
Exploring elementary cellular automata
rules as a reservoir for solving
reinforcement learning tasks

Aksel Susegg

Thesis submitted for the degree of
Master in Applied Computer and Information Technology (ACIT)

30 credits

Department of Computer Science
Faculty of Technology, Art and Design

OSLO METROPOLITAN UNIVERSITY

Spring 2023

Exploring elementary cellular automata
rules as a reservoir for solving
reinforcement learning tasks

Aksel Susegg

© 2023 Aksel Susegg

Exploring elementary cellular automata rules as a reservoir for solving reinforcement
learning tasks

http://www.oslomet.no/

Printed: Oslo Metropolitan University

http://www.oslomet.no/

Abstract

This thesis presents a novel approach for solving reinforcement learning tasks using
elementary cellular automata (ECA) based reservoir computing (RC). Combining
theories from these three fields to create a baseline for further investigation. The main
objective is to investigate the unique ECA rules and their properties, and test them in
different reinforcement learning (RL) environments. ECA based RC have previously
been tested on the x-bit memory benchmark, where it has shown capabilities of long
short-term memory. For many RL tasks, memory has been shown to be a vital part
for good performance. This, together with the reservoirs computationally efficient
methods of learning, makes this a quick method for training high performing models.
In the experiments performed, it is shown that variations in the reservoir size, number
of iterations, number of cells updated and how they are updated can have a huge
impact on performance when certain rules are used.

i

ii

Acknowledgments

I would like to thank my supervisor Tom Glover and co-supervisor Stefano Nichele for
an exiting project. It has been inspiring to work with you two.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Statement . 3

2 Theory 5
2.1 Cellular Automata . 5

2.1.1 Elementary Cellular Automata . 5
2.1.2 Classification . 6
2.1.3 Edge of chaos . 9

2.2 Single and Multi layer perceptron . 9
2.3 Reinforcement learning . 10

2.3.1 Exploration and Exploitation . 11
2.3.2 Recurrent Neural Network . 12

2.4 Reservoir Computing . 12
2.4.1 Liquid state machines . 13
2.4.2 Echo state networks . 13
2.4.3 Cellular automata as a reservoir computer 13

3 Related Work 15
3.1 The Dynamical Landscape of Reservoir Computing with Elementary

Cellular Automata . 15
3.2 DQN . 16
3.3 Reinforcement Learning with Convolutional Reservoir Computing . . . 18

4 Methodology 19
4.1 Environment . 19

4.1.1 Cart Pole . 19
4.1.2 Bipedal Walker . 20

v

4.2 Setup . 20
4.2.1 ECA . 21
4.2.2 Reservoir . 21
4.2.3 Agent . 27
4.2.4 Training loop . 29

4.3 Experiments . 29
4.3.1 Parameters . 30
4.3.2 Generations . 30
4.3.3 General ECA rule testing . 31
4.3.4 Scoring . 31

5 Results 33
5.1 1. Generation . 33

5.1.1 Experiment 0, 0 iterations . 33
5.1.2 Experiment 1, general performance 34
5.1.3 Experiment 2, Longer training . 40
5.1.4 Experiment 3, Bipedal Walker . 43

5.2 2. Generation . 44
5.2.1 Experiment 4, with ReLU . 45
5.2.2 Neural network comparison . 46
5.2.3 Experiment 5, large width . 47
5.2.4 Experiment 6, small width . 50
5.2.5 Experiment 7, width, accuracy and partition relation 52

6 Summary & Conclusions 55
6.1 Future work . 57

vi

List of Figures

2.1 Examples of elementary cellular automata classes randomly initialised. . 6

2.2 Examples of complementary rules. 7

2.3 Illustration of the XOR problem. 9

2.4 Illustration of the relation between agent and environment. 10

2.5 Illustration of the dynamics of a reservoir. 12

4.1 Illustration of the linear translation method. 23

4.2 Illustration of the three different observation mapping methods. 24

4.3 Example of reservoir with rule 54, 64 width, 10 iterations and 60
generations. The observation mappings method used is fully_local. . . . 26

4.4 Illustration of one step in the environment. 29

4.5 Plot of memory usage during training. x-axis show memory usage in
MB, y-axis shows episodes. 30

5.1 Runs using 0 iterations, 200 width, 16 accuracy per observation and 1
row as inputs to the left. On the right is a reservoir showing generations
from top to bottom . 33

5.2 Two plots showing a training run using 5 iterations, 200 width, 16
accuracy per observation and 5 row as inputs. x-axis is episodes and
y-axis is average reward over 10 episodes 34

5.3 Comparison of the best performing run with 0 and 5 iterations. The x-
axis is episodes and the y-axis shows average reward over 10 episodes.
The rule applied is 74, shown in blue and the pink has no rule applied. . 35

5.4 Examples of weak rules from random initialisation on the left and when
used as reservoir on the right. 37

5.5 Examples of moderate rules from random initialisation on the left and
when used as reservoir on the right. 38

5.6 Examples of good rules from random initialisation on the left and when
used as reservoir on the right. 39

vii

5.7 Results of the four complex rules 41 (blue), 54 (red), 106 (pink) and
110 (grey). x-axis (or X-axis) shows episodes and y-axis shows average
reward over 10 episodes . 40

5.8 Rule 74 training results. x-axis shows episodes and y-axis shows average
reward over 10 episodes . 40

5.9 Results of rule 184 (red), 168 (dark blue), 41 (light blue), 90 (pink) and
110 (orange). x-axis shows episodes and y-axis shows average reward
over 10 episodes . 41

5.10 Models where the global_random (GR), local_random (LR) and fully_local
(FL) methods were used. The rule applied is 110. 41

5.11 Five models trained with three different observation mappings. x-axis
shows episodes and y-axis shows average reward over 10 episodes . . . 42

5.12 Reservoir with width 1,150 and rule 54 applied. 43
5.13 Results from four training’s in the bipedal walker environment. Dis-

playing results from rule 90 (pink), 35 (orange), 184 (dark blue) and 168
(light blue). x-axis is episodes and y-axis is average reward over 10 epis-
odes. Note that the x-axis ranges from -125 to -80. 44

5.14 Training plot of models with ReLU layer 45
5.15 Training plot of NNs with different topologies on the left, and compar-

ison of a NN and two reservoirs with rule 33 and 34 on the right. 46
5.16 . 47
5.17 Plot of predicted Q-values for each action over one episode. 49
5.18 Training plot of models with narrow reservoir split into respective classes. 50
5.19 Comparison of rule 40 using different reservoir setups and rule 106. The

plot of rule 40 with width 256 and accuracy of 16, shown in green, have
2 partitions. 52

5.20 Comparison of rule 110 using different reservoir setups. The N in the
plot name represents the number of partitions 52

viii

List of Tables

2.1 Input and output of rule 82 . 5
2.2 Unique rules and their equivalent counter rules. 8
2.3 Unique rules grouped by Wolfram’s classification 9

4.1 Custom minimum and maximum vales for observations in the cart pole
environment. 23

4.2 Epsilon decay rate used at different number of episodes 30

5.1 Average score over 100 trials of the top 10 rules 45
5.2 Average score over 100 trials, including top score from class 3 and 4. . . 48
5.3 Average score over 100 trials, including top score from all classes. 51

ix

x

Chapter 1

Introduction

1.1 Background and Motivation

Over the last couple of years, a large variety of huge and powerful AI models have
been published. Many of these models shows a capability to solve complex tasks like
we have not seen before. Midjourney, DALL-E 2 and Stable Diffusion took the public
by storm when their image generation quality became that of a professional artist,
sparking many discussions surrounding the use of these models. The latest model to
gain a huge interest within the public domain, is ChatGPT. It is based on GPT-3 which
is a language model that have been trained on a large percentage of text on the internet.
It was then tuned towards a chat bot by training on conversations. After its launch, it
quickly gathered a huge user base. In fact, some say the high interest made it the fastest
growing consumer application ever. The popularity of these models only serves as a
testament to the reality of AI being integrated more and more into our daily lives, and
we are likely to see ever more advanced AI’s in the future.

There is however a cost when it comes to these large models. Firstly, is the training
process. The cost can reach many millions of dollars in electricity alone. When
factoring in the cost of servers for training and storage, GPU’s for training, gathering
of training data and so on, the cost can reach tens of millions. Secondly is the cost of
using and maintaining these models. These numbers can reach as high as hundreds
of thousands of dollars every day. Lastly, there is a discussion to be made of the
environmental impact such large models have when so much electricity is used for
training and maintain them. These problems might not be as profound at this very
moment and can be seen as manageable, but will drastically be more profound in the
future as models grow larger and more advanced. The number of trainable neurons is
expected to exponentially rise, and the training time and cost alongside it.

To overcome these problems, there is a huge incentive to find new computationally
efficient methods of training these large models. Promising research in new methods of

1

performing calculations, mainly matrix multiplication, seems right around the corner.
Examples of these are optical computers which uses photons instead of electrons, and
variable resistor cells that can store decimal numbers instead of binary numbers. The
advantage of the latter is that the number of memory accesses per matrix multiplication
is greatly reduced, since the voltage running through sequentially placed resistor cells
can be added together. If any of these methods worked, we would be looking at
computation potentially being orders of magnitude faster and efficient than current
computers. Unfortunately, none of them do yet, and is dependent on breakthroughs
in their respective domains to become viable options. Both of these methods are
hardware-based changes, but this thesis will cover an AI model where we are working
with structural changes instead.

Researchers at OsloMet Living Technology Lab proposes that the use of Reservoir
Computing (RC) can be such a structure that can greatly improve the training efficiency
of AI models. With RC, all weights between neurons remain fixed, with only a single
trainable output layer, which has the potential to greatly reduce the amount of training.
Research surrounding the use of RC, shows promising results, especially considering
that the field is relatively new. When RC first started to emerge, it acted as an answer to
the challenging and computationally expensive training of recurrent neural networks
(RNN). The substrate of these reservoirs would be an RNN with randomly connected
nodes, but with fixed weights and a single trainable output layer. Whats more, is that
the substrate of a reservoir is not bound to the digital world, but can be expanded to
physical systems [17], like a bucket of water where the ripples on the surface can act as
the reservoirs substrate.

In this thesis, we will explore one such substrate, but of a different kind. For a
system to be able to function as a reservoir, it most contain certain properties. Firstly,
the inputs to the system must be able to propagate throughout the reservoir. secondly,
as information propagates, its values must not amplifies. Cellular automate (CA) is one
such system with seemingly simple rules but with complex behaviour. The CA system
we will be testing as a reservoir substrate, is the simple one-dimensional elementary
cellular automata (ECA). Over the last couple of years, this ECA based RC (ReCA) have
been tested against a benchmark known as the x-bit memory benchmark, where the
goal is to reproduce a sequence of x-bits after a certain period have past. The objective
of this thesis is to expand on this research, and test and benchmark the capabilities of
ReCA in a reinforcement learning setting.

