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Abstract

Ensuring the safe deployment and use of artificial intelligence (AI) in safety-critical
systems is crucial in the reality of effective adversarial attacks (AAs). AAs involve
manipulating the data inputs to AI models to make them behave abnormally and make
mistakes. Such attacks may lead AI systems to perform destructive behaviors, leading
to unintended outcomes. Therefore, the threat of AAs must be considered in the design
process of such systems.

The main objectives of this thesis were to understand the status quo of AAs and
defenses in image and video object detection (OD) that needs attention in Kongsberg
Defense & Aerospace’s (KDA’s) context (Goal-01), and use that information to derive
a system architecture and requirements for the safe deployment of AI in an unmanned
military setting (Goal-02).

A systematic literature review of AAs and defenses in OD was done to uncover the
state of the art in the field. The results showed that most existing research focused on
AAs in the digital domain with white box knowledge. However, for AAs to become a real
threat to unmanned military systems, the research field must focus more on creating
physically realizable black box AAs - a challenging task yet to be properly solved and
a somewhat premature research field with debatable real-world threats.

A system for the safe deployment of AI in an unmanned military setting was
designed based on the systematic literature review results and a requirements
engineering process with KDA. Supporting manned vehicles and a back-end server
were included to cover the entire AI lifecycle and cope with the limitations of military
systems. The use of GPUs for accelerated AI was an essential enabling technology.
The threat of most AAs against the system was considered negligible due to the
strict security requirements of military systems. Adversarial defenses, like adversarial-
training and detection, were recommended to further reduce the threat of AAs,
especially the most prominent threat of physically realizable black box AAs.

This thesis delivered a comprehensive review of the state-of-the-art AAs and
defenses in OD in the context of unmanned military vehicles – the first of its kind and a
valuable resource for the research field and the defense industry. KDA gained valuable
information on how AI can safely be deployed in unmanned military systems and how
to maintain a cycle of ever-improving AI models throughout the lifetime of the system.
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Chapter 1

Introduction

Artificial intelligence (AI) applications have become more widespread in recent years
and are becoming part of people’s everyday life. People interact with AI daily through
the use of personal assistants on smart devices, chatbots, recommender systems on
media platforms, email spam filtering, personalized marketing, and even in safety-
critical systems like self-driving cars. AI has also become a hot topic in everyday
conversation due to the recent releases of groundbreaking models like DALL·E 2 and
ChatGPT, resulting in both spiked public interest and worry about the field.

The research community has also stated its worry as deep learning algorithms have
in recent years shown to be prone to adversarial attacks [1, 2]. Adversarial attacks are
a type of attack against the functionalities of deep learning algorithms that leads to
models making wrong decisions, leading to undesired behavior. Such attacks can be
applied to various input data, including images, video, audio, text, and 3D data like
point clouds derived from LiDAR scans. Adversarial attacks apply small changes to
the input data, called adversarial perturbations, to create adversarial examples that
cause mistakes in the target model’s predictions. These adversarial perturbations are
not always perceptible to humans [3] and can, in such cases, even bypass human
monitoring.

Plenty of possible real-world uses of adversarial attacks exist, including tricking
face detectors into misclassifying persons as somebody else, misclassifying medical
images, bypassing malware detection and spam filtering, and making vehicles and
pedestrians invisible to self-driving cars. In the worst case, such attacks can have
fatal consequences, especially when applied to safety-critical systems like autonomous
vehicles. Therefore it is crucial to develop robust defenses against such attacks to
retain both trust and reliability of AI-driven systems. Adversarial attacks and defenses
have consequently become a growing area of research within the field of AI.
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Figure 1.1: Project outline.

1.1 Project Description

Ensuring the safe deployment and use of AI in safety-critical systems is crucial in the
reality of effective adversarial attacks. It is vital that unmanned systems can trust
the decisions made by its enabling AI to prevent the system from making mistakes
leading to undesired outcomes - especially in military settings. Previously an operator
could quickly uncover attacks or decoys by looking through their binoculars. However,
operators no longer have the capacity to live-monitor the input of the many sensors
installed in one or several unmanned or partially-automated systems. Therefore, the
development of a robust and secure AI system is highly relevant in an increasingly
unmanned reality.

This master’s thesis is a collaboration with Kongsberg Defence & Aerospace (KDA)
and is, for the most part, theoretical in nature. KDA has much experience running
unmanned system demos and was a valuable resource for this thesis. The thesis
is divided into two main parts: a systematic literature review on adversarial attacks
and defenses against object detectors, and recommendations for a robust and secure
edge-based AI system against adversarial attacks in the military setting. Figure 1.1
is a visualization of the project outline, including the methodologies and results of the
thesis.

1.1.1 Systematic Literature Review of Adversarial Attacks and
Defenses in Object Detection

For the first part of the thesis, a systematic literature review on adversarial attacks and
defenses in object detection for images and videos was conducted. The result of the
literature review was the presentation of the state-of-the-art adversarial attacks and
defenses relevantly categorized to the use case of unmanned military systems.

The use of AI in unmanned military vehicles can be compared to that of self-driving
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cars, with the added element of a significantly increased probability of being a target
for attacks. Due to the many possible uses of AI in autonomous systems, including
environmental perception, decision-making, route planning, predictive maintenance,
and safety enhancements, a systematic literature review on the entire topic would have
been far too time-consuming.

Therefore, the research question was focused on a single AI component of
autonomous systems, the deep learning-based object detection task within computer
vision. The security, trust, and viability of object detection algorithms are crucial
for deployment in the described use case, leading to the research question of this
systematic literature review:

RQ: Does the current state of adversarial attacks pose a threat to image
and video object detectors in unmanned military systems? - And how can
they be defended?

Background

The following background information is provided to further elaborate on the main
concepts and foundations of the research question in KDA’s context, including the
object detection task, the selected data types, and adversarial attacks.

Object detection is a popular field within computer vision, which aims to localize
and classify objects in data like images, video, and point clouds. KDA considered
object detection one of the most valuable and essential tasks in unmanned systems.
Also, the current state of technology offers solutions to the problem, making it possible
to implement or experiment with object detection.

Due to several factors, images and videos were the media in focus in this thesis.
One was that most research on adversarial attacks and defenses in the object detection
task had focused on using images as the target medium. KDA also considered images
the most relevant medium in a military system, as unmanned systems are likely to make
decisions based on images in the future, making images a target for attacks. Object
detection on videos was also included, as videos are simply sequences of images.

Moreover, this systematic literature review was necessary due to object detectors’
vulnerability to adversarial attacks - modifications to images or videos that cause object
detectors to behave abnormally and make mistakes. Such attacks may lead AI systems
to perform destructive behaviors, leading to unintended outcomes. Therefore, the
threat of adversarial attacks must be considered in the design process of systems
using object detection.

3



Figure 1.2: Example use case of the system. The numbered connection transmits the
following data: 1: Shared information (AI predictions and sensor data), 2: Trained AI
models (server → edge), recorded mission data (training data) (edge → server).

1.1.2 Edge-Based AI System for Unmanned Military Vehicles

The second part of the thesis project consisted of designing a system architecture
and a set of system requirements for the safe deployment of AI in unmanned
military systems. The system architecture describes not only the unmanned vehicles
themselves but also the surrounding enabling systems, including manned vehicles
and a back-end server. The system is entirely theoretical and was mainly based on
the results from the systematic literature review on adversarial attacks and defenses
in object detection. To supplement the research, workshops with KDA and expert
interviews were conducted to get a better understanding of the specific use case.
The restrictions that followed the military use case, like limitations in communication
technology and computing power, and the strict requirements for confidentiality,
integrity, and availability, needed to be considered in the design process.

Figure 1.2 shows a visualization of an example use case of such a system. Both the
unmanned air vehicle (UAV) and the main vehicle (tank) are installed with their own AI
to assist in operations. In this theoretical scenario the UAV scouts ahead of the manned
tank to look for potential threats using its AI-based environmental perception, including
object detection. When detecting the potential threat, in this case, an opposing tank, it
reports back to the main vehicle. The systems can exchange data, e.g. video feeds or
predictions, due to the secure connections between them. Based on the intel and data
from the UAV, the manned tank can evaluate how to evade or engage the detected
potential threat. At the end of the operation, the main vehicle uploads all the relevant
newly recorded data to the back-end server for training new or improved machine
learning models for future missions.

4



1.2 Goals

The main objectives of this thesis can be summarized in two goals, one primarily aimed
at the research community (Goal-01) and the other tailored to KDA’s interests and the
industry (Goal-02). The contributions of Goal-01 are valuable for both the research
community and KDA, while Goal-02 is primarily valuable for KDA and the defense
industry.

Goal-01 Understand the status quo of attacks and defenses in deep learning-
based object detection that needs attention in KDA’s context.

Goal-02 Derive a system architecture and requirements for the safe deployment
of AI in an unmanned military setting.

1.3 Contributions

The research contribution of this thesis is the drafting of a threat model for attacks and
defenses of deep learning-based object detectors in the use case of unmanned military
systems. A comprehensive literature search found no other systematic literature
reviews on adversarial attacks and defenses in object detection aimed at defense
industry use cases, making this systematic literature review the first of its kind.

This thesis has provided KDA with important insights into the current state-of-the-
art in adversarial attacks and defenses in object detection. KDA received guidance
on safely deploying AI in unmanned military settings, focusing on AI implementation.
Furthermore, the systematic literature review can aid in evaluating the maturity and
robustness of object detection, which will determine whether it should be implemented
or disregarded in future or ongoing projects. Additionally, this thesis project can inspire
further research into more accurate and reliable object detection.

1.4 Thesis Report Structure

The rest of the thesis report is structured as follows: Chapter 2 - Background describes
the main topics of this thesis, including deep learning-based object detection and
adversarial- attacks and defenses. It also presents related work, including similar
reviews on adversarial attacks and defenses in object detection and adversarial
attacks in computer vision in the defense industry. Chapter 3 - Method describes the
systematic literature review methodology and the requirements engineering process
to reach Goal-01 and Goal-02, respectively. Chapter 4 - Results present the results
from the literature review and the derived system architecture and requirements for the
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safe deployment of AI in unmanned military vehicles. Chapter 5 - Discussion presents
suggestions for future work and discuss the results of the thesis. At last, Chapter 6
concludes the thesis with some summarizing words.
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Chapter 2

Background

This chapter summarizes the main concepts and the foundations of the project,
including deep learning-based object detection and adversarial- attacks and defenses.
As this thesis is a collaboration with KDA, and by that not only aimed at other
researchers, it is assumed that not every reader of this thesis is an expert in AI.
Therefore, this chapter gives an introduction and overview to readers who might not
be as familiar with the respective field. However, some preliminary knowledge of deep
learning is expected of the reader to extract the full value of the information.

2.1 Deep Learning-Based Object Detection

Applications within computer vision have become some of the most popular uses
of deep learning following the success of convolutional neural networks (CNNs).
These applications include image classification, object detection, visual tracking,
and semantic segmentation [4, 5]. Image classification is the most straightforward
task, aiming to classify images into predefined classes. A common use of image
classification is medical image classification [6]. Even though image classification is
the most straightforward computer vision task, it forms a base for other, more complex
problems. Object detection extends the image classification task by localizing and
classifying multiple objects within images. The localization feature of object detection
makes it more useful in real-world applications like self-driving cars [7] and UAV bridge
inspection [8]. Semantic segmentation takes another step forward by classifying every
pixel in an image into predefined classes, e.g., road, pedestrian, car, and background,
in a traffic scene. Visual tracking is another challenging task aimed at tracking objects
across video frames, i.e., people or vehicles. The remaining sections will not describe
image classification, semantic segmentation, and object tracking in more detail, as this
thesis focuses on the object detection task.

As previously described, object detection aims to localize and classify objects in
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images. While image classification classifies the entire image as one class, object
detectors can localize and classify multiple objects in images, making it a much more
complex problem. Therefore, the task is often split into multiple tasks: localization
or region proposal and classification. One part of the object detector focuses on the
localization of objects by proposing regions where objects might be, e.g., by using a
Region Proposal Network (RPN) [9]. The RPN is a fully convolutional neural network
that uses anchor boxes to propose boundaries for where objects might be. Regions
are proposed with an objectness score that measures the RPN’s confidence in an
object being in the proposed region. The proposed regions are then sent to a classifier
network that decides which class the object belongs to, including ”background” to
disregard object proposals. Object detectors with such task-divided architectures are
referred to as two-stage- or proposal-based object detectors. A widely used family of
two-stage object detectors is Faster-RCNN [9]. Two-stage object detectors have proven
highly accurate but at the cost of performance. They are, therefore, often regarded as
too slow for real-time use cases as they prioritize accuracy over performance.

Single-stage detectors, also called regression-based detectors, on the other hand,
combine localization and classification into a single task. Popular single-stage
detectors include the YOLO [10] and SSD [11] families of detectors. As single-stage
detectors prioritize performance, it does come at the cost of accuracy. Therefore, the
trade-off between accuracy and performance must be considered when deciding what
kind of object detector is fit for the specific use case.

2.2 Adversarial Attacks and Defenses in Deep Learn-

ing

This section introduces adversarial attacks and defenses in deep learning, along with
an explanation of the relevant terminology. Readers with more experience in the
field may consider skipping to Chapter 4 where the results of the literature review on
adversarial attacks and defenses in object detection are presented.

2.2.1 Terminology

This section describes the commonly used terms in the research field that are relevant
to and actively used in this thesis. The terminology used in this thesis is based on
terminology from the previous review- and survey papers in the field [12–21]. Some of
these terms still need to be fully developed and may have other definitions elsewhere,
as adversarial attacks are a relatively young area of research.

8



Adversarial Examples are images with noise-like changes that aim to be impercep-
tible to the human eye, similar to the ones in Figure 2.1. Adversarial examples are the
most common attack method in the context of adversarial attacks in computer vision
on images and videos.

Advesrarial Patches are patch-shaped adversarial examples that aim to be more
useful in the physical world as they can be painted or printed as a sticker. They are
usually square-shaped but might also come in different shapes.

Adversarial Camoflages differ from adversarial patches as they cover entire objects
in an adversarial camouflage or texture to fool detectors rather than placing patches on
objects. Like adversarial patches, adversarial camouflages usually aim to be physically
realizable.

White Box Attacks refers to attacks with full access to the target model, including
parameters, architecture, training- method, and data. Attacks in this category often
exploit the gradient or loss of the target model while crafting the worst possible attack to
trigger misclassifications with high confidence. White box attacks usually degrade the
performance of the target model more effectively than other attack methods. However,
they are more challenging to perform in real-life scenarios due to needing full access
to the target model.

Black Box Attacks differ from white box attacks as black box attacks assume no
knowledge of the target model. These attacks focus on crafting universal adversarial
attacks that can degrade any model. Effective black box attacks are naturally more
complex to craft due to the limitation of not having access to the target model. However,
they are considered more applicable to real-world use cases, as attackers can rarely
assume full access to the target model, especially in the military setting.

Transferability of adversarial attacks can have several meanings based on the
specific context. However, transferability may have two meanings in this thesis: cross-
model transferability or cross-task transferability. Cross-model transferability often
refers to a white box attack’s ability to attack other models in a black box setting.
E.g., crafting an adversarial patch using a YOLO model and attacking an SSD model
using that same patch. On the other hand, cross-task transferability refers to an attack
method’s ability to attack deep learning models specializing in a different problem. E.g.,
using image classification attacks on object detectors.
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Targeted Attacks are adversarial attacks that target a specific class for misclassifi-
cation. This outcome can be achieved by maximizing the loss of the correct class while
minimizing the loss of the target class. E.g., an attack that aims for the object detector
to misclassify a car as a bicycle. In this case, the attack targets the bicycle class.

