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Abstract

Artificial Intelligence has demonstrated immense potential in healthcare-related
applications, paving the way for advancements in diagnosis, treatment, and patient
care. However, data protection laws and regulations present challenges that hinder the
progress of development. Consequently, synthetic data has emerged as an increasingly
popular research area. Synthetic data can serve as an anonymized and representative
alternative to real data. While various methods exist for generating synthetic
data, Generative Adversarial Networks (GANs) have demonstrated exceptional
performance in this regard. This thesis focuses on utilizing GANs to generate synthetic
tabular data, given that a significant portion of today’s data is organized in tabular
format. The primary objective is to evaluate the capabilities of GANs in generating
synthetic tabular data specifically for healthcare applications.

Three diverse healthcare datasets of varying sizes and complexities were selected,
and two GAN models, CTGAN and CopulaGAN, were employed to generate
corresponding synthetic datasets. The value of the generated data was assessed in
terms of resemblance to real data, applicability to machine learning classification tasks,
and preservation of individual privacy. Commonly used metrics within synthetic
tabular data generation evaluation were applied to gauge the performance of the
generated datasets. Resemblance metrics were based on comparing distributions
and correlations between real and synthetic data. A novel framework, "SynthEval,"
was developed to offer an extensive evaluation of both real and synthetic data
concerning classifier performance. Additionally, the framework investigated the
potential of improving classifier performance by augmenting real data with synthetic
data. Furthermore, the privacy assessment involved measuring nearest neighbor
distances between real and synthetic data and checking for exact matches.

The findings indicate that GAN models have the potential to generate data that exhibit
comparable performance to real data, given that the training data used for the GAN
model is of sufficient quantity and not of low quality. The results also indicate that
GAN models can generate cleaner data with less noise than real data. However, the
study also reveals that when synthetic data performance is too high, it may result in
compromised privacy.
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Chapter 1

Introduction

1.1 Motivation
Artificial Intelligence (AI) and Machine Learning (ML) have shown tremendous
promise in the healthcare industry. However, their full integration and realization
have been hindered by various limitations. Despite their immense potential
to revolutionize healthcare, challenges related to obtaining real medical datasets,
complying with data protection laws and regulations, and limited interoperability
between healthcare systems have impeded their widespread adoption. As a result,
obtaining patient data for research purposes can be a time-consuming and challenging
process, with approval times ranging from several months to years [2]. Consequently,
researchers may have to rely on imbalanced and non-representative datasets, which
can introduce bias and lead to inaccurate research results.

As a response to these challenges, researchers have turned to Synthetic Data
Generation (SDG) using neural networks as a viable alternative [3]. SDG involves
creating synthetic datasets that mimic real-world data, enabling researchers to
overcome the limitations of obtaining real medical data. By utilizing SDG, researchers
can generate diverse and balanced datasets, thereby enhancing the development and
application of AI in areas such as diagnosis and treatment, patient engagement and
adherence, and administrative tasks in the healthcare industry [4].

Synthetic data has emerged as a valuable tool in medical research due to its potential
to create replicated and anonymous data, enabling researchers to experiment with
more freedom while staying within legal boundaries [5, 6]. Ideally, synthetic
data should imitate the underlying statistical properties of the real data without
including any data from the original dataset. Its applications in medical research
are diverse, including augmenting datasets that have few data points to improve
machine learning models [7, 8]. This addresses the issue of data scarcity, a common
challenge in medical research, by synthesizing additional data points that are similar
to the existing ones. This increases the sample size and improves the accuracy of
models, which rely on learning patterns from vast amounts of data and diverse and
representative data, to achieve high performance. Synthetic data also has applications
in privacy preservation, where the focus is on ensuring that data is safe to share
among researchers without compromising privacy [6]. Synthetic data can be used
to generate data that is similar to the original data, but without revealing any personal
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information, making it safe for sharing and analysis.

Numerous methods have been researched to address the challenges of data scarcity
and privacy concerns in medical research. One common approach involves using
baseline models to replace or delete sensitive values or add noise to the data
[9, 10, 11]. Statistical and probabilistic models can also be used to simulate the real
data [12, 13, 14]. Although these methods offer promise, they may not be the most
effective means available for generating high-quality data. Moreover, Deep Learning
(DL) generative techniques have shown remarkable potential in generating highly
realistic synthetic data. Autoencoders, Generative Adversarial Networks (GANs),
and Ensembles are among the most researched approaches, with GANs being the
most popular method, especially in the generation of images and videos [15]. GANs
have seen significant improvements in the area of AI-generated images, including
their application in medical research to generate realistic images of skin lesions [16],
synthesize chest X-rays for COVID-19 detection [17], and create colonoscopic images
[18]. However, the focus of this thesis is on a relatively novel and less-explored area
of synthetic data generation, namely Synthetic Tabular Data Generation (STDG) using
GANs.

While there is extensive research on SDG using medical images, the most popular
method for developing machine learning models involves utilizing structured tabular
data. As a result, Electronic Health Records (EHRs) and other health-related data
hold significant potential for creating AI-based models. Nevertheless, there is a
lack of progress in this field as structured tabular data is also more identifiable
compared to other types of data [15]. Additionally, due to the STDG being a
relatively new research area, there is currently no consensus on best practices for
creating synthetic tabular medical data [19]. In this thesis, the overarching goal is
to explore various methods and metrics used in this emerging field. Additionally,
the aim is to contribute to the advancement of STDG research by implementing and
testing several models on synthetic data. By investigating different approaches and
evaluating their effectiveness using established metrics, this research seeks to expand
the understanding of STDG techniques and their potential applications in healthcare.

1.2 Problem Statement
This thesis is a collaborative effort with the Centre for Intelligent Musculoskeletal
Health (CIM) at OsloMet’s Faculty of Health Sciences. In conjunction with the
university’s AI Lab, the research aims to evaluate the effectiveness of different GAN
models for generating synthetic tabular data in medical research applications. The
research will assess their performance using different metrics, including similarity,
machine learning utilities, and privacy. This thesis will address three key problem
statements:

1. How effectively can entirely synthetic datasets be generated to maintain
predictive power comparable to real data?

2. How significantly can the performance of prediction models be enhanced by
augmenting real data with synthetic data, as compared to using real data alone?

3. To what extent can privacy and data quality be balanced when generating
synthetic medical data that accurately captures clinical complexity?
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1.3 Thesis outline
Chapter 2 offers a comprehensive overview of the theoretical background required
for the thesis. Topics such as Artificial Neural Networks, Generative Adversarial
Networks, and various GAN architectures are covered. The chapter also delves into
the process of generating synthetic tabular data using GANs and explores methods for
evaluating synthetic data within related research.

Chapter 3 details the approach adopted for this thesis by first introducing the datasets
and GAN models used for the study. Three different datasets were compared, and two
GAN models, namely CopulaGAN and CTGAN, were used. This chapter then delves
into how the models were implemented and how the generated data was evaluated.

Chapter 4 presents the outcomes derived from the model training and evaluation
framework established for this thesis. The chapter offers a comparative analysis of the
different datasets generated by the models, in three different evaluation dimensions.

Chapter 5 discusses the findings of the research in detail and highlights the limitations
of the study. The chapter also outlines possible areas for future research.

Finally, Chapter 6 concludes the thesis by summarizing the research and highlighting
the key contributions made by the study.
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Chapter 2

Background and Related Work

This chapter provides a comprehensive review of the theoretical background required
for this thesis. To gain a thorough understanding of Generative Adversarial Networks
(GANs), it is essential to first understand the fundamental concepts of neural
networks. The chapter then delves into the architecture of GAN, including commonly
used variants. Finally, the chapter explores the application of GANs in synthesizing
tabular data, covering different tabular GAN models and evaluation metrics.

2.1 Artificial Neural Networks

x1

x2

x2

xn

f

w1

w2

w3

wn

OUTPUTINPUT

Weighted sum Activation function

Figure 2.1: Simple artificial neuron architecture.

Artificial neural networks (ANNs), commonly referred to as neural networks, are
a sub-field of Artificial Intelligence (AI) that models information processing similar
to the human brain. The human brain performs computations through its intricate
network of interconnected neurons (or nodes) that communicate by transmitting
electrical impulses. A neuron computes an output based on weighted input received
from other neurons. The relative importance of the input is determined based on the
associated weight [20].

In an artificial neuron, input signals are weighted and summed, and the resulting
value is compared to a threshold using an activation function, also referred to as a
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step function. If the sum exceeds the threshold, the output is activated, otherwise, it
remains inactive. The process of learning in an artificial neuron involves modifying
the weights and threshold values to minimize the discrepancy between the predicted
and actual output [21]. A simple artificial neuron architecture, shown in Figure 2.1,
illustrates the fundamental behavior of a neuron and serves as the foundation for a
neural network.

2.1.1 Feed-forward Neural Networks

A feed-forward network is a common neural network architecture that can be
implemented with either single-layer or multi-layer functionality. A single-layer feed-
forward network is composed solely of an input layer and an output layer. The input
neurons receive the input data, while the output neurons provide the output results.
The computations in a single-layer network are performed by the output layer, and
the network has a unidirectional connection from input to output neurons due to its
acyclic structure. Figure 2.2 provides a visual representation of this architecture.

INPUT
LAYER

OUTPUT
LAYER

Input neurons Output neurons

Figure 2.2: Single-layer feed-forward network.

A multi-layer feed-forward network operates similarly but with the addition of hidden
layers between the input and output layers. These hidden layers assist the network
in conducting intermediate computations prior to producing the final output. The
computations carried out by the hidden layers may involve operations such as data
transformation, automatic feature creation, and so on. The hidden layers are also
unidirectional, and they transfer the training data from one layer to the next during
the feed-forward process. The number of hidden layers required in a neural network is
dependent on the complexity of the problem being addressed. While some problems
may be adequately solved using a single hidden layer, others may require multiple
ones [22]. Selecting an inappropriate number of hidden layers or neurons can lead
to issues such as underfitting or overfitting. Further details on these concepts will be
discussed in Section 2.1.4.
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Figure 2.3: Multi-layer feed-forward network.

2.1.2 Training Neural Networks
Deep neural networks, which consist of multiple hidden layers, employ the back-
propagation algorithm to facilitate the learning process. The algorithm iteratively ad-
justs the weights and biases of the neurons in the network to minimize the prediction
errors. In simple terms, the backpropagation algorithm involves a forward pass where
inputs traverse the network, and predictions are generated. The output is compared
with the actual output, and an error is computed based on a loss function. The er-
ror is then propagated backward through the network, and an optimization algorithm
modifies the weights. During the backward pass, the weights and biases are updated
in a way that minimizes the loss by computing the gradient of the loss function with
respect to them using the chain rule. This iterative process continues until the error is
reduced to an acceptable level [21, 23].

Using an optimization algorithm is essential for finding the optimal set of weights and
biases that minimize the error during neural network training. Therefore, selecting
the best optimizer is critical to achieving an effective training process. While there
are several optimization algorithms available, the focus here will be on explaining
two widely used algorithms in modern machine learning: Stochastic Gradient Descent
(SGD) and Adam.

Gradient Descent
The optimization of a neural network is most commonly achieved using gradient
descent algorithms that attempt to minimize the cost function towards a local
minimum. This learning algorithm has several variations, including the use of
batch training, stochastic training, or mini-batch training. Batch Gradient Descent
(BGD), commonly known as Vanilla Gradient Descent, is a fundamental optimization
algorithm. It calculates the gradient of the cost function with respect to the parameters,
θ, using the entire training dataset in each iteration. The goal is to find the optimal
parameters, that will result in the lowest possible loss. The equation that updates each
parameter is denoted as the following equation [24]:

θ = θ − η · ▽θ J(θ) (2.1)
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The learning rate, η is the parameter that determines the step size. The step size then
determines the speed of how quickly the model converges. While a larger step size can
speed up the training of a model, it also increases the risk of overshooting the optimal
value. On the other hand, a smaller step size can result in a more precise convergence
but at the cost of a longer training time. The gradient of the cost function with respect
to the parameters, denoted as ▽θ J(θ), is a crucial component in the optimization
process. The algorithm leverages this gradient to iteratively adjust the parameters
in an attempt to minimize the cost function. Lastly, the cost function, denoted as J(θ),
quantifies the model’s loss. Since this algorithm uses the entire dataset to compute the
gradients, it can be slow and computationally expensive on large datasets [24]. On the
other hand, the Stochastic Gradient Descent (SGD), updates each parameter for each
training example. SGD is calculated by the following equation:

θ = θ − η · ▽θ J(θ; xi : yi) (2.2)

Within the function, xi represents each training example in the dataset, while yi

corresponds to its respective label. This approach is more computationally efficient
then BGD as it avoids the need to compute gradients for the entire training dataset
in each iteration. Instead, it randomly selects a single training example and updates
the gradient based on that. SDG, due to its inherent variability, has the potential to
reach local minima quicker than BDG. However, it also risks overshooting the exact
minimum, and therefore hinder convergence [24]. Moreover, a compromise between
these two approaches is Mini-batch Gradient Descent, denoted in the following
equation:

θ = θ − η · ▽θ J(θ; xi:i+n : yi:i+n) (2.3)

Using this equation, the gradients are updated in small batches of n training
examples. This results in a balance between computational efficiency and a more
stable convergence towards a minimum of the cost function. Hence, mini-batch is
often the preferred choice among the gradient descent algorithms when training a
neural network [24].

Adam
Adam is short for Adaptive Moment Estimation, and is an optimization method that
combines the two methods; SGD and momentum. Specifically, the Adam uses the
advantages of AdaGrad [25] and RMSProp [26] which is two popular optimization
algorithm, to optimize neural network training with little memory requirement.

What makes this algorithm unique is that it computes adaptive learning rates for
each parameter during training, based on estimates of the gradient’s first and second
moments. The algorithm allows for dynamic adjustments of the learning rate, which
are based on estimates of the past gradient and its variations over time [27]. In
contrast, SGD employs a fixed learning rate for all the gradient updates, without
any changes during training. Adam’s adaptability allows for efficient optimization
of neural networks, even in complex parameter spaces, making it a key advantage of
this algorithm [27].

7



2.1.3 Activation Functions
As previously stated, neural networks also include nonlinear activation functions.
Activation functions play a crucial role in neural networks as as they introduce
nonlinearity, allowing for more complex and powerful modeling of data [28].
Some commonly used activation functions include the Sigmoid function, Hyperbolic
Tangent (tanh), and Rectified Linear Unit (ReLU). The Sigmoid function is a common,
but more simple, activation function in neural networks. Its definition is as follows:

g(x) =
1

1 + e−x (2.4)

The functions take an input value x, and maps the value to range between 0 and 1.
This function is commonly used in the output layer of shallow neural networks for
binary classification problems [28]. However, the function has some issues, such as
the vanishing gradient problem that arises in networks with 3-4 hidden layers. Hence,
other activation functions are often preferred. One such function is Tanh, which is an
improved version of Sigmoid, and is defined by the ratio of the functions of sinus and
cosine:

tanh(x) =
sin(x)
cos(x)

(2.5)

It can also be abstracted from the sigmoid function, where sigmoid is g(x) from
Equation 2.4:

tanh(x) = 2sigmoid(2x)− 1 (2.6)

This function maps the input value to a range of -1 to 1, making it faster and more
accurate than the sigmoid function. It also has a wider range of output values,
allowing it to better capture negative and positive values and handle data that requires
a wider distribution [28]. Additionally, the Rectified Linear Unit (ReLU) function is
another popular activation function. It is defined as follows:

g′(x) = max(0, x)

{
x if x ≥ 0
0 if x < 0

(2.7)

Again, x is the input function and the values that the function outputs are the
maximum of 0 and x. Meaning that values that are greater or equal to 0, output x,
while values less than 0, output 0. The function is popular due to its ability to prevent
vanishing gradients and its computational efficiency. Another variant of ReLU is
Leaky ReLU, which addresses the issue of "dying ReLU" where some neurons become
permanently inactive during training [28].

