
ACIT5900

MASTER THESIS

in

Applied Computer and Information
Technology (ACIT)

May 2023

Cloud-based Services and Operations

Revolutionizing Cloud Computing with Predictive
Autoscaling using transformer model: Improving

Resource Utilization

 Fatema Tuz Sabiha

Department of Computer Science
Faculty of Technology, Art and Design

Page 2 of 56

Table of Contents

ACKNOWLEDGEMENT .. - 4 -

ABSTRACT .. - 5 -

CHAPTER 1: INTRODUCTION: ... - 6 -

1.1 PROBLEM STATEMENT: .. - 7 -
1.2 RESEARCH QUESTION: ... - 7 -
1.3 MOTIVATION BEHIND THE PROJECT: .. - 7 -
1.4 STRUCTURE OF THE PAPER: ... - 8 -

CHAPTER 2: BACKGROUND .. - 9 -

2.1 CLOUD COMPUTING .. - 9 -
2.1.1 Types of cloud .. - 9 -
2.1.2 Cloud Services ... - 10 -
2.1.3 Resource management in Cloud ... - 10 -
2.1.4 Advantages and Disadvantages of Cloud Computing - 11 -

2.2 AUTOSCALING .. - 14 -
2.3 MACHINE LEARNING ... - 15 -
2.4 LITERATURE REVIEW .. - 15 -

CHAPTER 3: METHODOLOGY .. - 19 -

2.1 TOOLS OR TECHNOLOGIES TO BE USED: ... - 19 -
3.1.1 Docker: ... - 19 -
3.1.2 Kubernetes: .. - 19 -
3.1.3 Prometheus: ... - 24 -
3.1.4 Grafana: ... - 25 -
3.1.5 KEDA: ... - 25 -
3.1.6 Transformer Model: .. - 25 -
3.1.7 Locust: .. - 27 -

3.2 DESIGN AND ARCHITECTURE .. - 28 -

CHAPTER 4: IMPLEMENTATION .. - 30 -

4.1 TRAINING THE PREDICTION MODEL .. - 30 -
4.2 BUILDING THE ENVIRONMENT: ... - 33 -
4.3 DEPLOYING AND INTEGRATING DIFFERENT COMPONENTS: - 33 -
4.4 PARAMETER CALCULATION: .. - 35 -
4.5 VISUALIZATION AND DATA COLLECTION:.. - 36 -

CHAPTER 5: RESULTS AND DISCUSSION ... - 38 -

5.1 TESTING IN DIFFERENT CONFIGURATIONS: ... - 38 -

CHAPTER 6: CONCLUSION .. - 45 -

6.1 LIMITATIONS AND FUTURE WORKS .. - 45 -

REFERENCES: .. - 47 -

APPENDICES: ... - 49 -

Page 3 of 56

APPENDIX A: CONFIGURATION FILES .. - 49 -
APPENDIX B: TRAINING AND PREDICTING .. - 51 -
APPENDIX C: TARGET RELATION CALCULATION .. - 55 -

List of Figures

Figure 3. 1 Architectural diagram of a Kubernetes cluster .. - 20 -
Figure 3. 2 An Ingress controller routing request ... - 24 -
Figure 3. 3 Architecture of transformer model(Vaswani et al., 2017) - 27 -
Figure 3. 4 Designed component relationship... - 28 -

Figure 4. 1 Architectural diagram of the implemented model ... - 30 -
Figure 4. 2 The screenshot of the sample application ... - 34 -
Figure 4. 3 Screenshot of the Grafana dashboard ... - 37 -

Figure 5. 1 Resource Utilization over time for different configurations (low request rate) .. -

39 -
Figure 5. 2 No of pods and P99 latency over time for different configurations (low request

rate)... - 39 -
Figure 5. 3 Request volume over time (low request rate) ... - 40 -
Figure 5. 4 No of users simulated by Locust ... - 42 -
Figure 5. 5 Resource utilization over time of configuration 2 and 4 - 43 -
Figure 5. 6 No of pods and latency over time of configuration 2 and 4........................... - 43 -
Figure 5. 7 Request volume over time (high request rate) .. - 43 -

Page 4 of 56

Acknowledgement

I express my heartfelt gratitude to my supervisor, Assoc. Prof. Raju Shrestha, for

his valuable time, expert guidance, unwavering support, and insightful comments

throughout my study. His motivation has been instrumental in my progress and

success.

I also would like to extend my thanks to my husband and three children for their

constant support and patience during this challenging journey.

Page 5 of 56

Abstract

The adoption of cloud computing by small as well as large organizations has

been rapidly increasing now a days. While cloud computing can be cost-effective, it

can also become very expensive if proper care is not taken. In order to ensure high

availability, cloud providers often tend to overprovision resources, leading to

resource wastage and financial losses. Therefore, there is a growing need for

efficient resource management in cloud computing. Recognizing the growing interest

among researchers in utilizing machine learning models for optimizing resource

utilization in cloud computing, this study aims to enhance resource utilization by

automating the scaling of a traffic controller in a cloud environment by using a

transformer model, which have gained popularity recently. The proposed approach in

this research involves training and utilizing a time series forecasting model to

implement an autoscaling strategy that can dynamically allocate resources based on

actual and predicted future demand in cloud computing. To implement the proposed

model, a transformer model was trained using publicly available data offline and used

to predict future traffic. The predicted value was then utilized to calculate the target

utilization and fed to a Kubernetes-based Event-Driven Autoscaler (KEDA)

component for autoscaling an ingress controller integrated with a microservice

application running in the cloud. The model was tested in four different scenarios,

including without autoscaling, with Horizontal Pod Autoscaling (HPA), with KEDA,

and with the implemented transformer model. The experimental results show that the

proposed model did not significantly outperform HPA in terms of the performance

metrics considered. However, the proposed model exhibited a trend of changing

utilization levels while maintaining a stable response time, suggesting a possibility of

improving resource utilization with further investigation and fine-tuning.

Page 6 of 56

Chapter 1: Introduction:

Over the last few years, cloud computing has gained widespread popularity due

to its cost efficiency, flexibility, and scalability, and has been adopted by small,

medium, and large companies. Flexible scalability, known as autoscaling feature in

cloud architecture, refers to the process of adding or removing resources

automatically based on demand. Autoscaling optimizes resource utilization (Schuler

et al., 2021) for the providers and provides reliability to users. In public clouds, this

feature like infrastructure maintenance is also maintained by the cloud providers.

An ingress controller is a crucial component in cloud computing that distributes

incoming requests to applications running in a cluster. By scaling an ingress

controller, centralized traffic management is achieved, resulting in better control and

management of incoming requests. Additionally, an ingress controller can manage

traffic across the cluster, leading to improved resource utilization compared to

independent application scaling. This approach ensures that resources are utilized

more efficiently, resulting in better overall system performance. Kubernetes, the

widely used open-source container orchestration framework autoscales instances

using Horizontal Pod Autoscaler (HPA) based on CPU or memory utilisation deciding

on predefined thresholds(Schuler et al., 2021). One of the challenges of using this

autoscaler is it requires expert knowledge or good understanding of the application to

define the threshold, (Phung & Kim, 2022). It is not that the user can only autoscale

depending on cpu and memory utilisation, but also can autoscale their services

based on custom metrics using an adopter. A recently developed Kubernetes-based

Event Driven Autoscaler (KEDA) has gained popularity as an adaptor or autoscaling

solution for Kubernetes environments due to its diverse range of scalers and ability to

scale down to zero, a feature not offered by HPA. However, although auto-scalers

scale instances automatically, there is a delay in the process of adding or creating a

new instance, commonly known as a cold start. This delay can hamper the

availability and performance of the service. On the other hand, to meet the SLA

(Service Level Agreement) agreement, cloud providers often overprovision

resources, which can result in increased cost as well as under utilised resources.

Page 7 of 56

Keeping these issues under consideration, this paper proposes an autoscaling

policy which will scale up or down resources based on predicted future workloads

using machine learning techniques. Machine learning, similar to cloud computing, is

a formidable technology. Currently, there is a growing interest in employing machine

learning techniques in cloud computing to enhance resource utilisation. Numerous

studies have been carried out to optimise and improve resource utilisation in the

cloud, utilising various machine learning techniques.

The proposed autoscaling policy aims to utilize a transformer model to scale an

ingress controller integrated with an application based on predicted incoming request

rate. In natural language processing, the transformer model has already shown big

success. It's usage is now being investigated in time series forecasting and that is

one of the reasons for choosing transformer for this project. By leveraging this model,

the system seeks to optimize resource utilization while ensuring high availability and

low latency of an application in cloud environment.

1.1 Problem Statement:

Current autoscaling methods in cloud computing often rely on scaling applications

based on the current workload, which can negatively impact application performance

by causing delays in resource allocation during sudden traffic surges. To mitigate this

issue, cloud providers frequently overprovision resources, resulting in resource

wastage. Predicting future workload can aid autoscalers in preparing for incoming

traffic surges. To address this challenge, this project proposes an autoscaling policy

that utilizes workload predictions to improve resource management.

1.2 Research Question:

Can resource utilization be improved by dynamically autoscaling a traffic

controller in cloud computing through using the transformer machine learning

forecasting model?

1.3 Motivation behind the project:

Recently, there has been growing interest in using machine learning (ML) techniques

to optimize cloud computing resource utilization. Many researchers have explored

different techniques and achieved significant improvements, mostly focusing on

virtual machine (VM)-based monolithic architecture. However, there are fewer

Page 8 of 56

studies on microservices and serverless applications, which are more complex than

monolithic architectures but widely used nowadays. Among those researches they

have not considered much on the fact of over provisioning resources and assuring

Quality of service (QoS) at the same time(Wang et al., 2022). To be more specific to

my knowledge no studies has been published utilizing machine learning model to

scale request traffic controller to ensure high availability, low resource usage and low

latency. On the other hand, the transformer model, a Machine learning technique

that has gained popularity recently and has demonstrated promising results in

various fields but not used much in cloud resource management.

