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Abstract 
 

Civil infrastructures are susceptible to threats from both nature and human activity; as they 

are built and used, they deteriorate, potentially resulting in structural damage or even collapse. 

The detection of structural damage is an important field of study that aims to identify and 

quantify any possible damage to structures such as bridges, buildings, and other infrastructure. 

Early detection of structural deterioration benefits the identification of cracks, flaws, and 

other possible safety issues in civil infrastructure.  Identifying and quantifying structural 

damage with methods based on dynamic analysis data of structures is the main objective of 

the present study.  

The damage identification problem is approached as an optimization problem, which is solved 

using two optimization techniques: Particle Swarm Optimization (PSO) and Genetic 

Algorithm (GA). Three objective functions based on dynamic analysis data of the structures 

such as modal flexibilities, natural frequencies and mode shapes are used in the optimization 

process. This data was gathered by developing a program that performs the dynamic analysis 

of structures using the Finite Element Method (FEM). The effectiveness of each objective 

function is assessed through evaluations conducted on three damage scenarios involving a 10-

bar truss structure. The impacts of noise and damage levels on damage detection are 

investigated.  
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1. Introduction 
 

Civil infrastructures are susceptible to threats from both nature and human activity; as they 

are built and used, they deteriorate, potentially resulting in structural damage or even collapse. 

Structural damage will increase the possibility that the structure won’t be able to operate for 

the remainder of its designed lifespan. Therefore, it is essential to identify structural damage 

early to reduce the risk of sudden collapse and increase the stability and dependability of 

buildings.  

The detection of structural damage is an important field of study that aims to identify and 

quantify any possible damage to structures such as bridges, buildings, and other infrastructure. 

Early detection of structural deterioration benefits in the identification of cracks, flaws, and 

other possible safety issues in civil infrastructure. Identifying and fixing these problems could 

potentially avoid catastrophic failures that jeopardize human lives. It can also assist in 

prolonging the life of existing infrastructure, lessening the need for new construction, which 

can have a substantial environmental impact. Developing novel structural damage detection 

methods and technologies may lead to new research, innovations, and applications that can 

increase our knowledge of materials, structures, and their behavior.  

In this field, vibration-based technologies are often used since they enable the non-invasive, 

non-destructive study of structures. Researchers may utilize changes in modal characteristics, 

namely natural frequencies, and mode shapes, which can be used to detect and locate any 

damage or faults, by monitoring the vibration of a structure. In recent years, these modal 

parameters have gained widespread use in damage-detection techniques and can be readily 

and inexpensively extracted from measured vibration responses [1].   

Several pieces of literature studied and gathered early vibration-based damage detection 

approaches. Doebling et al.[2], for example, exhaustively examined vibration-based damage 

detection approaches and their application to diverse structures. Sohn et al. [3] offered an 

overview of structural health monitoring studies that have arisen in technical literature. Hou 

and Xia [4] delivered an in-depth discussion of the most recent breakthroughs in vibration-

based damage diagnostics for civil engineering structures.  

This thesis addresses the problem of identifying structural damage by employing various 

modal correlation criteria. The identification of structural damage is approached as an 

optimization problem, which is solved using two optimization techniques: Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA). These techniques aim to achieve optimal 

results in detecting damage. The optimization process utilizes objective functions that rely on 

dynamic analysis data, including modal flexibilities, natural frequencies, and mode shapes of 

the structure. To acquire the necessary dynamic analysis data, software is developed that 

performs dynamic analysis using the Finite Element Method (FEM). The effectiveness of 

each objective function is assessed through evaluations conducted on multiple damage 

scenarios involving a 10-bar truss structure.  
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1.1. Justification 
 

Several of the Sustainable Development Goals of the United Nations have a close connection 

to the employment of vibration-based technologies for structural damage identification. For 

instance, Goal 9 strives to build resilient infrastructure, promote inclusive and sustainable 

industrialization, and foster innovation [5]. We are able to make sure that buildings are safe, 

functional, and sustainable for an extended period of time by identifying and repairing 

damage in structures. Additionally, we can reduce the environmental impact of our 

infrastructure maintenance and repair efforts by using non-invasive, non-destructive 

techniques like vibration analysis. This will help us reach Goal 13, which asks for immediate 

action to combat climate change and its impacts [6]. Furthermore, by encouraging the 

construction of more durable and robust structures and infrastructure, the adoption of 

vibration-based structural damage diagnosis tools may support the EU’s long-term strategic 

plan for 2050 [7]. Structures may be made safe and long-lasting, which will lessen their 

carbon footprint and support sustainable development.  

Overall, the use of vibration techniques for structural damage detection is a crucial instrument 

for advancing sustainable infrastructure and guaranteeing the security and well-being of 

populations all over the globe. 

1.2. Objectives 

 

Determining the degree and location of structural damage is the objective of this paper. This 

is accomplished by making use of certain unique and readily measurable structural dynamics. 

Two optimization methods, PSO and GA, are employed to address this damage detection 

problem. In this unconstrained optimization problem, the values of certain dynamic features 

are compared between the experimental and numerical models of the structure using objective 

functions that need to be minimized.  

1.3. Thesis outline 

 

To get an overview of how the paper is structured and what is included in each chapter, a brief 

summary of the content is described in this section. Chapter 2– The literature review is 

presented. Here, the theoretical backgrounds of damage identification methods and well-

known optimization algorithms are presented and explained. Relevant literature was found 

with the help of the academic search engine, Scopus. Chapter 3, – Using numerical examples, 

this chapter presents the application of the optimization algorithms and the different modal 

correlation criteria discussed in the literature review. The aim of this chapter is to familiarize 

the author with these methodologies and demonstrate them with numerical examples for 

better understanding, which will subsequently be employed in the case study of this paper. 

Chapter 4 – Presents a short introduction of the case study and the aim of the paper. Chapter 

5, Introduces the methodology used for the case study. Chapter 6- Presents the numerical 

example, results and discussion of the results. Chapter 7 – Concluding remarks and the 

possibility of future work.  
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2. Literature review 
 

2.1. Structural damage identification 
 

In order to acquire information about the condition of structures using observed dynamic 

characteristics, NDT&E in the computational mechanics industry has shown considerable 

interest in vibration-based structural damage detection. These methods make use of structural 

vibration properties such as modal domains, frequency response functions, and natural 

frequencies, which may be used to identify the presence, location, and severity of structural 

damage [8]. Here, it is anticipated that modifications to a structure's natural frequencies, 

frequency response functions, and mode shapes would provide dynamic data that varies from 

that of the healthy (undamaged) system. Modal parameters are dependent on the physical 

properties of the structure, specifically stiffness and mass. By utilizing tools like FEM, we can 

detect and locate damaged elements in a structure through the update of modal parameters. 

This approach may be utilized, even in large-scale structures, to determine the degree and 

location of damage. 

The term "damage detection" has a wide range of applications and is not typically limited to 

constructions. This demonstrates that the effects of diverse approaches vary significantly. 

However, in this study, the phrase will relate to structures [9].  

When discussing structural damage identification, we have 4 different levels [9]: (Level 1) 

Detection, (Level 2) Localization, (Level 3) Assessment, and (Level 4) Consequence. Level 1 

provides us with a qualitative indication of the structure’s deterioration. Information about the 

damage’s most probable location is included in Level 2. Level 3 includes information on the 

severity of the damage and is provided at level 3. Finally, the fourth level (Level 4 - 

Consequence) includes information concerning the structure's safety, given a specific damage 

condition [10].  

 

Figure 1 Levels of structural damage identification 
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It is common practice to transform the task of detecting structural damage into a single-

objective optimization problem with or without constraints. The aim of this optimization 

problem is to identify a suitable objective function that best reflects the update of certain 

modal parameters. This function must have the modal parameters necessary for accurately 

identifying even little structural damage, and its estimate must be simple. A wide range of 

various objective functions for damage detection problems can be found and will be detailed 

in the chapters that follow. 

 

2.2.  Damage identification model 
 

The stiffness and mass of a structure and its dynamic features are quantitively affected by 

structural damage if it is correctly modeled using FEM. The global mass matrix is shown to 

be unchanged in both the healthy and damaged structures. For the vast majority of practical 

applications, this assumption is thought to be quite correct. The following equation is 

generally known as the eigenvalue for a healthy (undamaged) structure [11]: 

([𝐾] − 𝜔𝑗
2[𝑀]){𝜑𝑗} = 0, 𝑗 = 1,2, … . . , 𝑁𝑚 (1) 

Where: 

[K] – The global stiffness matrix. 

[M] – The global mass matrix. 

{φj} – Vibration mode shape vector. 

 ωj – Natural frequency corresponding to j-th vibration mode shape {φj}.  

Nm – The total number of vibration mode shapes obtained. 

 

And for a damaged structure, Equation (1) becomes:   

([𝐾𝑑] − (𝜔𝑗
𝑑)2 [𝑀]){𝜑𝑗

𝑑} = 0, 𝑗 = 1,2, … . . , 𝑁𝑚 (2) 

Where: 

[Kd] – The damaged global stiffness matrix. 

[M] – The global mass matrix. 

{φj
d} – Vibration mode shape vector in the damaged structure.  

ωj
d – Natural frequency corresponding to j-th vibration mode shape {φj

d}. 

Nm – The total number of vibration mode shapes obtained.  
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2.3. Vibration-based structural damage identification methods 
 

A wide variety of approaches for structural damage identification based on changes in 

dynamic characteristics are presented below. Additionally, different modal correlation criteria 

used in structural damage identification are presented.  

 

2.3.1. Mode shape-based methods  

 

One of the crucial strategies developed to solve the shortcomings of approaches like natural 

frequencies was the mode shape approach, which was used by Chen and Garba [12] in the 

early 1990s. A collection of modal characteristics of a structure may be calculated from its 

vibration response data, as shown by a variety of literature in modal analysis, system 

identification, and health monitoring. The identification of damage, may then be done using 

these modal parameters. The dynamic properties of a structure, such as modal parameters, 

may also be predicted by an accurate and verified finite element (FE) model of the structure. 

By utilizing them to directly estimate the mass and flexibility matrices of the structural model, 

for instance, or by directly comparing them with the equivalent one produced from an initial 

analytical model of the structure. Direct comparison of experimental and analytical modal 

characteristics has shown that when measuring structural damage, comparing mode shapes 

rather than natural frequencies provides a more accurate indicator of the damage to the 

structure [13]. 

Mathematical formulae are often used to compare two mode shapes that were received from 

two different sources, such as an undamaged model and a model that had been damaged but 

still corresponded to the same mode of vibration. To measure the consistency and correlation 

of estimations of the modal vector, two useful mathematical tools are the Co-ordinate Modal 

Assurance Criterion (CoMAC) and the Modal Assurance Criterion (MAC) [14]. 

 

The Modal Assurance Criterion (MAC) 

The most commonly used technique for assessing differences in mode shapes between the 

undamaged and damaged models is the modal assurance criterion (MAC). This technique 

takes value between zero, representing no consistent correspondence between the models and 

one, representing a consistent correspondence of the two models, and is dependent on the 

mode shapes. If the two mode shapes are consistent, i.e., they differ only by a scalar factor of 

proportionality, MAC takes a value of one. However, MAC takes a value of zero, if the two 

mode shapes are orthogonal to each other [15] [16]. MAC is defined as in Equation (3): 

𝑀𝐴𝐶(𝑖,𝑗) =
|{𝜑𝐴}𝑖

𝑇   {𝜑𝐵}𝑗|
2

({𝜑𝐴}𝑖
𝑇  {𝜑𝐴}𝑖)    ({𝜑𝐵}𝑗

𝑇{𝜑𝐵}𝑗)
 

 

(3) 
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Here {𝜑𝐴}𝑖 represents the structure's undamaged state's normalized i-th mode shape vector 

,and {𝜑𝐵}𝑘 represents the damaged state's normalized k-th mode shape vector. 

As previously stated, the modal vectors are not consistent if the modal assurance criteria has a 

value of zero. This can be due to the following reasons [16]: 

- There is movement in the system. Any time the system experiences a change in mass 

or stiffness while being tested, this might happen. 

- It is a nonlinear system. Distinct exciter placements or excitation signals will result in 

distinct frequency response functions that exhibit different system nonlinearities. 

Additionally, the various nonlinear properties will not be handled consistently by the 

modal parameter estimation algorithms. 

The modal vectors are consistent if MAC is close to unity, which is an indication. This does 

not imply that they are always right. The modal assurance criteria does not indicate this if the 

same mistakes, random or bias, are present in all modal vector estimations. 

 

The Co-ordinate Modal Assurance Criterion (CoMAC) 

The effect of individual DOF’s on vector similarity is one of the topics of interest in the 

comparison of two sets of modal vectors. The Coordinate Modal Assurance Criterion 

(COMAC), an extension of the MAC created by Lieven and Ewins [17], is a widely used 

criterion for comparing two sets of mode shapes which are obtained from different structures 

at a certain degree of freedom (DOF). The use of the criterion requires two steps of 

computation. The modes from the two sets are matched using the MAC in the first step. After 

creating the set of NM mode pairings that will be correlated, the COMAC's second step 

involves calculating the correlation values at each coordinate, across all the correlated pairs 

[17]. The COMAC factor is defined as follows for a structure's coordinate k and n mode 

shapes [18]: 

𝐶𝑂𝑀𝐴𝐶𝑘  =  
(∑ |𝜑𝑘

(𝑖)
 𝜓𝑘

(𝑖)
|𝑛

𝑖=1 )
2

∑ [(𝜑𝑘
(𝑖)

)
2

]  ∙  ∑ [(𝜓𝑘
(𝑖)

)
2

]  𝑛
𝑖=1  𝑛

𝑖=1

 

 

(4) 

 

The COMAC will take a value between 0 and 1 for a certain DOF. It gives us a global index 

that compares all of the comparable mode shapes from the two separate sets at the given DOF. 

In contrast, a high value COMAC implies that the two sets of mode shapes at that DOF are 

concordant. A low COMAC value shows that the two sets of mode shapes at the given DOF 

are inconsistent or dissimilar to one another. 
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2.3.2. Natural frequencies and mode shapes 

 

Compared to other dynamic properties, the structure's natural frequency is the most 

straightforward and precisely determined. The natural frequency-based approach therefore 

becomes one of the most popular methods for identifying damage. The mass, rigidity, and 

other structural attributes of the visible structure are reduced by damage, which lowers the 

natural frequency value. One of the early proposals for using natural frequencies for damage 

detection was made in the 1970s [19]. This research included experimental testing on variety 

of components, such as straight prismatic bars, a doubly tapered bar, and an automotive 

camshaft. The findings were consistent regarding the locations and sizes of the anticipated 

and actual damage sites. The Modified Total Assurance Criterion (MTMAC) falls under this 

category, as it is dependent on mode shapes and frequencies. 