Untargeted Attacks does not target a specific class when attacking object detectors.
The main goal of untargeted attacks is to trigger misclassification. Thereby not caring
about the specific output class as long as it is incorrect. This outcome can be achieved
by maximizing the loss of the correct class - a more straightforward task than targeted
attacks.

Digital Attacks are performed in the digital domain, i.e., applied to digital images
or videos. Crafting adversarial attacks in the digital domain offers more flexibility as it
does not require feasibility in the real world.

Physical Attacks are specifically crafted to be applicable in the real world and are,
by that, not limited to the digital domain. Crafting physical attacks is more challenging
than digital attacks because of the constraints imposed by the physical world.

Proactive Defenses are defense methods that aim to mitigate an attack before
it happens. Typical proactive defense methods against adversarial attacks include
adversarial training, robustifying model architectures, and input transformations. These
defense methods are further described in Section 4.1.2.

Reactive Defenses are defense methods that attempt to mitigate attacks when
they happen. The primary reactive defense method against adversarial attacks is
adversarial detection. Adversarial detection is further described in Section 4.1.2.

2.2.2 Adversarial Attacks

Deep neural networks are prone to adversarial attacks, which is a type of attack that
exploits the weaknesses in the functionality of deep learning algorithms. The initial
adversarial attack against deep neural networks was hardly perceptible perturbations
added to images, called adversarial examples [1]. Szegedy et al. [1] showed that
non-randomly crafted perturbations could trigger misclassification in image recognition
algorithms. Not only did the adversarial examples trick the targeted model, but they
were also transferable to models with different architectures and models trained on
different datasets. Figure 2.1 shows some of these original adversarial examples. The
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Figure 2.1: Images on the left are the original images with their correct classification,
while images on the right are the adversarial examples classified as an ostrich. The
noise in the middle is the adversarial perturbations with a magnitude of 10 for visibility.
The image is from a research paper by Szegedy et al. [1]

figure shows that these adversarial perturbations are not perceptible to the human eye
but still fool the image recognition algorithms.

Following the introduction of adversarial attacks, Goodfellow, Shlens, and Szegedy
[2] proposed the fast gradient sign method (FGSM) family of attacks in 2015. FGSM is
a fast, cheap, and effective method of generating adversarial examples that exploit
the gradient of the model during training. It is, therefore, dependent on having
full access to the target model, i.e., a white box attack. However, they found that
the adversarial examples were generalizable or transferrable to other models. The
successful generalizability of adversarial examples was explained as the product of
different models converging to similar parameters when trained on the same task. This
early proof of transferability was the start of frequent experimentations with white box
methods within a black box setting in recent studies [22–24].

Along with most research on adversarial attacks in computer vision, the FGSM
attack was designed for the image classification task. Only in recent years have the
research field started covering more complex problems in computer vision, like object
detection. DPatch by Liu et al. [25] is one of the early adopters of adversarial attacks
on object detection. Different from the untargeted FGSM attack, DPatch can be used
as a targeted attack to target a specific class for misclassification. In other words,
DPatch can purposefully make a detector classify a bird as a plane or a person as a
chair. The DPatch attack aims to generate an adversarial patch that attacks both the
box regression and image classifier of object detectors to make the targeted objects
invisible to the detector. Advesrarial patches generated by the DPatch method vary in
size but are very noticeable to the human eye.
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On the other hand, the RPAttack by Huang et al. [26] builds upon the concept of
FGSM to create imperceptible patches to objects in images to make objects invisible
to detectors while keeping the patches imperceptible to humans. Adversarial patch
attacks have also branched into adversarial camouflages that cover entire objects
[27]. The move toward adversarial- patches and camouflages is primarily due to their
applicability in the physical world, while adversarial perturbations are mostly limited to
the digital domain.

2.2.3 Adversarial Defenses

Object detectors need functional and practical defense methods due to their
vulnerability to adversarial attacks. Effective defenses against such attacks are crucial
for the safe deployment of object detectors, or deep neural networks in general,
in safety-critical systems like unmanned vehicles. Along with the introduction of
adversarial examples in 2014, Szegedy et al. [1] simultaneously introduced the concept
of including adversarial examples in the training data of classifiers to create a more
robust model. Later, in 2015, Goodfellow, Shlens, and Szegedy [2] made adversarial
training more practical by using FGSM for faster generation of adversarial examples.

Much later, in 2019, adversarial defenses were studied in the context of object
detection [28, 29]. Zhang and Wang [28] focused on adversarial training for object
detection, which is a multi-task problem in comparison to the single-task problem
of classification. On the other hand, Xiao et al. [29] focused on another type
of adversarial defense, namely adversarial detection. While adversarial training
is a proactive defense method by robustifying the model before an attack occurs,
adversarial detection is a reactive defense method. Instead of robustifying the model
with adversarial training and risk lowering the performance of the detector on raw input,
adversarial detection aims to use an AI model to detect the adversarial attack when it
happens and then act in some predefined way to mitigate the threat. Other proactive
adversarial defenses are also proposed in research, including attempts at robustifying
the model architecture [30] and applying input transformations to lower the effect of
attacks [31].

2.3 Related Work

This section covers some of the related work to this thesis. The first part covers
other surveys and review articles related to adversarial attacks and defenses in object
detection. In contrast, the second part covers related work on adversarial attacks in
computer vision in the defense industry.
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2.3.1 Surveys and Reviews on Adversarial Attacks and Defenses
in Computer Vision

Several surveys and review articles have previously been conducted in the field of
adversarial attacks and defenses in deep learning-based computer vision applications.
In 2018, Akhtar and Mian [12] released a survey on the threats of adversarial examples
on deep learning in computer vision. The main portion of the surveyed articles
covers adversarial attacks on image classifiers. However, attacks on autoencoders,
generative models, recurrent neural networks, deep reinforcement learning, semantic
segmentation, and object detection are also covered, but in way less detail.

A dedicated survey on the object detection task was needed, and just that was
released in 2020 by Xu, Zhu, and Wang [14]. It describes six adversarial attack
methods against object detectors and does experiments on how to defend against
them. While Xu, Zhu, and Wang [14] focused on the object detection task, the review
article by Xi [15] from the same year focused on adversarial machine learning for
cybersecurity and computer vision. It differentiates itself from the other articles by
having more of a security perspective by describing different adversaries’ points of
attack, mirrored in their categorization method.

Later, in 2021, Akhtar et al. [16] released a second survey covering the advances
in adversarial attacks and defenses in computer vision since their previously released
paper in 2018. This survey, as its predecessor, primarily focused on classification with
additional smaller sections covering other computer vision tasks. A book chapter by
Oh, Xompero, and Cavallaro [17] also covers visual adversarial examples in computer
vision applications, including object detection. The same year, Ren, Huang, and Yan
[13] released a review of real-world physical adversarial attacks and defenses in image
classification and object detection. The survey of adversarial attacks and defenses in
deep learning-based autonomous driving systems by Deng et al. [18] is also highly
relevant to this thesis due to its focus on autonomous systems.

The following year, in 2022, Amirkhani, Karimi, and Banitalebi-Dehkordi [19]
released another highly relevant survey on adversarial attacks and defenses for
object detection and their applications in autonomous vehicles. A comprehensive
and technical survey on adversarial attacks and defenses in deep learning for image
recognition by Wang et al. [20] was also released the same year.

The latest survey on adversarial examples in object detection was released in 2023
by Mi et al. [21].
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2.3.2 Adversarial Attacks in Computer Vision in the Defense
Industry

In some cases, adversarial attacks in object detection have also been studied in
defense applications. These papers are highly relevant to this thesis as they are aimed
at the same industry.

In 2019, the Norwegian Defence Research Establishment (FFI) published a paper
on adversarial camouflage for naval vessels [32]. Aurdal et al. [32] discussed
whether traditional camouflages designed to fool human observers are sufficient in
a future with intelligent systems and thereby studied how to create camouflages to
fool such systems. A case study was conducted on a neural network-based ship
classifier distinguishing between civilian and military crafts. To create the camouflages,
a generative adversarial network was trained to generate adversarial patches to
be placed on the naval vessels, which successfully fooled the classifier in digital
experiments.

The same year, Alfimtsev et al. [33] released a similar paper on adversarial
camouflage generation for military uniforms. This study aimed to generate adversarial
camouflages in the style of traditional camouflages to fool human observers and
intelligent systems. Different from the paper by Aurdal et al. [32] that focused on
image classification, they focused on the even more relevant object detection task of
people detection. While their digital experiments were highly successful, the physical
experiments in the real world were less impressive.

Later, in 2021, Wang et al. [34] proposed Dual Attribute Adversarial Camouflage
(DAAC) to fool both human and artificially intelligent systems in the military setting. A
limitation of their experiments is that they were only tested in the digital domain, and
attacks in the real world were left as future research.

The same year, Kim et al. [35] released a similar paper on adversarial patch
generation with the style of military camouflages. Use case experiments with military
tank detection proved the success of their adversarial patches in the digital domain.
Again, physical, real-world experiments were left as future work.
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Chapter 3

Methods

This chapter describes the methodology used to achieve the two main goals addressed
in Section 1.2 of the introduction of this thesis. Goal-01 on understanding the status
quo of adversarial attacks and defenses in deep learning-based object detection in
KDA’s context was addressed with a systematic literature review and classification
of papers. Goal-02 on deriving a system architecture and requirements for the safe
deployment of AI in an unmanned military setting was achieved through workshops,
technical analysis, expert opinion, and expert interviews with employees in KDA. The
following sections describe the respective methodologies in detail.

3.1 Discovering the State of the Art in Adversarial

Attacks and Defenses in Object Detection

This section summarizes the protocol for the systematic literature search of this
thesis. The protocol includes the search strategy used to identify relevant papers
and describes the criteria for selecting articles for inclusion in the study. Information
regarding the searched database and the keywords used to craft the search string is
also given. The process of snowballing in systematic literature studies is also described
as it was used for a more comprehensive search. Information on how the papers were
classified according to the research question of this literature review is also given.

Several papers describing the process of conducting a systematic literature search
and writing a literature review were studied in advance of this systematic literature
review [36–38]. In addition, Peters et al. [39] provided guidance on how to develop
scoping review protocols, and Wohlin [40] described the process of snowballing in
systematic literature studies.

After reading this section, the systematic literature search and classification process
results can be found in Section 4.1.2. In that section, the included papers are
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summarized and presented in tables according to their classification.

3.1.1 Justifying the Systematic Literature Review

A systematic literature review was conducted to gather all the relevant information
on the field of adversarial attacks and defenses in object detection. The aim of the
systematic literature review was to gain comprehensive and unbiased knowledge of
the current state of adversarial- attacks and defenses in the object detection task.

It was beneficial to perform a systematic literature review on the topic, as adversarial
attacks are a relatively new field of study. Furthermore, most research on adversarial
attacks is aimed at the image classification problem. Some surveys on adversarial
attacks against object detectors exist, but their focus is on future research rather than
the industry. Therefore, this systematic literature review was conducted to collect the
desired information to give recommendations for the specific use case of unmanned
systems in the defense industry.

3.1.2 Database Search Strategy

Scopus1 was selected as the scientific database for this systematic literature review.
Scopus has a collection of titles, abstracts, and keywords to peer-reviewed journal
articles, conference papers, and other kinds of scientific papers. Google Scholar2,
which is an alternative to Scopus, was not used as Scopus provides better quality
assurance by only including peer-reviewed literature.

Search String

The search string for finding relevant literature was crafted with a combination of words
relating to adversarial- attacks, defenses, and object detection. It was searched for in
the articles’ titles, abstracts, and keywords only to exclude articles not focusing on the
respective fields. The extra work required to review all articles mentioning the keywords
in any section of the article would have been very time-consuming and was therefore
not done. E.g., many articles mention object detection as a common use of deep
learning in their introduction section. Some relevant articles might have been missed
due to the strict search. However, one should expect that articles focusing on these
fields have included these essential keywords in their title, abstract, or keywords.

Some exclusion criteria were used in the initial search string to limit manual
exclusion using Scopus’ advanced search functionality. Therefore, articles written in

1Scopus: https://www.scopus.com
2Google Scholar: https://scholar.google.com/
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languages other than English were not included in the search results, with the same
applying to the conference review document type. The conference review document
type in Scopus provided no value as it was merely a list of conference papers already
included in the same search. Non-English written papers were excluded to remove the
possibility of translation errors, and due to the search providing sufficient search results
without them.

The following search string was used in Scopus3 for gathering research to be
considered for inclusion in the start set of papers:

Search String: TITLE-ABS-KEY ( "adversarial attack*" OR "adversarial ex-
ample*" OR "adversarial patch*" OR "adversarial defen?e" OR "adversarial
robustness" AND "object detect*" ) AND ( EXCLUDE ( DOCTYPE , "cr" ) )
AND ( LIMIT-TO ( LANGUAGE , "English" ) )

Inclusion- and Exclusion Criteria for the Start Set of Papers

The criteria for being further evaluated for inclusion in the review and being used for
snowballing were that the articles needed to focus on adversarial attacks against object
detectors or how to defend object detectors against adversarial attacks. If the articles
did not fit these inclusion criteria, they were not included in the start set of papers. As
previously described, two exclusion criteria were used: excluding conference reviews
and papers written in non-English languages.

3.1.3 Snowballing

Combining the database search with additional methodologies for systematic literature
reviews can be beneficial for a more comprehensive search. When performing
a systematic literature review, relevant articles can be missed when only doing a
single database search. Therefore this systematic literature review followed the
snowballing technique described by Wohlin [40] to ensure a more comprehensive
search. Snowballing helped include relevant literature missed by the initial database
search because some authors used a different terminology than what was specified in
the search string.

Snowballing is a technique to gather relevant papers for systematic literature
reviews by iteratively identifying relevant papers using backward- and forward
snowballing on a start set of papers. Snowballing starts by defining a search string
for one or several research databases to gather relevant papers. The search string
is usually a combination of relevant keywords, with optional inclusion and exclusion

3Scopus: https://www.scopus.com
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criteria depending on the database. The number of results of the initial search should
be an amount that thoroughly covers the topic of choice but also few enough for it
to be feasible for the researcher to perform the literature review. Diversity is wanted
in authors, publishers, and countries for a nonbiased review. When the database
and search string are decided, all papers in the search results will be assessed for
inclusion or exclusion to form the start set. The start set of papers in this literature
review resulted from the initial database search using the previously described search
string and inclusion- and exclusion criteria.

Backward snowballing is assessing the papers referenced in the included papers.
It was done by reading the titles of the papers, and when in doubt if the paper should
be included or not, the keywords and abstracts were read. If that was insufficient,
the paper was read, but this was generally avoided as it makes an already time-
consuming process even more time-consuming. Forward snowballing followed the
same procedure as backward snowballing, with the only difference being that the
papers cited by the included papers were assessed instead of the referenced papers.

As snowballing is an iterative process, every new paper included by backward- and
forward snowballing on the start set of papers also needed to undergo backward- and
forward snowballing. The same applied to the new papers included in the second
iteration and for every iteration until no new relevant papers were found. The iteration
that resulted in no new relevant papers was considered the last iteration and marked
the end of the snowballing process.