These facts motivated the exploration of the potential of the transformer model,

for forecasting future workload where workload varies considerably, in improving

resource utilization as well as latency. By using this model, I hope to improve

resource utilization through auto-scaling ingress controller based on predicted future

workload.

1.4 Structure of the paper:

This thesis' remaining sections are structured as follows:

• Background in Chapter 2 includes a synopsis of relevant technologies and a

literature assessment.

• The strategies and tools to be employed are described in Chapter 3 of the

methodology. focuses on the project's architecture and design.

• Chapter 4 goes into great detail about the implementation.

• Results are illustrated and analyzed in Chapter 5 along with a succinct

explanation.

• Conclusions from Chapter 6 include project constraints and suggestions for

future development.

Page 9 of 56

Chapter 2: Background

This chapter provides an introduction to the key concepts related to the project and

an overview of related research works. The related concepts are presented to

establish a foundation for understanding the project, while the related research works

provide a context for the current project.

2.1 Cloud computing

Cloud computing is a modern popular technology that delivers computing

resources such as storage, server, software, and databases over the internet. This

technology has changed the traditional business model in the technology sector.

Companies of all sizes, from small to large, are now adopting this technology instead

of investing a significant amount in capital expenses associated with building and

maintaining infrastructure. This allows organisations to utilise resources as required

and scale them up or down, thereby improving efficiency and reducing costs by

paying only for the usage.

2.1.1 Types of cloud

According to (Rashid & Chaturvedi, 2019) there are four main categories that

cloud computing can be grouped into.

• Public Cloud: This type of cloud is shared by hundreds of thousands of

customers and is easily accessible by the public or organisations. Cloud

providers like Amazon, Microsoft, Google are dominating the market at

present. They rent infrastructure and services at a given cost.

• Private Cloud: These are accessed only by authorised users within by a

specific business or organisation. These can be managed by themselves or by

a third party (Eshete, 2020).

• Community Cloud: This type of cloud is shared among organisations with

similar interests, such as Salesforce or QTS Datacenters.

• Hybrid Cloud: A hybrid cloud is a combination of public and private cloud

where organizations can take some advantages of public clouds while having

full control on their sensitive resources.

Page 10 of 56

2.1.2 Cloud Services

Cloud services refer to the computational resources and services offered by cloud

providers. The most commonly used types of cloud services include:

• Infrastructure as a Service (IaaS): This service provides virtualized computing

resources such as virtual machines, processors, storage, and networking to

customers on a pay-as-you-go basis. Instead of investing in their own

infrastructure, organisations can rent this service from cloud providers. IaaS is

also known as Hardware as a Service.

• Platform as a Service (PaaS): PaaS is used to develop, run, and test

applications without having to worry about software, configuration, or

hardware. Developers can focus on building their applications while the cloud

provider manages the underlying infrastructure.

• Software as a Service (SaaS): This service offers software applications, such

as Microsoft Outlook, to users. With one subscription every employee of an

organization can use a service. They don't need to install the application

locally.

• Function as a Service (FaaS): It is also known as serverless computing. This

service make developers work easier by allowing them to only focus on writing

code for a function. They don't need to worry about rest of the work like

resource allocation or management of servers. Cloud providers automatically

provision resources based on requests, and this service supports a variety of

programming languages. AWS Lambda, Azure Functions, and Google Cloud

Functions are widely used FaaS platforms.

• Data as a Service (DaaS): It is a valuable cloud computing service for

organisations that require large-scale data processing. Through a network

connection, users can access vast datasets provided by DaaS. In addition,

DaaS offers users a suite of data management and analytics tools for more

efficient and effective data processing.

2.1.3 Resource management in Cloud

As mentioned previously, access to shared computing resources such as computing

power, storage, network bandwidth, software, and services is made possible via the

cloud computing platform. These resources are directly related to a system’s

Page 11 of 56

performance, functionality and cost. In order to achieve high performance, scalability,

and availability, effective management of these resources requires assuring optimal

exploitation of existing resources while minimizing costs Due to unpredictable actions

of a huge user group as well as complex infrastructure of the cloud make effective

resource management challenging. If incoming traffic of a system is predictable the

management or resource allocation can become more easier than handling an

unplanned spike.

Challenges are different in different cloud service models, IaaS, Paas, Saas, Faas,

Daas and so do their corresponding strategies. Various tools and techniques are

used for resource management. Among them virtualization, monitoring and

automation are the most common. A systematic approach is essential for effective

cloud resource allocation techniques. As per (Marinescu, 2022) there exists four

basic mechanisms to implement resource management policies in cloud. They are

namely control theory, Machine learning, utility based and Market-oriented

mechanisms. Control theory employs feedback mechanism which can predict only

local behavior whereas machine learning techniques can be applied for coordinating

multiple autonomic system managers without the need of a performance model of

the system. Market-oriented mechanism also doesn’t require a performance model

but Utility-based approach needs performance model along with a coordinator to

coordinate cost with end user performance. Use of these mechanisms depend on the

structure and need of the cloud environment.

2.1.4 Advantages and Disadvantages of Cloud Computing

Some advantages and disadvantages as per (Apostu et al., 2013) of cloud

computing are pointed out below.

• Advantages:

1. Cost efficiency: For start-ups and small companies that intend to use

intensive computing techniques, cloud computing can provide a cost-

effective solution. By adopting cloud computing, these companies can

reduce infrastructure costs, such as setting up computing resources and

acquiring licenses. Furthermore, cloud computing offers cheaper

maintenance and upgrades since companies do not need to hire experts

for these tasks. There are many flexible pricing options available, including

Page 12 of 56

one-time payments and pay-as-you-go models, which make it a very

affordable option for any company.

2. Unlimited data storage, Backup and recovery: Cloud computing makes

data backup, restore, and storage simpler, more efficient, and more

economical. Because all data is stored in the cloud, businesses don't have

to worry about physical resources or the risks associated with them, such

as damage, theft, or loss. Contrary to typical methods of data storage,

cloud service providers handle data backup and recovery, substantially

simplifying the process. Businesses have access to a wide range of

backup and recovery options, including routine automatic or manual

backups, whole system recovery or recovery of specific files and folders.

This enables enterprises to select the best backup and recovery solution

that meets their demands and ensures the integrity and availability of their

data.

3. Quick and easy application deployment: With cloud computing, developers

can save time by not having to develop their own infrastructure,

environments, or tools. This is because the cloud provides a platform that

makes it possible to deploy applications quickly and easily, eliminating the

need for labor-intensive setup or configuration.

4. Scalibility: One of the main benefits of cloud computing is scalability. To

adapt to shifting business demands, cloud infrastructure can automatically

scale up or down. Since no additional hardware or infrastructure is

required, businesses can automatically add or remove resources as

needed. To accommodate the increased demand, more computing

resources, for instance, can be introduced during times of high demand

and then removed when the demand declines. This flexibility ensures that

businesses are only paying for the resources they actually require while

enabling them to react swiftly to changes in demand.

5. Mobility: Businesses have more flexibility and agility because of cloud

computing's mobility, which enables them to react quickly to changing

customer demands and market situations. Applications and data are stored

in the cloud, making them accessible from any location with an internet

connection and on any device. Due to this mobility, businesses can give

their employees access to the data and applications they require,

Page 13 of 56

regardless of where they are or what device they are using. Employees, for

instance, can work remotely whether at home or on the go without being

bound to a certain gadget or place. In addition to lowering maintenance

expenses for on-premises gear and infrastructure, this can boost

productivity and teamwork.

• Disadvantages: Despite of many advantages, cloud technology has some

disadvantages that a company should consider while taking decision on

migrating to cloud or adopting cloud. Some major disadvantages are

discussed below.

1. Data Security: Data security is a critical concern when it comes to cloud

computing, as all sensitive data is stored and handled by a third-party

cloud provider. This can introduce the risk of data breaches and other

security threats. Therefore, it is essential to carefully consider the reliability

and security measures before entrusting them with sensitive data.

Choosing a reputable and trustworthy provider with robust security

protocols can help to mitigate these risks and ensure the safety and

confidentiality of sensitive data.

2. Cost: Although cloud computing is considered cost effective, it can be

more expensive sometimes if not managed and handled properly. Pay-as-

you-go service can be beneficial for a company but sometimes it can add

unexpected expenses if the usage exits expectation and resources are not

managed carefully. Therefore, business organizations should have a clear

idea of their usage pattern and need to do a correct calculation to avoid

unexpected cost and less resource wastage in a long run.

There are two primary aspects of cloud computing. One is Service Level

Agreements (SLA) and the other is Quality of Service (QoS). Cost can be affected by

these two factors. SL Agreements between the client and provider includes

performance indicators like response time, uptime, and availability. On the other

hand QoS provides guarantee of a specific level of service to the end-user. It is

related to network capacity and latency.

Higher service level agreements (SLAs) and quality of service (QoS) levels in cloud

computing typically incur a higher cost due to the need for more resources to meet

the agreed-upon service levels. Providers may overprovision resources to ensure the

SLAs and QoS are met, resulting in resource wastage and increased cost. This is an

Page 14 of 56

area of concern that requires attention to ensure that the cost of cloud computing is

optimized without sacrificing service quality.

2.2 Autoscaling

Autoscaling is a major feature in cloud computing which is directly related to cost.

Customers can use additional resources by allocating resources automatically

when the demand is high and they only pay for their usage. Resources in this way

don't remain unutilized when the demand is low. There are various types of auto-

scaling available to meet specific needs.

• Reactive auto-scaling: It involves continuous monitoring of relevant metrics

such as CPU utilization, memory usage, network traffic, and request latency.

This process dynamically adjusts resource utilization through various tools

and technologies, such as Kubernetes or other cloud provider services. There

are two types of reactive auto-scalers: Horizontal Pod Autoscaling (HPA) and

Vertical Pod Autoscaling (VPA).

I. HPA is commonly used for stateless applications that do not require

persistent data storage. It adds or removes instances of an application

to adjust to changes in traffic volume. When traffic increases, more

instances are added, and when traffic is low, instances are removed.

II. Vertical Pod Autoscaling adjusts the capacity of instances of an

application depending on load. This is typically used for stateful

applications that require storage. It adjusts resources such as CPU,

RAM, or other resources allocated to the instances.

