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1 Preface

I have been fascinated by both machine learning and quantum mechanics for
many years. When I attended a talk by Kristian Wold on Quantum Machine
Learning during the unveiling of quantum computers at OsloMet in 2021, I became
captivated by the intersection of these remarkable fields. Driven to understand the
potential of these cutting-edge technologies better and explore their applications in
solving OpenAI Gym problems, I decided to focus my thesis on comparing
classical and quantum Deep Q-Learning (DQL).

Throughout my research journey, I have been deeply grateful for my advisors,
peers, and family’s support and guidance. Their encouragement and constructive
feedback have been invaluable in shaping this work. I also express my gratitude to
the researchers and developers whose publications have laid the foundation for
my studies.

This thesis represents the culmination of my exploration into the fascinating world
of quantum computing and machine learning. I hope my work contributes to the
growing body of knowledge in these fields and inspires others to delve further into
these exciting areas.

Oslo, Norway - 15.05.2023 Mathias André Eriksen Sandnes
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2 Abstract

This study delves into the potential of quantum Deep Q-Learning (DQL) as an
efficient approach to solving OpenAI Gym problems, setting it against the
backdrop of classical DQL. Within the dynamic landscape of quantum computing,
harnessing quantum properties such as entanglement and superposition in
Quantum Neural Networks (QNNs). The project focuses on a selection of OpenAI
Gym problems, Cart Pole, and Lunar Lander, and specific QNN architectures
using Parameterized Quantum Circuits (PQCs) with re-uploading, combined with
DQL algorithms. The methodology hinges on implementing and training classical
and quantum DQL models, subsequently comparing their performance to highlight
key distinctions. Emerging findings suggest that Quantum DQL (QDQL) can attain
comparable performance to classical DQL, albeit with considerably fewer trainable
parameters. However, it’s important to note that this performance may come with
increased sensitivity to hyperparameters. A unique aspect of this study is the
exploration of trainable entanglement as opposed to the static entanglement
commonly addressed in the literature. Preliminary results indicate that a specific
level of entanglement can benefit QNNs, although these findings remain
inconclusive due to the short duration of training. Therefore, we propose a QDQL
agent with trainable entanglement. In conclusion, this research underscores the
potential of QDQL in reinforcement learning problems and the trade-offs involved,
setting the stage for future investigations and optimizations of quantum computing
approaches in machine learning. Future work could delve into a broader range of
QNN architectures, alternative entanglement strategies, and diverse problem
domains.
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3 Introduction

Quantum computing has emerged as a promising technology with the potential to
revolutionize various fields, including cryptography, drug discovery, optimization,
and machine learning. In recent years, researchers have started to explore the
intersection of quantum computing and machine learning, aiming to develop novel
algorithms that can leverage the unique capabilities of quantum systems. One
such area of interest is the combination of quantum computing techniques with
reinforcement learning, a branch of machine learning where agents learn to make
decisions by interacting with an environment.

This thesis combines deep Q-learning with quantum computing, a powerful
reinforcement learning technique. By harnessing the computational power of
quantum systems, our goal is to enhance the capabilities of deep Q-learning
agents, leading to improved performance and efficiency in solving complex tasks.
The following paragraphs outline the objectives and scope of our project.

This project explores the potential benefits of combining deep Q-learning (DQL)
with quantum computing techniques. Our initial focus is developing and training
DQL agents on classical computers and using them to solve simple game
environments. We will investigate whether the use of quantum techniques can
surpass the performance of these agents beyond state-of-the-art classical
approaches in terms of actual performance, training speed, and the number of
parameters.

In addition, we plan to tackle more challenging benchmarks, such as previously
unsolved environments by quantum agents, to further test the potential benefits of
combining quantum computing and DQL. By evaluating the performance of our
quantum DQL agents on more complicated problems, we hope to gain insights
into the potential advantages of using quantum computing techniques for machine
learning tasks on exponentially more complex problems. Ultimately, our goal is to
contribute to developing more powerful and efficient machine learning algorithms
that can tackle increasingly complex optimization problems.

Previous work comparing classical and quantum agents have either used hybrid
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solutions or focused on improving the quantum model more than the classical one.
This often results in an unfair comparison, as the quantum models are compared
to classical models that have not been optimized to their full potential.
Furthermore, in cases where a quantum model is inferior to a classical one, the
research is rarely published, creating a bias toward the performance of quantum
models. Our work aims to address this issue by comparing classical and quantum
DQL agents fairly by optimizing each approach by the same amount.

This thesis focuses on combining quantum computing techniques with
reinforcement learning, specifically DQL. Through the development and evaluation
of quantum DQL agents, we aim to explore the potential benefits and limitations of
integrating quantum computing with reinforcement learning. This research is
expected to provide valuable insights into the advantages and challenges of
quantum machine learning and contribute to developing more efficient and
powerful algorithms for solving complex optimization problems.

3.1 Machine Learning

Classical machine learning is a subfield of artificial intelligence that involves
developing algorithms that allow computers to learn from data and improve their
performance over time. It has gained significant attention in recent years due to its
ability to process large amounts of data and make accurate predictions or
decisions in various domains, such as computer vision, natural language
processing, and robotics [Bishop, 2006, Goodfellow et al., 2016].

In classical machine learning, various techniques and algorithms are employed to
analyze and model data. These methods can be broadly categorized into three
main types: supervised learning, unsupervised learning, and reinforcement
learning. Supervised learning involves learning from labeled data to make
predictions or classifications, while unsupervised learning involves discovering
patterns or structures in unlabeled data. Reinforcement learning, on the other
hand, focuses on training agents to make decisions by interacting with an
environment and receiving feedback in the form of rewards or penalties
[Goodfellow et al., 2016].
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Despite its many successes, classical machine learning approaches have
limitations, particularly when solving complex problems requiring extensive data
processing or dealing with high-dimensional feature spaces. In these cases, the
computational complexity of classical algorithms can often scale exponentially with
the problem size, making them impractical for real-world applications [Garey and
Johnson, 1979].

The development of quantum machine learning, which combines the principles of
quantum computing with classical machine learning techniques, aims to address
some of these challenges by leveraging the unique capabilities of quantum
systems to achieve significant speedups in data processing and analysis
potentially.

3.2 Quantum Machine Learning

Quantum machine learning (QML) is an emerging interdisciplinary field that
combines the principles of quantum computing with machine learning techniques.
The primary objective of QML is to leverage the unique capabilities of quantum
systems, such as superposition and entanglement, to enhance the performance of
machine learning algorithms and enable them to tackle increasingly complex
problems more efficiently.

One of the critical advantages of quantum machine learning is the potential for
significant speedups in the processing and analysis of data. Due to the inherent
parallelism of quantum systems, specific quantum algorithms can provide
exponential or polynomial speedups over their classical counterparts [Shor, 1999,
Nielsen and Chuang, 2000]. This could be particularly beneficial for addressing
large-scale optimization problems, high-dimensional data analysis, and other
computationally demanding tasks currently intractable using classical methods.

However, implementing quantum machine learning algorithms comes with several
challenges, including the need for efficient classical-to-quantum data encoding,
robust error correction, and addressing the current limitations of quantum
hardware [Nielsen and Chuang, 2000, Terhal, 2015]. One of the main issues with
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present-day quantum hardware is the significant amount of noise inherent in the
systems. This noise accumulates over time and renders results from long
algorithms unreliable, which presents a significant hurdle for complicated, practical
applications of quantum machine learning.

Another area for improvement is the availability of only a few qubits in current
quantum devices. This restricts the size and complexity of problems that can be
effectively tackled using quantum algorithms. As quantum computing technology
advances, the number of qubits is expected to increase, allowing for more powerful
quantum computations.

In the quest to harness the power of quantum computing for solving complex
problems, it is essential to understand the various combinations of data types and
processing methodologies that can be employed. This section will examine four
distinct scenarios, each representing a unique pairing of classical and quantum
data with their respective processing methods. By investigating the intricacies and
challenges of each combination, we aim to provide a comprehensive
understanding of the landscape and lay the foundation for our primary focus on
classical data and quantum processing.

Classical Data and Classical Processing (CC): CC represents the traditional
computing paradigm where classical data is processed using classical computing
algorithms [Cormen et al., 2009]. This is the most common approach in data
science and has proven effective in numerous applications such as data analysis,
machine learning, and optimization problems [Bishop, 2006, Goodfellow et al.,
2016]. The primary limitation of this approach lies in its inability to solve some
complex issues efficiently, as classical algorithms often scale exponentially with
problem size [Garey and Johnson, 1979]. Figure 3.1 shows the four ways of
combing classical and quantum processing and data.

Classical Data and Quantum Processing (CQ): CQ explores the potential of
harnessing quantum computing to process classical data [Preskill, 2018] and is
the intersection studied in this thesis. By encoding classical data into quantum
states and applying quantum algorithms, we can potentially achieve significant
speedup over classical algorithms for specific problems [Shor, 1999, Grover,
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Figure 3.1: The four ways of combining classical and quantum computing concern-
ing data and processing [Schuld and Petruccione, 2018]

1996]. Promising applications include optimization, factoring, and quantum
machine learning [Farhi et al., 2014a, Wiebe et al., 2012]. This approach,
however, comes with challenges, such as the need for efficient
classical-to-quantum data encoding, error correction, and the current limitations of
quantum hardware [Nielsen and Chuang, 2000, Terhal, 2015].

Quantum Data and Classical Processing (QC): QC investigates the feasibility of
processing quantum data using classical algorithms [Aaronson and Arkhipov,
2013]. This approach is less common and typically constrained by the exponential
growth of classical resources required to process quantum data [Nielsen and
Chuang, 2000]. One application area of QC is quantum state tomography, where
classical algorithms estimate the state of a quantum system [Paris and Rehacek,
2004]. However, the scalability of this approach remains an open challenge
[Cramer and Plenio, 2010].

Quantum Data and Quantum Processing (QQ): QQ represents the form of
quantum computing, where quantum data is processed using quantum algorithms.
This paradigm is expected to provide exponential speedup for specific problems
like quantum simulations and cryptography [Lloyd, 1996, Shor, 1994]. While
promising, the development of practical QQ applications needs to be improved by
technological limitations. These include high error rates in quantum systems,
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limited qubit coherence times that affect the stability of quantum information, and
the availability of large-scale quantum hardware [Preskill, 2018, Devoret and
Schoelkopf, 2013]. These challenges need to be addressed before the full
potential of QQ can be realized in real-world applications.

Despite these obstacles, quantum machine learning holds great promise in
advancing the field of machine learning. It can potentially revolutionize various
domains, such as drug discovery, finance, and cryptography. By leveraging the
unique properties of quantum systems, it is possible to solve complex problems
more efficiently than classical approaches, opening up new avenues for research
and innovation. As quantum hardware continues to evolve and improve, we can
anticipate even more significant breakthroughs and applications in the near future.

3.3 Ethical Considerations

As with any scientific research, ethical considerations must be considered when
working with quantum computing and machine learning. While our primary focus
in this thesis is on developing novel algorithms and techniques, we must also
consider the potential implications of our work in the broader context. In particular,
developing more powerful machine learning algorithms may raise concerns about
their application in surveillance, automated decision-making, and the potential
misuse of technology.

One concern is potentially exacerbating existing biases in classical machine
learning systems. Quantum machine learning algorithms could amplify these
biases, leading to unfair or discriminatory outcomes. It is crucial to ensure that the
data used to train quantum machine learning models is representative and
unbiased and that researchers remain vigilant about identifying and addressing
any bias that may arise during the development and deployment of these systems.

Another ethical consideration is the impact of quantum computing on privacy and
data security. Quantum algorithms, such as Shor’s algorithm, could undermine
widely-used encryption methods, putting sensitive data at risk. Researchers and
developers should be cognizant of these risks and work on developing
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post-quantum cryptography to protect data in a world where quantum computers
are prevalent.

Additionally, the rapid advancement of quantum machine learning may have
implications for the job market and societal dynamics. As more efficient algorithms
are developed, these technologies can displace human workers in specific
industries or exacerbate income inequality. Researchers, policymakers, and
stakeholders need to engage in dialogue about the equitable distribution of the
benefits that quantum computing and machine learning can provide and the
development of strategies to mitigate potential negative consequences.

To address these concerns, we will ensure that our research adheres to ethical
guidelines and best practices and actively discuss the responsible use and
development of quantum computing and machine learning technologies. It is our
responsibility as researchers to not only contribute to the scientific advancements
of these fields but also to consider their broader implications and promote their
ethical development and application. By fostering an environment of open
communication and collaboration among researchers, policymakers, and the
public, we can work together to ensure that quantum computing and machine
learning technologies are developed and employed to benefit society.

3.4 Thesis Structure

The paper is structured to provide a holistic understanding of this complex domain,
starting with foundational elements before transitioning into the practical
application of quantum concepts within machine learning methodologies.

The journey begins with a comprehensive dive into theoretical foundations,
exploring the nuances of Deep Q-Learning and Quantum Mechanics. Crucial
elements such as Supervised Learning, Neural Networks, Optimizers, and DQL
are explained in detail. The mysterious realm of quantum mechanics is unpacked,
highlighting wave-particle duality, superposition, Schrödinger’s equation, the
Heisenberg uncertainty principle, and entanglement. It then expands these
discussions into the realm of Quantum Computing and Quantum Deep
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Q-Learning, demonstrating how these core quantum principles find their
application in advanced computing and machine learning.

The methodology chapter demarcates the tools and environments utilized in this
exploration, focusing on Open AI Gym, and sets the stage for the subsequent
experiments. The implementation chapter elucidates the mechanics behind both
Classical Deep Q-Learning and Quantum Deep Q-Learning implementations,
emphasizing the reproducibility of the experiments and the process for reporting
results.

The thesis then shifts gears towards a hands-on exploration of the concepts
through a series of six key experiments, documented in the ”Experiments” chapter.
Each experiment unravels a distinct facet of the central hypothesis, starting with
applying classical Deep Q-Learning to Cart Pole and Lunar Lander scenarios.
These foundational experiments set the benchmark for the next set, which applies
quantum DQL to the same scenarios. The final set of experiments introduces
trainable entanglement into the quantum DQL algorithm, examining how this
uniquely quantum property might enhance machine learning algorithms when
applied to the exact scenarios.

The Results and Discussion chapter takes on the critical role of interpreting the
experimental data. It provides a detailed analysis of the raw results, followed by an
in-depth interpretation within the context of the overarching hypothesis. The
chapter critically examines performance metrics such as learning rate, number of
network weights, number of layers, and the role of entanglement, drawing parallels
between classical and quantum scenarios. The final segment of this chapter
delves into a multi-hyperparameter sensitivity analysis, offering insights into the
interaction between various hyperparameters and their cumulative impact on the
efficacy of the DQL algorithm.
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4 Theoretical Background

This chapter provides the theoretical background necessary to understand the
concepts discussed in this thesis. The chapter is organized into four main
sections: Deep Q-Learning, Quantum Mechanics, Quantum Computing, Quantum
Deep Q-Learning, and Related Work. Each section delves into specific concepts,
techniques, and methods essential for a comprehensive understanding of the
research presented in the subsequent chapters.