3.1.4 Data Extraction

When all the relevant papers had been collected, it was time to extract their relevant
information. Before the data extraction could begin, further evaluation was conducted
on whether the collected papers would be included in the final review. The inclusion-
and expulsion criteria are described in this section, and the method used to categorize
the included papers is summarized.

Inclusion- and Exclusion Criteria

The inclusion- and exclusion criteria used to decide which papers should be included
in the literature review are shown in Table 3.1. The first criterion for inclusion is that
all papers must be peer-revied. This criterion was ensured by only including papers
available in the Scopus research database. All papers must also focus on adversarial
attacks, adversarial defenses, or both and conduct at least one experiment with an
object detector. The datatype used for object detection needed to be either images or
videos.
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Inclusion Criteria
1 The paper must be peer-reviewed.
2 The paper must focus on adversarial attacks, adversarial defenses, or both.
3 The paper must include experiments with at least one object detector.
4 The datatype used for object detection must be either images or videos.
Exclusion Criteria
1 The paper is not peer-reviewed.
2 The paper does not conduct any experiments and is solely a theoretical study,

e.g., a survey- or review paper.
3 The paper focuses on salient object detection.
4 The papers use face detection or face recognition as the experimental use case.
5 The object detectors use 3D data like point clouds or others.

Table 3.1: Inclusion and exclusion criteria for data extraction.

Any papers that were not peer-reviewed were excluded without further considera-
tion, regardless of popularity. Any papers not conducting experiments with adversarial
attacks or defenses in object detection were also excluded. This exclusion criterion
also covers review- and survey papers. Papers focusing on salient object detection
were also excluded due to the significant difference from traditional object detection.
The same applied to papers focusing on 3D object detection using 3D data like point
clouds. Videos are not considered 3D data in this study, as object detection in videos
usually runs on individual video frames. The use case examples of face- recognition
and detection were also excluded due to their difference from object detection in more
relevant use cases like pedestrian detection.

Classification Criteria of the Included Papers

After performing the systematic literature review, the papers and findings needed to be
classified according to the use case of safely deploying AI on the edge of unmanned
military vehicles. The result of this classification is the tables presenting the state-of-
the-art in adversarial attacks and defenses, Table 4.1 on Page 27 and Table 4.2 on
Page 28, respectively. First, the papers were divided based on the topic of the paper,
being either adversarial attacks or adversarial defenses. This division was done as
categorization within these main themes is naturally different as they follow different
methodologies and aim for different results.

Then the different topic-specific categories were decided based on the standard
practices for categorization found in the collected survey and review papers summa-
rized in Section 2.3.1. However, modifications were made to fit better with the use
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case of unmanned military vehicles, which is the target industry use case of this the-
sis. These modifications were considered beneficial as most previous review papers
are very technical, mainly aimed at future research rather than the industry. Therefore,
some of the more detailed technical classifications were not carried over to this thesis
in favor of a tailored classification approach in line with the use case of object detection
in unmanned military vehicles.

The following lists describe more detailed information on the classification
techniques used within the two topics of adversarial attacks and defenses and their
shared classification techniques.

Common Classifications

Year of Publication The year of publication was noted for every paper to present the
trend in the research area and show how adversarial attacks and defenses have
evolved over time.

Detector The object detectors used in the experiments were documented to gain
insight into how thoroughly the attacks and defenses were tested. The different
types of object detectors, including one-stage detectors, two-stage detectors,
and transformers, are different in functionality and may require separate attacks.
Therefore, if an attack shows positive attack results on different detector types, it
should be considered a higher threat due to its cross-model transferability.

Attack-Specific Classifications

Attack Method The papers on adversarial attacks were classified based on their
attack method, like adversarial- examples, patches, and camouflages. The attack
methods were partially found during the initial background study and during the
extraction phase of the literature review when reading the included papers.

Attack Type Every paper on adversarial attacks was classified based on their attack
type. In the context of this thesis, the attack type includes whether an attack is a
white box or black box attack and whether the attack is targeted or untargeted.

Domain As the literature review results were used to assess the threat of adversarial
attacks against object detection in unmanned vehicles, it was highly beneficial to
know if the attacks had been tested in the digital or physical domain. Adversarial
attacks in the digital realm are only effective if the attacker somehow gains
access to the system, but physical adversarial attacks can be made regardless.
Therefore, every attack was classified based on the domain they were tested in
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to make it more intuitive to decide on suitable defense methods for a secure AI
system against adversarial attacks.

Defense-Specific Classifications

Defense Method The defense methods were classified on two levels: on a higher level
as either a proactive or reactive method and on a more detailed level. The more
detailed defense methods were found during the extraction phase of the literature
review when reading the included papers and are presented in Section 4.1.2.

Defense Against The defense methods were also classified by which adversarial
attack they were designed to safeguard against. This classification connected
each defense method to at least one of the included adversarial attack methods.

3.2 Securing the Edge-Based AI System for Unmanned

Vehicles

This section describes the methodology used to derive the system architecture and
requirements for a robust and secure edge-based AI system for unmanned military
vehicles (Goal-02). The methodology described is more similar to a requirements
engineering process than a formal scientific method as the systematic literature
review. As described in Section 1.1, restrictions that followed the military use case,
like limitations in communication technology and computing power, and the strict
requirements for confidentiality, integrity, and availability, were key focus points in the
design process of the system.

First, the stakeholder needs and requirements were discussed, understood, and
documented. The stakeholder needs describe what is needed or wanted from the
system, while the stakeholder requirements are specific, measurable requirements for
the system. The stakeholder needs and requirements naturally needed to be defined
before the work on deriving the system architecture and requirements could begin. The
following subsections summarize these respective processes.

3.2.1 Understanding the Stakeholder Needs and Requirements

For practical reasons, KDA was the only stakeholder in this engineering process.
Drafting the stakeholder needs and requirements was the first task of this part of
the thesis and took place at the very beginning of the project. It started as verbal
discussions with KDA before the discussions turned into a written project proposal. The
document containing the project proposal was sent back and forth and was revised a
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few times to clarify what was wanted of the thesis and what was considered feasible.
The product of that process is described in Section 1.1 - Project Description.

The discussion to further define the stakeholder needs and requirements was
picked up during weekly supervision meetings with KDA, which remained a continuous
process through the thesis timeframe. These definitions became the written
stakeholder needs and requirements shown in Section 4.2.2 and Section 4.2.3.

A more extensive workshop was also conducted with the involved employees at
KDA towards the end of the thesis timeframe. This workshop was used to present
the findings of the thesis so far and exchange and discuss ideas regarding the design
of the system. This workshop differed from the weekly supervision meetings as the
presented material was more prepared, and more people attended.

3.2.2 Derviving the System Architecture and Requirements

The process of deriving the system architecture and the list of requirements was heavily
based on the stakeholder needs and requirements. It was essential to understand
the technical context of unmanned vehicles, the platform and its communication
infrastructure, and the placement of the AI functionalities on the platform to meet
and fulfill the stakeholder needs and requirements. This understanding was achieved
through weekly meetings and the aforementioned workshop with KDA.

3.2.3 Deriving the Security Requirements

It was crucial to ensure the safe deployment of AI in unmanned military systems.
Therefore, KDA requested a summary of the risks of adversarial attacks that should be
treated, alongside suggestions for security measures for risk reduction. The result of
the systematic literature review on adversarial attacks and defenses in object detection
played a massive part in deriving the main threats against the AI functionality of the
system, and the recommended defenses to mitigate those threats.

The scope of the systematic literature review covered AI-specific defenses for
robustifying object detection. However, it did not cover any general security methods
required to secure the system. Therefore, the collaboration with security experts from
both OsloMet and KDA also played an essential part in securing the system against
adversarial attacks.
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Chapter 4

Results

This chapter presents the findings from the research activities that were performed
in order to address the two goals of the thesis. First, the findings of the systematic
literature search leading to research Goal-01 - understand the status quo of attacks and
defenses in deep learning-based object detection that needs attention in KDA’s context
- are summarized. The main results are presented in two tables categorizing the papers
found during the review process. Also presented are additional statistics of the covered
adversarial attack methods, attack types, domain, adversarial attack method’s domain
distribution, object detector families, defense methods, and the defense methods’
targeted attack methods.

Following the results of the literature review are the results of Goal-02 of this
thesis: deriving a system architecture and requirements for the safe deployment of
AI in an unmanned military setting. These results include the stakeholder needs and
requirements, the AI pipeline, threats against the AI pipeline, a defense strategy to
mitigate those risks, and a system architecture with system- and security requirements.

4.1 State-of-the-Art Adversarial Attacks and Defenses

in Object Detection

This section presents the results of the systematic literature review on attacks and
defenses in deep learning-based object detection. The results of this literature
review bring together various research works, methodologies, and approaches related
to adversarial attacks and defenses in object detection. The results include a
comprehensive overview of the topic by covering different attack methods, their
impact on object detectors in the use case of unmanned military vehicles, and the
various defense methods that implementers can use to mitigate such attacks. By
providing a broad overview of the topic, readers are enabled to gain a comprehensive
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understanding of the field.
A comprehensive list of references to relevant research articles is provided, giving

interested readers the ability to dive deeper into the details of specific adversarial
attacks or defenses. By doing so, the results of this thesis can be a starting point
for further exploration and research in the field.

4.1.1 Results From the Literature Search

This section presents the results of the systematic literature search. The Scopus1

database search using the search string defined in Section 3.1.2 resulted in 268 peer-
reviewed papers. After reviewing these papers using the inclusion and exclusion
criteria defined in Section 3.1.2, 163 papers remained and formed the start set for
snowballing in the systematic literature review. The snowballing iterations went as
follows:

The first iteration of snowballing resulted in 14 peer-reviewed papers found through
backward snowballing and 12 peer-reviewed papers found through forward
snowballing. The search string used in the Scopus database search covered
the field of adversarial attacks and defenses in object detection well, as only 26
new papers were found when snowballing the start set of 163 papers.

The second iteration of snowballing was conducted on the newly acquired 26 peer-
reviewed papers found during the first iteration. This iteration resulted in no new
papers through backward snowballing and only one new paper through forward
snowballing. Thereby, the second iteration of snowballing resulted in only one
new paper.

The third iteration of snowballing was the final one, as no new relevant papers were
found when snowballing the one article found in the second iteration. This
iteration marked the end of the snowballing process, which resulted in a new total
of 190 peer-reviewed papers to be considered for inclusion in the final review.

The 190 papers were then reviewed for inclusion in the review using the inclusion
and expulsion criteria defined in Section 3.1.4. These are different criteria from the
inclusion and exclusion criteria from the start set as they required a finer look at the
content of papers. The papers that made it through got further reviewed using the
classification criteria defined in Section 3.1.

The main result of the systematic literature review is presented in two tables: Table
4.1 presenting the classifications of adversarial attacks, and Table 4.2 presenting the
classification of defense methods against adversarial attacks.

1Scopus: https://www.scopus.com/
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Attack Year Method Attack Type Domain Detector
WB BB T UT D P OS TS VT

DAG [41] 2017

Adversarial
Example

✓ ✓ ✓ ✓ ✓

Yang et al. [42] 2018 ✓ ✓ ✓ ✓

Zhao et al. [43]

2019

✓ ✓ ✓ ✓ ✓

Balda et al. [44] ✓ ✓ ✓ ✓

Co et al. [45] ✓ ✓ ✓ ✓

RAP [46] ✓ ✓ ✓ ✓ ✓

Wei et al. [47] ✓ ✓ ✓ ✓ ✓ ✓

Evaporate Attack [48]

2020

✓ ✓ ✓ ✓ ✓

Wang et al. [3] ✓ ✓ ✓ ✓ ✓

PPAA [49] ✓ ✓ ✓ ✓

TOG [50] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Yang et al. [51] ✓ ✓ ✓ ✓ ✓ ✓

CAP [52] ✓ ✓ ✓ ✓

EfficientWarm [53] ✓ ✓ ✓ ✓ ✓ ✓

Lu et al. [54] ✓ ✓ ✓ ✓ ✓

FA [23] ✓ ✓ ✓ ✓ ✓ ✓

Liao et al. [55] ✓ ✓ ✓ ✓ ✓ ✓

HNM-PGD [56] ✓ ✓ ✓ ✓ ✓

Chen et al. [57] ✓ ✓ ✓ ✓

MI-FGSM [58] ✓ ✓ ✓ ✓ ✓

Zhang et al. [59] ✓ ✓ ✓ ✓ ✓

Huang et al. [60] ✓ ✓ ✓ ✓ ✓

Wang et al. [61]

2021

✓ ✓ ✓ ✓

Haoran et al. [62] ✓ ✓ ✓ ✓ ✓

Kuang et al. [63] ✓ ✓ ✓ ✓

Huang et al. [64] ✓ ✓ ✓ ✓

Xiao et al. [65] ✓ ✓ ✓ ✓ ✓ ✓

Yuan et al. [66] ✓ ✓ ✓ ✓

NaturalAE [67] ✓ ✓ ✓ ✓ ✓ ✓

PRFA [68] ✓ ✓ ✓ ✓ ✓

Wang et al. [69] ✓ ✓ ✓ ✓ ✓

Nezami et al. [70] ✓ ✓ ✓ ✓ ✓

SocialGuard [71] ✓ ✓ ✓ ✓

Liao et al. [72] ✓ ✓ ✓ ✓ ✓ ✓

Li et al. [73] ✓ ✓ ✓ ✓ ✓ ✓

U-DOS [74] ✓ ✓ ✓ ✓ ✓ ✓

GARSDC [75]

2022

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ADC [76] ✓ ✓ ✓

Choi et al. [77] ✓ ✓ ✓ ✓

Raja et al. [78] ✓ ✓ ✓ ✓ ✓

Re-AEG [79] ✓ ✓ ✓ ✓

AT-BOD [80] ✓ ✓ ✓ ✓ ✓

RBM [81] ✓ ✓ ✓ ✓ ✓ ✓

Kang et al. [82] ✓ ✓ ✓ ✓

25



Attack Year Method Attack Type Domain Detector
WB BB T UT D P OS TS VT

Daedalus [83]

2022
Adversarial
Example

✓ ✓ ✓ ✓ ✓ ✓

DMA [84] ✓ ✓ ✓ ✓ ✓

EvoAttack [85] ✓ ✓ ✓ ✓ ✓

Zanddizari et al. [86] ✓ ✓ ✓ ✓

Wang et al. [87] ✓ ✓ ✓ ✓

JND [88] ✓ ✓ ✓ ✓ ✓

Li et al. [89] ✓ ✓ ✓ ✓ ✓ ✓

RAD [24] ✓ ✓ ✓ ✓ ✓ ✓

Hu et al. [90] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cai et al. [91] ✓ ✓ ✓ ✓ ✓ ✓

Ye et al. [92] ✓ ✓ ✓ ✓ ✓

Eykholt et al. [93] 2018

Adversarial
Patch

✓ ✓ ✓ ✓ ✓ ✓

Chambers et al. [94]

2019

✓ ✓ ✓ ✓ ✓ ✓

DPatch [25] ✓ ✓ ✓ ✓ ✓ ✓

Thys et al. [95] ✓ ✓ ✓ ✓ ✓

Zhao et al. [96] ✓ ✓ ✓ ✓

Adharaki et al. [97]

