

of the cell.

The error signal for the input gate inm at time step τ is computed as follows:

δinm(τ + 1) = (δymc(τ + 1) ∗ zmc(τ + 1)) ∗ f ′(zinm(τ + 1)) (2.45)

where zmc(τ + 1) is the weighted input to the cell, and f ′ is the derivative of the activation function of

the input gate.

The error signal for the weighted input zmc(τ + 1) at time step τ is computed as follows:
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δzmc(τ + 1) = (δymc(τ + 1) ∗ yinm(τ + 1)) ∗ h′(smc(τ + 1)) (2.46)

where yinm(τ + 1) is the activation of the input gate, and h′ is the derivative of the activation function of

the cell.

The error signal for the previous state smc(τ) at time step τ is computed as follows:

δsmc(τ) = δymc(τ + 1) ∗ y f m(τ + 1) (2.47)

where y f m(τ + 1) is the activation of the forget gate. An optimization technique, such as gradient

descent or Adam’s algorithm, may then be used to adjust the network’s weights based on the calculated

error signals.

Complexity

Long Short-term Memory Recurrent Neural Networks (LSTM-RNNs) are more complex than traditional

RNNs due to the additional parameters and calculations they have integrated. This extra complexity

allows them to save long-term dependencies which can be used later; however, it also makes these

networks much harder to train or understand correctly. The computational complexity for an LSTM-

RNN is denoted by O(N2) where N is the number of memory cells. This indicates that both the memory

needs as well as time requirements will go up exponentially if you increase the number of memory cells

found inside an LSTM-RNN.

Strengths and Limitations of LSTM-RNN

Recurrent Neural Networks (RNNs) are state-of-the-art algorithms that can be applied to a range of

problems concerning sequenced data. Long Short-Term Memory (LSTM) based RNNs are even more

capable models with the ability to remember information over long sequences. LSTM networks use gates

in order to control how much new and old information is retained and used, which allows them to better

understand long-term dependencies within the data. However, although this improved memory capacity

has its advantages when dealing with complex tasks such as Natural Language Processing (NLP) and

Time Series Prediction, there can still be issues stemming from what is known as Vanishing Gradient’

during training where either too little or too much gradient descent takes place respectively, making it

difficult for optimization to take place correctly. In addition, due to their complexity, these types of RNNs

can be more challenging and computationally expensive to train and than traditional RNNs. In addition,

they typically need large datasets in order for successful learning outcomes; therefore computational

resources may present an additional barrier particularly if attempting this on big networks or datasets.
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2.1.5 Optimization

The optimization of training neural networks is essential in order to ensure that the weights are suitable

for producing the desired output and reducing any deviations from it. This research examines various

techniques of optimization, such as gradient descent, backpropagation of errors, convergence procedures,

fine-tuning pre-trained networks as well as evaluation metrics devoted to judging a neural network’s

performance. To further understand these concepts we exemplify them through a computational study

on a set of handwritten digits.

2.2 Optimizer

An optimizer is an algorithm used to adjust the weights of a neural network during training to minimize

the difference between the predicted output and the target output. There are various optimization

algorithms used in training neural networks, including stochastic gradient descent, Adam optimizer, and

Adagrad optimizer [45].

2.2.1 Gradient Descent Optimization

In essence, gradient descent helps us to find the optimal set of weights for a neural network by iteratively

adjusting these weights based on the estimated direction and magnitude of the error. This is done using

the chain rule of calculus which allows errors in one layer to be propagated through the entire network

[3]. To be more specific - each step taken involves recalculating the cost function (which measures

how closely our predicted output matches up with our target output), then computing its derivative with

respect to all trainable weights within the network. Finally, we adjust those weights according affected by

this partial derivative; moving them in negative or positive directions depending on what it says. Doing

this repeatedly, while adjusting the learning rate as needed will eventually lead us to find a point where

no further improvement can be made suggesting that we have discovered an accurate model which has

been tuned correctly [46].

The update rule for gradient descent is as follows:

w = w − α∇w J(w) (2.48)

where w indicates the learning rate and controls how quickly each weight should change in order to

reduce losses over time. whereas J(w) is the cost function, and ∇w J(w) is the gradient of the cost

function with respect to the weights of the network. There are different variations on this basic structure

including batch gradient descent, stochastic gradient descent, and mini-batch gradient descent [45]. In

each variant’s implementation, given a differentiable function f (x), an initial variable x is selected which

will later be adjusted using calculated gradients of that same function such that it converges towards its

global optimum value after sufficient iterations have taken place.

The update rule is as follows:
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xt+1 = xt − η∇ f (xt) (2.49)

where xt is the current value of x, η is the learning rate, and ∇ f (xt) is the gradient of f (x) evaluated at

xt. The learning rate is a hyperparameter that controls the step size of the updates [45].

Convergence Properties

The ability of gradient descent to minimize a function depends on various factors, like the size of the

learning rate, which is used when updating the weights, and properties of the minimized loss surface

[47]. Under suitable conditions such as convexity and Lipschitz continuity of the derivative–gradient

descent is guaranteed to reach a global minimum in its convergence path.

Performance Factors: Learning Rate: The size of the learning rate defines how quickly a model will learn

from one iteration to another. If it’s too small, training may be slow; but if it’s too large, there could be

overshooting or divergence away from an optimal solution [45].

Initialization: Initializing variables with appropriate values prior to training can help ensure faster

convergence (or prevent getting stuck at local minima) [48].

Adaptive Learning Rates: Different adaptive strategies such as AdaGrad [49] and Adam [50] have been

proposed which modify learning rates at each update step depending on their history since initialization.

2.2.2 Back Propagation of Error

Backpropagation of error is a key component of gradient descent, as it allows the error to be propagated

backward through the network to update the weights. The backpropagation of error involves computing

the gradient of the cost function with respect to the weights of the network using the chain rule of calculus

[3].

The update rule for the weights of the network using backpropagation of error is as follows:

∆w = −α∇w J(w) (2.50)

where ∆w is the change in the weights of the network, α is the learning rate, J(w) is the cost function,

and ∇w J(w) is the gradient of the cost function with respect to the weights of the network.

2.2.3 Convergence

Convergence is an essential component while training neural networks. It guarantees that the network

can recognize the distinctive patterns in the data, and apply its learning to new situations. Its progress can

be observed by keeping a tab on two key statistics: the training loss and validation loss over time. The

training loss indicates how much error lies in the data used for training purposes; whereas, the validation

loss observes how right or wrong predictions are with respect to an independent hold-out dataset [3].
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Dropout

Early stopping is a powerful algorithmic method for preventing overfitting. In deep neural networks,

this is done by monitoring the validation loss in order to determine when to stop further training of

the network. This technique can improve the model’s ability to generalize new data rather than simply

memorizing the existing training set[51]. Dropout techniques are also commonly used in deep learning

due to their effectiveness in optimizing and controlling a network’s capacity. Dropouts help minimize

overfitting caused by too much complexity in modeling, as well as improvement of performance on novel

data sets. They can greatly reduce complexity while still maintaining accuracy they essentially remove

neurons randomly with each training step which forces them to focus on more generalized outputs.