4.1 Deep Q-Learning

This section explores Deep Q-Learning, a powerful combination of deep neural
networks and reinforcement learning. We cover the basics of Supervised
Learning, which focuses on learning from labeled data, and introduce Neural
Networks, the building blocks of deep learning architectures. We discuss various
Optimizers used to update network parameters during training. Then, we delve
into Reinforcement Learning, a paradigm where agents learn through trial and
error, and Q-Learning, a popular reinforcement learning technique. Finally, we
illustrate how deep learning and Q-Learning merge to form Deep Q-Learning,
enabling the learning of complex tasks and strategies. As we progress through
each section, keep in mind the underlying connections and how each concept
builds on the ones before it, ultimately culminating in the comprehensive
understanding of Deep Q-Learning.

4.1.1 Supervised Learning

Supervised learning is a machine learning technique where the algorithm learns
from labeled data through a process called training. The training process involves
making predictions, measuring the prediction’s deviation from the actual value
using a loss function, and adjusting the model based on the magnitude of the
deviation. This means that for a given input x, there exists a desired output y. The
goal is to build a model that can map x to y and make accurate predictions on new,
unseen data by generalizing to underlying patterns and mechanisms that generate
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the data.

In supervised learning, the balance between model complexity and generalization
is crucial. The concepts of bias, variance, overfitting, and underfitting are essential
to understand this balance. Bias refers to the error introduced by approximating
the actual underlying function with a simpler model. High bias can lead to
underfitting, where the model fails to capture the complexity of the problem and
performs poorly both during training and evaluation. Conversely, variance is the
error resulting from the model’s sensitivity to small fluctuations during training.
High variance can cause overfitting, in which the model performs well during
training but poorly during evaluation due to learning noise in the data rather than
the actual underlying patterns.

Several techniques can be employed to address these issues, such as
regularization and early stopping. Regularization adds a penalty term to the
model’s loss function, discouraging overly complex models and helping to reduce
overfitting. Early stopping involves monitoring the model’s performance over time
on a validation dataset and halting the training process once the performance
during evaluation starts to degrade, preventing the model from overfitting the
training data.

4.1.2 Neural Networks

Neural networks are a machine learning model inspired by the structure and
function of the biological brain. They consist of artificial neurons, called nodes,
connected in a structure called a network. This network is structured in an input
layer, an output layer, and a number of layers between them called hidden layers.
Figure 4.1 shows an example of a neural network with four inputs, two hidden
layers with four nodes, and an output layer with two nodes. Information flows
through the network sequentially, passing through each layer. The nodes process
and transform data using activation functions, introducing non-linearities into the
network. The output of one layer is used as the input to the next layer, with the
final layer producing the model’s output. When information only flows in one
direction in a neural network, it is classified as a feed-forward neural network.
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Figure 4.1: Architecture of a neural network consisting of input, hidden, and output
layers.

One of the benefits of neural networks is their ability to learn complex, non-linear
relationships in data. This has led to significant advances in fields such as
computer vision [Krizhevsky et al., 2012], natural language processing [Mikolov
et al., 2013], and speech recognition [Hinton et al., 2012].

In a dense neural network, there is a connection between every node in one layer
and every node in the next. A connection is called a weight wij and consists of a
trainable number multiplied by the node’s output. This means that the input of a
node in a dense layer is the weighted sum of the output of all previous nodes. This
can be expressed as

inj =
n∑

i=1

wijouti + bj, (1)

where outi is the output of the i-th node in the previous layer, bj is the bias of the
j-th node, and n is the number of nodes in the previous layer.

The process of training a neural network consists of adjusting the output of the
network to better align with the desired output. This involves feeding the training
data through the network and adjusting the weights of the connections between
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neurons to minimize the difference between the predicted and actual outputs. This
is done by minimizing a loss function L that measures the difference between the
predicted output ŷ and the actual output y. The choice of loss function depends on
the problem at hand. For example, the mean squared error (MSE) loss function is
commonly used for regression problems is represented as

L(y, ŷ) =
1

2n

n∑
i=1

(yi − ŷi)2, (2)

where n is the number of training samples.

The weights of a neural network are updated by an optimization algorithm, such as
stochastic gradient descent [Rumelhart et al., 1986] or Adam [Kingma and Ba,
2015]. These algorithms iteratively adjust the weights toward the steepest descent
of the loss function, intending to minimize the network’s prediction error. This
process continues until the loss function converges or reaches a stopping criterion.
However, given the high dimensionality and non-convex nature of the loss
landscape in deep neural networks, these optimization algorithms are susceptible
to getting trapped in local optima, which can lead to suboptimal performance and
limit the generalization capabilities of the model [Choromanska et al., 2015].

Neural networks can also be prone to overfitting, where the model fits too closely
to the training data and does not generalize well to new data. Regularization
techniques, such as dropout [Srivastava et al., 2014], can be used to mitigate this
issue. Dropout works by stochastically nullifying the output of random nodes. This
ensures that no single connection becomes too strong and that information flow is
distributed throughout the network. On the opposite side, there is the problem of
underfitting. Strategies for addressing underfitting include increasing model
complexity, using more expressive architectures, or adding additional features to
the input data [Goodfellow et al., 2016].

One of the main limitations of supervised learning is its reliance on a large amount
of labeled data. Obtaining high-quality labeled data can be both time-consuming
and expensive, as it often requires manual effort by domain experts. In many
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real-world applications, labeled data may be scarce or unavailable, limiting the
applicability of supervised learning techniques [Zhu and Goldberg, 2009].
Furthermore, supervised learning models are only as good as the quality of the
training data, which means that if the training data is biased or noisy, the model’s
performance may suffer. To address these challenges, researchers have explored
alternative approaches such as unsupervised, semi-supervised, and transfer
learning, which leverage unlabeled data, partial supervision, and pre-trained
models to improve learning efficiency and reduce the reliance on large, labeled
datasets [Pan and Yang, 2009].

Despite their remarkable success in various domains, neural networks have
inherent limitations. First, they can be computationally expensive to train, mainly
when dealing with large-scale datasets and deep architectures. This may
necessitate the use of specialized hardware, such as Graphical Procession Units
(GPUs) or Tensor Processing Units (TPUs) can be costly and may not be readily
accessible to all researchers and practitioners [LeCun et al., 2015]. Second,
neural networks are often characterized as ”black boxes” due to their complex
internal structure and lack of interpretability. This can make understanding how the
model makes predictions challenging and can be problematic in domains where
explainability and trust are crucial, such as healthcare and finance [Guidotti et al.,
2018]. Lastly, neural networks are vulnerable to adversarial examples, carefully
crafted inputs that fool the model into making incorrect predictions. This
vulnerability raises concerns about the robustness and security of neural
network-based systems in safety-critical applications [Szegedy et al., 2013].

ReLU activation is a widely used activation function in neural networks. It stands
for Rectified Linear Unit, defined as max(0, x), where x is the input to the function.
According to a paper by Nair and Hinton [2010], the ReLU activation function has
several advantages over other activation functions, such as sigmoid and tanh,
including faster convergence during training and reduced likelihood of vanishing
gradients. These properties make ReLU a popular choice for deep learning
models.

Lastly, neural networks are vulnerable to adversarial examples, carefully crafted
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inputs that fool the model into making incorrect predictions. This vulnerability
raises concerns about the robustness and security of neural network-based
systems in safety-critical applications [Szegedy et al., 2013]. The development of
robust defenses against adversarial examples remains an active area of research
in deep learning, with several proposed techniques such as adversarial training
and defensive distillation [Madry et al., 2017, Papernot et al., 2016].

4.1.3 Optimizers

Optimizers are critical to training deep learning models, including Deep
Q-Learning. Optimizers are algorithms that adjust the neural network weights
during training to minimize the loss function. One popular optimizer is stochastic
gradient descent (SGD), which adjusts the weights by taking small steps toward
the negative gradient of the loss function [Rumelhart et al., 1986]. Thanks to its
simplicity, SGD can converge slowly and get stuck in local minima [LeCun et al.,
2012].

Adam optimizer is another popular algorithm used in deep learning models for
gradient-based optimization, including DQL. It is an extension of the SGD
algorithm and is known for its efficiency in minimizing the loss function during
training. According to the original paper by Kingma and Ba [2015], the Adam
optimizer updates the learning rate adaptively for each parameter based on the
mean and variance of the gradients. This makes it less sensitive to the initial
learning rate and the choice of hyperparameters. The Adam optimizer can also
solve non-convex optimization problems common for deep learning models.

Other commonly used optimizers include Adagrad [Duchi et al., 2011], RMSprop
[Tieleman and Hinton, 2012], and Adadelta [Zeiler, 2012]. Adagrad adjusts the
learning rate of each weight based on the historical gradients of that weight.
RMSprop and Adadelta are extensions of Adagrad that attempt to solve its
diminishing learning rate problem. Each optimizer has its strengths and
weaknesses, and the choice of optimizer depends on the specific problem and the
desired tradeoffs in terms of convergence speed, robustness to local minima, and
sensitivity to hyperparameters.
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Backpropagation is an algorithm used to calculate the gradients of the loss
function concerning the parameters of a neural network. The algorithm works by
propagating the error or loss from the output layer back to the network’s input
layer, and it is based on the chain rule of calculus. According to a classic paper by
Rumelhart et al. [1986], backpropagation is a crucial component of training deep
neural networks.

The backpropagation algorithm consists of two main steps: the forward pass and
the backward pass. The input data is passed through the network to compute the
output in the forward pass, and the loss function is evaluated. In the backward
pass, the gradients of the loss function concerning each weight and bias are
computed. These gradients are then used to update the network parameters in the
direction of the steepest descent of the loss function.

By iteratively updating the neural network parameters using the backpropagation
algorithm, the network learns to minimize the loss function and make more
accurate predictions. This optimization continues until a stopping criterion is
reached, such as a maximum number of training steps, early stopping, or when
the loss function converges to a minimum value. Backpropagation is a cornerstone
of deep learning and is critical to the success of deep learning models.

4.1.4 Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning that deals with
decision-making in an environment. To motivate desired behavior, the agent
generally receives a positive reward for performing desirable behavior while
receiving a negative reward for undesirable behavior. In RL, an agent interacts
with an environment to learn a policy, i.e., a strategy, that maximizes a long-term
reward. The goal is to learn a policy that selects actions that maximize the
cumulative reward over time.

This process of observing the environment, performing an action, and receiving
feedback is called a Markov Decision Process (MDP). Interacting with an MDP is
continued until a stopping criterion terminates the process. Termination occurs
when the problem is solved, too much time has passed, or the environment is in
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an unrecoverable state. An episode is a sequence of interactions with an MDP
from the start until termination. The RL process can be modeled as a Markov
Decision Process (MDP), which is defined by a set of states S, a set of actions A,
the new state s′ which occurs when performing action A in state S, and a reward
function R(s, a, s′) that specifies the reward received when transitioning from state
s to state s′ by taking action a. The goal of the agent is to learn a policy π(a|s) that
maps state to action to maximize the expected cumulative reward, written as

Gt =
∞∑
k=0

γkRt+k+1, (3)

where Gt is the cumulative reward at time t, Rt+k+1, is the reward received at time
t+ k + 1 and γ is a discount factor that trades off long-term rewards with
immediate rewards.

There are two main approaches to RL: value-based and policy-based methods.

Value-based RL methods learn a value function that estimates the expected
cumulative reward of an action in a given state. The value function can be defined
as

Vπ(s) = Eπ[Gt|St = s], (4)

where Vπ(s) is the value of state s under policy π, and Eπ denotes the expected
value over all possible trajectories starting from state s under policy π. The optimal
value function V ∗(s) is the maximum expected cumulative reward that can be
achieved from state s, written as

V ∗(s) = max
π

Vπ(s). (5)

Policy-based RL methods learn a policy directly without explicitly computing a
value function. The policy is parameterized by a set of parameters θ, and the goal
is to find the optimal set of parameters θ∗ that maximizes the expected cumulative
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reward, written as

θ∗ = argmax
θ

Eπθ
[Gt]. (6)

Policy Gradient methods are a popular family of policy-based RL algorithms that
use gradient ascent to update the policy parameters. The gradient of the expected
cumulative reward concerning the policy parameters can be written as

∇θJ(θ) = Eπθ
[Gt∇θ log πθ(at|st)] , (7)

where J(θ) is the performance objective, typically the expected cumulative reward,
and ∇θ denotes the gradient concerning the policy parameters θ. By computing
the gradient of J(θ), Policy Gradient methods can update the policy parameters θ
toward a higher expected cumulative reward while avoiding the need for an explicit
value function.

4.1.5 Q-Learning

Q-Learning is a model-free reinforcement learning algorithm that learns an optimal
policy by estimating state-action pairs’ values. It operates by iteratively updating
the Q-values of state-action pairs using the Bellman equation, given by

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a
Q(st+1, a)−Q(st, at)], (8)

where st is the current state, at is the current action, rt+1 is the reward received
after taking action at in state st and transitioning to state st+1, γ is the discount
factor, and α is the learning rate. The Bellman equation expresses the Q-value of
a state-action pair as the sum of the immediate reward and the discounted value
of the best action that can be taken from the next state.

Q-Learning has to balance learning new information about the environment and
exploiting the knowledge it has already acquired. This concept is called the
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exploration-exploitation-tradeoff. A standard method for achieving this balance is
ϵ-greedy exploration, where with probability ϵ, the agent chooses a random action,
and with probability 1− ϵ, it chooses the action with the highest Q-value.

One of the drawbacks of Q-Learning is that it requires a table to store the Q-values
of all state-action pairs, which can be infeasible for large state spaces. To address
this issue, researchers have developed variants of Q-Learning that use function
approximation to estimate the Q-values, called deep Q-learning.

4.1.6 Deep Q-Learning

Deep Q-Learning is a sub-field in Reinforcement Learning that utilizes the function
approximation properties of neural networks to approximate the Q-function [Mnih
et al., 2015]. A Q-function attempts to approximate the expected return by
performing a specific action in a specific state. In RL, an agent interacts in an
environment through observations and actions while receiving rewards. The agent
decides on actions based on experience by estimating the expected reward gained
by performing a specific action in a specific state and following the same policy.

In DQL, the neural network input shape matches the observation space. Also,
there is one output node linked to each possible action. The output value in each
node attempts to approximate the expected reward by performing that action and
following the policy until termination, meaning that the action with the highest
reward is selected every time. As neural networks are universal function
approximators [Bishop, 1994], this technique performs better than previous
techniques, such as traditional Q-learning. A DQL agent learns patterns from
similar situations instead of treating every situation as unique. To focus on
situations that occur in the near future, a discount factor γ is used, multiplied by
the reward, decreasing with each additional step into the future.