2020

✓ ✓ ✓ ✓

TOG-Patch [50] ✓ ✓ ✓ ✓ ✓

Li et al. [98] ✓ ✓ ✓ ✓ ✓

Li et al. [99] ✓ ✓ ✓ ✓ ✓ ✓

Huang et al. [100] ✓ ✓ ✓ ✓ ✓ ✓

Zhao et al. [101] ✓ ✓ ✓ ✓ ✓ ✓

SAA [102] ✓ ✓ ✓ ✓ ✓ ✓

Shi et al. [103]

2021

✓ ✓ ✓ ✓ ✓

AGAP [104] ✓ ✓ ✓ ✓ ✓ ✓

Raja et al. [22] ✓ ✓ ✓ ✓ ✓

Kim et al. [35] ✓ ✓ ✓ ✓

DAAC [34] ✓ ✓ ✓ ✓ ✓ ✓

eSLP-GAN [105] ✓ ✓ ✓ ✓ ✓ ✓ ✓

LAPs [106] ✓ ✓ ✓ ✓ ✓

Hu et al. [107] ✓ ✓ ✓ ✓ ✓ ✓

Wang et al. [69] ✓ ✓ ✓ ✓ ✓

RPAttack [26] ✓ ✓ ✓ ✓ ✓

Patch-Noobj [108] ✓ ✓ ✓ ✓ ✓ ✓

Zolfi et al. [109] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wang et al. [110] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Zhang et al. [111]

2022

✓ ✓ ✓ ✓ ✓

Re-AEG [79] ✓ ✓ ✓ ✓

Dong et al. [112] ✓ ✓ ✓ ✓ ✓

AP-PA [113] ✓ ✓ ✓ ✓ ✓ ✓ ✓

CAMA [114] ✓ ✓ ✓ ✓ ✓

Cai et al. [115] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Attention-Fool [116] ✓ ✓ ✓ ✓ ✓

MACA [117] ✓ ✓ ✓ ✓ ✓ ✓
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Attack Year Method Attack Type Domain Detector
WB BB T UT D P OS TS VT

Jia et al. [118]

2022
Adversarial

Patch

✓ ✓ ✓ ✓ ✓

Toheed [119] ✓ ✓ ✓ ✓ ✓

Du et al. [120] ✓ ✓ ✓ ✓ ✓

FRAN [121] ✓ ✓ ✓ ✓

CAMOU [27]
2019

Adversarial
Camouflage

✓ ✓ ✓ ✓ ✓

Alfimtsev et al. [33] ✓ ✓ ✓ ✓ ✓

Xi et al. [122]
2020

✓ ✓ ✓ ✓

CCA [123] ✓ ✓ ✓ ✓

UPC [124] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Deng et al. [125]
2021

✓ ✓ ✓ ✓ ✓ ✓

DAS [126] ✓ ✓ ✓ ✓ ✓ ✓

DAAC [34] ✓ ✓ ✓ ✓ ✓

DTA [127]
2022

✓ ✓ ✓ ✓ ✓ ✓ ✓

FCA [128] ✓ ✓ ✓ ✓ ✓ ✓ ✓

CAC [129] ✓ ✓ ✓ ✓ ✓ ✓

Xu et al. [14] 2020

Advesarial
Wearable

✓ ✓ ✓ ✓ ✓ ✓

LAPs [106]
2021

✓ ✓ ✓ ✓ ✓

Hu et al. [107] ✓ ✓ ✓ ✓ ✓ ✓

Hu et al. [130]
2022

✓ ✓ ✓ ✓ ✓ ✓ ✓

InvisibiliTee [131] ✓ ✓ ✓ ✓ ✓ ✓

meshAvd [132] 2019 Adversarial Mesh ✓ ✓ ✓ ✓ ✓ ✓

Huang et al. [133] 2019
Adversarial

Boarder
✓ ✓ ✓ ✓ ✓ ✓ ✓

ShapeShifter [134] 2019 Adversarial
Sign

✓ ✓ ✓ ✓ ✓ ✓

Huang et al. [135] 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Chen et al. [136] 2020
Content

Distinguish
✓ ✓ ✓ ✓ ✓

BBGAN [137] 2020
Adversarial

Environment
✓ ✓ ✓ ✓ ✓

SLAP [138] 2021
Adversarial
Projection

✓ ✓ ✓ ✓ ✓ ✓

Deep-Dup [139] 2021
Adversarial

Weights
✓ ✓ ✓ ✓ ✓

Chow et al. [140] 2021
Perception
Poisoning

✓ ✓ ✓ ✓ ✓

Poltergeist [141] 2021 Accoustic Waves ✓ ✓ ✓ ✓ ✓ ✓ ✓

Xu et al. [142] 2022
Adversarial
Background

Image

✓ ✓ ✓ ✓ ✓ ✓

Wei et al. [143] 2022 Advesarial Sticker ✓ ✓ ✓ ✓ ✓

Table 4.1: Adversarial attacks in object detection. WB: White box, BB: Black box, T:
Targeted, UT: Untargeted, D: Digital, P: Physical, OS: One-stage, TS: Two-stage, VT:
Vision transformer.
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Defense Year Method
Defense
Against

Detector

AE AP OS TS
Zhang et al. [28] 2019

Proactive

Adversarial Training

✓ ✓

Hu et al. [144]
2020

✓ ✓

Saha et al. [145] ✓ ✓

Det-AvdProp [146]

2021

✓ ✓

GAT [147] ✓ ✓

Chen et al. [148] ✓ ✓

Xu et al. [149] ✓ ✓ ✓

QUAT [150]

2022

✓ ✓ ✓

UDFA [151] ✓ ✓ ✓

VHAT [152] ✓ ✓

Choi et al. [77] ✓ ✓

Raja et al. [78] ✓ ✓

Xue et al. [153] ✓ ✓

Naseer et al. [31]

2020

Input Transformations

✓ ✓

Cheng et al. [154] ✓ ✓

Chiang et al. [155] ✓ ✓

Zhou et al. [156] ✓ ✓

Bao et al. [157] 2021 ✓ ✓

Yu et al. [158]
2022

✓ ✓ ✓

Wang et al. [159] ✓ ✓

Zhang et al. [160] ✓

TEDM [161]
2020

Robustifying the
Model Architecture

✓ ✓

Saha et al. [145] ✓ ✓

Karimi et al. [30]
2021

✓ ✓

FUSE [162] ✓ ✓ ✓ ✓

Xu et al. [149] ✓ ✓ ✓

Amirkhani et al. [163]
2022

✓ ✓ ✓

Dong et al. [164] ✓ ✓

Searle et al. [165] System Security ✓ ✓ ✓

AdvIT [29] 2019

Reactive Adversarial Detection

✓ ✓

CARAMEL [166]
2020

✓

SCEME [167] ✓ ✓

Chai et al. [168]

2021

✓ ✓

Yin et al. [169] ✓ ✓ ✓

Xiang et al. [170] ✓ ✓ ✓

APM [171] ✓ ✓

Liu et al. [172]
2022

✓ ✓

LanCeX [173] ✓ ✓

Xue et al. [153] ✓ ✓

Table 4.2: Adversarial defenses in object detection. AE: Adversarial Example, AP:
Adversarial Patch, OS: One-stage, TS: Two-stage.
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An additional table was created, presenting the tools and datasets found during the
systematic literature search that are beneficial for practitioners and for future research
on adversarial attacks and defenses. Table A.1 covering the tools and datasets can be
found in Appendix A. The tools and datasets table was placed in the appendix as it does
not strictly cover adversarial attacks or defenses, as the research question requests.
However, they are worth noting for future research and development.

4.1.2 Categorization and Analysis of the Reviewed Literature

This section presents the categorization results and analysis of the reviewed literature.
The results are a combination of statistics from the review and various observations
made throughout the review process. It starts by explaining how the grouping of
adversarial attack methods facilitated the threat modeling for the system proposed
in Section 4.2. Following that are various results related to the attack types found in
research. The importance of the domain in which the adversarial attacks were tested is
then stated, along with the domain distribution across the adversarial attack methods.
The object detectors covered in the research are then presented to gain insight into
which detectors are usually attacked and defended in studies. Lastly, the grouping
of defense methods against adversarial attacks is shown, and the attack methods
targeted for mitigation are presented.

Grouping the Adversarial Attack Methods

One of the discoveries of the literature review was that many attacks have similar
methods of attacking the functionality of object detectors, like the three most
common attack methods: adversarial examples, adversarial patches, and adversarial
camouflages. These similarities made grouping the attacks under the same attack
method possible, making evaluating their threat against unmanned military vehicles
much more feasible given the high number of attacks. As an example, this grouping
made it possible to evaluate the category of "adversarial examples" as a group instead
of evaluating the threat level of 55 individual attacks. Grouping by attack method, in
turn, improved the results’ readability and removed unnecessary repetitive work. This
grouping of attack methods can be seen in the method column of the summary table
for adversarial attacks in object detection, Table 4.1.

As seen in Table 4.1 and Figure 4.1, the most frequently covered attack method
is the original adversarial examples. Adversarial example generation is the method
of 46% of the covered adversarial attacks, which clearly makes it the most common
adversarial attack type in object detection. As previously described in Section 2.2 but
put in the context of object detection, adversarial examples aim to be imperceptible
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Figure 4.1: The distribution of the covered adversarial attack methods.

noise added to images to make object detectors wrongly predict, misclassify, or miss
objects.

Adversarial patch generation is the method of 27% of the covered adversarial
attacks, as shown in Figure 4.1. This amount of coverage makes it the second
most frequently used adversarial attack method in object detection. Unlike the typical
approach of adversarial examples by applying noise to an entire image, adversarial
patches aim to generate a patch that is typically placed on the object to be hidden or
misclassified. Adversarial patches are also more physically realizable than adversarial
examples, as they can easily be printed as stickers or posters.

The following method, called adversarial camouflage, extends the concept of
adversarial patches by generating an adversarial camouflage that covers the entire
object. As seen in Figure 4.1, adversarial camouflages are the third most common
attack type in object detection, covering 9% of the included papers on adversarial
attacks in object detection.

The vast majority of the papers fit into one of these three main categories,
and the ones that did not were given a descriptive method name, e.g., adversarial
wearables. Most of these papers were considered less critical during the threat
analysis when deriving the system for unmanned military vehicles for Goal-02 of the
thesis. This assessment was primarily made due to the fact that the particular use case
experiments of these studies do not fit the use case of unmanned military vehicles.
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Figure 4.2: The distribution of attack types.

Multiple Adversarial Attack Types

Originally it was planned to classify each attack as either a white box or black box
attack, and as either a targeted or untargeted attack. However, reading the literature
made it clear that many white box attacks were also tested in a black box scenario to
test the transferability of attacks. Some attacks also had different versions, e.g., one
that is targeted and one that is untargeted. As seen in Figure 4.1, the TOG attack
[50] is an example of an attack with a targeted and an untargeted variant and white
box and black box experiments. Therefore, the classification rules regarding the attack
types were changed so that each attack could have multiple classifications to account
for such scenarios. This classification can be seen in the attack type column in Figure
4.1.

White Box vs. Black Box Attacks

The adversarial attacks included in the systematic literature review were classified
based on their attack type to indicate their threat level against unmanned military
vehicles. One of the classifications was whether the attackers assumed white box
or black box knowledge of the target model when attacking.

As white box attacks have full access to the targeted model, they are often more
effective in attacking the model than methods that do not have this privilege. However,
their limitation is that the attacker must somehow access the targeted model. On the
other hand, black box attacks do not need access to the target model. Not having
access to the target model makes it harder to create effective attacks. Still, attacks that
are effective without model access are much more dangerous in real-world scenarios
where access to the target model is unlikely.

As seen in Figure 4.2, 35% of attacks were tested in a white box scenario only,
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29% of attacks were tested in a black box scenario only, and 36% of attacks were
tested in both scenarios. Adversarial attacks tested in both white box and black box
experiments are usually white box attacks at function. I.e., They exploit the advantage
of being white box attacks and test their performance against other black box models
in what is referred to as black box transfer attacks.

When reviewing the papers, it was observed that it is common for researchers to test
their white box attacks as black box transfer attacks. This observation is represented in
Figure 4.2, with half of the white box attacks also being tested as black box attacks. This
focus on black box attacks is primarily because attackers can not expect full access to
the target model in real-world attack scenarios. This realization is especially true for our
military use case due to the strict requirements for security, making black box attacks
the more likely threat.

Targeted vs. Untargeted Attacks

A second attack type was used to classify the adversarial attacks included in this
literature review. This classification shows whether the proposed attacks are targeted
or untargeted. Both attack types are considered dangerous if performed successfully
but in different ways. In some cases, the attacks have different versions to cover both
targeted and untargeted purposes.

As the targeted attacks can guide predictions towards a class of choice, they can
be used more intellectually. E.g., in a military setting, an adversary can camouflage
their vehicles to be classified as friendly by their opponent’s AI. Such attacks can
have dangerous consequences in the future with an increasing amount of unmanned
systems. These attacks can put human lives at risk, e.g., if a UAV on a reconnaissance
mission misclassifies the opponent as friendly, and the human troops move along with
this misinformation.

Untargeted attacks also pose a threat to the military use case. Their main difference
from targeted attacks is that they do not target a specific class when attacking. The
goal of untargeted attacks is to make the target model misclassify the object as any
class other than the correct one. However, in object detection, untargeted attacks also
cover attacks that make the model predict many more objects than usual, acting as
denial-of-service attacks [50]. Untargeted attacks cover a broader range of attacks
than targeted attacks, but their common goal is to render the attacked model useless.

Most attacks covered in the reviewed articles were classified as untargeted attacks.
As seen in Figure 4.2, 71% of attacks only provide untargeted versions. Only 12% of
the covered attacks are solely focused on targeted attacks, and 17% have both targeted
and untargeted versions. This distribution does make sense as the optimization
problem of untargeted attacks is simpler than targeted attacks. Untargeted attacks
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Figure 4.3: The distribution of the domain used in adversarial attack experiments.

only need to reduce the accuracy of the correct class, while targeted attacks also need
to increase the accuracy of the targeted class.

Domain Importance of Adversarial Attacks

The distribution of the domain used in experiments with adversarial attacks in the
included papers is shown in Figure 4.3. An entire 92% of the studied attacks were
experimented with in the digital domain, with 65% of them being tested in the digital
domain only. That leaves 8% of papers tested in the physical domain only. However,
35% of the total attacks were experimented with in the physical world.

The domain of the attack, either digital or physical, was considered highly relevant to
the threat evaluation in the second part of the thesis. For digital attacks to be effective,
they need access to the target system in the context of unmanned military vehicles,
as unmanned vehicles operate in and perceive the physical world and not the digital
one. Therefore, digital adversarial attacks can not be used against unmanned military
vehicles unless the attacker somehow manages to sneak the digital attacks into the
system. However, this is unlikely due to the strict security requirements of military
systems, in contrast to civil systems like the widely covered use case of self-driving
cars. The scenario of digitally attacking the system will be further described during
the threat evaluation of adversarial attacks against the AI-based system for unmanned
military vehicles.
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Figure 4.4: The covered adversarial attack methods’ domain distribution.

On the other hand, physical adversarial attacks are of much higher interest as
these adversarial attacks can be effective in the physical world. Because of that, they
do not require access to the target system. This ability to attack systems operating
and perceiving the physical world makes them especially dangerous towards all cyber-
physical systems, including KDA’s use case of unmanned military vehicles.