2.1.4 Regularization Techniques
The performance of a neural network is significantly influenced by both the quality
and quantity of training data. If the training data is insufficient, two common issues
can arise: overfitting and underfitting. Overfitting occurs when a model performs well
on the training data, but its performance degrades significantly when tested on unseen
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data. A common indication of this is a low training error but a high validation error.
This suggests that the model is memorizing the expected outputs instead of learning
the underlying data distribution. On the other hand, underfitting is a problem where
the neural network cannot learn enough from the limited data available, resulting
in poor performance. High training and validation errors are common indicators of
this [29]. To prevent these issues from happening, neural networks use regularization
techniques. Regularization is when small variations are added to the data, to train
a model more efficiently. Common regularization techniques include L1 and L2
regularization, dropout, and batch normalization.

L1 regularization, also known as LASSO regularization, adds a penalty to the loss
function based on the absolute values of the weights when training a neural network.
The goal of L1 regularization is to eliminate irrelevant features from the model by
promoting sparse feature selection and improving generalization performance. This
regularization technique encourages the neural network to select the most important
features, making the model less complex [30]. Furthermore, L2 Regularization,
commonly known as ridge regularization or Tikhonov’s regularization as well, also
penalizes the weights in the loss function. However, the penalty is added based
on the squared values of the weights [31]. Therefore, L2 is less aggressive when it
comes to feature selection and should be used when all features are considered equally
important.

Another commonly used regularization technique in neural networks is dropout,
which randomly drops nodes in the network using a dropout layer. When a node
is dropped, its information connected to the incoming and outgoing connections is
ignored. The purpose of dropout is to encourage each node in the network to learn
information independently, without overly relying on its connections. In turn, this
makes the network more resilient to noise and variations in input data [31].

During the training of a neural network, the distributions of the layer inputs tend
to change between each layer, which is commonly referred to as internal covariance
shift. This shift slows down training because it requires lower learning rates and more
thorough optimization of parameters. Batch normalization addresses this concern by
normalizing the inputs to each layer during training, for each mini-batch, to ensure
that the network maintains consistent layer input distributions. As a result, batch
normalization helps to enhance the generalization performance and stability of the
model [32].

2.2 Generative Adversarial Networks
The most prevalent approach used in machine learning today is supervised learning.
In this approach, algorithms learn from labeled data, where the model is exposed
to a set of inputs and their corresponding outputs. It then learns to map the data
through training [33]. This is commonly used with classification and prediction tasks.
Despite its capability of delivering higher accuracy than human counterparts, it still
depends on human-supplied labeled data. As a result, many researchers are now
exploring unsupervised learning to reduce the dependence on human supervision and
the amount of training data necessary.

Generative modeling is a type of unsupervised learning, where a set of samples is
taken from an unknown data-generating distribution Preal, and the goal is to find an
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estimate Pmodel that is similar to it. A well-known variant of generative modeling
is the Generative Adversarial Network (GAN) [34]. GANs have a wide range of
applications, but as of now, their primary strength lies in the synthesis of images.

2.2.1 Structure and Training
A GAN is a type of neural network architecture that involves a pair of neural networks
competing against each other to learn data patterns. This method can both be semi-
supervised and unsupervised [35]. How this works, is depicted in Figure 2.4.
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GENERATOR
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DISCRIMINATOR
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FAKE
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GRADIENTS
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Feed
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Figure 2.4: Overall GAN structure.

GANs consist of two components: a generator and a discriminator. The generator
produces counterfeit images that are as authentic-looking as possible, while the
discriminator is presented with both real and fake images and attempts to differentiate
between them. The generator is unable to access real images but improves through
its interactions with the discriminator. However, the discriminator has access to
both the synthetic images and samples from the real images. The discriminator
evaluates error by comparing the ground truth of the image with its prediction, using
backpropagation. This error is also fed to the generator which attempts to improve
itself by generating more realistic and high-quality images [35, 34]. The objective is to
achieve a balance where Preal and Pmodel are nearly equal.

During the training of a GAN, both of the neural networks involved are simultan-
eously optimized. The objective is to enhance the classification accuracy of the dis-
criminator by adjusting its parameters while also modifying the generator’s paramet-
ers to successfully deceive the discriminator. When one network updates its paramet-
ers, the parameters of the other network remain fixed.

A value function V(G, D) for a simple GAN is used to evaluate the cost function when
training. Training involves solving the following minmax function [36]:

max
D

min
G

V(G, D),

Where,

V(G, D) = Epdata(x)logD(x) + Epz(z)log(1 − G(z)) (2.8)
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The research paper by Goodfellow et al. [36] provides a more comprehensive proof
of this equation. However, simply put, G and D represent the generator and
discriminator functions, respectively. The probability distribution of the latent space is
denoted by pz, while the probability distribution of the training dataset is denoted by
pdata. When a data sample, x, is drawn from pdata, the discriminator aims to classify it
as a real sample. On the other hand, when a generated sample, G(z), is given as input
to the discriminator, it aims to classify it as a fake sample. The variable z represents a
random noise vector drawn from the latent space probability distribution, pz. G wants
to minimize V, while the discriminator D wants to maximize it.

The discriminator is optimal when:

D∗(x) =
pdata(x)

pdata(x) + pg(x)
(2.9)

While the generator is optimal when:

pg(x) = pdata(x) (2.10)

This implies that when the accuracy of the discriminator reaches 50% for all the
samples taken from x, the generator is considered optimal. In simpler terms, the
discriminator is confused because its predictions of whether the data is real or fake
are as good as a random guess.

2.2.2 Challenges with GANs
Despite the existence of multiple theoretical approaches to training, GANs are well-
known for being challenging and unstable to train. Common failures that can happen
during training are the failure to converge, vanishing gradients, mode collapsing,
hyperparameter tuning and oscillatory loss [37, 38]. These challenges are general
problems that can arise when working with GANs, and are not dependent on a specific
domain or architecture.

When a machine learning model reaches convergence, it means that the model ceases
to improve with further training. This is desirable as the algorithm has succeeded
in finding the optimal solution to the problem. Considering that GANs train two
models at the same time, it is difficult to make the models converge. In GANs, low-
quality generated images can serve as a sign of non-convergence. Non-convergence
often occurs when either the discriminator or the generator becomes more powerful,
resulting in a lack of learning and a potential issue with vanishing gradients [37]. Poor
initial generated images increase the discriminator’s ability to distinguish between
real and fake images. Consequently, the probability of the generated images being real
will be close to zero. If this continues, the discriminator will cease to supply gradients
to the generator, hindering its ability to improve [37].

GANs have a tendency to produce output that lacks diversity and only captures
a small portion of the data distribution. This limitation typically stems from the
generator becoming trapped in suboptimal solutions, leading to generating outputs
that do not fully reflect the target data. Another cause can be an overly strong
discriminator, making it difficult for the generator to find a way to trick it [39].
Additionally, without proper regularization, mode dropping can also play a role [40].
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When the target distribution has multiple clusters of similar data points, the generator
may only generate data that belongs to a certain mode of class, leading to a lack of
diversity in the generated dataset.

Oscillatory loss may occur during the training process, which can be recognized by
unstable and wild oscillations in the discriminator or generator loss. The loss function
should ideally stabilize or gradually decrease/increase over time. However, if it does
not, it can hinder the effectiveness of the training process [38]. Furthermore, the
proper selection of hyperparameters is crucial for achieving convergence in GANs.
However, due to the large number of hyperparameters involved, finding the optimal
settings can be a challenging task. While Grid Search is a common technique used to
tune hyperparameters in neural networks, it may not be feasible for GANs due to the
computational cost and time required, especially when dealing with a large number
of parameters. This can make it hard to find the optimal parameters for the network
[38].

2.3 Different GAN Architectures
In 2.2, the most basic structure of a GAN was presented, commonly known as
the Vanilla GAN or Traditional GAN. This GAN concept and structure was first
introduced by Goodfellow et al. [36] in 2014, and over time, several variations of its
architecture have been developed. Within the context of this thesis, this section will
provide an overview of some of the most fundamental GAN architectures.

2.3.1 Conditional GAN
Conditional Generative Adversarial Networks (CGANs) were first proposed by Mirza
and Osindero [41] in 2014, aiming to address the limitation of traditional GANs
that lacked control over the generated output. Unlike traditional GANs that rely
solely on random noise input, CGANs incorporate additional conditional information
during the training process to have more control over the generated data. The use
of conditional inputs, such as class labels or data from other modalities, is an effective
way to enhance the capabilities of GANs. By incorporating such inputs, CGANs allow
for more precise and controlled data generation. During training, CGANs can be
conditioned on a specific class, allowing the network to generate images that belong
to that class. This is in contrast to traditional GANs, which lack this ability, and as a
result, it is often challenging to generate data samples that belong to a specific class.

The traditional GAN is modified by incorporating extra conditional information,
denoted as y, into both the discriminator and generator. This conditioning can
be achieved by introducing an additional input layer that takes in the conditional
information. As a result, Equation 2.8, which represents how a traditional GAN trains,
can be updated to include y as an input to both the discriminator and generator,
allowing for the conditioning to take effect during the training process. The updated
equation can be observed in Equation 2.11.

V(G, D) = Epdata(x)logD(x|y) + Epz(z)log(1 − G(z|y)) (2.11)

This GAN network has laid the groundwork for a lot of applications and newer GAN
architectures today. Examples of tasks this architecture can be used for are image-to-
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image translation [42], convolutional face generation [43], shadow detection [44], and
other tasks where conditional information provides control over the generated output.

2.3.2 Deep Convolutional GAN
Deep Convolutional Generative Adversarial Networks or DCGANs were created to
improve upon the traditional GAN architecture for image generation tasks. Radford
et al. [45] found that traditional GANs had issues with generating high-quality images
and offered some architectural changes in a paper published in 2015. The main
architectural change that the authors introduced was to include deep Convolutional
Neural Networks (CNNs) in the discriminator and the generator.

Simply explained, CNNs are a type of deep-learning neural network that has
been proven to work great with image recognition, object localization, and image
segmentation tasks. The way that the network operates is to identify patterns in
input images through several convolution and pooling layers. Each layer tries to
extract different features from the image and ultimately it leads to a prediction or
classification. The convolutional layer uses filters on the image to detect different
features, such as edges or shapes. While the pooling layer downsamples the output
from the convolutional layer to reduce the complexity of the network [46].

While DCGANs has shown to be more effective at generating high-quality images
compared to traditional GANs, the training process of these networks remains
challenging. Radford et al. [45] addressed these challenges by introducing a couple
of architecture guidelines to help stabilize the training of the network. Firstly,
the paper proposed replacing any of the pooling layers in the discriminator with
strided convolutions, while fractional-strided convolutions should be used in the
generator. Additionally, batch normalization should be used in both the generator
and discriminator. Batch normalization stabilizes learning by normalizing the input
to the model. For deeper network architectures, it is recommended to remove fully
connected hidden layers. Lastly, ReLU activation functions should be used in all
the layers of the generator, except for the output layer which should use the Tanh
activation function. While the discriminator should use the LeakyReLU activation
function in all layers.

2.3.3 Wasserstein GAN
The Wasserstein Generative Adversarial Network (WGAN) was introduced in 2017
by Arjovsky et al. [47] and this architecture focused more on training stability and
addressed the issue of mode collapse, where the generator produces limited and
repetitive samples. It also focuses on the generation of a more meaningful loss
metric, resulting in more informative learning curves. This can be a valuable tool
for debugging and optimizing hyperparameters, as it helps to better understand the
training dynamics and performance of the model.

What distinguishes this architecture from a conventional GAN is that the discrim-
inator does not rely on binary classification to determine whether an image is real
or fake. Instead, it employs the Earth Mover’s Distance (EMD), also known as the
Wasserstein metric. The discriminator, or "critic" as Arjovsky et al. [47] calls it, util-
izes the EMD as a loss function. The EMD is a way to measure how different the real
and generated data distributions are, based on how the discriminator function is set
up. The critic tries to predict this distance by examining different mappings of the real
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and synthetically generated data into a shared space. It then aims to make it as chal-
lenging as possible for the generator to deceive it. This is done by trying to maximize
the amount of probability mass that needs to be moved. The generator’s goal is then
to minimize the EMD between the expectations of the real and generated distributions
[48, p.83-88]. WGANs also introduced the 1-Lipschitz into the discriminator function.
This is a technical constraint that aims to make the network more stable to train.

EMD makes WGAN’s loss more understandable since it does not involve any
logarithms. It also makes hyperparameter tuning easier, because WGAN requires a
clipping constraint during training which acts like a typical learning rate. This in turn
gives clearer stopping criteria when training, because the network can just calculate
the Wasserstein distance to give an indication of when to stop to reach convergence [48,
p.83-88]. There has also been done some research on whether traditional measures of
the training process of GANs actually are meaningful [49]. This is training measures
such as Jensen-Shannon (JS) loss and divergence between the generator and the real
distribution. Therefore, with WGAN utilizing Wasserstein distance, it manages to
overcome this.

In the original WGAN article, the authors did not explicitly design the network
to address mode collapse, but they claimed that the new distance metric used in
WGAN could alleviate this problem. This is due to the EMD-based critic utilized
in WGAN being less prone to vanishing gradients and overfitting. Because of this,
the critic manages to provide the generator with a lot more informative feedback,
resulting in more diverse output samples that capture the different modes of the target
distribution. This, in turn, helps to alleviate the problem of mode collapse during GAN
training.

2.3.4 Wasserstein GAN with Gradient Penalty
The original WGAN architecture was a significant step towards achieving more
stable training in GANs. However, it still faced challenges such as generating low-
quality samples and issues with network convergence. To address these limitations,
Gulrajani et al. [50] proposed an improved network architecture called WGAN-GP
in their publication. WGAN-GP introduced a gradient penalty to the architecture,
aiming to alleviate these challenges and improve the overall performance of the GAN
model. The authors’ key observation was that the limitations in the original WGAN
were likely due to the enforcement of the Lipschitz constraint on the critic’s weight
clipping, resulting in undesirable behavior. The Lipschitz constraint used in WGAN
is a constraint on the smoothness of the critic’s output. As an alternative approach,
they proposed a method that penalizes large gradients, which results in more stable
training and smoother gradients without the need for explicit weight clipping.

To control how strong the penalty should be, they applied a coefficient, λ, to the
training process. A higher value of λ results in a stronger penalty, which can contribute
to increased stability during training. The downside of this is that it can make the
training more difficult. Gulrajani et al. found that a λ = 10 worked well across different
architectures and datasets, however, other penalties may be better suited for other
models as it all depends on the specific problem at hand.