Dropout layers are a regularization technique used in deep learning neural networks that act to reduce

overfitting, by dropping some of the activations within higher-level layers.

During training, these units are randomly selected and ignored, forcing the network to create multiple

redundant pathways for information. This helps prevent the network from becoming too finely attuned

only to the observation data during training, instead allowing it to zero in on more general features and

thus be better prepared when exposed to new data sets during evaluation or tests. In large networks

with significant capacity levels where overfitting is at risk of occurring, dropout layers can provide an

additional safeguard by fine-tuning how much redundancy there is; this way potential extra resources can

be harnessed while maintaining robustness and accuracy.

Decay

Decay is a technique used to adjust the learning rate during training which can help accelerate model

convergence. Training with a higher learning rate allows for quicker bypassing of local minima and

faster attainment of the global minimum, although this usually has lower precision in weight updates.

After reaching what may be thought as the optimal point or ’global minimum’, smaller learning rates are

then set so that finer detailed changes can take place within (referencing Bengio et al., 2012). Adjusting

decay rates is crucial; using too large of values would reduce weights too quickly halting progress before

it has been completed optimally and if set too small, would result in rapid converging yet need extensive

fine-tuning afterward [52].

Momentum

Momentum, a classical technique that has been studied since [53], is used in gradient descent to

accumulate velocity vectors in the direction which consistently reduces the objective across training

iterations. The aim of this technique is to accelerate gradient descent by altering weight updates with

the computed velocity vector so as to decrease the chances of converging on local minima. Despite

their advantages, momentum-based methods have one major disadvantage they may not reach optimal

convergence with respect to global minima and jump over it due to their tendency of evading local

minima points. To address this issue Nesterov Momentum was introduced which can predict upcoming

weight updates using the prior iteration’s gradient hence resulting in smoother convergence towards

target minimum [54]. This algorithm adds only a partial first momentum vector before adding a full
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vector when applying weight update thereby allowing for better approximations toward global minimum

compared to conventional momentum methodologies.

Optimizers are an important part of Deep Neural Networks (DNNs). Training these networks is

usually harder than training shallow learning algorithms, due to the vast number of parameters needing

optimization. This can make the cost function rough and cause descent optimization algorithms to

converge slowly or not at all. To counter this issue, new methods have been explored which build

upon causes set out by basic principles [45]. Aside from convergence, dropout, decay, and momentum

techniques have also been studied as well as adaptive learning rate algorithms and multiple optimizers

that deal with issues faced when dealing with deep neural networks [55].

AdaGrad is an adaptive learning rate algorithm that adjusts the learning rate for each parameter

individually, according to a calculation of its historical gradients. This technique facilitates automated

tuning of the learning rates and has applications in processing sparse data effectively. However, it has

been shown that. AdaGrad can suffer from rapid learning rate decay and thus impede optimization, as

it is difficult to reach the global minimum before stalling due to very low values of said parameter.

To confront this challenge Root Mean Squared Propagation (RMSProp) [56] was developed as an

alternative adaptation algorithm for optimizing both neural networks and other machine-learning settings.

In contrast with AdaGrad’s accumulation of gradients over time, RMSProp introduces the concept of

exponential moving average an estimation based on more recent information which yields a much more

stable learning rate that leads towards effective convergence of computational systems.

Adam [50] is a breakthrough optimization technique that brings together the advantages of AdaGrad and

RMSProp. The algorithm computes changing learning rates for each parameter by keeping an estimate of

gradients’ first and second moments. Its robustness to varying hyperparameters and its good performance

on multiple tasks have made it popular among practitioners. Regularization strategies such as L1 and L2

regularization [57], which penalize large weight values, also act to reduce overfitting in DNNs. Batch

normalization [58] has been found to be highly beneficial in stabilizing deep Neural Network (DNN)

training; by standardizing the layer inputs, batch normalization decreases internal covariate shift resulting

in quicker convergence that achieves better generalization compared with models without this technique.

Optimizer

Deep Neural Networks have a lot of parameters that must be optimized, which is more tricky and more

difficult than standard shallow learning algorithms. The cost function could also prove to be challenging

as the gradient descent optimization may become stuck on local minimums, making it to converges

slowly or not at all. This issue can partly be resolved by Stochastic Gradient Descent (SGD), an

optimization algorithm where approximations of cost from single training samples are done on small

subsets with mini-batch learning which helps make faster convergence. The stochasticity introduced

through these estimations utilized in SGD will potentially help jump out of any unconstructive or

undesirable local minima [47].

Adaptive Gradient (Adagrad) is an optimization technique that alters the learning rate of individual
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weights depending upon how frequently they are altered during training. This enables the optimizer to

update more relevant parameters faster and allows for quick convergence of less significant parameters

that may not need as much attention. In order to track which weights have been used, Adagrad keeps

a dictionary or memory of all parameter updates made thus far. The updation frequency is tracked by

means of this gathered information and then accordingly corrections are made to the learning rate[55]. As

such, it tends to increase the learning rate for infrequently used weights so that an optimal convergence

towards model fit can be achieved, whereas heavily updated ones would have their rates decreased in

order to prevent excessive flows in out-of-range values.

Root Mean Square Propagation is an algorithm that uses the gradients of the weights to determine how

much each weight should be updated. It works by maintaining a record of the average gradient for each

individual weight, over time. When updating these weights in subsequent iterations, this average is taken

into account when dividing the current iteration’s gradient from it. Due to this each update is to be

proportional to its respective positive/negative change with respect to its mean [56]. On the other hand,

Adaptive Moment Estimation (Adam) and Nesterov Adaptive Moment Estimation (Nadam) algorithms

track changes in gradients accordingly as well but do so using a velocity vector that records momentum

values associated with each respective gradient over a fixed period of time. Adam was also one of the

first optimizers to incorporate momentum acceleration into traditional Gradient Descent [59].

Selecting an optimizer for a Deep Neural Network (DNN) is not a straightforward process. Since the

data used in machine learning tasks may often be quite large and complex, it’s best to find out which

optimizer works better by trying different approaches instead of relying strictly on inferences. DNNs

have many parameters due to which the cost function has multiple local minimums instead of one global

one. This means that finding the global minimum is not vital; instead, all that’s needed is finding a local

minimum sufficient enough to meet the model’s performance requirements [3].

It is also important to consider which optimizer to use for the neural network. Different optimizers

can have substantially different effects on the training speed and performance of the model, with some

converging quickly but reaching relatively low-performing solutions, while others might take longer to

converge but reach a more optimal minimum result. Therefore, it is important that multiple optimization

algorithms be tested in order to determine the best choice available. Furthermore, certain optimizers may

require extra hyperparameter tuning such as adjusting SGD’s learning rate or momentum parameters or

RMSProp and Adam’s decay rate and epsilon values respectively. At times this process can prove long

and computationally costly thus finding ways of reducing resources while still optimizing efficiency

should be considered when possible.