When training a DQL agent, experience is stored in a replay buffer. Experience is
the current and previous observation, previous action, and reward. These values
are used to create training data for the neural network. This technique is called
replay experience and was introduced by Mnih et al. [2013]. The traditional update
function for DQL is written as
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Q∗(s, a) = Es′∼E [r + γmax
a′

Q∗(s′, a′)|s, a], (9)

where Q∗ is the neural network, observing a set of states s and actions a. r is the
current reward. The functions attempt to maximize Q∗ by selecting the best activity
a.

Another important RL subject is the exploration-exploitation-tradeoff. This refers to
the tradeoff between exploiting gained knowledge and exploring and possibly
discovering better strategies. This is usually implemented by having an exploration
rate ϵ, which determines how often an agent performs an exploratory action
instead of an exploitative one. It is common for the exploration rate to decrease
over time as more experience is gained and the agent’s strategy improves.

4.2 Quantum Mechanics

Quantum Mechanics (QM) is a branch of physics that describes the behavior of
matter and energy at the quantum level. Quantum mechanics describes the
behavior of tiny objects, such as atoms, molecules, and subatomic particles. In
contrast to classical mechanics, quantum mechanics introduces the concept of
wave-particle duality, which means that particles can exhibit both particle-like and
wave-like behavior [Cohen-Tannoudji et al., 1977].

4.2.1 Wave-Particle Duality

Wave-particle duality is a fundamental concept in quantum mechanics and is often
illustrated using the double-slit experiment. In this experiment, a beam of particles,
such as electrons or photons, is fired at a barrier containing two small slits.
Interference patterns are observed on a screen behind the barrier as if the
particles behaved like waves. However, when the experiment is repeated with
detectors placed at the slits to measure which slit each particle passes through,
the interference pattern disappears, and the particles behave like individual
particles.
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Wave-particle duality is explained by the wave-like nature of matter, which is
described by the wave function in quantum mechanics. The wave function
contains all the information about a particle’s possible states, such as its position
and momentum, and Schrödinger’s equation governs its behavior. The wave
function collapses when a measurement is made, causing the particle to behave
like a classical particle with a definite position and momentum.

The concept of wave-particle duality is central to many quantum phenomena, such
as quantum entanglement, superposition, and tunneling. Understanding the
behavior of matter and energy at the quantum level is crucial for developing
technologies such as quantum computers and quantum cryptography, which have
the potential to revolutionize computing and communication.

4.2.2 Superposition

Superposition is a fundamental concept in quantum mechanics that refers to the
ability of a quantum system to exist simultaneously in multiple states, with each
state having a specific probability amplitude. This property enables quantum
systems to represent and process vast amounts of information in parallel, forming
the foundation of quantum computers’ computational power [Nielsen and Chuang,
2002].

When a quantum system is in a superposition state, and a measurement is
performed, the outcome is determined probabilistically. The system collapses into
one of the possible states, with the probability for each state given by the square of
the magnitude of its amplitude. This probabilistic nature of quantum
measurements is described by Born’s Rule [Born, 1926b], which is written as:

P (x) = |⟨x|ψ⟩|2, (10)

where P (x) is the probability of finding the quantum system in state x upon
measurement. The state x is one of the possible outcomes of the measurement.
The symbol ψ represents the overall state of the quantum system before
measurement. The angle brackets ⟨x|ψ⟩ denotes the inner product between the
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bra vector corresponding to state x and the state vector ψ. The square of the
magnitude of this inner product yields the probability of the system collapsing into
state x upon measurement.

4.2.3 Schrödinger Equation

In quantum mechanics, the state of a system is described by a wave function,
typically denoted by the Greek letter psi (ψ). This wave function contains all the
information about the system’s properties and is a solution to the Schrödinger
equation [Sakurai and Napolitano, 2014]. The Schrödinger equation is a
fundamental equation in quantum mechanics, which predicts how the quantum
state, and therefore the wave function, will evolve over time. The Schrödinger
equation is written as

iℏ
∂

∂t
Ψ(r, t) = ĤΨ(r, t), (11)

where ℏ represents the reduced Planck’s constant, t represents time, r represents
the spatial coordinates, Ψ(r, t) is the wave function, and Ĥ is the Hamiltonian
operator, which represents the total energy of the quantum system.

However, the wave function alone does not directly provide any observable system
properties. Instead, it provides the probability distribution for these observables.
For instance, the square of the absolute value of the wave function, |ψ(r, t)|2, gives
the probability density of finding a particle in a tiny volume around the position r at
time t [Griffiths, 2018]. Other observables like momentum and energy are obtained
through specific quantum mechanical operators acting on the wave function.

4.2.4 The Heisenberg uncertainty principle

The Heisenberg uncertainty principle is a crucial concept in quantum mechanics
that imposes fundamental limitations on the simultaneous knowledge of specific
pairs of observables, such as position x and momentum p. This principle arises
from the non-commutative nature of quantum mechanical operators corresponding
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to these observables, leading to an inherent uncertainty in their measurements
[Heisenberg, 1927].

Mathematically, the uncertainty principle can be formulated as

∆x∆p ≥ ℏ
2
, (12)

where ∆x represents the uncertainty in position, ∆p denotes the uncertainty in
momentum, and ℏ is the reduced Planck constant. The inequality indicates that
the product of the uncertainties in position and momentum must be greater than or
equal to a constant value, which is half of the reduced Planck constant. As a
result, if we obtain precise information about the position of a quantum particle, its
momentum becomes more uncertain, and vice versa.

The uncertainty principle is not limited to position and momentum; it also applies
to other pairs of non-commuting observables, such as energy E and time t, which
are subject to a similar constraint, denoted as

∆E∆t ≥ ℏ
2
. (13)

The Heisenberg uncertainty principle has profound implications for understanding
quantum systems’ nature and behavior. It highlights the intrinsic limitations in the
simultaneous measurement of specific physical properties, emphasizing the
probabilistic nature of quantum mechanics.

4.2.5 Entanglement

Another important principle of QM is entanglement, where two or more quantum
systems become correlated so that one system’s properties depend on the other’s,
even if they are separated by large distances [Einstein et al., 1935].

The application of QM has led to many significant technological advancements,
including transistors, lasers, and medical imaging devices [Wienke, 2007]. One of
the most promising applications of QM is in quantum computing, which has the
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potential to revolutionize computing by providing exponential speedup over
classical computing for specific problems [Nielsen and Chuang, 2002].

In quantum computing, quantum mechanics encodes and manipulates information
like quantum bits or qubits. By exploiting the properties of entanglement and
superposition, quantum computers can perform certain computations much faster
than classical computers. However, the development of practical quantum
computers is still in its infancy, and many challenges must be overcome before
they become viable technology [Devoret and Schoelkopf, 2013].

Overall, quantum mechanics is a fascinating and complex field that has
revolutionized our understanding of the nature of reality. Its applications range
from designing new materials to developing revolutionary computing technologies,
making it an exciting area of research with vast potential for future advancements.

4.3 Quantum Computing

Quantum computing (QC) is a field that aims to exploit the computational
advantages of quantum systems over classical computing [Nielsen and Chuang,
2002]. Simulating quantum systems on classical computers is a computationally
demanding task [Feynman, 1982]. This indicates some computational complexity
in quantum effects, such as entanglement, that we hope to exploit as a resource
with QC. Quantum computing has the potential to revolutionize a range of fields,
including cryptography, optimization, and chemistry. For example, quantum
computers can solve specific problems exponentially faster than classical
computers, such as factoring large numbers [Shor, 1994] and searching unsorted
databases [Grover, 1996].

This chapter provides an overview of the fundamental principles of quantum
computing. Starting with the quantum bit called the qubit, we explore the basic unit
of quantum information. We then delve into quantum gates, which manipulate
qubits, and quantum circuits, which are sequences of these gates. We discuss the
unique process of quantum measurement before concluding with an exploration of
quantum entanglement, a phenomenon that sets quantum computing apart from
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its classical counterpart.

4.3.1 The Qubit

In quantum computing, qubits are the fundamental information storage and
processing elements. A distinguishing feature of qubits is their ability to exist in a
superposition of states, demonstrated by

|ψ⟩ = α|0⟩+ β|1⟩, (14)

where the coefficients α and β are complex numbers representing the probability
amplitudes for the qubit to be in the |0⟩ and |1⟩ states, respectively. The constraint
|α|2 + |β|2 = 1 ensures that the total probability remains normalized under the
fundamental principles of quantum mechanics.

For a system comprising n qubits, the general superposition can be expressed as

|ψ⟩ =
1∑

v1=0

1∑
v2=0

...
1∑

vn=0

αv1,v2,··· ,vn|v1v2 · · · vn⟩. (15)

This equation implies that 2n unique bit strings of the form v1v2 · · · vn are required
for a general superposition, necessitating 2n probability amplitudes αv1,v2,··· ,vn. The
exponential increase in information emphasizes the potential of quantum
computing for representing and manipulating large data sets using a limited
number of qubits.

Qubits are often modeled using the quantum mechanical property of spin,
particularly the spin of an electron or a photon. Spin can be visualized as an
intrinsic form of angular momentum carried by quantum particles, where the spin
up and spin down states correspond to the two states of a qubit, often denoted as
|0⟩ and |1⟩, respectively.

The qubit’s quantum state, |ψ⟩, is a linear combination of the basis states |0⟩ and
|1⟩. Upon measuring a qubit in this superposition state, the outcome is determined
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probabilistically based on the square of the magnitudes of the probability
amplitudes. Specifically, the probability of measuring the qubit in state |0⟩ is given
by P (|0⟩) = |α|2, while the probability of measuring the qubit in state |1⟩ is given by
P (|1⟩) = |β|2. This probabilistic nature of quantum measurements underpins
various quantum algorithms and is a core aspect of quantum mechanics.

In a quantum circuit, qubits can be thought of as two-level systems, analogous to
classical bits, but with the added feature of being able to exist in superposition
states. At the start of quantum computation, all qubits are set to the spin-down
state, which corresponds to the zero states |0 · · · 0⟩ in the computational basis.
The computational basis consists of all possible states that can be represented by
classical bit strings, such as |000⟩, |001⟩, ..., |110⟩, and |111⟩. The first step of a
quantum circuit is to encode information into the qubits. This can be done by, for
example, parameterized quantum circuits (PQC). In PQC, input is encoded into the
quantum system rotations on the qubits. Rotation refers to the transformation of a
qubit’s state by applying a quantum gate, which can be visualized as a rotation of
the state vector around an axis on the Bloch sphere, changing the probabilities of
measuring different outcomes. The rotation can be encoded using quantum gates,
which rotate the qubit’s state based on a parameter [Benedetti et al., 2019].

Once the desired input is encoded into the quantum system, the desired logic can
be applied. This is performed with quantum gates, unitary operations that
transform a qubit state into another. Finally, the output is measured, and the wave
function of all qubits collapses into either the spin-up or spin-down state.

In quantum computing, understanding and visualizing qubits’ behavior is essential
to comprehending quantum systems. To facilitate this understanding, the Bloch
sphere is employed to represent qubits, the fundamental quantum bits. The Bloch
Sphere is a three-dimensional representation used to visualize the state of a
single qubit. It is a unit sphere centered at the origin in a three-dimensional space
with orthogonal axes typically labeled X, Y, and Z. The state of a qubit is described
as a point inside or on the surface of the sphere.

As depicted in Figure 4.2, the Bloch Sphere incorporates a qubit’s entire states:
the sphere’s north pole represents the |0⟩ state, and the south pole symbolizes the
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Figure 4.2: A representation of a qubit in the Bloch Sphere. [Wikipedia, 2023]

|1⟩ state. The sphere’s surface represents the states where the qubit is in a
superposition of the |0⟩ and |1⟩ states.

4.3.2 Quantum Gates

Quantum gates are an essential component of quantum circuits, and they are
used to manipulate qubits in various ways. All quantum gates can be represented
as a matrix acting on a vector representing the qubits’ state. A few commonly used
quantum gates are the Pauli gates (X, Y, and Z), which rotate the qubit along each
axis with respect to a parameter θ. The Pauli gates can be further broken down
into Pauli rotations, Rx, Ry, and Rz, which rotate the qubit about the X, Y, and Z
axis, respectively. These gates are useful for encoding information into individual
qubits. Hadamard is another important quantum gate that creates or collapses
existing superposition. When applied to a qubit initially in the state |0⟩ (spin up) or
|1⟩ (spin down), the Hadamard gate transforms the qubit into a superposition of
both states. Importantly, this operation is reversible, meaning applying the
Hadamard gate again will return the qubit to its original state, even though the
superposition state is indistinguishable, regardless of starting conditions. This
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ability to create and manipulate superpositions, combined with the property of
reversibility, gives rise to unique properties useful in quantum cryptography. Both
Hadamard and the Pauli gates are used to transform individual qubits. CNOT is a
type of quantum gate that affects multiple qubits. CNOT works by conditionally
flipping the spin state of one qubit based on the state of one or more other qubits
[Chuang and Nielsen, 2000].

Here are some examples of quantum gates, their effects on qubits, and their
matrix representations. For reference, the state of one qubit can be represented in
vector notation as

|0⟩ =

(
1

0

)
, |1⟩ =

(
0

1

)
(16)

while a two-qubit system can be represented as

|00⟩ =


1

0

0

0

 , |01⟩ =


0

1

0

0

 , |10⟩ =


0

0

1

0

 , |11⟩ =


0

0

0

1

 (17)

Pauli-X Gate:

X =

(
0 1

1 0

)
(18)

X|0⟩ = |1⟩

X|1⟩ = |0⟩
(19)

The Pauli-X gate is commonly used to flip the state of a qubit.
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CNOT Gate:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (20)

CNOT|c⟩|t⟩ = |c⟩|t⊕ c⟩, (21)

The CNOT flips the second bit if the first bit is measured as one.

CNOT|0⟩|0⟩ = |0⟩|0⊕ 0⟩ = |0⟩|0⟩

CNOT|0⟩|1⟩ = |0⟩|1⊕ 0⟩ = |0⟩|1⟩

CNOT|1⟩|0⟩ = |1⟩|0⊕ 1⟩ = |1⟩|1⟩

CNOT|1⟩|1⟩ = |1⟩|1⊕ 1⟩ = |1⟩|0⟩

Hadamard Gate:

H =
1√
2

(
1 1

1 −1

)
(22)

H|0⟩ = 1√
2
(|0⟩ + |1⟩)

H|1⟩ = 1√
2
(|0⟩ − |1⟩)

HH|0⟩ = 1√
2
H(|0⟩ + |1⟩) = |0⟩

(23)

The Hadamard gate creates an equal superposition of the basis states. When
applied twice, it returns the qubit to its initial state.
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Pauli Rotation Gates:

Rx(θ) =

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
(24)

Rx(θ)|0⟩ = cos(θ/2)|0⟩ − i sin(θ/2)|1⟩ (25)

Ry(θ) =

(
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)
(26)

Ry(θ)|0⟩ = cos(θ/2)|0⟩ − sin(θ/2)|1⟩ (27)

The Rx(θ) and Ry(θ) gates are Pauli rotations that rotate the qubit around the X
and Y axes, respectively, with respect to a parameter θ. These gates are useful for
encoding information into a qubit, allowing for arbitrary rotation of the qubit’s state.