Adversarial Attack Method’s Domain Distribution

When looking at the domain distribution of adversarial attack methods in Table 4.4,
it is clear that the dominant experimental domain varies between the covered attack
methods. Adversarial examples are rarely tested in the physical domain compared to
the other adversarial attack methods. However, this makes sense as the attack method
mainly focuses on the digital domain by making minor pixel-wise image adjustments.

Adversarial patches, on the other hand, have a distribution closer to half of the
adversarial patch attacks being tested in the physical domain. This more significant
percentage of physical experiments is justified as adversarial patches are more easily
convertible to the real, physical world, e.g., by printing them on posters to be placed on
physical objects.

There are more documented experiments in the physical domain compared to the
digital domain for adversarial camouflages, indicating a shift in focus towards the
former. This shift is understandable as adversarial camouflages take the concept of

34



Figure 4.5: The distribution of the covered object detector families.

physically realizable adversarial patches to the next level by aiming to be effective from
all viewing angles. The initial testing of the adversarial camouflage attacks is usually
performed in simulation before being carried out in the physical world. This testing
order is why most adversarial camouflages are also tested in the digital domain, as
seen in Figure 4.4.

The other attack methods not covered by the three main methods are about
equally covered in terms of experimentation in the two domains. As seen in Table
4.1, these attacks cover attack methods such as adversarial wearables, adversarial
projection, adversarial sign, adversarial sticker, and adversarial environment. These
attack methods, and most others not mentioned, aim to attack specific use cases in the
physical world. Therefore, the experiments of these attacks are commonly performed
in the physical world, with initial testing done digitally as with adversarial camouflages.

Covered Object Detector Families

All the adversarial attacks and defenses were classified based on the object detectors
used in their experiments. This classification was done to gain insight into which
object detectors were frequently used in research. Only the detector types, one-stage
detectors, two-stage detectors, and transformers, were documented in Table 4.1 and
Table 4.2.

However, specific detector families were also noted during the review process. This
information can be helpful for practitioners when deciding what detector to use. As
seen in Figure 4.5, the YOLO [10] family of detectors is the most commonly used in
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Figure 4.6: The distribution of the covered defense methods against adversarial
attacks.

research, closely followed by Faster R-CNN [9]. YOLO being a one-stage detector, and
Faster R-CNN being a two-stage detector, front each their detector type in research
on adversarial attacks and defenses in object detection. Another one-stage detector
family, SSD [11], is the third most covered, followed by a tie between the two-stage
detector Mask R-CNN [174] and the one-stage detector RetinaNet [175].

The remaining 12% of detectors are covered less than five times each and are
therefore collected in the “other” category in Figure 4.5.

Grouping the Adversarial Defense Methods

The higher level categories, proactive- and reactive defenses, describe how the
defense method approaches adversarial attacks. To categorize the defense methods
as proactive- and reactive defenses were inspired by the survey on adversarial attacks
for object detection in autonomous vehicles by Amirkhani, Karimi, and Banitalebi-
Dehkordi [19]. The proactive methods aim to neutralize attacks without the system
being aware of them, while the reactive defenses act against an attack once it happens.
Figure 4.6 shows the defense methods covered in this systematic literature review.

The proactive methods covered in this systematic literature review are input
transformations, robustifying the model architecture, adversarial training, and system
security. Adversarial training is a common term within the field, while the terms “input
transformations” and “robustifying the model architecture” were introduced specifically
for this thesis. The system security classification was used for defense methods more
in line with traditional security than adversarial defenses. The following list describes
the newly introduced categories for defense methods.
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Input transformations is an umbrella term for defense methods that modify the input
data for the object detector in some predefined way. They aim to reduce the effect
of adversarial attacks by applying various transformations to the input data.

Robustifying the model architecture is an umbrella term for the defense methods
that aim to create more robust object detectors by improving their model
architecture.

Adversarial training is the most popular proactive defense method against
adversarial defenses, as seen in Figure 4.6. Adversarial training counts for 47% of
the proactive defenses, while input transformations and techniques for robustifying the
model architecture are almost equally covered at 26% and 24%, respectively. The
least covered proactive defense method against adversarial attacks is classical system
security, with only one article included.

The only reactive method covered in this review is adversarial detection. Adversarial
detection methods aim to detect adversarial attacks at runtime. The procedure
for what happens when an attack is detected varies between adversarial detection
methods, but they often include an attempted removal of the adversarial attack by data
modifications. Adversarial detection is the second most common defense method,
following adversarial training, as seen in Table 4.2.

Defense Methods’ Targeted Attack Methods

The defense methods covered in this review got classified by which attack method they
aim to protect against. This information is valuable when defending object detectors
against different methods of adversarial attacks. As seen in Figure 4.7, all defenses
were targeting either adversarial examples or adversarial patches, the two most widely
used attack methods shown in Figure 4.1.

However, this systematic literature review recorded no defense methods against
adversarial camouflages. This lack of defense is worrying as adversarial camouflages
are potentially the most dangerous adversarial attack in real-world scenarios like
unmanned military vehicles. The research community and users of detectors in
safety-critical systems must therefore develop viable defenses against adversarial
camouflages to ensure the safety and viability of their systems.
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Figure 4.7: The defense methods’ targeted attack methods.

4.2 Ensuring the Safe Deployment of AI Against Adver-

sarial Attacks in Unmanned Systems

This section presents the results of Goal-02 of this thesis: to derive a system
architecture and requirements for the safe deployment of AI in an unmanned military
setting. Before getting there, the threat model is described. The threat model is
based on the results from the systematic literature review on adversarial attacks and
defenses in object detection, which address Goal-01 of the thesis. Following the threat
model are the stakeholder needs and requirements used for defining the system. Then
the developed AI pipeline is shown, coupled with its possible security risks against
adversarial attacks. Mitigation techniques against these attacks are then presented.
Lastly, the designed system architecture with system- and security requirements are
shown.

4.2.1 Threat Model

The threat model described in this section is based on the comprehensive systematic
literature review on adversarial attacks and defenses in object detection presented in
Section 4.1. The domain of the attack, the attacker’s knowledge about the target model,
and the different attack methods are considered in the threat model.
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The domain of the adversarial attacks plays a critical role when considering their
threat against the use case of unmanned military vehicles, as described in Section
4.1.2. Digital adversarial attacks need access to the system to be effective, while
physical adversarial attacks are realizable without system access. The threat analysis
will be based on these domains as they require different defenses.

The attackers’ knowledge of the target object detection model will be considered
when evaluating the threat level of the system, including white box and black box
attacks.

The attack methods and their applicability in the use case of unmanned military
vehicles will also be taken into consideration. The threat evaluation will cover
the three most frequent attack methods from the systematic literature review on
adversarial attacks and defenses in object detection: adversarial- examples, patches,
and camouflages. Together they cover 82% of the attacks, and the remaining 18%
mainly cover special use cases not as relevant to the use case of unmanned military
vehicles.

4.2.2 Stakeholder Needs

This thesis aimed to design a secure AI-based unmanned system against adversarial
attacks in the military setting. With the military use case comes strict security
requirements that result in limitations that affect how the AI can operate in the system.
Communication and network bandwidth limitations are such examples, limiting the
amount of data that can be sent between systems. Therefore, such limitations and
strict confidentiality, integrity, and availability requirements had to be accounted for
during the design process.

Another major limitation of the military use case is the lack of publicly available
datasets for training machine learning models. Therefore, the system needed solutions
accounting for the need for more data for training the models. Both in terms of initial
model training and model improvement during the life cycle of the system.

It was assumed that similar systems to the one designed for this thesis already exist,
therefore keeping the integration of AI in focus. The following needs were defined to
deploy AI in unmanned military systems safely:

Need-01 The concept for a general system capable of using AI on the edge in
an unmanned military setting where the limitations to network bandwidth
and computing power are considered.
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Need-02 The functionality for generating new training data on the fly during
missions to be used for training new and better AI models in the future.

Need-03 Protection of the integrity of the system from adversaries by inhibiting or
reducing their possibilities to manipulate information (e.g., training data)
in the system.

Need-04 Protection of the availability of the system from adversaries by inhibiting
or reducing their possibilities to make information (e.g., sensor data) from
the system unavailable.

Need-05 Protection of the confidentiality of the system from adversaries by
inhibiting or reducing their possibilities to extract information (e.g., the
AI model) from the system.

4.2.3 Stakeholder Requirements

The following stakeholder requirements presented in this section are considered
extraordinarily important and are based on the above needs.

One crucial part of safely deploying AI in an unmanned military vehicle is to ensure
system reliability. People do not trust AI to make the correct prediction every time
in safety-critical systems, which is crucial in such scenarios. Moreover, there is no
guarantee that the AI will make correct predictions with 100% accuracy. Therefore,
manned and unmanned systems using AI require functionality to deal with wrong
predictions. This functionality is reflected in Req-01 and Req-02 below.

As adversarial attacks pose a threat to object detection, the system requires
functionality to shut down AI-related processes in cases of adversarial attacks. This
functionality is reflected in Req-03 below and is required as wrong predictions can lead
to undesired outcomes.

It was a priority to limit the possibility that the AI models and relevant information
could land in the hands of adversaries. This security was critical as white box
attacks are way more effective at attacking detectors than their black box counterparts.
Therefore, Req-04 was decided to prevent unmanned vehicles from using AI trained
on classified information, as unmanned vehicles are more easily lost than manned
vehicles. Then, if an unmanned vehicle and its AI model get lost, adversaries can
not white box attack the models trained on classified information running on the more
secure manned vehicles.

The entire system needs to run smoothly and uninterrupted to perform at an
operational level. Not only must the system run smoothly, but the AI use case
of this thesis, object detection, needs to run effectively in real-time to be able to
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detect potential threats in time. Therefore, some requirements were aimed at the
hardware to be used by the systems. Req-05 stated that the AI must not slow down
other subsystems sharing the same resources, while Req-06 ensures that the object
detection runs at an acceptable speed.

Every prediction made by the AI must be logged for debugging and model training
purposes - reflected in Req-07. It was derived from the stakeholder need to generate
new training data on the fly during missions to be used to train new and better future
AI models - Need-02.

The following list defines the stakeholder requirements:

Req-01 The unmanned system must have the functionality to hand over control
to a human operator at a remote location.

Req-02 An operator must be able to monitor and, if needed, override or revert
decisions made by the AI.

Req-03 If the AI functionality is under attack or a previous attack has been
discovered, the system must support the disconnection of the AI from
the rest of the system. If the AI is to be disconnected, and the AI is
essential for the system to be functional, the system must automatically
request manual control.

Req-04 AI models trained on classified data must not be stored locally on
unmanned devices.

Req-05 The AI shall not slow down other subsystems in conjunction with
computing power.

Req-06 The object detector must run in at least 10 frames per second.

Req-07 Every AI prediction must be logged.

4.2.4 System Architecture – More than Just Unmanned Vehicles

The system architecture proposed in this thesis shows how AI can be integrated
into unmanned military vehicles. The system architecture describes not only the
unmanned vehicles themselves but also the surrounding enabling systems. Therefore,
the proposed system architecture also includes the manned military vehicles assisted
by the unmanned vehicles and the back-end server where the AI models will be trained
before deployment. Why this was done will be further described below.
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Back-End Server

The reason for including a back-end server was the limitations to computing power
on the unmanned vehicles, as described in stakeholder Need-01. It could not be
assumed that any AI model could be trained using local hardware on unmanned
vehicles. Model training was therefore off-loaded to a back-end server equipped with
appropriate hardware. Including a back-end server is also beneficial for developing
AI models, as experts with access to the server can develop AI models for different
platforms and uses. The same server should also be the central storage of all the
training data generated over time, as requested by stakeholder Need-02. By that, AI
experts can choose and combine relevant data from different systems to train new and
improved models for other use cases.

Manned Vehicles

The interactions between the manned and unmanned vehicles are essential to the
system. As shown in Figure 1.2 on Page 4 that explained the use case example of this
thesis, the objective of the unmanned vehicles is to assist the manned vehicles, e.g., by
reconnaissance of the surroundings. The manned vehicles were essential in meeting
several stakeholder requirements, including Req-01, Req-02, Req-03, and Req-04.
Requirements 1-3 require a human operator to be able to monitor, revert decisions,
or take control of unmanned vehicles. As stated in Need-01, wireless communication
in the military is limited. Therefore, such tasks needed to be given to nearby human
operators, preferably in vehicles already involved with the unmanned vehicles.

Stakeholder Req-04 states that unmanned vehicles can not use AI models trained
on classified data due to the high risk of getting astray. As a solution, the
connected manned vehicles can run the models trained on classified information, while
the unmanned vehicles run unclassified alternatives. This scenario can be better
explained with an example: The manned vehicle commands the unmanned vehicle
to reconnaissance a nearby location. The unmanned vehicle runs an object detector
trained to detect and tell the difference between military and civilian vehicles. However,
the unmanned vehicle can not distinguish between different types of military vehicles.
When detecting a military vehicle, the unmanned vehicle can send the prediction with
one or several video frames to the closest manned vehicle. As the manned vehicle is
installed with a more advanced AI trained on classified information, it can decide what
type of military vehicle is detected and share that information with the entire team.
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Figure 4.8: The logical system architecture of the proposed system, including the
server side and both manned- and unmanned edge devices. The numbered connection
will transmit the following data: 1: Trained AI models (server → edge), sensor data
coupled with AI predictions and human interventions (edge → server), 2: AI predictions
and sensor data, 3: Sensor data (e.g., video feed) fed directly to the AI model, 4: Raw,
unlabeled data (storage → interface), labeled data (interface → storage), 5: Trained AI
models, and 6: Training data and trained AI models (storage → interface), Trained AI
models (interface → storage).

4.2.5 Logical System Architecture

The proposed system architecture is shown in two different figures: one being the
logical system architecture and the other being the physical system architecture. The
logical system architecture describes how the various components of the system
interact with each other, while the physical system architecture also includes the
physical placement of components in the system. This section describes the proposed
logical system architecture, focusing on the AI implementation.

Figure 4.8 shows the proposed logical system architecture. It is divided into
three different types of devices: a back-end server/high-performance computer (HPC),
manned edge devices, and unmanned edge devices. This thesis focuses on the AI
implementation in the system, represented by the green blocks in the diagram, with the
accompanying numbered connections. The caption of Figure 4.8 describes what is to
be transmitted in the connections to the AI-related parts of the system.

Back-End Server

The back-end server is responsible for training and deploying AI models for manned
and unmanned vehicles, using AI- training and deployment interfaces. The back-end
server is also responsible for storing all the data collected through the life-cycle of the
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system to support stakeholder Need-02. This data is mainly sensor data from manned-
and unmanned vehicles, coupled with AI predictions and human interactions. This data
can then be used to train new and improved AI models for future missions. A data
labeling interface is implemented to support the process of turning the raw data into
usable training data.

Manned and Unmanned Edge Devices

Both the manned- and unmanned vehicles shall use a combat system that connects the
different parts of the systems and will control the flow of information within the system.
All information flows through the combat system with only one exception: the direct
flow of sensor data from the sensors to the AI to limit the delay, to meet stakeholder
Req-06 of real-time performance. The combat system shall also be responsible for
the situational awareness of the system by sharing information between manned- and
unmanned devices when needed.