Hyperparameters

The functioning of Artificial Neural Networks (ANNs) is determined by their architecture. This means,

among other things, that the structure of the network remains in a fixed state even when the learning

process optimizes parameters for a certain task [3]. The elements which have to be chosen by the user

are known as hyperparameters and they comprise, in relation to model characteristics such as a number

of units in a dense layer, filter size, padding, etc., information related to optimization algorithms’ time



2.2. OPTIMIZER 35

frame amongst others [60].

Choosing the right parameters is hugely important, as how they are set can strongly influence the results

of the model. To identify which values work best it is necessary to use methods such as grid search,

random search, or Bayesian optimization. But this process of finding accurate hyperparameters is not a

straightforward task, the precise combination which works best varies depending on the specific problem

and the dataset at hand [52].

Finalizing the choice of hyperparameters is an essential step in the design of a model since its values have

a direct impact on how well it will learn, generalize and perform with unseen data [3]. it is important

taking time to explore and find out which values are most suitable for one’s project as that would make

sure that we get the greatest performance from our model.

2.2.4 Metrics

Measuring performance is an important aspect in the area of neural networks. Many times, this is

conducted with evaluation metrics like accuracy, precision, recall, and F1-score. Accuracy calculates

the number of correct classifications made, precision provides the amount of correct positives within

true positives and recall reveals how many positive points were recognized among all positive events.

F1-score is the harmonic mean of both precision and recall combined.

Neural networks can be utilized in a variety of way to determine their effectiveness. Various metrics

may be employed to gauge the performance of different models or tweak hyperparameters to optimize

your system’s results. Accuracy, precision, recall, and F1-score are some of the common metrics used

when assessing classification tasks. The accuracy is quite straightforward since it only gauges the ratio

of correctly identified examples compared with all samples. Precision involves measuring the portion of

true positives among an entire set of positive predictions; similarly, recall determines what percentage of

actual positives were predicted among all real values. This kind of evaluation is commonly seen in areas

wherein low numbers for false positives and negatives are essential (like medicine). Lastly, the F1 score

serves as an indicator that looks at how well a given model predicts and remembers data.

The evaluation of neural network models typically calls for the use of metrics the result of which is

a quantitative assessment of their performance. Depending on the task, these metrics may need to be

adapted in order to best capture the particular traits desired from a model. Furthermore, when evaluating

models against unseen data sets, it is essential that the metric results remain consistent across various

subsets and are not biased towards any single subset or distribution profile. Various task-wise metrics

also get employed commonly within certain domains; one example being average precision (AP) and

mean average precision (MAP) which generally evaluate object detection accuracy [61]. These account

for both precision and recall ratios associated with identifying objects accurately.

A different type of task-specific metric is the BLEU (Bilingual Evaluation Understudy) score, which is

commonly used in natural language processing tasks e.g. machine translation and text summarization.

This score ascertains the level of concurrence between model-generated output and human-generated
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output supported by n-gram matching [62].

Classfication

For assessing the performance characteristics of a classification model it is often necessary to use a

confusion matrix and matrices are used to compare predicted with actual classes with results showing

the values for true positives (TP) true negatives,(TN), false positives (FP) and false negatives (FN)[63].

Samples that are classified as correct use the true value while those that are misclassified use the false,

indicating the actual classification of a given sample is done by using either positive or negative notations.

These values provide a means of obtaining several different classification metrics [64].

Predicted True Predicted False
Actual True True Positive (TP) False Negative (FN)
Actual False False Positive (FP) True Negative (TN)

Table 2.1: Confusion Matrix

Accuracy serves as a common classification model metric, reflecting the proportion of correctly predicted

samples. In binary classification tasks, binary accuracy is the sum of true positives and true negatives

divided by the total number of samples [65]:

Accuracy binary =
(TP + TN)

total
(2.51)

For k-class classification, categorical accuracy is the sum of true positives across all classes divided by

the total number of samples:

Accuracy categorical = ∑(TPi)

total
(2.52)

Nonetheless, accuracy metrics presume that all misclassifications are equally significant. In cases where

false negatives and false positives carry different importance, recall, and precision are employed [65]:

Precision =
TP

(TP + FP)
(2.53)

Recall =
TP

(TP + FN)
(2.54)

Precision measures the percentage of positive predictions that were accurate, while recall quantifies

the percentage of positive class instances that were predicted correctly. The F1 metric consolidates

these metrics, providing a single value to simplify model comparisons, unless solely optimizing model

precision or recall [66]:

F1 =
2 × (Precision × Recall)
(Precision × Recall)

(2.55)

In addition, custom metrics, often combinations of TP, FP, FN, and TN, cater to more domain-specific
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applications, such as maximizing value by assigning a value to each classification result [67].

2.3 Addressing Limited Labeled Data in Machine Learning: A Compre-
hensive Approach

In the field of machıne learnıng, certaın labeled data ıs requıred for accurate model traınnıng. When

dealing with labelless datasets, a selection of approaches can be applied to this issue. Herein, we explain

detaı̄ledly the following techniques used when scarce labeled data is present: self-supervı̄sed learning,

semi-supervised learning, weakly supervised leaming, and active learning [68].

1. Self-supervised learning: Self-supervised learning is an unmonitored way of producing labels

from data, and then applying those labels to train a model. This has been found to be helpful in

particular instances when labeled material is limited; examples include image classification, text

identification, and voice recognition.

2. Semi-supervised learning: Exploiting both classified and unclassified information, semi-

supervised learning attempts to construct a model that will generalize well with novel data. This

method is usually foreseen in cases where it would be expensive or labor-demanding to label the

data, such as deciding animal types by clocking a few samples.

3. Weakly supervised learning: makes use of partial labels which might not be wholly accurate but yet

still gains knowledge thanks to assuming the intrinsic properties of the gathered data. Here again,

this technique can come in handy when labeled examples are difficult or expensive to acquire.

4. Active learning: is an approach to training models made up of small, labeled datasets. By utilizing

this method in areas such as image recognition and text classification, the desired outcome can be

achieved by lessening the cost of labeling entities. Advanced deep learning systems like CNNs

and LSTMs have been effectively used to support these techniques for use cases such as medical

analysis, where early detection of conditions including schizophrenia can be enhanced or fraud

identification making sure to pinpoint shady activities accurately.

When these techniques are integrated with advanced deep learning models, such as CNN, LSTM, and

hybrid models. we can develop a strong methodology for handling limited amounts of labeled data.

This approach can be applied to multiple domains including medical diagnosis allowing earlier detection

and classifying conditions such as schizophrenia with greater accuracy or fraud detection pinpointing

dubious activities that could have otherwise gone undetected.
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Chapter 3

Materials and Methods

3.1 Materials

We are utilizing two different EEG datasets in our study. The first dataset is the EEG in Schizophrenia

dataset [69], which includes 28 individuals (14 with paranoid schizophrenia and 14 healthy controls)

whose data were collected using 250 Hz sampling frequency, 19 scalp channels including Fp1, Fp2, F7,

F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2. The EEG recordings in this dataset

were also obtained using the standard 10-20 EEG montage plus reference electrodes between Fz and Cz.