In quantum mechanics, the Hilbert space is a complex vector space that
accommodates the quantum states of a system. It enables the representation and
manipulation of quantum states using linear algebra. In quantum computing, the
Hilbert space expands exponentially with the number of qubits. For example, with
n qubits, the size of the Hilbert space is 2n. Different entanglement schemes and
quantum gates provide access to varying portions of the Hilbert space, affecting
the expressibility and computational power of the quantum circuits.

4.3.3 Quantum Circuits

Quantum circuits provide a graphical representation of the sequence of quantum
operations applied to qubits. Each wire in a quantum circuit represents a qubit,
and the quantum gates are depicted as boxes along the wire. The horizontal
direction represents the time progression of the quantum operations, with the
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initial state on the left and the final state on the right. The power of quantum
circuits lies in their ability to manipulate and entangle qubits, resulting in complex
quantum states that can be harnessed to perform complex computations.

As an example, consider the following quantum circuit that implements the
Deutsch-Josza algorithm [Deutsch and Jozsa, 1992], which is designed to solve a
specific problem more efficiently than classical computers:

|0⟩ H

Uf

H

|1⟩ H

(28)

In this circuit, the first qubit represents the input register, and the second qubit
represents the output register. The Hadamard gates are applied to both qubits to
create an equal superposition of all possible input states. The oracle gate Uf

encodes the function f(x) and is applied to both qubits. Finally, the Hadamard
gate is applied again to the input register, and the measurement of the first qubit
reveals whether the function is constant or balanced.

A Bell State is a special type of entangled state of two qubits with many
applications in quantum communication and quantum computing. The Bell State
can be generated by applying a Hadamard gate on one qubit and then applying a
CNOT gate with that qubit as the control and the other as the target. The resulting
Bell State is:

|Φ+⟩ = 1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩) (29)

The bell state can be prepared with the following quantum circuit:

|0⟩ H

|0⟩
(30)
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In this circuit, the Hadamard gate creates a superposition on the first qubit, and
the CNOT gate entangles the two qubits, generating the Bell state. These
entangled states are crucial in various quantum algorithms and quantum
communication protocols.

The Bell State is a maximally entangled state that cannot be written as a product
of two qubits. It is expressed as 1√

2
(|00⟩+ |11⟩), where the two qubits are in a state

of superposition. This state is useful for quantum teleportation and quantum key
distribution tasks. It is important to note that the Bell State cannot be written as a
product of two individual qubits in any way, i.e., it cannot be expressed as |ψ⟩ ⊗ |ϕ⟩.

Due to the nature of quantum systems, a quantum circuit produces widely different
results each time it runs. This uncertainty is caused by both outside noises
disturbing the system and the fact that a qubit in a superposition will not be
measured identically each time the experiment is performed. Therefore, a
quantum circuit is executed many times, and the distribution of each unique
measurement is considered the output of the system, not the result of any
particular execution [Preskill, 2018].

Overall, quantum computing is an exciting and rapidly developing field with a wide
range of potential applications in areas such as chemistry, optimization, and
artificial intelligence [Farhi et al., 2014a].

4.3.4 Measurement in Quantum Systems

A crucial aspect of understanding quantum systems is the concept of
measurement and its connection to the probability of observing a particular
outcome. In quantum mechanics, the probability of obtaining a specific
measurement result is determined by the square of the amplitude associated with
that outcome, a relationship known as the Born rule [Born, 1926a]. This
fundamental principle governs the behavior of quantum systems and has
significant implications for quantum computing and entanglement [Nielsen and
Chuang, 2002]. By examining the probabilistic nature of quantum mechanics
through the measurement lens, we can better comprehend the challenges and
opportunities associated with developing and applying quantum technologies
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[Preskill, 2018]. The measurement process not only reveals information about the
system’s state but also leads to the wave function’s collapse, affecting the system’s
state post-measurement [Zurek, 2003]. This intrinsic property of quantum systems
introduces unique considerations in designing quantum algorithms and
interpreting their results, distinguishing quantum computing from its classical
counterpart [Mermin, 2007].

4.3.5 Entanglement

Entanglement in quantum computing refers to creating a correlation between two
or more qubits, resulting in a state that cannot be described as a product of
individual qubit states. The entanglement of qubits is a fundamental resource for
quantum computing and quantum communication [Horodecki et al., 2009].
Different entanglement schemes must be assessed when entangling qubits. The
choice of the scheme has various trade-offs, with some providing access to a
more significant portion of Hilbert space than others.

Quantum teleportation is based on the principles of entanglement and relies on
sharing a maximally entangled state, such as a Bell state, between two parties. By
performing specific quantum operations and classical communication, the
quantum state of a qubit can be transferred to a distant qubit, effectively
”teleporting” the quantum information. This process plays a crucial role in
long-distance quantum communication and the development of quantum
networks, as it enables the secure and efficient transfer of quantum information
over large distances.

The simplest entanglement scheme involves no entanglement at all, which can
result in a quantum circuit failing to utilize a quantum system’s properties fully.
However, in some cases, such as in the optimization process, entangling gates
can exacerbate the barren plateau problem, leading to poor performance. In these
cases, having no entanglement is preferable. Figure 4.3 shows this entanglement
scheme.

In the ladder entanglement schemes, each qubit controls a CNOT operation
connected to the next qubit. The structure, when visualized, looks like a ladder.
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Figure 4.3: A quantum circuit containing no entanglement scheme

This results in a weak entanglement throughout the entire circuit. The main benefit
of the ladder entanglement scheme is that it has a low ratio of extra CNOTs added
per additional qubit. The cost is only n-1 CNOTs, where n is the number of qubits.
Figure 4.4 shows this entanglement scheme.

Figure 4.4: A quantum circuit containing the ladder entanglement scheme

The double ladder is an extension of the ladder entanglement scheme. The double
ladder has an extra ladder at the end in the other direction. This results in
properties like the ladder scheme, but the entanglement is stronger, and there are
twice as many CNOTs, which might lead to more noise in the system. Figure 4.5
shows this entanglement scheme.

An entanglement scheme with a very high CNOT to qubit ratio is the full scheme.
Here, every qubit is connected to all others. This results in a minimum ratio of n2

CNOTs to qubits. However, if the physical structure of the circuit is not considered,
this number can be immensely higher as long as CNOTs are exchanged for many
swap gates. In this exchange, a single CNOT is swapped for at least seven. Three
are used to swap two qubits, one to perform the CNOT, and the final three to swap
the two qubits back. Figure 4.6 shows this entanglement scheme.
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Figure 4.5: A quantum circuit containing the double ladder entanglement scheme

Figure 4.6: A quantum circuit containing the full entanglement scheme

The entanglement schemes mentioned can also be based on the controlled RX
(C-RX) gate. The C-RX gate is a two-qubit gate that rotates around the Bloch
sphere’s X-axis relative to a parameter θ and is controlled by the state of the
control qubit. When the control qubit is in the |1⟩ state, the target qubit rotates by
an angle θ. This gate allows for creating various entangled states with a single
operation, offering flexibility in the design of quantum circuits. It is important to
note that when θ = π, the C-RX gate is equivalent to the CNOT gate, and when
θ = 0, it corresponds to the identity gate (I) [Nielsen and Chuang, 2002]. This
highlights the versatility of the C-RX gate in quantum circuit design, as it can
generate a wide range of entangled states and perform various operations
depending on the chosen parameter value.

The entanglement scheme employing the C-RX gate can adjust the degree of
entanglement between qubits through the rotation angle θ. This adjustable nature
of the C-RX gate allows the amount of entanglement in the network to become a
trainable parameter. The motivation for using the C-RX gate is based on the
trade-off between accessing a more significant portion of the Hilbert space by
exploiting quantum mechanics and the observation that, in some cases, having no
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entanglement (i.e., the ladder scheme) performs better than highly entangled
schemes [Grant et al., 2019]. The question arises whether an intermediate level of
entanglement would yield the best results. The C-RX gate offers a solution to this
problem by enabling the generation of a desired amount of entanglement,
providing a unique advantage in the design and optimization of quantum circuits.

However, C-RX gates are not natively supported on all quantum hardware. In such
cases, the gate must be decomposed into a sequence of native gates, which could
increase the overall gate count and negate the benefits of using the C-RX gate for
entanglement. For example, IBM’s quantum hardware supports the native gates
U3, CNOT, and CZ but not the C-RX gate directly. Implementing the C-RX gate on
IBM hardware must be combined with these native gates, potentially increasing
the circuit depth and susceptibility to noise.

Figure 4.7 shows an example of a quantum circuit employing the controlled RX
gate for entanglement in the ladder scheme.

Figure 4.7: A quantum circuit containing the ladder scheme with C-RX instead of
CNOT

4.4 Quantum Deep Q-Learning

In this section, we investigate Quantum Deep Q-Learning, an innovative approach
that combines quantum computing with deep Q-learning. We first describe
Quantum Neural Networks, quantum analogs of classical neural networks, and
their potential to enhance learning capabilities. We then illustrate how these
networks can be integrated with Deep Q-Learning, resulting in a novel learning
algorithm that harnesses the power of quantum computing to tackle complex
problems.
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4.4.1 Quantum Neural Networks

Quantum Neural Networks (QNNs) [Benedetti et al., 2019] are a type of
Parameterized Quantum Circuit (PQC), also known as Variational Quantum
Circuits, which share similarities with Artificial Neural Networks (ANNs). QNNs
and ANNs receive input, process it through a set of weights, and produce an
output. The network or circuit weights are then optimized based on the difference
between the actual and desired output [Wold, 2021]. In the following subsections,
we will discuss the four primary steps involved in operating a PQC and how they
contribute to the overall functionality of QNNs.

Step 1: Encoding the Input

The first step of a PQC involves encoding the input into the system. This is done
by transforming the input into a corresponding rotation and applying that rotation
to the corresponding qubit [Lloyd et al., 2020]. By encoding classical information
into qubits, we map low-dimensional data to a high-dimensional space known as
the Hilbert space. This process is reminiscent of kernel methods in classical
machine learning and can be a strong foundation for developing effective models.

Step 2: Applying Parameterized Rotations

The second step concerns the parameterized part of PQC. The parameterized
Pauli gates rotate the qubits.

Step 3: Entangling Qubits

In the third step, qubits are entangled using specific entangling gates, such as
CNOT gates. Entanglement is essential for accessing a more significant part of
the Hilbert space and leveraging quantum mechanical properties to achieve
efficient computation. However, it has been shown that, in some cases, having no
entanglement works better in some scenarios. This raises the question of whether
an intermediate level of entanglement might be optimal. The C-RX gate, for
instance, can be used to achieve a controlled degree of entanglement.
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Step 4: Measuring the Qubits

Once the parameterized transformations and entanglement have been applied,
the state of the qubits is measured. These steps are repeated many times (often
104 <), resulting in a distribution of results. The distribution is interpreted as the
model output, providing insights into the system’s behavior.

This combination of re-uploading, parameterized rotations, and entanglement is
called a layer. The more layers a PQC has, the more functions it can approximate
[Schuld et al., 2021]. At the same time, with more layers, more parameters result
in a larger model space that is more difficult to optimize. This property results in
stacked layers, such that many sets of entangling and parameterized rotations are
after each other.

A common problem in classical ANN is exploding gradients. This occurs when the
weights/parameters of the network grow significantly large. Regularization is a
technique that is used to punish large weights/parameters. However, exploding
gradients are not a concern in QNNs. No matter how much you rotate a particle,
its angle can always be represented as ϵ[0, 2π].

As quantum computing matures, many tools have been developed to make
quantum computing more accessible. PennyLane is a Python framework for
general quantum computing, which has recently included TensorFlow and PyTorch
support. TensorFlow is a machine learning library for Python that has recently
included functionality for dealing with QNNs.

The barren plateau is a phenomenon in quantum computing that can arise in
training large-scale quantum circuits, such as quantum neural networks [McClean
et al., 2018]. It is a significant challenge for quantum machine learning, as it can
severely limit the performance and scalability of quantum algorithms [Holmes
et al., 2021]. Several techniques have been proposed to mitigate this issue, such
as specific circuit architectures [Skolik et al., 2021], initialization strategies [Grant
et al., 2019], and adaptive optimization methods [Khatri et al., 2020]. Researchers
continue to explore and develop new approaches to overcome barren plateaus
and unlock the full potential of quantum machine learning [Cerezo et al., 2021].
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4.4.2 Quantum Deep Q-Learning

Quantum Deep Q-Learning (QDQL) is similar to DQL [Kwak et al., 2021]. The
main difference is that in QDQL, parts of the network are replaced with a QNN.
This means that the network layers are not classical fully connected layers but
instead, combinations of Pauli rotations followed by CNOT gates. Similarly to an
ANN, a QNN has weights that will be optimized with the Bellman equation

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a
Q(st+1, a)−Q(st, at)],

Circuit 31 shows PQC with four qubits, two layers, and the ladder entanglement
scheme. The first column of Pauli-X rotations in each layer is the re-uploading
embedding.

H Rx(x1) Rx Ry Rx(x1) Rx Ry

H Rx(x2) Rx Ry Rx(x2) Rx Ry

H Rx(x3) Rx Ry Rx(x3) Rx Ry

H Rx(x4) Rx Ry Rx(x4) Rx Ry

(31)

In a Parameterized Quantum Circuit (PQC), the angle encoding process, which
utilizes Pauli-X rotations, serves as a cornerstone for quantum state preparation.
This procedure is represented as follows:

Rx(x1) Rx(x2) Rx(x3) Rx(x4) (32)

In this subcircuit, each qubit experiences a rotation enacted by a Pauli-X gate. The
corresponding input parameter xn determines the rotation’s angle, effectively
encoding the classical data into the quantum states of the qubits.

What is crucial to note here is the repetitive nature of this angle encoding process.
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It is performed at the onset of each layer in a PQC employing a data re-uploading
strategy. By repeating the encoding at each layer, the quantum model achieves
enhanced flexibility and expressiveness, creating a more sophisticated relationship
between the input parameters and the resulting quantum states. This repetitive
procedure significantly influences the PQC’s learning capabilities and overall
performance.

Skolik et al. [2022] investigated this ”PQC with Re-uploading” technique in the
context of Quantum Deep Q-Learning (QDQL). The technique involves repetitively
re-introducing the input at the beginning of each PQC layer. This approach has
been found to amplify the performance of QDQL by promoting efficient data
processing and learning, despite the limitations of qubits and layers. The
technique has shown superior performance compared to initial, naive encoding in
a PQC, suggesting the immense potential of quantum machine learning in tackling
complex problems.