As seen in Figure 4.8, the system is designed with modularity in mind, with
everything being connected to the combat system. This modularity makes the system
scalable by enabling the removal- and addition of new parts. This design choice was
also made with system security in mind. If the AI gets exposed to adversarial attacks,
the system can isolate the AI by terminating its connection to the combat system
if no other mitigation technique is sufficient. This functionality directly addresses
stakeholder Req-03. If the system depends on the terminated AI, the combat system
is responsible for requesting manual control.

4.2.6 Physical System Architecture

The physical system architecture takes the modeling further and includes the physical
components of the system. It comprises the hardware, software, interfaces, and other
relevant components and their connections. Figure 4.9 shows the proposed physical
system architecture. It extends the system presented in Figure 4.8 by including the
hardware components of the system. Again, the focus was on the AI functionality of the
system. The caption of Figure 4.9 describes what AI-related data is to be transmitted
in the cross-platform connections of the system.

Manned and Unmanned Edge Devices

Stakeholder Req-05 and Req-06 required the AI not to slow down other subsystems
and for object detection to be able to run in real-time, respectively. Therefore, the
system was designed to support graphical processing units (GPUs) in all edge devices,
including manned and unmanned vehicles. GPUs are exceptionally good at performing
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Figure 4.9: The physical system architecture of the proposed system, including the
server side and both manned- and unmanned edge devices. The numbered cross-
platform connections will transmit the following data: 1: Trained AI models (server
→ edge), sensor data coupled with AI predictions and human interventions (edge →
server), and 2: AI predictions and sensor data.

computations on AI-related tasks and can therefore unload the central processing unit
(CPU). By offloading the AI’s calculation to the GPU, the AI will not slow down the CPU
and negatively affect other subsystems.

However, one can only assume that some edge devices in question can have one
or several GPUs installed due to cost, weight limitations, and system support. Due to
their weight restrictions, this claim is especially valid for UAVs, a prime example of our
use case presented in Figure 1.2 on Page 4. Therefore, including GPUs on the edge
platforms was designed to be optional, as visualized by the dotted lines between the AI
process on the CPU and the GPUs in Figure 4.9. Another reason for keeping the use of
GPUs optional is that the computing power needed by the AI is highly dependent on the
model’s complexity and use case. This design choice is also supported by stakeholder
Need-01, which requests a general system applicable in several scenarios.

Back-End Server

The back-end server responsible for AI model training will have at least one GPU.
AI training is computationally demanding compared to the AI inference run on edge
devices. The number of GPUs to be installed depends on the complexity and size of
the models to be trained, and the type of GPU to be used. Therefore the additional
GPUs shown in Figure 4.9 were designed to be optional.

Figure 4.9 shows how the unlabeled raw data enters the back-end server and the
process of turning it into new and improved AI models ready for deployment to the edge
platforms.
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4.2.7 AI Pipeline / Functional System Architecture

Figure 4.10: The workflow of the AI-related processes in the system. Read Section
4.2.7 for further explanations.
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This section aims to describe the AI pipeline of the system. In contrast to the
logical- and physical system architectures presented in Figure 4.8 and Figure 4.9, the
AI pipeline proposed in Figure 4.10 describes the AI-related tasks in more detail. When
reading this section, it is advised to follow along in Figure 4.10.

Initial Data Collection and Labeling

The first process in the AI pipeline is to collect relevant data that can be used to train the
initial model, assuming that the system user does not have any model for the desired
use. After collecting the data, it must be transferred to the back-end server, where it
will be stored, labeled, and used for training AI models. The collected unlabeled data
shall be stored in a separate database before it is used in the data labeling and quality
assurance (QA) process. The data labeling and QA process are accessed by operators
using the data labeling interface presented in Figure 4.8 and Figure 4.9. After the data
is labeled, it will be stored as training data in a separate database to separate it from
the unlabeled data.

Training

The training data can then be used for training AI models in the training section
encapsulated by the green frame labeled "Training" in Figure 4.10. The data will first
be selected from the training data database and pre-processed before being used to
train the machine learning algorithm. The loop within the training section in Figure
4.10 represents the training and evaluation of models until a model with the desired
accuracy is achieved. The training process will be accessible to operators using the AI
training interface presented in Figure 4.8 and Figure 4.9.

Deployment and Inference

The final model will then be deployed to the edge devices, where it will be used for
inference in the use case of object detection. The model will receive pre-processed
sensor data to run inference on, and the model will output a prediction. The prediction
of the AI model will be used to perform some action depending on the system and use
case, e.g., to mark possible dangers on a map.

Human Interventions and Data Collection

As stated by stakeholder Req-02, operators inside or outside of the edge device must
be able to monitor, evaluate and intervene with the AI predictions. Figure 4.10 also
accounts for this functionality, as seen in the steps following AI inference. As stated by
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stakeholder Need-02, new training data shall be generated on the fly during missions
to be used for training new and improved AI models for future missions. This need
is accounted for by saving sensor data coupled with the AI’s predictions to local data
storage - stakeholder Req-07. Another vital feature is that every intervention made by
human operators will be saved as critical training data to improve future models.

Training New and Improved Models

When a mission is ended, the collected data will be transferred from the edge devices
to the back-end server for labeling, QA, and model training. The collected data from
the time before human interventions will be used to improve current models and make
them more robust. The collected data also brings a new range of cases that result in a
broader range of cases in the training data database. This broader range of cases will
result in more general and robust models for future missions. The newly collected data
can also be used to train entirely new AI models for different use cases not previously
possible due to the need for more data. Then the loop continues, resulting in more
accurate and robust models for a broader range of use cases over time.

4.2.8 Acknowledging and Mitigating the Threats of Adversarial
Attacks

The following sections show the threat analysis of adversarial attacks against the
proposed system. First, the threat of digital adversarial attacks is presented, followed
by the recommended defense methods to mitigate the risk of digital adversarial attacks.
The threat analysis of physical adversarial attacks is then presented, followed by
adversarial defense recommendations to mitigate those threats. The adversarial attack
threats are based on the results from the literature review presented in Section 4.1 and
are shown in the context of the AI pipeline presented in Figure 4.10.

Threat Analysis of Digital Adversarial Attacks

With object detection in unmanned military vehicles operating in the physical world,
digital adversarial attacks have limited effect as they can not alter the physical
world. However, digital adversarial attacks can threaten AI functionality if adversaries
somehow gain access to the system. With access to the system, adversaries can inject
digital adversarial attacks into the AI pipeline to attack its functionality. Therefore, this
scenario of an attacker gaining access to the system to inject digital adversarial attacks
plays a vital role in the threat analysis presented in this section.
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Figure 4.11: Threat analysis of digital adversarial attacks. The colors represent
different threats against the AI functionality: Red: Data poisoning, Yellow: Malware,
Orange: Model extraction and model swapping, Blue: Unauthorized access. Read
Section 4.2.8 for further explanations.
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Data Poisoning Data poisoning is regarded as digital adversarial attacks injected into
the system in this threat analysis. These digital attacks can be adversarial
examples of imperceptible image changes that cause misclassification or
mislocalization in the object detector. The red blocks in Figure 4.11 represent
the parts of the AI pipeline prone to data poisoning attacks.

Data poisoning attacks can happen at different locations in the system, including
during data- collection, transfers, and storage. Data poisoning can occur during
data collection if an adversary plants adversarial examples in the data source,
e.g., in a public image database. Adversarial examples can also be injected into
the system during the data transferring stage, given that the adversary gains
access to that process. Given system access, adversarial examples can also be
injected directly into the databases. The injected adversarial examples will then
be used during model training and reduce the accuracy of the trained model. If
the adversarial attacks are targeted, they can even impact the learning of objects
by tricking the model into thinking an object is entirely different from what it is.

Malware The yellow blocks in Figure 4.11 represent the parts of the AI pipeline that
can be affected by malware attacks. Malware in the context of this threat analysis
is adversarial attack methods integrated with the system processes to create
adversarial examples within the system. The adversarial attack methods can
be placed in various processes, including data labeling and quality assurance,
data selection and pre-processing before model training, and sensor data pre-
processing before inference. While remaining undetected, this attack can
continuously create adversarial examples and poison the data over an extended
period compared to manual data poisoning.

Model Extraction and Model Swapping The orange block in Figure 4.11 shows
which process where model extraction and model swapping can happen. This
threat is considered the most crucial as trained AI models can get astray, enabling
adversaries to white box attack the models. The same model knowledge can be
achieved if an adversary swaps the model with one of their own. Such white box
knowledge can result in devastating attacks rendering the AI dangerous to use in
operations. Therefore, the model deployment process must be secure, and the
personnel handling the model transfer must have good intentions.

Model swapping must not only be used for white box attacks, as the model trained
by the adversary can be trained to misclassify or mislocalize vital objects. E.g.,
an opponent vehicle gets classified as friendly.

Unauthorized Access The blue block in Figure 4.11 shows where unauthorized
access to the AI live monitoring can pose a risk. If an adversary gains access
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to this feature, interventions can be made by the adversary to trigger events to be
stored for future model training. E.g., the AI predicts an opposing vehicle to be
an opponent, but the adversary intervenes with the prediction and changes the
prediction of the vehicle to be friendly. Then the misclassified event will be used
for later model training if not detected during quality assurance.

Mitigation of Digital Adversarial Attacks

This section aims to mitigate the threats of digital adversarial attacks presented
in Section 4.2.8. Since most digital attacks require system access, traditional
system security mechanisms can mitigate those scenarios requiring system access.
However, adversarial defense methods will also be implemented to reduce the threat
of adversarial attacks if an adversary gains access to the system regardless.

System Security Stakeholder Need-3, Need-4, and Need-5 describe that the integrity,
availability, and confidentiality of the system must be protected from adversaries.
Ensuring that these needs are met will, in turn, protect the system against
most of the digital adversarial attack threats presented in Section 4.2.8. As
discussed during the workshop with KDA, it is assumed that the military vehicles
implementing the system proposed in this thesis must follow the Norwegian law
of national security (Sikkerhetsloven) [176] due to their handling of classified
information (Sikkerhetsloven, 2019, § 9–1). The Norwegian National Security
Authority (NSM) 2 has derived guidelines 3 (exempt from public disclosure) to
ensure that the law of national security is followed, and it is assumed that the
proposed system will follow those guidelines to protect the integrity, availability,
and confidentiality of the system against adversaries. With this comes protection
from digital adversarial attacks.

These security mechanisms will also protect the AI against white box attacks,
as the chance of AI models getting astray and being accessed by adversaries
gets significantly reduced. By that, the overall threat of adversarial attacks was
considered considerably mitigated as white box attacks were more widespread
and easier to use effectively than their black box counterparts.

Caution During Data Collection Given the above assumption to system security,
all threats presented in Section 4.2.8 are mitigated, except for adversarial
examples in the data collection step. Therefore, the initial data collection must
be met with caution if the data is collected from publicly available databases, as
adversaries can plant adversarial examples that can sabotage the model training.

2The Norwegian National Security Authority (NSM): https://nsm.no/
3Referred to as "G-guides" for the remaining of the thesis.
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It is therefore recommended only to use data collected from reliable sources.
However, this thesis did not investigate what is considered reliable sources and
is left for future work on the system.

With the system secured, it is assumed that the threat of digital adversarial attacks
and physical white box attacks have been considerably mitigated. However, adversarial
defense methods can be implemented to protect the object detector against digital
adversarial attacks if an attack happens regardless. The recommended adversarial
defense methods from Table 4.1 are as follows:

Adversarial Training The system must implement adversarial training methods to
protect the AI against digital adversarial- examples and patches. Adversarial
training uses samples of adversarial attacks during model training to make the
model robust against these attacks. The limitation of this defense method is that
the model will only be robust against the attacks used during training. Therefore,
the adversarial training schedule must be updated to include new attack methods
once they emerge.

Input Transformations The system must also implement input transformations as
steps in the pre-processing before model training and inference. Such input
transformations try to reduce the impact of adversarial attacks by performing
actions such as smoothing the input data. This defense method is a simple and
effective way of reducing the risk of digital adversarial examples.

Robust Model Selection Selecting robust models should also be considered to
increase the general robustness of the model.

Threat Analysis of Physical Adversarial Attacks

It is now assumed that the threats of digital adversarial attacks against the system
are mitigated, which leaves the physical adversarial attacks. Physical adversarial
attacks in our use case of object detection manipulate the real world instead of the
digital one to trick object detectors into making wrong predictions. Such attacks do
not require system access and are therefore not protected against by the defenses
proposed in Section 4.2.8. Therefore, this section presents the remaining risks of
physical adversarial attacks against the proposed system.

Physical Adversarial Attacks The red blocks in Figure 4.12 show the system parts
prone to physical adversarial attacks like physical adversarial patches or physical
adversarial camouflages. These system parts are the only input nodes to the
system, making them prone to physical adversarial attacks. These attacks can
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Figure 4.12: Threat analysis of physical adversarial attacks. The colors represent
different threats against the AI functionality: Red: Physical Adversarial Attacks. Read
Section 4.2.8 for further explanations.
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happen during the initial data collection and sensor readings. An adversary
can use physical adversarial attacks to poison the data during the initial data
collection. However, this can be avoided by only using reliable sources as
described in Section 4.2.8. That leaves the physical adversarial attacks against
the system during operations. E.g., an adversary covers their vehicles in
adversarial camouflages to be misclassified as friendly by the object detector.
Such attacks are critical as traditional security mechanisms do not mitigate them
and need dedicated adversarial defenses.

Mitigation of Physical Adversarial Attacks

Adversarial defense methods can be implemented to robustify and secure AI against
physical adversarial attacks. The recommended adversarial defense methods against
physical adversarial attacks from Table 4.1 on Page 27 are as follows:

Adversarial Detection The system must implement adversarial detection to be able to
detect physical adversarial attacks when they happen in real-time. This defense
method has the same limitation as adversarial training by only learning to detect
the attack methods it was trained to detect. Therefore, other defense methods
must also be included to account for this limitation. As adversarial detection is a
kind of object detector, it can be implemented as the general AI as shown in the
system architectures described in Figure 4.8 and Figure 4.9.

Adversarial Training The system must implement adversarial training methods to
protect the AI against physical adversarial examples. This defense method was
also mentioned as a defense against digital adversarial attacks. However, the
adversarial training schedule must also include instances of physical adversarial
attacks, similar to the ones provided in the APRICOT dataset [177]. Again, the
adversarial training schedule must be updated to include new attack methods
once they emerge.

Robust Model Selection Selecting robust models should also be considered to
increase the general robustness of the model. This defense method was also
mentioned as a defense against digital adversarial attacks but is also relevant for
mitigating physical adversarial attacks.

4.2.9 System and Security Requirements

This section describes the system- and security requirements to ensure the safe
deployment of AI in an unmanned military setting. These requirements were derived
based on the threat analysis of the proposed system architecture with the goal of
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meeting the stakeholder needs and requirements. As the subsystems serve different
purposes in the overall system and require different security classification levels,
different requirements are derived for the individual subsystems. The respective
subsystems include the back-end server, manned edge devices, and unmanned edge
devices.

Back-End Server

Req-01-01 Follow NSMs G-guides4 to protect the confidentiality, integrity, and
availability of the system from adversaries as the system will be handling
classified information.

Req-01-02 Adversarial training must be included as a countermeasure to adversarial
attacks. See Table 4.2 for adversarial training methods.

Req-01-03 Input transformations must be made to the training data to counter
adversarial attacks. See Table 4.2 for input transformation methods.