The second dataset we are using is the NMT dataset [70] which currently consists of an overall total

of 2,417 EEG records with record lengths averaging out at around 15 minutes each. Similarly to the

Schizophrenia dataset usage approach; here too we adopted the standard 10-20 system Figure 3.1, with

19 scalp channels and reference channels A1 and A2 on the auricles of the ear. The sampling rate for all

channels was 200 Hz.

Figure 3.1: Diagram to show a standard electrode configuration in which the reference electrodes are placed on the left and
right earlobes, forming a linked ear reference montage [70].

"The first study involved 14 patients (7 men and 7 women, with an average age of 27.9 ± 3.3 years) who

were hospitalized for paranoid schizophrenia at the Institute of Psychiatry and Neurology in Warsaw,

39
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Poland. Additionally, 14 healthy individuals (7 men and 7 women, with an average age of 26.8 ± 2.9

years) were included as a control group. The patients met the criteria for paranoid schizophrenia as

defined by the International Classification of Diseases ICD-10 [69], and the study protocol was approved

by the Ethics Committee of the Institute of Psychiatry and Neurology in Warsaw. All participants

received a written description of the protocol and provided written consent to participate. The inclusion

criteria were a minimum age of 18, ICD-10 diagnosis F20.0, and a medication washout period of at least

seven days. Exclusion criteria were pregnancy, organic brain pathology, severe neurological diseases

(such as epilepsy, Alzheimer’s, or Parkinson’s disease), the presence of a general medical condition,

and a very early stage of schizophrenia (i.e., the first episode of schizophrenia). The control group was

matched in terms of gender and age to the patients who completed the study. [71]" The data is publicly

available in a repository cited as [69].

For a period of 15 minutes, EEG data was obtained from the participants in a restful position (eyes shut).

The 10-20 montage standard for collecting EEGs had 19 channels for recording: Fp1, Fp2, F7, F3, Fz,

F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2. The reference electrode was also kept

at FC. 30-second segments were chosen without any artifacts such as eye movements cardiac activity

and muscle contractions present, further to be filtered using Butterworth with an order of 2 filtering

parameters within the set physiological frequency bands; delta (2-4 Hz), theta( 4.5 - 7.5 Hz ), alpha ( 8

- 12.5 Hz ) beta ( 13- 30Hz) gamma(30 - 45 Hz ). Figure 3.2 shows the sample EEG signal was taken

from one trial session data.

Figure 3.2: Sample EEG signal from the first trial.

"The second study is an NMT dataset that comprises 2,417 EEG records, each with an average duration

of 15 minutes and a sampling rate of 200 Hz. The EEG recordings were obtained using the standard

10-20 system with 19 scalp channels, and A1 and A2 serve as reference channels on the auricle of the

ear. The distribution of recording lengths is shown in Figure 3.3. The dataset contains EEG records from

subjects of both genders, with 66.56% from males and 33.44% from females. The age of the subjects

ranges from under 1 year old to 90 years old, and the age distributions of males and females are displayed

in Figure 3. Of the EEG recordings from males, 16.17% are abnormal/pathological, while in the case of

females, 19.18% are abnormal/pathological"[70].
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Figure 3.3: The distribution chart that displays the frequency of different recording durations [70].

3.2 Methods

The objective of this study is to develop a model that can correctly identify and categorize patients using

EEG data, by means of constructing this model we shall employ the use of 1D Convolutional Neural

Networks (CNNs), Long Short-Term Memory networks(LSTMs), hybrid (CNN + LSTM ) alongside

Siamese networks whilst purifying our datasets through data preprocessing techniques that eliminate all

forms disturbances. EEG signal preprocessing requires various techniques such as band-pass filtering

which usually eliminates undesired frequencies from the signals by using a notch and either a high-pass

or low-pass filter [70].

Dividing the filtered data into shorter fixed-length time blocks called epochs is our next step, as stable

data is imperative in order for pertinent characteristics to be extracted. The time taken for each epoch in

this research is determined based solely on its unique demands; it may take just a few moments or extend

up to many minutes.

Mean values in addition to variances together with power spectral densities are some of the many

characteristics that we aim to obtain from our EEG data following pre-processing, and the key

information provided by these characteristics is related to the amplitude, frequency, and variability of

a given EEG signal.

It is important to ensure that our research efforts are deployed in a way that maximizes accuracy, so

making use of methods such as N-Short Learning, Siamese Networks and Long-Short Term Memory

(LSTMs) can provide an effective method for classifying patients based on EEG data. Moreover, by

taking steps like cleaning the data effectively beforehand and using deep learning algorithms during

processing, we can guarantee better precision with our models for identifying patterns within the data.

The source for EEG data used in this study is the IBID PAN Department of Method of Brain Imaging

and Functional Research on the Nervous System located in Warsaw Poland.

Additionally, to act as a control group alongside the datasets of schizophrenia patients which were

gathered from various hospitals and clinics data was also obtained from healthy people. The availability

of a varied dataset enables us to build a machine-learning model that accurately detects patients
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displaying traits indicative of schizophrenia, so in order to analyze the EEG data effectively, machine-

learning techniques such as clustering and classification will be employed. Using these approaches we

have the ability to isolate important discrepancies in various patient populations which can then be used

to create an accurate model that identifies individuals exhibiting symptoms commonly associated with

schizophrenia.

Ultimately—preparing the data is of utmost importance while developing a precise and effective model

to differentiate and recognize patients with the help of EEG data moreover the application of a bandpass

filter along with breaking down the information into smaller intervals will help us maintain stability while

extracting important properties.

Ultimately we will make use of these properties to train our model utilizing a combination of Siamese

Networks and LSTM as well as N-Short Learning and a diverse set of information acquired from several

healthcare facilities has enabled us to build an accurate model that can identify individuals with several

neurological disorders.

3.2.1 Siamese LSTM Network for EEG Classification: A Deep Learning Approach

We proposed a deep learning method relying on a Siamese LSTM network to recognize EEG data as

normal or abnormal. This technique entailed obtaining and putting together abnormal and standard EEG

data, normalizing the samples, and nominating labels to the sliding windows of the EEG transmissions.

We employed a Siamese LSTM architecture and trained it via binary cross-entropy loss function with

Adam optimizer accompanied by GroupKFold cross-validation policy for up to 30 epochs. After each

training session, we put our model under trial through a validation set using a classification report

combined with an accuracy score. Afterward, we tested our crafted model on test data comparing each

anchor sample’s latent representation to saved class representations in order to categorize them as either

normal or abnormal ones respectively. Also derived performance metrics such as confusion matrix along

with accuracy, precision, recall and F1 scores were all taken into account separately from one another.

The presented methodology proved its veracity considering positive results resulting from the outcome

chapter which is indicative of countless potential uses for this particular Siamese LSTM network for

EEG classification in clinical settings. offering not only confidence assurance but also spreads outbound

applications potentially deployable into several industries including medicine and finance among plenty

of others.