The authors of the article also highlight that they deviate from the common practice
of using batch normalization in both the discriminator and generator in many GAN
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architectures. In their approach, they do not use batch normalization in the critic.
Instead, they opt for layer normalization as a replacement. In conclusion, the
use of WGAN-GP outperforms the original WGAN, without the need for much
hyperparameter tuning, as demonstrated by Gulrajani et al.

2.4 Generating Tabular Data Using GANs
Although basic statistical models can generate synthetic tabular data, their scalability
and effectiveness are limited, especially when dealing with larger datasets [51].
However, researchers have explored the potential of using GANs, commonly
associated with image synthesis, for Synthetic Tabular Data Generation (STDG) as
well [38]. When using GANs for STDG, the process is similar to image synthesis.
The generator is trained to understand the data distribution across all the columns
of the real dataset, allowing it to create a synthetic table that mimics the real one. In
contrast to image data, tabular data can consist of various data types in each column.
A column in a dataset may contain numerical values that are discrete or continuous,
as well as categorical values. Consequently, the GAN employed for STDG needs to be
able to learn and generate different types of data [52].

While the use of GANs in STDG is a relatively new research area, this section will
cover the most prevalent tabular GAN approaches, the challenges they face, and how
to evaluate the synthetic data generated.

2.4.1 Overview of Tabular GAN Approaches
Based on Hernandez et al. [15]’s review of 34 publications on STDG approaches, it
was found that GAN-based methods performed better than other approaches tested.
However, they did not identify a specific GAN-based approach that was the best.
Similarly, Coutinho-Almeida et al. [3] reported in their review that none of the tested
STDG approaches outperformed others across all dimensions. The challenge in
comparing GAN-based approaches lies in the diverse data types, dimensions, and
metrics used to evaluate model performance across different publications. As there
is no universal GAN-based architecture suitable for all tabular data, the optimal
GAN model architecture should vary depending on the dataset characteristics. For
example, some models perform better with categorical and numerical data, while
others are better with time-series data. Therefore, it is crucial to evaluate dataset
features and experiment with different GAN-based architectures to find the most
effective approach. Overall, achieving a balance between resemblance, privacy, and
utility remains a challenging task as reported by various publications. As a result,
there is a significant amount of work required to improve the generalizability of GAN
models and identify the optimal model for all tabular healthcare data types [15]. With
these considerations in mind, it is worth exploring a few noteworthy tabular GAN
models that have gained attention and popularity.

Medical GAN (MedGAN), proposed by Choi et al. [53] in 2017, is an early example of
a tabular GAN model and was designed specifically for generating synthetic medical
data. MedGAN is able to generate high-dimensional, multi-label discrete variables
that represent realistic patient data. The focus is mainly on binary and count variables.
Additionally, MedGAN incorporates an autoencoder with the GAN framework to
effectively learn the underlying distributions of discrete features in a dataset. It also
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uses mini-batch averaging as a technique to address mode collapse and is built upon
the traditional GAN architecture by Goodfellow et al. [36].

Although MedGAN has shown promising results, alternative architectures have been
proposed that improve upon its design. Baowaly et al. [54] (2018) modified MedGAN
with the aim of creating more realistic patient records. Two solutions, MedWGAN
and MedBGAN, were proposed. MedWGAN replaced MedGAN’s GAN model with
WGAN-GP, while MedBGAN used a boundary-seeking GAN [55] instead. Both
these models outperformed MedGAN in statistical and machine learning tasks, with
medBGAN demonstrating better performance compared to both.

Camino et al. [56] (2018) proposed a method that was trained to generate multi-
categorical data. The focus was to generate better discrete values, as previous GANs
usually performed better with continuous data. The proposed method’s architecture
adapted MedGAN’s decoder and incorporated multiple (Gumbel) softmax output
layers that are suitable for categorical data structures. This method showed
improvement over the original MedGAN architecture. However, its reliance on
additional information, such as the dimensionality of the variables, limited its
applicability as this information may not always be readily available. The HealthGAN
architecture, proposed by Yale et al. [57] (2020), addressed limitations in MedGAN,
such as its compatibility only with binary data and issues with resemblance
comparison between real and synthetic data. HealthGAN integrated concepts from
both the MedGAN architecture and WGAN-GP, so that it could make the model
handle categorical features better.

In 2018, Park et al. [58] introduced TableGAN, an alternative GAN architecture that
focuses on generating synthetic records with categorical, discrete, and continuous
values. Based on the DCGAN model, TableGAN includes an additional classifier to
ensure semantic integrity of the generated records. The classifier makes the model
resilient against various attacks, such as re-identification attacks, attribute disclosure,
and membership attacks.

Xu and Veeramachaneni [59] introduced Tabular GAN (TGAN) in 2018 and is an
architecture that is similar to the TableGAN model. However, while TableGAN
uses CNNs, Tabular GAN uses Recurrent Neural Networks (RNNs). TableGAN’s
main focus is on making a tubular GAN model that can handle various data types,
including multinomial/discrete and continuous values. This model employs a form of
RNN called Long-Short Term Memory (LSTM) network with an attention mechanism.
This enables the model to generate values for each column sequentially, instead of
generating the entire table at once.

The same authors who developed TGAN also introduced a refined model called
CTGAN [60], which stands for Conditional Tabular GAN. This model improved upon
TGAN, by making it possible to generate synthetic data with specific conditions or
constraints. CTGAN addresses non-Gaussian and multimodal distributions in tabular
data with mode-specific normalization techniques. It also uses a conditional generator
and training-by-sampling to handle imbalanced discrete columns. The model is
trained using WGAN-GP. A variation of CTGAN known as CopulaGAN is a model
in the online Synthetic Data Vault (SDV) library [61] that utilizes the Cumulative
Distribution Function (CDF) based transformation applied by GaussianCopulas. This
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transformation makes it easier for the CTGAN model to learn the underlying data.

Traditional GANs are better at capturing static data samples, however the architecture
has issues in capturing the unique temporal correlations that exist in time-series data.
This is why, Yoon et al. [62] created a Time-series GAN (TimeGAN) that takes this into
account. TimeGAN incorporates autoencoding components to complement its GAN
components. Specifically, it includes an embedding function and a recovery function
in addition to a sequence generator and a sequence discriminator. These components
are trained together to enable the model to encode features, generate representations,
and iterate across time. While the paper does not explicitly say what GAN architecture
it is based on, the authors mention that Recurrent Conditional GAN (RCGAN) [63] and
Continuous- RNN-GAN (C-RNN-GAN) are the closest in architecture [64].

Two more recent architectures that have gained attention in the field are C-TABGAN
[65] and TabFairGAN [66], which were proposed in 2021 and 2022 respectively. C-
TABGAN, or Conditional Tabular GAN, is a novel GAN architecture that enhances
traditional tabular GANs by effectively modeling diverse data types, while also
addressing data imbalance and long tail distributions. The model incorporates
information, classification, and generator loss into the conditional GAN framework,
building upon the CGAN architecture.

TabFairGAN is a recent approach that integrates fairness into the GAN architecture.
The model tries to generate synthetic data as similar to the original dataset, while also
making sure that the generated data is both accurate and fair. It does this by adding a
fairness constraint in the value function. The underlying architecture is based on the
WGAN framework.

Tabular GAN approach Year Baseline Architecture

MedGAN [53] 2017 Vanilla GAN, Auto-encoder
medWGAN [54] 2018 WGAN-GP
medBGAN [54] 2018 BGAN
MedGAN with Gumbel-softmax [56] 2018 Traditional GAN, Auto-encoder
HealthGAN [57] 2020 WGAN-GP
TableGAN [58] 2018 DCGAN
TGAN [59] 2018 Traditional GAN
CTGAN [60] 2019 WGAN-GP
CopulaGAN [61] 2019 WGAN-GP
TimeGAN [62] 2019 RCGAN, C-RNN-GAN
CTAB-GAN [65] 2021 CGAN
TabFairGAN [66] 2022 WGAN

Table 2.1: Overview of popular Tabular GAN approaches and the main architecture it
is based on.

2.4.2 Challenges with Tabular GANs
GANs may face several difficulties when learning from tabular data. For example,
imbalanced categorical data may lead to mode collapse when some categories have
a significantly higher number of instances. This is especially an issue with Electronic
Health Records (EHRs), as these often have issues with class imbalance [52]. Class
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imbalance occurs when one or more classes have a significantly higher number of
instances compared to others, typically referred to as majority classes. This imbalance
can introduce bias in the model’s performance and predictions.

Furthermore, the shape distribution of each column can differ, which can cause non-
convergence and vanishing gradient problems [67]. Also, when the data is sparse
and one-hot-encoded, it can cause problems during the discriminator training process.
This is because the discriminator learns to differentiate between real and fake data
based on how uncommon they are in the distribution, rather than based on whether
they are real or fake values [67].

To overcome the challenges associated with learning from tabular data, researchers
often use available datasets for research purposes. However, many open-source
datasets lack standardized documentation and may have quality issues, posing
challenges for data reliability and validity [19]. This is particularly problematic in
the medical field, where class imbalance and data sparsity are common issues that can
introduce bias in the model’s performance and predictions. Additionally, open-source
health-related datasets may have been previously anonymized and synthesized,
leading to further bias. To address these challenges, it is advisable to use diverse
datasets in various contexts, including authentic data directly sourced from hospitals
or laboratories without any anonymization or modification.

2.4.3 Evaluation Metrics
To evaluate the performance of GAN-based approaches for STDG, three dimensions
are commonly utilized: Resemblance, Machine Learning Utility, and Privacy. Each
dimension has specific metrics that are used to measure the performance, as
documented in relevant publications. Analyzing these dimensions and associated
metrics provides a deeper understanding of how GAN-based approaches are assessed
for their effectiveness in generating synthetic tabular data while preserving important
characteristics such as resemblance to the original data, usefulness for machine
learning tasks, and privacy protection.

Resemblance
To evaluate the resemblance of synthetic data generated by a GAN-based model,
various methods can be employed. One common approach is to compare the
univariate statistical characteristics of the synthetic data, such as mean, median, and
standard deviation, with those of the real data [38]. Additionally, distance calculations,
statistical tests, and visual comparisons can also be utilized to assess the resemblance
of the synthetic data to the original data [51].

The most commonly used approaches within the resemblance dimension are
dimension-wise (DW) probability and distance metrics [3]. DW testing involves
comparing the probability distributions and statistical characteristics of each feature
between the synthetic and real data. Studies conducted by Ghosheh et al. [19] and
Coutinho-Almeida et al. [3] have indicated that the Bernoulli’s success probability and
chi-squared (x2) test are frequently used for binary features during DW testing. Addi-
tionally, the Student T-test is commonly used for continuous features. For comparing
the characteristics of features, Hernandez et al. [51] suggested several statistical tests
for both numerical and categorical attributes. Numerical attributes can be compared
using tests such as Student’s T-Test, Mann-Whitney U-Test, and Kolmogorov-Smirnov
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(KS) test for mean, population, and distribution comparison. Categorical features can
be compared using x2 tests to assess feature independence between real and synthetic
categorical data [51, 15, 67]. Additionally, distance metrics, such as Cosine Distance,
can be used for DW testing, with smaller distances indicating better preservation of
univariate statistical characteristics [51].

Along with DW testing, it is also important to check the real data distributions in terms
of the joint distribution [19]. This means that the relationships and patterns between
features in the real data should be preserved when synthesizing data. Some metrics
that have been used for this are Jensen-Shannon Divergence (JSD), Inception score (IS),
Wasserstein Distance(WD), and Maximum Mean Discrepancies (MMD) [19].

Along with DW-testing and joint distribution preservation, it is also important to
preserve the inter-dimensional relationship, as well as correlations between features
between the real and synthetic data [19]. Common correlation metrics used are
Pearson correlation, Spearman correlation, correlation coefficients, and correlation
matrices [51]. The inter-dimensional relationships can also be compared by doing
Dimension-Wise prediction tests. This is when an ML model, most commonly a
prediction model, is trained on real and fake data, and the model performance is
compared. Logistic regression models and decision trees are among the most popular
ML models used for this [19].

Just performing analytical methods can be misleading. Hence, it is essential to
supplement methods such as plotting and visual comparisons. Distribution plots
can be helpful in identifying whether the statistical characteristics of the real and
synthetic data are comparable. To determine the similarity between the distributions
per column in both real and generated data, one can visualize the cumulative sum of
each column [67]. These techniques can be used to examine categorical and numerical
features, along with principal component analysis (PCA) and correlation matrices
[51, 15].

Machine Learning Utility
Synthetic datasets can be assessed by evaluating their utility in downstream machine-
learning tasks and model performance. One way is to compare how well a machine
learning model (e.g. logistic regression, decision trees, ANNs) performs on real data
versus synthetic data. The model’s performance on the synthetic data can then be
compared to its performance on the real data [15]. If models trained on synthetic data
perform similarly to those trained on authentic data, it suggests that the synthetic
data conforms to the underlying data distribution [38]. This kind of machine learning
utility testing framework was introduced by Esteban et al. [63] and is called “Train
on Synthetic, Test on Real” (TSTR). There is also the reverse method, "Train on
Real, Test on Synthetic" (TRTS). However, TSTR is generally considered to be more
effective than TRTS because TRTS is less capable of capturing mode collapse. In
terms of machine learning utilities, TSTR and TRST are among the most common
way to evaluate synthetic datasets [19]. However, Jordon et al. [68] proposed the
method of Synthetic Ranking Agreement (SRA) also. This framework evaluates how
well a synthetic dataset preserves the ranking of predictive models based on their
performance. Alternatively, models can be trained on augmented datasets. Data
augmentation involves creating modified or synthetic copies of an existing dataset
to increase its size. In this case, the model’s performance can be evaluated using the
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augmented data, which can be generated using STDG [69].

To evaluate the performance of machine learning (ML) models, researchers commonly
use several metrics, such as Area Under the Curve (AUC), F1-score, Area Under
the Precision-Recall Curve (AUPRC), Accuracy, and Mean Relative Error (MRE) [3].
Typically, these metrics are applied to evaluate the performance of machine learning
models in classification and regression tasks, providing valuable insights into their
effectiveness.

Privacy
Privacy evaluation methods examine how similar synthetic data is to real data and
assess the risk of re-identification. Researchers evaluate the level of privacy protection
that the synthetic dataset offers compared to the real data. The goal is to ensure that
the synthetic dataset is not vulnerable to re-identification attacks and maintains the
privacy of individuals in the original dataset, especially for sensitive data such as
medical records.

Differential Privacy (DP) stands out as the most frequently employed method for
evaluating Privacy across reviewed publications. This is also a commonly used metric
when evaluating GANs for EHRs research [19]. DP is a framework that aims to protect
the privacy of individuals in data analysis. The idea behind this framework is that the
analysis protects individuals’ privacy if one can substitute items in the data, without
changing the significant results of the analysis [9]. However, many publications solely
relied on DP as a privacy evaluation technique, it is advisable to incorporate multiple
evaluation methods as DP alone does not guarantee the protection of real patients
[3, 9].