2

1.2 Problem Statement

Using elementary cellular automata as a reservoir substrate is a novel approach for
solving reinforcement learning tasks. The problem statements are therefor exploratory
in nature, and is defined as the following:

1. By using as little aid as possible, is the model capable of solving RL environ-
ments?

2. How does changes in the reservoirs parameters affect the performance?

3. What are favourable and detrimental properties of ECA rules with different
reservoir setups?

3

4

Chapter 2

Theory

In this chapter, we will take a closer look into the background theory surrounding this
thesis. It is divided into the three main sections covering the general topics of cellular
automata, reinforcement learning and reservoir computing.

2.1 Cellular Automata

Cellular automata (CA) is a type of mathematical model that is used to simulate
complex systems. First theorised in the 1940s by mathematician John von Neumann, it
is composed of a grid of cells, usually of two dimensions but not limited to. Each cell
can be in one of a finite number of states. These states are often referred to as on or off,
one or zero, alive or dead, and so on. This makes up a two-state system, but cellular
automata in general can have any number of states. The state of each cell is determined
by the states of its neighbouring cells, according to a set of rules. An example of this
is Conway’s Game of Life [5]. This is the most popular two-dimensional two-state
system where a cell is described as alive or dead. A cell is affected by its surrounding
eight cells and the ruleset describing the system is as follows: 1) Any live cell with two
or three live neighbours survives, 2) Any dead cell with three live neighbours becomes
a live cell, 3) All other live cells die in the next generation. Similarly, all other dead cells
stay dead. It is also important to note that all the states of a generation are updated
simultaneously. With this simple ruleset, a variety of complex behaviour can emerge.

2.1.1 Elementary Cellular Automata

Table 2.1: Input and output of rule 82

Input 111 110 101 100 011 010 001 000

Output 0 1 0 1 0 0 1 0

5

Elementary cellular automata (ECA) is a specific type of CA. It is defined as a one-
dimensional two-state system where the rules determine the state of a cell based on
the state of the neighbouring left and right cell. It is regarded as the simplest form
of CA, with a ruleset consisting of 256 total rules, with names ranging from 0 to 255.
When updating the state of a cell, three input cells are used to determine the next
state. Three inputs of binary numbers have eight total permutations where the name
of an ECA rule corresponds to the output in binary. For example, rule 82 in binary is:
01010010, describing the output of the 8 different 3-bit inputs, which can be seen in
Table 2.1. ECAs are often used to demonstrate the complex behaviours that can arise
from simple rules.

2.1.2 Classification

(a) Class 1, rule 32 (b) Class 2, rule 94

(c) Class 3, rule 45 (d) Class 4, rule 110

Figure 2.1: Examples of elementary cellular automata classes randomly
initialised.

It has been generally accepted that CAs can be classified into 4 categories. They were
first proposed by Stephen Wolfram in 1984 and were for the most part only covering

6

ECA rules [18]. Since then, adjustments to these classifications have been modified to
fit CAs in more general terms. The classifications main objective is to tell how a system
will evolve over time given a random initial state. Class 1 is defined as any rule in
which the system evolves into a uniform state. A clear example of this, would be rule
0. Any output from this rule is 0, and any subsequent generations will therefore only
exist of 0s. Another example of this, is rule 32 as seen in Figure 2.1a. Class 2 contain
rules where the pattern tends to be still, or contains stable oscillations. These rules
have a periodic behaviour. Class 3 is defined as the class where the rules does not
settle into a particular pattern and is often described as chaotic. The last class, class 4,
contains rules that exhibit both order and randomness and refer to rules with complex
behaviour. It can be hard to distinguish between class 3 and 4, since many class 3 rules
can have regions of patterns that seem to be stable. Examples of class 2, 3 and 4 can be
seen in Figure 2.1b, c and d respectively.

Unique rules

All 256 rules does not have properties that uniquely separates them from each other.
Many rules are either mirrored, complement or mirrored complement of another one.
Table 2.2 shows which rules are unique with their corresponding equivalent rules. Out
of the 256 rules, only 88 of them display unique properties. Figure 2.2 illustrates
how rule 1 and 127 are complement to one another. Given an opposite starting
configuration, rule 127 will evolve in a pattern that is exactly opposite to that of rule 1.

(a) Rule 1 (b) Rule 127

Figure 2.2: Examples of complementary rules.

7

Table 2.2: Unique rules and their equivalent counter rules.

Rule Equivalent rules Rule Equivalent rules Rule Equivalent rules

0 255 35 49, 59, 115 108 201

1 127 36 219 110 124, 137, 193

2 16, 191, 247 37 91 122 161

3 17, 63, 119 38 52, 155, 211 126 129

4 223 40 96, 235, 249 128 254

5 95 41 97, 107, 121 130 144, 190, 246

6 20, 159, 215 42 112, 171, 241 132 222

7 21, 31, 87 43 113 134 148, 158, 214

8 64, 239, 253 44 100, 203, 217 136 192, 238, 252

9 65, 111, 125 45 75, 89, 101 138 174, 208, 244

10 80, 175, 245 46 116, 139, 209 140 196, 206, 220

11 47, 81, 117 50 179 142 212

12 68, 207, 221 51 146 182

13 69, 79, 93 54 147 150

14 84, 143, 213 56 98, 185, 227 152 188, 194, 230

15 85 57 99 154 166, 180, 210

18 183 58 114, 163, 177 156 198

19 55 60 102, 153, 195 160 250

22 151 62 118, 131, 145 162 176, 186, 242

23 72 237 164 218

24 66, 189, 231 73 109 168 224, 234, 248

25 61, 67, 103 74 88, 173, 229 170 240

26 82, 167, 181 76 205 172 202, 216, 228

27 39, 53, 83 77 178

28 70, 157, 199 78 92, 141, 197 184 226

29 71 90 165 200 236

30 86, 135, 149 94 133 204

32 251 104 233 232

33 123 105

34 48, 187, 243 106 120, 169, 225

Classifying the unique rules with respect to the classes presented by Wolfram, we
can observe how they are distributed in Table 4.2. Class 4 with complex behaviour
contains the least amount with only four rules, class 1 and 3 contains 8 and 11 rules
respectively, but the majority of the rules falls under class 2 with periodic behaviour,
containing 65 of them. Other classification methods used for the ECA rules, are
e.g. by symmetric behaviours, categorised as symmetric, semi-asymmetric, and full-
asymmetric. Or using ECA with memory (ECAM) to determine a rules capability of
transforming from one class to another depending on a memory function, where they
are classified into strong, moderate and weak. An in-depth study and comparison
of different ECA classifications can be found in "A Note on Elementary Cellular
Automata Classification" [11].

8

Table 2.3: Unique rules grouped by Wolfram’s classification

Class Rules

1 0, 8, 32, 40, 128, 136, 160, 168

2

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 19, 23,
24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 42,
43, 44, 46, 50, 51, 56, 57, 58, 62, 72, 73, 74, 76,
77, 78, 94, 104, 108, 130, 132, 134, 138, 140, 142,
152, 154, 156, 162, 164, 170, 172, 178, 184, 200,
204, 232

3 18, 22, 30, 45, 60, 90, 105, 122, 126, 146, 150

4 41, 54, 106, 110

2.1.3 Edge of chaos

At the border between orderly and chaotic, exists a transition space called the edge
of chaos. This phrase is used to describe the line where a system crosses from being
somewhat orderly to completely random. In CA, it was found that many systems that
exhibited life like patters, or self-organisation, often exists close to that line. It has
been observed that in many systems, for example nature, physics or economics, when
modelled also operates in this region. There is a common consent that CA systems
with good computational properties will probably operate within the edge of chaos
[10].

2.2 Single and Multi layer perceptron

(a) OR (b) XOR

Figure 2.3: Illustration of the XOR problem.

9

The simplest form of artificial neural networks (ANN), is the single layer perceptron
(SLP). It consists of a single layer of inputs and outputs with no hidden layers. The SLP
is commonly known as a linear classifier due to the fact that it cannot solve nonlinear
problems. To illustrate this, binary operations can be used. The OR operation, which
will output 1 as long as one of the inputs is 1, can be linearly separated. This operation
can therefor be modelled by an SLP. The XOR operation on the other hand, which will
only output 1 if only one of the inputs are 1, cannot be linearly separated. The training
will never reach a point where all the cases are separated. This is illustrated in Figure
2.5 and is known as the XOR-problem.

To solve the XOR-problem, we need a model capable of nonlinear classifications.
The multi layer perceptron (MLP) expands on the SLP by introducing layers between
the input and output layer. These hidden layers makes the MLP capable of solving
nonlinear problems, but only if using nonlinear activation functions. If a MLP uses
a linear activation function for all its neurons, the model can be reduced to a linear
input-output model. A common nonlinear activation function is the Rectified linear
unit (ReLU), where if given an input x will output x if x is greater than 0, else output
0, expressed as: (x) = max(0, x).

2.3 Reinforcement learning

Figure 2.4: Illustration of the relation between agent and environment.

Reinforcement learning is one of the main subfileds of machine learning, the others
being supervised and unsupervised learning. It differs from theses by not having
any data, labeled or unlabelled to train on, but rather through interactions with an
environment. This makes reinforcement learning a suitable candidate for solving
complex decision-making tasks without having any previous knowledge of the
environment. Reinforcement learning and deep reinforcement learning have been
shown to excel in many domains, such as board games like Chess and Go, or playing
video games [16]. To do this, an agent interacts with an environment by taking an
action. The action can for example be to move in a certain direction, which will cause
the environment to change. From the environment, the agent receives a state and a

10

reward. The state describes what the environment looks like, and is typically a RGB
image or numerical representations of things in the environment or the agent itself. The
reward is a numerical value which indicates if the action taken was good or bad given
the previous state. Then, the agent performs a new action, and the cycle continues.
Figure 2.4 shows a illustration of this cycle. Over time, the agent learns to perform
actions, given a state, which maximises the cumulative future reward. This is called
a policy, and is whats being updated when an agent is trained. In section 4.1 a more
in depth explanation can be read about the action, reward and state representations of
the different environments used in this thesis.

2.3.1 Exploration and Exploitation

In reinforcement learning, the principals of exploration and exploitation is important
to understand. By exploration, we mean the process of exploring the environment to
find which polices are good and which are bad. Exploitation is thereafter the process
of exploiting the good polices. Balancing the two is the tricky part, and if not done
correctly can lead to agents performing suboptimal actions. This is usually the result
of doing to little exploration and moving over to exploitation to quickly. On the other
hand, if exploration if perform for to long, a lot of time and computation might be
wasted.