3.3 Dataset

The strength of a machine learning model relies heavily on the quality and diversity of its training dataset,

thus evaluating the accuracy of machine learning models requires datasets with representative training

and testing examples that can be achieved through cross-validation making it an invaluable method.

In order to differentiate between healthy individuals and patients we utilized a machine learning

framework for the classification of EEG data as part of our research and to ensure accurate analysis results
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for received EEG information sets were subjected to preliminary processing that included applying band-

pass filtering over the region spanning between lower limit frequency component at or above1 Hertz and

upper boundary frequency component not exceeding 45 Hertz. Resulting histograms consisted of non-

overlapping contiguous time-periods each exactly 25 seconds in length and categorizing through trial

channels and lengths via the use of arrays led to the organizing process -thus consequentially. The data

analyzed in this study includes information collected from a group comprising both healthy (X) and

patient individuals(Y), totaling 14 each.

We segmented the EEG signals into windows of a specified length and subsequently trained a

classification model to identify these windows as either pertaining to the healthy group or the patient

group, using standard performance metrics was instrumental in evaluating the model’s prowess.

Our approach towards performing tasks such as loading and pre-processing of datasets along with epoch

extraction involved employing the use of the MNE-Python Library and the potential utility of EEG data

in discerning between healthy individuals and patients was emphasized by the attained classification

accuracies.

The dataset, consisting of control and patient epochs, was divided into training and validation sets using

the GroupKFold method and our properly scaled data allowed us to train our model 50 epochs at a time

by implementing both StandardScaler and 64 batches

sizes. For every fold in the experiment, we measured multiple evaluation metrics such as accuracy and

F1 score among others and results from this analysis were then accumulated in a list named ’metrics’.

Additionally, we recorded the loss value for both training and validation. The use of matplotlib.pyplot.

enabled us to generate visualizations that helped in understanding how well the model performed across

various folds. This report has provided us with important insights into the strengths as well as limitations

of our model along with highlighting areas that require further attention for improvement in future

research endeavors.

3.3.1 Test dataset

To avoid over-fitting and generalize models effectively, creating a dedicated test dataset is essential.

Careful consideration must be taken when deciding the size of this set - both in terms of its overall

volume as well as proportionally to that of the full assigned data it covers. When ample samples or data

points are available on a complex task, larger testing datasets can help experiment with bigger batches.

However, if there’s limited info present related to such tasks then adjusting sets accordingly becomes

necessary for more rigorous results without any risk of overfitting!

Accurate results rely upon considering a wide range of factors such as the proportion and size of sample

datasets. If reality is accurately represented in your training dataset, you can create a larger test set for

greater experimentation; however, if data on any specific task is limited or scarce then it’s necessary to

adjust accordingly with carefully tailored sizes. To avoid overfitting, having an independent test dataset

plays an essential role in determining just how effective the generalization ability of that model really is.
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Original Dataset

Training Test
Figure 3.4: Generating a set of data for the purpose of testing [19].

To evaluate a model’s generalizability, the test dataset should be sequestered during the training process

and used only in the final step. The model should be evaluated on the test dataset as sparingly as possible

since each evaluation yields information about the test dataset, which may be inadvertently used in further

design iterations. If the model gains knowledge about the test dataset, it may void the assumption that

the evaluation of this dataset represents the model’s generalizability.

3.3.2 Cross-validation

Cross-validation requires that the dataset is divided into three parts - training, validation, and testing.

The model is trained on the training set and evaluated on a validation set which helps refine the model’s

parameters to displace an accurate predictor. After final testing and refinement of the parameters, a

test set can be used to quantitatively assess how well the model generalizes over unseen data. Cross-

validation also allows for the effective utilization of limited resources since it minimizes bias-variance

tradeoff in part by using multiple models instead of one single holdout dataset as a validation set [72].

Cross-validation helps improve how a model performs on unseen data, something essential when creating

AI models. To do this, the dataset is split into multiple partitions called folds and each fold acts as the

test set for one iteration of training and evaluation. This allows for an unbiased evaluation without

leaking valuable information from the test set that can be used to unfairly inflate scores. After every

iteration is completed, the performance results are averaged across all iterations which typically yields

more accurate metrics than a traditional holdout approach[73].

Using the same validation dataset throughout the training process can lead to more rapid overfitting due

to its reduced size and sensitivity to dataset partitioning. K-fold cross-validation addresses this issue

by employing a different validation dataset for each iteration [72]. The training dataset is divided into

k-equal sets, with one set used for performance evaluation and the remaining k-1 sets used for model

training. The process iterates, using each fold as the validation set as shown in Figure 3.6.
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Original Dataset

Training
Test

Validation

Figure 3.5: Holdout cross-validation. Figure taken from Ref. [19].

Training Set
Validation fold

1st  iteration

2nd  iteration

3rd  iteration

kth  iteration

Figure 3.6: K-fold cross-verification. Figure adapted from Ref. [19].

3.4 Structure of the Machine Learning Model Employed in the Study

3.4.1 CNN Model

In this research, we were given a dataset composed of EEG data for 28 people, half of which were healthy

individuals and the other half had an illness. Each group included an equal number of participants and

every individual had their data structured into a 3-dimensional array with axes that accepted epochs

(trials), channels (EEG channel readings), and time steps (time points during the trials). We organized

this representation so that it could enable us to compare both healthy and ill people in a reliable

and successful way when conducting the analyses and classifications. At first, we began by using a

convolutional neural network specifically created for binary classification tasks. The input to the system

was formed as a 2D matrix made up of 6250 rows which reflected upon the time steps taken in the

experiment while 19 columns featured interactive features within each trial. After processing, the output

is generated. From running these models delivered back binary values ranging from 0 or 1 are used to

designate its prediction on each subject´s health status broadly categorizing that person as either being

classified healthy´ or ill´ without fail.

The first layer of the network architecture is a 1D convolutional layer with 5 filters. Each filter has
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a kernel size of 3 and a stride of 1. This layer performs convolution, which is the application of the

learnable filters to an input matrix in order to extract local features from it. After this operation, the

output will be in the form of a tensor with dimensions (6250, 5).

The second layer is a batch normalization layer, which takes the input from the first layer, normalizes

it across each feature map, and scales and shifts the data to help speed up training time. It also helps

improve generalization by ensuring that all features have mean 0 and unit standard deviation. The third

layer is a leaky rectified linear unit (ReLU) activation layer, which adds non-linearity to the network to

prevent vanishing gradients and allow for more complex functions to be learned. The fourth layer is a 1D

max pooling layer with a pool size of 2 and stride of 2; this significantly reduces the size of each feature

map while enabling the model to learn translational invariance – meaning small changes in an image do

not cause large changes in output predictions.

The third layer performs a convolutional operation with 32 filters, a kernel size of 3x3, and a ReLU

activation. The fourth layer then performs max pooling on the output from the previous layer to reduce

its spatial size by two. This is followed by another dropout layer to reduce overfitting with a rate of 0.4.