• Predictive Autoscaling: This type of autoscaling uses mainly machine learning

algorithms to predict future loads from historical data or related factors. This

type of autoscaling is used usually where the load is highly variable. It helps to

predict the load and autoscale based on that.

• Scheduled Autoscaling: Scheduled autoscaling is helpful where there is a

clear trend of incoming loads like periods during day time or specific days in a

month. The scaling process can be configured to get triggered on the specific

time when the demand is high. This helps optimizing cost while serving high

demand.

Page 15 of 56

2.3 Machine learning

Machine learning is a branch of Artificial Intelligence that has the ability to learn

from data without requiring explicit programming (Bi et al., 2019). Its main objective is

to extract insights and patterns from data to make predictions about new data.

Machine learning algorithms can be classified into four main categories:

• Supervised learning: In this type of learning, an algorithm is trained on a

labeled dataset where each data point has a corresponding label. The

algorithm learns the pattern of the labels and predicts the label of new data.

• Unsupervised learning: In unsupervised learning the algorithm learns pattern

or data relationship by getting trained on unlabeled data.

• Semi-supervised learning: It involves the use of both labeled and unlabeled

data to train a model. This approach is particularly useful when labeled data is

limited due to expense or time requirements. By incorporating a large amount

of unlabeled data with a limited amount of labeled data, the model can be

trained to improve its performance.

• Reinforcement learning: In this learning type, the system learns through

interacting with an environment iteratively and receiving positive or negative

feedbacks on a given task on some data(Bi et al., 2019). It learns to maximize

the positive feedbacks over time.

2.4 Literature Review

Some related researches to this project are discussed below.

An extensive examination of machine learning-based container orchestration

methods in cloud computing settings had been presented recently by (Zhong et al.,

2022). The authors introduced detailed classifications to categorize existing research

based on shared characteristics and performed a comparative analysis of the

investigated techniques using the proposed classifications. Additionally, they

identified several open research challenges and potential future research directions.

The study concluded that container orchestration systems can effectively utilize

machine learning algorithms to model behavior and predict multi-dimensional

performance metrics, leading to enhanced resource provisioning decisions in

response to shifting workloads in complex environments. However, the constantly

Page 16 of 56

changing and diverse nature of cloud workloads and environments significantly

increases the complexity of orchestration mechanisms.

(Marie-Magdelaine & Ahmed, 2020) proposed a novel autoscaling framework for

cloud-native applications that scales dynamically in both horizontal and vertical

directions. The framework employs a Long Short-Term Memory (LSTM) forecasting

model that relies on observability data to predict application workload. To validate the

effectiveness of their approach, the authors developed a proof of concept and tested

it in four distinct scenarios with a consistent load application. The results from the

experiments demonstrate that the proposed framework was successful in optimizing

the Quality of Service (QoS) while improving application performance.

(Goli et al., 2021) introduced an innovative predictive autoscaling method for

microservice applications that leverages various machine learning techniques to

forecast the behavior of microservices for different workloads and microservice

graphs. They have trained two models one for predicting CPU and another for

request rate prediction of each microservice, using two datasets per microservice.

During the training process, the authors used Linear Regression, Random Forest,

and Support Vector Regressor algorithms, and evaluated their performance in terms

of mean absolute error (MAE), mean squared error (MSE), root mean squared error

(RMSE), and R2 score.Unlike other approaches, this method avoids transferring

loads to other services to maintain performance and Quality of Service (QoS). The

proposed model is based on the MAPE-K control loop and surpasses the HPA

autoscaler in terms of response time and throughput.

In 2021, Khaleq and Ra (Khaleq & Ra, 2021) suggested an intelligent

autonomous autoscaling system that comprises two machine learning models. The

first model employs a generic autoscaling algorithm to determine the microservice's

resource demand, while the second model identifies HPA autoscaling threshold

values based on the resource demand and Quality of Service (QoS) using

reinforcement learning agents. The findings indicate that using this system results in

a 20% improvement in response time compared to the default autoscaling paradigm.

A workload burst aware autoscaling method has been introduced by (Abdullah et

al., 2020)where the autoscaler detects bursts in dynamic workloads using workload

forecasting and resource prediction. The goal was to minimize response time and

avoid service-level objectives (SLO) violation. The authors explored various machine

learning techniques to be used as the model learning algorithm and opted for

Page 17 of 56

Decision Tree Regression for the resource prediction model, and regression

techniques for workload forecasting. They evaluated their model against reactive and

predictive autoscaling methods and observed superior performance.

In a recent study, (Wang et al., 2022) tackled the limitations of rule-based and

learning-based schemes for autoscaling in large-scale cloud systems by introducing

DeepScaling, a deep neural network-based framework. The proposed method

maintains stable CPU utilization while ensuring quality of service and reducing

resource over-provisioning. The researchers employed a spatio-temporal graph

neural network to accurately forecast the workload of each service by incorporating

service call graphs, and a deep neural network to estimate CPU utilization.

Furthermore, they utilized a reinforcement learning model to generate optimal

autoscaling policies for services with different workloads. The experiments conducted

on a production cloud service showed that DeepScaling outperforms the state-of-the-

art autoscaling approach by improving CPU utilization by 24.6% per day and saving

14% more resources. A six-month deployment of DeepScaling on 135 production

microservices resulted in an average saving of over 30,000 CPU cores per day.

 (Phung & Kim, 2022) aimed to optimize resource usage and response time of an

application while satisfying Quality of Service (QoS) requirements with minimal cost

by utilizing machine learning techniques in serverless computing through the popular

serverless workload management tool, Knative. The authors addressed the delayed

response in scaling pods on the Knative platform, caused by the lack of knowledge of

future workload. To solve this issue, they proposed an autoscaling policy for the

Knative platform using the Knative Pod Autoscaler (KPA) that autoscales workload

based on the number of pods calculated using a Bi-LSTM machine learning

forecasting model. KPA, by default, considers two metrics for autoscaling:

concurrency and request rate. The authors designed their forecasting model to

predict future request rates, which they evaluated using the Root Mean Square Error

(RMSE) and Mean Absolute Error (MAE) metrics after tuning the training parameters

to obtain the lowest possible values. They evaluated the model using two different

resource-consuming applications, one utilizing CPU and memory exclusively, and the

other less. The primary experiment showed better results than the Knative scheme,

motivating the authors to carry out their experiment on a larger production

environment.

Page 18 of 56

The delay issue of the Knative platform is also addressed by (Zhang et al., 2022)

but they have adopted reinforcement learning to develop an adaptive autoscaling

framework, able to scale both horizontally and vertically, for serverless services that

are more prone to delay. They characterized the services and developed service

profiles based on their performance with different resource allocation using the Q-

learning algorithm. The autoscaling approach was then designed based on the

resource service profile. To evaluate their framework, they deployed three different

services: a sensitive image detection service, a face image recognition and

processing service, and a natural language processing service. They compared the

performance of their system with Knative KPA and Libra in terms of cost and

resource utilization for different workload scenarios, such as burst, gentle and

decreasing, as well as plunge increasing and stable. The evaluation results showed

that their framework outperformed the other two autoscaling tools in terms of cost

and resource utilization.

Page 19 of 56

Chapter 3: Methodology

The chapter begins with a brief overview of the technology and tools that have

been chosen for the development of the project, followed by a thorough examination

of the design and architecture.

2.1 Tools or Technologies To be Used

3.1.1 Docker

 Docker is an open-source software framework that is designed to enable

developers to build, deploy, and manage applications in containers. Containers are

lightweight and portable packages including the source code and its dependencies.

These packages can be deployed in any environment which installs all the

dependencies so that the application can be run without spending time on finding

and installing dependencies. Unlike virtual machines, containers only contain the

essential data required for the application, making them compact and resource-

efficient (Docker, 2020). Docker's features allow for scalability, portability, easy

management, and cost-effectiveness, making it a powerful tool for microservices and

a foundation for cloud-native applications. Furthermore, In developing and testing

software applications this tool can also be utilized.

3.1.2 Kubernetes

Kubernetes is a popular open-source container orchestration tool. It manages

containerized applications across multiple hosts,providing features such as

automated deployment, scheduling, monitoring, and scaling. Additionally, Kubernetes

includes self-healing, fault-tolerance, and automatic load balancing capabilities. The

platform is also highly extensible, enabling developers to customize their applications

without modifying the source code. It also allows the users to declare their desired

state of an application(Kubernetes, 2019).

The common practice is to create a cluster which can be of one or multiple

masters associated with required number of workers. The master manages the

cluster while the workers run the applications deployed on that cluster. Master and

workers all are nodes (virtual or physical machines) required to run the applications.

Page 20 of 56

A Pod in Kubernetes is a fundamental unit of deployment that comprises one or

more containers with the same network namespace and IP address, enabling them

to communicate with each other(Kubernetes, 2019). Kubernetes is responsible for

creating, monitoring, and managing Pods, and automatically restarting them if they

fail. Kubernetes dynamically scales the number of Pods up or down based on

demand to maintain application performance.

Ingress is a powerful feature of Kubernetes that allows to manage traffic routing

to applications, running inside Kubernetes, in a flexible and scalable way. It is an API

object that allows services running inside a cluster to be accessed by external world.

Multiple services can be accessed through ingress with a single IP address.

In this project a Kubernetes cluster will be used with one master and two nodes.

Architecture of Kubernetes:

An architectural diagram of a single master with two nodes is shown

Figure 3. 1 Architectural diagram of a Kubernetes cluster

A master node of a Kubernetes cluster has four major components.

Page 21 of 56

1. Kubernetes API Server: It serves as a central gateway to the cluster,

enabling both external users and internal system components to interact

with the cluster through the same API. This component handles all REST

requests for configurations and modifications, providing a unified interface

for managing the cluster.

2. Controller: The controller manages the state of the objects present in the

cluster. It retrieves the desired state of objects from the API server and

compares it with their current state. If there is a discrepancy between the

two, the controller takes the necessary actions to reconcile the state of the

object with the desired state, which may include scaling up or down the

number of replicas, updating the configuration, or restarting the pods.