Req-01-04 Robust model alternatives must be considered when deciding which
object detector to train. See Table 4.2 for methods of robustifying the
model architecture.

Req-01-05 A separate detector must be trained for adversarial detection. See Table
4.2 for adversarial detection methods.

Req-01-06 The adversarial detector must be updated when new attack methods
arise.

Req-01-07 AI models must only be trained on data received from reliable sources.

Manned Edge Device

Req-02-01 Follow NSMs G-guides5 to protect the confidentiality, integrity, and
availability of the system from adversaries as the system will be handling
classified information.

Req-02-02 Input transformations must be made to the sensor data before inference
to counter adversarial attacks. See Table 4.2 for input transformation
methods.

4Guidelines designed to ensure that systems handling or interacting with systems handling classified
information comply with the law of national security [176]. The guidelines was derived by NSM:
https://nsm.no/regelverk-og-hjelp/veiledere-og-handboker-til-sikkerhetsloven/. The referred documents
are exempt from public disclosure.

5See Footnote 4.
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Req-02-03 Adversarial detection must be included as a countermeasure to adver-
sarial attacks. It shall run in parallel with the main object detector. See
Table 4.2 for adversarial detection methods.

Unmanned Edge Device

Req-03-01 Follow NSMs G-guides6 to protect the confidentiality, integrity, and
availability of the system from adversaries as the system will be
interacting with systems handling classified information.

Req-03-02 If the unmanned edge device is an UAV, the AI must run on a CPU due
to weight limitations.

Req-03-03 Input transformations must be made to the sensor data before inference
as a countermeasure to adversarial attacks. See Table 4.2 for input
transformation methods.

Req-03-04 Adversarial detection must be included if the system can afford it in terms
of computational resources. This decision must be made on an individual
basis. See Table 4.2 for adversarial detection methods.

Figure 4.13 below shows the derived system- and security requirements in the
context of the AI pipeline. The AI pipeline is the same for both edge devices, but
their system- and security requirements differ. Therefore, the requirements for the
edge device in Figure 4.13 are marked either “M” or “UM” for manned and unmanned,
respectively.

Req-01-01 covers the entire back-end server and was placed in the bottom right
corner to represent that it covers the entire subsystem. The same applies to Req-
02-01 and Req-03-01 in the context of manned- and unmanned edge devices, placed
in the top left of the figure. These requirements ensure that the system follows the
guidelines derived by NSM for protecting the confidentiality, integrity, and availability of
the system.

While the above requirements indirectly secure the AI using traditional security
mechanisms, the remaining requirements directly aim at AI security. System- and
security requirements Req-01-02 to Req-01-07 are related to the AI training process
and protect the system against adversarial attacks by implementing adversarial
training, input transformations, robust model selection, adversarial detection, and by
limiting data collection to reliable sources.

The remaining system- and security requirements aim to protect the AI during
runtime on edge devices. Req-02-02 and Req-03-03, for manned- and unmanned

6See Footnote 4.
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edge devices, respectively, ensure that the input to the AI models must be transformed
to limit the risk of adversarial attacks. To further protect the AI, Req-02-03 and Req-03-
04 ensure the use of adversarial detection for manned- and unmanned edge devices,
respectively.

Req-03-02 was not accounted for in Figure 4.13 as the requirement is aimed at the
physical placement of AI inference, which is separate from the AI pipeline.
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Figure 4.13: The system requirements starting on Page 55, placed in the context of the
AI pipeline.

58



Chapter 5

Discussion

This chapter discusses the results of the thesis, including results from the literature
review and the derived unmanned system against adversarial attacks. First,
discussions on the current landscape of adversarial attacks and defenses are
presented. The discussions include the transferability of attacks between computer
vision tasks as a potential threat, the difficulty of creating physically realizable
adversarial attacks, and conflicting terminology that needs attention in the research
field.

The derived system architecture and requirements for the safe deployment of
AI in unmanned military vehicles are also discussed. These discussions include
how the stakeholder needs and requirements were met, whether adversarial attacks
significantly threaten unmanned military systems, and the dilemma of which object
detectors to use based on adversarial attack research.

The ethical considerations of attacking AI in an unmanned military setting are
also discussed below, followed by several proposed directions for future research and
development on the results of this thesis.

5.1 The Research Field of Adversarial Attacks and

Defenses in Object Detection

This section discusses the literature review of this thesis on adversarial attacks and
defenses in object detection and some relevant topics related to the research field.
First, the strengths and weaknesses of the literature review are discussed. Then a
discussion on the current state of physical adversarial attacks is presented, followed by
discussions on conflicting terminology in the research field.
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5.1.1 Discussion of the Systematic Literature Review

This section discusses the strengths and weaknesses of the systematic literature
review on adversarial attacks and defenses in object detection. The systematic
literature review has several strengths, including the broad and unbiased search
strategy, the strategic classification of papers, and the resulting comprehensive
research collection. The systematic literature review also has a few areas for
improvement, including further research on the possible cross-task transferability of
attacks, including non-English written papers, and providing more detail of the included
papers.

Search Strategy

The search strategy covered the entirety of the object detection task, only excluding
salient object detection as the task is closer to segmentation than pure object detection.
Moreover, the research on adversarial attacks and defenses was kept unbiased by
having limited knowledge of the field before doing the literature review. In turn, no
attack- or defense methods were favored.

Additionally, papers from all countries were included, except a few papers written
in Chinese. These papers could have been included with the use of translation
technologies. However, a good amount of similar papers were already included. With
that in mind, it was decided to exclude these papers to remove the chance of translation
errors.

Classification Strategy and Results

A significant strength of the literature review was the classification strategy of the
included papers to facilitate the threat modeling for industry use cases. Such a
classification strategy was prioritized from the beginning, as most similar review papers
in the field are strictly focused on research rather than the industry.

The resulting tables (Table 4.1, Table 4.2, and Table A.1) can be starting points
for further research on the field as they include a comprehensive overview of the
current state-of-the-art in adversarial attacks and defenses in object detection. No
other review on the same topic matches the comprehensiveness and reproducibility of
the systematic literature review of this thesis.

Cross-Task Transferability

A limiting factor of the literature review is the possible risk of cross-task attack trans-
ferability from related deep learning tasks like image classification and segmentation.
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Image classification and segmentation are similar to object detection, and some at-
tacks targeting these tasks have effectively attacked object detectors [44, 45, 54, 70,
114, 178]. Additionally, more research is done on adversarial attacks against image
classification than object detection. Therefore, more research on cross-task transfer-
ability is needed, as successful cross-task transfer attacks will expand the range of
threats against object detection further than what is covered in this thesis.

The Big Picture vs. Details

Lastly, more detailed explanations of the included papers could have benefitted some
readers. However, rather than focusing on the details of a few papers, it was decided
to focus on the overview of a more significant number of publications. Such a decision
had to be made due to the time restraints of the short master’s thesis. However, this
decision resulted in a comprehensive literature review of the current state-of-the-art
object detection, providing a great starting point for further research.

5.1.2 Physically Realizable Adversarial Attacks

Physical adversarial attacks were perceived as a premature research field needing
more attention. Research on adversarial attacks primarily performs experiments in the
digital domain rather than real-world scenarios, as shown in Figure 4.3 on Page 33.
It is not given that adversarial attacks are viable in the physical world, even though
they have successful experiments in the digital domain. For an attack to be effective in
the physical world, it must be printed somehow, e.g., by printing on paper. However,
the real world has several limitations, including the color differences before and after
printing. Lighting is also different in the physical world, and the many possible viewing
angles make it additionally difficult. These limitations, among others, make creating
physically realizable adversarial attacks difficult and make the current state of physical
adversarial attacks a lesser threat against real-world systems.

5.1.3 Conflicting Terminology

Several instances of conflicting terminology were observed when reviewing the young
research field of adversarial attacks and defenses in object detection. The words
“targeted” and “black box” had different meanings across papers within the same
research field. These conflicting terminologies cause confusion for readers, especially
those that are new to the field. Following is the discussion of the mentioned terms to
guide the research field toward a common use of expressions.
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Black Box

The "black box" term is used differently across papers. Some papers define black
box attacks as having no access to the target model. In contrast, while modifying the
attack, others define that their black box attack methods can query the target model
to get feedback on the effectiveness of the attack. In the case of object detection,
this feedback can be the predicted classes along with their respective bounding boxes.
These different knowledge assumptions need better dividers, given the clear advantage
of querying black box attacks over query-free black box attacks.

The different knowledge assumptions of black box attacks make it unfair to compare
them under the same term. Therefore, researchers should use separate terms in
future research on black box adversarial attacks. However, the black box term used
for classifying attacks in this thesis covers both definitions, as the terminology conflict
was discovered during the literature review and was unknown in advance.

Targeted Attack

Research on adversarial attacks originates from image classification and has been
extended to object detection. With this extension to object detection came the conflict
in using the expression "targeted attacks". In image classification, targeted attacks aim
to change a classification to a target class. However, this definition can be inconsistent
in object detection, with object detection being a multi-task problem. Moreover, object
detection classifies and localizes several objects in images instead of classifying a
single object in image classification.

Research on adversarial attacks in object detection has been using an additional
description of the term: to target a specific class for misclassification or mislocalization.
E.g., the attack targets only cars to be misclassified and does not affect the detected
pedestrians. This second definition makes sense in object detection, but it does cause
conflicts with the original definition. Therefore, the research community should define
common terminologies to avoid further misuse and confusion.

This thesis used the original definition of the term, as the second description was
discovered during the literature review. However, future research on the field should
also include the other definition due to its relevancy in object detection.

5.2 Discussion of the Derived System Architecture and

Requirements

This section discusses the derived system architecture and requirements. The
discussion includes how well the stakeholder- needs and requirements were met,
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how specialists should work together to develop better solutions, the choice of object
detectors based on their occurrence in adversarial attack- and defense research, and
the current threat of adversarial attack against the designed system.

5.2.1 How the Stakeholder Needs and Requirements were Met

Meeting the stakeholder needs and requirements was essential for successful project
delivery. Therefore, this section discusses to which extent the designed system met
the stakeholder needs and requirements presented in Section 4.2.2 on Page 39 and
Section 4.2.3 on Page 40, respectively. The stakeholder needs and requirements are
discussed one after the other in the following subsections.

Stakeholder Need-01 requested a concept for a general system capable of using
AI on the edge in an unmanned military setting where network bandwidth and
computing power limitations are considered. This stakeholder need was met by
designing the logical and physical system architectures (Figure 4.8 on Page 43,
and Figure 4.9 on Page 45, respectively) and the AI pipeline (Figure 4.10 on Page
46).

The limitations to network bandwidth were considered by not needing to transmit
large amounts of data during operations. E.g., the transmission of collected
training data from the edge to the server is done after operations when
communication is no longer an issue. The communication between edge devices
during missions is also kept to a minimum, only transmitting the AI predictions
and their respective video frames.

As for computing power, the edge devices were designed to support GPUs.
However, using GPUs on the edge was designed to be optional due to the
different hardware limitations on different platforms. If the platforms can not
support the installation of a GPU, like smaller UAVs, then the AI must be run
on the CPU. The designed system was kept as general as possible to support
the different scenarios. Therefore, the job of selecting and training appropriate
models for the different platforms was left to the AI trainers of the system.

Moreover, the training of AI models was offloaded to a back-end server,
regardless of whether the edge devices use GPUs. This offloading was done
because AI training requires even more computing power than performing
inference. Training AI models also require a large amount of labeled and pre-
processed data, which is difficult to achieve on the edge when this data must be
quality controlled by humans. AI training also requires personnel with specialized
training, which is not expected from vehicle operators.
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Stakeholder Need-02 requested that new training data can be generated on the fly
during missions to be used for training new and better AI models in the future.
This functionality was accounted for by the designed AI pipeline, presented in
Figure 4.10 and described in Section 4.2.7.

Stakeholder Need-03, Need-04, and Need-05 requested the protection of the in-
tegrity, availability, and confidentiality of the system against adversaries. It was
unnecessary to elaborate on the details of achieving this protection due to the as-
sumption that existing systems incorporating the AI functionality of this theoretical
system already have these accounted for. Moreover, this decision not to elabo-
rate on system security mechanisms was appropriate when the thesis theme was
AI, not cyber security.

Stakeholder Req-01 required the unmanned system to have the functionality to hand
over control to a human operator at a remote location. This functionality
is supported by the designed system architecture by having communication
links between unmanned and manned edge devices. However, the exact
implementation of the described functionality was left for future work as it was
not strictly AI related and, by that, out of the scope of this thesis.

Stakeholder Req-02 required that an operator must be able to monitor and override or
revert decisions made by AI. This functionality was accounted for by the designed
AI pipeline, presented in Figure 4.10. However, the exact implementation of the
described functionality was left for future work as it was not strictly AI related and,
by that, out of the scope of this thesis.

Stakeholder Req-03 required that the AI must be disconnected from the system if
the AI functionality is being attacked. Furthermore, if the subsystem using the
AI, e.g., an unmanned vehicle, is dependent on the AI functionality to operate,
the subsystem must automatically request manual control. The modular system
design accounts for the first part of the requirement, shown in Figure 4.8 and
Figure 4.9. The second part is accounted for by having direct communication
with nearby subsystems. However, the exact implementation of the described
functionality was left for future work as it was not strictly AI related and, by that,
out of the scope of this thesis.

Stakeholder Req-04 required that AI models trained on classified data must not be
stored on unmanned devices. This was accounted for when designing the logical-
and physical system architectures, presented in Figure 4.8 and Figure 4.9.

Stakeholder Req-05, and Req-06 targeted the computation and performance of the
AI models, respectively. These were accounted for by the general design of the

64



physical system architecture presented in Figure 4.9 on Page 45. If the AI slows
down the system by running on the CPU, the AI model must be smaller, or the
system must install an appropriate GPU. The same goes for whether the object
detector can run at a stable 10 FPS by running on the CPU.

Stakeholder Req-07 required every AI prediction to be logged. This functionality was
accounted for by the designed AI pipeline, presented in Figure 4.10 on Page
46. However, the exact implementation of the described functionality was left for
future work as it was not strictly AI related and, by that, out of the scope of this
thesis.

5.2.2 Combining Knowledge from Different Specializations

The previous section discusses how the stakeholder needs and requirements were
met. Overall, all stakeholder needs and requirements were met regarding the AI
implementation, which was the primary goal of this thesis. However, some stakeholder
needs and requirements need different expertise, especially in cyber security. If this
thesis were to cover the protection of the confidentiality, integrity, and availability of the
designed theoretical system in detail, an expert in cyber security would be needed.
New solutions for securing the system could then emerge instead of relying on the
already implemented security mechanisms of existing systems.

The focus of this thesis on securing the AI functionality of the system against
adversarial attacks is another statement as to why diverse teams are essential. If
an expert in cyber security was tasked to secure an edge-based AI system against
adversaries, they might have focused less on AI security than was done in this
thesis. Moreover, the same applies the other way around. Therefore, assembling
diverse teams with members from various specializations is strongly recommended to
further develop this and future systems to ensure more innovative and comprehensive
solutions to complex problems.

5.2.3 Choice of Object Detectors

Notes on the used object detectors were taken for every included paper on adversarial
attacks and defenses. This data was collected to get an overview of the used object
detectors and gain insight into the attacks’ performance on different detectors. The
overview in Figure 4.5 on Page 35 shows the used object detection families, which can
be helpful to practitioners in deciding which object detectors to use.