The fifth through eighth layers follow this same pattern–convolution, activation, pooling, and dropout–

with varying hyperparameters for each one. The fifth layer has 64 filters for the convolution and uses

an average pooling instead of max pooling in place of the fourth layer’s max pooling operation; it also

includes another dropout with a rate of 0.5. The sixth layer has 128 filters whereas the seventh uses only

32; both have an average pooling operation after their respective relu activations; both also include yet

another dropout at rate 0..5 before their respective average pools are applied. Finally, the eighth layer

consists solely of one last average pooling operation which further reduces the input spatial dimensions

of the network

The ninth layer of the model is a convolutional layer with 5 filters, a kernel size of 3, and a stride of 1. A

leaky ReLU activation layer (with a negative input slope) follows this convolutional operation to account

for all negative inputs.

The tenth layer is a global average pooling (GAP) layer that averages each feature map across time steps

to create one scalar value per filter, resulting in an output vector containing five values from the filtering

operation being run on the input. This helps capture only the most important features for classifying

successfully. Lastly, there’s a single dense neuron connected linearly to these 5 elements as part of our

output/prediction unit, where we then apply the Sigmoid activation function to get our classification

probability ranging from 0-1 accuracy; hence indicating whether it belongs to either one or two classes

determined by the problem at hand. To guide our model during training optimally, however, we use the

Adam optimizer alongside binary cross-entropy loss functions while evaluation metrics follow up with

accuracy and binary cross-entropy loss values respectively.

This model architecture as shown in FigureA.1 is a combination of convolutional layers, pooling

operations, and dropout techniques used to capture spatial and temporal features from input data. Batch

normalization and leaky ReLU activation functions are also employed which helps reduce the training

time while optimizing the model’s performance. All these approaches make this model suitable for



3.4. STRUCTURE OF THE MACHINE LEARNING MODEL EMPLOYED IN THE STUDY47

binary classification tasks which involve sequential data. To ensure that no duplicate datasets are used

in both training and validation sets, the GroupKFold cross-validation technique is employed for splitting

into training and validation sets.

First, a StandardScaler object is utilized to standardize the training and validation features. This step

creates uniformity among each feature in terms of average mean (0) and unit variance (1). As a result,

this enhances the performance level of the model and makes it more capable of handling differences with

respect to scale levels between different features. After that, for 50 epochs, with batch size being 64,

binary cross-entropy loss as well as Adam optimizer are employed to train the model further.

3.4.2 LSTM Model

The LSTM model is a type of recurrent neural network (RNN) that is designed to process and classify

sequential data. In this case, the model is used for binary classification tasks on a dataset with 6250-time

steps and 19 features as shown in Figure 3.7.

Figure 3.7: Model summary of LSTM.

The model consists of three layers: two LSTM (Long Short-Term Memory) layers and one dense layer.

The first LSTM layer contains 64 units which are connected to an input shape of (6250, 19), meaning the

model is expecting a 2D matrix with 6250 rows (representing time steps) and 19 columns (representing

features). This layer also returns the sequence of outputs for each time step as its output. Conversely, the

second LSTM layer is composed of 32 units but does not return any sequences; instead, it helps capture

temporal dependencies in input data by storing memory from past inputs. The subsequent dense layer

contains only a single neuron with sigmoid activation that determines a probability between 0 and 1 to

indicate the predicted class from given data points on the training dataset. To minimize error during

training, the binary cross-entropy loss function is implemented while the Adam optimizer is used as its

learning rate adapts better to improve convergence compared to other optimizers available. Accuracy

score along with binary cross-entropy loss act as evaluation parameters during the training period.
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3.4.3 Siamese LSTM Network

In this section, a deep Siamese LSTM network has been proposed to classify EEG data. The input data

has a shape of (6250, 19), where 6250 is the length of the EEG signal and 19 is the number of electrodes

as shown in Figure 3.8. The model is trained using a GroupKFold cross-validation strategy to ensure

that the data is split in a way that accounts for the potential influence of confounding variables, such as

individual subject differences.

Figure 3.8: Model summary of deep Siamese LSTM network.

The Siamese LSTM architecture is used to process two input sequences and calculate the distance

between them. The model is trained using the binary cross-entropy loss function and optimized using

the Adam optimizer. The model is trained for a maximum of 30 epochs, with early stopping applied to

prevent overfitting.

Before feeding the data to the model, it is standardized using the StandardScaler from sci-kit-learn. This

standardization is applied separately to the training and validation data to prevent information leakage

between the two sets.

After each training iteration, the model is evaluated on the validation set using the classification report

and an accuracy score. Finally, the training and validation loss is plotted over the epochs to provide

a visual representation of the model’s performance as shown in Figure 3.9. This work represents a

promising approach to EEG classification using deep learning methods, with potential applications in

clinical settings for the diagnosis and treatment of neurological disorders.

The code we use is available publicly in GitHub Repository with the following link https://github.com/

beck2127/Deep-Learing-using-EEG-Dataset.git.

https://github.com/beck2127/Deep-Learing-using-EEG-Dataset.git
https://github.com/beck2127/Deep-Learing-using-EEG-Dataset.git
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Figure 3.9: Plot showing the train and validation accuracy of the Siamese LSTM network.
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Chapter 4

Results

4.1 EEG in Schizophrenia dataset

4.1.1 CNN Model

Upon training the model, we evaluated its efficacy on the validation set by assessing four primary metrics:

accuracy, precision, recall, and the F1 score, as illustrated in Figure 4.1. These metrics collectively

furnish a comprehensive evaluation of the model’s performance on the validation data. The details of

this model architecture is explained in Section 3.4.1.

Figure 4.1 illustrates a favorable model performance, with an average accuracy of 0.817, and a recall

close to one. This indicates that our model was proficient at correctly identifying a significant majority

of the positive cases within the validation set.

Additionally, we monitored the accuracy for both the training and validation data along with their

corresponding losses per epoch across five folds. This allowed for a more detailed assessment of the

model’s progression throughout the specified iterations.

Subsequent figures illustrate the model’s accuracy and the change in validation loss per epoch. Figure

4.2 on the left exhibits the model’s accuracy for training and validation data over the span of 50 epochs.

Simultaneously, the figure on the right illustrates the fluctuation in validation loss per epoch. These

graphical representations further enhance the understanding of the model’s progression and performance

throughout the training phase.

4.1.2 LSTM Model

The Long Short-Term Memory (LSTM) model was used to perform binary classification on a dataset

employing GroupKFold cross-validation. The details of the model we used is elaborated in Section 3.4.2.

Training the model took fifty epochs with a batch size of sixty-four and assessing it yields validation

accuracy, F1 score, precision, and recall for each fold as presented in Figure 4.3. The maximum

validation accuracy achieved was 0.96 which implies correct data categorization at a rate of 96% on the

51



52 CHAPTER 4. RESULTS

Figure 4.1: The figure demonstrates the model’s performance in terms of accuracy, precision, recall, and the F1 score. These
metrics, when plotted together, provide a comprehensive view of the model’s efficacy, as each metric assesses a unique aspect
of the model’s performance on the validation data. The scores were computed across 5 folds.

validation set; proving that the model is working optimally when evaluated against said set. Moreover,

the F1 score acquired reached 0.85 meaning that precision and recall are balanced effectively. This mark

suggests considerable overall performance by the LSTM-based classifier.