Another way that researchers have evaluated privacy is to test the robustness by
applying attack methods such as membership inference attacks, attribute disclosure
attacks, and model inversion attacks [9]. A membership inference attack is an attempt
by an attacker to determine whether or not a specific data point was used to train the
victim model [70]. An attribute disclosure attack is when an adversary manages to
find a link between a sensitive value and a victim [71]. Another type of attack used
to test GANs is the model inversion attack, where an attacker repeatedly queries the
victim model with different inputs and observes the corresponding outputs. Based
on this they can reconstruct the sensitive features of the training data. However, this
attack method is less commonly used for GANs due to the challenges posed by the
non-convex optimization problem and the high-dimensional nature of the data space,
which can make it difficult to achieve accurate and meaningful feature reconstructions
[72]. All of the attacks mentioned have been tested in various scenarios, with the most
common ones being in either a black box or white box setting [19]. In addition, other
techniques for privacy evaluation such as measuring Euclidean distance, checking
for exact matches, and employing Nearest Neighbours (KNN) are also commonly
referenced in research [3, 19].

Key Considerations When Evaluating Synthetic Datasets
Coutinho-Almeida et al. [3] also examined the number of publications that included
health professionals for clinical evaluation of synthetic patients. This was done to
assess the practicality of using synthetic patients in a clinical setting. However, their
review revealed that only 2 out of 22 publications involved health professionals for
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Evaluation Dimension Category Method

Resemblance

Dimension-
wise testing

Bernoulli
x2 test
Student T-test
Mann-Whitney U-Test
KS Test
Cumulative distribution
Cosine Distance

Joint-
distribution
similarity

JS-Divergence
Inception Score
Wasserstein Distance
Maximum Mean Discrepancies

Inter-
dimensional
relationship
similarity

Pearson Correlation
Spearman Correlation
Correlation coefficients
Correlation matrices
Dimension-Wise prediction tests

Machine Learning Utilities

Frameworks
TSTR
TRTS
SRA

Classification

F1
Recall
Precision
Accuracy

Regression
AUC
AUPRC
MRE

Privacy
Attacks

Membership Inference
Attribute disclosure
Model inversion

Other methods
Euclidean Distance
KNN
Exact Matches

Table 2.2: Overview of evaluation metrics mentioned in published work.
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this purpose. Involving clinicians in the evaluation of datasets is crucial for ensuring
the reliability of the generated datasets. Therefore, it is important to have clinicians
actively engaged in the evaluation process.

Moreover, Hernandez et al. [15]’s review revealed that performance, in terms of
footprint and computational cost, is not typically assessed in the context of STDG.
Additionally, privacy emerged as the least explored and utilized evaluation criterion
across all reviewed publications, whereas utility and ML evaluation was the most
commonly employed. Taking all of this into account, it is evident that generating
high-quality tabular datasets could be possible. However, incorporating privacy
considerations significantly complicates this task. It is important to establish a
more optimal balance between privacy and data similarity to mitigate the risk of
information leakage through potential adversarial attacks [19].

Also, currently, there are no established benchmarks or standardized metrics for
evaluating and comparing the various approaches for resemblance, utility, and
privacy. In medical research, there are challenges as researchers often rely on GAN
metrics designed for tasks such as imaging or non-medical time-series analysis. These
metrics may not be well-suited for evaluating medical data, and researchers may even
introduce their own metrics, leading to potential inconsistencies and limitations in
evaluating the performance of GAN-generated data in the medical domain [19].

2.5 Synthetic Data in Healthcare
The core focus of this thesis is to investigate the generation of synthetic data in the
context of healthcare research. The utilization of synthetic data in healthcare presents
complex challenges that do not have straightforward solutions. While generative
models can potentially address the issue of data scarcity by generating synthetic
data, there are numerous constraints due to regulatory requirements that hinder the
creation of larger and more diverse datasets [6]. Morevoer, issues such as ethical
considerations, including patient privacy and potential biases, need to be carefully
addressed.

When it comes to data sampling, there is a need for thorough scrutiny of the data that
is being used to train models. This is because sample-selection biases can arise, due to
there being a lack of representative data of the entire population [5]. For example, a
serious bias that can happen is that a model used in a hospital starts to admit certain
socioeconomic backgrounds. A model could also just be trained with images from a
particular piece of equipment, and the model will then have a bias in favor of that
particular equipment. This can make for a not generalizable model. Models that have
these kinds of biases are not suitable to use with data that has not been used in the
training process, as the results will not be fair and correct.

As mentioned previously in Section 2.4, biases can also arise from class imbalances. AI
models that are supposed to be used for prognosis or diagnosis, can then have trouble
when it comes to rare diseases [5]. This underscores a crucial point: the performance
of AI models is only as effective as the quality of the training data they have been
provided with.

The approval of AI algorithms in medical devices has been on the rise, and synthetic
data can be utilized to enhance the performance of these algorithms. The notion
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that current GAN models are capable of accurately capturing data distributions while
ensuring high patient privacy is not yet a reality. In fact, there are concerns that such
models may even introduce vulnerabilities, such as the risk of patient re-identification
[5]. One thing that can happen is a membership inference attack. This attack is a type
of privacy breach where malicious actors can utilize publicly available weights of a
medical model to synthesize real and private health information. This synthesized
information can then be used to disclose sensitive data, resulting in a serious privacy
violation [73].

In a 2021 article by Chen et al. [5], challenges in adopting synthetic data in healthcare
were highlighted. The authors discussed how synthetic data may be used as a
temporary solution for fine-tuning models until better data or alternative measures
are available. However, a concern raised is that the quality of the synthetic data may
not be adequately evaluated in terms of professional clinical standards. There may not
even be any clinical reference standards when it comes to data for new or very rare
diseases. Evaluation metrics used for evaluating GAN models are not straightforward
to interpret by clinicians. Because of all this, the synthetic data may not reflect specific
failure modes. To gain acceptance for synthetic data in healthcare, evaluation tests
and metrics should be designed for easy understanding by clinicians, helping to build
trust in the use of such data [19].

The article also discusses the use of visual Turing tests as a means of evaluating
synthetic data, particularly in the context of image data. However, this process would
be extremely tedious if the dataset consists of thousands of images. Additionally,
assessing image data may not be straightforward. In contrast, employing Turing tests
for tabular health records can pose even greater challenges due to the less intuitive
nature of tabular data compared to images [19].

To prevent biases and improve model generalization, it could help to collect data from
many different healthcare institutions and organizations, instead of just collecting
it from a single one [19]. An issue here is the problem with sharing data between
different institutions, as this would go against many data protection laws [5].

This section has mostly talked about using synthetic data as a way to augment real
data to fine-tune models, as well as privacy concerns. Today, these are the main ways
generative models have been employed in healthcare. However, synthetic data has the
potential for various future use-cases. It could be effectively utilized for stress-testing
AI algorithms, simulating diverse scenarios in virtual environments, and training AI
models to learn from surgical errors without endangering patients [5].
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Chapter 3

Approach

This chapter introduces the generative STDG methods employed in this thesis, as
well as the evaluation metrics utilized to assess the quality of the generated data.
Additionally, a custom evaluation framework, "SynthEval: Synthetic Data Classifier
Evaluation", specifically developed for this thesis, will be detailed. Comprehensive
implementation information for the chosen methods, evaluation metrics, and the
SynthEval framework is presented throughout this chapter.

Python version 3.8 was chosen as the primary programming language for this thesis,
due to its compatibility with the required libraries and tools used throughout the
research. The implementation details, results, and datasets, including the SynthEval
framework, are all available on the thesis’ repository1.

3.1 Experimental Datasets
For this thesis, datasets related to healthcare have been chosen to explore the
effectiveness of different STDG models. Working with diverse datasets of varying
sizes and complexities can provide a comprehensive understanding of the strengths
and weaknesses of the chosen models. By starting with a smaller and simpler dataset
and gradually progressing to larger and more complex ones, it will be possible to
systematically explore different data and gain insights into the performance of the
chosen models in different contexts.

Three datasets of different sizes, feature complexities, and quality were selected as the
experimental datasets. Figure 3.1 provides an overview of the class distribution for
each dataset.

Lower Back Pain Symptoms Dataset
The initial dataset used for experimentation was the Lower Back Pain Symptoms Dataset
2, which is the smallest dataset, comprising only 310 observations and 13 features.
All the features are numerical except for one which is the binary class label used for
prediction. The dataset comprises data related to potential causes of lower back pain,
commonly known as lumbago. The causes of lumbago are multifaceted, ranging from
ligaments, muscles, nerves, nearby organs, bones, discs, to tendons in the lumbar

1https://github.com/mareped/STDG
2https://www.kaggle.com/datasets/sammy123/lower-back-pain-symptoms-dataset
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Figure 3.1: Target class distributions of the datasets. Lower Back Pain Symptoms (left),
Obesity Prediction (middle), Cardiovascular disease prediction (right).

spine. The data collected in this dataset is intended for predicting the presence
of abnormal physical spine data that may contribute to the occurrence of lumbago.
Considering the relatively small size of the dataset, it serves as an ideal testing ground
for one of the central problem statements of this thesis: enhancing performance
through synthetic data augmentation. The dataset’s inherent class imbalance, another
common characteristic in healthcare data, also enhances its applicability for this study.

Estimation of Obesity Levels
The second dataset used was Estimation of obesity levels based on eating habits and physical
condition [74]. There are 2111 records in the dataset, with a total of 17 features.
These include 8 numerical and 9 categorical attributes, all related to factors that can
potentially lead to obesity. Each record is labeled with the class variable NObesity,
representing the different levels of obesity a person can be classified as. The dataset
is therefore used for multi-class classification problems with the different levels being:
Insufficient Weight, Normal Weight, Overweight Level I, Overweight Level II, Obesity
Type I, Obesity Type II and Obesity Type III. Despite its relatively modest size, it
is larger than Lower Back Pain and can potentially lead to improved performance in
classification tasks. The dataset also provides a valuable opportunity to evaluate the
performance of STDG in generating synthetic data for diverse feature types, as well as
in more complex classification scenarios.

Cardiovascular Disease Prediction
The last dataset used is the Cardiovascular Disease dataset, which can be found on
Kaggle3. This is a dataset that is used to predict cardiovascular disease. It is also the
largest dataset utilized for experimentation, encompassing 70,000 records. The dataset
is compromised of 11 features, out of which 5 are numerical and 6 are categorical. The
input features encompass both objective information, such as factual data and medical
examination results, as well as subjective information provided by the patients. This
dataset serves primarily as a benchmark for comparison against two other datasets.
Being a relatively large dataset, it is expected to yield better results compared to
smaller datasets in theory. However, it is crucial to include a comparative dataset
to assess if STDG is effective not only with large datasets, but also with smaller ones.
This allows for a comprehensive evaluation of STDG’s performance across different
dataset sizes.

3https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
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Dataset name Records Numerical Categorical Total Features

Lower Back Pain 310 12 1 13
Obesity Estimation 2111 8 9 17
Cardiovascular disease 70 000 5 6 11

Table 3.1: Overview of experimental datasets, with counts of numerical and categorical
features.

3.2 Model Selection
The selection of STDG models for this thesis was based on several criteria, including
versatility in handling different data types, recentness and support from previous
research, and the availability of implementation code. Although various tabular
GANs were discussed in Chapter 2.4, not all had functional or easily usable code.
Thus, CTGAN and CopulaGAN were chosen because they met the outlined criteria
and had straightforward implementation. In this section, a detailed explanation of
how these models work will be provided.

3.2.1 CTGAN
The CTGAN model, proposed by Xu et al. [60], is an improved version of TGAN.
Synthetic data generated by TGAN often led to mode-collapse and did not have
enough variety in the generated data. This was typically an issue when it came
to discrete variables. CTGAN was developed by the same authors as TGAN to
address the shortcomings of the latter and tackle other challenges involved in using
GANs for tabular data generation. Challenges addressed were including mixed
data types, modeling non-Gaussian distributions, capturing multimodal distributions,
effectively learning from sparse one-hot-encoded vectors, handling highly imbalanced
categorical columns, and addressing the lack of ground truth for evaluation.

Tabular data often follows non-Gaussian distributions, which poses a challenge for
modeling such data. Continuous tabular data is more complex than image data, as
it does not conform to the simpler Gaussian distribution often observed in images.
Therefore, applying the same techniques used in GANs for images, such as adding
a tanh function in the output layer and performing min-max transformation, to
tabular data can lead to the issue of vanishing gradients. Additionally, Capturing
multimodal distributions is also an issue with GANs. To handle difficult distributions,
the creators of CTGAN invented a mode-specific normalization technique. Mode-
specific normalization works in three steps, as explained by Xu et al. [60]:

1. Continuous columns use a Gaussian mixture model (VGM) to estimate the
number of modes to fit the resulting mixture.

2. For each data point in the continuous column, the probability of it coming from
each mode is computed, based on the probability densities from VGM.

3. One mode is sampled from the given probability density and this mode is used
to normalize the value.

The other issue with GANs that they addressed was that categorical data often
is represented as one-hot encoded vectors, which can result in sparse and high-
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dimensional data. There is also the issue of a lot of categorical data being
imbalanced. To address these problems, CTGAN uses a combination of techniques.
The approach involves utilizing a conditional generator, along with a training-by-
sampling technique.

The conditional generator is used to ensure an even distribution of categories in the
data during training. This is done by utilizing a conditional vector, which enables
conditioning on a specific value of a particular column through one-hot encoding.
The information from the vector is then fed into the generator.

The training process of the generator in CTGAN involves a method known as
"training-by-sampling". It is an iterative process where real data distribution samples
are drawn, and the generator is informed about the desired category for the generated
samples through a conditional vector. The weights of the generator are then updated
accordingly. As the training progresses, the generator learns to generate samples that
align with the specified categories from the discrete attribute. Additionally, the model
is trained using the WGAN loss with Gradient Penalty.

3.2.2 CopulaGAN
CopulaGAN is a version of CTGAN that utilizes Cumulative Distribution Function
(CDF)-based transformation, applied via GaussianCopula [61]. CDF is a function that
gives the probability that a random variable takes on a value less than or equal to a
specified value [75]. On the other hand, a copula is a function that joins multivariate
distribution functions to their one-dimensional marginal distributions, simplifying the
modeling of the dependence structure between variables [76].

By utilizing the GaussianCopula to transform the data, CopulaGAN is able to learn the
data distribution more effectively than CTGAN. This is because CopulaGAN captures
the relationships between variables in a transformed space that follows a multivariate
Gaussian distribution, making it easier to learn and model the dependencies between
the variables.

3.3 Implementing the GAN Models
The SDV library [61] was used to implement, configure, and train both CTGAN and
CopulaGAN to generate synthetic datasets. The pre-processing steps and training
procedures used for these models are discussed in detail in this section.

3.3.1 Pre-processing
Prior to model training, the data underwent pre-processing. Although all datasets
used in this thesis were obtained from open-source websites and have undergone
initial pre-processing, such as the removal of null values, additional data preparation
steps were also utilized. During the model fitting, the SDV library incorporates
some pre-processing steps. For the library to identify categorical and numerical
columns, a metadata file must be generated to map the data accordingly. Based on the
mapping, categorical columns were encoded with the Scikit-learn LabelEncoder, while
numerical columns were normalized using Min-max scaling and transformed into a
vector format suitable for model input. These pre-processing steps enhance model
performance and accuracy by reducing noise and rendering the data more suitable
for the model to learn from. In addition to this, CopulaGAN implements additional
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pre-processing steps which involve utilizing GaussianCopula to transform the data,
as explained previously.

3.3.2 Training
The two models, CTGAN and CopulaGAN, were initially trained using all three
experimental datasets: Lower Back Pain, Obesity, and Cardiovascular disease. Once the
training process was complete, the models were saved along with their respective loss
values. Subsequently, these saved models were loaded to generate synthetic data that
matched the size of the original datasets.