3. Scheduler: The API server sends work requests to the scheduler; it accepts

and distributes the workload to the worker nodes based on their status. It

maintains information about the nodes' quality, ranks them accordingly, and

assigns tasks to the most suitable nodes.

4. Key-value store: This component, also known as etcd, stores all the

configuration details and the cluster state. It acts like a database.

The worker nodes consist of four major components described below.

1. Kubelet: Kubelet is a crucial program that runs on all nodes in a Kubernetes

cluster. Its main function is to enable the worker nodes to be part of the entire

cluster, by receiving new assignments from the master's API server, executing

them, and reporting back to the master. Additionally, Kubelet monitors the

pods running on the nodes it is installed and reports their status to the master.

2. Kube-proxy: It works as a load balancer or network proxy for services running

on a node.

3. Container runtime: Container runtime is responsible for managing containers

running on the node. It also manages the resources needed for the

containers. Docker is nowadays a widely used container runtime tool.

4. Pod: A Pod is the smallest unit that can be deployed in a worker node, and it

may consist of one or more containers. While scaling to handle workload,

pods are dynamically created or removed.

Autoscaling in Kubernetes:

Within a Kubernetes cluster, there are various approaches to scaling, as

discussed in section Autoscaling. However, this project focuses on Horizontal

Page 22 of 56

Pod Autoscaling (HPA), which allows for automatic scaling of workload resources

based on demand.

Kubernetes can dynamically adjust the number of replicas for a particular

workload based on metrics such as CPU utilization or custom metrics with the

use of a HorizontalPodAutoscaler. This means that the number of replicas can

increase or decrease based on the current workload demands while providing a

more efficient allocation of resources.

How Kubernetes HPA works:

In Kubernetes the configured HPA works as a Kubernetes API resource and

controller that enables automatic scaling of replica sets or deployments based on

observed CPU utilization, memory utilization, or other custom metrics (Authors,

March 30, 2023). The HPA controller runs in a loop, with a default interval of 15

seconds, which can be customized by the administrator.

The HPA is implemented as a Kubernetes API resource. It can be created,

updated, and deleted just like other Kubernetes resources.

The configuration file for an HPA is where the intended scaling policy, target

resource, and target metric value are provided. The HPA controller can be

configured to monitor a variety of metrics, including CPU and memory usage as

well as custom metrics. It can be customized to modify the number of replicas in

accordance with average usage of all pods related to the target resource.

This makes HPA a flexible and powerful tool for managing workload resources in

a Kubernetes cluster.

Algorithm:

The Kubernetes HorizontalPodAutoscaler (HPA) utilizes the following

fundamental equation to scale a workload as per the official documentation of

kubernetes (Authors, March 30, 2023):

desiredReplicas = ceil[currentReplicas*(currentMetricValue /desiredMetricValue)]

As previously stated, the HPA determines the required number of pods or

desiredReplicas by using this equation and observed metrics. To further illustrate

this, let's consider an example of a deployment with three replicas that needs to

be scaled based on CPU utilization.

Suppose the current CPU utilization of the deployment is 60%, and the desired

value is 50%. Applying the formula, the calculated number of desired replicas is

as follows:

Page 23 of 56

desiredReplicas = ceil[3 * (60 / 50)] desiredReplicas = ceil[3 * 1.2]

desiredReplicas = ceil[3.6] desiredReplicas = 4

Thus, the desired number of replicas in this case would be four. This means that

the HPA controller would scale the deployment by adding one more pod to the

existing three.

It is to be noted that, currentReplicas value is the average metric value of all pods

running related to the deployment, not a single pod. Suppose, after the specified

interval, the HPA controller found three pods running on the current time with

CPU utilization values of 60%, 40%, and 30%, respectively. The controller will

consider the average of these values as the CurrentReplicas which is (60 + 40 +

30) / 3 = 43.33%. Since the current value is below the desired or target value of

50%, the HPA controller will calculate the desired number of replicas as follows:

desiredReplicas = ceil[currentReplicas*(currentMetricValue / desiredMetricValue)]

desiredReplicas = ceil[3 * (43.33 / 50)]

desiredReplicas = ceil[2.6]

desiredReplicas = 3

So the HPA controller will remove a replica, as the current number of replicas (4)

is higher the desired number of replicas (3).

Kubernetes Ingress:

Kubernetes pods are designed to communicate within themselves inside the

cluster, but they are not directly accessible from outside the cluster. To enable

external traffic to reach services running within the cluster, Kubernetes provides an

API object called ingress, which acts as a routing mechanism for incoming traffic.

However, the ingress object itself does not handle user traffic; an Ingress controller is

required to handle and manage the traffic. An Ingress controller acts as a specialized

load balancer that bridges external users and Kubernetes services, simplifying the

management of service traffic. The use of an Ingress controller is more cost-effective

than using a load balancer provided by cloud providers, and it offers additional

features like SSL termination, URL-based routing, and support for multiple protocols.

By providing a single entry point for incoming traffic, an ingress controller simplifies

traffic management and improves the security of applications running in a

Kubernetes cluster.

Page 24 of 56

Figure 3. 2 An Ingress controller routing request

In Kubernetes the ingress controller works same as a deployment controller

which manages and controls a group of identical pods. The primary task of the

controller is to monitor and track the ingress resources and change their states as

per user requirement. There can be multiple ingress controller present in a

Kubernetes cluster. Any modification made to the ingress resources, such as their

creation, modification, or deletion, triggers the controller to update its configuration

accordingly. Figure 3. 2 shows how an ingress controller routes traffic to services.

3.1.3 Prometheus

Prometheus is an open-source monitoring and alerting tool used for cloud-native

applications. It is very easy to integrate with other cloud-native tools. Prometheus

collects metrics from a defined target and alerts the user when a defined condition is

met at regular intervals. The collected metrics are stored in a time-series database.

Using PromQL query language the database can be queried. Prometheus is a

powerful tool that helps to identify and debug issues in the application by providing

detailed metrics about its performance. In this project, Prometheus will be used to

monitor and collect the required metrics from the metric server of Kubernetes.

Page 25 of 56

3.1.4 Grafana

Grafana is an open-source visualization tool often used in conjunction with

another monitoring tool. It has a user-friendly UI to customize dashboards, display

real-time visualization of data as well as getting alerts. It will be used with conjugation

of Prometheus for visualizing metrics from Prometheus database.

3.1.5 KEDA

KEDA stands for Kubernetes-based Event Driven Autoscaler, is an automated

scaling tool that allows the scaling of any container in a Kubernetes cluster based on

events that required to be processed. This innovative tool offers a wide range of built-

in scalers, making it simple to integrate with other cloud-native applications. Even

though KEDA works alongside Kubernetes' Horizontal Pod Autoscaler (HPA) it can

scaling to zero which HPA is not capable of. Thus, this tool makes scaling more

efficient than ever before. In this project KEDA will be used to integrate Prometheus

metrics into the cluster HPA for autoscaling depending on the metrics value.

3.1.6 Transformer Model

The transformer model has become a widely popular neural network architecture

and is increasingly being used to replace other models like convolutional and

recurrent neural networks (Merrit, 2022). OpenAI utilized Transformers in their

language models, achieving state-of-the-art performance on a range of benchmark

datasets. Additionally, DeepMind also utilized Transformers in their program

AlphaStar, which famously defeated a top professional Starcraft player (Giacaglia,

2019). This success in the gaming industry highlights the versatility of Transformers

beyond just natural language processing, and suggests their potential for use in a

wide range of applications.

Unlike other models, it uses only self-attention mechanisms to compute

representations of input and output sequences, making it highly effective for

processing sequential data. Additionally, the transformer model performs parallel

processing, which allows it to run faster than other models. One of the main

advantages of the transformer model is that it eliminates the need for costly and

time-consuming labeled data training by finding mathematical patterns between

elements (Merrit, 2022). The transformer model has demonstrated its effectiveness

in various natural language processing tasks, including machine translation, text

Page 26 of 56

summarization, and question-answering. Recently, its applicability has expanded to

other domains, such as Biochemistry in protein folding. In this project, the

transformer model will be utilized to investigate its impact on predicting workloads in

cloud environment. Specifically, it will be employed as a time-series prediction model

to anticipate future workloads, optimizing resource utilization in cloud computing.

Transformer Architecture:

The Transformer was originally designed and developed for translation purposes

(Face, 2023). The architecture comprises of an encoder and a decoder as shown in

Error! Reference source not found.Error! Reference source not found.. The

figure is taken from the paper “Attention is all you need”. The encoder, positioned on

the left side of the architecture, takes input sequences in a specific language. In

contrast, the decoder obtains input from the encoder in the targeted or desired

language. The encoder is designed to utilize all the words in a sentence as the

translation of a word depends on other words of the sentence. On the other hand, the

decoder works sequentially and only has access to the words it has already

translated. During training, the decoder is provided with the entire target sentence to

speed up the process, but it is restricted from using future words to avoid gaining an

unfair advantage. Different languages have different grammatical rules in placing the

words in orders as well as some words in the sentence can make the context

different. Keeping this in mind the decoder’s first attention layer is designed to have

all the inputs from past but the second layer gets only the input sequence from the

encoder. Thus it gains a full idea of the sentence for the prediction.

Page 27 of 56

Figure 3. 3 Architecture of transformer model(Vaswani et al., 2017)

3.1.7 Locust

An opensource load testing tool called Locust is used to evaluate the functionality

of online applications. By specifying the number of virtual users, the quantity of

requests to be made, and the intervals between requests, it is possible for users to

imitate real-world user scenarios. It is built in Python. The tool may produce thorough

data on request response times, failure rates, and other crucial metrics, as well as

providing real-time monitoring of the performance of the application. Any size

application, from a tiny website to massive distributed systems, can be loaded tested

by it. In this project, Locust will be used to simulate load to test the implemented

system’s performance and compare it with other state-of-the-art autoscaling policies.