ϵ = ϵ ∗ decay_rate (2.1)

A simple technique for managing the balance between exploration and exploitation is
to use epsilon decay as seen in Function 2.1. Here, ϵ start with the value 1, and the
decay_rate is close to 1 but smaller, e.g. 0,999. The value of ϵ can be updated every
step, episode or epoch. During training, the agent will perform a random action with
a probability equal to ϵ, and follow its optimal policy with a probability of (1 − ϵ). At
the start of the training, when ϵ is close to 1, the agent will perform mostly random
actions, exploring the environment. But as the training continues, the value of ϵ is
slowly decreased, resulting in the agent following its optimal policy more closely.
When training is done, ϵ is 0 and the agent will only perform actions it regards as
best. This is a relatively naive solution to the exploration and exploitation problem, as
the agent is still likely to become stuck within a local optimal. Other, more advanced
functions might include more parameters to update the epsilon value, e.g. number of
steps, reward and state. Other methods for encouraging exploration can be to give the
agent an intrinsic bonus reward for finding states it has not seen before, or swapping
out the epsilon equation completely with a separate network that is trained to decide
if the agent should focus on exploration or exploitation [1].

11

2.3.2 Recurrent Neural Network

A big challenge in RL is for the agent to know which actions lead to rewards, both
positive and negative. In many environments, especially in games, the agent might
not be rewarded until hundreds of steps after a particular action have been taken.
The opposite might also be the case. What set of actions led to a negative reward
which comes much later. To combat this problem, recurrent neural networks (RNN)
was introduced to give the agent some sort of memory. Unlike a feed-forward neural
network, the RNNs have at least one connection which loops back to an earlier node
in the network. One such method, which saw huge progress, was with the inclusion of
Long short-term memory (LSTM), first introduced by [9].

Instead of stacking multiple observations to imitate history as inputs, the LSTM
unit(s) could sit at the end of the network, combining previously extracted features
with the current one. This made it possible for the agent to backtrack and train on
history dependant values. Models like the Deep Recurrent Q-Network (DRQN) [8],
and the actor-critic (A3C, LSTM) model introduced in [12], both utilised this technique
to improve on the state-of-the-art average score in the Atari 57 game suite at their time
of publishment.

2.4 Reservoir Computing

Figure 2.5: Illustration of the dynamics of a reservoir.

Reservoir computing further extends upon the concept of RNN, but unlike RNN, have
randomly connected nodes. Inputs to the system is mapped to a higher dimension
through the dynamics of the reservoir. The reservoir computer therefore consists of
three parts; an input which maps an input to random or fixed locations within the
reservoir, the reservoir itself which have randomly connected nodes, and the output
which interpreters the state of the reservoir to make predictions. This makes reservoir
computers an efficient network to train and has been shown to be more robust to noisy
and missing data than other types of RNNs. Because of its recurrent nature, reservoir
computers is a useful technique that can be applied to make sequential predictions.

12

2.4.1 Liquid state machines

One type of reservoir computer, is the liquid state machine (LSM). It has, for the most
part, the same structure as the ordinary reservoir computer, except that is uses spiking
neural networks (SNN). The reservoir will receive signals which varies in time, and the
nodes themselves, which are randomly connected, will also receive time dependant
signals from each other. This structure makes the LSM emit patterns which are highly
dependant on space and time, much like ripples from a stone dropped in water, which
is where the liquid part of the name comes from. Due to the recurrent nature of the
LSM, it has been shown to process temporal data well, being able to extract features
over time. This makes it good at tasks such as speech recognition and computer vision.

The LSM have also been used to model biological systems. One such system, is the
dynamics of neurons in the brain. The brain is, of course, such a complex system that it
can’t be modelled with randomly connected neurons. But, where we find similarities
is in the ability to perform multiple calculations, on various time scales, all within
the same network. This makes LSMs a close resemblance to how the brain perform
operations. But at the same time, makes them also difficult to study. Even with a
relatively small reservoir of neurons, it can be hard to figure out where and what
processes are being performed.

2.4.2 Echo state networks

The term reservoir computing is a generalisation used to encapsulate complex systems
that utilises recursion. This includes network architectures such as RNN, LSM and
echo state networks (ESN). ESN works much in the same way as RNN as updates
happen in desecrate time steps, but instead of having trainable connections, all
connections between nodes in the reservoir remain fixed. The only layer which is
trained, is the output layer, also referred to as the readout layer. This is usually a linear
dense layer which is trained to interpret the high dimensional state of the reservoir.
With only one layer to train, ESNs are usually faster and not so computationally
heavy to train as a RNN, where backpropagation is performed throughout the whole
network. One property of the ESN, is that inputs to the network is imagined to being
echoed throughout its nodes, with the inputs strength slowly fading away as new
inputs are introduced, hence the name "echo".

2.4.3 Cellular automata as a reservoir computer

The first instance where cellular automata was used as a reservoir, can be found
in the paper titled "Reservoir Computing using Cellular Automata" [19]. Here, the
author discusses and demonstrate the use of such a system, highlighting the low

13

computational complexity compared to ESN using neurons, stating that it requires
order of magnitude less computation. The paper illustrates the long short-term
memory capabilities of this system by demonstrating it on the 5 and 20 bit memory
task, using both Game of Life and elementary cellular automata as the reservoirs
substrate.

14

Chapter 3

Related Work

In this section, we will take a closer look at previous works that this thesis builds upon.
As of the release of this thesis, there has been little to none published articles using an
ECA based RC model for solving RL problems. Therefor, the focus will be on research
with similar structures or papers outlining the core principals in which this thesis is
built upon.

3.1 The Dynamical Landscape of Reservoir Computing

with Elementary Cellular Automata

The first paper we will look at, has not yet been published. It is called: "Investigating
rules and parameters of Reservoir Computing with Elementary Cellular Automata,
with a criticism of rule 90 and the 5-bit Memory Benchmark" [6] and works as a
predecessor to this thesis. It is currently under review and is a continuation of the
work presented in [7]. The paper’s focus is on investigating the capabilities of ECA
based RC (ReCA), and the properties of individual rules. Also, an extensive search
of many parameters regarding the ReCA was tested to find how the properties of a
rule would change. For the testing, the 5-bit memory benchmark was utilised, more
commonly described as the x-bit memory benchmark. A benchmark in which a model
is asked to remember a sequence of bits, and after a certain period, is given a cue to
reproduce the same sequence. Thus, testing if a model is capable of memorising. Doing
this in the context of ReCA, the input bits are placed into the CA grid using the XOR
operation with the current state. The CA will then iterate over the grid, applying the
rule to the state several steps before the next input is given. To produce an output, the
system uses a classification model that can read the current state, optionally together
with previous steps. This classification model is a linear model, meaning that there
are no hidden layers, ensuring that the RC is doing the separation and not the neural
network.

15

As mentioned, a variety of parameters regarding the benchmark and the CA was
also tested. These include the number of regions the CA was divided into denoted as
R, the width of R (Ld), CA iterations between inputs (I), number of inputs between the
input and output sequence (distraction period Dp), and the number of bits to memorise
(Nb). As mentioned in the paper, there exists many more parameters to explore, such
as encoding and decoding strategies, but these were not investigated in this paper.
In total, 3 experiments were done. These include, changing I, different length of Dp
and seeing how small changes in Ld and Dp affected the performance. Changes in
I showed that some rules benefited from I being an even number, like rule 3, 60 and
90, while others benefited from an odd number, like rule 15 and 56. Changes in Dp
showed that many rules struggled with high values of Dp, especially rules that exhibit
chaotic patterns. Here, the problem is compared to the fading memory problem.
This experiment also showed that some rules do not have this problem, in fact, some
showed better performance with greater Dp value. A subsequent experiment with a
much higher Dp value of 4000 showed that rules like 162, 10, 105, 150 and 170 can
settle into a periodic pattern such that changing Dp does not affect their performance.
In the last experiment, small changes in Dp and Ld were tested. It showed that in some
cases, like the first experiment, some rules drastically change performance with small
changes to the parameters. Most notably scored rule 90 and 150 overall good with a
Ld of 40, but 0 with Ld of 39 or 41. On the other hand, rule 54 generally scored higher
with a Ld of 40 and above.

As this paper shows, the properties of the ECA rules can drastically change with
small changes in the reservoir setup only. With a certain configuration, one rule can
perform well and another poor. But with small changes, this can be flipped around.
The researchers also criticises the x-bit memory benchmark and theorise that it might
not be the best method for exploring the properties of the ECA rules used in an RC
setting.

3.2 DQN

For this thesis, we will also need a way to train the model using RL. Due to the focus
being on the ECA based RC, a simple method should suffice. Therefore, we will
draw inspiration from the DQN techniques presented in the "Playing Atari with Deep
Reinforcement Learning" [13] paper. This paper introduced a new way of training RL
agents that could work in a majority of environments. Instead of using a state-action
Q-table, which was a common practice up to this point, they trained a Deep Neural
Network to approximate the Q-value given a state-action pair. This made it possible to
train agents in environments with a huge variety in both states and actions, compared

16

to Q-tables which grew to an unreasonable size if the state or action space was too
large. To demonstrate this, they trained and tested agents in different Atari games,
and achieved scores comparable to humans in some of them.

They also showed how several techniques for more efficient and more stable
training could be used in combination with deep reinforcement learning. This included
having an experience replay memory, a separate target network and how to update
the Q-value network based on the current state, action, reward, and the next state. The
experience replay memory works by appending the current state, action, reward and
next state to a long list. Every time the network is trained, a batch can be randomly
sampled from this list and be used to train the network. This has two primary
objectives. The first one is to have a consistently large batch of data to sample from,
and the second one is to keep the agent from forgetting policies it has already learned.
Without the experience replay memory, an agent can quickly get stuck in a suboptimal
policy due to there being no variation in the training data. Imagine an environment
with 2 actions, left and right. If the agent decides to mostly take left actions, and
training is only done on the latest samples, the agent will eventually only step left
as this is what it is being conditioned to do.

The experience replay memory becomes even more powerful when the agent
explores the environment more. This is because the models will have a more diverse
dataset to sample from. To achieve this, they used an epsilon greedy exploration policy.
At every step throughout the training, there is a probability equal to this epsilon value
to perform a random action. This epsilon value is usually high in the beginning and
is slowly reduced over the course of the training. This makes the agent explore more
in the beginning and exploit more towards the end. To achieve a more stable training,
the researchers used two networks. We can call one the policy network, and the other
for the target network. The policy network is the main network that is train and will
do the decision making. But when training the policy network, the Q-values from the
target network are used instead. The target network’s parameter is also periodically
synchronised with the policy network.

Over the years, many more complicated and sophisticated DQN based techniques
have shown how effective this method can be. Many of the techniques that were
included in this paper are still present in many of the modern RL models. In some
models, they have been modified to be even better. Like in [15] where the sampling of
the experience replay was modified to pick samples that had the potential to be more
useful for training more often. Or in [1], where the researchers introduced what they
called a meta-controller to help decide when the agent should prioritise exploration
versus exploitation. But many of the principals remain the same.

17

3.3 Reinforcement Learning with Convolutional Reser-

voir Computing

This paper [3] presents a novel approach for performing RL tasks using convolutional
neural networks (CNN) and reservoir computing (RC) named the RCRC model. This
model is tested in two environments; CarRacing-v0 and DoomTakeCover-v0, showing
results that matched some of the best results at the time of publishing. In these
environments, training is done directly on the RGB image frames. The model consists
of three parts, a fixed randomly initialised CNN, a echo state network (ESN) with fixed
random weights and connections, and a single trainable weight matrix. The CNN
extracts and compresses features from the images which are passed to the ESN. The
state of the ESN is then used together with the weight matrix to produce an action.