Figure 3.2: Stable (top) vs Unstable GAN (bottom) [1].

As grid search was not compatible with the models from the SDV library, the
parameter tuning of the GAN models was executed with a more manual parameter
search. To determine the optimal combination of epochs and batch sizes for each
model, they were trained with different parameters. Following the training process,
a loss vs epochs graph was generated, allowing for observation of the point at which
model performance stabilized and where epochs should be cut off. Since the models
involved are GANs, both the loss of the generator and discriminator were plotted
against each other. After running through enough epochs, the loss vs epochs plot for
both the generator and discriminator should eventually stabilize. The first time when
training, both models were trained on a large number of epochs, so that one could
look at the plot and see where the model starts to stabilize. Typically, the generator
begins with a positive loss, but it should decrease with each epoch until it eventually
stabilizes at a negative loss. On the other hand, since the discriminator and generator
are adversaries, the discriminator’s loss should remain stabilized at around zero. This
represents an ideal and stable GAN, indicating that as the generator improves, it
becomes increasingly challenging for the discriminator to distinguish between real
and synthetic data.
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A comparison between a stabilized and non-stabilized GAN was presented on SDV’s
Github discussion page [1], where the losses were plotted. Figure 3.2 illustrates this
comparison, where the red line represents the discriminator’s loss and the blue line
represents the generator’s loss. The figure reveals that the non-stabilized GAN’s loss
becomes increasingly noisy over time, implying that the model is struggling to capture
the underlying patterns in the real data.

3.4 Evaluation Framework
The evaluation was approached through three distinct dimensions: Resemblance,
Classification, and Privacy. These components test the resemblance of the real and
synthetic data, compare the data’s performance on various classification models, as
well as evaluate the privacy of the synthetic data. The inspiration for the different
metrics utilized within the different dimensions was taken from the evaluation metrics
discussed in Section 2.4.3.

The metrics were implemented by utilizing available libraries online such as SDMetric
[77], which is an evaluation library created by the same researchers behind the SDV
library, and the TableEvaluator library [78]. The SDMetric library and TableEvaluator
were useful in covering many of the fundamental evaluation metrics, particularly in
the resemblance dimension. However, in order to address evaluation metrics and
dimensions that these libraries did not cover, certain metrics and a custom framework
were developed as well. Below is an outline of the evaluation plan for the synthetic
data and its components. The subsequent sections will delve into each step in detail,
providing a thorough explanation of the evaluation approach.

• Resemblance: This component includes basic statistical checks and analysis of
feature distributions to assess the similarity between the real and synthetic data.

• Classifier Evaluation: This component evaluates the performance of various
machine learning classifiers on the synthetic data using TSTR/TRTS evaluation
and ML classification models.

• Privacy: This component assesses the privacy risk of the synthetic data by
comparing exact matches and nearest neighbors to the real data.

3.4.1 Resemblance
Basic Statistical Checks
First, basic statistical metrics were compared between each dataset and the synthetic
data generated by the models. One such metric was visualizing the column-wise
means and standard deviations on a log-scale. If the data points follow the diagonal
line in the plot, it indicates that the real and synthetic data follow the same underlying
univariate statistical characteristics. While this evaluation metric may be considered
basic, it can provide valuable insights into the overall performance of the model. Poor
results from this metric may indicate potential issues with other evaluation metrics as
well.

Another initial check was looking at the correlations between the real and synthetic
data. Here the Pearson correlation coefficient was used. Column correlation distances
are used to measure the differences in the column correlations between the data.
Specifically, the metrics used are Root Mean Squared Error (RMSE) and Mean Average
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Error (MAE). Lower values of RMSE and MAE would indicate that there are small
differences between the data, meaning that the synthetic data is relatively similar to
the real data.

The correlations were visualized through a correlation matrix where each column
is compared against each other, as well as its corresponding difference matrix. The
difference matrix was obtained by subtracting the synthetic correlations from the real
ones. When analyzing the difference matrix, strong positive values indicate a stronger
correlation in the real dataset compared to the synthetic dataset, while strong negative
values indicate the opposite. An ideal difference matrix would have values close to
zero, which indicates a similar level of correlation between the real and synthetic
datasets. Additionally, a scatter plot for all the correlation coefficients was also plotted.
If the data points follow the diagonal line, it means that the correlations between
variables are similar between the data. However, this measure is more informative
about the data’s ability to capture the underlying structure of the correlations, not the
relationship between columns.

Feature Distributions
A way to see how well the synthetic data manages to capture the statistical properties
of the real data is to visualize the distributions of each feature and compare them to the
synthetic data. For this thesis, the real and synthetic data distributions and cumulative
sums of each feature were plotted on top of each other. If the distributions and
cumulative sums of the real and synthetic data overlap, it suggests that the synthetic
data provides an accurate representation of the real data.

To quantify the differences in the distributions of each feature, The KSComplement
and TVComplement were also used. The Kolmogorov-Smirnov test is applied by
KSComplement on numerical data and measures the distance between the two
cumulative distribution functions. The TVComplement is used for categorical data
and calculates the Total Variation distance between the two probability distributions.
Higher values indicate a more similar distribution.

3.4.2 Classifier Evaluation
The performance of synthetic data was also examined in the context of machine
learning prediction tasks by comparing it with the performance of the real data. If
the synthetic data performs similarly, it implies that the synthetic data has effectively
captured the real data’s underlying statistical properties and distributions. The
TableEvaluator library provides insights into classifier performance, where both real
and synthetic data are used for training and testing. However, the classifiers used
in this evaluation are pre-set, and their parameters and settings cannot be adjusted
to optimize performance. In addition, the library only shows F1 scores and does not
allow for the inclusion of other metrics.

In order to offer increased flexibility in the choice of classifiers and metrics used, a
custom evaluation framework was developed for this thesis, referred to as "SynthEval:
Synthetic Data Classifier Evaluation". This framework is designed to train and test
classifiers on both real and synthetic datasets and has been extended to evaluate the
potential benefits of augmenting real datasets with synthetic data. The framework is
user-friendly, allowing users to easily specify the desired number of classifiers and
their respective configurations. There is no imposed limit on the number of classifiers
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that can be utilized. Additionally, the paths to the real and synthetic data must be
provided.

To configure the evaluation process, one can determine the proportion of real and
synthetic data to be used for augmentation. In the example provided below, 50% of the
real data and 100% of the synthetic data are employed for the augmented dataset. The
cross_val parameter enables one to utilize cross-validation if set to True. By default, the
framework trains each classifier using a traditional Train/test split. After completed
code execution, all the results from the evaluation in the form of F1 scores and ROC
curves will be saved in a folder. The following sections will delve into a more detailed
explanation of the underlying processes within the framework.

1 logreg = LogisticRegression ()
2 rf = RandomForestClassifier ()
3 mlp = MLPClassifier ()
4

5 evaluator = SynthEval(real_path , synthetic_path , result_path)
6

7 evaluator.add_all_classifiers(logreg , rf, mlp)
8

9 evaluator.compare_datasets_performance(real_percentage =0.5,
synth_percentage =1, cross_val=True)

Listing 3.1: Code snippet demonstrating the utilization of the custom framework
"SynthEval" for evaluating synthetic data.

Training and Testing Phases
The proposed framework streamlines the training and evaluation process by dividing
it into three well-structured and systematic phases. Each phase focuses on training
a classifier on real, synthetic, and augmented data. This framework builds upon the
concepts of "Training on Synthetic, Testing on Real" (TSTR) and "Training on Real,
Testing on Synthetic" (TRTS), as explained in the previous Section 2.4.3. Alongside
these concepts, the framework also incorporates training on augmented data and
testing on real data to explore whether enhancing real data with synthetic data can
further improve the classifier’s performance. This comprehensive approach allows
for a comparison of the classifiers’ effectiveness and adaptability across real, synthetic,
and augmented data.

Phase 1: Training and Evaluation on Real Data In this phase, the classifier is trained
using the real dataset, which is divided into a training set and a test set according to
standard evaluation practices. The classifier’s performance is assessed on both the real
dataset’s test set and an additional synthetic test set, following the TRTS concept.

Phase 2: Training and Evaluation on Synthetic Data During this stage, the classifier
is trained with the synthetic dataset, which is also partitioned into a training set and a
test set. The model’s performance is evaluated on the synthetic dataset’s test set and
the real dataset, in line with the TSTR concept.

Phase 3: Training and Evaluation on Augmented Data In this phase, the classifier
is trained using the augmented dataset, which combines real and synthetic data. The
augmented data is created based on the desired proportions of real and synthetic data.
During the data creation process, care is taken to ensure that none of the real test data
is present in the augmented dataset. This approach avoids data leakage and potential
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overfitting during the evaluation process. The remaining real data and the augmented
data are effectively separated, keeping the real data used for testing distinct from the
real data used in the augmented dataset. The classifier’s performance is then assessed
on the test sets from both the augmented and remaining real dataset.

Each of the three phases is repeated for every classifier assigned to the framework,
ensuring a thorough evaluation of all classifiers across all the different data.

Pre-processing and Evaluation Methods
Before training each dataset, the framework preprocesses the data using Sci-kit’s
LabelEncoder and MinMaxScaler. As illustrated in the code example above, users
have the option to choose between Sci-kit’s Train/Test split or k-fold cross-validation
for evaluating the classifier during each training phase. Train/Test split is a faster
method that provides a quick estimate of the model’s performance. As described in
each phase, the training set is composed of the data being trained during that specific
phase in the framework. Meanwhile, the test set encompasses the extracted test set, as
well as an additional test set for comparison.

Train data

Internal test data

External test data

Figure 3.3: Cross validation within the SynthEval framework.

On the other hand, cross-validation offers a more robust evaluation method, as it
divides the data into k-folds, training the classifier on k-1 folds and evaluating it on
the remaining fold. This process is repeated for a specified number of folds, typically
5 or 10. While cross-validation is more computationally demanding, it yields a more
accurate assessment of the classifier with reduced bias compared to the Train/Test
split method. This is especially beneficial for small datasets, as it optimizes the use of
available data. Figure 3.3 illustrates the cross-validation process within the SynthEval
framework. The cross-validation process consists of the following steps:

1. Train the classifier on k-1 folds of the data.

2. Test the classifier on the remaining fold of the data being trained (internal test
data).

3. Evaluate the classifier on the supplementary test data provided within the same
fold (external test data).

4. Repeat steps 1-3 for each fold in the cross-validation process. After all folds have
been processed, average the predictions for the external test data across all folds
to produce a final set of predictions.
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This approach ensures an in-depth evaluation of the classifier’s performance through-
out each phase of the framework, leveraging the robustness and adaptability of
cross-validation. The framework also utilizes Stratified k-fold cross-validation, which
strives to preserve a similar proportion of samples from all target classes in each set,
making it well-suited for imbalanced datasets.

Evaluation Results
The evaluation results are presented in the form of F1 scores and ROC curves, which
are visualized for easy comparison and analysis. The F1 score is chosen because it is
a metric that provides a balanced average of precision and recall. The difference in F1
scores between the real data and the synthetic/augmented data is also computed. This
gives an indication of how similar the dataset performs. If the F1 difference is positive,
then the classifier performs better on the real data. If the difference is negative, the
classifier performs better on the synthetic/augmented data. If the value is close to
zero, the performance is similar on both datasets.

ROC curves, short for Receiver Operating Characteristic curves, offer a visual
representation of classifier performance. ROC curves are particularly useful in
healthcare and diagnostic systems because they provide a comprehensive view of the
trade-off between sensitivity (true positive rate) and specificity (false positive rate)
at different thresholds [79]. This is crucial as false positives and false negatives can
have severe consequences in medical settings. Additionally, ROC analysis is not
influenced by class distribution, making it well-suited for healthcare data, which is
often imbalanced.

ROC curves are intended to be used in binary classification problems, however, it
is possible to use them for multi-class problems as well by utilizing a one-vs-all
(OvA) strategy [80]. Each class can be evaluated by generating a separate ROC
curve that treats that class as the positive class and the other classes as negative
classes, essentially treating the problem as multiple binary classification problems.
The framework allows the user to generate a curve for each class, but visualizing many
curves can become messy and unorganized when dealing with numerous classes. To
make the plot more readable, micro and macro averaging of all the target classes are
plotted as a default for multi-class classification problems. Micro averaging should be
used over macro averaging when the classes are highly unbalanced. This is because
micro-averaging is more sensitive to the performance of the minority classes, while
macro-averaging is more sensitive to the majority classes.

Selected Classifiers for Evaluation
For this thesis, three different classifiers were chosen to evaluate the different datasets.
These were Random Forest, Logistic Regression, and the MLP Classifier from the
Sckikit-Learn library [81].

Logistic Regression is a linear statistical model that predicts the probability of an event
occurring by fitting the data to a logistic function. This method is commonly employed
for binary prediction problems, but can also be extended for multi-class classification
problems as well. The main advantages of this model is its low computational
costs, simplicity, and interpretability [82]. On the other hand, Random Forest is an
ensemble method that enhances prediction accuracy by aggregating multiple decision
trees. This more complex model can capture intricate data patterns, potentially
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leading to superior performance over logistic regression. Particularly well-suited for
large or high-dimensional datasets, Random Forest can handle both regression and
classification tasks [83]. Lastly, The MLP (Multi-Layer Perceptron) Classifier is a type
of artificial neural network that uses multiple layers to classify data. It can employ
various optimization algorithms, such as stochastic gradient descent, lbfgs, or Adam,
which were explained in detail in Chapter 2.

By utilizing these three models, the evaluation was done with a diverse set
of modeling techniques, each with its own strengths and weaknesses. Logistic
Regression provides simplicity and interpretability, Random Forest offers robustness
and better handling of complex data, while the MLP Classifier introduces the power
of artificial neural networks. This combination ensures a broad evaluation of all the
datasets, taking advantage of the unique capabilities of each model.

3.4.3 Privacy
For the privacy dimension, the first two metrics that were looked at were duplicate
rows between the real and synthetic data, along with if there are any exact matches
between the sets. A dataset with numerous duplicate rows may pose privacy risks, as
it can expose underlying patterns or correlations in the actual data, potentially making
sensitive information about individuals easier to uncover. If the synthetic dataset does
not have many duplicates, it may help mitigate privacy risks. Additionally, by seeing
if there are many duplicated rows in the fake data, it can indicate that the generative
model has not introduced enough variability in the new dataset, and it may suffer
from mode collapse.

Furthermore, looking at exact matches is a way of seeing if the synthetic dataset is
copying identical rows from the real dataset into the synthetic one. If the synthetic
data is starting to replicate the real data, it would mean that the generative model is
not generating different enough data to preserve privacy. This can result in potential
data leakage. Also, if there are a lot of identical values between the sets, it may be a
sign of overfitting. SDMetrics’ NewRowSynthesis is used to measure this, where one
can give a numerical match tolerance percentage as a parameter to set how strict the
matches should be. This percentage controls how close the numerical values in a row
have to be, to become a match. Meaning a numerical match tolerance of 0 would only
count values that are exactly the same. The default value is 0.01, which means that if
two numerical values have an absolute difference smaller than or equal to 1%, the row
is considered an exact match.