Page 28 of 56

3.2 Design and Architecture

The proposed system architecture is designed to provide efficient scaling capabilities

to any cloud native application. The architecture consists of three main components,

namely the Application block, the Autoscaling-Controller (AC), and the Autoscaler.

The block diagram is shown in Figure 3. 4 and the blocks are explained briefly below.

Figure 3. 4 Designed component relationship

• Application: The Application block is responsible for handling external

requests to the deployed application. It comprises of an application and an

ingress controller, which acts as a load balancer to route incoming

requests to the appropriate microservice (Densify).

• Autoscaling-Controller (AC): It is the core component of this architecture,

responsible for monitoring the incoming request rates and predicting the

future request rate based on historical data. The AC comprises three sub-

components, namely the Monitor, Predictor, and Calculator.

I. Monitor: The Monitor component is responsible for collecting,

monitoring and exposing request rate metric data as time series in a

time-series database. It continuously tracks the incoming request

rates to the ingress controller and feeds the data to the time-series

database.

II. Predictor: This sub-component is a time-series forecasting machine

learning model that parses data from the Monitor and predicts the

future request rates for the next 1 minute. It utilizes advanced

forecasting techniques to analyze the historical data and predict the

future values. This predictor is an integral part of the autoscaling

system as it predicts the future request rate and make the

Page 29 of 56

autoscaler aware of the incoming load to get prepared for scaling

which will help to have low latency as well as improved resource

utilization while maintaining availability.

III. Calculator: The Calculator calculates the targeted CPU utilization

based on the current pods running related to the service and the

predicted future request rates. It uses a sophisticated algorithm to

balance resource utilization with application performance. This

algorithm takes into account the current state of the controller,

desired utilization of the resources and the predictions made by the

Predictor.

• Autoscaler: The final component of the system architecture is the

Autoscaler, which is responsible for implementing the scaling decisions

made by the AC. Using an event-driven approach, the Autoscaler

automatically scales the ingress controller up or down based on the

targeted CPU utilization calculated by the Calculator.

The proposed system architecture aims to provide an efficient and effective approach

to scaling any kind of applications as an ingress controller is efficient to be used

controlling traffic to microservices as well as serverless applications. By leveraging

the Autoscaling-Controller, the system can dynamically adjust to changing traffic

loads, ensuring that the application is always available and responsive to incoming

requests.

Page 30 of 56

Chapter 4: Implementation

In the previous chapter, the architectural design of the system model was explained,

while in this chapter, the step-by-step process to implement the designed

architecture is illustrated.

The implemented architecture of the system is shown in Figure 4. 1.

Figure 4. 1 Architectural diagram of the implemented model

The implementation process can be broken down into the following major stages.

4.1 Training the prediction model

A time series forecasting transformer model was developed using darts library. Dart

is a python library which has a vast range of models for time series data processing

and forecasting. The prediction model was developed for forecasting incoming future

request rates. For training the model trace data from Alibaba cloud was used. The

trace data is publicly available and releases real time metric data of microservices

collected over 12 hours of period in 2021(Alibaba, 2021).

Page 31 of 56

The detailed workflow of training the transformer forecasting model is described

below step by step.

• Data Selection and Downloading: Data for training was downloaded. The trace

data 2022 was not available for download at the time the process started. Among

four different tables available in the trace data MS_MCR_RT_Table was selected

as the prediction model is designed to predict request rates and this table

contains the microservice call rate and response information. It has 24 tar files

each containing data of 30 minutes. The table has five attributes namely

timestamp, msname, msinstanceid, metrics and value.

1. Timestamp: Timestamp of metrics recorded. For twelve hours range from 0

to (12 * 60 * 60 * 1000).

2. msname: Name of the microservices the metric is recorded for.

3. msinstanceid: The container id of the microservice. One microservice can

have multiple containers.

4. metrics: Call rates with different communication paradigms and its

corresponding response time.

5. value: The value of the metrics in number of calls per second.

• Data Preprocessing: For training data need to be processed. The downloaded

files were untared and read first and then converted to a dataframe using pandas

library. From the dataframe at first the timestamp, msname, metric and value

columns were selected. From there the data was sorted for only one specific

microservice. Then in the dataframe only the timestamp and value columns were

selected. The dataframe then were converted to a time series data.

• Training the model: The preprocessed dataset was split to train and validate the

model in 70/30 ratio.

The parameters that were used to train the TransformerModel class was taken

from the official documentation of Darts. The parameters are listed below with the

value used.

• input_chunk_length: It defines the number of input time steps. It can be

only an integer and was set to 12.

• output_chunk_length: Number of time steps to get from the model. It is

also an integer value. In this project the intention was to predict next 1 min

of request rates. For that 4 future time steps were taken into account.

Page 32 of 56

• batch_size: Number of samples used in one iteration of the training

process. A larger batch size can increase the speed of the training but at

the same time demands more memory. Here the default batch size 32 was

used.

• n_epochs: It determines the number of times the algorithm will iterate

through the entire dataset. It is set to 200 as per an example showed in

Darts official website.

• Model_name: The model name is given resource_transformer.

• nr_epochs_val_period: This parameter specifies the number of n_epochs

after which the validation loss will be evaluated.

• d_model: It defines the number of expected features in the

encoder/decoder inputs. It was set to 16.

• nhead: It determines the frequency of applying the attention mechanism

each time focusing on a different aspect of the input. This nhead was set to

8, meaning that the computation involves 8 heads of size

d_model/nhead=16/2=2 each. This configuration results in low-dimensional

heads that are more suitable for learning from univariate time series.

• num_encoder_layers: It specifies the number of layers in the encoder. It

was set to 2 as per the example showed in the Darts documentation.

• num_decoder_layers: Number of layers in the decoder. It was set to 2 as

well.

• dim_feedforward: After the attention mechanism the output is fed to a

feedforward network. This parameter determines the dimension of the

feedforward network. It depends on the complexity of the problem and the

amount of training data available. In this project it was set to 128.

• dropout: It was set as the default value 0.1 which means in each layer

10% of the neurons will be set to zero randomly while training. This

parameter helps to prevent overfitting.

• force_reset: This parameter has a default value of “False,” but in this

case, it has been set to “True” to force a reset of any previously existing

models with the same name.

Evaluating the trained model:

Page 33 of 56

After training the model its performance was evaluated by the validation set in terms

of mean absolute error (MAE), Root Mean Squared Error (RMSE), and Mean

Absolute Percentage Error (MAPE).

MAE measures the average absolute difference between the actual and the

predicted value. It shows how close the predicted value is to the actual on average.

Typically, a lower MAE value indicates a better model, but this depends on various

factors. The trained model in this project showed a MAE value of 1.40 with the

validation dataset which means the predicted value is 1.40 units off from the actual

values.

The square root of MSE is the RMSE value. It is also widely used for evaluating a

model as it outputs the error in the same unit as the outcome variable which makes it

easier to interpret (TrainDataHub, 2022). The RMSE value of 1.81 obtained from the

trained model suggests that the average difference between the predicted and actual

values is 1.81 units, which is not very high.

MAPE shows the error in percentage making it easy to understand. A MAPE value of

1.49 was found from the trained model which means the predicted value is on

average 1.49% off from the actual data.

Even though the evaluation metric were within an acceptable level the performance

of the model can be improved by hyperparameter tuning.

4.2 Building the environment

The design of the proposed model adopts a cloud-native approach, taking advantage

of the benefits offered by infrastructure-as-a-service (IaaS) resources in the cloud.

For this project, the university's private openstack cloud platform, ALTO, was utilized

as the cloud platform. To create a production-ready single master, multinode cluster

in ALTO, the kubeadm tool was employed. As the proposed model does not account

for cluster autoscaling, the lightweight kubeadm tool was deemed suitable for cluster

creation. The cluster used in this project consisted of one master node with 16GB

RAM, 8 vCPUs, and 160GB disk, and two worker nodes, each with 4GB RAM, 2

vCPUs, and 40GB disk.

4.3 Deploying and integrating different components

In accordance with the designed architecture, a microservice app and a Nginx

ingress controller were deployed to serve as the application block. Additionally,

Page 34 of 56

Kube-prometheus-stack was deployed for monitoring purposes, while the trained

model was transferred to the cloud instance to function as the predictor.

• Sample App: A simple microservice app called Podinfo was deployed in the

cluster. Podinfo is a small web app developed in Go, demonstrates the ideal

techniques for operating microservices on Kubernetes, and is utilized for end-to-

end testing and workshops by CNCF initiatives (stefanprodan, 2021).

Figure 4. 2 The screenshot of the sample application

For traffic routing to the app nginx ingress controller was also deployed in a created

namespace called ingress-nginx in the cluster. An ingress resource was created

then to integrate the app with the controller. After integrating the microservice app

with the nginx ingress controller using an ingress resource, a load testing was

conducted using locust to determine the maximum request rate that the controller

can handle while maintaining application performance. The application deployment

and ingress resource configuration file are mentioned in the (Appendix A:

Configuration files)

• Kube-prometheus-stack: Kube-prometheus-stack is a monitoring solution for

Kubernetes and its workloads, which is open-source and maintained by the

Prometheus community. This tool was deployed in the cluster, which included

Prometheus and Grafana with Prometheus operator and exporter. In the model

architecture Prometheus is responsible for gathering metrics from the ingress

controller and storing them in its database. On the other hand, Grafana is used

for visualizing these metrics.

Page 35 of 56

• Trained forecasting model: The transformer model, which was trained, was

retrieved in cluster to forecast the upcoming request rates for the next one

minute. A Python script was created in the cluster to load the trained model,

extract the request rates data of the past one hour from the Prometheus server,

predict the next one minute of incoming request rates and save the predicted

values to a predicted_values.csv file. To automate this process, a cron job was

configured to run the script every minute.