 

The Modified Total Assurance Criterion (MTMAC) 

The MAC criteria has a drawback in that it only considers the eigenvectors and ignores the 

eigenvalues of the different mode shapes of the structures. This indicates that the MAC 

criteria won't be able to identify any change if there is uniform damage. With a uniform 

damage, the structure here is more flexible (the eigenperiod is longer), but the eigenvectors 

are unaffected and continue to be the same as previously. Natural frequencies provide a 

comprehensive picture of the structure and may be properly located via dynamic 

measurements [20]. 

MTMAC is an effective objective function that combines MAC and natural frequencies. The 

MTMAC is defined as follows [20]: 

𝑀𝑇𝑀𝐴𝐶𝑗 =  
𝑀𝐴𝐶𝑖

1 +  |
𝜔𝐴(𝑖)

2  − 𝜔𝐵(𝑖)
2

𝜔𝐴(𝑖)
2  + 𝜔𝐵(𝑖)

2 |

 

 

(5) 

 

Where MACj is defined as in equation (3), ωA(i) and ωB(i) are the natural frequencies 

corresponding to the j-th mode. The MTMAC is a vector with the same number of values as 

the mode shapes taken into consideration in this fashion. In order to take into account, the 

entire number of mode forms (Nm), a total criterion is defined as follows [21]: 

𝑀𝑇𝑀𝐴𝐶 =  ∏ 𝑀𝑇𝑀𝐴𝐶(𝑗)

𝑁𝑚

𝑗 = 1

 

 

(6) 

 

A score close to one indicates an almost perfect correlation between the undamaged and 

damaged numerical findings, while an index equal to zero denotes no connection between the 

two sets of mode shapes and natural frequencies. 
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2.3.3. Modal flexibility 

 

Modal flexibility captures the effect of both natural frequencies and mode shapes. The 

contributions from all accessible mode shapes and associated natural frequencies are 

accumulated to form it. Damage has been shown to have an effect on a structure's stiffness 

matrix, specifically reducing the stiffness of the individual damaged elements. Increased 

structural flexibility results from a decrease in stiffness. It is desirable to employ changes in 

flexibility as an indication of damage in structural health monitoring rather than stiffness 

perturbation. This is because of the following aspects [22]: 

- Since the lower modes dominate the flexibility matrix, accurate estimates may be 

made even with a limited number of lower modes. 

- The modes and mode shapes produced by the system identification procedure 

immediately lead to the flexibility matrices. 

- Iterative algorithms usually converge the fastest to high eigenvalues. 

- These eigenvalues match the predominant low-frequency structural vibration 

components in flexibility-based approaches. 

Therefore, the detected modal parameters may be used to easily generate the dynamically 

measured flexibility matrix, which can then be used as a damage detection approach. A 

position i on the structure's related modal flexibility may be shown by [23]: 

𝐹𝑖  =  ∑
1

𝜔𝑟
2

 ɸ𝑖𝑟 ɸ𝑖𝑟
𝑇

𝑛

𝑟 = 1

 (7) 

 

Where ɸir is the magnitude of mass normalized modal vector at location i for mode r, ɸir
T is 

the modal vector that has been transposed at location i for mode r, ωr is the corresponding 

circular natural frequency to mode r, and n is the number of modes taken into consideration. 

Or in matrix form: 

[𝐹]  =  [𝜱]  ∙  [𝞚]−𝟏  ∙  [𝜱]𝑻 

 
(8) 

 

Where: 

[𝚽], [𝚽]T – The mode shape matrix and its transpose, respectively. 

[𝞚] – The spectral matrix containing the eigenfrequencies of n vibrating modes, diagonal 

(ωj
2).  
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The Modal Flexibility Assurance Criterion (MACFLEX) 

The values of the flexibility matrices of two structures—one that has been damaged and one 

that has not—are compared using the modal flexibility assurance criterion. The following 

formulas may be used to determine each component of the MACFLEX vector ([1×n]) [20]: 

𝑀𝐴𝐶𝐹𝐿𝐸𝑋𝑖  =  
(𝐹𝐴

(𝑖)𝑇
𝐹𝐵

(𝑖)
)2

(𝐹𝐴
(𝑖)𝑇

𝐹𝐴
(𝑖)

)(𝐹𝐵
(𝑖)𝑇

𝐹𝐵
(𝑖)

)
 (9) 

 

Where 𝐹𝐴
(𝑖)

 and 𝐹𝐵
(𝑖)

 are the i-th column vectors ([n×1])  of the flexibility matrices FA and FB, 

which represent the flexibility of healthy and damaged structures, respectively. Since it 

compares the identical vectors of each set of flexibilities, this criterion solely makes use of the 

diagonal terms of the MAC matrix as stated in equation (3). Thus, MACFLEX is a vector 

with the same number of values as the vectors included in the flexibility matrices [20]. 

The MACFLEX scalar value is created by multiplying the n distinct values of the MACFLEX 

vector [21]: 

𝑀𝐴𝐶𝐹𝐿𝐸𝑋 =  ∏ 𝑀𝐴𝐶𝐹𝐿𝐸𝑋𝑖

𝑛

𝑖= 1

 (10) 

 

As previously indicated, a score near to one indicates essentially minimal change in 

flexibilities and, as a consequence, a perfect correlation between the undamaged and damaged 

findings. An index equal to zero, however, signifies there is no connection between the two 

sets of flexibilities.  
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2.4. Optimization 
 

The process of choosing the best parameters from a range of accessible options that produce 

the greatest or lowest value of an objective function in accordance with a specified set of 

criteria is known as optimization or optimization design problems. Numerous quantitative 

fields, including computer science, engineering, economics, and operational research, 

encounter optimization issues. Engineering and mathematics have long been interested in 

developing strategies for solving optimization problems [18]. 

However, structural optimization methods are a crucial part of contemporary structural 

engineering. The process of designing a structure to achieve a set of objectives, such as being 

reliable, light, and efficient, while reducing its weight or cost is known as structural 

optimization. There are normally three phases in this process [18]:  

- Defining the goal function, potential limitations, and design variables. The 

characteristics that may be changed in the design, such as the structure's form, size, 

and material, are referred to as design variables. The criteria that the structure must 

fulfill, such as strength, stability, and durability, are the potential limitations. An 

indicator of a structure's performance, such as its weight or price, is its objective 

function [24]. 

- Defining the optimization challenge and 

- Solving the problem.  

The topic of evolutionary computing (EC) has had significant progress in the optimization 

domain when it comes to selecting an appropriate method. The vast majority of these 

algorithms take their cues from natural occurrences and are built using a mix of many rules 

and randomness. These methods can handle non-continuous, non-convex, and highly 

nonlinear solution spaces for challenging optimization problems [25]. 

Two significant groups of optimization algorithms are mathematical and metaheuristic ones. 

Mathematical algorithms are exact, predictable, and dependent on mathematical concepts, yet 

they may not succeed if the job is too difficult or large. Metaheuristic algorithms, on the other 

hand, describe methods for locating approximations of solutions. Instead of being a precise 

deterministic method, they are high-level techniques that direct the search in the direction of a 

desirable result [24]. Particle swarm optimization (PSO) and genetic algorithms (GA) are 

categorized as metaheuristic optimization techniques, while sequential quadratic 

programming (SQP) may be characterized as a mathematical optimization approach. 

 

2.4.1. Optimization algorithms 

 

This section introduces the fundamental ideas behind the optimization techniques employed in 

this study.   
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2.4.1.1. Particle Swarm Optimization (PSO) 

 

Particle swarm optimization (PSO), a metaheuristic optimization technique, was created by 

Kennedy and Eberhart in 1995 as a computer approach for optimizing continuous, nonlinear 

problems [26]. It is a probabilistic population-based approach, and the principles that govern 

the population are based on the behavior of bird flocks or bee swarms. Particles are the name 

given to the elements in the PSO algorithm. Each particle movement in the population is 

related to a subset of the population's particles and has an independent random component. 

This is also referred to as the particle's neighborhood and randomly produced velocity. In 

order to find a suitable solution to a problem, a collection of "Particles" is employed. Each 

particle's location is updated at each iteration based on its previous position and velocity, as 

well as the positions and velocities of the other particles in the swarm. The particles' 

movement is dictated by two types of information: the best position that the particle has 

achieved thus far, also known as the "personal best" position, and the best position that any 

particle in the swarm has achieved, otherwise known as the “global best" position. The 

algorithm alters the velocity of each particle as it moves towards its personal and global 

optimal positions at each time step [24]. PSO is a method that shows promise and has certain 

benefits over other optimization methods of a similar kind. This is mainly because the 

implementation is easier, there are less parameters that need to be changed, and the method 

uses less memory and computing power. PSO is also adaptable, making it simple to manage 

with goal functions [27]. 

The following is the updated equation for the particles' location and speed [25]: 

𝑉𝑖
𝑘+1  =  𝜔𝑉𝑖

𝑘  + 𝑐1𝑟1  ×  (𝑃𝑏𝑒𝑠𝑡𝑖
𝑘  −  𝑋𝑖

𝑘)  +  𝑐2𝑟2  ×  (𝐺𝑏𝑒𝑠𝑡
𝑘  −  𝑋𝑖

𝑘) 

 
(11) 

𝑋𝑖
𝑘+1 =  𝑋𝑖

𝑘  +  𝑉𝑖
𝑘+1 

 
(12) 

 

Where, 

Vi
k  velocity of particle i at iteration k  

ω  inertia weight factor 

c1, c2  acceleration coefficients 

r1, r2  random numbers in the range [0, 1] 

Xi
k  position of particle i at iteration k  

Pbesti
k  best position of particle i at until iteration k 

Gbesti
k  best position of the group i at until iteration k 
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2.4.1.2. Sequential Quadratic Programming (SQP) 

 

Mathematical optimization is carried out using sequential quadratic programming (SQP). SQP 

has shown itself to be very successful in solving non-linear restricted models. For the solution 

of complex problems, it offers strong algorithmic tools and is based on a solid theoretical 

framework [28]. As is done for unconstrained optimization, the procedure closely parallels 

Newton's technique for restricted optimization. Using a Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) quasi-Newton updating approach, the Hessian of the Lagrangian function is 

approximated at each iteration. As a result, a quadratic programming (QP) subproblem is 

created, the solution of which serves as the search direction for a line search technique. By 

resolving a series of QP approximations to the NLP, the SQP algorithm runs. The SQP uses 

the gradient data to solve a problem starting from a single search point. The objective function 

and restrictions must be continuously differentiable, as well as all other functions [27]. 

The generic structure optimization problem may be expressed mathematically as follows [29]: 

𝑚𝑖𝑛𝑥𝐹𝑐(𝑥) (13) 

 

Subject to:  

ℎ𝑖(𝑥) = 0, i = 1, … . . , m, (14) 

𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … . . , 𝑝 (15) 

Where: 

Fc is the objective function. 

m is the number of equality constraints h(x) 

p is the number of inequality constraints g(x)  

x is the vector containing the design parameters 

 

The preceding mathematical expression has an equality requirement. That is not often the 

case, for most structural optimization problems as they do not contain an equality constraint. 

Given that the main objective of the SQP is to decompose the issue into a simpler 

subproblem, which may then be solved and used as the foundation for an iterative process. To 

be more precise, to retain the subproblem's linearity while taking into account the 

nonlinearities in the constraints. As the aim, the SQP technique employs a quadratic model of 

the Lagrangian function 𝞚 [30].  

𝛬(𝑥𝑘, 𝑢𝑖 , 𝑣𝑖) = 𝐹𝑐(𝑥𝑘) + ∑ 𝑢𝑖ℎ𝑖(𝑥𝑘)

𝑚

𝑖=1

 +  ∑ 𝑣𝑖𝑔𝑖(𝑥𝑘)

𝑝

𝑖=1

 (16) 
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The objective function at xk is represented as Fc where ui and vi stand for the Lagrangian 

multipliers. The equality and inequality restrictions are hi and gi, respectively. The QP 

subproblem may be generated by linearizing the equality and inequality requirements, and it 

has the following form: 

𝑚𝑖𝑛𝑆𝑥 {𝐹𝐶(𝑥𝑘) + 𝛻𝐹𝐶(𝑥𝑘)𝑇𝑆𝑥 +
1

2
𝑆𝑥

𝑇𝐻𝑒𝑘𝑆𝑥} (17) 

 

Subject to: 

𝛻ℎ𝑖(𝑥𝑘)𝑇𝑆𝑥 + ℎ𝑖(𝑥𝑘) = 0, 𝑖 = 1, … … , 𝑚. (18) 

𝛻𝑔𝑖(𝑥𝑘)𝑇𝑆𝑥 + 𝑔𝑖(𝑥𝑘) ≤  0, 𝑖 =  1, … … , 𝑝 (19) 

 

Where T stands for the transposition operation, Sx = x - xk is the search direction, and xk is the 

vector carrying the design parameter at iteration k. Hek is assumed to be the Lagrangian 

function's Hassian matrix at xk. 

The initial estimate for the manipulator chain solution is used to begin the numerical 

technique, and after each iteration k, the quadratic programming issue is resolved to provide a 

search direction Sx. For a particular choice of the step-length parameter ψk, the solution Sx 

may be utilized to produce a new iteration, xk+1, as follows [27]: 

𝑥𝑘+1 = 𝑥𝑘 + 𝜓𝑘𝑆𝑥 (20) 

 

A fresh estimation of the Lagrangian multipliers is required to go on to the next iteration. 

Utilizing the quadratic sub-problem's optimum multipliers is a common strategy. Let's call 

these multipliers vqp and uqp. Thus, the following is how the updated multipliers uk+1 and vk+1 

are obtained [29]: 

𝑥𝑘+1 = 𝑥𝑘 + 𝜓𝑘𝑆𝑥 

𝑆𝑢 = 𝑢𝑞𝑝 − 𝑢𝑘 
(21) 

𝑣𝑘+1 = 𝑣𝑘 + 𝜓𝑘𝑆𝑣 

𝑆𝑣 = 𝑣𝑞𝑝 − 𝑣𝑘 
(22) 

 

In summary, a SQP approach determines the search direction using equations to solve the 

optimization issue given by the aforementioned equations (16) - (26) [29].  
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2.4.1.3. Genetic Algorithm (GA) 

 

An iterative method based on random search with modifications to the search minimum in 

coordinate direction is known as a Genetic algorithm (GA). To avoid stopping at a local 

minimum, GA uses a probabilistic criterion, which may assist to account for little fluctuations 

in the objective function. It was first proposed by Holland in 1975  and popularized Goldberg 

in 1989 [29] [31], GA was motivated by biological natural evolution, and the population of 

candidate solutions goes through a process resembling natural selection and genetic variation.  