The TableEvaluator library provides a metric called the nearest neighbor mean and
standard deviation, which was used in this thesis to assess the similarity between
synthetic and real data and evaluate privacy. This metric utilizes Euclidean Distance to
measure the distance between each synthetic record and the most similar real record.
Euclidean distance is a metric often used in related work (see Table 2.2). While the
Euclidean distance metric can become less effective with high dimensional data [84],
it can still be a useful metric for evaluating the similarity between synthetic and real
data. From a synthetic data perspective, the mean and standard deviation of this
metric should both be as close to 0 as possible to suggest that the data is highly
similar to the real data. However, from a privacy standpoint, a large mean and a
low standard deviation is the ideal result [78]. This is because a large mean indicates
that the synthetic data is more dissimilar to the real data, and a low standard deviation

34



indicates that the distances between the data are relatively consistent. This highlights
the importance of balancing privacy and data similarity, as discussed in Section 2.4.3.
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Chapter 4

Results

This chapter presents the results of the training and evaluation process. While all the
generated results have been analyzed, only the most significant findings are presented
to avoid repetition. The remaining results for all the datasets can be found in Appendix
A, B, and C, as well as in the associated GitHub repository for this thesis.

4.1 Training the GAN models

CTGAN CopulaGAN

Figure 4.1: Loss curves for the Lower Back Pain dataset

On the Lower Back Pain dataset, CTGAN was trained for 600 epochs using a batch
size of 100, and CopulaGAN was trained for 500 epochs with the same batch size.
Figure 4.1 indicates that CopulaGAN was noisier than CTGAN and did not stabilize.
Although the generator and discriminator losses of CTGAN started overlapping
around 700-800 epochs, the model was cut off before that occurred.
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CTGAN CopulaGAN

Figure 4.2: Loss curves for the Obesity dataset

On the Obesity dataset, CTGAN was trained for 300 epochs using a batch size of 50, and
CopulaGAN was trained for 350 epochs with a batch size of 100. Both models showed
similar training patterns, becoming increasingly noisy around 150-200 epochs.

CTGAN CopulaGAN

Figure 4.3: Loss curves for the Cardiovascular Disease dataset

For the Cardiovascular Disease dataset, CTGAN was trained for 300 epochs and
CopulaGAN for 250 epochs. Both with a batch size of 400. At approximately 100
epochs, the generator loss of CTGAN started to rise, indicating that the model was not
fully stabilized. Although the losses did not overlap, there was an observable trend of
instability. In contrast, CopulaGAN’s generator and discriminator loss both seem to
stabilize during training.

4.2 Basic Statistics
4.2.1 Mean and Standard Deviation
Figure 4.4 displays the means and standard deviations for all datasets generated by
CTGAN (refer to Appendix A.2, B.1, and C.1 for CopulaGAN datasets). From the
plots, it was observed that both models have captured almost identical means and
standard deviations, which is why only CTGAN is shown below. It also appears
that both models successfully captured most of these properties with ease, for most
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of the generated datasets. However, both models seemed to have some difficulty
with capturing the standard deviations of the Cardiovascular disease dataset, as there
is one outlier observed. The majority of data points align with the diagonal line, but
the presence of this outlier suggests potential implications for future results. It raises
concerns about the models’ ability to effectively represent the true population and the
inherent variability in the real data.

Lower Back Pain Obesity

Cardiovascular Disease

Figure 4.4: Absolute Log Mean and STD of numeric data for datasets generated by
CTGAN.

4.2.2 Correlation

Model Dataset Correlation Distance

RMSE MAE

CTGAN
Lower Back Pain 0.1980 0.1228
Obesity 0.0936 0.0625
Cardiovascular Disease 0.0823 0.0481

CopulaGAN
Lower Back Pain 0.1305 0.0909
Obesity 0.0918 0.0623
Cardiovascular Disease 0.0667 0.0321

Table 4.1: Column Correlation Distances.

Table 4.1 shows the correlation distances between the real and synthetic generated
data for each model. Overall, the differences between CTGAN and CopulaGAN in
correlation distances are relatively small, however, the values for CopulaGAN are

38



generally lower than those of CTGAN across all three datasets. This indicates that
CopulaGAN’s synthetic data better approximate the correlation structure of the real
data. Cardiovascular Disease stands out as the dataset that captures correlations most
effectively, evidenced by its lower RMSE and MAE values compared to the other two
datasets for both models. However, the Lower Back Pain dataset is struggling the most
in this regard.

Real CTGAN CopulaGAN

Figure 4.5: Comparison of correlation matrices for the Lower Back Pain dataset (top
row), along with the corresponding difference matrices (bottom row).

Real CTGAN CopulaGAN

Figure 4.6: Comparison of correlation matrices for the Cardiovascular Disease dataset
(top row), along with the corresponding difference matrices (bottom row).

Figure 4.5 and 4.6 illustrates the differences in how well the correlations are captured
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on both the Lower Back Pain and Cardiovascular Disease dataset. The visualization of
the Obesity dataset correlations can be seen in Appendix B.2. These results mirror the
RMSE and MAE values, as it is clear that Lower Back Pain is struggling. Ideally, the
difference matrix should exhibit minimal deviations from zero, resulting in a heatmap
with weak color gradients. However, this is not the case for the Lower Back Pain dataset.
The scatterplot in Figure 4.7, which displays the correlation coefficients between the
real and synthetic data, highlights this further. The data points are widely scattered
and deviate from the expected diagonal line.

CTGAN CopulaGAN

Figure 4.7: Scatter plot for correlation coefficients on the Lower Back Pain dataset.

However, the matrices, scatterplots, and RMSE/MAE values for the Obesity and
Cardiovascular Disease dataset shows that both models manage to capture the
correlations somewhat. Some differences in correlation are expected, due to the
synthetic data being an approximation of the real data, but the results are promising.

4.2.3 Distributions

Model Dataset Complement Score

CTGAN
Lower Back Pain 0.785
Obesity 0.876
Cardiovascular Disease 0.906

CopulaGAN
Lower Back Pain 0.706
Obesity 0.869
Cardiovascular Disease 0.936

Table 4.2: Average of the KSComplement and TVComplement values for all the
datasets.

Table 4.2 presents a complement score for each dataset based on the average of the
KSComplement and TVComplement values of each column. Both models have com-
parable scores across the synthetic datasets generated, but CTGAN performs better in
capturing the distributions of the Lower Back Pain and Obesity datasets compared to
CopulaGAN. On the other hand, CopulaGAN shows slightly better performance on
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the Cardivascular Disease dataset. The consistent pattern of Cardiovascular Disease out-
performing the other dataset, while the Lower Back Pain dataset consistently performs
worse, is evident. This observation aligns with the expectation that performance tends
to correlate with the size and quality of the real dataset.

The distribution and cumulative sum plots were printed for all the columns in each
dataset. This section will only show two distinct features from each dataset to visualize
the difference in how well CTGAN and CopulaGAN have managed to capture the
distributions of the real data.

CTGAN CopulaGAN

Figure 4.8: Cumulative sums of the features: "sacrum angle" and "scoliosis slope" in
the Lower Back Pain dataset.

CTGAN CopulaGAN

Figure 4.9: Comparison of column shapes for the "sacrum angle" and "scoliosis slope"
features in the Lower Back Pain dataset.

The charts depicted in Figure 4.8 illustrates the cumulative sums derived from two
distinctive features, namely "sacrum angle" and "scoliosis slope", within the Lower
Back Pain dataset. The same features are shown in the column plots in Figure 4.9.
These visualizes the shapes of the columns in the synthetic data against the real.

The plots demonstrate that CTGAN produces cumulative curves closer to each other
compared to CopulaGAN. These results indicate that CTGAN is more successful
in capturing similar distributions for both features. Although CTGAN seemingly
outperforms CopulaGAN in capturing the distributions, the feature curves from the
synthetic data do not display smoothness or perfect alignment with the real data
curves. Furthermore, the KSComplement values for CTGAN are not consistently high
across all features. This implies that although CTGAN performs better, it still falls
short of successfully capturing the distributions.
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CTGAN CopulaGAN

Figure 4.10: Cumulative sums of the features "FAVC" and "TUE" in the Obesity dataset.

CTGAN CopulaGAN

Figure 4.11: Comparison of column shapes for the "FAVC" and "TUE" features in the
Obesity dataset.

Figure 4.10 and 4.11 shows the cumulative sums and column shapes for the features
"FAVC" (Frequency of consumption of vegetables) and "TUE" (Time using technology
devices). Again, it is observed that the overlapping is better for CTGAN than
CopulaGAN.

Lastly, Figure 4.12 and 4.13 represents the features "Height" and "Weight" for the
Cardiovascular Disease dataset. The cumulative sum curves and column shape plots
for both models are smooth and overlapping. This pattern is observed across all the
features in the dataset, indicating that both models are performing well in synthesising
the Cardiovascular Disease dataset.

CTGAN CopulaGAN

Figure 4.12: Cumulative sums of the features "Height" and "Weight" on the
Cardiovascular Disease dataset.
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CTGAN CopulaGAN

Figure 4.13: Comparison of column shapes for the "Heigh" and "Weight" features in
the Cardiovascular Disease dataset.

4.3 Evaluating Classifiers on Synthetic Data
This section presents the results obtained from SynthEval, the developed classifier
framework for this thesis. The classifiers used to compare the performance of
the synthetic dataset are Logistic Regression, Random Forest Classifier, and MLP
Classifier. To ensure robust training of each classifier, a cross-validation approach with
5 folds was utilized instead of a traditional train/test split.

4.3.1 Lower Back Pain dataset
All the F1 scores from using the SynthEval framework on the Lower Back Pain dataset
are summarized in the following table:

CTGAN CopulaGAN

Classifier Trained On f1_real f1_synth f1_real f1_synth

Logreg Real 0.6866 0.2812 0.6866 0.1922
Logreg Synthetic 0.5239 0.8904 0.2968 0.8810
RFC Real 0.7817 0.4188 0.7807 0.2196
RFC Synthetic 0.5506 0.9201 0.5692 0.9008
MLP Real 0.7418 0.3589 0.7381 0.2212
MLP Synthetic 0.5309 0.8955 0.3697 0.8891

Table 4.3: Classifier results for datasets generated by CTGAN and CopulaGAN on the
Lower Back Pain dataset.

The table reveals that when training on synthetic data and testing on real data, the F1
scores consistently tend to be lower compared to training and testing on real data for
all classifiers and GAN models. This trend is supported by the negative differences
between the F1 scores for real and synthetic data, indicating that the synthetic data
underperforms compared to the real data.

Furthermore, it is also clear that CopulaGAN struggles more than CTGAN, due to the
F1 differences being comparatively much higher than CTGAN. For example, the F1
difference for the logistic regression model training on real data has an F1 difference of
0.49, and the MLP classifier with a difference of 0.51. Despite CTGAN outperforming
CopulaGAN, the noticeable differences in F1 scores persist for both models. These
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findings indicate that neither GAN model has succeeded in generating synthetic data
that matches the quality of the real data.

CTGAN

CopulaGAN

Figure 4.14: ROC plots comparing CTGAN and CopulaGAN datasets on the Lower
Back Pain dataset. Left: Classifier trained on real data. Right: Classifier trained on
synthetic data. Blue curve represents testing on real data, and green curve represents
testing on synthetic data.

The ROC curves displayed in Figure 4.14 illustrate a comparison between synthetic
data created by CopulaGAN and CTGAN for Logistic regression. It is apparent that
CopulaGAN is less effective than CTGAN when examining the curves for testing on
synthetic data.

By analyzing the ROC curves, it can be seen that when trained on synthetic data,
performance improves when testing on real data compared to training on real data.
The AUC value is 0.77 when training and testing on real data, whereas it increases to
0.94 when training on synthetic data. This suggests that the logistic regression model
trained on synthetic data generalizes better to real data than the one trained on real
data. One possible explanation is that the synthetic data offers a more diverse dataset
for the model to learn from. However, the AUC remains low for testing on synthetic
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data when trained on both real and synthetic data. This finding suggests that while
synthetic data may improve the classifier’s performance on real data, it falls short of
accurately capturing the intricate complexities. Previous results have revealed that
the synthetic data struggles with capturing the correlations and distributions within
the Lower Back Pain dataset, potentially leading to biases in the generated synthetic
data. Possible factors contributing to this issue could include class imbalance, the
small amount of data, or the presence of noise within the data.

4.3.2 Obesity dataset

CTGAN CopulaGAN

Classifier Trained On f1_real f1_synth f1_real f1_synth

Logreg Real 0.6833 0.3481 0.6833 0.3427
Logreg Synthetic 0.3963 0.3863 0.2968 0.8810
RFC Real 0.9356 0.3196 0.4376 0.4156
RFC Synthetic 0.3953 0.4144 0.9378 0.3149
MLP Real 0.8609 0.3297 0.8696 0.3073
MLP Synthetic 0.4205 0.3999 0.4451 0.4200

Table 4.4: Classifier results for datasets generated by CTGAN and CopulaGAN on the
Obesity dataset.

Table 4.4 shows the F1 scores when comparing the synthetic datasets generated based
on the Obesity dataset. By comparing the results between CTGAN and CopulaGAN,
a trend for both models emerges, which indicates that training on real data produces
better results than training on synthetic data. This is evident, as the F1 differences
are all positive, and in some instances, the differences are significantly high. CTGAN
does perform better when training on real data, while CopulaGAN seems to perform
better when training on synthetic data in some cases. However, the differences in F1
scores from the GAN models are relatively small, which means that the models seem
to perform in a more similar manner compared to the Lower Back Pain dataset.

However, it is worth noting that there is a significant exception to these findings.
In the case of training on synthetic data generated by CopulaGAN using the RFC
classifier and testing on real data, a noteworthy F1 score of 0.9378 was achieved.
In contrast, training on real and testing on real data has a score of 0.4737 for the
same classifier. Despite this exception, the overall pattern indicates that real data
consistently outperforms synthetic data for both CTGAN and CopulaGAN models.

The ROC curves for both CTGAN and CopulaGAN exhibit similar characteristics;
therefore, only CTGAN’s ROC curves are presented in Figure 4.15 as a representative
example of the overall performance. From the plots, it is observed that when training
on real data, the micro and macro averages of testing on real data are significantly
higher than the macro average when testing on synthetic data. This suggests that the
synthetic data is performing well overall, but that there may be specific classes that are
unrepresented in the synthetic data. One potential explanation for this phenomenon is
that, although the real data might have a balanced distribution of classes, the quality
and variety of real data for certain classes could be insufficient. Consequently, the
synthetic data might be less effective at replicating these specific classes.
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Furthermore, a performance decrease was observed when training on synthetic data
and testing the classifier on real data. Despite the AUC values for both synthetic and
real testing being comparable, this decline in performance suggests that the synthetic
data has not captured all the underlying complexities present in the real data.

Figure 4.15: ROC plots comparing CTGAN datasets on the Obesity dataset. Classifier
trained on real data is on the left and trained on synthetic data on the right.

4.3.3 Cardivascular Disease dataset

CTGAN CopulaGAN

Classifier Trained On f1_real f1_synth f1_real f1_synth

Logreg Real 0.6474 0.6837 0.6474 0.6422
Logreg Synthetic 0.6957 0.724 0.6893 0.7228
RFC Real 0.7152 0.7091 0.7155 0.6981
RFC Synthetic 0.6906 0.7343 0.6872 0.7422
MLP Real 0.7224 0.7163 0.7215 0.6971
MLP Synthetic 0.7021 0.7407 0.7048 0.7402

Table 4.5: Classifier results for generated datasets by CTGAN and CopulaGAN for the
Cardivascular Disease dataset.