• Autoscaler: Keda was deployed in the cluster as the Autoscaler. As mentioned

before (KEDA) KEDA offers a wide range of scalers. Among them Kubernetes

Workload scaler was deemed appropriate for our intended purpose, as it scales

applications based on the current status of the running resources. A ScaledObject

was created in the same namespace as the ingress controller as its seach scope

is limited to the namespace where it is deployed. It was configured in a way using

the podSelector attribute to scale up or down the resources related to the

controller. The “value” field of the ScaledObject is the target relation between the

scaled workload and the current no of pods running for the related deployment

(Authors, 2014-2023). This field has been selected in the architectural design of

the proposed model to dynamically adjust based on the calculated value, which

takes into account the current resource usage and predicted workloads. The

content of the scaledobject yaml file is provided in (Appendix A: Configuration

files)

4.4 Parameter calculation

To calculate the parameter for the ‘value’ field another python script was written.

The script first loads the YAML file containing the configuration for the Kubernetes

ScaledObject. It then reads in a CSV file containing the predicted request rates of

next 4 steps of 15s interval (1min). Based on the maximum predicted RPS

(requests per second) value and the maximum RPS per pod (determined through

load testing), the script calculates the number of pods required to handle the

predicted request rate. It then queries the Prometheus monitoring system to get

the current number of pods running for the application. Using the number of

required pods and the current number of running pods, the script calculates the

parameter of the ‘value’ field and sets the new value in the ScaledObject YAML

file. Here the value is multiplied by the desired_utilization to avoid over or under

Page 36 of 56

provisioning of resources. Finally, the script applies the updated ScaledObject

YAML file to the Kubernetes cluster through the kubectl command line tool, which

dynamically scales the nginx controller based on the predicted request rates. This

script is meant to be run periodically (every min) through a cron job to ensure the

application can handle the predicted workload while avoiding resource waste.

Algorithm of the script is written bellow.

Algorithm 1: Calculate the parameter for the ScaledObject value field

input: predicted_values.csv= csv file containing the predicted values, Max RPS per

pod based on load testing, desired_utilization_percentage

Output: Parameter for scaledObject value field.

1. Import necessary libraries;

2. initialize max_rps_per_pod = 70 (based on load testing),

desired_utilization_percentage =70;

3. load scaledObject configuration file;

4. df = Load the predicted_values.csv file;

5. max_rps = max RPS value of the df;

6. scaled_workload_pods = max_rps / max_rps_per_pod;

7. num_matching_pods= query request to Prometheus;

8. value = (num_matching_pods / scaled_workload_pods) *

desired_utilization_percentage / 100;

9. write (value) to scaledObject file;

10. configure the scaledObject using kubectl apply

4.5 Visualization and Data Collection:

Grafana was deployed in a Kubernetes cluster to visualize metrics such as call

rate, number of pods related to the Nginx ingress, response rate, CPU utilization, and

memory utilization. A dashboard was created to display these metrics. The data was

downloaded from Grafana in the form of a CSV file.

Page 37 of 56

Figure 4. 3 Screenshot of the Grafana dashboard

Page 38 of 56

Chapter 5: Results and Discussion

In this chapter there is a brief discussion on the testing experiments and its

results, providing valuable insights into the system's performance and identifying

potential areas for improvement.

5.1 Testing in different configurations

Once the system was implemented according to the designed model, load testing

was conducted to observe its behavior. The purpose of load testing was to compare

the outcomes imposing a sudden increase in traffic under different configurations of

the autoscaling system and evaluate the performance of the system.

The experiment involved replicating a sudden traffic surge of 500 users with a spawn

rate of 20 to the application, all within the same cloud environment, utilizing four

different configurations of the autoscaling system (Marie-Magdelaine & Ahmed,

2020). A spawn rate of 20 means that every second, 20 users were added until the

total number of users reached 1000.

The metrics of CPU utilization, memory utilization, and response time were

considered for evaluating the implemented system.

• Configuration 1: Without any autoscaling policy.

• Configuration 2: Autoscaling was done using HPA. A yaml file was written and

applied to configure an HPA named hpanginx for autoscaling the nginx

ingress controller using targeted CPU utilization percentage 70 in the

Kubernetes cluster. The HPA configuration file content is provided in

(Appendix A: Configuration files)

• Configuration 3: KEDA was configured for autoscaling. KEDA’s Kubernetes

workload scaler was configured by applying a scaledobject in the same

namespace the nginx ingress controller was deployed. The value field of the

scaledobject was filled with ‘0.877’. It was calculated with the formula

mentioned in Parameter calculation)

Value = no of matched_pods / scaled workload pod.

Value = 1/ (80/70) = 0.877, scaled workload pod was calculated by dividing

approximate request rate / approximate request rate which can be handled

per pod measured from initial load testing.

Page 39 of 56

• Configuration 4: KEDA was integrated with the other components of the

designed model in a way that the target CPU utilization percentage changes

with demand to scale up or down resources.

Figure 5. 1 Resource Utilization over time for different configurations (low request
rate)

Figure 5. 2 No of pods and P99 latency over time for different configurations (low
request rate)

Page 40 of 56

Figure 5. 3 Request volume over time (low request rate)

The graph of Figure 5. 1depicts the CPU and memory utilization trends over ten

minutes period of time under the mentioned four different configurations. The number

of existing pods at different time stamps along with P99 response time, which

indicates the time taken for 99% of requests to be completed successfully are shown

in Figure 5. 2.

Regarding CPU utilization, the initial three setups (without autoscaling, with HPA,

and with KEDA) exhibited similar patterns of increasing CPU usage with rising load,

then stabilizing as the load steadies. However, they consumed less CPU than each

other. When no autoscaling was configured, the system operated with only one

deployed pod, which had the highest CPU usage among the four configurations but

remained steady and consumed less memory. Since it was stable with one pod

running and the request rate was within its capacity, the P99 latency also remained

stable.

With configured Horizontal Pod Autoscaler with target utilization percentage 70,

the ingress controller was scaled up with an additional pod after 2 minutes when the

request rate sharply increased, as seen in Figure 5. 3 .With the scaling up process,

the CPU utilization increased and stabilized after a certain period of time. Similarly,

the memory utilization also became stable after a slight increase and decrease within

the same time period. However, in terms of response time, it showed the same trend

as the first setup without autoscaling, where the response time stabilized after the

first few minutes.

While testing the system with KEDA integrated for autoscaling the graph shows this

setup had the lowest CPU usage and the highest memory usage among the four

Page 41 of 56

setups during testing. This can be attributed to the fact that the number of pods

increased gradually to maintain the correlation between the number of running pods

and the scaled workload, and eventually reached the maximum number of pods set

at 100. As more pods were allocated over time, memory utilization increased.

Consequently, the response time was also impacted, with the graph showing a high

response time that decreased approximately after 8 minutes when the number of

pods had reached the maximum level.

The proposed model implemented in the system showed a different trend

compared to the other three configurations. The autoscaler scaled up to 15 pods

from 1 within a minute after the implemented calculator calculated the value field and

configured the scaled object. In the first minute, the system showed a rising trend in

CPU utilization possibly due to the transition period of no of pods increasing rapidly

from 1 to 15 within a short period. This sharp rise was not seen in the other

configurations specially to mention the 3rd one autoscaling with KEDA as the target

relation ‘value’ was fixed and the pod was gradually increasing. The CPU utilization

decreased after the second minute when the no of pods became stable. The number

of pods again decreased to 2 after 7 minutes based on the target relation calculation,

resulting in an increase in CPU utilization. The memory usage was high when there

were 15 pods running and decreased after 7 minutes when the number of pods went

down to 2. The response time showed a slight up and down trend as the scaled

object was getting configured every minute, but it remained within an acceptable

range of 16ms.

 To conduct further investigation, a second round of experiment was carried

out with a larger user group consisting of 1000 users with a spawn rate of 20. This

time the experiment only focused on configuration with HPA and the proposed

model. The simulated user request is shown in Figure 5. 4.

Page 42 of 56

Figure 5. 4 No of users simulated by Locust

Prior to running this experiment, the Kubernetes cluster was resized, resulting in an

infrastructure that was able to handle more load. As a result, the request rate

increased to above 300 requests per second (Figure 5. 7) and the maximum request

rate handling capacity increased to 330 without any failure. The maximum capacity

was reflected in the calculation sheet for accurate analysis.

The results reflected in Figure 5. 5 showed a similar trend in terms of all metrics. The

proposed model had less CPU and memory usage than the HPA initially, but after

some time, it increased. However, the memory usage pattern was different, with the

usage decreasing initially and then increasing, in contrast to the first experiment. The

number of pods did not exhibit a significant increase within a short period exhibited in

Figure 5. 6, as was observed in the first experiment where it jumped to 15 replicas

within a minute. This could be attributed to the maximum capacity per pod being set

lower (70) in the first experiment. In terms of latency like last time it was also within

an acceptable range.

Page 43 of 56

Figure 5. 5 Resource utilization over time of configuration 2 and 4

Figure 5. 6 No of pods and latency over time of configuration 2 and 4

Figure 5. 7 Request volume over time (high request rate)

 Based on the results found it is clear that autoscaling has a great impact on system

performance. It helps to maintain a stable response time while effectively utilizing

resources. Among the three autoscaling configured test scenarios (HPA, KEDA and

proposed model) HPA worked the best in terms of all the metrics considered for

evaluation even though KEDA showed less CPU utilization than HPA but had

Page 44 of 56

unstable response time which is very important to consider. On the other hand, the

implemented proposed model showed promise, displaying a trend of changing

utilization levels while maintaining a stable response time. Although it did not surpass

HPA in any of the performance metrics, it exhibited the potential to improve resource

utilization on average over an extended period of operation. However, further

experimentation and refinement are necessary to optimize the proposed model and

make a more comprehensive comparison with other autoscaling mechanisms.