Like PSO, GA begins its search with a population that is produced at random. The algorithm 

chooses parents at random from the existing population for each iteration, using them to 

generate offspring for the next generation. GA uses three basic sorts of procedures to assist it 

construct the following generation from the present one as part of the optimization process 

[32]: 

I. Selection 

II. Crossing 

III. Mutation 

'Selection', an operation that generates parents for the next generation, initiates the creation 

process. In biological populations, mating is represented by the 'crossover' operator. To 

conserve the attractive, enduring designs from the present to the future population, this 

operator serves as a filter. Finally, the ‘mutation' operator encourages population 

diversification and prevents the algorithm from becoming stuck in local optimums [33]. 

2.4.1.4. GRG-Nonlinear 

 

There are three ways to solve problems in Excel using the Excel Solver addon: Simplex LP, 

Evolutionary, and GRG, which stands for "Generalized Reduced Gradient". GRG’s approach 

determines that it has arrived at an optimal solution when the partial derivatives equal zero by 

first examining the gradient or slope of the objective function when the input values change 

[34]. 

GRG is a method that has potential and is superior to the other nonlinear solution techniques 

in Excel, mainly because it is well-known for being quick. This speed does have a price, 

however [35]. 

The disadvantage is that the answer you get using this technique may not be the overall best 

one since it depends so much on the beginning conditions that the user sets. Due to the 

solver's propensity to stop at the local optimal value that is closest to the beginning 

circumstances, the solution you obtain may not be globally optimized in this case [35]. The 

function must also be smooth, and not include for example IF or ABS functions, in order for 

the GRG nonlinear solver to provide a suitable result. 
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The Solver Options window's GRG Nonlinear tab allows you to activate the GRG Multistart 

option, which is part of the GRG nonlinear method. This will make it possible for the 

conventional GRG nonlinear algorithm to generate a population of starting values that are 

spread at random and then assessed one by one. It is more likely that the global optimum will 

be reached when diverse beginning circumstances are tried several times. 

2.4.1.5. Evolutionary 

 

Due to the fact that the Evolutionary algorithm is more likely to discover a globally optimal 

solution than the GRG nonlinear algorithm, it is more resilient. The solver method's other 

drawback is that it is quite sluggish. The procedure is slow because it is based on the Theory 

of Natural Selection, which is effective in this situation since the ideal result has already been 

determined [36]. To put it simply, the solution begins with a random "population" of input 

value sets. These input value sets are entered into the model, and the outcomes are assessed in 

relation to the desired value [35]. 

A second population of "offspring" is produced by choosing the sets of input values that 

provide solutions that are most closely related to the desired value. The offspring are a 

"mutation" of the ideal set of initial population input values. The third population is then 

created once the second population has been examined and a winner selected. This continues 

until the objective function of one population relative to the next doesn't alter much beyond 

this point. This procedure takes a long time since each person in the population has to be 

assessed separately. Additionally, to identify the next optimum set of values, succeeding 

"generations" are randomly filled rather than utilizing derivatives and the slope of the 

objective function [35]. 

Excel may provide you with some control over the procedure to hasten the outcome by letting 

the user choose the Population Size and Mutation Rate. Reduced population size and or higher 

mutation rates may need even more populations in order to attain convergence, hence this has 

diminishing returns [35]. 
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3. Investigation of the performance of various 

optimization algorithms and modal correlation 

criteria 
 

This chapter introduces the implementation of the optimization algorithms as well as the 

various modal correlation criteria mentioned in the literature review, using numerical 

examples. The chapter is divided into two sub-chapters, where the first chapter exhibits 

examples using well-known optimization algorithms, and the second chapter exhibits the 

various criteria and how they perform.  

The purpose of this investigative work is for the author to be familiar with these methods and 

exhibit using numerical examples for better comprehension. The aforementioned methods will 

later on be used in the case study of this thesis. The chosen methods are well-known within 

mathematics and engineering.  

The numerical examples provided in this chapter are based on two research articles that were 

previously published. The first study, “A collection of 30 Multidimensional functions for 

global optimization benchmarking” by Plevris and Solórzano [37], investigated a total of 30 

mathematical functions that can be used for optimization. The second paper, “Investigation of 

the performance of various modal correlation criteria in structural damage identification” by 

Georgioudakis and Plevris [21].   

The numerical work for this chapter have been completed in Matlab and Excel. 

3.1. Optimization algorithms  

 

  Finding the optimal element from a collection of potential options in terms of a particular 

criteria is the process of mathematical optimization. Engineering and mathematics have been 

interested in finding solutions to these optimization problems for centuries. Optimization 

difficulties are encountered in many quantitative fields, including engineering [37]. 

On a regular basis, new optimization techniques or fresh iterations of established ones are 

offered. Although there are certain known optimization techniques, when a variety of 

optimization problems are considered, no one technique beats all the others. A collection of 

well-known optimization problems is often chosen by the method’s creators to test the 

algorithm on and serve as a benchmark for comparison with other, already-in-use methods. 

The benchmark functions, which are the objective functions selected for testing, are crucial in 

determining if the new suggested algorithm may be deemed successful when its performance 

is superior to or at least comparable to that of the current, well-established algorithms [37].  

This section presents and explores in depth a set of ten mathematical functions that may be 

utilized for optimization. The functions are benchmark functions for unconstrained two-

dimensional single-objective optimization problems are specified in two dimensions (D = 2). 

The ten objective functions used in this example are the Sphere, Ellipsoid, Sum of different 
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powers, Quintic, Drop_Wave, Alpine 1, Griewank’s, Rastring’s, HappyCat, and HGBat 

functions.  

The performance of three optimization algorithms, namely Genetic Algorithm (GA), Particle 

Swarm Optimization (PSO) and Sequential Quadratic Programming (SQP), and three Excel 

Solver methods, namely GRG-nonlinear, GRG Multistart and Evolutionary are investigated. 

The implementation of the optimization algorithms is carried out in Matlab, while the Excel 

Solver methods are carried out using Excel.  

Plevris and Solorzano [37] earlier looked at a study of a similar kind that included a collection 

of thirty mathematical functions that might be used for optimization. The functions can be 

used as benchmark functions for unrestricted multidimensional single-objective optimization 

problems since they are specified in multiple dimensions for any number of dimensions. In 

their research, they examined the effectiveness of two metaheuristic algorithms, GA and PSO, 

and a mathematical algorithm, SQP. The objective functions, optimization techniques, and 

applicability for each problem were the authors main focus. The authors also looked at how 

the performance of the optimizers and complexity of each challenge change as dimensionality 

increases.  

The mathematical expressions of the ten functions used as optimization benchmark for this 

example are presented in Table 1.  

Table 1 Mathematical expression of the 10 benchmark functions 

No. Function Mathematical expression 

1 Sphere 𝑥1
2  + 𝑥2

2 

2 Ellipsoid 𝑥1
2  + 2𝑥2

2 

3 Sum of different 

powers 

|𝑥1|2 +  |𝑥2|3 

4 Quintic |𝑥1
5  − 3𝑥1

4  +  4𝑥1
3  +  2𝑥1

2  − 10𝑥1  −  4|  

+  |𝑥2
5  − 3𝑥2

4  + 4𝑥2
3  + 2𝑥2

2  − 10𝑥2  

− 4| 

5 Drop Wave 
1 −  

1 +  𝑐𝑜𝑠 (12 √𝑥1
2  +  𝑥2

2

0.5 (𝑥1
2  + 𝑥2

2)  +  2
 

6 Alpine 1 |𝑥1𝑠𝑖𝑛(𝑥1) +  0.1𝑥1| + |𝑥2𝑠𝑖𝑛(𝑥2) +  0.1𝑥2| 

7 Griewank’s 𝑥1
2 + 𝑥2

2

4000
−  𝑐𝑜𝑠(𝑥1) ∙  𝑐𝑜𝑠(

𝑥2

√2
) +  1 

8 Rastring’s 𝑥1
2 + 𝑥2

2  −  10𝑐𝑜𝑠(2𝜋𝑥1)  −  10𝑐𝑜𝑠(2𝜋𝑥2) + 20 

9 HappyCat |𝑥1
2 + 𝑥2

2 − 2|1/4 + 0.25(𝑥1
2 + 𝑥2

2) + 0.5(𝑥1 + 𝑥2)

+ 0.5 

10 HGBat |(𝑥1
2 + 𝑥2

2)2 −  (𝑥1 + 𝑥2)2|1/2 + 0.25(𝑥1
2 + 𝑥2

2)

+ 0.5(𝑥1 + 𝑥2) + 0.5 
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There is a specified minimum value since all the objective functions in this example 

correspond to minimization. The functions are investigated in two dimensions. For 

consistency, the minimum value for each function is set to zero. All the functions have no 

constraints and are considered unconstrained, but an upper and lower limit are set. The 

numerical work in this example is carried out both in Matlab and Excel Solver. The Matlab 

implementations for the optimization algorithms (GA, PSO, SQP) is executed using the 

Matlab commands ga, particleswarm, and fmincon, respectively.  

Table 2 Input data for the various methods 

Optimization 

Algorithm/ 

Excel Solver 

No. of 

Dimension/va

riables, D 

Search 

range (lb & 

ub) 

Implementations Starting 

point 

values 

GA 2 [0, 100] Matlab - 

PSO 2 [0, 100] Matlab - 

SQP 2 [0, 100] Matlab [10; 8] 

GRG-

nonlinear 

2 [0, 100] Excel Solver [10; 8] 

GRG 

Multistart 

2 [0, 100] Excel Solver - 

Evolutionary 2 [0, 100] Excel Solver - 

   

 

Table 2 presents the metaheuristic and mathematical optimizers, the number of dimensions for 

the mathematical functions, the search range (upper and lower bounds), implementation 

program and starting point values at the solution chosen when running the solving method. 

The lower and upper bounds set for all solving methods are 0 and 100 respectively. Notice 

that only SQP and GRG-nonlinear requires defining a starting point value. These values are 

chosen by the user, as these methods are dependable on initial values when searching for a 

solution. If the inserted starting point values are closer to the real solution, the faster will the 

solver finish solving the function. In the case of this example, since I have two design 

variables, two random values are chosen, 10 and 8 are set as initial values.  
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Table 3 Results for every method. 

No. Function SQP PSO GA GRG-

Nonlinear 

GRG-

Nonlinear 

(Muli 

Start) 

Evolution

ary 

1 Sphere  8.18E-07 0 0 0 0 0 

2 Ellipsoid  9.86E-07 0 2.98E-08 0 0 0 

3 Sum of 

different 

powers 

2.67E-07 0 0 0 0 0 

4 Quintic 4.1002 4 4.0005 8 4 0.0012 

5 Drop-

Wave 

0.9753 0 0.638 0.968 0 0 

6 Alpine 1 0.0602 0 1.91E-07 1.00E-04 0 0 

7 Griewank 0.0666 0 0.106 0.0592 0 0 

8 Rastring 6.47E-07 0 1.20E-06 163.1673 4.974 0 

9 HappyCat 1 1 1 1 1 1 

10 HGBat 1 0.5 1 0.5 0.5 0.5 

 

Table 3 presents the results for each function using the optimization algorithms and Excel 

Solver methods mentioned above. Most of the results obtained using the various solving 

methods show a small variance or are in most cases similar. Every approach has its own 

distinct features, benefits, and downsides, just as every function has its own specific qualities. 

Functions such as HappyCat, HGBat and Griewank’s are easily optimized by all solving 

methods, while others pose a real challenge to some.  

The GRG-nonlinear shows the greatest variance of the results especially for the Quintic and 

Rastring’s functions. The SQP also shows some variance, not as great as the GRG-nonlinear, 

but to some extent. This is mainly due to how these methods work. GRG-nonlinear and SQP 

require randomly chosen starting point values when solving a function, and when these values 

are far from the optimum solution, the solver methods tend to be stuck in a local minimum 

and result in a wrong solution rather than finding the global minimum value.   

 

3.2. Modal correlation criteria examples 

 

In this section, I will be focusing on investigating the performance of the different modal 

correlation criteria and how they are able to detect damage in structures via optimizing the 

correlation between the measured and predicted modal parametric change. Modal correlation 

criteria are used as a simple mathematical technique to assess the degree of consistency and 

correlation between estimates of modal vectors for the measured and predicted natural 

frequencies or mode shapes.  
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This example is based on prior research by Georgioudakis and Plevris [21], who evaluated the 

performance of several modal correlation criteria in structural damage detection. The 

structural damage detection problem is modeled as an optimization problem, with the 

differential evolution search technique used to solve it. A measure of consistency and 

correlation between estimates of modal vectors is shown by the objective functions utilized in 

the optimization process, which are based on various modal correlation criteria. By providing 

a variety of damage scenarios for a beam, they assessed the effectiveness of each of the 

objective functions.  

The criteria that have been used in this example for the purpose of providing a measure of 

consistency and correlation between estimates of modal vectors are as follows: 

- The Modal Assurance Criterion (MAC) 

- The Modified Total Assurance Criterion (MTMAC) 

- The Co-ordinate Modal Assurance Criterion (COMAC) 

- The Modal Flexibility Assurance Criterion (MACFLEX) 

 

Each criterion will be shown using a mathematical formulation. For better understanding and 

to demonstrate the various criteria employed, the numerical values for a given example as in 

the research article [21] of two structures will be replicated for this numerical example. 

Considered are the example structures A and B which correspond to the example which is 

examined in the research study. There are 9 active DOF’s in each structure, and up to 4 

eigenvalues and eigenmodes should be known and taken into account. Structure A portrays 

the structure in its undamaged condition, whereas structure B depicts the same structure with 

damage to the fourth, fifth, sixth, seventh, eighth and ninth elements of 20%, 30%, 40%, 60%, 

and 30%, respectively.   
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Table 4 Modal properties for structure A 

  1st Eigenmode 2nd Eigenmode 3rd Eigenmode 4th Eigenmode 

 λ = ω2 (sec-2) 3008.56 48108.77 243219.45 765859.94 

Nodal 

values 

Eigenperiod 

T (sec) 
0.1146 0.0286 0.0127 0.0072 

1st DOF 0.505 -0.960 -1.321 -1.553 

2nd DOF 0.960 -1.553 -1.553 -0.960 

3rd DOF 1.322 -1.553 -0.505 0.960 

4th DOF 1.553 -0.959 0.960 1.553 

5th DOF 1.633 0.001 1.633 0.000 

6th DOF 1.553 0.960 0.960 -1.553 

7th DOF 1.321 1.553 -0.505 -0.960 

8th DOF 0.959 1.553 -1.553 0.960 

9th DOF 0.504 0.960 -1.321 1.553 

 

Table 5 Modal properties for structure B 

  1st Eigenmode 2nd Eigenmode 3rd Eigenmode 4th Eigenmode 

 λ = ω2 (sec-2) 1762.18 32163.04 174959.58 540463.95 

Nodal 

values 

Eigenperiod 

T (sec) 0.1497 0.0350 0.0150 0.0085 

1st DOF 0.439 -0.854 -1.206 -1.438 

2nd DOF 0.849 -1.442 -1.552 -1.157 

3rd DOF 1.206 -1.585 -0.780 0.543 

4th DOF 1.476 -1.184 0.636 1.611 

5th DOF 1.627 -0.298 1.631 0.488 

6th DOF 1.629 0.787 1.269 -1.489 

7th DOF 1.441 1.576 -0.366 -1.164 

8th DOF 1.053 1.594 -1.582 1.035 

9th DOF 0.546 0.935 -1.245 1.468 

 

Table 4 and Table 5 show the eigenproperties of the two structures. The numerical work in 

this section has been carried out in Excel using equations (3), (4), (5), (6), (9), and (10).  
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The Modal Assurance Criterion (MAC) 

The first criterion used is the MAC criterion. This criterion indicates the correlation between 

the two sets of natural modes for structures A and B using equation (3).  