Table 4.5 shows the performance of the different classifiers on the synthetic Cardivas-
cular Disease datasets. Compared to the other two datasets, the difference in F1 scores
between training on real and synthetic data is much smaller for this dataset. Addition-
ally, training on synthetic data and testing on real data results in a performance that is
similar to training on real data and testing on real data. In certain cases, there is even
a slight improvement in performance. For example, both CTGAN and CopulaGAN-
generated data demonstrate enhanced performance when utilizing Logistic Regres-
sion as the classifier. However, these differences are very small. This indicates that the
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synthetic data successfully captures the underlying patterns of the real data reason-
ably well.

Figure 4.16 shows the ROC curve for CTGAN on the Random Forest Classifier. Since
CopulaGAN had similar results, only CTGAN is shown here. All the different
classifiers exhibited the same behavior, with the real and synthetic curves always
being almost exactly the same, with an AUC between 0.7-0.8. For the Random Forest
Classifier depicted below, when training on synthetic data, the AUC of testing on
real increased from 0.78 to 0.81. While this is a small uptick in performance, it does
suggest that synthetic data is a good representative of the real data. Especially since
this behavior was consistent across the other classifiers as well. This suggests that the
findings are robust and not specific to a single model.

Figure 4.16: ROC plots comparing CTGAN datasets on the Cardiovascular Disease
dataset. Classifier trained on real data is on the left and trained on synthetic data
on the right.

4.3.4 Augmented Data Performance
To generate the augmented dataset, a combination of 50% real data and 100% synthetic
data was employed, resulting in an augmented dataset that was 1.5 times larger than
the original. This approach was consistently applied to all the datasets.

Classifier f1_real

Logreg 0.6866
RFC 0.7817
MLP 0.7418

Table 4.6: Classifier performance when training and testing on real Lower Back Pain
data.
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CTGAN CopulaGAN

Classifier f1_real f1_augmented f1_real f1_augmented

Logreg 0.6638 0.7973 0.5882 0.7870
RFC 0.7805 0.8540 0.7455 0.8683
MLP 0.7004 0.8104 0.6409 0.7563

Table 4.7: Classifier performance for training on the augmented Lower Back Pain data.

As a refresher, Table 4.6 shows how well the Lower Back Pain dataset performs when
training and testing on real data in terms of F1 scores. While, table 4.7 shows the scores
for training on augmented data and testing on real and augmented data.

Ideally, to see an improvement in performance with augmented data, training on
augmented and testing on real should yield better results than training on real and
testing on real. Based on the F1 scores, this is not the case. However, it is observed
that training on augmented data provides similar performance. For instance, RFC is
achieving almost identical results when training on augmented and tested on real for
CTGAN-generated data. A notable observation is that when training on augmented
data and testing on augmented data, the performance is improved for all the classifiers
on all the GAN-generated data. These results can be analyzed further by looking at all
the ROC curves for Logistic Regression on CTGAN-generated data:

Figure 4.17: All ROC plots for Logistic Regression with CTGAN-generated data based
on the Lower Back Pain dataset.

From the plots, one can observe that the classifier trained on augmented data performs
worse when tested on real data, with an AUC of 0.88, compared to when trained on
synthetic data and tested on real data, which has an AUC of 0.94. However, both
perform better than training on real data and testing on real data, which has an AUC
of 0.77.

As discussed previously, training on synthetic data and testing on real data increased
the performance, and it could possibly be due to the fact that the GAN model is
managing to generate data that is cleaner than the real data. Therefore, mixing real
and synthetic data in the augmentation process is actually decreasing its performance.
However, it is important to keep in mind that using augmented data when the
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synthetic data has been proven throughout these results to not be a very good
representative of the real data, is something to be cautious of.

In the case of the Obesity dataset, no noticeable improvement in performance was
observed for classifiers trained on augmented data. The F1 scores remained similar
to those obtained from training on synthetic data alone, and there was no significant
enhancement in the AUC either. Given that the dataset already exhibited high
performance when trained on real data alone, the addition of synthetic data resulted
in a decrease in performance. Therefore, in this particular scenario, the utilization of
augmentation was unnecessary. This can be observed by the following ROC plots:

Figure 4.18: All ROC plots for MLP Classifier with CTGAN-generated data based on
the Obesity dataset.

Lastly, when examining the Cardiovascular Disease dataset, no substantial improve-
ments in performance were observed when training on augmented data, as depicted
in Figure 4.19. This can be attributed to the fact that the Cardiovascular Disease dataset
already comprised a substantial number of data points (70,000). It is likely that the
complexity of the real data itself was not sufficient to warrant significant performance
improvements through the addition of augmented data.

Figure 4.19: All ROC plots for RFC with CTGAN-generated data based on the
Cardiovascular Disease dataset.

4.4 Preserved Privacy
In this section, the privacy dimension metrics discussed in Section 3.4.3 will be
examined. These metrics include the detection of duplicate rows in both the real and
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synthetic datasets, as well as exact matches. Furthermore, the nearest neighbor means
and standard deviations will also be analyzed.

With the exception of CopulaGAN’s Cardiovascular Disease dataset, which contained
two duplicate rows, none of the models generated synthetic datasets with duplicates.
Considering the size of the dataset (70,000 samples), two duplicates are negligible and
can be deleted. Moreover, all the orignial datasets, except for Lower Back Pain, had
some duplicate rows. Obesity had 33 duplicates, and Cardiovascular Disease had 48.
Since the models did not generate duplicate rows, it indicates that they somewhat
managed to clean the data. This also suggests that the models did not suffer from
mode collapse.

CTGAN CopulaGAN

Dataset MT0 MT0.01 MT0 MT0.01

Lower Back Pain 0 0 0 0
Obesity 0 0 0 0
Cardiovascular Disease 0 479 2 7061

Table 4.8: Exact Matches for each dataset with different match tolerance percentages.

The number of Exact Matches using different match tolerances is shown in Table
4.8. From the table, it is observed that most of the generated datasets had zero
exact matches with the tolerance being 0. This means that there were no rows
between the real and fake data that were exactly the same. The exception for this
was CopulaGAN for the Cardiovascular Disease dataset with 2 matches. Furthermore,
setting the tolerance to 1%, increased the matches for CTGAN and CopulaGAN on
the Cardiovascular Disease to 479 and 7061 identical rows, respectively. This shows that
while CopulaGAN had few exact matches, the model did generate data that was more
similar to the real data than CTGAN. Given the parallel performance demonstrated
by both models in the classifier evaluation, it could suggest that CTGAN may exhibit
superior privacy preservation capabilities. However, it all depends on how strict one
requires the match-tolerance to be.

Dataset CTGAN Dist. CopulaGAN Dist.

Lower Back Pain 2.4577 ± 0.6120 2.5150 ± 0.6372
Obesity 2.1122 ± 0.4860 2.1329 ± 0.5000
Cardiovascular Disease 0.7173 ± 1.2038 0.5722 ± 1.1761

Table 4.9: Nearest neighbor distances for all the datasets, shown as mean ± std.

Table 4.9 shows the nearest neighbor distances between the means and standard
deviations of the real and synthetic data. The magnitude of the mean and standard
deviations depends on the number of columns in the dataset, making the metric fair
to compare only within the same dataset.
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As discussed in Section 3.4.3, one would want a large mean and low standard
deviation to manage the trade-off between similarity and privacy. In other words,
the bigger the distance between mean and standard deviation, the better privacy.
However, too large of a distance means that the synthetic data is too dissimilar to
the original dataset and that the synthetic data is of low quality. Considering Lower
Back Pain datasets has the highest distances, while Cardiovascular Disease has the
lowest, reflects previous results. Also, CopulaGAN has the lowest distance between
the models on the Cardiovascular Disease dataset, although the difference is relatively
minor. However, for the Cardiovascular Disease dataset, the mean is lower than the
standard deviations for both models. The high variance between the rows could be
a privacy concern, as this could suggest that some rows are more similar than others.
Furthermore, a low mean might indicate excessive overfitting to the real data, which
could potentially compromise privacy.
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Chapter 5

Discussion

In this discussion chapter, a summary of the findings is presented based on
the evaluation of synthetic data generated using CTGAN and CopulaGAN. The
evaluation focuses on three dimensions: resemblance, classifier evaluation, and
privacy. By analyzing the results within each dimension, the main problem statements
addressed in this thesis can be discussed.

5.1 Producing High-Fidelity Synthetic Data
While both GAN models had comparable results, it was challenging to determine
which one performed better. During the training of GAN models on the three
experimental datasets, neither model achieved loss stability on the Lower Back Pain or
Obesity dataset. However, during training on the Cardiovascular Disease dataset, both
the generator and discriminator losses demonstrated a stabilized trend. It appeared
that CopulaGAN achieved slightly better stability compared to CTGAN.

After training the models and generating the synthetic datasets, a comprehensive
evaluation was conducted to examine the similarities between the real and synthetic
data. The evaluation included analyzing correlation matrices, correlation distances,
distribution plots, as well as assessing KSComplements and TVComplements.
Notably, CTGAN exhibited a greater ability to capture the underlying correlations
and distributions within smaller datasets compared to CopulaGAN. However, as
more data was incorporated, the performance gap between the models became less
noticeable. The exact reasons behind CTGAN’s superior performance on smaller
datasets are difficult to determine conclusively, but it suggests that this model may be
better suited for such scenarios. It is important to note that other factors, such as the
unique characteristics of the data, could have influenced these results. Consequently, it
is advisable to explore different models to determine the most suitable one for specific
datasets.

The evaluation of resemblance in the synthetic datasets revealed varying results across
the three datasets, with the synthetic Lower Back Pain datasets struggling the most
in replicating the real data’s complexities. The primary contributing factors to this
issue were the small dataset size of only 310 data points and its highly imbalanced
nature. In comparison, the synthetic Obesity datasets displayed slightly better results
but still had room for improvement. The synthetic Cardiovascular Disease datasets
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demonstrated the best resemblance to real data among the three datasets, as evidenced
by the distribution plots and correlation matrices, which showed that both models
successfully captured the complexities of the real data.

These findings suggest that GAN models might require a larger volume of data than
what was available in the Lower Back Pain dataset to effectively learn underlying
patterns, and the poor quality of this dataset further worsened the problem.
In contrast, the Obesity dataset, consisting of only 2111 data points, performed
significantly better. This indicates that sufficient variability and limited noise in real
data can lead to more successful GAN-generated synthetic datasets, even with smaller
sample sizes. However, while the synthetic data generated from the Obesity dataset
captured many of the real data’s complexities, it still fell short of representing the
full range of intricacies found in the real data. The impressive results obtained from
the Cardiovascular Disease dataset, with its large size of 70,000 data points, further
emphasize the importance of having a substantial volume of high-quality data for
GAN models to effectively capture and reproduce the intricate patterns present in real
datasets.

5.2 Comparing Classifier Performance
Training various classifiers on synthetic datasets provided valuable insights into the
effectiveness of synthetic data in capturing the underlying distributions of real data.
Ideally, classifiers trained on synthetic data and tested on real data should exhibit
comparable performance to classifiers trained and tested solely on real data. The
SynthEval framework, developed for this thesis, facilitated the evaluation of synthetic
data’s predictive power in comparison to real data, addressing the first problem
statement of this thesis.

Classifier performance often reflects how well synthetic data capture real data
complexities. For the Obesity dataset, the importance of having quality data was
emphasized, as certain target classes with insufficient data caused difficulties in
predicting those specific classes. Moreover, while training on real data and testing on
real data resulted in high performance, training on the lower-quality synthetic dataset
led to worse performance. In contrast, The Cardiovascular Disease dataset performed as
well as real data in making predictions, indicating successful capture of the underlying
patterns in the real data.

Some intriguing observations emerged from the SynthEval Framework. In some cases,
synthetic data outperformed real data in classifier performance, yielding better results
when training on synthetic data and testing on real data compared to training and
testing on real data. This occurred for the Lower Back Pain dataset and occasionally
for the Cardiovascular Disease dataset, although the performance increase was minimal
in the latter case. This outcome could be explained by GAN models generating less
noisy data with more variation than the original data. Consequently, synthetic data
might contain fewer errors and inconsistencies, enabling prediction models to extract
patterns and make accurate predictions more easily.

However, this may also lead to synthetic data not accurately representing the true
distribution of the real data, resulting in biased or unreliable predictions. Synthetic
data might not capture outliers or biases present in real data, which could lead to
better performance on synthetic data but also problems if certain patterns are missed.
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For instance, the Lower Back Pain dataset consistently showed that synthetic data was
not a good representation of the real data, yet the performance increased from 0.77 to
0.94 when training on synthetic data and testing on real data. Therefore, it is crucial to
ensure synthetic data reliability by verifying that it captures data complexities before
using it in decision-making or analysis applications, as unreliable synthetic data can
lead to incorrect diagnoses, treatments, or medical decisions.

5.3 Enhancing Classifier Performance through Synthetic
Data Augmentation

The second problem statement of this thesis aimed to investigate the extent to which
augmenting real data with synthetic data can enhance classifier performance. To
address this, the SynthEval framework was employed to compare the performance
of classifiers using real, synthetic, and augmented data, in order to assess whether any
improvements in performance could be observed.

However, a notable increase in classifier performance was observed only within the
Lower Back Pain dataset. For example, with the Logistic Regression model, when
trained on augmented data and tested on real data, the AUC reached 0.88. This
represents a significant improvement compared to training and testing on real data,
with an AUC of 0.77. It is important to highlight that the performance of the
augmented data was lower than when training on pure synthetic data and testing
on real data. In this specific case, it suggests that the synthetic data alone may have
captured certain patterns more effectively than the combination of real and synthetic
data, or that the synthetic data introduced less noise, ultimately leading to enhanced
classifier performance.

In contrast, the Obesity dataset already exhibited strong results when using real data.
However, since the synthetic data could not match the performance level of the real
data, incorporating it into an augmented dataset did not yield any improvements in
classifier performance. Additionally, the Cardiovascular Disease dataset successfully
generated synthetic data with performance comparable to that of the real data. Despite
this, augmenting the real data did not enhance the performance. This is likely because
the dataset was already large, and any performance limitations were not due to
missing data points, but rather the inherent complexity of the data.

This situation presents a catch-22 because data augmentation is typically more
valuable when dealing with data that is not sufficient enough for training, yet GAN
models require a sufficient amount of data to generate high-quality synthetic data.
Since the GAN models had difficulties capturing the underlying distributions and
correlations of the smaller datasets, the generated synthetic datasets were of lower
quality. Using datasets of lower quality to augment data in healthcare applications, as
previously discussed, is problematic. Therefore, it is essential to carefully evaluate the
quality of synthetic data generated from smaller datasets and consider alternative data
augmentation techniques or other approaches to improve classifier performance when
dealing with insufficient data. This highlights the importance of continued research
and development in generating high-quality synthetic data, especially for smaller or
more complex datasets.
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5.4 Balancing Privacy and Similarity
The results suggest that it is indeed possible to create synthetic data that closely
resembles the real data, as demonstrated by the successful replication of the
Cardiovascular Disease dataset. However, it is crucial to be mindful of the potential
privacy concerns associated with generating data that is overly similar to the original.
This aspect aligns with the objective of the third problem statement addressed in this
thesis.