Page 45 of 56

Chapter 6: Conclusion

The recent Covid-19 pandemic has accelerated the adoption of cloud computing,

as it plays a crucial role in digital transformation. The quarterly earnings report of

technology company Microsoft demonstrated the significant digital transformation

that occurred in a short period of time just a few months after the pandemic

started(Microsoft, 2020). In this context, resource management in cloud computing

has become an increasingly important research area, as it directly affects the cost,

efficiency, and performance of cloud services. Machine learning models have been

proposed and implemented to improve resource utilization in cloud computing.to

address this issue. The goal of this project was to add to this field of study by

designing and implementing an autoscaling strategy that makes use of a forecasting

time series transformer model. The findings from the project shows little improvement

in CPU consumption which is an important metric for cloud service providers as well

as users in terms of cost but the metrics of memory usage was slightly higher

compared to other configurations. These findings show that additional study in this

field is worthwhile and point to the potential of machine learning models specially a

transformer model for resource management in cloud computing. To address the

research question, it can be concluded that the proposed model has demonstrated

the potential to enhance resource utilization, but additional observation and

experimentation are required to optimize the system. This study has provided a

foundation or starting point for further research and development in the field of

resource utilization and management in cloud computing utilizing an ingress

controller and a transformer machine learning model.

6.1 Limitations and Future Works

Future works can address several limitations identified in this study.

The current study utilized a prediction model with default parameters, and the

potential for further improvement is evident through hyperparameter tuning. Future

studies could focus on optimizing the model parameters to achieve more accurate

predictions and enhance system performance. It is worth noting that the absence of

workload trends in the dataset could be seen as a positive aspect for the model, as it

was still able to make accurate predictions without relying on trend information.

Page 46 of 56

Another drawback of the study is that the proposed model was only evaluated on a

simple microservice app. While this was adequate to show the model's efficiency,

further research might examine how it can be used to more complex applications,

including multi-tier applications, in a bigger production environment. This might make

it easier to spot any model flaws and gauge how it behaves in more complicated

settings. Further improvements to the existing strategy might also come from

investigating the incorporation of different machine learning models and creating a

hybrid approach for scaling policy.

Page 47 of 56

References:

Abdullah, M., Iqbal, W., Berral, J. L., Polo, J., & Carrera, D. (2020). Burst-aware
predictive autoscaling for containerized microservices. IEEE Transactions on
Services Computing, 15(3), 1448-1460.

Alibaba. (2021). Overview of Microservices Traces. Alibaba. Retrieved March 02
2023 from https://github.com/alibaba/clusterdata/tree/master/cluster-trace-
microservices-v2021

Apostu, A., Puican, F., Ularu, G., Suciu, G., & Todoran, G. (2013). Study on
advantages and disadvantages of Cloud Computing–the advantages of
Telemetry Applications in the Cloud. Recent advances in applied computer
science and digital services, 2103.

Authors, K. (2014-2023). Kubernetes Event-driven Autoscaling

. Retrieved 27 March from https://keda.sh/
Authors, K. (March 30, 2023). Horizontal Pod Autoscaling. Retrieved May 5 from

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
Bi, Q., Goodman, K. E., Kaminsky, J., & Lessler, J. (2019). What is machine

learning? A primer for the epidemiologist. American journal of epidemiology,
188(12), 2222-2239.

Densify. Kubernetes Service Load Balancer
. Densify. Retrieved 30 April 2023 from https://www.densify.com/kubernetes-

autoscaling/kubernetes-service-load-balancer/
Docker, I. (2020). Docker. lınea].[Junio de 2017]. Disponible en: https://www. docker.

com/what-docker.
Eshete, G. A. (2020). Autonomous Global Distribution of Container Workload using

K-means Clustering Algorithm
Face, H. (2023). How do Transformers work? Hugging Face.

https://huggingface.co/learn/nlp-course/chapter1/4?fw=pt
Giacaglia, G. (2019). How Transformers Work. Medium, Towards Data Science.

Retrieved April 5, 2023 from https://towardsdatascience.com/transformers-
141e32e69591

Goli, A., Mahmoudi, N., Khazaei, H., & Ardakanian, O. (2021). A Holistic Machine
Learning-based Autoscaling Approach for Microservice Applications.
CLOSER,

Khaleq, A. A., & Ra, I. (2021). Intelligent autoscaling of microservices in the cloud for
real-time applications. IEEE Access, 9, 35464-35476.

Kubernetes, T. (2019). Kubernetes. Kubernetes. Retrieved May, 24, 2019.
Marie-Magdelaine, N., & Ahmed, T. (2020). Proactive autoscaling for cloud-native

applications using machine learning. GLOBECOM 2020-2020 IEEE Global
Communications Conference,

Marinescu, D. C. (2022). Cloud computing: theory and practice. Morgan Kaufmann.
Merrit, R. (2022). What is a Transformer Model? Retrieved 27 March from

https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/
Microsoft. (2020). 2 years of digital transformation in 2 months. Microsoft. Retrieved

Mar 22, 2023 from https://www.microsoft.com/en-us/microsoft-
365/blog/2020/04/30/2-years-digital-transformation-2-months/

https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2021
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2021
https://keda.sh/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://www.densify.com/kubernetes-autoscaling/kubernetes-service-load-balancer/
https://www.densify.com/kubernetes-autoscaling/kubernetes-service-load-balancer/
https://www/
https://huggingface.co/learn/nlp-course/chapter1/4?fw=pt
https://towardsdatascience.com/transformers-141e32e69591
https://towardsdatascience.com/transformers-141e32e69591
https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/
https://www.microsoft.com/en-us/microsoft-365/blog/2020/04/30/2-years-digital-transformation-2-months/
https://www.microsoft.com/en-us/microsoft-365/blog/2020/04/30/2-years-digital-transformation-2-months/

Page 48 of 56

Phung, H.-D., & Kim, Y. (2022). A Prediction based Autoscaling in Serverless
Computing. 2022 13th International Conference on Information and
Communication Technology Convergence (ICTC),

Rashid, A., & Chaturvedi, A. (2019). Cloud computing characteristics and services: a
brief review. International Journal of Computer Sciences and Engineering,
7(2), 421-426.

Schuler, L., Jamil, S., & Kühl, N. (2021). AI-based resource allocation: Reinforcement
learning for adaptive auto-scaling in serverless environments. 2021
IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet
Computing (CCGrid),

stefanprodan. (2021). podinfo. Retrieved May 5 from
https://github.com/stefanprodan/podinfo

TrainDataHub. (2022). Interpretation of Evaluation Metrics For Regression Analysis
(MAE, MSE, RMSE, MAPE, R-Squared, And Adjusted R-Squared). Retrieved
May 5 from https://medium.com/@ooemma83/interpretation-of-evaluation-
metrics-for-regression-analysis-mae-mse-rmse-mape-r-squared-and-
5693b61a9833

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural
information processing systems, 30.

Wang, Z., Zhu, S., Li, J., Jiang, W., Ramakrishnan, K., Zheng, Y., Yan, M., Zhang,
X., & Liu, A. X. (2022). DeepScaling: microservices autoscaling for stable CPU
utilization in large scale cloud systems. Proceedings of the 13th Symposium
on Cloud Computing,

Zhang, Z., Wang, T., Li, A., & Zhang, W. (2022). Adaptive Auto-Scaling of Delay-
Sensitive Serverless Services with Reinforcement Learning. 2022 IEEE 46th
Annual Computers, Software, and Applications Conference (COMPSAC),

Zhong, Z., Xu, M., Rodriguez, M. A., Xu, C., & Buyya, R. (2022). Machine learning-
based orchestration of containers: A taxonomy and future directions. ACM
Computing Surveys (CSUR), 54(10s), 1-35.

https://github.com/stefanprodan/podinfo
https://medium.com/@ooemma83/interpretation-of-evaluation-metrics-for-regression-analysis-mae-mse-rmse-mape-r-squared-and-5693b61a9833
https://medium.com/@ooemma83/interpretation-of-evaluation-metrics-for-regression-analysis-mae-mse-rmse-mape-r-squared-and-5693b61a9833
https://medium.com/@ooemma83/interpretation-of-evaluation-metrics-for-regression-analysis-mae-mse-rmse-mape-r-squared-and-5693b61a9833

Page 49 of 56

Appendices:

Appendix A: Configuration files

• Sample App: The deployment file of the sample application is as follows.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: podinfo

spec:

 selector:

 matchLabels:

 app: podinfo

 template:

 metadata:

 labels:

 app: podinfo

 spec:

 containers:

 - name: podinfo

 image: stefanprodan/podinfo

 ports:

 - containerPort: 9898

apiVersion: v1

kind: Service

metadata:

 name: podinfo

 labels:

 app: podinfo

spec:

 type: ClusterIP

 selector:

 app: podinfo

 ports:

 - protocol: TCP

 name: web

 port: 8080

 targetPort: 9898

• Ingress resource: As mentioned in section (Deploying and integrating different

components) an ingress resource was created to integrate the application with

the ingress controller. The yaml file was written as follows:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: podinfo

spec:

 ingressClassName: nginx

 rules:

 - host: "sampleapp.com"

 http:

 paths:

Page 50 of 56

 - backend:

 service:

 name: podinfo

 port:

 number: 8080

• HPA configuration: For evaluating the performance of the implemented model

and comparing it with state-of-art methods. HPA was configured. The yaml file

consists of the following code.

apiVersion: autoscaling/v1

kind: HorizontalPodAutoscaler

metadata:

 name: hpanginx

 namespace: ingress-nginx

spec:

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: ingress-nginx-controller

 minReplicas: 1

 maxReplicas: 100

 targetCPUUtilizationPercentage: 70

• KEDA Scaledobject: As per section (Deploying and integrating different

components) the KEDA scaledobject yaml file was written as follows:

apiVersion: keda.sh/v1alpha1

kind: ScaledObject

metadata:

 name: ingress-nginx-workload

 namespace: ingress-nginx

spec:

 scaleTargetRef:

 name: ingress-nginx-controller

 triggers:

 - type: kubernetes-workload

 metadata:

 podSelector: 'app.kubernetes.io/name=ingress-nginx'

 value: “0.877”