The recall is the ratio of true positive predictions to all actual positive samples in the validation set. In

other words, it is a measure of how successful the model is at correctly identifying positively labeled

cases from among all positively labeled cases. A high recall value (close to 1) indicates that most of the

positives in the validation set were successfully identified by the model. On the other hand, precision

tells us how many out of all positive predictions actually turned out to be correct i.e., it measures the

‘accuracy’ of our positive predictions - with a precision close to 0.8, this means that for every 8 positive

predictions made by our model, about 6 are truly accurate and 2 have been tagged as false positives by.

In broad strokes, the LSTM model is performing well on the binary classification task due to its high

accuracy and F1 score. Furthermore, it has produced a satisfactory balance between precision and

recall as the model is accurately recognizing a large proportion of positive cases while maintaining an

acceptable level of precision. In other words, it is identifying true positives with only a marginal presence

of false positives.

4.1.3 Hybrid model (CNN+LSTM)

The hybrid model we used as shown in Figure A.2 is a deep learning architecture designed to classify

sequential data into binary classes by combining convolutional, LSTM, and fully connected layers in

order to learn spatial and temporal dependencies in the input dataset. This model takes an input tensor

with 6250-time steps and 19 features at each time step, processes it through two convolutional and two

LSTM layers followed by batch normalization, ReLU activations, dropout, and max pooling operations

before sending its results through a fully connected layer with an activation function (e.g., sigmoid) for
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Figure 4.2: [Left] Graphical representation of the model’s accuracy for both training and validation data over 50 epochs. [Right]
A depiction of the validation loss per epoch, showing how this metric changes over the course of the training period.

Figure 4.3: Model performance showing accuracy, precision, recall, and F1 score. The scores were obtained for 5 folds.

producing final predictions about which class that particular data point falls into.

The results of the convolutional layer are sent to be processed by two LSTM (Long Short-Term Memory)

layers. Long short-term memory is a neural network architecture that helps discern temporal patterns in

sequences; it stores information from prior inputs and can remember them over longer periods of time.

A dropout layer is also placed at this stage, which has the effect of reducing overfitting by randomly

removing or ignoring connections/nodes between layers during training. The output of the second LSTM

is then sent through a fully connected layer before going on to batch normalization, ReLU activation, and

another dropout layer. These set up the data for classification by providing further conditioning before it

reaches the output neuron connected with a sigmoid function to produce probabilities ranging from 0 - 1

depending on what class they belong to. This predicted probability will be judged against its true label

using binary cross-entropy losses and any discrepancies used as feedback for improving performance in

future iterations during training.

The model is optimized using the Adam optimizer, which updates the learning rate during training to
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help converge on a desired solution faster. The parameters of accuracy and binary cross-entropy loss are

used as indicators while training to evaluate if performance is improving or not.

Figure 4.4: Model performance showing accuracy, precision, recall, and F1 score. The scores were obtained for 5 folds.

The process of cross-validation is used to evaluate the performance of the model. Specifically,

GroupKFold is used which partitions the data into distinct, non-overlapping subsets based on a specified

grouping variable. For each individual fold, the model is trained using only the instances within its

training set and tested using only those in its test set. As part of evaluating this performance, accuracy

along with precision, recall, and F1 scores, as shown in Figure 4.4, are computed for both training and

validation sets.

The accuracy metric assesses how correct the model’s predictions are in total. If a high accuracy score is

achieved, it indicates that most of the samples have been predicted correctly by the model. The precision

metric works out what proportion of positive predictions made by the model (where it has said something

is positive) were actually positive. A higher precision shows that fewer false positives were made than

true positives (correctly predicting yes). Recall evaluates what portion of actual positives were identified

by the model among all potential ones. Having more recall implies that few false negatives (incorrectly

identifying something as no when it was actually yes) will be seen compared to true positives being

correctly identified as such. Lastly, the F1 score considers both precision and recall together to give a

measure of overall performance for the model; if this number is high then there are few cases where

either a wrong prediction was made or where an accurate one wasn’t recognized properly.

In this code, the results show that accuracy, precision, and recall are all close to one. This indicates

that our Hybrid model successfully classified consecutive input into either of two classes. An example

of possible uses for this kind of implementation could be to make predictions on medical data points

related to disease outcomes Figure 4.5 also provides an illustration representing the train and validation

accuracy performance based on fifty cycles of evaluation - where a cycle is defined as a single iteration

over all batches from the training set used.
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Figure 4.5: Plot showing the train and validation accuracy of the Hybrid model for 50 epochs.

4.2 The NMT dataset

The initial step in the present study was to prepare data for machine learning models. Samples of normal

and abnormal EEG recordings were acquired with dimensions of (76455, 21, 200) which included 76455

recordings, 21 channels representing the readings from each recording of the EEG, and 200 data points

that allow for more accurate evaluation per channel. The training labels followed a similar pattern

that matched with their corresponding EEG records by providing class labels clearly distinguishing

between normal and abnormal samples but also containing clear annotation across all labels within these

2 categories. To ensure there was enough sample size available to effectively train machine learning

models large datasets were compiled by combining both normal and abnormal training/testing samples

along with their related labels as mentioned beforehand. This merged dataset had a shape of (147274,

21, 200) where 147274 signifies the total number of EEG records in the training.

The combined training dataset was a three-dimensional array composed of (147274, 21, 200) EEG

records with 21 features per record. The corresponding class labels for this dataset had a shape of

(147274,) and prior to model training the normal and abnormal data and labels were concatenated.

In order to ensure successful machine learning model training enough data was available they then

underwent preprocessing. To classify the EEG recordings as either normal or abnormal an LSTM model

with 64 hidden units and 21 layers was used. Upon setting in place BCELoss as the loss function, Adam

optimizer was employed to train on concatenated datasets containing labels for each sample with input

dimensions consisting of 147274 samples; each having upto 21 channels plus 200-time points which were

flattened before passing through sigmoid for output calculations. Evaluation metrics were subsequently

computed following this process.

In order to better assess the efficacy of our model, we conducted a process of validation. Randomly

selected three samples from both the normal and abnormal EEG recordings in order to generate datasets

for training and testing; these had dimensions (4007, 21, 200) and (131884, 21, 200) respectively. Before
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assigning labels to each sample - with abnormal ones producing a label of 1 while normal ones receiving a

label of 0 - both datasets were standardized so that there would be adequate centering and equal standard

deviation achieved at 1 across all values. After running the tests we calculated an accuracy score of

0.742, a precision score of 0.738, a recall score of 0.737, as well as an F1 score equalling 0.738.

The training and testing datasets used to train the deep learning model were composed by combining

the features and labels, creating data shape components of (4007, 21, 200) for the training set’s features;

(131884, 21, 200) for the test set’s features; as well as (4007,) and (131884,) respectively for their

corresponding labels. Using binary cross-entropy loss with an Adam optimizer on a CPU device and

batch size of 128 generated five epochs resulting in an accuracy score of 0.529 along with precision-

recall and F1 scores all matching this 0.529 rate - indicating that further tuning is needed in order to

optimize EEG data performance.