MAC is a vector with four eigenmodes in our case, which has as many values as the number 

of eigenmodes. Considering all four eigenmodes in our case, we arrive to the following MAC 

values:  

MAC(A, B) = MAC(B, A) = [0.9950 0.9853 0.9765 0.9609] 

In order to obtain the final MAC scalar values, we multiply the individual values of the MAC 

vector using and get the following: 

Table 6 MAC scalar values 

No of known modes 1 2 3 4 

MAC(A, B) 0.9950 0.9803 0.9573 0.9199 

 

For our example, Table 6 displays the values for MAC for different values of the number of 

known eigenmodes. It can be noticed that with one eigenmode, the MAC results show a 

consistent correspondence between the two mode shape vectors, while with increasing 

number of known modes, the results a decrease in MAC values indicating a less consistent 

correspondence between the two mode shape vectors.  

The Modified Total Modal Assurance Criterion (MTMAC) 

The second criterion used is the MTMAC. The MTMAC criterion takes the eigenvalues of the 

different mode shapes of the structure in addition to the eigenvectors, which helps give us 

more correct results in case of a uniform damage in the structure. The criterion using equation 

(5) indicates the correlation between the two sets of natural modes for structures A and B.  

MTMAC is a row vector with four eigenmodes in our case and considering all four 

eigenmodes, we arrive to the following MTMAC values: 

MTMAC(A, B) = MTMAC(B, A) = [0.7889   0.8220   0.8395   0.8195] 

And in order to acquire the final MTMAC values, we multiply the individual values of the 

MTMAC vector using equation (6) and get the following: 

Table 7 MTMAC scalar values 

No of known modes 1 2 3 4 

MTMAC(A, B) 0.7889 0.6484 0.5444 0.4461 

 

Table 7 shows the calculated values of MTMAC for various known eigenmodes. Similar to 

the MAC criterion, an index equal to zero means no correlation between the two sets of mode 

shapes and natural frequencies, whereas a value close to one shows a good correlation 

between the two sets.   
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The Co-ordinate Modal Assurance Criterion (CoMAC) 

Another criterion, the Co-ordinate Modal Assurance criterion (COMAC), an extension of 

MAC is used in this example to determine the difference between the two modal vectors at 

the degree of freedom level. Using equation (4) the COMAC scalar is calculated, and the 

following values are obtained:  

Table 8 COMAC scalar value 

No of known modes 1 2 3 4 

1st DOF 1.0000 0.9999 0.9997 0.9997 

2nd DOF 1.0000 0.9995 0.9979 0.9905 

3rd DOF 1.0000 0.9970 0.9804 0.9509 

4th DOF 1.0000 0.9850 0.9623 0.9754 

5th DOF 1.0000 0.9678 0.9837 0.9421 

6th DOF 1.0000 0.9892 0.9760 0.9814 

7th DOF 1.0000 0.9987 0.9934 0.9906 

8th DOF 1.0000 0.9991 0.9993 0.9992 

9th DOF 1.0000 0.9980 0.9983 0.9990 

COMAC 1.0000 0.9356 0.8955 0.8395 

 

Table 8 presents the COMAC scalar value for known eigenmodes for our example. When a 

COMAC value is low (less than 1), it suggests that the two sets of mode shapes for the chosen 

degree of freedom are inconsistent or dissimilar from one another, while a value closer to 1 or 

equal to 1 suggests that the two sets of mode shapes are concordant for that degree of 

freedom.  
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The Modal flexibility Assurance Criterion (MACFLEX) 

Finally, the modal flexibility assurance criterion (MACFLEX) is applied to the two sets of 

mode shapes for structures A and B. MACFLEX compares the values of the flexibility matrix 

of a structure as damage affects the stiffness matrix of a structure and reduces its stiffness. 

Using equation (9) the dynamically measured flexibility calculated from the identified modal 

parameters is calculated.  The MACFLEX scalar value is finally calculated using equation 

(10).  

Table 9 shows the MACFLEX scalar value for 1, 2, 3 and 4 known eigenmodes, for our 

example. A score near to one, as with the other aforementioned criteria, signifies almost little 

change in flexibility and as a result, a perfect correlation between the two structures, A and B. 

In contrast, a value close to zero denotes no correlation between the two structures. With an 

increasing number of known modes, for our example, we can see that the MACFLEX value 

rises and becomes closer to one.  

Table 9 MACFLEX scalar value 

No of known modes 1 2 3 4 

1st DOF 0.9950 0.9929 0.9932 0.9933 

2nd DOF 0.9950 0.9936 0.9939 0.9939 

3rd DOF 0.9950 0.9947 0.9948 0.9948 

4th DOF 0.9950 0.9957 0.9956 0.9956 

5th DOF 0.9950 0.9963 0.9962 0.9962 

6th DOF 0.9950 0.9965 0.9965 0.9965 

7th DOF 0.9950 0.9967 0.9967 0.9967 

8th DOF 0.9950 0.9972 0.9973 0.9973 

9th DOF 0.9950 0.9978 0.9980 0.9979 

MACFLEX 0.9557 0.9621 0.9628 0.9629 
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4. Case Study 
 

The objective of this thesis is to explore a method for accurately detecting both the position 

and extent of damage in structures. The focus will be on utilizing specific dynamic 

characteristics data of the structure that can be easily measured. The data of the structure is 

acquired by developing software that performs the dynamic analysis of structures using the 

FEM. The investigation will specifically target a 10-bar plane truss as the structure for 

damage identification. 

To address the problem of structural damage identification, an optimization approach is 

employed, utilizing the GA (Genetic Algorithm) and PSO (Particle Swarm Optimization) 

algorithms. These algorithms are introduced in Chapter 2.4, and their effectiveness is 

examined in Chapter 3.1 of the literature review. 

Furthermore, this thesis delves into the assessment of various modal correlation criteria in 

relation to structural damage. Two modal correlation criteria, namely MACFLEX and 

MTMAC, are employed as objective functions within the optimization process to determine 

the location and extent of the structural damage. The performance of each objective function 

is evaluated across multiple damage scenarios involving a 10-bare plane truss structure. 
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5. Methodology 
 

5.1. Problem definition 

 

Three key elements in the structural damage diagnosis process are the establishment of an 

objective function, choosing the update parameters, and using reliable optimization 

techniques. They demand profound physical understanding and often use trial-and-error 

techniques. For our case, the problem of identifying damage is viewed as an unconstrained 

optimization problem, where the extent of damage for each individual element within the 

structure is represented by the design variables. Consequently, the number of design variables 

corresponds to the total number of elements present in the structure.  

In the current thesis, the modal parameters computed from both the experimental and 

numerical models serve as the objective function for damage detection. The dynamic 

characteristics data collected by certain experiments make up the experimental model. 

However, in the current thesis, this information is not available, necessitating an alternative 

approach to obtain  the experimental values of natural frequencies and the mode shapes of the 

structure. Here is the procedure used: 

- Firstly, it is presumed to have pre-existing knowledge of the damage index values. 

Damage extent is quantified using a scalar variable or index denoted by d, which 

ranges from 0, indicating no damage, to 1, representing 100% damage. However, for 

numerical stability reasons, the maximal damage value is set at 0.999, barely below 1. 

This precaution is taken to prevent the structure from turning into an unanalyzable 

mechanism, which could result in numerical instability.  

- Using equation (2), the modal parameters of the structure are computed. These modal 

parameters correspond to the exact actual values and are difficult to attain through 

experimental measurements. It is commonly presumed that the vibration frequencies 

have been determined accurately during modal testing, with experimental errors 

occurring predominantly in the determination of mode shape amplitudes. To better 

align calculated modal parameters with actual experimental values, noise is added to 

the calculated parameters or each mode shape using equation [38]: 

𝑉𝑛𝑢𝑚  =  𝑉𝑛𝑢𝑚  ∗  (1 + 0.01 ∗ 𝑁𝑜𝑖𝑠𝑒𝑅𝑎𝑡𝑖𝑜 ∗  𝝃) (23) 

By integrating these stages, the objective function for damage detection incorporates both 

numerical and experimental modal parameters, thereby providing a holistic approach to the 

thesis.  

The damage index values, which are not preset, are now used in the numerical model to 

represent the design variables of the optimization problem. The numerical stiffness matrix and 

modal parameters are generated for each iteration of the optimization procedure, which starts 

with the damage index being given random values. The reduction of the discrepancy between 

the modal parameter values derived from the numerical and experimental models is the main 

goal of the minimization procedure in the objective function.  
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In this paper, three objective functions were taken into account corresponding to the MTMAC 

and MACFLEX correlation requirements between the actual damage and damage calculated 

by FEM and are presented as follows: 

𝑦1 =  100 ∙ (1 −  𝑀𝐴𝐶𝐹𝐿𝐸𝑋) (24) 

𝑦2  =  1 − 𝑀𝑇𝑀𝐴𝐶 (25) 

𝑦3 =  √𝑦1
2 + 𝑦2

2 (26) 

The third objective function (y3) is employed to combine the benefits of the first two objective 

functions.  

The minimum target value for all the objective functions are set to zero. In practical 

situations, the dynamic properties, such as eigenvalues and eigenmodes of the actual damaged 

structure need to be measured experimentally in order to be determined. In our case, however, 

these properties are calculated numerically utilizing a “real damage” finite element model.  

As mentioned earlier, the problem of identifying damage is viewed as an unconstrained 

optimization problem, and this problem is solved using two optimization algorithms, GA and 

PSO.  

5.2. Finite Element Analysis 

 

Sirois and Grilli define numerical modelling as “a mathematical representation of a physical 

behavior, based on relevant hypotheses and simplifying assumptions [39].” Engineers 

throughout the world are utilizing numerical modelling and computer simulations to solve 

engineering problems. This approach is applicable to a wide range of problems, spanning 

from simple 2D problems to intricate 3D problems and abstract models. While it is 

theoretically possible to solve these problems manually or through outdated and less advanced 

methods, such approaches would take a significantly larger amount of time compared to using 

numerical modeling and computer simulations.   

There are numerous varieties of numerical modeling. This thesis employs the finite element 

method (FEM), one of the most widely used methodologies, for numerical modeling. When 

applied to a simulation, this technique is known as FEA – Finite Element Analysis. FEA 

demonstrates how the elements in a structure react and perform when subjected to stress and 

loads [40].  

In order to study and analyze the behavior of the truss structure used in this study, Matlab 

software is utilized. A program has been developed in the software and it is written in Matlab 

programming language. To perform dynamic analysis, the program needs an input file 

inserted by the user. The file is a text file (in text format) that includes structural data such as 

the length of the structure, the assigned load, section area, and the modulus of elasticity. The 

program draws and displays the model in a simple figure. The analysis’s findings are then 

recorded in a text-based output file. Modal correlation criteria, specifically the MTMAC and 

MACFLEX, is also integrated into the program in order to compare the sets of values for the 

experimental and numerical structures. Finally, the two optimization algorithms, GA and 

PSO, adopted in this study to solve the optimization problems are integrated into the program.  
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6. Numerical Example – 10-bar plane truss 
 

6.1. Model Input  

 

A 10-bar plane truss model is analyzed in this thesis to illustrate the performance of the 

proposed methodology and the different criteria. The 2D truss model is presented in Figure 2 

10-bar plane truss model. The Young’s modulus of the truss is 2.1*108 kN/m2, length L is 6m, 

the assigned load P is 100 kN and the material mass m is 0.5 kg. The structural members are 

divided into 10 groups and their section area is shown in Table 10.  

 

Figure 2 10-bar plane truss model 

Table 10 Section Area for each member m2 

Member ID Section Area (m2) 

1 0.00200 

2 0.00200 

3 0.00200 

4 0.00200 

5 0.00200 

6 0.00200 

7 0.00200 

8 0.00200 

9 0.00200 

10 0.00200 
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Table 11 General optimization parameter for 10-bar plane truss 

Design variable d (damage index) 

Number of design 

variables 

10 

Lower bound (lb) 0 

Upper bound (ub) 0.999 

 

Table 12 GA parameter values for 10-bar plane truss 

Matlab command ga 

Number of 

variables (D) 

10 

Number of runs 5 

Generations 100 

Population size 

(NP) 

200 

 

Table 13 PSO parameter values for 10-bar plane truss 

Matlab command particleswarm 

Number of 

variables (D) 

10 

Number of runs 5 

Swarm size 200 

MaxIterations 100 

 

The structure is exposed to three damage scenarios in order to study the performance of the 

suggested methodology. These scenarios are as follows: 

1. 40% damage at element 1 

2. 20%, 40% and 60% at element 4, 8 and 9 respectively  

3. A uniform damage of 20% at all elements  

 

Objective functions: 

𝑦1 =  100 ∙ (1 −  𝑀𝐴𝐶𝐹𝐿𝐸𝑋) 

𝑦2  =  1 − 𝑀𝑇𝑀𝐴𝐶 

𝑦3 =  √𝑦1
2 + 𝑦2

2 

Noise: 

𝑉𝑛𝑢𝑚  =  𝑉𝑛𝑢𝑚  ∗  (1 + 0.01 ∗ 𝑁𝑜𝑖𝑠𝑒𝑅𝑎𝑡𝑖𝑜 ∗  𝝃)  
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6.2. Results  

 

All damage scenarios have been optimized using the same optimizing algorithms, GA and 

PSO. Both optimization algorithms run 5 times and the best result is obtained by the run with 

the minimum objective function value. To maintain consistency for all the tests, for both GA 

and PSO, the maximum number of iterations is set to 200.  

Two different modal correlation criteria (MACFLEX and MTMAC) are used to formulate the 

three objective functions (24), (25) and (26). The range of known eigenmodes for each 

criterion ranges from 1 to 4.  

Both tables and bar charts are used to display the findings. The real damage, which represents 

the target damage, is always shown in red color in bar charts, whereas the colored bars 

represent calculated damage based on the optimization algorithms.  

6.2.1. Damage scenario 1  

 

The first damage scenario is going to be 40% at element 1.  Multiple tests with the three 

objective functions are carried out within this damage scenario, namely equations (24), (25) 

and (26). The first set of tests is carried out without the application of noise to each mode 

shape. The second set is carried out with the application of 5% and 10% noise to the mode 

shapes of the structure. Tests were carried out for 1, 2, 3 and 4 known eigenmodes.  