The researchers underline a couple of key characteristics of the RCRC model:
1) Because the weights of the CNN and ESN are random and remain fixed, the
computational cost of the model is very low. 2) Only a single weight matrix needs
to be trained.

Furthermore, the researchers highlights the ease of use of the model, comparing it
to models which requires pre-training or computationally heavy training functions.
Additionally remarking the models low training time and the wide variety of
applications it can handle.

18

Chapter 4

Methodology

This chapter is divided into three main sections. The first one will describe the
environments in which the model was tested. The second sections will go over how
the model was implemented, firstly a description of the individual parts, and then
how the whole training loop will work. This section will also contain descriptions of
different design choices that were considered and why the ones used were chosen. In
the last section, the different experiments are explained. This includes how they were
conducted and what training parameters were used.

4.1 Environment

For the training environments used, two of varying difficulty were chosen. They are
both from the openai Gym library [2], developed for testing RL related models. All
Gym environments are built with the same structure, with two main functions, reset
and step. The reset function, which as the name implies, will reset the environment
to its starting position. The step function takes an action as an argument, applies it
and returns the new state of the environment as an observation alongside a reward
and if the environment was terminated or not. Every environment also has an action
space and an observation shape. The action space describes what actions can be taken
in the environment, while the observation shape describes how a single observation is
represented. In addition to the observation space, observational low and high values
are usually also defined. Together, these describe the range of values each observation
is bound by.

4.1.1 Cart Pole

The objective of the Cart Pole environment is to balance a pole on top of a cart for as
long as possible or up to a set number of steps. At every time step, the environment

19

requires an action. The action must be one of two discrete values, 0 or 1. If 0 is
chosen, a force is applied to the cart in the left direction, and if 1 is chosen, the force
will be towards the right. The observation contains 4 values, these being the carts
position and velocity, and the poles angle and angle velocity. The angle of the pole
is given in radians, and when the environment is reset, all values will be set to a
randomly uniform distributed value between -0,05 and 0,05. The environment will
terminate if one of two conditions are met, these being if the carts position is outside
the range of -2,4 and 2,4 or if the pole angle is outside the range of -0,2095 and 0,2095
(±12◦). An additional constraint can be set to terminate if the number of steps reaches
beyond a certain number, with a default value of 500. When a step is taken, the
reward will always return 1, even if the environment terminates. This means that
for an agent to achieve a high total reward, it must be able to keep the cart close to
the centre of the screen while having the pole in an upright position. Given that the
environments starting state is somewhat randomised, a good performing agent should
also be capable of quickly straightening up the pole.

4.1.2 Bipedal Walker

In the Bipedal Walker environment, you are tasked with controlling four joints of a
robot. The four joints are controlled by applying a torque to a motor located in the
hip and knee of two legs. These 4 joints takes a continuous value between -1 and 1
as inputs. The objective is for the robot to walk forward without falling over. Any
forward movement is rewarded. If it falls over, and the head hits the ground, the agent
is punished by a reward of -100. Applying torque does also result in a negative reward,
albeit a small amount. A good performing agent in this environment, is one that is able
to efficiently move forward. The observations returned from the environment consists
of 24 values; hull angle speed, angular velocity, horizontal and vertical speed, position
of joints, joints angular speed and if the legs are in contact with ground. 10 additional
lidar measurements measuring the range to the ground at different angels are also
included. The environment will terminate if one of three conditions are met: 1) a total
reward of 300 is achieved, 2) after 1600 steps are taken, 3) the hull hits the ground.
When the environment is reset, the walker will always start in the same position, with
its two legs on the ground and the hull in a horizontal position. Some variation in
terrain height will occur from episode to episode.

4.2 Setup

The complete model is separated into 3 main parts; the ECA, reservoir and agent. This
section is dedicated to describing the setup of each of these individual parts. The last

20

section will cover the training loop and how these parts are combined into a complete
model.

4.2.1 ECA

Out of the three parts, the ECA is the simplest with only 1 method. When initialised, it
takes a valid ECA rule, either as an integer or a binary list, and maps the 8 possible 3-bit
inputs to the rules defined output. The ECA-class will store both the rule in binary-list
form, and the complete rule mappings. The method, which is called iterate, takes a
binary list and a wrapping method as inputs. There are three valid wrapping methods
implemented which are commonly used in ECA. These describe how the ECA will
handle the edges of the CA. All three methods adds one additional value to the left
and right-most position of the input list. This must be done to preserve the original
total size of the ECA. If no padding is applied, and the first generation has a size of
100, the second generation will only have a size 98 and the next one 96 and so on.
Valid paddings are 0, 1 or wrap. 0 will add a 0 to the edges, 1 will add a 1 to the edges,
and wrap will copy the values from the left and right-most position and add them to
the opposite side, making the ECA appear to be continuous. After validating that both
the input list is a valid binary list, and that a valid padding method is chosen, the rule
is applied to the input list. Finally, the method returns the output list containing the
new generation.

4.2.2 Reservoir

The reservoir part contain the main contribution towards working with ReCA based
RL. There are multiple steps we need to implement for it to work as intended. The
reservoir itself will only need to store 1’s and 0’s for each cell in a list referred to as
cells. A list of the history of cell states for previous generations will also be needed. In
general, we will need three methods, one for updating the current state of the reservoir,
one for reading the state of the reservoir and one for resetting it. Lastly, we should also
be able to save and load the reservoirs configurations.

Update

When updating the reservoir, we are only interested in changing the state of cells of the
last generation. This function will receive the observations which are returned from the
environment. Since the state of a single cell can only be 1 or 0, and the observations
are generally floating point numbers, the first problem we face is; how can we map
the floating point numbers to a binary format? When doing this, we must also keep
in mind the trade-off between size, accuracy and interoperability. The observations

21

consists of 32 bits, but directly converting them to binary means we will have 64
binary number per observation. For a simple environment, like cart pole with only
4 observations, this might be doable, but for a more advanced one with many more
observations, the reservoirs size can quickly grow out of proportions. Also, having
that high of a precision for all the observations, will in most cases be way more than
needed.

Casting is the next logical approach to take. First, the observations would be
normalised, then scaled to a preferable precision, and lastly, only the integer part
of the float would be cast to a binary number. To illustrate this using the cart pole
environment and only one observation, the process would look like the following
using the carts x-position = 1 and an accuracy of 8 bits: Normalise by dividing
with the observations max value obs_norm = x/obs_max(x) := 1/2.4 = 0.416.
Then scale by the accuracy2 if unsigned, and (accuracy − 1)2 if signed: scaled =

obs_norm ∗ (accuracy − 1)2 := 0.416 ∗ 128 = 53.3. Lastly, cast 53 to an 8-bit signed
binary number, which is equal to 00110101. If the observation instead was -1, the result
would be 11001011. Using this method ensures that we utilise as much information
as possible. It is good when it comes to using a small number of bits per observation
while maintaining a high accuracy. But a potential problem with this method lays
with its interoperability. When counting in binary, bits are constantly changing values,
especially bits to the far right. Continuing using the carts position as an example, when
the cart moves from the scaled value of 63 to 64, the bit representations will drastically
change from 00111111 to 01000000. This can make it difficult for the agent to perceive
the state of the reservoir since small changes in the environment can have a huge effect.
As to why this is considered a suboptimal strategy, a more in-depth explanation can be
found in Section 4.2.3.

Linear translation was used instead. This method aims to keep the bits as consistent
and interpretable as possible, but in doing so, also sacrifices some precision. The
method divides the observation range from low to high into equally spaced chunks.
The observation is placed in one of these chunks according to its value. The mapped
observation will then consist of 1’s for all the chunks up to that point, and 0’s for all
after. Given a range from -1 to 1, and an accuracy of 8, the dividing values would
be the following: [-1, -0.714, -0.429, -0.143, 0.143, 0.429, 0.714, 1]. If the observation is
-0.9, the bit representation would be 10000000, and 0 would be 11110000 and so on.
If the observation is outside the lower or upper bounds, the converted observation
will only consist of 0’s or 1’s respectively. The method is called linear translation due
to the separation between 1 and 0 is linearly transferable from the observation. As
mentioned, this method will require a larger size to achieve the same accuracy, but the

22

added benefit of having the mappings more consistent with small changes hopefully
outweighs the negatives. This method was chosen to be used in all the following
experiments.

Figure 4.1: Illustration of the linear translation method.

Max observation values are the values defined in the environment that the
observations cannot go beyond. For each observation, a minimum and maximum
value is defined. Since the accuracy of the bits are drastically reduced when using
the linear translation method, defining a custom range of possible values becomes
important. For the carts position, a range of -2.4 to 2.4 is defined by the environment. If
we instead define a range of -0.5 to 0.5 we also increase the accuracy for observations in
that range. Figure 4.1 illustrates how this would work. In some cases, such as the cart
and pole velocity, the range of possible values goes from negative infinity to positive
infinity. Here, a custom range of values must be defined. Table 4.1 shows the values
used for the cart pole environment in all of the experiments.

Table 4.1: Custom minimum and maximum vales for observations in the cart
pole environment.

Observation Minimum Maximum

Cart position -0.5 0.5

Cart velocity -2 2

Pole angle -0.1 0.1

Pole angle velocity -0.5 0.5

23

(a) Global_random (b) Local_random (c) Fully_local

Figure 4.2: Illustration of the three different observation mapping methods.

Placing the converted observations into the reservoir is the next problem to tackle.
This can have a major impact on the results, depending on how it is done. When
working with conventional reservoirs, this is typically done in a random fashion. In
our implementation, two additional methods will be tested. The first one, referred to
as global_random, is the traditional method where all values are mapped to random
locations in the last generation, as shown in Figure 4.2a. Local_random aims to restrict
the placement of values based on the observation. This works by dividing the reservoir
into sections and randomly map each observation to their distinct section. An example
of this can be seen in Figure 4.2b. The sections will always be divided into equally large
portions with no overlap. This also means that the total number of cells in a generation
must be greater than the number_o f _obseravtions ∗ accuracy_per_observation. The last
method, which is called fully_local, contains no randomness and will directly place the
observation at the centre of each section, as shown in Figure 4.2c. Once a mapping
is created, it will not change for that reservoir, meaning that as the reservoir is being
updated, every value from the observation will update the value at the same location
every time. It is also important to note that the fully_local method exists in the subset of
local_random which again exists in the subset of global_random, and no two observations
map to the same location.

With the global_random method, one additional parameter called partitions can be
specified. The number of partitions specifies how many times each encoded bit is
placed in the reservoir. If this number is 2, the reservoir will be divided into two
partitions, and every encoded bit will be mapped to each of them.