In QDQL, the re-uploading technique is implemented through a series of
input-dependent Pauli-X rotations at the beginning of each QNN layer (as
illustrated in circuit 31). This process embeds the classical information into the
quantum state, enabling the QNN to process and learn from the input data
effectively, even when constrained by the number of qubits and layers. This
adaptability is critical to the practical implementation of QDQL.

4.5 Literature Review

The burgeoning field of quantum machine learning has witnessed numerous
advances in recent years, with contributions spanning from theoretical frameworks
to practical applications. Several quantum algorithms have been proposed and
benchmarked, demonstrating their potential in various machine learning tasks.
This literature review highlights key advancements underpinning our work,
focusing on Parameterized Quantum Circuits (PQCs), Metric Quantum Learning,
Quantum Circuit Networks, Quantum Reinforcement Learning, and the
relationship between Quantum Models and Partial Fourier Series. In each area,
we delve into the significant findings, their implications for the field, and the open
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challenges that motivate ongoing research.

4.5.1 Parameterized Quantum Circuits

Sim et al. [2019] provided a theoretical framework for characterizing and
comparing parameterized quantum circuits (PQCs) without focusing on specific
algorithms or applications. The work identified the saturation and saturated value
rate indicators of PQC performance and offered insights for designing and
selecting suitable circuits. The study also proposed a classical simulation
framework to address PQC challenges by defining computable and comparable
quantities for circuit designs and fragments. The authors discussed the trade-off
between expressibility and optimizability in PQCs and laid the groundwork for
future research [Sim et al., 2019].

4.5.2 Metric Quantum Learning

Lloyd et al. [2020] presented ”metric quantum learning” as an innovative
methodology within the realm of quantum machine learning. This approach
involves embedding classical data points into quantum states and performing
comparisons using optimal quantum measurements. The key strength of this
method lies in its compatibility with small, shallow quantum circuits, making it
suitable for deployment on near-term quantum computing platforms.

Interestingly, the architecture proposed by Lloyd et al. [2020] resembles a
ResNet-like structure characterized by a sizeable classical network supporting a
comparatively more minor quantum component. This design leverages the
strengths of both classical and quantum computation, providing a robust and
flexible framework for tackling complex learning tasks.

Despite these promising features, it is essential to note that classical computers
typically struggle to replicate the results produced by quantum embeddings,
primarily due to the quantum-specific phenomena leveraged in the process.
Consequently, this raises the question of whether a practical quantum advantage
can be attained through this approach. Despite the impressive achievements
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reported by Lloyd et al. [2020], this question remains an open challenge within the
field of quantum machine learning.

4.5.3 Quantum Circuit Networks

Wold [2021] presented a Python framework for implementing and training dense
neural networks (DNNs), quantum neural networks (QNNs), and quantum circuit
networks (QCNs) on various datasets. The study highlighted the vanishing
gradient phenomenon in QCNs and DNNs and demonstrated the potential for
training QCNs to be more expressive than similarly sized DNNs. The authors also
compared QCNs and DNNs on real-world datasets, revealing that QCNs may be
better suited for specific training problems [Wold, 2021].

Jerbi et al. [2021] investigated the design of quantum reinforcement learning (RL)
agents based on PQCs. The researchers proposed several constructions,
including the SOFTMAX-PQC model, and examined the impact of design choices
on learning performance. The study contributed to understanding quantum RL
agents’ potential advantages in near-term quantum devices [Jerbi et al., 2021].

4.5.4 Quantum Reinforcement Learning

A recent study provided numerical evidence supporting the potential advantages
of quantum RL over classical RL in terms of sample efficiency and reduced
parameter requirements [Wang et al., 2020]. The authors benchmarked quantum
RL agents against classical fully-connected neural networks in OpenAI Gym
environments such as CartPole and Acrobot. The quantum RL agents displayed
faster convergence rates and required significantly fewer trainable parameters
than classical RL agents. Moreover, the study presented the first quantum RL
agent capable of completing the LunarLander task in OpenAI Gym, demonstrating
the potential of quantum RL in practical applications.

However, a balanced critique of these results raises a few pertinent issues. Firstly,
the quantum RL agent employed in this study is a hybrid, incorporating a classical
layer. Thus, the architecture is not purely quantum but a blend of classical and
quantum elements. Therefore, while a quantum-classical hybrid solution has
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demonstrated its ability to solve the LunarLander task, the challenge of achieving
this with a purely quantum agent remains unsolved.

Secondly, their model could be characterized as a classical model with an unusual
feature scaling and increased noise, given that the quantum portion of their model
only induces minor shifts in the initial input values. The potential of quantum
systems, particularly in reinforcement learning, likely extends far beyond what this
hybrid model has demonstrated.

Additionally, the absence of entanglement in their model suggests that they
needed to fully utilize the power of quantum systems to explore large problem
spaces efficiently.

Most critically, the study did not try to optimize the classical model. This introduces
a bias as the quantum technique received more attention and fine-tuning, possibly
skewing the comparison in its favor. Therefore, while the presented results are
promising, the potential of quantum systems in reinforcement learning requires
further unbiased investigation, taking full advantage of quantum capabilities and
ensuring a fair comparison with optimized classical models.

4.5.5 Quantum Models and Partial Fourier Series

Schuld et al. [2021] systematically mapped a wide range of quantum machine
learning models and partial Fourier series. The study examined the impact of data
encoding mechanisms on model expressivity and established connections
between quantum machine learning and classical machine learning concepts. The
authors raised several open questions, such as how the structure of trainable
circuit blocks influences accessible Fourier coefficients and whether knowledge of
expressed function classes can inform applications for quantum machine learning
[Schuld et al., 2021].
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5 Methodology

5.1 Environment and Tools

Here is a brief description of each library and framework used in the
implementation:

The implementation was carried out using Python [van Rossum, 1995]. This
versatile, high-level programming language is widely used for scientific computing,
data analysis, and machine learning tasks due to its readability, ease of use, and
extensive library support. Several libraries and frameworks were utilized, including:

TensorFlow [Abadi et al., 2016]: An open-source machine learning library
developed by Google Brain that allows users to quickly build and deploy machine
learning models. TensorFlow supports various types of neural networks, including
feed-forward, recurrent, and convolutional networks. It is designed for efficient
numerical computing and can utilize GPUs and TPUs for accelerated training.

Keras [Chollet et al., 2015]: A high-level neural networks API that can run on top of
TensorFlow. Keras simplifies the process of building and training neural networks
by providing an intuitive interface and pre-built layers. It is designed for rapid
prototyping and is often used for deep learning research and applications.

Numpy [Oliphant, 2006, Van Der Walt et al., 2011]: A library for numerical
computing in Python that provides support for arrays, linear algebra, and various
mathematical functions. Numpy is a library for scientific computing and is widely
used in machine learning and data analysis tasks.

Pandas [McKinney, 2010]: A powerful data manipulation library for Python that
provides data structures, such as DataFrame and Series, to handle and analyze
data flexibly and efficiently. Pandas is particularly useful for dealing with tabular
data and supporting various formats, such as CSV, Excel, and SQL.

PennyLane [Bergholm et al., 2018]: An open-source quantum computing library
that focuses on quantum machine learning and optimization. It provides a unified
interface for defining and simulating quantum circuits with various quantum
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computing backends, such as Qiskit, Cirq, and Strawberry Fields. PennyLane is
designed to integrate seamlessly with existing machine learning libraries, such as
TensorFlow and PyTorch, enabling the development of hybrid quantum-classical
models.

By using these libraries and frameworks, the implementation of the classical and
quantum Deep Q-Learning models can be conducted efficiently and effectively,
leveraging the strengths of each library to achieve the desired results.

5.2 Open AI Gym

Open AI Gym [Brockman et al., 2016] is a popular toolkit for developing and
comparing reinforcement learning algorithms. The toolkit provides various
environments researchers and practitioners use to test their algorithms, from
simple toy problems to complex real-world scenarios. The environments are
designed to be easy to use and modify, and they provide standardized interfaces
for interacting with the environment, collecting observations, and receiving
rewards. This section introduces two environments in this work’s Open AI Gym
framework: Cart Pole and Lunar Lander. Those environments are commonly used
in the reinforcement learning literature as benchmarks for evaluating the
performance of different algorithms. They are challenging but tractable problems
that require agents to learn sophisticated control policies to achieve high scores.
Also, there is a sense of progression in difficulty, with the cart pole having a small
observation and action space, while the lunar lander has larger search spaces and
is more complex.

5.2.1 Cart Pole

Cart Pole is an environment where a cart with a pole attached moves left and right
along a frictionless track to balance the pole upright. The agent aims to keep the
pole balanced for as long as possible. There are two possible actions, apply force
to the left or the right. The agent receives a reward of 1 for each timestep the pole
remains balanced. The episode terminates if the angle of the pole exceeds a
certain threshold (±12 degrees). An observation of the environment contains the
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position and velocity of the cart and the angle and angular velocity of the pole.
Figure 5.1 shows a visual representation of the environment. The environment is
initialized with a random pole angle, close to upright. The default length of an
episode is 200 timesteps.

Figure 5.1: Snapshot from the Cartpole v1 OpenAI Gym environment

5.2.2 Lunar Lander

is an environment where the agent aims to safely land a lunar lander spacecraft on
a landing pad in moon-like conditions. There are four possible actions, fire the left
engine, fire the main engine, fire the right engine, or do nothing. The side engines
have one-tenth the power of the main engine. The agent receives a reward based
on the position and velocity of the lander and the fuel consumption. The episode
terminates if the lander crashes, runs out of time, or if it lands successfully on the
landing pad. The observation of the environment contains the lander’s x and y
position, the lander’s x and y velocity, and the lander’s angle and angular velocity if
the left leg is in contact with the ground and if the right leg is in contact with the
ground. Figure 5.2 shows a visual representation of the environment. The starting
velocity of the lander is initialized randomly. The default length of an episode is
200 timesteps.
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Figure 5.2: Snapshot from the Lunar Lander v2 OpenAI Gym environment

6 Implementation

The purpose of the Implementation section is to detail the process of
implementing the classical and quantum Deep Q-Learning models for the chosen
OpenAI Gym environments. This section highlights the programming languages,
libraries, and frameworks used and discusses the rationale behind the design and
implementation choices. Documenting the implementation process ensures
reproducibility and facilitates the understanding and replication of the experiments
by others.

6.1 Classical DQL Implementation

The classical models were implemented using feed-forward neural networks as
function approximators in the DQL framework, following the well-established
approach of representing Q-functions in classical deep reinforcement learning
algorithms [Mnih et al., 2015]. These networks have been proven effective in
learning complex, nonlinear relationships between states and actions in various
environments [Mnih et al., 2013].

The chosen architecture for the classical models consisted of several fully
connected layers with a flexible number of nodes per layer, as determined during
the hyperparameter search process. This is explained further in the experiments
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section. These networks utilized rectified linear unit (ReLU) activation functions
[Nair and Hinton, 2010] in the hidden layers, which have been shown to improve
training efficiency and mitigate the vanishing gradient problem often encountered
in deep learning models [Glorot et al., 2011]. The output layer had a linear
activation function to provide a continuous range of Q-values for each action.

Mean squared error (MSE) is the loss function, as it is commonly used in
DQL-based algorithms [Mnih et al., 2015]. The loss function measures the
discrepancy between the predicted and target Q-values obtained using the
Bellman equation. Minimizing this loss results in better Q-value approximations
and improved learning.

The random search for hyperparameter tuning was performed to find the best
combination of the number of layers, learning rate, and the number of nodes per
layer. The search space for the number of layers ranges from 2 to 4, as deeper
networks might lead to overfitting or slower convergence in some cases [Zhang
et al., 2016]. The learning rate search space included values of 0.03, 0.01, 0.003,
0.001, and 0.0003, which cover a broad range of commonly used rates in the
literature [Smith, 2018]. The number of nodes per layer was tested with values of
4, 8, 16, and 32, allowing the model to adapt to various levels of complexity. The
values selected ensure that the network weights are comparable in classical and
quantum agents.

The classical models were updated using optimizer Adam [Kingma and Ba, 2014]
during the training process. The training procedure involved multiple episodes,
during which the agent interacted with the environment and collected experience
to improve its policy. The use of experience replay buffer [Lin, 1993] was also
incorporated to enhance the stability and convergence of the learning process.

6.2 Quantum DQL Implementation

The quantum models were implemented using parameterized quantum circuits as
function approximators in the DQL framework, following recent advancements in
quantum machine learning that leverage quantum systems to perform complex
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tasks [Biamonte et al., 2017]. These circuits have shown promise in learning
intricate, nonlinear relationships between states and actions in various settings
[Schuld et al., 2020].

The chosen architecture for the quantum models incorporated different types of
circuit designs, with angle encoding used for qubit encoding, a widely adopted
technique for encoding classical information into quantum states [Schuld et al.,
2020]. The circuit comprised Hadamard gates applied to all qubits, followed by
layers, where each consists of three steps: input uploading, rotations based on
trainable parameters, and entanglement. Pauli-X rotations based on the input
values (referred to as embedding) [Farhi et al., 2014b]. Then, several a pair of
Pauli-X and Pauli-Y rotations rotates the qubits based on trainable parameters θ
followed by an entanglement scheme. The supported entanglement schemes
included ladder, double ladder, full, and none, previously explored in the context of
variational quantum algorithms [Peruzzo et al., 2014]. The circuit output was
connected to a dense output layer with linear activation, providing a continuous
range of Q-values for each action.

The random search for hyperparameter tuning was conducted to find the best
combination of the number of layers, learning rate, entanglement scheme, and
rotation gates. The search space for the number of layers ranges from 2 to 4,
following the same rationale as classical models [Zhang et al., 2016]. The learning
rate search space comprised values of 0.03, 0.01, 0.003, 0.001, and 0.0003,
which cover a broad range of commonly used rates in the literature [Smith, 2018].
The entanglement schemes and rotation gates were tested with various
configurations, allowing the model to adapt to different levels of complexity.

The quantum models were updated using the Adam optimizer [Kingma and Ba,
2014] during the training process. The Adam optimizer is an advanced gradient
descent method that maintains a running average of previous gradients. This
characteristic aids in avoiding getting stuck in local minima, facilitating more
efficient learning.

The training procedure was conducted over multiple episodes. In each episode,
the agent interacted with the environment, generating experiences to refine its
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policy and incrementally improving its decision-making capabilities.

In addition to this episodic learning, an experience replay buffer was implemented
[Lin, 1993]. This technique allows the model to store and revisit past experiences,
providing a diverse set of training samples and avoiding the issue of correlated
experiences. Using an experience replay buffer enhanced the stability and
convergence of the learning process, offering a level of consistency with the
training methodologies employed for classical models.

6.3 Deep Q-Learning Algorithm

The implemented DQL algorithm used the Bellman equation for updating the
Q-values. State, next state, reward, action, and termination information were
stored in a replay buffer, and the model was trained on a batch of data at every
timestep. No specific adaptations were made to the DQL algorithm to
accommodate the quantum models.