 

 

Figure 3 10-bar plane truss with single element damage 
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i) Without the application of noise.  

 

a) GA Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 14 Optimization results in percentage with GA for single element damage using objective function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 76.04 59.64 57.87 58.88 42.78 84.54 56.68 62.92 58.41 59.63 

2 modes 65.93 43.18 43.30 43.06 43.23 43.39 43.21 43.18 43.26 43.17 

3 modes 64.52 40.94 40.93 40.95 40.87 40.58 40.91 40.96 40.98 40.90 

4 modes 65.82 43.08 43.02 43.06 42.9 42.9 43.0 43.05 43.0 42.9 

 

Mode Min. objective 

function value 

1 1.15E-04 

2 2.12E-05 

3 1.59E-05 

4 4.58E-06 

 

b) PSO Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 15 Optimization results in percentage with PSO for single element damage using objective function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 40.0 0 0 0 0 0 0 0 0 0 

2 modes 40.0 0 0 0 0 0 0 0 0 0 

3 modes 40.0 0 0 0 0 0 0 0 0 0 

4 modes 40.0 0 0 0 0 0 0 0 0 0 

 

Mode Min. objective 

function value 

1 2.26E-09 

2 1.44E-13 

3 1.33E-12 

4 2.73E-10 
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Figure 4 Damage results - Real vs Calculated (GA) using objective function y1. 

 

 

Figure 5 Damage results - Real vs Calculated (PSO) using objective function y1. 

 

Figure 4 and Figure 5 shows how the first objective function (y1) performs for the first 

damage scenario using GA and PSO algorithms. We can see that the PSO algorithm shows a 

better performance, since it manages to identify the damage 100% in all modes known. This is 

also seen in Table 15, as the algorithm scored 100% identical damage percentage to that of the 

real damage. The GA algorithm, however, shows poor performance in identifying the extent 

and location of the damage. Although it gives an indication of damage to the existence in the 

structure, it is not a valid damage rate for the specific element.   
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c) GA Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 16 Optimization results in percentage with GA for single element damage using objective function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 29.3 33.4 2.85 15.3 72.4 85.3 5.2 15.2 1.3 21.8 

2 modes 32.5 8.45 2.5 1.46 3.21 0.9 4.2 3.2 19.2 21.8 

3 modes 35.8 1 1.9 0 9.15 17.8 0.4 1.1 28.5 1.3 

4 modes 39.6 0.2 0.6 0 0.3 1.7 0 0 0 0.3 

 

Mode Min. objective 

function value 

1 0.000587 

2 0.0012904 

3 0.00666 

4 0.001755 

 

d) PSO Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 17 Optimization results in percentage with PSO for single element damage using objective function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 39.5 1 0 0.7 9.6 52.4 0 0.1 2.7 0.8 

2 modes 39.9 0 0 0 0 0 0 0 0 0.1 

3 modes 40.0 0 0 0 0 0 0 0 0 0 

4 modes 40.0 0 0 0 0 0 0 0 0 0 

 

Mode Min. objective 

function value 

1 2.07E-06 

2 3.00E-08 

3 2.18E-09 

4 5.89E-10 
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Figure 6 Damage results - Real vs Calculated (GA) using objective function y2. 

 

 

Figure 7 Damage results - Real vs Calculated (PSO) using objective function y2. 

 

Figure 6 and Figure 7 shows the performance of the second objective function (y2) for damage 

scenario 1, using both the GA and PSO algorithms. Again, we see that the PSO algorithm 

performs better than the GA in identifying the extent and location of the damage. We can also 

see that the algorithm exhibits damage in element 6 with 1 known mode, but with more 

known modes, the algorithm is able to provide with the exact damage extent and location as 

can be seen in Table 17. The GA algorithm show a very good performance with this second 

objective function, especially when 4 eigenmodes are known, since it manages to identify the 

damage almost 100%.     
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e) GA Optimization with both MACFLEX and MTMAC criteria:  𝑦3 =  √𝑦1
2 + 𝑦2

2  

Table 18 Optimization results in percentage with GA for single element damage using objective function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 41.4 0.9 0.7 1.7 2.6 6.6 1.36 2.8 1.5 2.7 

2 modes 55.9 36.8 33.2 22.3 27.2 26.7 34.6 27.9 30.7 30.3 

3 modes 39.6 0.9 0.8 2.4 3.1 2.1 1.4 1 2.4 1.9 

4 modes 39.7 1.2 0.8 1.5 0.4 5.6 0.9 1 1.2 1.9 

 

Mode Min. objective 

function value 

1 0.008534 

2 0.28665 

3 0.014822 

4 0.017381 

 

f) PSO Optimization with both MACFLEX and MTMAC criteria:  𝑦3 =  √𝑦1
2 + 𝑦2

2  

Table 19 Optimization results in percentage with PSO for single element damage using objective function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 40.0 0 0 0 0.2 1.1 0 0 0 0 

2 modes 39.9 0 0 0 0 0.2 0 0 0 0 

3 modes 40.0 0 0 0 0 0 0 0 0 0 

4 modes 40.0 0 0 0 0 0 0 0 0 0 

 

Mode Min. objective 

function value 

1 1.69E-07 

2 6.34E-07 

3 4.69E-09 

4 1.71E-10 
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Figure 8 Damage results - Real vs Calculated (GA) using objective function y3. 

 

 

Figure 9 Damage results - Real vs Calculated (PSO) using objective function y3. 

 

Figure 8 and Figure 9 shows the performance of the third objective function (y3) for the first 

damage scenario using GA and PSO algorithms, respectively. Both algorithms show a very 

good performance in identifying the damage. Again, the same trend shows an excellent 

performance for the PSO when compared to that of the GA. The GA algorithm with the third 

objective function gives a clearer indication about the position and the rate of the damage, 

especially with 1, 3 and 4 modes known, when compared to the results with the first and 

second objective functions.   
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ii) With applied noise of 5% 

 

a) GA Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 20 Optimization results in percentage with GA for single element damage using objective function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 66.7 40.3 46.6 33.4 70.0 93.3 37.1 41.5 63.3 4.8 

2 modes 70.1 42.7 50.5 37.5 59.0 82.5 40.5 45.9 75.2 0.3 

3 modes 71.8 54.2 50.9 50.5 57.6 76.4 45.8 52.2 70.9 24.7 

4 modes 56.9 34.2 27.2 27.6 32.9 52.9 21.4 27.5 34.5 33.4 

 

Mode Min. objective 

function value 

1 0.000153 

2 3.73E-01 

3 5.68E-01 

4 0.57772 

 

b) PSO Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 21 Optimization results in percentage with PSO for single element damage with 5% added noise using 

objective function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 40 0 0 0 0 0 0 0 0 0 

1 mode 62.6 36.7 34.8 11.7 3.2 97.8 19.1 42.1 49.8 0 

2 modes 64.6 32.9 41.1 28.0 50.5 78.2 30.0 35.9 69.5 0 

3 modes 60.6 35.8 31.3 31.7 40.1 66.8 24.4 32.9 58.9 0 

4 modes 45.4 16.7 7.6 7.9 14.4 41.8 0.4 8.2 19.3 15.3 

 

Mode Min. objective 

function value 

1 3.38E-07 

2 0.35951 

3 0.56993 

4 0.57669 
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Figure 10 Damage results  - Real vs Calculated (GA) using objective function y1 with 5% noise. 

 

 

Figure 11 Damage results  - Real vs Calculated (PSO) using objective function y1 with 5% noise. 

 

Figure 10 and Figure 11 shows the performance of the first objective function (y1) for the first 

damage scenario, using both GA and PSO algorithms, when noise is applied to the mode 

shapes of the structure. The value of the noise ratio is set at 5%. Both algorithms appear not to 

exhibit a very good performance, even in the cases where 4 eigenmodes are known.   
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c) GA Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 22 Optimization results in percentage with GA for single element damage with 5% added noise using 

objective function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 33.3 14.2 0.9 17.2 79.1 99.9 9.6 5.1 11.8 1.1 

2 modes 26.6 18.6 0.9 0.1 14.8 0.3 1.9 0 34.2 41.8 

3 modes 33.6 7.5 3.8 0.1 4.9 5.0 0 0.4 31.9 5.6 

4 modes 38.9 0.4 1.5 0.3 1.1 6.0 0.7 0 0.3 0.2 

 

Mode Min. objective 

function value 

1 0.0005513 

2 0.0042633 

3 0.012018 

4 0.009182 

 

d) PSO Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 23 Optimization results in percentage with PSO for single element damage with 5% added noise using 

objective function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 36.9 7.9 0.4 2.2 58.0 99.9 0.1 0 20.4 0 

2 modes 37.0 6.7 0 0 0 1.3 0.1 0.3 8.5 18.7 

3 modes 40 0 0 0 0 0 0 0 0 0 

4 modes 40 0 0 0 3.2 0 0 0 0 0 

 

Mode Min. objective 

function value 

1 0.000217 

2 0.001324 

3 0.00295 

4 0.003708 
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Figure 12 Damage results  - Real vs Calculated (GA) using objective function y2 with 5% noise. 

 

 

Figure 13 Damage results  - Real vs Calculated (PSO) using objective function y2 with 5% noise. 

 

Figure 12 and Figure 13 show the performance of the second objective function (y2) for the 

first damage scenario, when noise of 5% is applied to the mode shapes of the structure. It can 

be seen that even though the application of noise in the calculated data influences its values, 

both algorithms performed good in identifying the extent and location of the damage. Again 

here, we see that the PSO algorithm outperforms the GA in giving better results, with more 

eigenmodes known.   
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e) GA Optimization with both MACFLEX and MTMAC criteria:  𝑦3 =  √𝑦1
2 + 𝑦2

2  

Table 24 Optimization results in percentage with GA for single element damage with 10% added noise using 

objective function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 53.3 20.4 16.9 0.6 4.9 99.2 0.3 27.4 36.0 0.5 

2 modes 62.8 30.9 38.3 23.7 48.8 77.9 27.6 33.1 66.8 0.4 

3 modes 54.4 25.5 20.6 22.7 30.9 61.5 12.7 22.3 48.8 0.4 

4 modes 46.9 17.8 10.3 10.8 21.5 41.4 3.6 10.1 19.3 15.7 

 

Mode Min. objective 

function value 

1 0.091732 

2 0.49568 

3 0.66493 

4 0.64594 

 

f) PSO Optimization with both MACFLEX and MTMAC criteria:  𝑦3 =  √𝑦1
2 + 𝑦2

2  

Table 25 Optimization results in percentage with PSO for single element damage with 5% added noise using 

objective function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 46.9 8.3 0 0 27.4 99.9 0 7.1 27.2 0 

2 modes 56.3 16.9 26.3 0 39.9 74.8 14.4 0 56.9 0 

3 modes 50.9 20.8 14.7 17.5 0 0 0 0 42.6 0 

4 modes 42.7 12.6 4.2 4.0 10.5 37.3 0 3.8 12.9 8.9 

 

Mode Min. objective 

function value 

1 7.01E-02 

2 4.85E-01 

3 6.58E-01 

4 6.13E-01 
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Figure 14 Damage results  - Real vs Calculated (GA) using objective function y3 with 5% noise. 

 

 

Figure 15 Damage results  - Real vs Calculated (PSO) using objective function y3 with 5% noise. 

 

Figure 14 and Figure 15 show the performance of the third objective function (y3) for the first 

damage scenario when a noise of 5% is applied to the mode shape of the structure. Similar to 

the first objective function, we can see that both algorithms does not exhibit a good 

performance in identifying the real damage. The PSO algorithm, however, shows reasonable 

results with 4 known eigenmodes.   
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iii) With applied noise of 10% 

 

a) GA Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 26 Optimization results in percentage with GA for single element damage with 10% added noise using 

objective function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 76.0 63.5 66.6 25.6 85.6 99.9 57.4 48.5 75.4 0 

2 modes 77.7 54.2 63.7 50.2 71.4 89.9 49.5 60.4 89.6 0.1 

3 modes 73.1 58.1 52.5 54.9 63.7 81.8 42.5 54.1 80.1 0.4 

4 modes 49.9 30.9 12.5 16.5 24.0 52.7 0 14.8 34.2 32.7 

 

Mode Min. objective 

function value 

1 0.0056 

2 9.88E-01 

3 2.12E+00 

4 2.4065 

 

b) PSO Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 27 Optimization results in percentage with PSO for single element damage with 10% added noise using 

objective function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 40 0 0 0 0 0 0 0 0 0 

1 mode 76.9 59.1 56.2 14.8 21.7 99.9 32.9 68.8 71.0 0 

2 modes 79.4 56.5 65.8 55.0 74.7 90.9 51.9 63.4 89.8 0.2 

3 modes 75.2 61.6 56.8 58.6 66.9 83.8 46.9 57.5 81.8 0.3 

4 modes 48.4 28.0 11.5 15.2 20.8 50.3 0 11.4 30.6 28.9 

 

Mode Min. objective 

function value 

1 0.012292 

2 0.95878 

3 2.0988 

4 2.4186 
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Figure 16 Damage results  - Real vs Calculated (GA) using objective function y1 with 10% noise. 

 

Figure 17 Damage results  - Real vs Calculated (PSO) using objective function y1 with 10% noise. 

 

Figure 16 and Figure 17 show the performance of the first objective function (y1) for the first 

damage scenario when a noise of 10% is applied to the mode shapes of the structure. With a 

high noise ratio, we see that both algorithms are not exhibiting a good performance, as they 

both indicate an existence of damage with various damage rates in all elements of the 

structure. The real damage is 40% at element 1, while both figures show a very high damage 

rate in elements 6 and 9, with 1, 2 and 3 known eigenmodes.   
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c) GA Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 28 Optimization results in percentage with GA for single element damage with 10% added noise using 

objective function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 32.5 18.9 2.4 16.2 84.8 99.9 0.2 8.1 21.0 0.5 

2 modes 1.2 15.0 17.2 19.1 13.6 9.6 5.6 32.1 9.6 47.4 

3 modes 34.7 10.8 0.8 0.7 0.3 5.3 0.2 0.2 22.9 17.9 

4 modes 39.7 0.6 0 0 0.8 6.6 0.2 0.6 0.7 0.8 

 

Mode Min. objective 

function value 

1 0.001473 

2 0.026197 

3 0.021063 

4 0.02028 

 

d) PSO Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 29 Optimization results in percentage with PSO for single element damage with 10% added noise using 

objective function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 34.1 6.2 0 0 69.9 99.9 0 0 36.7 0 

2 modes 34.6 12.3 0 0 0 1.9 0.7 0 20.2 22.9 

3 modes 40 0 0 0 0 0 0 0 0 0 

4 modes 40 0 0 0 0 0 0 0 0 0 

 

Mode Min. objective 

function value 

1 0.000932 

2 0.005346 

3 0.011941 

4 0.015084 
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Figure 18 Damage results  - Real vs Calculated (GA) using objective function y2 with 10% noise. 