Considering the low amount of duplicates and exact matches between the real and
synthetic data, it does seem that the models manage to preserve privacy somewhat.
However, raising the tolerance level for the Cardiovascular Disease dataset results in a
noticeable increase in exact matches, particularly with CopulaGAN. This suggests that
a more significant balance between data privacy and similarity might be necessary,
especially when handling highly sensitive information.

The Lower Back Pain dataset seemed to have few privacy issues, however the relevancy
of this is questionable, as the generated data was of low quality. The Obesity dataset
also seemed to have managed to preserve the privacy relatively well, with no exact
matches in the synthetic data and a high mean and low standard deviation from the
nearest neighbor distances. Furthermore, the Cardiovascular Disease dataset achieved
the highest performance of all the datasets, but there also seemed to be some signs
of overfitting. Although the privacy metrics showed fairly acceptable results, the
dataset’s high variance and lower mean might raise concerns. This indicates that the
models have over-learned from the data, making the synthetic data more vulnerable
to potential information leakage. However, it is important to note that using nearest
neighbor as the sole privacy metric may not be the most reliable approach. Further
research and exploration of additional privacy metrics are necessary in this field to
reach a definitive conclusion regarding the effectiveness of privacy preservation.

5.5 Limitations
The study only evaluated two GAN models (CTGAN and CopulaGAN) on a limited
number of datasets. While the results are promising in some cases, it is unclear how
well these models would perform on other datasets with different characteristics. In
some cases, some of the data used were not complex enough to fully explore different
areas of analysis. For instance, the Cardiovascular Disease dataset lacked the necessary
complexity to accurately test the effectiveness of augmenting real data with synthetic
data. Additionally, the data used in this study only comprised of continuous and
discrete data types. As a result, the GAN models were evaluated solely on these
specific data types, and their performance on other data types was not assessed.

Furthermore, the data used in the study was obtained from open-source websites. As
a result, the data has undergone pre-processing, which raises concerns regarding its
validity. It is recommended to utilize authentic data directly sourced from hospitals or
laboratories, as such data is typically not anonymized or altered.

While commonly used metrics for privacy were employed in this study, there may be
other metrics that are more appropriate for evaluating privacy in healthcare datasets.
Although they provide a general overview of how well the models can preserve
privacy, they do not offer a comprehensive enough analysis to conclude if the data
is really secure.
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5.6 Future work
Throughout this thesis, the evaluation techniques employed have yielded encouraging
findings in generating synthetic datasets that accurately capture the inherent patterns
of real data. Nevertheless, there remain intriguing avenues for future research
that warrant exploration and attention. These areas hold potential for further
advancements in the field of synthetic data generation.

Investigating the impact of different generation algorithms or architectures on the
quality of synthetic datasets is an area worth exploring. This thesis focused solely
on the use of GAN models to generate synthetic data, but future work could explore
alternative methods for STDG, such as the use of auto-encoders or RNNs.

Exploring the performance of different GAN models on more complex datasets would
be an interesting area of future research. This could involve data with more features
and complex relationships between them. Additionally, testing on more complex
data types such as time-series data could be considered. Furthermore, exploring the
effectiveness of synthetic data for applications beyond classification tasks would also
be valuable. This could include clustering, time-series analysis, or forecasting.

This thesis established a framework specifically designed for evaluating prediction
tasks with medical data, incorporating metrics such as F1 scores, AUC, and ROC
curves. However, the range of evaluation metrics available could potentially
be expanded to provide a broader and more comprehensive assessment. By
incorporating additional metrics tailored to the unique characteristics of medical data,
the evaluation process can be further improved.

While the primary focus of this research was to evaluate data quality and performance,
future work could try and incorporate more privacy metrics and compare perform-
ance and quality against these metrics. It is worth investigating whether maintaining
privacy could have a negative impact on performance and where the optimal balance
between these two dimensions lies. One potential approach to explore this further is
to generate synthetic data using more sensitive or seemingly sensitive data to eval-
uate the performance of different inference attack methods or other privacy metrics
discussed in related literature. Another option could be to investigate other privacy
metrics for STDG, considering this is an under-researched area.

Finally, conducting user studies or real-world evaluations to assess the practical
applicability of synthetic data would be highly valuable. Given the concerns
surrounding data bias and potential erroneous predictions, gathering feedback from
domain experts or end-users, especially in clinical settings, can significantly enhance
the reliability and trustworthiness of the generated data. This feedback could
contribute to mitigating the risk of bias and inaccuracies that may arise in synthetic
data.
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Chapter 6

Conclusion

The healthcare sector presents vast opportunities for the integration and advancement
of artificial intelligence. Leveraging the capabilities of AI can revolutionize diagnostic
and prognostic modeling, streamline patient risk assessment, and enhance clinical
decision support, among other notable applications. Despite these promising
prospects, the progress in healthcare AI development is impeded by strict data
protection laws and regulations safeguarding sensitive patient information, which
restrict researchers’ access to authentic medical datasets. Nevertheless, synthetic
data emerges as a promising solution to circumvent these challenges, as it offers
the potential to generate data that closely resembles real-world datasets without
compromising individual privacy.

The primary objective of this thesis was to explore the generation of synthetic tabular
healthcare data by employing several GAN models, thereby assessing the potential
and significance of synthetic tabular data generation within the healthcare industry.
The two GAN models selected, CTGAN and CopulaGAN, were chosen based on a
comprehensive systematic review of prevalent tabular GAN models. Subsequently,
three diverse healthcare datasets of varying sizes and complexities were selected:
Lower Back Pain Symptoms, Estimation of obesity levels, and Cardiovascular Disease
Prediction. To optimize performance, the two GAN models were trained using distinct
parameters for each dataset. Convergence of the GAN models was only observed
when training on the Cardiovascular Disease dataset.

Upon generating synthetic data using the GAN models based on the chosen datasets,
a thorough evaluation process was conducted to assess the synthetic data from three
distinct dimensions: resemblance, classifier performance, and privacy. The metrics
employed within each dimension were aligned with those commonly used in related
studies. To evaluate resemblance, univariate statistical characteristics were compared
using simple statistical checks, alongside column correlation and feature distribution
comparisons.

A custom-made framework, "SynthEval," was developed to assess the synthetic data
against the real data in terms of classifier performance. This framework aimed to
evaluate real, synthetic, and augmented data relative to one another. SynthEval
consisted of three phases: the first phase involved training a classifier on real data and
evaluating it on both real and synthetic data; the second phase trained the classifier
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on synthetic data and evaluated it on both synthetic and real data; and the third
phase focused on augmented data, combining real and synthetic data. The third phase
sought to determine whether incorporating synthetic data alongside real data would
enhance the performance of the classifier. Through this framework, a comprehensive
evaluation of various classifiers and data was achieved, with results presented as
F1 scores and ROC curves. For this thesis, three classifiers were employed within
the SynthEval framework: Logistic Regression, Random Forest, and MLPClassifier.
Finally, privacy metrics such as duplicates, exact matches, and nearest neighbor
distances were utilized to determine whether the GAN models effectively generated
synthetic data without compromising privacy.

The results revealed that synthetic data based on the Lower Back Pain dataset, the
smallest dataset with 310 datapoints, faced the greatest difficulty in capturing the
real data’s underlying patterns. The Obesity dataset demonstrated moderate success,
though there remained room for improvement. In contrast, the largest dataset,
Cardiovascular Disease, with 70,000 datapoints, appeared to successfully capture
correlations and distributions consistent with the real data. As a result, the GAN-
generated datasets exhibited predictive power equivalent to the real data. While
classifier performance declined for the synthetic Obesity dataset, the Lower Back Pain
dataset performed better on synthetic data than the real data, suggesting cleaner
synthetic data. This dataset also exhibited improved performance when augmented
data was used.

In terms of privacy, the synthetic Lower Back Pain and Obesity datasets exhibited the
fewest concerns; however, this may be attributed to their limited representation of
real data. Although the GAN models generated high-quality synthetic data for the
Cardiovascular Disease dataset, the privacy evaluation raised concerns about potential
overfitting, which could indicate that the models over-learned from the data. A
more in-depth privacy assessment is necessary to draw a definitive conclusion on this
matter.

In conclusion, this thesis has demonstrated the feasibility of generating synthetic
tabular healthcare data using GAN models, showcasing its potential to mitigate
challenges posed by data protection laws and regulations. Although some datasets
yielded better results than others, the overall findings highlight the promise of
synthetic data as a viable alternative to real data in certain circumstances. Moving
forward, future research should prioritize refining GAN models and evaluation
methodologies, utilizing more complex data for synthetic data generation, and
conducting in-depth privacy assessments. These efforts will help ensure responsible
and ethical advancement of synthetic data applications within healthcare.

.
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Appendix A: Lower Back Pain
Symptoms

A.1 Implementation

Github Repository with all the implemented code, results and datasets used for this
thesis can be found at: https://github.com/mareped/STDG

A.2 Basic Statistical Check

Figure A.1: Absolute Log Mean and STD of numeric data for Lower Back Pain dataset
generated by CopulaGAN.
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A.3 Column Distributions

Figure A.2: Cumulative sums of each feature in the Lower Back Pain dataset for
CTGAN.
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Figure A.3: Cumulative sums of each feature in the Lower Back Pain dataset for
CopulaGAN.
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Figure A.4: Feature shape comparison of each column in the Lower Back Pain dataset
for CTGAN.
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Figure A.5: Feature shape comparison of each column in the Lower Back Pain dataset
for CopulaGAN.
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A.4 Classifier Evaluation

Figure A.6: All ROC curves for CTGAN’s Lower Back Pain dataset.
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Figure A.7: All ROC curves for CopulaGAN’s Lower Back Pain dataset.
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GAN Model Classifier Train Data F1 Real F1 Synth/Augmented Difference

CTGAN

Logreg Real 0.6866 0.2812 0.4054
Logreg Synth 0.5239 0.8904 -0.3665
Logreg Augmented 0.6638 0.7973 -0.1335
RFC Real 0.7817 0.4188 0.3629
RFC Synth 0.5506 0.9201 -0.3695
RFC Augmented 0.7805 0.8543 -0.0738
MLP Real 0.7418 0.3589 0.3829
MLP Synth 0.5309 0.8955 -0.3646
MLP Augmented 0.7004 0.8104 -0.11

CopulaGAN

Logreg Real 0.6866 0.1922 0.4944
Logreg Synth 0.2968 0.881 -0.5842
Logreg Augmented 0.5882 0.787 -0.1988
RFC Real 0.7807 0.2196 0.5611
RFC Synth 0.5692 0.9008 -0.3316
RFC Augmented 0.7455 0.8683 -0.1228
MLP Real 0.7381 0.2212 0.5169
MLP Synth 0.3697 0.8891 -0.5194
MLP Augmented 0.6409 0.7563 -0.1154

Table A.1: All F1 scores from CTGAN and CopulaGAN on the Lower Back Pain dataset.
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Appendix B: Estimation of Obesity
Levels

B.1 Basic Statistical Check

Figure B.8: Absolute Log Mean and STD of numeric data for Obesity dataset generated
by CopulaGAN.

B.2 Correlations
Real CTGAN CopulaGAN

Figure B.9: Comparison of correlation matrices for the Obesity dataset (top row), along
with the corresponding difference matrices (bottom row).
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CTGAN CopulaGAN

Figure B.10: Scatter plot for correlation coefficients on the Obesity dataset.
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B.3 Column Distributions

Figure B.11: Cumulative sums of each feature in the Obesity dataset for CTGAN.
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Figure B.12: Cumulative sums of each feature in the Obesity dataset for CopulaGAN.

78



Figure B.13: Feature shape comparison of each column in the Obesity dataset for
CTGAN

79



Figure B.14: Feature shape comparison of each column in the Obesity dataset for
CopulaGAN
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B.4 Classifier Evaluation

Figure B.15: All ROC curves for CTGAN’s Obesity dataset.
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Figure B.16: All ROC curves for CopulaGAN’s Obesity dataset.
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GAN Model Classifier Train Data F1 Real F1 Synth/Augmented Difference

CTGAN

Logreg Real 0.6833 0.3481 0.3352
Logreg Synth 0.3963 0.3863 0.01
Logreg Augmented 0.5547 0.4431 0.1116
RFC Real 0.9356 0.3196 0.616
RFC Synth 0.3953 0.4144 -0.0191
RFC Augmented 0.9296 0.5871 0.3425
MLP Real 0.8609 0.3297 0.5312
MLP Synth 0.4205 0.3999 0.0206
MLP Augmented 0.5985 0.4879 0.1106

CopulaGAN

Logreg Real 0.6833 0.3427 0.3406
Logreg Synth 0.4376 0.4156 0.022
Logreg Augmented 0.5211 0.4649 0.0562
RFC Real 0.9378 0.3149 0.6229
RFC Synth 0.4897 0.4251 0.0646
RFC Augmented 0.9207 0.5877 0.333
MLP Real 0.8696 0.3073 0.5623
MLP Synth 0.4451 0.42 0.0251
MLP Augmented 0.6703 0.5056 0.1647

Table B.2: All F1 scores from CTGAN and CopulaGAN on the Obesity dataset.
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Appendix C: Cardiovascular Disease
Prediction

C.1 Basic Statistical Check

Figure C.17: Absolute Log Mean and STD of numeric data for Cardiovascular Disease
dataset generated by CopulaGAN.

C.2 Correlations

CTGAN CopulaGAN

Figure C.18: Scatter plot for correlation coefficients on the Cardiovascular Disease
dataset.

84



C.3 Column Distributions

Figure C.19: Cumulative sums of each feature in the Cardiovascular Disease dataset for
CTGAN.
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Figure C.20: Cumulative sums of each feature in the Cardiovascular Disease dataset for
CopulaGAN.
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Figure C.21: Feature shape comparison of each column in the Cardiovascular Disease
dataset for CTGAN.
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Figure C.22: Feature shape comparison of each column in the Cardiovascular Disease
dataset for CopulaGAN.
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C.4 Classifier Evaluation

Figure C.23: All ROC curves for CTGAN’s Cardiovascular Disease dataset.
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Figure C.24: All ROC curves for CopulaGAN’s Cardiovascular Disease dataset.
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GAN Model Classifier Train Data F1 Real F1 Synth/Augmented Difference

CTGAN

Logreg Real 0.6474 0.6837 -0.0363
Logreg Synth 0.6957 0.7245 -0.0288
Logreg Augmented 0.6406 0.6727 -0.0321
RFC Real 0.7152 0.7091 0.0061
RFC Synth 0.6906 0.7343 -0.0437
RFC Augmented 0.7183 0.7276 -0.0093
MLP Real 0.7224 0.7163 0.0061
MLP Synth 0.7021 0.7407 -0.0386
MLP Augmented 0.7165 0.725 -0.0085

CopulaGAN

Logreg Real 0.6474 0.6422 0.0052
Logreg Synth 0.6893 0.7228 -0.0335
Logreg Augmented 0.6225 0.6482 -0.0257
RFC Real 0.7155 0.6981 0.0174
RFC Synth 0.6872 0.7422 -0.055
RFC Augmented 0.7122 0.7274 -0.0152
MLP Real 0.7215 0.6971 0.0244
MLP Synth 0.7048 0.7402 -0.0354
MLP Augmented 0.713 0.7233 -0.0103

Table C.3: All F1 scores from CTGAN and CopulaGAN on the Cardiovascular Disease
dataset.
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