Page 51 of 56

Appendix B: Training and predicting

• Training the model: The code for training the transformer model for predicting

future workload:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from darts import TimeSeries

from darts.dataprocessing.transformers import Scaler

from darts.models import TransformerModel, ExponentialSmoothing

from darts.metrics import mape

from darts.utils.statistics import check_seasonality, plot_acf

Load the Alibaba Cluster Traces 2021 dataset

df_res_0 = pd.read_csv('MSRTQps_0.csv')

df_res_1 = pd.read_csv('MSRTQps_1.csv')

df_res_2 = pd.read_csv('MSRTQps_2.csv')

df_res_3 = pd.read_csv('MSRTQps_3.csv')

df_res_4 = pd.read_csv('MSRTQps_4.csv')

df_res_5 = pd.read_csv('MSRTQps_5.csv')

df_res_6 = pd.read_csv('MSRTQps_6.csv')

df_res_7 = pd.read_csv('MSRTQps_7.csv')

df_res_8 = pd.read_csv('MSRTQps_8.csv')

df_res_9 = pd.read_csv('MSRTQps_9.csv')

df_res_10 = pd.read_csv('MSRTQps_10.csv')

df_res_11 = pd.read_csv('MSRTQps_11.csv')

df_res_12 = pd.read_csv('MSRTQps_12.csv')

df_res_13 = pd.read_csv('MSRTQps_13.csv')

df_res_14 = pd.read_csv('MSRTQps_14.csv')

df_res_15 = pd.read_csv('MSRTQps_15.csv')

df_res_16 = pd.read_csv('MSRTQps_16.csv')

df_res_17 = pd.read_csv('MSRTQps_17.csv')

df_res_18 = pd.read_csv('MSRTQps_18.csv')

df_res_19 = pd.read_csv('MSRTQps_19.csv')

df_res_20 = pd.read_csv('MSRTQps_20.csv')

df_res_21 = pd.read_csv('MSRTQps_21.csv')

df_res_22 = pd.read_csv('MSRTQps_22.csv')

df_res_23 = pd.read_csv('MSRTQps_23.csv')

Concatenate the dataframes

df_res = pd.concat([df_res_0, df_res_1, df_res_2, df_res_3, df_res_4,

df_res_5, df_res_6, df_res_7, df_res_8, df_res_9, df_res_10, df_res_11,

df_res_12, df_res_13, df_res_14, df_res_15, df_res_16, df_res_17,

df_res_18, df_res_19, df_res_20, df_res_21, df_res_22, df_res_23])

Select relevant columns

df = df_res[['msname','timestamp', 'metric', 'value']]

df = df.sort_values(by='timestamp')

df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')

#select only one microservice

Page 52 of 56

msname =

'6190227e8489cba622c6675f26dbf94a0407dc21594d0dcd6776c46975b7e225'

df = df.loc[df['msname'] == msname]

df = df.set_index('timestamp').groupby('metric').resample('15s').mean()

df=df.reset_index()

df.dropna(inplace= True)

metric = 'providerRPC_MCR'

df = df.loc[df['metric'] == metric]

#Keep only the target column

df = df[['timestamp', 'value']]

Split the data into training and validation sets

train, val = train_test_split(df, test_size=0.30, shuffle=False)

Create the time series objects

train_series = TimeSeries.from_dataframe(train, 'timestamp', ['value'])

val_series = TimeSeries.from_dataframe(val, 'timestamp',['value'])

df_series = TimeSeries.from_dataframe(df, 'timestamp',['value'])

Scale the data

scaler = Scaler()

train_series_scaled = scaler.fit_transform(train_series)

val_series_scaled = scaler.fit_transform(val_series)

df_series_scaled = scaler.transform(df_series)

Create and train the model

model = TransformerModel(

 input_chunk_length=12,

 output_chunk_length=4,

 batch_size=32,

 n_epochs=200,

 model_name="resource_transformer",

 nr_epochs_val_period=10,

 d_model=16,

 nhead=8,

 num_encoder_layers=2,

 num_decoder_layers=2,

 dim_feedforward=128,

 dropout=0.1,

 activation="relu",

 random_state=42,

 save_checkpoints=True,

 force_reset=True,

)

model.fit(series=train_series_scaled, val_series=val_series_scaled,

verbose=True)

Predict

prediction = model.predict(n=len(val_series_scaled))

prediction_unscaled = scaler.inverse_transform(prediction)

Page 53 of 56

Evaluate the performance using MAPE

mape_error = mape(val_series, prediction_unscaled)

print(f"MAPE error: {mape_error:.2f}")

from darts.metrics import mae

Calculate MAE on the test set

val_mae_error = mae(val_series, prediction_unscaled)

print(f"MAE error on validation set: {val_mae_error:.2f}")

from darts.metrics import rmse

Calculate RMSE on the validation set

rmse_error = rmse(df_series, prediction_unscaled)

print(f"RMSE error: {rmse_error:.2f}")

from darts.metrics import smape

Calculate SMAPE on the validation set

smape_error = smape(prediction_unscaled, df_series)

print(f"SMAPE error: {smape_error:.2f}")

• Prediction of workload: The model was used to predict data based on previous

one hour of data scraped from prometheus. The script is as follows.

import requests

from datetime import datetime, timedelta

import pandas as pd

import numpy as np

from darts import TimeSeries

from darts.dataprocessing.transformers import Scaler

from darts.models import TransformerModel, ExponentialSmoothing

PROMETHEUS_URL = 'http://10.108.86.201:9090/api/v1/query_range'

Set the start time and end time for the query

end_time = datetime.now()

start_time = end_time - timedelta(hours=1)

Construct the PromQL query

query =

'sum(irate(nginx_ingress_controller_requests{controller_pod=~"ingress-

nginx-controller-.*",controller_namespace=~"ingress-

nginx",ingress=~"podinfo-ingress”}-[1m]))'

Make the query request to Prometheus

url =

f'{PROMETHEUS_URL}?query={query}&start={int(start_time.timestamp())}&en

d={int(end_time.timestamp())}&step=15s'

#print(f'Request URL: {url}')

response = requests.get(url)

#print(f'Response JSON: {response.json()}')

Parse the response data into a tabular format

data = response.json()['data']['result']

Page 54 of 56

rows = []

for result in data:

 values = result['values']

 for value in values:

 time = datetime.fromtimestamp(value[0]).strftime('%m/%d/%Y

%H:%M')

 rps = value[1]

 rows.append((time, rps))

Create a pandas DataFrame

df = pd.DataFrame(rows, columns=['Time', 'RPS'])

df["RPS"] = pd.to_numeric(df["RPS"], downcast="float")

df = df.groupby(['Time']).mean()

df.dropna(inplace= True)

df=df.reset_index()

Print the DataFrame

print(df)

Create the time series objects

df_series = TimeSeries.from_dataframe(df, 'Time',['RPS'])

Scale the data

scaler = Scaler()

df_series_scaled = scaler.transform(df_series)

import joblib

Load the trained model from the joblib file

model = joblib.load('transformer_model.joblib')

prediction= model.predict(n=4, df_series)

prediction_unscaled = scaler.inverse_transform(prediction)

print(prediction_unscaled)

#save the predicted data

df_pred=prediction_unscaled.pd_dataframe(copy=True,

suppress_warnings=False)

df_pred.to_csv('predicted_values.csv')

Page 55 of 56

Appendix C: Target Relation Calculation

• Calculation Script: The following script calculates the parameter for the
“value” field of the scaledobject based on the predicted value and current pod
status.

import pandas as pd

import requests

from datetime import datetime, timedelta

import yaml

import subprocess

Load the YAML file

with open("scaledobject-podinfo.yaml", "r") as f:

 scaledobject = yaml.safe_load(f)

Load the CSV file

df = pd.read_csv('predicted_values.csv')

The maximum RPS value in the 'RPS' column of the CSV file

max_rps = df['RPS'].max()

Max RPS per pod based on load testing

max_rps_per_pod = 330

Calculate the number of pods required to handle the predicted request

rate

num_pods_required = max_rps / max_rps_per_pod

Set the desired utilization percentage based on workload and cluster

capacity

desired_utilization_percentage = 70

Get the current number of pods running

PROMETHEUS_URL = 'http://10.108.86.201:9090/api/v1/query'

Construct the PromQL query to get the number of pods running nginx

container

query = 'sum(kube_pod_info{pod=~"ingress-nginx-controller-.*"})'

Make the query request to Prometheus

url = f'{PROMETHEUS_URL}?query={query}'

response = requests.get(url)

Extract the current number of pods running the container from the

response

data = response.json()['data']['result']

num_matching_pods = int(data[0]['value'][1])

Calculate the value for the KEDA 'value' field

scaled_workload_pods = num_pods_required

value = (num_matching_pods / scaled_workload_pods) *

desired_utilization_percentage / 100

Set the new value in the scaledobject YAML

scaledobject['spec']['triggers'][0]['metadata']['value'] = str(value)

Write the updated scaledobject YAML file

Page 56 of 56

with open("scaledobject-podinfo.yaml", "w") as f:

 yaml.dump(scaledobject, f)

Apply the updated scaledobject YAML file

subprocess.run(["kubectl", "apply", "-f", "scaledobject-podinfo.yaml"])

	List of Figures
	Acknowledgement
	Abstract
	Chapter 1: Introduction:
	1.1 Problem Statement:
	1.2 Research Question:
	1.3 Motivation behind the project:
	1.4 Structure of the paper:

	Chapter 2: Background
	2.1 Cloud computing
	2.1.1 Types of cloud
	2.1.2 Cloud Services
	2.1.3 Resource management in Cloud
	2.1.4 Advantages and Disadvantages of Cloud Computing

	2.2 Autoscaling
	2.3 Machine learning
	2.4 Literature Review

	Chapter 3: Methodology
	2.1 Tools or Technologies To be Used
	3.1.1 Docker
	3.1.2 Kubernetes
	3.1.3 Prometheus
	3.1.4 Grafana
	3.1.5 KEDA
	3.1.6 Transformer Model
	3.1.7 Locust

	3.2 Design and Architecture

	Chapter 4: Implementation
	4.1 Training the prediction model
	4.2 Building the environment
	4.3 Deploying and integrating different components
	4.4 Parameter calculation
	4.5 Visualization and Data Collection:

	Chapter 5: Results and Discussion
	5.1 Testing in different configurations

	Chapter 6: Conclusion
	6.1 Limitations and Future Works

	References:
	Appendices:
	Appendix A: Configuration files
	Appendix B: Training and predicting
	Appendix C: Target Relation Calculation