There is also worth mentioning how the values in the reservoir is updated. This
can be done in a plethora of ways, especially if neighbouring values are taken into
consideration. In this thesis, there was unfortunately no time to do an extensive
search of these possibilities, and keeping in line with maintaining simplicity, only two
options were considered: Performing an XOR operation between the observation and

24

the value of the cell, and directly placing the encoded observation value in the cell,
overwriting the current value. Utilising the XOR operation could help the reservoir
with persevering its history due to the current value being taken into consideration.

Read

Reading the state of the reservoir means to return the current state of the reservoir. It
considers only one variable, and that is how many rows the agent takes as input, or
rather, how many of the last generations it should return. When this variable is 1, the
method returns only the last generation. Considering the following scenario where the
reservoir is on generation 20 and the agent takes 5 rows as input, the read method will
return a 1D array consisting of the following generations: 16, 17, 18, 19 and 20. One
thing that also needs to be considered, is what to do when the number of generations
returned is less than the number of iterations performed per update. This will cause the
read method to not have access to generations less than 1. This edge-case is handled
by returning only 0’s for all generations before the earliest generation. Given the case
of reading 5 rows on generation 3, the method will return the following: all 0’s, all 0’s,
generation 1, 2 and 3. Before the rows are returned, a reshape is performed to flatten
the data such that all the rows will be consecutively placed in a 1D list.

Reset

The reset function is called whenever the environment is reset, or rather, at the
start of every episode. The reset method for the reservoir will not touch reservoir
specific variables, such as the update method or the observations mappings. Only the
generation counter, the history, and lastly the cells of the first generation will all be set
to 0. This is to always have a consistent starting state of the reservoir, where previous
runs does not affect the current one. One interesting approach for future work could
be to randomise the starting state of the first generation.

25

Configurations

Figure 4.3: Example of reservoir with rule 54, 64 width, 10 iterations and 60
generations. The observation mappings method used is fully_local.

Figure 4.3 displays a reservoir where the relations between width, iterations and
generations are shown. Note that all reservoirs in this thesis is shown with generations
moving downwards. Some of the cells in the reservoir is coloured. These indicates cells
that have been updated by encoded observations. The colours represents the different
observations from the cart pole environment. Red is for the carts position, green is
the carts velocity, blue is the pole angle and cyan is the poles angular velocity. Every
colour has two distinct shades. Dark represents a 1 and light represents a 0.

Throughout this section of the reservoir, there have been many reservoir related
mentions of variables and methods. For a short and concise overview, a list of these
have been compiled below containing name, explanation and potential values.

• Rule is an ECA rule dictating which rule is applied, with a value in the range of
[0, 255].

• Cell holds a single reservoir state value.

• Width is the number of cells in a generation. Can be any number above 0.

• Cells holds the current state of the reservoir, has a length of width.

• Generation is the count of how many times the ECA rule have been applied to
the cells, mapping a observation to the reservoir does not increase the count.

• Rows contain a history of all the states, whenever the rule is applied to the cells,
the new state is appended to this list.

• Rows_input is the number of how many of the last rows should be returned to
the agent.

26

• Accuracy_per_observation specifies how many bits one observation is converted
to.

• Observation_mappings specifies where the converted bits are placed in the
reservoir. It is a list of unique indexes between [0, width], created once per
reservoir either by the global_random, local_random or fully_local method.

• Partitions is the number of partitions the reservoir is divided into. Every encoded
bit is mapped to each partition. Defaults to 1 unless specified.

• Mapping_update_method specifies how the converted bits are placed in the
reservoir. Either by XOR or overwriting.

• Iterations is how many times the rule is applied to the cells after the observations
have been placed in the reservoir.

Saving and loading the reservoir can also be done. This will save or load the follow-
ing reservoir specific parameters: rule, width, rows_input, accuracy_per_observation,
observation_mappings and iterations.

4.2.3 Agent

The agent part of the model is the only part where any training will occur. This will
mainly consist of the trainable network that will get inputs from the reservoir, and
subsequently pick an action to perform. The agent model will mainly have three
methods. One for creating the network structure, one for training the network and
lastly a method for performing a predict. Additional methods for saving and loading
will also be implemented. These will save or load only the network weights and biases.
In conjunction with the network, the agent will also store the state, action, reward, new
state, and if the environment was terminated for every step taken in the environment in
whats called a replay memory buffer. When the agents network is trained, a random
batch of samples from this replay buffer will be used. This comes from the theories
introduce in [13], which was presented in Section 3.2.

Network

The network is the main part of the agent. For the training of this network, a second
one will also be used, a prediction and a target network. Both of these will be copies
of each other, but during training, the target network will be used for predicting on
future states while the prediction network will predict on current states. When fitting
the network to its new outputs, only the prediction network will be trained, and after
a certain number of episodes, usually 10, the prediction network weights are copied

27

over to the target network. This is done to reduce major fluctuations in the results due
to the future predictions being done on a consistent network. This is also from the
theories introduced in [13], which was presented in Section 3.2.

Linear topology is the structure of the networks. This refers to the number of layers
in the network and not the activation functions used. This is also known as a single
layer perceptron (SLP). By using a linear topology, the network will only have input
and output nodes with no hidden layers. The number of inputs are dependant on
two variables. First the width of the reservoir, and second the row_input which were
described in the previous section. The inputs are one dimensional, so the number of
inputs will therefore be the product of these two. The number of outputs is the number
of actions that can be taken in the environment. The reason as to why a linear topology
was chosen has to do with the investigatory nature of the ECA rules. If hidden layers
were used, so-called multi layer perceptron (MLP), the network alone could be capable
of approximating a function for separating the data, and take credit away from any
eventual computational properties of the rule. By not having any hidden layer, the
task of separating the data therefor lies with the rule of the reservoir and not with the
neural network. The new task of the network becomes therefor to read the state of the
reservoir and produce an action and nothing else.

Fitting the network

The training method consists of three main steps. In the first one, a minibatch is
sampled from the replay memory buffer. The main and target network then make
predictions on the current and next state respectively. The predicted values will
resemble what the network thinks the future reward will be for each action. The next
step is to calculate what the new output should be when taking the action chosen and
the reward into consideration. If the action did not result in a terminated state, the
new output for that action is calculated by summing the current predicted value from
the target network by the reward received, the result of which is then multiplied by a
discount factor. However, if the action did end in a terminated state, the new output is
set equal to the reward. The last step is to update the network based on the state and
the new output for that particular action.

28

4.2.4 Training loop

Figure 4.4: Illustration of one step in the environment.

With all the individual parts of the model explained, it is time to put together the
whole training loop. Before any training can take place, one must first pick the rule to
test. Once that is done, both the reservoir and the agent can be created. At the start of
every episode, both the reservoir and the environment must be reset. The environment
will return the initial state which is used to update the reservoir. The reservoirs state
can now be read. Next, a action must be sampled. This is either randomly selected
or chosen by the agents network depending on the epsilon value. If the agent is to
chose the action, it will do so based on the state read from the reservoir. The action is
then performed in the environment which returns an observation, reward and if it was
terminated. The reservoir is again updated and the new state is read. The agents replay
memory is then updated with the state, action, reward, new state and terminated.
A single fitting operation is performed before the loop continues. This is done until
the environment terminates. Lastly, the epsilon value is decreased, completing one
episode. This loop will continue to run until a set number of episodes have been
reached. A schematic of on step can be seen on Figure 4.4.

4.3 Experiments

In this section, we will go over the different experiments planned to perform. The
nature of these revolve around testing rules in different environments, finding good
parameters regarding both the reservoir and the agent. Before starting, there are a
few rules out of the 256 that can be excluded from any testing. These rules are either

29

mirrored, complement or mirrored complement to others. The number of rules with
unique properties is 88, which will help reduce total training time since performing
256 tests per parameter change is no longer needed. These unique rules can be seen in
Figure 2.2 back in Section 2.1.2.

4.3.1 Parameters

Before starting the training, there are a few parameters that needs to be specified.
Mainly the number of episode and the epsilon decay rate. The values of these can
be seen in Table 4.2.

For updating the agents network, a learning rate of 0.001 and a batch size of 64
were used. The max length of the replay buffer was set at 50,000, and no training
would occur before it reached a length of 1,000. A discount factor of 0.95 was used
when calculating the Q-values of the next state used in agents train function. The
target network would be updated every 10 episodes for training sessions less than
5,000 episodes, and every 100 episodes when greater. These parameters stayed the
same throughout all of the experiments.

Table 4.2: Epsilon decay rate used at different number of episodes

Number of episodes Epsilon decay rate

1,000 0.9975

5,000 0.9990

10,000 0.9995

20,000 0.9997

4.3.2 Generations

Figure 4.5: Plot of memory usage during training. x-axis show memory usage
in MB, y-axis shows episodes.

30

Chapter 5 is divided into two main sections, named 1. and 2. generation. The reason
for this is that half way through the experiments phase, a major change to the code
had to be made. In the 1. generation implementation, the python library Keras [4]
was used for all the operations surrounding the agent networks creation, update and
prediction. All training with this implementation was done using a NVIDIA GeForce
RTX 3060 Ti graphics card for GPU accelerated training. Unfortunately, a memory
leakage was discovered in the latest version, resulting in all of the systems memory
being used and eventually crashing as seen in 4.5. A workaround was implemented
to clear the systems memory if its usage reached 95%. This resulted in training being
significantly slower.

In the 2. generation, all training was done using the PyTorch [14] library instead.
Additionally, the overhead cost of transferring the training data to and from the GPU,
made the difference between GPU and CPU training negligible and the CPU version
of PyTorch was used. All experiments conducted in this implementation was done
on a Intel(R) Core(TM) i5-12400F CPU. The 1. generation was capable of performing
4-5 steps per second, whereas the 2. generation now was capable of performing
approximately 50 steps per second on average. A 10 times increase in performance.

4.3.3 General ECA rule testing

The goal of these tests is to get a general understanding of how the different rules, in
combination with different reservoir setups impact the performance, and if they work
in a particular setting or not. In these experiments, all 88 unique rules are trained using
the same setup, with the exception of the observation mappings, which is randomly
picked when a new reservoir is created.

4.3.4 Scoring

In section 5.2, the term score is used to rank rules in the different experiments. To
calculate the score, the finished trained models are loaded and given 100 attempts at
solving the environment. During their attempts, no random actions are taken, the
model will always pick which action to take. For the cart pole environment, if the
model reaches 500 steps, the attempt is terminated. Managing to consistently achieve
500 steps is considered solved. The score is therefore the average reward over the 100
attempts.

31

32

Chapter 5

Results

This chapter contain the results from the experiments performed. The chapter is
divided into two main sections, one for each generation of implementation.