By applying a Siamese architecture with Long-Short Term Memory (LSTM) layers, this model can

classify electroencephalogram data as either normal or abnormal. Three inputs - an anchor and two

separate examples of the input are fed into bidirectional LSTMs creating latent representations for each

sample before these pass through one final linear layer to generate the output: a classification between

healthy EEG activity versus any abnormality in brainwaves. Using triplet loss scores from comparison

points between anchors, positive samples and negative ones allows us to measure its effectiveness in

detecting known issues related to neurological health.

Training a Siamese Network with 10 epochs using the Adam optimizer. Triplet loss is used to update

class representations for normal and abnormal samples at each epoch ends, and these representations

are saved when training is finished. The trained model was then tested on unseen data where each

anchor sample’s latent representation was compared against the saved class reps for accuracy assessment

(matching 75.84). Output yielded 36,472 true negatives, 30,618 false negatives, 1,242 false positives,

and 63,552 true positives in a confusion matrix. This is clearly visualized in Table 4.1.

Actual Negative Actual Positive
Predicted Negative 36,472 (TN) 1,242 (FP)
Predicted Positive 30,618 (FN) 63,552 (TP)

Table 4.1: Confusion Matrix for the Siamese network with LSTM
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Discussion and Conclusion

5.1 Discussion

In this research study, we thoroughly examined the performance of three deep learning models – CNN,

LSTM, and a hybrid CNN+LSTM model – for binary classification tasks in the context of EEG data

classification. The CNN model, consisting of 11 layers, yielded satisfactory results with accuracy,

precision, recall, and F1 scores for each of the five folds. However, the LSTM model outperformed

the others, achieving a maximum validation accuracy of 0.96. This model’s architecture incorporated

two LSTM layers and one dense layer, designed specifically to capture temporal dependencies in the

input data.

Additionally, the hybrid model (CNN+LSTM) demonstrated potential for EEG data classification. This

deep Siamese LSTM network, evaluated based on accuracy, precision, recall, and F1 score during

training, was trained using a GroupKFold cross-validation strategy and optimized with the Adam

optimizer. The results demonstrated the effectiveness of this approach in EEG classification and its

potential applications in clinical settings. This is for diagnosing and treating neurological disorders.

In a separate experiment, a stacked LSTM model classified EEG recordings as normal or abnormal. It

achieved a validation accuracy of 0.742, precision of 0.738, recall of 0.737, and an F1 score of 0.738. A

Siamese network with LSTMs was also implemented for the same classification task. This yielded an

accuracy of 75.84 % and a confusion matrix with 36,472 true negatives, 30,618 false negatives, 1,242

false positives, and 63,552 true positives.

The study aimed to develop a model capable of accurately identifying and categorizing patients using

EEG data from two different datasets. These datasets were the EEG in Schizophrenia dataset and

the NMT dataset. To achieve this goal, various deep learning models, including 1D CNN, LSTM,

hybrid (CNN+LSTM), and Siamese networks, were employed. A crucial aspect of this study was data

preprocessing, which involved filtering the EEG data to remove noise and artifacts, dividing the data into

shorter time periods or epochs to ensure stationarity, and facilitating the extraction of relevant features.

Time-domain and frequency-domain features, such as mean, variance, and power spectral density, were
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extracted from the EEG data to provide essential information about the signal’s amplitude, frequency,

and variability.

Subsequently, Siamese Networks and LSTM were utilized to create the model after extracting features

from the EEG data. Dimensionality reduction was achieved through N Short Learning, and Siamese

Networks determined the similarity between different EEG data epochs. LSTM was used to divide the

EEG data into various groups.

Data collected from multiple hospitals and clinics allowed the development of a model that accurately

classified and recognized patients with schizophrenia symptoms. Analysis of the EEG data involved

machine learning techniques. This enabled the identification of key differences across various patient

populations. It also enabled the development of a model that could accurately classify and identify

individuals with schizophrenia symptoms.

The combination of rigorous data preprocessing and various deep learning models contributed to

the successful development of a model capable of accurately categorizing and detecting individuals

with different neurological disorders, highlighting the potential of deep learning approaches in the

diagnosis and treatment of such conditions. Future research should focus on refining these models,

exploring other deep learning architectures, and incorporating diverse datasets. This will enable us to

develop more robust and reliable diagnostic tools for various neurological conditions. The code we

use is available publicly in GitHub Repository with the following link https://github.com/beck2127/

Deep-Learing-using-EEG-Dataset.git.

5.2 Conclusion

In this study, we have explored the use of deep learning models to classify EEG data in patients with

schizophrenia. Our results indicate that these models are highly effective at capturing complex temporal

and spatial patterns present in EEG signals and can accurately predict patient diagnoses. In particular,

our Hybrid (CNN+LSTM) architecture demonstrated superior performance compared to other evaluated

models.

These findings highlight the potential applications of deep learning algorithms in diagnosing and treating

neurological disorders such as schizophrenia. By harnessing these powerful tools, clinicians may be

able to provide earlier interventions resulting in improved patient outcomes. Additionally, real-time

monitoring systems leveraging these algorithms could continuously assess changes within an individual’s

brain function leading potentially lead prompt responses when needed most.

Overall we believe that our research provides important insights into how new forms of AI-based

technology can aid healthcare practitioners diagnose and treat some neurological conditions more

effectively by analyzing neural activity through digital means thereby improving overall healthcare

delivery services while assisting medical personnel to save lives optimally before deterioration occurs or

fatalities happen due tardiness on diagnosis caused mainly from delay occasioned by outdated diagnostic

methods.

https://github.com/beck2127/Deep-Learing-using-EEG-Dataset.git
https://github.com/beck2127/Deep-Learing-using-EEG-Dataset.git
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5.3 Future Work

Going forward, there are several avenues for future work in this area. Firstly, it would be beneficial

to explore the applicability of deep learning models across a wider range of neurological disorders and

datasets involving larger population sizes with sufficient variability within them.

Additionally, more detailed experiments may be conducted using other types of EEG feature extraction

techniques such as wavelets or independent component analysis (ICA) to investigate their impact

on model performance compared with traditional time-frequency methods like Short-Time Fourier

Transform used in our study here.

Lastly, taking into consideration that biases can exist within clinical data from certain populations

skewing its predictive capabilities when seeking insights towards another group; ensuring adequate

representation In dataset development should also be an important factor considered whilst working

on further research initiatives along these lines. In conclusion with better-developed features sets

containing novel engineering methodology, we expect continuous improvements in AI-based diagnostic

tools through integration

into healthcare systems eventually leading modest healthcare practices capable of achieving prompt

responses even for long-term illnesses thereby providing not just a timely diagnosis but ushering proper

follow-up treatments consequently improving patient outcomes thus bringing tremendous benefits and

both medical and financial advantages.
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Appendix A

Model summary of the model used
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Figure A.1: Model summary of 1D-CNN model
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Figure A.2: Model summary of Hybrid model
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