The learning algorithm implementation is described in algorithm 1
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Algorithm 1 Deep Q-Learning with Replay Memory
1: Initialize replay memory D
2: Initialize agents action function Q with random weights θ
3: Initialize exploration rate ϵ
4: Set minimum exploration rate ϵmin

5: Set exploration rate decrement factor α
6: Set discount factor γ
7: Set mini-batch size B
8: for episode = 1 to M do
9: Initialize state s

10: for timestep = 1 to T do
11: With probability ϵ select a random action at
12: Otherwise select at = argmaxaQ(st, a; θ)
13: Execute action at in the environment and observe reward rt+1 and next

state st+1

14: Store transition (st, at, rt+1, st+1) in D
15: if memory contains at least B transitions then
16: Sample a random mini-batch of transitions (si, ai, ri, si+1) from D
17: Compute q-values for state and next state batches using the model
18: Compute target q-values yi based on the Bellman equation
19: Compute gradients based on target and predicted q-values
20: Update q-values for state-action pairs in the state batch using the

computed gradients
21: Update the model using the updated state and q-value batches
22: if exploration rate is higher than minimum exploration rate then
23: Decrease the exploration rate using the decrement factor α
24: s← s′

6.4 Code Repository and Reproducibility

The code for the implementation is available at
https://github.com/mathiassandnes/QuantumDQN. A set seed was used to control
the randomness in the implementation; however, the seed does not control the
environments’ random initialization of each episode. Other steps to ensure the
reproducibility of the experiments include using version control and providing clear
documentation of the implementation process.

63



7 Experiments

This chapter presents a suite of experiments designed to explore and compare the
performance of classical and quantum Deep Q-Learning (DQL) models on various
reinforcement learning tasks. The experiments specifically focus on two OpenAI
gym environments, the Cart Pole and the Lunar Lander, which serve as canonical
benchmarks in reinforcement learning research.

The first two experiments delve into the performance of classical DQL models,
utilizing feed-forward neural networks as function approximators. By conducting a
random search over various hyperparameters, such as the number of layers,
learning rate, and number of nodes per layer, we aim to understand their influence
on the model’s performance. Moreover, these experiments provide a classical
baseline against which the performance of quantum models can be compared.

Subsequently, in the third and fourth experiments, we transition to quantum
models, employing Parameterized Quantum Circuits (PQCs) as function
approximators. Cart Pole and Lunar Lander are the same environments for
consistency and comparability. Here, the hyperparameters under investigation
encompass the number of layers, learning rate, number of qubits, entanglement
scheme, and the types of rotation gates.

Building upon these, the final two experiments introduce additional complexity to
the quantum models - trainable entanglement. In these cases, we add a separate
set of trainable parameters that control the degree of entanglement between the
qubits, allowing for dynamic entanglement during the learning process.

Throughout all these experiments, we track various metrics during training and
evaluation, encompassing aspects such as episode number, scores, exploration
rates, actions, and raw observations. The overarching aim of these experiments is
not only to understand the performance of classical and quantum DQL models but
also to delve into the nuances of their operation and the factors that influence their
success.
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7.1 Experiment 1: Classical DQL on Cart Pole

In this experiment, we employed feed-forward neural networks as function
approximators in the DQL framework to solve the Open AI gym environment Cart
Pole. We aimed to investigate the impact of hyperparameters on the performance
of the classical models. We conducted a random search over the following
hyperparameters:

• Number of layers: Networks with 2 to 4 hidden layers were investigated,
exploring various depths and their effect on learning and model complexity.

• Learning rate: Learning rates of 0.03, 0.01, 0.003, 0.001, and 0.0003 were
considered, aiming to identify the optimal balance between convergence
speed and stability.

• Number of nodes per layer: Networks with 4, 8, 16, and 32 nodes per layer
were explored to examine the impact of model capacity on performance.

We tracked the following metrics during training and evaluation:

• Episode: The episode number.

• Training score: The cumulative reward obtained during the training episode.

• Evaluation score: The cumulative reward obtained during the evaluation
episode.

• Epsilon: The exploration rate used during this training episode.

• Training actions: A list containing the actions performed in this training
episode.

• Evaluation actions: A list containing the actions performed in this
evaluation episode.

• Evaluation observations: A list containing the raw observations in this
evaluation episode.

• Model output: A list containing the raw output in this evaluation episode.
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After the random search, we selected the best hyperparameters and performed
another run with a narrower search space based on the results. Finally, we chose
the best model based on the evaluation score achieved during training.

7.2 Experiment 2: Classical DQL on Lunar Lander

This experiment was conducted like experiment 1, but the Lunar Lander
environment was used instead. The random search was narrowed slightly based
on the results from experiment 1. This is discussed further in the results section.

7.3 Experiment 3: Quantum DQL on Cart Pole

This experiment employed parameterized quantum circuits (PQC) as function
approximators in the DQL framework to solve the Open AI gym environment Cart
Pole. We aimed to investigate the impact of hyperparameters on the performance
of the quantum models. We conducted a random search over the following
hyperparameters:

• Number of layers: Circuits with 1 to 10 layers were investigated to examine
the impact of circuit depth on model performance and complexity.

• Learning rate: Learning rates of 0.3, 0.1, 0.03, 0.01, and 0.003 were
considered, mirroring the learning rates explored in the classical models
while reducing each value by order of magnitude.

• Number of qubits: The number of qubits equal to the input features in each
environment was used, ensuring that the quantum models could effectively
represent the state spaces.

• Entanglement scheme: Different entanglement schemes, including none,
ladder, double ladder, and full entanglement, were explored to study their
effect on the learning capabilities of the quantum models.

• Rotation gates: RX and RY were used in the parameterized quantum
circuits, providing a simple yet expressive means to manipulate qubit states.
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We tracked the same metrics as in the classical experiments and used the same
selection process to choose the best hyperparameters and model as in
experiments 7.1 and 7.2.

7.4 Experiment 4: Quantum DQL on Lunar Lander

This experiment was conducted like experiment 2, but the Lunar Lander
environment was used instead. The random search was narrowed slightly based
on the results from experiment 2. This is discussed further in the results section.

7.5 Experiment 5: Quantum DQL with Trainable Entanglement
on Cart Pole

This experiment employed parameterized quantum circuits (PQC) with trainable
entanglement as function approximators in the DQL framework to solve the Open
AI gym environment Cart Pole. We aimed to investigate hyperparameters’ impact
on the quantum models’ performance with trainable entanglement. We conducted
a random search over the following hyperparameters:

• Number of layers: Circuits with 1 to 10 layers were investigated to examine
the impact of circuit depth on model performance and complexity.

• Learning rate: Learning rates of 0.3, 0.1, 0.03, 0.01, and 0.003 were
considered, mirroring the learning rates explored in the classical models
while reducing each value by order of magnitude.

• Number of qubits: The number of qubits equal to the input features in each
environment was used, ensuring that the quantum models could effectively
represent the state spaces.

• Entanglement scheme: Different entanglement schemes, including none,
ladder, double ladder, and full entanglement, were explored to study their
effect on the learning capabilities of the quantum models with trainable
entanglement.
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• Rotation gates: RX and RY were used in the parameterized quantum
circuits, providing a simple yet expressive means to manipulate qubit states.

• Entanglement training: A separate set of trainable parameters was
introduced to control the degree of entanglement between the qubits,
allowing for dynamic entanglement during the learning process.

We tracked the same metrics as in the classical and other quantum experiments
and used the same selection process to choose the best hyperparameters and
model as in previous experiments.

7.6 Experiment 6: Quantum DQL with Trainable Entanglement
on Lunar Lander

This experiment was conducted like experiment 5, but the Lunar Lander
environment was used instead. The random search was narrowed slightly based
on the results from experiment 5. This is discussed further in the results section.
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8 Results and Discussion

This section reports the findings of our experiments comparing the performance of
quantum DQL with classical approaches on the CartPole and Lunar Lander
environments. We conducted a comprehensive hyperparameter search to
evaluate the quantum agents’ training speed, number of parameters, and
scalability. Our goal in this section is to provide an in-depth understanding of the
interpretable concepts in the results obtained during the experiments. All the data
collected during the experiments are available in our GitHub repository
(https://github.com/mathiassandnes/QuantumDQN). The following subsections
present an overview of the performance of all trained models, followed by a
detailed analysis of performance metrics categorized according to different
hyperparameters.

8.1 CartPole

This section includes the results obtained in experiments 1, 3, and 5. We trained
classical and quantum agents on the CartPole environment, utilizing a random
search over a range of hyperparameters to identify the optimal settings for each
approach. The specific parameters used are described in detail in the experiments
section 7. The classical model in our study plays a crucial role, serving as a
reference point against which we can juxtapose the performance of the quantum
model. This comparative analysis is vital for gauging the effectiveness and
efficiency of the quantum model concerning an optimized classical agent tailored
explicitly for this specific problem. It is imperative to recognize that within our
implementation of the CartPole environment, the score range is demarcated with
an upper limit of 500, representing the highest possible score, and a lower limit of
0, indicative of the minimum possible score. The spectrum of scores between
these two boundaries provides a quantitative measure to evaluate the agents’
performance under consideration.

The models are executed throughout the training for up to 100 timesteps, followed
by five evaluation episodes with a maximum of 500 timesteps. This approach
ensures rigorous evaluation of the models and credible results, as the actions,
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observations, and raw model outputs are saved for all episodes. Remember that a
score above 100 is a fair solution, but we want to see which techniques can
balance the pole for a long time.

In this section, we present several results using boxplots. The elements of these
boxplots are described as follows: The box itself signifies the interquartile range
(IQR), which contains the middle 50% of the scores surrounding the median.
Inside the box, the orange line denotes the median score, splitting the data into
upper and lower halves. Extending from the box are whiskers that indicate the
highest and lowest values within the first and fourth quartiles, excluding any
outliers. Circles represent outliers; these data points are notably distinct. This
standardized visual representation helps us effectively understand the spread and
skewness of our data.

8.1.1 Accumulated results

All Classical
First, we analyze the performance of every classical model trained in the CartPole
environment after every training episode, including during training.

In Figure 8.1, it is evident that the classical agents generally demonstrate
improvement over time, regardless of hyperparameters.

A distinct line is visible at the area where the evaluation score is 500,
corresponding to the agents successfully solving the environment. As our
implementation of early stopping only selects for improvements, meaning that the
agents that have solved the environment will stop training after the early stopping
threshold is passed, as it is impossible for performance to increase past the
maximum limit.

Another noteworthy observation is that the scatter plot has data populating over a
large section, indicating diverse performances obtained over time.

All Quantum
Turning our attention to quantum models, Figure 8.2 showcases the performance
of every quantum model evaluated during the training process. Notably, these
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Figure 8.1: Evaluation score as a function of training step for classical models in
the CartPole environment over all episodes. The experimental setup can be found
in Experiment 7.1.

models are trained for a significantly shorter duration (less than 8000 training
steps) than their classical counterparts (less than 14000 training steps). This
discrepancy stems from the inherent slow simulation of quantum computing on
classical hardware. Despite these constraints, it is clear that the majority of the
models fail to attain a stable, high-performance level. This outcome likely reflects
the stark contrast in the number of parameters between the quantum and classical
models. This aspect will be further dissected in subsequent sections of this
analysis.

Interestingly, the range of performance among quantum models is considerably
narrower than that observed in classical models. This observation could be
attributed to the fewer parameters, which might lead to more restrictive model
space and, possibly, heightened sensitivity to hyperparameter selection.
Alternatively, this could also be an inherent property of quantum machine learning,
hinting at this emerging field’s unique characteristics and limitations.

All Quantum with Trainable Entanglement
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Figure 8.2: Evaluation score as a function of training step for quantum models in
the CartPole environment over all episodes. The experimental setup can be found
in Experiment 7.3.

The introduction of trainable entanglement, which empowers the model to learn
the level of entanglement, must yield a clear improvement in overall performance.
This phenomenon is depicted in Figure 8.3, illustrating the inherent instability of
these quantum agents operating with a low parameter count. Nevertheless, it is
noteworthy that some configurations of hyperparameters can accomplish
impressive scores, effectively solving the environment. This highlights the potential
power of trainable entanglement when harnessed effectively and suggests that
future work could potentially unearth hyperparameter configurations that enable
more quantum agents to achieve similarly high performance. Performance could
also improve with more extended training. We leave this experiment for future
work.

Best Classical
Upon examining the best episode of each classical model configuration run, it is
clear that most agents successfully solve the problem. This strongly emphasizes
the efficacy of the established Deep Q-Learning (DQL) technique in handling such
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Figure 8.3: Evaluation score as a function of training step for quantum models
with trainable entanglement in the CartPole environment over all episodes. The
experimental setup can be found in Experiment 7.5.

reinforcement learning tasks. The distribution of these best episodes in relation to
performance is presented in Figure 8.4. While some agents might require a longer
duration to achieve a perfect score, this nonetheless underscores the
effectiveness and resilience of optimization algorithms. The performance of these
classical agents also serves as a valuable benchmark for evaluating the
performance of quantum agents in similar tasks. It helps to identify the areas
where quantum computing can potentially make significant contributions.

Best Quantum
In our analysis of every quantum model run in figure 8.5, we identify four distinct
groups of performance. The low-performing group critically fails at solving the
environment, obtaining a score close to zero. The two middle groups show
performance slightly better than random actions but are still unable to solve the
environment thoroughly. The first of these groups is tightly centered between a
score of 50 and 100. The second middle group, consisting of outliers scattered
between 100 and 400 scores, performs well but cannot reach the highest possible
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Figure 8.4: Evaluation score as a function of training step of classical models in the
CartPole environment for the best episodes. The experimental setup can be found
in Experiment 7.1

performance. This group is the smallest, yet we believe that with further training
and refinement of the model’s policy, it is likely to increase these outliers’
performance to the maximum possible score. Lastly, the high-performance group
comprises models that successfully solve the environment at an evaluation score
of 500, demonstrating the best performance.

Best Quantum with Trainable Entanglement
With the inclusion of trainable entanglements, we can see fewer poor-performing
agents. This is also because the hyperparameter search is narrower and based on
the results obtained in experiment 7.3. However, there is a low amount of agents
solving the environment on the maximum possible score. This raises concern
about the applicability of this approach. It is important to note that all quantum
agents are trained for a shorter time than we would like. We believe that further
training would prove more convincing results of the benefits of quantum machine
learning.

Comparison
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Figure 8.5: Evaluation score as a function of training step for quantum models in
the CartPole environment for the best episodes. The experimental setup can be
found in Experiment 7.3.