5.1 1. Generation

5.1.1 Experiment 0, 0 iterations

(a) 64 runs, x-axis is episodes and

y-axis is average reward over 10 episodes

(b) Example reservoir from one run

Figure 5.1: Runs using 0 iterations, 200 width, 16 accuracy per observation and
1 row as inputs to the left. On the right is a reservoir showing generations from
top to bottom

To get a baseline of the performance using the implemented methods, a total of 64
runs was conducted where the rule was applied zero times between updates. This will
effectively not allow the data to permute through the reservoir. The networks training
data will therefor only consist of the converted bits from the environment. A plot of
the training result and an example of one of the reservoirs can be seen in Figure 5.1.
In these initial tests, a couple of extra constraints were put in to speed up the training
process. One of these were to stop the training if the model archived an average reward

33

above 100 after 500 episodes. This will in most cases mean that the agent is capable of
some sort of learning. Observing the plot reveals that all instances performed roughly
the same with only slight variations. About 80% of the models managed to get an
average score above 100 between 500 and 1000 episodes, 20% did not and no model
managed to get an average score above 100 before the 500 episode mark. This shows
some learning capabilities, although slow. Training a couple more models without
stopping, showed that this model tend to converge between 80 and 120. Observing
some of this models in the environment, showed that a common behaviour for most
of these models were to overwhelmingly move in one direction, causing the pole to
be balanced as the cart moved off the screen if the spawning angle was right. If the
spawning angle was opposite, the model would quickly fail. This resulted in scores
around 100-150 if good starting conditions, and 20-50 if bad.

In Figure 5.1b the reservoir shows one of these "good" runs where the cart moves to
the left, keeping the pole in a negative angle. The carts position is coloured in red, dark
if 1 and light if 0. As the cart travels to the left, notice how one column after another
changes to a light colour. Observing the green colour, describing the carts velocity, we
can also deduct that the cart is accelerating towards the left. The angle is described
by the blue colour, and the angular velocity is the cyan colour. Notice also how the
angular velocity is close to 0 by the number of 1’s and 0’s being close to eight at any
row. Since the global_random observation mappings was used, it might be a bit hard
to tell, but in Section 5.2, a similar experiment was performed where a much clearer
figure can be seen.

5.1.2 Experiment 1, general performance

(a) All 88 unique rules (b) Top 10 rules in order: 74, 35, 184, 58, 168,

172, 57, 152, 138, 232

Figure 5.2: Two plots showing a training run using 5 iterations, 200 width, 16
accuracy per observation and 5 row as inputs. x-axis is episodes and y-axis is
average reward over 10 episodes

34

In the second training run, all 88 unique rules were tested. This time, the rule
was applied 5 times between updates, the reservoir had a width of 200, with 16 bit
accuracy per observation and 5 rows as inputs using the global_random observation
mappings. These parameters were chosen as a good starting point due to their
middle ground of not having a small or large size, number of iterations and including
plenty of generations as training data. The ratio between number of cells overwritten
and the width is approximately 1/3, given by: update_ratio = num_observations ∗
accuracy_per_observation/width. This gives cells from previous generations the
opportunity to impact the current ones. Note that if this ratio is 1, the entire reservoir
would be overwritten when updated.

Figure 5.3: Comparison of the best performing run with 0 and 5 iterations. The
x-axis is episodes and the y-axis shows average reward over 10 episodes. The
rule applied is 74, shown in blue and the pink has no rule applied.

Comparing the best results from these two runs, shown in Figure 5.3, indicates
that applying the rule gives the model a large advantage. From the previous section,
we know that the model where 0 iterations where done between updates are about
to converge. While the model where rule 74 was applied seems to still be on a steep
learning curve. Of course, one could argue that the run where 5 iterations was applied
had 5 times more trainable neurons, and had therefor an advantage. Increasing the
number of trainable neurons can be done in two ways. Either by increasing the width
of the reservoir or increasing the number of rows passed to the network. Since no rule
is applied, the model would be unable to take advantage of the extra width, which
leaves only the second option. Increasing the number of rows can be done in two
ways. The first way is to copy the cell states downward x number of times and give
them to the network. This, in a sense, will make the network have multiple neurons
connected to the same cell state. The problem with this, is that the cells will all be
either 1 or 0, and since the readout layer is linear, the output of these neurons will be
summed and act as a single value regardless. The second way is by directly including
multiple updated rows. This shows a slight increase in performance, but not to a point

35

where it can be deemed significant.

In Figure 5.2, the results from all 88 unique rules can be observed. The same
constraints are still applied where one rule will stop training if it reaches an average
above 100 after 500 episodes. Even with this, the full run took around 150 hours to
complete. Many of the models are yet to converge, but training all of them the full 1000
episodes would mean triple or quadruple the training time as the performance would
further increase. From Figure 5.2a, we can observe that these parameters results in a
large spread of performances. Some rules are barley increasing in performance beyond
performing random actions, while others reaches close to 200 after 500 episodes. As
expected, rule 0 performs the worst with rule 128, 150 and 105 not being able to score
an average score above 100 after the full 1000 episodes. Other weak performing rules
include 136, 146, 90, 204, 1 and 126.

In Figure 5.2b, the top ten rules are singled out. By observing the classifications
of the best and worst rules, a pattern starts to emerge. Out of the worst performing
rules, three of them belongs to the class 1 ECA classification, two to class 2 and five
to class 3. The two rules belonging to class 2, 1 and 204, can at a first glance look to
behave dissimilar, but the two share the property of only moving cell states downward
with no diagonal movement. The difference is that rule 1 will do it in an alternate
fashion, while rule 204 will directly copy the states. These properties are similar to the
case described above where multiple rows should be included in the training to have
more neurons per state. As shown, these properties perform among the weakest, not
beating any of the experiments with 0 iteration. The other weak performing rules all
have uniform or chaotic behaviour. This usually results in models where the reservoirs
state disappear after a couple of iterations with minimal cell interactions, or reservoirs
where the state seem random meaning small changes in the observation results in
vastly different states. Beneath are examples of reservoir with weak and moderate
results shown in Figure 5.4 and 5.5.

36

(a) Rule 90 regular (b) Rule 90 as reservoir

(c) Rule 105 regular (d) Rule 105 as reservoir

(e) Rule 204 regular (f) Rule 204 as reservoir

Figure 5.4: Examples of weak rules from random initialisation on the left and
when used as reservoir on the right.

37

(a) Rule 40 regular (b) Rule 40 as reservoir

(c) Rule 122 regular (d) Rule 122 as reservoir

(e) Rule 134 regular (f) Rule 134 as reservoir

Figure 5.5: Examples of moderate rules from random initialisation on the left
and when used as reservoir on the right.

38

(a) Rule 74 regular (b) Rule 74 as reservoir

(c) Rule 168 regular (d) Rule 168 as reservoir

(e) Rule 184 regular (f) Rule 184 as reservoir

Figure 5.6: Examples of good rules from random initialisation on the left and
when used as reservoir on the right.

Out of the top 10 best performing models, all of them belongs to the ECA class
2 with the exception of rule 168 which is in class 1. Some reservoirs of the models
that performed among the best is shown in Figure 5.6. These rules can at a first
glance appear chaotic, especially when observing the reservoirs in Figure 5.6b and
f. Observing how the ECA behaves when starting from a random initialisation, on
the other hand, shows that the rules quickly settles into periodic patterns, often in
a diagonal motion. This can be seen in Figure 5.6a and e. This allows information
from one observation to travel and interact with other observations. One interesting
behaviour of rule 184, is that these "streams of information" seems to cancel each other
out. These two properties seem to highly resemble the two properties necessary for a
successfully reservoir; 1) inputs to the system must be able to propagate throughout
the reservoir. 2) as information propagates, it must not amplifies.

Rule 168 appears to work quite differently than the two other rules with only some
diagonal movement if multiple 1’s are close by. As a class 1 rule, it quickly settles

39

into uniformly 0’s after few iterations. As a reservoir this can be favourable since it
allows some cell interaction while limiting the amount of noise. In Figure 5.6d, it is
still noticeable which regions have high or low activity. This rule might benefit from
using a more carefully crafted observation mappings, or a smaller reservoir in general.

Figure 5.7: Results of the four complex rules 41 (blue), 54 (red), 106 (pink) and
110 (grey). x-axis (or X-axis) shows episodes and y-axis shows average reward
over 10 episodes

Surprisingly, no class 4 rules of the complex type were among the best or the worst.
Looking at the plot shown in Figure 5.7, they can be observed achieving similar results
which are barely any better than the worst. However, they seem to be improving at
a steady pace. Due to their complexity, and therefor the many possible states the
reservoir can be in, they are likely to need much more training to achieve similar results
as the top performing rules.

5.1.3 Experiment 2, Longer training

In the second round of training, only a handful of rules were picked out to be trained
in a model for a longer period. The same parameters were used as in the previous
round, with the removal of the restriction that stopped training if the model achieved
an average score above a certain number. In addition, the two other observation
mappings method local_random and fully_local, were also tested.

Figure 5.8: Rule 74 training results. x-axis shows episodes and y-axis shows
average reward over 10 episodes

40

In the first training session, the best performing setup from the previous round was
trained for just under 2,500 episodes. The rule used was 74 and the results can be seen
in Figure 5.8. The training is steadily improving for the first 1000 episodes. Then the
results oscillates regularly between 400 and 1400, before settling at around 700-800. It
took approximately 72 hours to complete.

Figure 5.9: Results of rule 184 (red), 168 (dark blue), 41 (light blue), 90 (pink)
and 110 (orange). x-axis shows episodes and y-axis shows average reward over
10 episodes

Next, one rule from each ECA class were trained for 1,400 episodes. One additional
rule from class 4 were added as the results from the first one did not perform well.
The results are shown in Figure 5.9. The rule used from class 2 was 184 and shows a
learning curve similar to that of 74s from the previous graph. Compared to the other
four plots, it performs significantly better. Rule 41, 90 and 110 all ends at around 200
showing no further improvements over the last 800 episodes. Rule 168, from class 1,
ends at a slightly higher 240, but is also struggling to further improve.

Observation mappings

(a) Global random (b) Local Random (c) Fully local

Figure 5.10: Models where the global_random (GR), local_random (LR) and
fully_local (FL) methods were used. The rule applied is 110.

The next test is focused on how different observation mappings impact performance.
Figure 5.10 shows the three different mappings tested where the coloured cells

41

indicates where the reservoir is updated, and the colour corresponds to different
observations.

(a) Rule 74, GR is grey, LR is blue and FL is orange

(b) Rule 90, GR is upper pink, LR is blue and FL is lower pink

(c) Rule 110, GR is upper orange, LR is lower orange and FL is blue

(d) Rule 168, GR is blue, LR is green and FL is grey

(e) Rule 184, GR is red, LR is grey and FL is orange

Figure 5.11: Five models trained with three different observation mappings. x-
axis shows episodes and y-axis shows average reward over 10 episodes

The results from testing different observation mappings can be seen in Figure 5.11.
It shows that the global_random method achieves higher rewards than the other two

42

methods in all the cases tested. Notice in Figure 5.10c, where the reservoir of rule
110 is displayed, how the history is allowed to be passed downwards between the
updated columns, but with no interactions between the observations. As soon as
one observation reaches one of the others, it is overwritten before any interactions
can happen. This is also prevalent in 5.10b, where minimal interactions between
the carts position and the pole angle, or the carts velocity and the poles angular
velocity is possible. This shows a clear example of how a bad observation mapping
that do not allow for many interactions between observations to happen, causes the
model to struggle. This is best shown in Figure 5.11a and c where the global_random
mapping performed much better, but is also visible in 5.11b, c, and d even when the
global_random mapping struggles in the first place.