 

Figure 19 Damage results  - Real vs Calculated (PSO) using objective function y2 with 10% noise. 

 

Figure 18 and Figure 19 show the performance of the second objective function (y2) for the 

first damage scenario when a noise ratio of 10% is added to the mode shapes of the structure. 

There has been a pattern of an excellent performance of identifying the extent and location of 

the real damage with the second objective function, and as we can see here, even with 

applying a high noise rate of 10%, the GA algorithm exhibit a good performance, with 4 

known eigenmodes and the PSO shows an exceptional performance in the cases where 3 and 

4 eigenmodes are known.    
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e) GA Optimization with both MACFLEX and MTMAC criteria:  𝑦3 =  √𝑦1
2 + 𝑦2

2  

Table 30 Optimization results in percentage with GA for single element damage with 10% added noise using 

objective function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 64.4 34.9 35.9 0 30.1 99.9 9.3 43.6 57.6 0 

2 modes 73.2 45.2 58.3 39.7 68.1 89.2 38.5 53.3 85.6 2.1 

3 modes 70.5 53.9 47.8 51.4 60.4 80.2 36.6 49.3 77.9 0.3 

4 modes 53.4 33.8 18.9 22.9 32.3 56.9 6.1 20.6 40.6 39.1 

 

Mode Min. objective 

function value 

1 0.20365 

2 1.2055 

3 2.2213 

4 2.4626 

 

f) PSO Optimization with both MACFLEX and MTMAC criteria:  𝑦3 =  √𝑦1
2 + 𝑦2

2  

Table 31 Optimization results in percentage with PSO for single element damage with 10% added noise using 

objective function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 40.0 0 0 0 0 0 0 0 0 0 

1 mode 62.8 32.2 34.5 0 36.1 99.9 9.3 38.2 56.1 0 

2 modes 77.3 52.9 62.9 48.9 71.2 90.0 47.7 59.2 89.2 0 

3 modes 71.1 55.5 48.5 51.9 61.1 80.7 37.0 50.6 78.1 0 

4 modes 46.6 26.6 7.9 11.3 18.1 50.3 0 9.9 30.6 29.3 

 

Mode Min. objective 

function value 

1 2.03E-01 

2 1.12E+00 

3 2.22E+00 

4 2.46E+00 
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Figure 20 Damage results  - Real vs Calculated (GA) using objective function y3 with 10% noise. 

 

 

Figure 21 Damage results  - Real vs Calculated (PSO) using objective function y3 with 10% noise. 

 

Figure 20 and Figure 21 show the final results for the first damage scenario, with the third 

objective function (y3) and an applied noise of 10%. With this added noise ratio, both 

algorithms show a poor performance in identifying the exact extent and location of the real 

damage, even when 4 eigenmodes are known.   
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6.2.2. Damage scenario 2 

 

The second damage scenario is going to be 20%, 40% and 60% at element 4, 8 and 9 

respectively. Similarly, to the first damage scenario, multiple tests with the three objective 

functions are carried out using equations (24), (25) and (26) within this damage scenario. The 

first set of tests are analyzed without the application of noise to each mode shape. The second 

set with the application of 5% and 10% noise. Additionally, tests were carried out for 1, 2, 3 

and 4 known eigenmodes.  

 

 

Figure 22 10-bar plane truss with three damaged elements 
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i) Without the application of noise 

 

a) GA Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 32 Optimization results with GA for three damaged elements using objective function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 33.8 23.2 27.1 53.5 63.2 0 22.7 64.8 78.5 22.4 

2 modes 16.7 16.6 16.7 31.9 11.4 17.3 16.2 50.0 66.3 17.3 

3 modes 29.8 29.8 29.8 43.8 29.8 30.0 29.8 57.9 71.9 29.8 

4 modes 29.6 29.6 29.6 43.6 29.6 29.6 29.6 57.7 71.9 29.6 

 

Mode Min. objective 

function value 

1 1.01E-05 

2 0.000343 

3 8.00E-06 

4 7.02E-06 

 

b) PSO Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 33 Optimization results with PSO for three damaged elements using objective function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 0 0 0 19.9 0.1 0 0 39.9 59.9 0 

2 modes 0 0 0 20.0 0 0 0 40.0 60.0 0 

3 modes 0 0 0 20.0 0 0 0 40.0 60.0 0 

4 modes 0 0 0 20.0 0 0 0 40.0 60.0 0 

 

Mode Min. objective 

function value 

1 1.04E-09 

2 2.53E-08 

3 1.35E-09 

4 4.91E-12 
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Figure 23 Damage results - Real vs Calculated (GA) using objective function y1. 

 

Figure 24 Damage results - Real vs Calculated (PSO) using objective function y1. 

 

Figure 23 and Figure 24 show the performance of the first objective function (y1) for the 

second damage scenario. We can see very clearly that the PSO algorithm is able to identify 

the damages 100% both in extent and location. The GA algorithm appears to be not able to 

give good results with the first objective function (y1), as it demonstrated damage in all 

elements.   
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c) GA Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 34 Optimization results in percentage with GA for three damaged elements using objective function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 2.2 22.2 4.6 12.4 73.9 37.8 13.4 16.8 17.8 40.1 

2 modes 1.2 13.9 1.4 0 17.7 2.3 13.1 31.3 49.2 0.7 

3 modes 5.6 7.8 0.3 10.8 2.3 6.4 8.9 35.1 41.3 1.6 

4 modes 0.4 1.0 0 17.5 6.5 2.2 1.9 39.1 59.6 1.1 

 

Mode Min. objective 

function value 

1 0.0005606 

2 0.0043887 

3 0.0063679 

4 0.0019451 

 

d) PSO Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 35 Optimization results in percentage with PSO for three damaged elements using objective function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 0 1.7 3.4 0.2 41.9 45.8 1.3 35.7 48.7 13.7 

2 modes 0 0 0 7.8 8.3 26.3 0.4 39.6 60.8 0.6 

3 modes 0.3 0.3 0 19.8 0.3 3.4 0 40.0 58.6 1.12 

4 modes 0 0.2 0 19.7 2.3 0.7 0 39.9 59.9 0 

 

Mode Min. objective 

function value 

1 1.93E-05 

2 3.84E-05 

3 3.73E-05 

4 7.76E-05 
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Figure 25 Damage results - Real vs Calculated (GA) using objective function y2. 

 

Figure 26 Damage results - Real vs Calculated (PSO) using objective function y2. 

 

Figure 25 and Figure 26 show the performance of the second objective (y2) function for the 

second damage scenario using both GA and PSO algorithms. Again, this objective function 

exhibits a very good performance. Although both algorithms are able to indicate the position 

and extent of the damage, especially in the case with 4 known eigenmodes, the PSO exhibits a 

better performance than the GA for this damage scenario.   
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e) GA Optimization with both MACFLEX and MTMAC criteria:  𝑦3 =  √𝑦1
2 + 𝑦2

2  

Table 36 Optimization results in percentage with GA for three damaged elements using objective function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 4.3 19.0 9.7 10.3 18.4 48.9 12.9 39.4 55.3 13.9 

2 modes 12.7 3.8 10.9 32.1 27.9 5.6 10.9 49.3 64.7 7.9 

3 modes 0 0.7 0.2 19.6 0.3 0.1 0.4 39.6 60.1 0.6 

4 modes 0 0 0.7 19.3 0.3 0.5 0.3 39.6 60.3 0.4 

 

Mode Min. objective 

function value 

1 0.036278 

2 0.11493 

3 0.001189 

4 0.003363 

 

f) PSO Optimization with both MACFLEX and MTMAC criteria:  𝑦3 =  √𝑦1
2 + 𝑦2

2  

Table 37 Optimization results in percentage with PSO for three damaged elements using objective function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 0 1.9 0 17.3 47.9 8.8 0 40.0 58.2 2.3 

2 modes 0 0 0 19.9 0.1 0.3 0 40.0 60.0 0 

3 modes 0 0 0 20.0 0 0 0 40.0 60.0 0 

4 modes 0 0 0 20.0 0.1 0.2 0 40.0 60.0 0 

 

Mode Min. objective 

function value 

1 5.23E-07 

2 1.57E-06 

3 3.64E-06 

4 3.11E-06 
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Figure 27 Damage results - Real vs Calculated (GA) using objective function y3. 

 

Figure 28 Damage results - Real vs Calculated (PSO) using objective function y3. 

 

Figure 27 and Figure 28 show the performance of the third objective (y3) function for the 

second damage scenario using both algorithms. The results show that both algorithms 

performed well in identifying the position of the damage as well as the extent of it when using 

the third objective function. In the cases with 3 and 4 known eigenmodes, the GA algorithm is 

able to deliver very good results. The PSO algorithm on the other hand, shows an excellent 

performance in identifying the damages position and extent, especially in the cases of 2, 3 and 

4 known eigenmodes.   
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ii) With applied noise of 5% 

 

a) GA Optimization with the MACFLEX criterion: y1 = 100 * (1 – MACFLEX) 

Table 38 Optimization results in percentage with GA for three damaged elements with 5% added noise using 

objective function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 28.1 38.2 34.7 8.9 0.3 91.4 25.9 53.2 70.4 18.5 

2 modes 23.8 30.9 31.9 30.6 38.9 87.3 30.5 57.4 74.2 11.3 

3 modes 25.9 31.8 23.4 43.4 42.8 65.9 20.3 55.4 77.9 1.6 

4 modes 20.5 24.4 17.9 40.9 31.9 13.5 16.4 52.8 70.5 22.3 

 

Mode Min. objective 

function value 

1 0.000195 

2 0.1173 

3 0.42931 

4 0.8324 

 

b) PSO Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 39 Optimization results in percentage with PSO for three damaged elements with 5% added noise using 

objective function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 24.9 25.9 27.2 15.8 27.3 84.3 13.8 54.5 73.9 0.2 

2 modes 17.3 26.7 25.2 28.9 32.6 85.1 24.4 53.9 72.5 2.6 

3 modes 24.3 30.2 21.7 42.1 41.3 65.1 18.3 54.4 77.5 0 

4 modes 11.1 15.5 8.3 33.9 23.8 3.3 6.5 47.2 67.1 13.1 

 

Mode Min. objective 

function value 

1 1.22E-08 

2 0.11408 

3 0.42945 

4 0.8324 



57 
 

 

Figure 29 Damage results  - Real vs Calculated (GA) using objective function y1 with 5% noise. 

 

Figure 30 Damage results  - Real vs Calculated (PSO) using objective function y1 with 5% noise. 

 

Figure 29 and Figure 30 show the performance of the first objective function (y1) for the 

second damage scenario using both algorithms, when noise of 5% is applied to the mode 

shapes of the structure. As it is shown in the figures, both algorithms did not exhibit a good 

performance with the first objective function. They are able to indicate the damage in all three 

elements, where the real damage is located, but they also show damage existence in all the 

other elements, even in the case of 4 known eigenmodes.    
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c) GA Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 40 Optimization results in percentage with GA for three damaged elements with 5% added noise using 

objective function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 4.3 0.2 4.4 14.0 5.0 96.9 20.2 17.5 37.4 7.1 

2 modes 2.2 11.4 0 0.7 16.4 3.6 10.8 33.3 47.6 6.2 

3 modes 0.8 2.3 3.3 11.5 16.9 17.3 1.4 42.5 32.7 14.0 

4 modes 0.6 0.6 0.2 17.6 6.4 9.9 1.1 39.6 58.5 3.2 

 

Mode Min. objective 

function value 

1 0.0004542 

2 0.0034256 

3 0.0095643 

4 0.007588 

 

d) PSO Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 41 Optimization results in percentage with PSO for three damaged elements with 5% added noise using 

objective function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 1.4 3.4 4.3 0 12.7 90.1 0.2 31.2 54.1 0.4 

2 modes 0 2.5 0 0 6.2 57.8 2.2 38.4 59.8 0 

3 modes 0.9 1.9 0 18.2 1.6 6.0 1.9 39.0 57.2 0.1 

4 modes 0 0 0 19.9 0.2 0.7 0 39.9 59.9 0.1 

 

Mode Min. objective 

function value 

1 5.66E-05 

2 0.001069 

3 0.002574 

4 0.003224 
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Figure 31 Damage results  - Real vs Calculated (GA) using objective function y2 with 5% noise. 

 

Figure 32 Damage results  - Real vs Calculated (PSO) using objective function y2 with 5% noise. 

 

Figure 31 and Figure 32 show the performance of the second objective function (y2) for the 

second damage scenario using both GA and PSO algorithms. The second objective function 

has exhibited a very good performance in identifying the damage. In this case, the GA, with 4 

known eigenmodes shows very good performance, while the PSO shows excellent 

performance with 3 and 4 known eigenmodes, as it is able to almost identify the exact real 

damages location and extent.  
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e) GA Optimization with both MACFLEX and MTMAC criteria: y3 =  √y1
2 + y2

2 

Table 42 Optimization results in percentage with GA for three damaged elements with 5% added noise using 

objective function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 18.7 28.0 22.8 2.6 0.3 88.9 6.9 52.7 67.1 6.6 

2 modes 14.6 22.2 22.7 27.6 45.8 85.6 21.9 53.2 70.5 1.7 

3 modes 10.8 18.1 7.6 33.3 29.6 57.8 5.9 47.1 71.4 0.2 

4 modes 12.0 16.3 8.8 35.2 24.7 4.2 6.8 48.5 66.9 13.9 

 

Mode Min. objective 

function value 

1 0.093357 

2 0.22758 

3 0.51034 

4 0.87177 

 

 

f) PSO Optimization with both MACFLEX and MTMAC criteria: 𝑦3 =  √𝑦1
2 + 𝑦2

2 

Table 43 Optimization results in percentage with PSO for three damaged elements with 5% added noise using 

objective function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 0.8 15.5 8.1 0 0.3 89.9 2.8 34.3 56.7 0 

2 modes 2.7 9.9 10.6 16.6 37.5 83.4 10.8 44.9 66.5 0 

3 modes 11.3 18.5 7.9 33.5 29.9 58.0 6.4 47.4 71.7 0 

4 modes 2.9 7.6 0.3 28.1 17.7 0 0 42.6 63.7 5.3 

 

Mode Min. objective 

function value 

1 0.027067 

2 0.16903 

3 0.50951 

4 0.84129 
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Figure 33 Damage results  - Real vs Calculated (GA) using objective function y3 with 5% noise. 

 

Figure 34 Damage results  - Real vs Calculated (PSO) using objective function y3 with 5% noise. 