However, is it better to use a publicly available detector that has been used in many
adversarial attack experiments or to use a private detector that has yet to be the subject
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of attacks? This question is rather difficult to answer and will largely depend on the use
case and its requirements for security. With strict security requirements, using privately
developed detectors is beneficial when factoring in the increased risk of white box
attacks when using public detectors. On the other hand, practitioners get to know the
exact security risks of the detector by using one of the widely used, publicly available
detectors. Thereby they can be mitigated. However, if security is not of concern and
the performance, cost, and efficiency of the detector are more important than security,
the widely used detectors are recommended.

Object detectors should be monitored and tested for their performance and bugs
before deployment, regardless of the choice of object detectors. Testing ensures that
the detectors run at an acceptable speed and are not prone to known adversarial
attacks. It is also an idea to deploy different detectors trained for the same purpose
to the different edge devices. In that way, all devices need not be threatened if one
of the devices is successfully degraded by adversarial attacks. The same device can
also store several of these models to exchange for a different model if the one in use
is attacked. Another idea is to run several detectors in parallel on the same platform
to enable the detection of deviating classifications. However, this can also be achieved
with a network of edge devices running different detectors while sharing information.

5.2.4 The Current Threat of Adversarial Attacks

This section discusses the current threat of adversarial attacks against the derived
system while considering the recommended security and defense mechanisms
summarized in Section 4.2.9 on Page 54.

The system security ensured by following NSMs G-guides1 protects the AI against
all digital adversarial attacks and white box adversarial attacks. This protection secures
the AI against most adversarial attacks summarized in Table 4.1 on Page 27, leaving
only black box physically realizable adversarial attacks.

Creating black box attacks with a high attack success rate is a difficult task in itself,
as attackers have no access to the target model. Furthermore, the task gets even more
complex when the attacks need to be physically realizable and not only effective in the
digital domain. Combining these two complex problems creates a challenging task for
researchers to explore to understand better the threat of adversarial attacks against
cyber-physical systems.

The current threat of adversarial attacks against the system proposed in this
thesis is relatively low, given the assumptions of system security and the derived
recommendations toward AI security summarized in Section 4.2.9 on Page 54.

1Guidelines designed to ensure that systems handling classified information comply with the law of
national security [176]. The guidelines are exempt from public disclosure.
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However, the cross-task transferability discussed in Section 5.1.1 must be investigated
further as it might broaden the threats covered in this thesis.

This conclusion is based on the current landscape of adversarial attacks covered
in the systematic literature review of this thesis. Furthermore, the research field of
physically realizable black box adversarial attacks was still somewhat premature in the
writing of this thesis.

5.3 Ethical Considerations

The ethical issues of adversarial attacks on military systems are covered in this section.
Adversarial attacks involve purposefully altering the data inputs to AI models to make
them behave abnormally and make mistakes. Systems that rely on predictions from
AI models run the risk of performing destructive behaviors and having unintended
outcomes if the AI functionality gets manipulated by adversaries. In the worst-case
scenarios, the effects of such adversarial attacks may endanger human lives. The
threat of adversarial attacks must, therefore, be considered in the design process of
such systems.

In the case of the system for unmanned military vehicles proposed in this thesis, the
AI in question will perform object detection. For this use case, object detectors can be
used to detect humans and vehicles on the battlefield. Moreover, the detected humans
and vehicles can be classified as friendly, hostile, or civilian. The predictions from
the object detectors can then be marked on a map for situational awareness on the
battlefield. It is a relatively innocent task in itself; however, misclassifications can result
in unwanted consequences if the system is not appropriately designed. Fortunately, the
system was designed to always keep a man-in-the-loop for evaluating and overriding
AI predictions to lower the risk of mistakes.

One of the dangers of adversarial attacks against object detection in military
systems is the potential misclassification of civil objects as military targets. Such
outcomes can be achieved intentionally using targeted attacks or at random using
untargeted attacks. Fortunately, international humanitarian law [179] forbids civilian
targeting. Therefore, such adversarial attacks should be defined as war crimes and be
forbidden.

However, holding those performing adversarial attacks responsible for their actions
can be challenging, as adversarial attacks are not only limited to resourceful
adversaries. Everyone with the proper knowledge and intentions can carry them
out due to their availability in research and cost-effectiveness. Therefore, it is
of high importance for researchers and the industry to design proper defenses
against adversarial attacks. Furthermore, as this thesis exemplifies, AI security must
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be considered when designing AI-enabled systems to mitigate the risk posed by
adversarial attacks.

Humans, as well as AI, are prone to make mistakes. Well-designed AI-based
systems can be as good or better than humans to observe and perceive the
environment. Therefore, using object detection to assist humans in their decision-
making can reduce the risk of human error, which can save lives. Furthermore, the
safe deployment of AI is an important research topic for reducing the chance of human
error in safety-critical systems.

5.4 Future Research

This section proposes several directions for future work on the topics covered in this
thesis. They cover the calls for more research on physically realizable adversarial
attacks and universal defense methods, possible extensions of the thesis, including
further research on cross-task attack transferability and adversarial attacks on 3D
object detection, and viewing the thesis topic from other specialisations and disciplines
like cyber security and law.

Physically Realizable Adversarial Attacks Adversarial attacks must be physically
realizable to be effective against cyber-physical systems like the one presented
in this thesis. The research covered in the systematic literature review includes
experiments with physical adversarial attacks, but most lack performance and
are limited to specific scenarios. It is challenging to create universally effective
physical adversarial attacks due to the endless possible viewing angles and
differences in lighting. However, it is important to continue this research to further
assess the threat of adversarial attacks against cyber-physical systems.

Universal Defense Methods Many defense methods exist to mitigate the threat of
adversarial attacks in object detection, seen in Table 4.2 on Page 28. However,
they all have their limitations. While adversarial training and adversarial
detection only learn to defend against the attacks they are trained with, input
transformations and adversarial training can reduce the accuracy of detectors
on clean data, and robustifying the model architecture can reduce performance.
Therefore, research towards universal defense methods against adversarial
attacks is needed to secure object detectors against all attacks without negatively
affecting performance or accuracy.

Cross-Task Transferability As discussed in Section 5.1.1, adversarial attacks in
image classification have proven effective in attacking object detectors. This
discovery broadens the threat of adversarial attacks in object detection further
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than what was covered in the systematic literature review of this thesis. Therefore,
more research on the cross-task transferability of attacks must be done to
evaluate the threat further. Researchers should extend this literature review if
it is to be discovered that attack methods designed for similar tasks are effective
in attacking object detectors.

Adversarial Attacks Against 3D Object Detection Appendix B includes an overview
of adversarial attacks and defenses in object detection that uses different data
types than images and video. These papers were excluded from this thesis, as
the goal was to evaluate the threat against image and video object detection.
However, other data types like LiDAR and infrared imagery are valuable sources
of information in cyber-physical systems, like unmanned vehicles. The threats
against object detectors using these datatypes should therefore be evaluated in
future research.

Cyber Security Experts Perspective As discussed in Section 5.2.2, the goal of this
thesis to design a secure AI-based system for unmanned military vehicles can
also be done from the perspective of cyber security experts. Doing so can
result in new ideas for securing the system instead of relying on the already
implemented security mechanisms of existing systems. Future research should
therefore be done toward securing the proposed system, e.g., in the form of a
complementing master’s thesis.

Lawyers Perspective Section 5.3 discussed the complications of using adversarial
attacks in armed conflicts. Adversarial attacks can endanger civilians if performed
against systems not designed to be resilient to adversarial attacks. Therefore,
the possible implications of international humanitarian law [179] should be
researched by lawyers to define whether existing laws cover adversarial attacks
or if new ones should be made to restrict their use.
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Chapter 6

Conclusion

The main objectives of this thesis were to understand the status quo of attacks and
defenses in deep learning-based object detection that needs attention in KDA’s context
(Goal-01) and use that information to derive a system architecture and requirements
for the safe deployment of AI in an unmanned military setting (Goal-02).

Goal-01 was achieved through a systematic literature review with the research
question of whether the current state of adversarial attacks poses a threat to image
and video object detectors in unmanned systems – and how they can be defended.
The results showed that most adversarial attacks were made to attack object detectors
in the digital domain rather than the real world. As unmanned systems operate with
strict security standards in the real world, digital adversarial attacks become relatively
unthreatening. The same applies to white box attacks, as the strict security standards
prevent the AI model from getting astray. That leaves physically realizable adversarial
attacks as the most likely attacks that can affect the AI in unmanned military systems.
However, creating physically realizable black box adversarial attacks is a challenging
task yet to be properly solved. With the added layer of protection from adversarial
defenses like adversarial- training and detection, adversarial attacks become an even
lesser threat against unmanned military vehicles.

Goal-02 was achieved through a requirements engineering process, including
workshops, technical analysis, and expert interviews. The designed system met all
of the derived stakeholder- needs and requirements relevant to the AI functionality.
The designed system was expanded beyond only unmanned vehicles, as supporting
manned vehicles and a high-performance back-end server were needed to cover the
entire AI lifecycle. Furthermore, a thorough threat analysis of adversarial attacks
against the designed system was delivered. It was shown that most adversarial attacks
against object detection in manned- and unmanned military systems are already
defended by the security mechanisms of similar existing systems. However, AI-specific
defenses can be beneficial as an added layer of security to ensure system reliability and
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protection against physically realizable adversarial attacks not covered by traditional
defenses. Therefore, guidelines were made for securing the system against adversarial
attacks by implementing adversarial defense methods: input transformations, robust
model selection, adversarial training, and adversarial detection. The manned- and
unmanned edge platforms were designed with different security levels as unmanned
devices are more easily lost and should thereby not handle classified information.
Therefore, the security recommendations varied across the subsystems due to their
differences in security requirements and available computing power.

This thesis delivered a comprehensive review of the state-of-the-art adversarial
attacks and defenses in object detection in the context of unmanned military vehicles
– the first of its kind and a valuable resource for the research field and the defense
industry. KDA gained valuable information on how AI can safely be deployed in
unmanned military systems and how to maintain a cycle of ever-improving AI models
throughout the lifetime of the system.
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Appendix A

Tools to Aid Future Research on
Adversarial Attacks and Defenses

This appendix presents tools to aid future research on adversarial attacks and defenses
in object detection, shown in Table A.1. These papers were found during the systematic
literature review on adversarial attacks and defenses in object detection, described in
Section 4.1 starting on Page 23. These tools got placed in the appendix rather than the
results as they are neither adversarial attack- nor defense methods. However, these
papers were considered relevant as they introduce tools that can be useful for industry
use cases and for future research on adversarial attacks- and defenses.

The datasets can be used for, among other things, adversarial training purposes
and attack generation. They can also be used for research towards the understanding
of adversarial attacks, where visual tools also can play an important role. Benchmarks
and robustness evaluation frameworks are especially useful for evaluating object
detectors’ robustness against adversarial attacks - useful for both researchers and
practitioners in the industry.

Article Year Tool Target Attack Method
APRICOT [177]

2020
Dataset

Physical Adversarial Patch
AOCO [24]

Adversarial Example
Zhong et al. [180] Benchmark
PyTorchFI [181]

Robustness Evaluation
DetectSec [182]

2022
DetectorDetective [183] Visual Tool

Table A.1: Tools for Adversarial Attacks and Defenses in Object Detection. AE:
Adversarial Example, AP: Adversarial Patch.
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Appendix B

Other Data Types and Multi-Sensor
Object Detection

Based on the inclusion and exclusion criteria, this literature review focused solely on
images and videos for adversarial attacks and defenses in object detection. However,
incorporating other data types like LiDAR point clouds and infrared imagery could
prove advantageous for unmanned military vehicles. Furthermore, integrating data
from multiple sensors can significantly enhance the system’s overall performance in
multi-sensor object detection. If this is to be implemented in the future, preliminary
research should be done to assess the threat of adversarial attacks.

To avoid losing valuable information, papers on object detection using other data
types and multi-sensor object detection were collected separately for future research.
The following list contains the papers found during the systematic literature search for
this thesis:

[1] A. Lehner et al., ‘3D-VField: Adversarial Augmentation of Point Clouds for
Domain Generalization in 3D Object Detection’, presented at the Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2022, pp. 17274–17283. doi: 10.1109/CVPR52688.2022.01678.

[2] M. Abdelfattah, K. Yuan, Z. J. Wang, and R. Ward, ‘Adversarial Attacks on
Camera-LiDAR Models for 3D Car Detection’, presented at the IEEE International
Conference on Intelligent Robots and Systems, 2021, pp. 2189–2194. doi:
10.1109/IROS51168.2021.9636638.

[3] I. Sobh, A. Hamed, V. R. Kumar, and S. Yogamani, ‘Adversarial Attacks onMulti-
task Visual Perception for Autonomous Driving’, Journal of Imaging Science and
Technology, vol. 65, no. 6, 2021, doi: 10.2352/J.ImagingSci.Technol.2021.65.6.
060408.
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[4] X. Wang, M. Cai, F. Sohel, N. Sang, and Z. Chang, ‘Adversarial point cloud per-
turbations against 3D object detection in autonomous driving systems’, Neuro-
computing, vol. 466, pp. 27–36, 2021, doi: 10.1016/j.neucom.2021.09.027.

[5] M. Cai, N. Sang, X. Wang, and J. Zhang, ‘Adversarial point cloud perturbations
to attack deep object detection models’, presented at the Proceedings -
2020 IEEE 22nd International Conference on High Performance Computing
and Communications, IEEE 18th International Conference on Smart City and
IEEE 6th International Conference on Data Science and Systems, HPCC-
SmartCity-DSS 2020, 2020, pp. 1042–1049. doi: 10.1109/HPCC-SmartCity-
DSS50907.2020.00140.

[6] S. Wang, T. Wu, A. Chakrabarti, and Y. Vorobeychik, ‘Adversarial Robustness of
Deep Sensor Fusion Models’, presented at the Proceedings - 2022 IEEE/CVF
Winter Conference on Applications of Computer Vision, WACV 2022, 2022, pp.
1371–1380. doi: 10.1109/WACV51458.2022.00144.

[7] Y. Cao et al., ‘Adversarial sensor attack on LiDAR-based perception in
autonomous driving’, presented at the Proceedings of the ACM Conference
on Computer and Communications Security, 2019, pp. 2267–2281. doi:
10.1145/3319535.3339815.

[8] . Bayer, D. Münch, and M. Arens, ‘APMD: Adversarial Pixel Masking Derivative
for Multispectral Object Detectors’, presented at the Proceedings of SPIE - The
International Society for Optical Engineering, 2022. doi: 10.1117/12.2637977.

[9] C. Chen and T. Huang, ‘Camdar-adv: Generating adversarial patches on 3D
object’, International Journal of Intelligent Systems, vol. 36, no. 3, pp.
1441–1453, 2021, doi: 10.1002/int.22349.

[10] Y. Zhu, C. Miao, T. Zheng, F. Hajiaghajani, L. Su, and C. Qiao, ‘Can We Use
Arbitrary Objects to Attack LiDAR Perception in Autonomous Driving?’, presented
at the Proceedings of the ACM Conference on Computer and Communications
Security, 2021, pp. 1945–1960. doi: 10.1145/3460120.3485377.

[11] Q. Sun, A. A. Rao, X. Yao, B. Yu, and S. Hu, ‘Counteracting Adversarial Attacks
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