The fully_local method used in 5.11c showed a sudden spike in performance right
before the training ended at 2,500 episodes, and was therefore allowed to train for
4,000 episodes. This was to make sure that the model had properly converged before
stopping the training. It did not further improve and seem only to have hit a "streak of
luck" around that point.

5.1.4 Experiment 3, Bipedal Walker

Moving to a more advanced environment meant that a couple of changes had to
be made. Firstly the environment takes four continues values as input, which was
discretized to 11 actions per input. This also meant that the loss calculation was done
on four batches of actions four separate times. The reason for having 11 possible
actions was so that the model could pick actions in increments of 0.2 from -1 to 1,
including 0.

Figure 5.12: Reservoir with width 1,150 and rule 54 applied.

The reservoir parameters used were a width of 1,150, 5 iterations between updates
and an accuracy per observation of 16 bits. Since the environment has 24 observations,
the update ratio is kept at three. Two additional constraints were also set in place for
each episode: 1) the episode would terminate if the number of steps reached 1,000, 2)
the environment would terminate if cumulative reward reached 300.

43

Figure 5.13: Results from four training’s in the bipedal walker environment.
Displaying results from rule 90 (pink), 35 (orange), 184 (dark blue) and 168
(light blue). x-axis is episodes and y-axis is average reward over 10 episodes.
Note that the x-axis ranges from -125 to -80.

By observing 5.13, it becomes clear that the models did not perform well in this
environment. All rules tested follows the same pattern, scoring around -90 at the start
and ending at around -115. Rule 54 and 74 were also tested, but were preemptively
stopped due to performing identical to the four others. Common strategies that the
models adapted throughout the training included; kicking up one of the legs behind
them to fall forward, or quickly spreading the legs such that the head would not
touch the ground and staying in this position for the remainder of the episode. These
strategies are not particularly good, but considering that applying motor torque gives
a small negative reward, it makes sense as to why the models defaults to moving as
little as possible, or at least makes sure to fall forward. There are much that can be
done to improve the performance, but due to the time limit quickly approaching, it
was decided not to pursue the subject further and instead move back to the cart-pole
environment to further continue testing there.

5.2 2. Generation

This section covers the results from the optimised training using the PyTorch library.
See Section 4.3.2 for details. In short, training could be done 10 times as fast. Before
any of the following tests were conducted, a small sample of similar tests as in Section
5.1.1 and 5.1.2 were conducted, achieving close to identical results. *All episodes are
terminated if 200 steps is reached

44

5.2.1 Experiment 4, with ReLU

(a) 33 rules with improvements (b) 55 rules with no improvements

Figure 5.14: Training plot of models with ReLU layer

The focus for this experiment was to see whether the models would achieved better
results by increasing the accuracy per observation to 32. Unfortunately, as the next test
involving comparisons to regular neural networks were being prepared at the same
time, a ReLU layer after the outputs was included in the agents network. This was
not discovered until after all models had finished training. It was considered not to
include the results from this run, but an interesting artefact was found when plotting
the rewards from the training. As seen in Figure 5.14, 55 out of the 88 unique rules
did not manage to improve with the additional ReLU layer. Also, the the rules that
showed improvements seemed to perform better overall, but this can be due to the
extra accuracy or higher update ratio.

Table 5.1: Average score over 100 trials of the top 10 rules

Rule Class Score

72 2 476.57

168 1 338.70

140 2 326.81

12 2 279.86

76 2 238.00

8 1 231.89

160 1 221.80

36 2 200.80

24 2 198.82

4 1 198.16

45

In this run, the width was 256 using 5 iterations, 5 rows as input and a accuracy of
32 per observation meaning the update ratio is 1/2. From the results shown in Table
5.1, we can observe that the rules belonging to class 1 and 2 are still on the top, with no
rule from class 3 or 4 present. The best performing rule from class 3 and 4 was 18 and
41 with scores of 98.39 and 17.21 respectively.

5.2.2 Neural network comparison

(a) 1,000 episode training of four NN topo-

logies.

(b) 10,000 episode training comparison of a

NN and rule 33 and 34.

Figure 5.15: Training plot of NNs with different topologies on the left, and
comparison of a NN and two reservoirs with rule 33 and 34 on the right.

To be able to compare the model with a more traditional approach, a couple of regular
DQN models was trained using different network typologies. For this to be possible,
two changes had to be made. First, the observation would not be passed through to
the reservoir but directly given to the agent. Second, the agents network topology was
altered. All other aspects remained exactly the same. The name of the models that can
be seen in 5.15a and b, refers to the number of nodes in each layer. Note that all models
have 4 inputs and 2 outputs with ReLU layers between all of them. Observing Figure
5.15a, it becomes clear that the NNs struggle to improve over the course of such a short
training session. In Figure 5.15b, where the number of episodes have been increased to
10,000, the two implementations seems to even out over time as training progresses.

There are two additional things to point out here: 1) for the first 3,000 episodes the
models using the reservoir excels way in front of the NN, before being cough up to. 2)
although being cough up to, the NNs performance fluctuate much more throughout
the rest of the training.

46

5.2.3 Experiment 5, large width

This run and the next one, focuses on how the models performance differs with
changes to the reservoir. In this first case, a wider reservoir with more space and fewer
iterations is tested. The parameters used were a width of 384 with 3 iterations and
rows for the network inputs. The accuracy per observation was set to 16 meaning that
the update ratio is 1/6. With such a small update ratio, much more history is able to
pass through generations without being overwritten.

Figure 5.16

47

Table 5.2: Average score over 100 trials, including top score from class 3 and 4.

Rank Rule Class Score

1 8 1 463.15

2 130 2 299.39

3 10 2 205.71

4 15 2 200.64

5 36 2 188.90

6 57 2 182.40

7 26 2 175.91

8 28 2 173.28

9 38 2 172.94

10 4 2 172.82
...

...
...

...

18 60 3 152.05
...

...
...

...

36 54 4 99.96

Scoring this run, shown in Table 5.2, it becomes clear that rules from class 1 and 2
are still on top, with rule 8 scoring significantly higher than any other. It is interesting
to see that a class 1 rule outperform the others with this type of setup. Rules from class
3 and 4 generally did not improve much over the course of this run, with the exception
of rule 60 which almost managed to reach top 10.

The score of rule 8 was so high, that it warranted some extra investigation. Rule 8 is
only able to create an activated cell with 011 as inputs, meaning that the reservoir will
only consist of 0’s after two generations. For the reservoir to not be perceived as linear,
some adjacent cells must be updated. As the update ratio is lowered, the likelihood of
this decreases. The reservoir of rule 8 in this case has five pairs of cells that is updated.
This has therefore the potential to activate five additional neurons. Even with this
small amount of trainable neurons, the model is still able to perform better than any
other. To see if this was a one of a kind type of situation, five additional models with
rule 8 was trained using the same setup but with new random observation mappings.
The score of these new models were; 155.80, 87.09, 72.19, 45.39 and 9.38, confirming
that the original model was "lucky".

Plotting the Q-values over one episode gives some additional information about the
behaviour of rule 8. The plot can be seen in Figure 5.17a showing the model oscillating
between two major states. Observing the environment shows that the model slowly
moves back and forth between two points on the screen. The plot is stopped after 500

48

steps, but letting the model continue, it has been observed reaching 10,000 steps. For
a simple environment, simple setups such as this one can be quite effective. But for a
more advanced environment, where the importance of history becomes more apparent,
this behaviour is likely to not translate well. The Q-values appears to be fairly static,
only moving between a couple of values each.

In Figure 5.17b on the other hand, we can observe the Q-values predicted when
rule 60 interacts with the environment and they display a much more dynamic range
of values. In this episode, the model reached 390 steps, but even when the performance
is worse and less consistent then rule 8, observing it play displays model which is more
believable in its capabilities. It is not moving as much back and forth, and is constantly
correcting itself when the pole starts to tilt. At the end of the episode, the pole almost
tips over twice, but is able to save itself, although not for long. With longer training,
the potential for improvement is more clear, and it would probably translate better to
a more complex environment.

(a) Model with rule 8

(b) Model with rule 60

Figure 5.17: Plot of predicted Q-values for each action over one episode.

49

5.2.4 Experiment 6, small width

(a) Class 1 (b) Class 2

(c) Class 3 (d) Class 4

Figure 5.18: Training plot of models with narrow reservoir split into respective
classes.

50

Table 5.3: Average score over 100 trials, including top score from all classes.

Rank Rule Class Score

1 50 2 492.15

2 7 2 490.02

3 140 2 479.63

4 104 2 476.08

5 56 2 455.58

6 60 3 435.85

7 62 2 423.00

8 36 2 372.68

9 106 4 337.28

10 178 2 316.13

11 40 1 315.13

This run tests the opposite of the last experiment, smaller reservoir width with many
iterations between updates. The parameters used was a width of 64, 15 iterations and
rows as input and an accuracy of 16. This means that the update ratio would be 1,
meaning that the entire reservoir would be overwritten when updated. The results
from this experiment, displayed in Table 5.3, shows a overall good performance. In
the top 11, a diverse group of rules is present, with representations from each class. A
reason as to why so many rules show good performance with this setup is most likely
from the update ratio being 1. Since the whole reservoir is overwritten, and thus no
previous states can affect the current one, two similar observations will create the exact
same state. This will result in more consistent states which can be easier for the agent
to interpret. In a simple environment, such as this one, this can be quite favourable,
especially for short training sessions. But in a more complex one, where memory is
more important, this will probably not work as well.

51

5.2.5 Experiment 7, width, accuracy and partition relation

Figure 5.19: Comparison of rule 40 using different reservoir setups and rule 106.
The plot of rule 40 with width 256 and accuracy of 16, shown in green, have 2
partitions.

Figure 5.20: Comparison of rule 110 using different reservoir setups. The N in
the plot name represents the number of partitions

52

In experiment 7, the focus was on the trade off between reservoir width, accuracy and
partitions. Figure 5.19 shows four plots, three are of rule 40 using three different setups
and one is of 106. All models used 4 iterations and inputs, and had the same update
ratio of 1/2. They were train for 20,000 episodes, and show results that is not very
distinguishable. For the first 5,000 episodes, the model using 2 partitions seems to
be improving at a faster rate, but is caught up to shortly thereafter. After that, all of
the models fluctuates significantly in performance. When the training session is this
long, the difference between the setups seems to be insignificant. Even the difference
between a class 1 and class 4 rule.

In Figure 5.20, we can observe how 10 reservoir using rule 110 responds to different
setups. All the models in this plot used 10 iterations and 5 inputs. The model using 1
partition, 256 width and 8 accuracy shows significantly worse performance than any
other. The update ratio of this one is 1/8. As experiment 5 showed, an update ratio this
low generally performs poorly. Other poorly performing models from this experiment,
usually had 8 accuracy and 1 partition.