 

Figure 33 and Figure 34 show the performance of the third objective function (y3) for the 

second damage scenario using both algorithms. Here, we clearly see that the application of 

noise in the calculated data influences its values. Both algorithms are able to indicate the 

position of the real damage but not the extent. They also show various damage rates in the 

healthy (undamaged) elements.   
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iii) With applied noise of 10% 

 

a) GA Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 44 Optimization results in percentage with GA for three damaged elements with 10% added noise using 

objective function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 73.9 56.3 65.8 83.1 0.6 89.7 43.2 92.1 99.6 5.2 

2 modes 28.2 45.6 34.9 48.8 1.1 89.6 34.2 62.3 80.4 4.0 

3 modes 45.2 54.1 42.9 62.4 66.2 81.0 37.6 67.3 87.2 0.1 

4 modes 27.3 30.6 22.8 51.2 53.6 69.9 22.3 56.9 62.6 58.1 

 

Mode Min. objective 

function value 

1 0.000479 

2 0.6674 

3 1.773 

4 2.9549 

 

b) PSO Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 45 Optimization results in percentage with PSO for three damaged elements with 10% added noise using 

objective function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 43.9 47.7 47.5 0 2.8 94.3 26.6 65.2 80.8 0 

2 modes 24.6 43.1 35.0 2.1 5.7 89.9 30.7 59.3 79.4 0 

3 modes 43.8 52.8 40.8 61.1 64.9 80.2 35.4 66.4 86.8 0 

4 modes 9.8 17.7 3.6 38.1 33.0 8.1 0 46.9 68.5 11.9 

 

Mode Min. objective 

function value 

1 0.00213 

2 0.69929 

3 1.7752 

4 3.3983 
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Figure 35 Damage results  - Real vs Calculated (GA) using objective function y1 with 10% noise. 

 

Figure 36 Damage results  - Real vs Calculated (PSO) using objective function y1 with 10% noise. 

 

Figure 35 and Figure 36 show the performance of the first objective (y1) function for the 

second damage scenario using both algorithms, when a noise of 10% is applied to the mode 

shapes of the structure. With a high noise ratio, we see that both algorithms are not exhibiting 

a good performance with the first objective function. Even though they are able to detect the 

location of the real damage, they also show damage is present in the healthy elements.    
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c) GA Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 46 Optimization results in percentage with GA for three damaged elements with 10% added noise using 

objective function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 2.1 3.1 2.5 17.4 59.6 96.4 7.8 15.8 55.9 1.6 

2 modes 0.7 4.1 2.6 11.2 8.1 40.2 3.8 39.5 46.4 2.2 

3 modes 0.6 0 0.3 18.5 5.6 0 0 40.8 54.5 4.3 

4 modes 0.2 0.2 0 18.3 8.6 2.8 0.2 40.1 58.7 2.7 

 

Mode Min. objective 

function value 

1 0.00057 

2 0.006861 

3 0.009642 

4 0.015329 

 

d) PSO Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 47 Optimization results in percentage with PSO for three damaged elements with 10% added noise using 

objective function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 0 7.2 5.7 0.6 44.0 97.6 0 25.8 53.1 0.5 

2 modes 0 5.7 0 0 0.7 61.5 3.9 36.8 58.8 0 

3 modes 0 1.3 0 19.7 0 2.4 0.2 39.9 57.6 2.8 

4 modes 0 0.1 0 19.9 0 0 0 39.9 60.0 0 

 

Mode Min. objective function value 

1 3.17E-03 

2 0.004813 

3 0.009082 

4 0.012921 
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Figure 37 Damage results  - Real vs Calculated (GA) using objective function y2 with 10% noise. 

 

Figure 38 Damage results  - Real vs Calculated (PSO) using objective function y2 with 10% noise. 

 

Figure 37 and Figure 38 show the performance of the second objective function (y2) for the 

second damage scenario for both algorithms, when noise of 10% is applied to the mode 

shapes of the structure. Once again, we can observe that when using a high noise rate, the 

second objective function performs better than the others in determining the position and 

degree of the damage. The PSO method surpasses the GA approach in determining the precise 

damage rates in the case with more known eigenmodes.  
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e) GA Optimization with both MACFLEX and MTMAC criteria: y3 =  √y1
2 + y2

2 

Table 48 Optimization results in percentage with GA for three damaged elements with 10% added noise using 

objective function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 24.4 42.9 34.1 0.1 3.1 96.4 18.7 49.7 69.6 0.4 

2 modes 42.3 58.3 46.4 58.0 2.7 91.7 46.3 70.4 85.0 6.1 

3 modes 38.2 48.1 34.2 57.0 60.9 78.0 29.6 63.5 85.3 0.2 

4 modes 13.14 20.9 7.1 40.4 35.5 12.2 4.5 49.3 69.4 15.1 

 

Mode Min. objective 

function value 

1 0.14069 

2 0.77582 

3 1.8796 

4 3.4139 

 

f) PSO Optimization with both MACFLEX and MTMAC criteria: 𝑦3 =  √𝑦1
2 + 𝑦2

2 

Table 49 Optimization results in percentage with PSO for three damaged elements with 10% added noise using 

objective function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 0 0 0 20.0 0 0 0 40.0 60.0 0 

1 mode 18.0 33.9 25.2 0 0 96.7 10.4 44.1 65.2 0 

2 modes 20.3 41.2 27.9 27.2 0 89.2 25.4 58.7 79.1 0 

3 modes 38.2 48.4 34.7 57.4 61.1 78.2 29.8 63.5 85.2 0 

4 modes 8.4 16.7 2.3 37.0 32.2 6.6 0 46.4 67.9 10.8 

 

Mode Min. objective 

function value 

1 0.12254 

2 0.73541 

3 1.8785 

4 3.4085 
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Figure 39 Damage results  - Real vs Calculated (GA) using objective function y3 with 10% noise. 

 

Figure 40 Damage results  - Real vs Calculated (PSO) using objective function y3 with 10% noise. 

 

Figure 39 and Figure 40 present the performance of the third objective function (y3) for the 

second damage case, when a noise of 10% is applied to the mode shapes of the structure. The 

third objective function does not perform well in pinpointing the degree and location of the 

damage in the structure when such a high noise level is present. This is true for both 

optimization techniques.   
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6.2.3. Damage scenario 3  

 

The last damage scenario is going to be a uniform damage of 20% to all elements of the truss. 

Similar to the two previous scenarios, multiple tests with the three objective functions using 

equations (24), (25) and (26) are carried out within this damage scenario as well. The first set 

of tests were carried out without the application of noise to each mode shape. The second set 

were tested with the application of 5% & 10% noise. Additionally, tests were carried out for 

1, 2, 3 and 4 known eigenmodes.  

 

 

Figure 41 20% Uniform damage for 10-bar plane truss 
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i) Without the application of noise 

 

a) GA Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 50 Optimization results in percentage with GA for uniform damage using objective function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 41.6 40.9 39.9 40.9 1.0 12.2 38.5 43.1 40.6 41.2 

2 modes 39.7 39.4 39.8 39.1 40.3 43.9 39.9 39.7 39.8 39.7 

3 modes 28.5 28.4 28.5 28.5 28.5 28.6 28.5 28.5 28.5 28.4 

4 modes 45.8 45.8 45.8 45.8 45.8 45.9 45.8 45.8 45.8 45.9 

 

Mode Min. objective 

function value 

1 0.000456 

2 0.000729 

3 1.48E-06 

4 4.64E-06 

 

b) PSO Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 51 Optimization results in percentage with PSO for uniform damage using objective function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 0 0 0 0 46.1 43.8 0 0 0 0 

2 modes 0 0 0 0 0 0 0 0 0 0 

3 modes 0 0 0 0 0 0 0 0 0 0 

4 modes 0 0 0 0 0 0 0 0 0 0 

 

Mode Min. objective 

function value 

1 -2.22E-13 

2 1.11E-14 

3 2.22E-14 

4 -1.55E-13 
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Figure 42 Damage results - Real vs Calculated (GA) using objective function y1. 

 

Figure 43 Damage results - Real vs Calculated (PSO) using objective function y1. 

 

Figure 42 and Figure 43 shows the performance of the first objective function (y1) for the 

third and last damage scenario (uniform damage), with both algorithms. The case where 

uniform damage occurs seems to be the most challenging for the first objective function. 

Using this objective function, the PSO algorithm entirely fails to pinpoint the location or 

degree of damage. On the other hand, the GA recognizes that there is uniform damage across 

the structure but is unable to determine its severity.   
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c) GA Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 52 Optimization results in percentage with GA for uniform damage using objective function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 16.6 25.2 15.5 31.6 37.7 11.8 34.9 15.8 16.5 27.1 

2 modes 20.7 5.8 20.1 20.5 32.2 57.1 9.0 24.3 9.0 37.5 

3 modes 26.6 16.6 13.3 29.6 5.5 1.8 16.2 20.6 16.0 22.3 

4 modes 17.1 17.2 22.8 27.3 19.9 7.8 11.7 25.8 19.5 19.8 

 

Mode Min. objective 

function value 

1 0.0001717 

2 0.0018529 

3 0.0025471 

4 0.0026031 

 

d) PSO Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 53 Optimization results in percentage with PSO for uniform damage using objective function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 19.7 19.8 21.6 8.6 70.9 51.2 15.2 23.7 31.8 5.6 

2 modes 24.9 14.0 21.9 20.1 14.2 30.8 9.7 14.3 5.7 26.2 

3 modes 24.6 23.6 17.8 18.5 8.6 23.2 24.4 15.1 10.6 11.9 

4 modes 19.3 19.9 20.7 19.8 21.4 9.6 19.4 20.7 17.4 22.5 

 

Mode Min. objective 

function value 

1 4.31-05 

2 0.00058 

3 0.001204 

4 0.000511 
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Figure 44 Damage results - Real vs Calculated (GA) using objective function y2. 

 

Figure 45 Damage results - Real vs Calculated (PSO) using objective function y2. 

 

Figure 44 and Figure 45 show the performance of the second objective function (y2) for the 

last damage scenario (uniform damage) using both algorithms. Both algorithms show a very 

good performance in identifying the damage in the structure using the second objective 

function. When we take all 4 known eigenmodes into consideration, the PSO algorithm 

performs better in giving a good indication of the damage extent than GA does.   
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e) GA Optimization with both MACFLEX and MTMAC criteria:  𝑦3 =  √𝑦1
2 + 𝑦2

2  

Table 54 Optimization results in percentage with GA for uniform damage using objective function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 20.4 17.5 19.5 22.7 2.3 0.5 18.9 20.5 23.0 17.4 

2 modes 33.4 31.2 34.3 25.3 33.0 36.0 36.2 32.2 32.5 32.7 

3 modes 20.3 19.4 19.7 19.9 20.8 21.4 20.0 20.3 20.0 19.8 

4 modes 20.0 20.4 20.0 20.3 19.1 17.5 19.7 19.9 19.7 20.2 

 

Mode Min. objective 

function value 

1 0.000765 

2 0.1611 

3 0.000496 

4 0.001 

 

f) PSO Optimization with both MACFLEX and MTMAC criteria:  𝑦3 =  √𝑦1
2 + 𝑦2

2  

Table 55 Optimization results in percentage with PSO for uniform damage using objective function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 20 19.8 20.0 20.2 6.2 3.2 20.0 20.0 20.4 19.7 

2 modes 20 20. 20.0 20.1 20.1 18.5 20.0 20.0 20.1 20.2 

3 modes 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

4 modes 20 20.1 20.0 20.0 20.0 19.8 20.0 19.9 19.9 20.1 

 

Mode Min. objective 

function value 

1 7.98E-06 

2 7.62E-06 

3 1.07E-05 

4 1.99E-05 
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Figure 46 Damage results - Real vs Calculated (GA) using objective function y3. 

 

Figure 47 Damage results - Real vs Calculated (PSO) using objective function y3. 

 

Figure 46 and Figure 47 show the performance of the third objective function (y3) for the last 

damage scenario (uniform damage) using both algorithms. As can be seen in both figures, the 

third objective function is able to identify the damage in all the elements in both algorithms. 

As for the extent of the damage, again, both algorithms show an almost 100% match with 

more known eigenmodes.     

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10

D
am

ag
e 

ra
te

Number of elements

Real 1 mode 2 modes 3 modes 4 modes

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10D
am

ag
e 

ra
te

Number of elements
Real 1 mode 2 modes 3 modes 4 modes



75 
 

ii) With applied noise of 5% 

 

a) GA Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 56 Optimization results in percentage with GA for uniform damage with 5% added noise using objective 

function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 38.2 31.6 36.4 24.9 42.4 93.1 20.5 39.9 54.3 0.1 

2 modes 55.2 45.8 57.3 42.7 64.4 84.4 50.8 49.8 76.7 8.4 

3 modes 45.9 48.6 43.3 41.1 50.6 70.9 37.4 46.1 63.3 14.1 

4 modes 30.0 34.4 29.7 28.4 31.9 55.6 23.6 30.9 36.2 38.6 

 

Mode Min. objective 

function value 

1 0.000297 

2 0.47312 

3 0.63835 

4 0.5887 

 

b) PSO Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 57 Optimization results in percentage with PSO for uniform damage with 5% added noise using objective 

function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 28. 30.9 30.8 3.7 0 99.9 17.6 25.6 40.8 0 

2 modes 31.2 15.2 30.1 14.5 41.4 71.7 23.7 21.9 56.4 0 

3 modes 33.6 36.7 29.8 28.5 38.6 63.5 22.6 33.9 53.4 0.1 

4 modes 7.4 13.9 6.8 4.9 8.4 38.9 0 8.7 11.5 15.3 

 

Mode Min. objective 

function value 

1 2.84E-06 

2 0.54877 

3 0.64063 

4 0.58923 
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Figure 48 Damage results  - Real vs Calculated (GA) using objective function y1 with 5% noise. 

 

Figure 49 Damage results  - Real vs Calculated (PSO) using objective function y1 with 5% noise. 

 

Figure 48 and Figure 49 show the performance of the first objective function (y1) for the last 

damage scenario (uniform damage), when noise of 5% is applied to the mode shapes of the 

structure. The results demonstrate that the objective function predicts that there is damage in 

all elements, however, the extent of the damage is far from the real damage, even in the case 

of 4 known eigenmodes. This shows that the first objective function exhibits poor 

performance in the case of uniform damage in a structure.    
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c) GA Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 58 Optimization results in percentage with GA for uniform damage with 5% added noise using objective 

function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 23.3 14.9 13.5 18.5 45.1 97.5 4.7 23.5 42.8 27.4 

2 modes 20.0 20.1 25.3 15.5 16.1 35.7 11.6 13.1 15.0 24.4 

3 modes 20.7 30.2 11.2 27.3 12.4 28.5 19.9 11.1 36.6 36.8 

4 modes 14.5 22.7 24.9 20.5 16.9 1.8 17.5 21.1 26.4 12.5 

 

Mode Min. objective 

function value 

1 0.000444 

2 0.001642 

3 0.006882 

4 0.0070701 

 

d) PSO Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 59 Optimization results in percentage with PSO for unform damage with 5% added noise  using objective 

function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 24.6 10.5 21.9 9.6 47.9 99.9 8.9 19.7 28.2 1.1 

2 modes 19.9 27.7 26.6 18.4 6.1 0.8 4.7 0.9 21.4 31.2 

3 modes 20.8 20.3 22.8 19.6 9.1 11.7 19.3 21.2 0.9 14.7 

4 modes 16.6 17.7 23.0 25.1 17.9 21.4 13.0 25.7 19.1 20.6 

 

Mode Min. objective 

function value 

1 5.13E-05 

2 0.001731 

3 0.003113 

4 0.004271 
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Figure 50 Damage results  - Real vs Calculated (GA) using objective function y2 with 5% noise. 