Figure 8.6: Evaluation score as a function of training step for quantum models with
trainable entanglement in the CartPole environment for the best episodes. The
experimental setup can be found in Experiment 7.5.
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Figure 8.7 shows the previous three plots as a boxplot for easier comparison. We
can see that the quantum agents with trainable entanglement does better overall,
but this might also be because the choice of hyperparameters for that experiment
7.5 was reduced based on experience from experiment 7.3

Figure 8.7: Distribution of best scores achieved by classical DQL, quantum DQL,
and quantum DQL with trainable entanglement in the CartPole environment, illus-
trated as boxplots. For a detailed description of the boxplot elements, refer to the
introduction of this section. The experimental setups can be found in Experiments
7.1, 7.3, and 7.5 respectively.

Having familiarized ourselves with the range of classical and quantum models
trained in our study, the next logical step is to categorize these models based on
distinct hyperparameters. This allows us to observe any performance variations
attributable to these hyperparameters. Through this examination, we can glean
valuable insights into the individual impact of specific hyperparameters on the
models, ultimately guiding us toward optimizing their performance.
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8.1.2 Learning Rate

In this subsection, we delve into the influence of the learning rate on our models.
We begin by investigating the sensitivity of evaluation scores to learning rate
changes, then by examining its impact over time for all episodes and the
top-performing ones.

Classical
Most classical agents could solve the environment, so high-performance levels
were noted across all learning rates. Figure 8.8 is a box plot showcasing the best
episodes from each run, clearly visualizing performance variations with different
learning rates.

Figure 8.8: Sensitivity of classical models in the CartPole environment to different
learning rates, represented as boxplots. For a detailed description of the boxplot
elements, refer to the introduction of this section. The experimental setup can be
found in Experiment 7.1.

Quantum
In contrast, the performance of quantum agents is substantially impacted by the
choice of the learning rate. As highlighted in other research, such as the study by
Wold [2021], quantum agents generally favor higher learning rates. This pattern is
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also reflected in our results, as illustrated in Figure 8.9, where the most promising
outcomes were achieved with a learning rate of 0.03. It is worth noting that the
results for a learning rate of 0.1 are absent due to a loss of data during the
transition to a new data format. Observing that there were outliers who managed
to solve the environment with a learning rate of 0.01, we speculate that further
investigation into the learning rate interval between 0.01 and 0.3 may yield exciting
insights. Future research should consider experimenting with these values.

Figure 8.9: Sensitivity of quantum models in the CartPole environment to different
learning rates, depicted as boxplots. For a detailed understanding of the boxplot
elements, refer to the introduction of this section. The experimental setup can be
found in Experiment 7.3.

Quantum with Trainable Entanglement
With the performance of quantum agents peaking at a learning rate of 0.03, we
decided to use this value exclusively for quantum agents with trainable
entanglement. The distribution of the results using this learning rate is illustrated in
Figure 8.10.
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Figure 8.10: Sensitivity of quantum models with trainable entanglement in the Cart-
Pole environment to different learning rates, depicted as boxplots. For a detailed
understanding of the boxplot elements, refer to the introduction of this section. The
experimental setup can be found in Experiment 7.5.

8.1.3 Number of network weights

In this subsection, we will explore the impact of the number of weights on the
performance of our models during the experiments. Our analysis will focus on the
sensitivity of this parameter, followed by the examination of results over time for
both all and the best episodes.

Classical
The classical agents are categorized into three groups based on the number of
parameters: those with less than 1,000 parameters, those with parameters
ranging from 1,000 to 10,000, and those with more than 10,000 parameters. On
the other hand, the quantum agents, which have significantly fewer parameters,
are classified with less than 100 parameters, those with parameters between 100
and 200, and those with more than 200 parameters.

Looking first at the classical models, we observe that the number of weights does
not significantly influence the performance of these agents, which consistently
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perform well across all groups.

Figure 8.11: Sensitivity of classical models in the CartPole environment to the num-
ber of weights, represented as boxplots. For a detailed understanding of the boxplot
elements, refer to the introduction of this section. The experimental setup can be
found in Experiment 7.1.

Quantum
In contrast to classical models, quantum models show a more diverse range of
outcomes in relation to the number of weights. Our findings suggest that the sweet
spot for quantum models lies between 100 and 200 weights, where we observed
the most optimal outcomes. However, we must acknowledge a potential bias in
this result: our experiments included a relatively limited number of quantum agents
with more than 200 weights. Therefore, increasing the number of weights and the
extent of training might lead to enhanced performance in quantum models. This
hypothesis opens up an exciting avenue for further investigation.

Quantum with Trainable Entanglement
We see increased parameters when we integrate trainable entanglement into the
models, which correlates with improved results. Specifically, models with more
than 200 weights display a median score significantly higher than those with fewer
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Figure 8.12: Sensitivity of quantum models in the CartPole environment to the num-
ber of weights, displayed as boxplots. For a detailed understanding of the boxplot
elements, refer to the introduction of this section. The experimental setup can be
found in Experiment 7.3.

weights. However, we should note that the group of models with a medium number
of weights harbors a more significant number of high-performing agents, despite
both groups featuring individuals that reached the maximum score. It is important
to mention that the smallest group is not represented in this plot. Adding additional
weights resulted in no quantum agents, with trainable entanglement having less
than 100 weights. This suggests a potential investigation into how parameter
count, specifically in terms of weights, impacts the performance of quantum
models with trainable entanglement.
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Figure 8.13: Sensitivity of quantum models with trainable entanglement in the Cart-
Pole environment to the number of weights, presented as boxplots. For a detailed
understanding of the boxplot elements, refer to the introduction of this section. The
experimental setup can be found in Experiment 7.5.

8.1.4 Number of layers

In this subsection, we examine the influence of the number of layers on the
performance of our models throughout the experiments. Our exploration
commences with an analysis of the sensitivity of this parameter, a critical aspect of
network architecture that defines the model’s capacity to learn complex patterns.
Following this, we focus on the progression of results over time, scrutinizing the
general trend across all episodes and the peak performance depicted by the best
episodes. This systematic evaluation allows us to gain a more nuanced
understanding of how the depth of the model, as determined by the number of
layers, contributes to the learning capability and overall performance in the
CartPole environment.

Classical
The influence of the number of layers on the performance of classical agents is
subtle, as demonstrated in Figure 8.14. While a minor trend indicates fewer poorly
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performing agents with fewer layers, this observation is nuanced. Regardless of
the number of layers, all groups can obtain a median score at the maximum
possible level, illustrating that the layer count does not significantly impact the
performance of classical agents in this context.

Figure 8.14: Sensitivity of classical models in the CartPole environment to different
numbers of layers, as shown by boxplots. For a detailed understanding of the box-
plot elements, refer to the introduction of this section. The experimental setup can
be found in Experiment 7.1.

Quantum
In the case of quantum agents, they demonstrate the capability to solve the
environment utilizing various layers - namely 3, 5, 7, and 9. Nevertheless, the data
indicate an optimal performance zone around 5 and 7 layers, with a noticeable
performance decrease at both the lower and higher ends of the spectrum.

With fewer layers, the network’s expressive power is limited. Expressivity in this
context refers to the ability of a model to represent a wide variety of functions. In
our case, the quantum circuit’s expressivity is essentially its capacity to generate
diverse output states based on different input states. A quantum circuit with low
expressivity might not be able to represent complex functions, leading to a subpar
performance in complex environments.
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On the other hand, as the number of layers increases beyond a certain point, the
optimization process becomes increasingly challenging. This can be attributed to
the complexity of the quantum system as we add more layers to a quantum circuit.
As a result, the search space for optimal parameters becomes more extensive and
convoluted, which can make the optimization process less efficient and, in turn,
adversely affect the performance of the quantum agent.

These observations underscore the importance of a balanced network
configuration. Too few layers can lead to underfitting due to insufficient
expressivity, while too many layers can cause optimization difficulties, potentially
leading to suboptimal performance. Therefore, identifying the right balance is
crucial for achieving optimal performance in quantum reinforcement learning.

Figure 8.15: Sensitivity of quantum models in the CartPole environment to different
numbers of layers, represented by boxplots. For a detailed understanding of the
boxplot elements, refer to the introduction of this section. The experimental setup
can be found in Experiment 7.3.

Quantum with Trainable Entanglement
Building on the findings from experiment 3, we restricted the quantum agents with
trainable entanglement to 5, 7, and 9 layers. It was intriguing to note that only the

84



models with 7 and 9 layers managed to solve the environment effectively.
However, the median performance across all groups was notably inferior
compared to the case of untrainable entanglement. This observation suggests that
a mere increase in model complexity does not guarantee improved performance.

Here, it would have been particularly insightful to extend the training duration. A
more complex model could reasonably require more data and more training time.
After all, if untrainable entanglement proves to be the best approach, then
trainable entanglement should, in theory, be able to learn this given enough time,
as it has the capacity to learn thetaentangle = pi.

A fascinating observation emerges when we juxtapose figures 8.15 and 8.16. We
can discern a shift in optimal performance towards a higher number of layers by
introducing more parameters through trainable entanglement. This observation
may hint at a relationship between the number of parameters and the optimal
number of layers in a quantum circuit. As the model becomes more complex with
the addition of trainable entanglement, the optimal network configuration shifts
towards deeper architectures.

This phenomenon could be attributed to the enhanced expressive power of more
layers and parameters, allowing the model to capture more complex relationships.
However, the corresponding increase in complexity can also challenge the
optimization process, as evidenced by the lower median scores. These findings
further emphasize the importance of careful architectural choices in the design of
quantum reinforcement learning models.

8.1.5 Entanglement

In this section, we examine the influence of different entanglement schemes on
the performance of our quantum models. As in the previous analysis, we will first
evaluate the sensitivity of this parameter, then examine the performance over time
for all episodes and the best ones.

Quantum
Our results underscore the significance of entanglement in training quantum
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Figure 8.16: Sensitivity of quantum models with trainable entanglement in the Cart-
Pole environment to different numbers of layers, depicted by boxplots. For a de-
tailed understanding of the boxplot elements, refer to the introduction of this sec-
tion. The experimental setup can be found in Experiment 7.5.

machine learning agents. While several groups managed to achieve a perfect
score, the group’s performance with no entanglement could have been better. This
challenges the assertion by Wang et al. [2020] that a lack of entanglement yields
superior results. In the context of purely quantum agents, the absence of
entanglement markedly undermines performance, as it severely curtails the
expressive capacity of the quantum circuits.

Optimal results were attained with moderate entanglement, particularly with the
’ladder’ entanglement scheme, where the median score reached perfection. As
performance appears to degrade with increasing entanglement towards the
’double ladder’ scheme and deteriorates significantly with decreasing
entanglement towards none, we hypothesize that the best results incorporating
trainable entanglement would likely be achieved with a modified ’double ladder’
scheme featuring reduced entanglement.

This insight further emphasizes the delicate balance required in quantum circuits
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between expressiveness and complexity, with the right level of entanglement
playing a critical role in achieving optimal performance.

Figure 8.17: Sensitivity analysis of quantum models in the CartPole environment
on different entanglement schemes, represented by boxplots. For a detailed un-
derstanding of the boxplot elements, refer to the introduction of this section. The
experimental setup can be found in Experiment 7.3.

Quantum with Trainable Entanglement
Interestingly, the highest-performing results with trainable entanglement were
obtained using the ’ladder’ entanglement scheme, the only one to achieve a
perfect score. This suggests that the optimal degree of entanglement for the
CartPole environment is less than what the ’ladder’ scheme provides. Compared
to the ’full’ entanglement scheme, the performance shows a substantial
improvement, implying that excessive entanglement may not be ideal for this
environment.

In Experiment 7.5, the ’no entanglement’ scheme was also included for
comparison purposes with the trainable ones. Given that the absence of
entanglement inherently cannot be trainable, it is a contrast. Notably, ’no
entanglement’ performed better overall in this experiment than in Experiment 7.3.
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This improvement is likely attributable to the more refined selection of other
hyperparameters based on insights gleaned from previous experiments.

These results underline the importance of careful hyperparameter tuning in
quantum machine learning and the nuanced impact that the degree of
entanglement can have on the overall performance of a quantum agent in a
specific environment.

Figure 8.18: Sensitivity analysis of quantum models with trainable entanglement
in the CartPole environment on different entanglement schemes, depicted by box-
plots. For a detailed understanding of the boxplot elements, refer to the introduction
of this section. The experimental setup can be found in Experiment 7.5.
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8.1.6 Multihyperparemer sensitivity

This section examines the effect and sensitivity of changing two hyperparameters
at once. The numbers displayed are the mean of the best score from every run.

Classical By observing the learning rate in relation to the number of layers, it is
evident that lower learning rates provide good results overall. When the learning
rate increases with the number of layers, the agents fail to optimize, resulting in
poor performance. When analyzing the number of layers in unison with the

Figure 8.19: Performance heatmap for classical models in the CartPole environ-
ment across different numbers of layers and learning rates. The experimental setup
can be found in Experiment 7.1.

number of neurons in each layer, there is no obvious difference in performance.
Most combinations result in well-working agents, besides an unlucky outlier at the
cross-section between four layers and 16 neurons. Quantum Figure 8.21 shows
that a narrow combination of learning rate and layers works well for quantum
models. The data hints at a diagonal line from a high number of layers and a low
learning rate towards a low number of layers and a high learning rate. Figure 8.22
illustrates that utilizing either a single layer or no entanglement scheme
significantly underperforms in all scenarios, while most other combinations achieve
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Figure 8.20: Performance heatmap for classical models in the CartPole environ-
ment across different numbers of layers and neurons. The experimental setup can
be found in Experiment 7.1.

Figure 8.21: Performance heatmap for quantum models in the CartPole environ-
ment across different numbers of layers and learning rates. The experimental setup
can be found in Experiment 7.3.
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satisfactory scores. Importantly, the ladder entanglement scheme stands out,
achieving near-optimal and optimal scores. Figure 8.23 displays the performance

Figure 8.22: Performance heatmap for quantum models in the CartPole environ-
ment across different numbers of layers and entanglement schemes. The experi-
mental setup can be found in Experiment 7.3.

sensitivities of the entanglement scheme and learning rate. Only a select set of
combinations yield optimal results. Specifically, the ladder entanglement scheme
combined with a moderate learning rate provides the most favorable outcomes.
Utilizing an extremely low learning rate or a scheme with no entanglement
generally results in suboptimal performance. Quantum with trainable
entanglement Figure 8.24 examines the model’s sensitivity to changes in the
number of layers, given that a single learning rate is employed. This visualization
clarifies that increasing the number of layers correlates positively with improved
performance. This suggests that the expression of trainable entanglement might
necessitate more layers for optimal performance. However, further research and
experiments are needed to validate this hypothesis conclusively.
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Figure 8.23: Performance heatmap for quantum models in the CartPole environ-
ment across different learning rates and entanglement schemes. The experimental
setup can be found in Experiment 7.3.

Figure 8.24: Performance heatmap for quantum models with trainable entangle-
ment in the CartPole environment across different numbers of layers and learning
rates. The experimental setup can be found in Experiment 7.5.
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Figure 8.25: Performance heatmap for quantum models with trainable entangle-
ment in the CartPole environment across different numbers of layers and entangle-
ment schemes. The experimental setup can be found in Experiment 7.5.