53

54

Chapter 6

Summary & Conclusions

This thesis have explored the capabilities of using ECA as a RC to perform
reinforcement learning tasks. To achieve this, an encoding strategy named linear
translation was used to turn the observations returned from the environment into bits,
focusing on interoperability rather than accuracy. The encoded bits was then placed in
the reservoir following an observation mapping strategy, and iterated upon following
a ECA rule. An agent could then read the state of the reservoir to determine what
action to take.

Different observation mapping strategies in combination with reservoir parameters
such as width, iterations, inputs and accuracy per observation could then be tested
alongside a rule to find good and poor setups. This was mainly done using the cart
pole environment.

In experiment 0, where no rule was applied to the reservoir, it was established that
the model was incapable of balancing the pole consistently beyond 100 steps. All
models with this setup showed behaviour of slowly falling to one side, and quickly
falling to the other, depending on the starting position. Comparing this with the results
from experiment 1, we find a clear improvement in performance when ECA rules are
being applied in the reservoir.

From experiment 2, it is quite apparent that how the observations are mapped into
the reservoir impact the performance significantly. Forcing all the converted bits from
one observation to be directly adjacent to each other, by using the fully_local mapping
method, the results show much poorer performance than if they were mapped
randomly. A reason as to why this is, is because this method traps information in the
centre cells, not allowing it to efficiently spread out to the rest of the reservoir. This is
also the case with the local_random method, showing similar results as the fully_local
method, but more importantly that the interactions between different observations
makes a huge difference, and have a much higher likelihood of succeeding.

The global_random showed to produce the best results when compared to the other

55

two, but is not without its flaws. Since both local_random and fully_local exists as
a subset of global_random, the global_random has a chance to create bad performing
mappings. With larger reservoirs, the likelihood of creating mappings with these exact
configurations becomes low, but other bad performing mappings still exists. Rule 8’s
performance in experiment 5 is a clear example of this, where the same setup was used
to train multiple models using rule 8 but with different global_random mappings. This
resulted in the models score ranging from being among the worst and the best.

Some testing was done in the more complex environment Bipedal Walker. The
results from this was not satisfactory. A multitude of bad factors played into this.
First, the model structure in general was suboptimal. Using discrete actions meant a
much larger state-action space than necessary. Compressing the output to the defined
continuous range of -1 to 1, e.g. by using a tanh layer would probably have been a
better option. Second, the short training session of 1,500 meant that the models did not
have much time to explore the environment, and since moving resulted in negative
reward, all models developed a strategy along the lines of spreading the legs to not
fall over and not move for the rest of the episode. Even with the small number of
episodes, training still took a long time due to the inefficient implementation. Because
of this, it was decided to not pursue this environment any further, instead moving back
and continue testing in the cart pole environment. Third, the rules that were tested was
picked due to their good performance in experiment 2. As . Lastly, as later experiments
with the cart pole showed, higher update ratio improved overall performance, it is
therefor likely that a reservoir with a smaller width could have further improved the
results.

Experiment 5 and 6 tested the performance when the width was large and small, or
rather when the update ratio was large and small. We observed a significant drop off
in performance when the update ratio reaches 1/6. At this point, a good observation
mapping is rarely created with the global_random mapping method. The updated cells
become so sparse that rules with local interactions are so far apart that these rarely
happen, and the performance resemble that of a linear network. Rules that are not
dependant on local interactions, mostly class 3 and 4 rules, did not perform in this
setting either. At least not in such a short training session. When increasing the update
ratio to 1, models became significantly better at performing consistently. Most likely
due to the state of the reservoir being consistent with the observation.

In the last experiment, the trade off between width, accuracy and partitions was
tested. The result of which showed that in longer training session, the difference was
not much. And in shorter ones, as the width gets larger, both increments in accuracy or
partitions improved performance in a equal manner. As it seems, the most important
element is to keep the update ratio in between 1/3 and 1.

When comparing the results with a neural network implementation using the exact

56

same setup, we observe that the neural networks struggles to reach same level of
performance when there is a low numbers of episodes. For training sessions with
higher number of episodes, the reservoir model displays a much faster learning curve
in the beginning, but they finish roughly at equal performance.

The work presented in this theses shows potential, but there is still much more
investigation need.

There is uch work can be done to improve upon the model presented in this theses.
The bla bla.

observation mappings that are less susceptible to unlucky randomness. A more
sophisticated way of placing the bits in the reservoir.

using multiple partitions are in many cases better than increasing the accuracy.
saw sudden drop or heavy fluctuation in performance

• Fast learning

• time in 2. generation

•

• CHECKLIST:

• numbers formatted correctly

• Figures where relevant, and not shit

• All links and ref are correct

•

•

6.1 Future work

• Testing different update techniques, clusters of bits, bits separated by n spaces, at
different iterations, multiple reservoirs.

•

•

57

58

Bibliography

[1] Adrià Puigdomènech Badia et al. Agent57: Outperforming the Atari Human
Benchmark. 2020. arXiv: 2003.13350 [cs.LG].

[2] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[3] Hanten Chang and Katsuya Futagami. Reinforcement Learning with Convolutional
Reservoir Computing. 2019. arXiv: 1912.04161 [cs.NE].

[4] Francois Chollet et al. Keras. 2015. URL: https://github.com/fchollet/keras.

[5] Martin Gardner. ‘Mathematical Games’. In: Scientific American 223.4 (1970),
pp. 120–123. DOI: 10.1038/scientificamerican1070-120.

[6] Tom Eivind Glove et al. ‘Investigating rules and parameters ofReservoir
Computing with ElementaryCellular Automata, with a criticism of rule90 and
the 5-bit Memory Benchmark.’ In: Is under peer review ().

[7] The Dynamical Landscape of Reservoir Computing with Elementary Cellular Automata.
Vol. ALIFE 2021: The 2021 Conference on Artificial Life. ALIFE 2022: The 2022
Conference on Artificial Life. 102. July 2021. DOI: 10.1162/isal_a_00440. eprint:
https://direct.mit.edu/isal/proceedings-pdf/isal/33/102/1930018/isal_a_00440.
pdf. URL: https://doi.org/10.1162/isal%5C_a%5C_00440.

[8] Matthew Hausknecht and Peter Stone. Deep Recurrent Q-Learning for Partially
Observable MDPs. 2017. arXiv: 1507.06527 [cs.LG].

[9] Sepp Hochreiter and Jürgen Schmidhuber. ‘Long Short-term Memory’. In: Neural
computation 9 (Dec. 1997), pp. 1735–80. DOI: 10.1162/neco.1997.9.8.1735.

[10] Chris G. Langton. ‘Computation at the edge of chaos: Phase transitions and
emergent computation’. In: Physica D: Nonlinear Phenomena 42.1 (1990), pp. 12–
37. ISSN: 0167-2789. DOI: https://doi.org/10.1016/0167-2789(90)90064-V. URL:
https://www.sciencedirect.com/science/article/pii/016727899090064V.

[11] Genaro J. Martinez. A Note on Elementary Cellular Automata Classification. 2013.
arXiv: 1306.5577 [nlin.CG].

[12] Volodymyr Mnih et al. Asynchronous Methods for Deep Reinforcement Learning.
2016. arXiv: 1602.01783 [cs.LG].

59

https://arxiv.org/abs/2003.13350
arXiv:1606.01540
https://arxiv.org/abs/1912.04161
https://github.com/fchollet/keras
https://doi.org/10.1038/scientificamerican1070-120
https://doi.org/10.1162/isal_a_00440
https://direct.mit.edu/isal/proceedings-pdf/isal/33/102/1930018/isal_a_00440.pdf
https://direct.mit.edu/isal/proceedings-pdf/isal/33/102/1930018/isal_a_00440.pdf
https://doi.org/10.1162/isal%5C_a%5C_00440
https://arxiv.org/abs/1507.06527
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/https://doi.org/10.1016/0167-2789(90)90064-V
https://www.sciencedirect.com/science/article/pii/016727899090064V
https://arxiv.org/abs/1306.5577
https://arxiv.org/abs/1602.01783

[13] Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning. 2013. arXiv:
1312.5602 [cs.LG].

[14] Adam Paszke et al. ‘PyTorch: An Imperative Style, High-Performance Deep
Learning Library’. In: Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[15] Tom Schaul et al. Prioritized Experience Replay. 2016. arXiv: 1511.05952 [cs.LG].

[16] Julian Schrittwieser et al. ‘Mastering Atari, Go, chess and shogi by planning with
a learned model’. In: Nature 588.7839 (Dec. 2020), pp. 604–609. DOI: 10 . 1038 /
s41586-020-03051-4. URL: https://doi.org/10.1038%5C%2Fs41586-020-03051-4.

[17] Gouhei Tanaka et al. ‘Recent advances in physical reservoir computing: A
review’. In: Neural Networks 115 (2019), pp. 100–123. ISSN: 0893-6080. DOI: https:
//doi .org/10.1016/j .neunet.2019.03.005. URL: https://www.sciencedirect .com/
science/article/pii/S0893608019300784.

[18] Stephen Wolfram. ‘Universality and complexity in cellular automata’. In: Physica
D: Nonlinear Phenomena 10.1-2 (1984), pp. 1–35.

[19] Ozgur Yilmaz. Reservoir Computing using Cellular Automata. 2014. arXiv: 1410.0162
[cs.NE].

60

https://arxiv.org/abs/1312.5602
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1511.05952
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038%5C%2Fs41586-020-03051-4
https://doi.org/https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/https://doi.org/10.1016/j.neunet.2019.03.005
https://www.sciencedirect.com/science/article/pii/S0893608019300784
https://www.sciencedirect.com/science/article/pii/S0893608019300784
https://arxiv.org/abs/1410.0162
https://arxiv.org/abs/1410.0162

	Abstract
	Acknowledgments
	Introduction
	Background and Motivation
	Problem Statement

	Theory
	Cellular Automata
	Elementary Cellular Automata
	Classification
	Edge of chaos

	Single and Multi layer perceptron
	Reinforcement learning
	Exploration and Exploitation
	Recurrent Neural Network

	Reservoir Computing
	Liquid state machines
	Echo state networks
	Cellular automata as a reservoir computer

	Related Work
	The Dynamical Landscape of Reservoir Computing with Elementary Cellular Automata
	DQN
	Reinforcement Learning with Convolutional Reservoir Computing

	Methodology
	Environment
	Cart Pole
	Bipedal Walker

	Setup
	ECA
	Reservoir
	Agent
	Training loop

	Experiments
	Parameters
	Generations
	General ECA rule testing
	Scoring

	Results
	1. Generation
	Experiment 0, 0 iterations
	Experiment 1, general performance
	Experiment 2, Longer training
	Experiment 3, Bipedal Walker

	2. Generation
	Experiment 4, with ReLU
	Neural network comparison
	Experiment 5, large width
	Experiment 6, small width
	Experiment 7, width, accuracy and partition relation

	Summary & Conclusions
	Future work