 

Figure 51 Damage results  - Real vs Calculated (PSO) using objective function y2 with 5% noise. 

 

Figure 50 and Figure 51 show the performance of the second objective function (y2) for the 

last damage scenario (uniform damage) when a noise of 5% is applied to the mode shapes of 

the structure. The second objective function shows a highly excellent performance in 

identifying a uniform damage in the structure with both algorithms. Once again, the pattern is 

the same. The PSO algorithm in the second objective function shows a better performance 

than the GA.   
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e) GA Optimization with both MACFLEX and MTMAC criteria:  𝑦3 =  √𝑦1
2 + 𝑦2

2  

Table 60 Optimization results in percentage with GA for uniform damage with 5% added noise using objective 

function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 25.6 25.7 24.5 1.8 7.2 99.5 6.6 27.0 37.2 0.5 

2 modes 37.8 26.6 39.9 21.9 49.4 77.1 32.4 30.2 64.2 0.3 

3 modes 28.6 31.2 26.2 26.0 34.8 60.4 18.4 27.5 48.5 0.2 

4 modes 17.9 21.7 18.5 18.3 20.7 45.2 11.5 18.5 21.4 25.8 

 

Mode Min. objective 

function value 

1 0.017517 

2 0.54062 

3 0.68495 

4 0.61174 

 

f) PSO Optimization with both MACFLEX and MTMAC criteria:  𝑦3 =  √𝑦1
2 + 𝑦2

2  

Table 61 Optimization results in percentage with PSO for uniform damage with 5% added noise using objective 

function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 21.6 22.1 23.8 0 52.3 99.9 10.5 18.8 35.5 0 

2 modes 25.3 14.1 26.1 9.2 32.6 67.4 19.8 16.0 51.3 0.2 

3 modes 24.2 27.6 21.3 21.4 29.4 56.0 13.5 23.4 43.5 0 

4 modes 15.4 20.0 16.0 15.9 17.3 43.8 8.5 16.1 19.1 22.8 

 

Mode Min. objective 

function value 

1 0.007505 

2 0.57641 

3 0.67788 

4 0.61634 
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Figure 52 Damage results  - Real vs Calculated (GA) using objective function y3 with 5% noise. 

 

Figure 53 Damage results  - Real vs Calculated (PSO) using objective function y3 with 5% noise. 

 

Figure 52 and Figure 53 show the performance of the third objective function (y3) for the last 

damage scenario (uniform damage), when a noise of 5% is applied to the mode shapes of the 

structure. With both algorithms, the objective function performs well in identifying damage to 

every component of the structure. Its accuracy for this damage scenario is also considered 

good, especially in the case with 4 known eigenmodes.  
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iii) With applied noise of 10% 

 

a) GA Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 62 Optimization results in percentage with GA for uniform damage with 10% added noise using objective 

function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 59.9 59.9 60.6 26.4 27.5 99.4 42.3 58.2 71.4 2.0 

2 modes 68.4 61.4 72.0 54.4 76.4 92.1 64.1 63.6 90.6 1.2 

3 modes 62.5 65.5 60.6 59.2 70.4 85.4 50.9 62.9 81.5 0.2 

4 modes 30.6 41.4 28.8 27.6 32.5 61.1 16.5 32.3 43.6 47.2 

 

Mode Min. objective 

function value 

1 0.00263 

2 1.0317 

3 2.2216 

4 2.4167 

 

b) PSO Optimization with the MACFLEX criterion:  y1 = 100 * (1 – MACFLEX) 

Table 63 Optimization results in percentage with PSO for uniform damage with 10% added noise using objective 

function y1. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 57.5 59.7 58.4 14.9 2.3 99.9 37.6 56.8 69.4 0 

2 modes 59.9 48.2 63.7 44.2 71.8 90.3 51.2 54.7 85.9 0 

3 modes 59.9 64.3 58.2 56.6 68.9 84.4 48.6 61.2 80.5 0 

4 modes 14.7 27.3 13.9 12.3 13.7 51.2 0 16.0 28.8 33.1 

 

Mode Min. objective 

function value 

1 0.000718 

2 1.1473 

3 2.2331 

4 2.4194 



82 
 

 

Figure 54 Damage results  - Real vs Calculated (GA) using objective function y1 with 10% noise. 

 

Figure 55 Damage results  - Real vs Calculated (PSO) using objective function y1 with 10% noise. 

 

Figure 54 and Figure 55 show the performance of the first objective function (y1) for the last 

damage scenario (uniform damage), when a noise of 10% is applied to the mode shapes of the 

structure. As was evident in the damage cases above, the first objective function performs 

poorly when a large noise rate is applied. Both algorithms show damage across the entire 

structure, but they are not very accurate. 
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c) GA Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 64 Optimization results in percentage with GA for uniform damage and 10% added noise using objective 

function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 23.7 1.6 12.3 44.3 65.4 93.9 0.7 24.0 53.8 4.3 

2 modes 26.1 15.5 26.4 14.6 10.2 39.9 2.2 7.3 3.1 17.8 

3 modes 13.4 20.6 25.5 20.9 20.1 19.9 14.7 24.8 21.1 18.7 

4 modes 21.4 12.8 18.4 23.0 24.5 24.8 16.4 24.7 19.5 21.1 

 

Mode Min. objective 

function value 

1 0.00085 

2 0.007704 

3 0.022238 

4 0.01576 

 

d) PSO Optimization with the MTMAC criterion:  y2 = 1 – MTMAC 

Table 65 Optimization results in percentage with PSO for uniform damage and 10% added noise using objective 

function y2. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 21.1 5.5 25.3 2.7 99.8 99.9 6.8 8.8 43.3 0.5 

2 modes 17.7 32.3 22.5 7.6 12.4 21.0 23.1 6.5 18.7 36.9 

3 modes 8.9 30.0 28.2 16.4 14.6 0.4 16.6 20.7 1.2 42.2 

4 modes 17.3 20.7 22.5 19.6 19.5 26.5 18.0 21.9 17.5 22.4 

 

Mode Min. objective 

function value 

1 0.000283 

2 0.005032 

3 0.010927 

4 0.014635 

  



84 
 

 

Figure 56 Damage results  - Real vs Calculated (GA) using objective function y2 with 10% noise. 

 

Figure 57 Damage results  - Real vs Calculated (PSO) using objective function y2 with 10% noise. 

 

Figure 56 and Figure 57 show the performance of the second objective function (y2) for the 

last damage scenario (uniform damage), when a noise of 10% is applied to the mode shapes of 

the structure. The objective function performs well in determining the location and scope of 

the damage in the uniform damage scenario. With 4 eigenmodes known, both techniques 

perform well overall.   
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e) GA Optimization with both MACFLEX and MTMAC criteria:  𝑦3 =  √𝑦1
2 + 𝑦2

2  

Table 66 Optimization results in percentage with GA for uniform damage and 10% added noise using objective 

function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 54.2 40.6 47.8 33.8 47.0 95.3 19.1 59.9 72.1 0.2 

2 modes 58.7 46.6 62.3 43.0 70.1 89.9 50.3 53.1 86.5 0 

3 modes 47.9 52.4 44.7 45.1 57.4 79.2 32.4 48.2 73.2 0.5 

4 modes 23.2 34.2 23.0 22.1 21.4 55.5 9.0 24.5 34.6 39.8 

 

Mode Min. objective 

function value 

1 0.19012 

2 1.2296 

3 2.3886 

4 2.4617 

 

f) PSO Optimization with both MACFLEX and MTMAC criteria:  𝑦3 =  √𝑦1
2 + 𝑦2

2  

Table 67 Optimization results in percentage with PSO for uniform damage and 10% added noise using objective 

function y3. 

 1 2 3 4 5 6 7 8 9 10 

Real 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1 mode 36.0 33.9 38.7 0 71.9 99.9 16.0 31.0 54.8 0 

2 modes 65.8 54.8 68.3 53.1 74.2 91.4 58.0 60.6 89.0 0.1 

3 modes 52.7 56.4 50.5 49.6 62.7 81.6 37.8 53.2 75.5 0 

4 modes 10.7 22.0 11.1 10.2 10.7 50.0 0 12.2 27.9 31.2 

 

Mode Min. objective 

function value 

1 0.11803 

2 1.1607 

3 2.3522 

4 2.4639 
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Figure 58 Damage results  - Real vs Calculated (GA) using objective function y3 with 10% noise. 

 

Figure 59 Damage results  - Real vs Calculated (PSO) using objective function y3 with 10% noise. 

 

Lastly, Figure 58 and Figure 59 show the performance of the third objective function (y3), for 

the last damage scenario (uniform damage), when a noise of 10% is applied to the mode 

shapes of the structure. The third objective function does not perform well in precisely 

detecting the extent or position of the damage in the structure when such high noise is 

introduced, similar to the other damage situations. The objective function in this situation 

reveals damage to all components but is unable to accurately determine its magnitude. 
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6.3. Discussions 

 

The MACFLEX criteria is the foundation of the first objective function. The criteria makes 

use of the structure's dynamic flexibility, which may be particularly vulnerable to damage and 

has several benefits over stiffness. The second objective function, which is based on the 

MTMAC criterion, employs the natural frequencies and mode shapes of the structure in order 

to detect damage in structures with efficiency. The benefits of the first two objective functions 

are made use of by the third objective function. Using 1, 2, 3, and 4 known eigenmodes, the 

test applications of the present study were to determine the damage location and rate for 

various damage scenarios in a 10-bar planar truss structure. Additionally, The initial mode 

shape data is given some random noise to test the viability of each of the goal functions.  

First of all, it became evident that the Particle Swarm Optimization technique is more 

effective than Genetic algorithm in handling these kinds of damage detection issues. Using 

each of the three objective functions, the PSO algorithm converged to a better solution in the 

test implementation of the truss structure. The algorithm is renowned for its capacity to 

conduct local and global searches over the solution space as well as for finding the global 

minimum. Additionally, PSO required substantially less time for algorithm convergence than 

GA did. For the evaluated objective functions, PSO thus exhibits the highest overall 

performance in terms of optimization outcomes and computing time. 

Although it cannot provide precise damage values, the first objective function, which is based 

on the MACFLEX criteria, can identify the location of the damage in buildings and its extent 

in structural parts. When no noise was applied, the PSO was still able to provide quite 

accurate findings for the damage extent for the first and second damage scenarios. Due to the 

criteria only considering data about the eigenmodes, the optimization process fails to detect 

damage in the exceptional situation of uniform damage. The only attribute that changes when 

a structure is subjected to uniform damage is the eigenperiod, which expands, making the 

structure more flexible. The structure's eigenmodes remain unchanged. As a consequence, this 

unique kind of damage cannot be detected by the first objective function. 

The second objective function, which was based on the MTMAC criteria, performed very 

well overall and with the PSO algorithm in particular. When 3 or 4 eigenmodes were known, 

this objective function was able to identify almost 100% of the location and amount of the 

damage for the first and second damage scenarios and about 95% of the third damage scenario 

(uniform damage). Because the MTMAC criteria also incorporates information about the 

eigenvalues (eigenperiods) and the eigenmodes of the structure, the second objective function 

performed much better when recognizing uniform damage in the structure. For this, the 

MTMAC criteria is the only one that can reliably detect this unique kind of damage. When the 

structure's mode shapes were subjected to high noise rates of 5% and 10%, the objective 

function likewise performed very well. 

The third objective function, which also used the MACFLEX and MTMAC criteria, 

performed very well at determining the damage's location and extent in the structure. The 

objective function can pinpoint practically all structural damage and its degree when no noise 
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is present. When noise is added, the accuracy of the damage extent perceived from the 

findings related to the actual damage decreases as the noise level increases. The performance 

of the third objective can be observed to perform better than that of the second objective for 

all damage scenarios when no noise is applied, and vice versa when noise is applied. 

 

7. Concluding remarks & Further work 
 

The main goal of the present thesis was to use certain specific and readily observed dynamic 

characteristics to locate and quantify the damage in a 10-bar planar structure. The MACFLEX 

and MTMAC modal correlation criteria were used to evaluate the performance of three 

objective functions. The structural damage detection problem was approached as an 

optimization problem, and two optimization techniques were used to find solutions: 

- Genetic Algorithm (GA) 

- Particle Swarm Optimization (PSO) 

The values of certain dynamic properties between the experimental and numerical models of 

the 10-bar planar structure were compared in order to minimize the objective function in this 

unconstrained optimization problem. Since the dynamic properties data acquired by real 

experiments of the experimental model was not available in the present study, the data were 

created by knowing the actual damage beforehand and adding noise afterwards for the 

simulation to better align calculated modal parameters with actual experimental values. The 

dynamic properties data calculated during the optimization procedure represents the 

numerical model.   

The PSO algorithm has consistently been shown to be extremely effective and reliable, 

although the three objective functions displayed varying degrees of performance. PSO 

therefore displays the best overall performance in terms of optimization results and 

computation time for the analyzed objective functions. 

When three or four eigenmodes were known, the second objective function, based on the 

MTMAC criteria, and the third objective function, based on the MACFLEX criterion, did 

well at pinpointing the position and extent of the damage in the structure. These objective 

functions nevertheless performed well when there were only one or two known eigenmodes. 

There were some more challenging damage scenarios than others. For instance, the first 

objective function failed to identify uniform damage using the PSO method, and GA was 

unable to provide an accurate prediction in the event of uniform damage (3rd scenario).  

In summary, a simple yet quite helpful method was given to address damage detection 

problems. Damage, even in substantial structures, can be quickly revealed in location and 

extent in its structural parts, by measuring a small number of their dynamic properties. The 

case study has shown how reliable, quick, and simple to use the suggested technique is.   
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7.1. Further work 

 

The work presented in this research study show a method that can detect a damaged position 

and extent in structures. The method is tested on a 10-bar planar truss structure. A suggested 

further work or an expansion of this study is to test the suggested method on different type of 

structures, such as beams, frames, and even substantial structures with large number of 

elements.  

Another suggestion is to test the different objective functions used in this study with different 

optimization algorithms than the ones used here and investigate their performance. 

Differential Evolution (DE) and Sequential Quadratic Programming (SQP) are alternatives to 

investigate.   
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