Figure 8.26: Performance heatmap for quantum models with trainable entangle-
ment in the CartPole environment across different learning rates and entanglement
schemes. The experimental setup can be found in Experiment 7.5.
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In summary, classical and quantum agents have proven their ability to resolve the
given environment. Despite exhibiting superior stability and adaptability with less
than optimal hyperparameters, classical agents are matched in performance by
quantum agents. These quantum agents achieve comparable results with fewer
parameters and typically within a shorter timeframe.

8.2 LunarLander

In this section, we delve into the results from Experiments 2, 4, and 6, where we
trained classical and quantum agents on the Lunar Lander environment. Our
approach encompassed a random search over a range of hyperparameters to
pinpoint the optimal configurations for both classical and quantum models. The
experiments section elaborates on the specific parameters utilized in these
experiments.

The classical models function as the reference point, enabling us to juxtapose the
performance of the quantum models against that of optimized classical agents
tailored for this particular problem. It is imperative to note that the best possible
score in implementing the Lunar Lander environment is around 200. In contrast,
the lowest possible score is a huge negative number but is limited to a minimum of
-200 in our results.

During the training, the models were executed for up to 100 timesteps, succeeded
by five evaluation episodes with a cap of 1000 timesteps each. This rigorous
evaluation approach ensures credible results as the actions, observations, and raw
model outputs are retained for all episodes. It is worth noting that any score above
100 is deemed a successful solution. However, we aim to ascertain which
techniques can maintain the lunar lander’s stable landing for extended durations.

Throughout this section, we utilize boxplots to represent our results. The elements
of these boxplots are as follows: The box itself denotes the interquartile range
(IQR) that contains the middle 50% of the scores around the median. An orange
line within the box represents the median score, which bisects the data into upper
and lower halves. The whiskers from the box indicate the highest and lowest
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values within the first and fourth quartiles, barring any outliers. Outliers,
represented by circles, are those data points significantly distinct from the others.
This standardized visual representation aids in effectively understanding the
spread and skewness of our data.

8.2.1 Accumulated results

All Classical

Upon examining the performance of classical agents in the Lunar Lander
environment in figure 8.27, it is apparent that while a handful of runs manage to
achieve respectable scores, the overwhelming majority fall short significantly. The
bulk of the results are concentrated around the -150 score mark. Policies within
this point range typically hover, maintaining their position above the ground without
achieving a successful landing. The results procured are notably subpar, which we
conjecture may be attributed to the limitations imposed by the smaller models.

Previous research has demonstrated that the Lunar Lander environment can be
solved using models with two layers of 64 nodes [Gadgil et al., 2020], a
configuration that falls within the scope of our experiments. However, the most
reliable and optimal solutions tend to emerge when the number of nodes extends
beyond the confines of our current experimental setup. Thus, exploring larger,
more complex models in future attempts to solve this environment might be
beneficial.

All Quantum Conversely, the quantum agents exhibit a critical failure in the Lunar
Lander environment, as depicted in figure 8.28. Despite this, a discernible upward
trend suggests that a performance improvement might be possible with extended
training time. It is crucial to remember that the number of parameters in our
quantum models is substantially lower compared to the classical approaches that
have previously managed to solve this environment (approximately 200 in our
quantum models versus 18,180 in previous successful classical models).

Given the exceptionally subpar performance of the quantum agents, dissecting the
minute variations in performance yields limited insight, as every configuration
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Figure 8.27: Performance over all episodes for classical models in the LunarLander
environment. The experimental setup can be found in Experiment 7.2.

ultimately results in critical failure. Consequently, the primary takeaway from this
outcome is understanding the areas where quantum agents currently fall short and
the necessity for further exploration and development in quantum approaches to
reinforcement learning problems of this complexity. c All Quantum with
Trainable Entanglement
The quantum agents with trainable entanglement also exhibit a striking failure in
the Lunar Lander environment. However, an intriguing trend is noticeable in these
results. Over time, there is a reduction in the number of poorly performing agents,
as shown in figure 8.29. This suggests that these agents may gradually improve
their understanding of the environment, potentially leading to enhanced
performance with prolonged training time.

The quantum agents with trainable entanglement possess a greater expressivity,
which could be the reason for this slight improvement in performance over time.
The expressive power of quantum circuits can be drastically increased by
incorporating entanglement, allowing the model to learn more complex
representations of the environment.
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Figure 8.28: Performance over all episodes for quantum models in the LunarLander
environment. The experimental setup can be found in Experiment 7.4.

Despite this, the overall performance of quantum agents with trainable
entanglement still needs to be satisfactory, emphasizing the need for further
experimentation with longer training time and larger models. The results underline
the challenges that quantum reinforcement learning faces when tackling more
complex environments, particularly those requiring more parameters for
successful navigation.
Best Classical
A distinct trend becomes evident when evaluating the performance of the best
classical models in the Lunar Lander environment. By shifting our perspective
from individual runs to the average evaluation score, we notice a marked decrease
in performance, as depicted in figure 8.30.

This phenomenon implies that while specific model configurations may
occasionally produce high-scoring runs, these models’ overall consistency and
reliability are lacking. This highlights one of the critical challenges in reinforcement
learning - achieving stable and repeatable performance across different runs and
conditions.
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Figure 8.29: Performance over all episodes for quantum models with trainable en-
tanglement in the LunarLander environment. The experimental setup can be found
in Experiment 7.6.

It underscores the importance of not only identifying configurations that can
produce peak performances but also those that can maintain a high level of
performance consistently. In other words, the robustness of a model across
multiple runs and varying conditions is as crucial as its ability to achieve high
scores in individual instances.

In the case of the Lunar Lander environment, despite the occasional high-scoring
runs, the classical models, on average, need to provide a satisfactory solution.
This paints a clear picture of the complexity of this environment and the challenges
it poses to classical and quantum reinforcement learning techniques. It
emphasizes the need for more robust and consistent models tackling such
complex tasks.
Best Quantum
In assessing the performance of the best quantum models within the Lunar Lander
environment, we are met with consistent underperformance, as shown in figure
8.31. The quantum agents continue to perform poorly despite focusing on the
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Figure 8.30: Performance for the best episodes for classical models in the Lu-
narLander environment. The experimental setup can be found in Experiment 7.2.

best-performing instances.

This indicates that the quantum agents, even in their most favorable
configurations, cannot match the performance of classical models in this complex
environment. It highlights the limitations of shallow quantum agents, particularly
when handling tasks of higher complexity with relatively few parameters.
Best Quantum with Trainable Entanglement
As illustrated in figure 8.32, the quantum agents with trainable entanglement also
critically fail the Lunar Lander environment.

Although including trainable entanglement offers a greater degree of
expressiveness to the quantum network, it needs to overcome the inherent
limitations of the quantum agents in this high-complexity task. These observations
highlight the ongoing challenges quantum reinforcement learning techniques face
in tackling complex environments. They also underscore the importance of
continued research and development in this field, as these techniques may hold
the potential to excel in certain problem domains, given the right improvements
and advancements.
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Figure 8.31: Performance for the best episodes for quantum models in the Lu-
narLander environment. The experimental setup can be found in Experiment 7.4.

Figure 8.32: Performance for the best episodes for quantum models with trainable
entanglement in the LunarLander environment. The experimental setup can be
found in Experiment 7.6.
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Comparison

When we juxtapose classical, quantum, and quantum performances with trainable
entanglement models within the Lunar Lander environment, we observe a
sobering reality - all three models critically fail to solve the task, as illustrated in
figure 8.33.

Despite the classical model’s inherent advantage in terms of parameter count, it
does not demonstrate any significant performance improvement. This brings into
sharp focus the complexity and difficulty level of the Lunar Lander environment.

The quantum models, both with and without trainable entanglement, also need
help to make a dent in the task. This observation underlines the limitations of
current quantum reinforcement learning techniques in handling high-complexity
environments, as it is challenging to train them effectively for an extended time.
The introduction of trainable entanglement, while theoretically providing a boost in
the expressiveness of the quantum network, fails to translate into any practical
improvement in performance, as the models still need to be larger.

These findings drive home the point that despite the advancements in quantum
and classical reinforcement learning, much work is needed to equip these agents
better to handle complex tasks. Future work in this field should focus on
longer-running experiments with larger models.

As little insight can be drawn from the rest of the lunar lander results, the
remainder is in the appendix 10.1.
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Figure 8.33: Distribution of best scores achieved by classical DQL, quantum DQL,
and quantum DQL with trainable entanglement in the LunarLander environment, il-
lustrated as boxplots. For a detailed description of the boxplot elements, refer to the
introduction of this section. The experimental setups can be found in Experiments
7.1, 7.3, and 7.5, respectively.
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9 Conclusion

This thesis examined classical and quantum implementations of deep Q-learning,
emphasizing hyperparameters’ sensitivity and trainable entanglement’s role in
quantum reinforcement learning. The aim was to investigate whether quantum
models could offer an efficient alternative to classical ones in solving the Cart Pole
and Lunar Lander environments.

Our exploration revealed that quantum agents could perform comparably to
classical counterparts despite exhibiting less stability, using significantly fewer
parameters. This highlights quantum computing’s potential efficiency in
reinforcement learning, although careful optimization and judicious
hyperparameter selection are crucial for the success of these models.

While the scalability of quantum agents with more parameters remains uncertain,
future research could benefit from examining the implications of more intensive
training and larger models. Despite the failure of our quantum agents in the more
challenging Lunar Lander environment, given sufficient training, wider and deeper
quantum models or expanded networks could solve this environment effectively.

Interestingly, other studies claiming the successful application of quantum models
to the Lunar Lander problem incorporate substantial classical components. In
contrast, our approach prioritizes a primarily quantum composition, pointing to the
unexplored potential of quantum computing in reinforcement learning.

While using actual quantum computers addresses the bottleneck encountered
when simulating quantum computing on classical machines, today’s quantum
technology presents challenges. Noise accumulation in large and deep quantum
circuits can distort data over time, rendering outputs useless. Thus, reducing noise
in quantum computers is a significant hurdle to practically implementing quantum
computing.

The findings of this thesis extend beyond the specific scenarios explored, holding
promise for broader applications. With their ability to estimate exponentially larger
search spaces than classical techniques, quantum circuits could revolutionize the
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representation and optimization of latent spaces in classical neural networks.

In conclusion, this thesis reveals both the promise and challenges of quantum
computing in reinforcement learning. It highlights the potential efficiency of
quantum computing while shedding light on stability and scalability issues. Future
research should delve deeper into these areas, addressing the associated
challenges and further exploring the potential contributions of quantum computing
to reinforcement learning.
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10 Appendix

10.1 Lunar Lander Results

Figure 10.1: Sensitivity of classical models in the LunarLander environment to dif-
ferent learning rates, illustrated as boxplots. For a detailed description of the boxplot
elements, refer to the introduction of this section. The experimental setup can be
found in Experiment 7.1.
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Figure 10.2: Sensitivity of quantum models in the LunarLander environment to dif-
ferent learning rates, illustrated as boxplots. For a detailed description of the boxplot
elements, refer to the introduction of this section. The experimental setup can be
found in Experiment 7.3.
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Figure 10.3: Sensitivity of quantum models with trainable entanglement in the Lu-
narLander environment to different learning rates, illustrated as boxplots. For a
detailed description of the boxplot elements, refer to the introduction of this section.
The experimental setup can be found in Experiment 7.5.
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Figure 10.4: Sensitivity of classical models in the LunarLander environment to the
number of weights. The x-axis denotes the number of weights in the neural network,
and the y-axis denotes the corresponding score achieved by the model. The box
plots indicate the distribution of scores for different numbers of weights.
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Figure 10.5: Sensitivity of quantum models in the LunarLander environment to the
number of weights. The x-axis denotes the number of weights in the quantum
neural network, and the y-axis denotes the corresponding score achieved by the
model. The box plots indicate the distribution of scores for different numbers of
weights.
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Figure 10.6: Sensitivity of quantum models with trainable entanglement in the Lu-
narLander environment to the number of weights. The x-axis denotes the number
of weights in the quantum neural network, and the y-axis denotes the correspond-
ing score achieved by the model. The box plots indicate the distribution of scores
for different numbers of weights.
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Figure 10.7: Sensitivity of classical models in the LunarLander environment to dif-
ferent numbers of layers. The x-axis denotes the number of layers in the neural
network, and the y-axis denotes the corresponding score achieved by the model.
The box plots indicate the distribution of scores for different numbers of layers. The
experimental setup can be found in Experiment 7.2.
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Figure 10.8: Sensitivity of quantum models in the LunarLander environment to dif-
ferent numbers of layers. The x-axis denotes the number of layers in the quantum
neural network, and the y-axis denotes the corresponding score achieved by the
model. The box plots indicate the distribution of scores for different numbers of
layers. The experimental setup can be found in Experiment 7.4.
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Figure 10.9: Sensitivity of quantum models with trainable entanglement in the Lu-
narLander environment to different numbers of layers. The x-axis denotes the num-
ber of layers in the quantum neural network, and the y-axis denotes the correspond-
ing score achieved by the model. The box plots indicate the distribution of scores
for different numbers of layers. The experimental setup can be found in Experiment
7.6.
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Figure 10.10: Sensitivity analysis of quantum models in the LunarLander environ-
ment on different entanglement schemes. The experimental setup can be found in
Experiment 7.4.

Figure 10.11: Sensitivity analysis of quantum models with trainable entanglement
in the LunarLander environment on different entanglement schemes. The experi-
mental setup can be found in Experiment 7.6.

123



Figure 10.12: Heatmap of performance for classical models in the LunarLander en-
vironment across different numbers of layers and learning rates. The experimental
setup can be found in Experiment 7.2.

Figure 10.13: Heatmap of performance for classical models in the LunarLander
environment across different numbers of layers and neurons. The experimental
setup can be found in Experiment 7.2.
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Figure 10.14: Heatmap of performance for quantum models in the LunarLander en-
vironment across different numbers of layers and learning rates. The experimental
setup can be found in Experiment 7.4.

Figure 10.15: Heatmap of performance for quantum models in the LunarLander en-
vironment across different numbers of layers and entanglements. The experimental
setup can be found in Experiment 7.4.
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Figure 10.16: Heatmap of performance for quantum models in the LunarLander
environment across different learning rates and entanglements. The experimental
setup can be found in Experiment 7.4.

Figure 10.17: Heatmap of performance for quantum models with trainable entan-
glement in the LunarLander environment across different numbers of layers and
learning rates. The experimental setup can be found in Experiment 7.6.
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Figure 10.18: Heatmap of performance for quantum models with trainable entan-
glement in the LunarLander environment across different numbers of layers and
entanglements. The experimental setup can be found in Experiment 7.6.

Figure 10.19: Heatmap of performance for quantum models with trainable entan-
glement in the LunarLander environment across different learning rates and entan-
glements. The experimental setup can be found in Experiment 7.6.
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