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Abstract

Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent neuro-
biological condition with far-reaching implications for a child’s academic
achievement, well-being, and social interactions. Despite its impact, cur-
rent diagnostic methods, largely reliant on behavioral observations and
subjective symptom reporting, may result in over-diagnosis or under-
diagnosis. This thesis explores the potential of eye-tracking metrics and
mathematical modeling as more objective and precise tools for ADHD dia-
gnosis.

We utilized a dataset from a visuospatial memory test involving
children both with and without ADHD. The methodology encompasses
a two-fold approach. Initially, we establish a benchmark classification
model using non-eye-tracking metrics. Subsequently, we incorporate eye-
tracking metrics derived from two mathematical models; the "Feed and
Fly" and Lévy Flight models, contributing to our understanding of ADHD’s
complex nature.

Our findings reveal that while the "Feed and Fly" model did not yield
significant differentiation between ADHD and non-ADHD groups, the
Lévy Flight model, especially when applied in an event-based analysis,
showed potential in enhancing the benchmark model’s performance. The
final model refined to only three key metrics, each representing different
analytical domains - WISC tests, eye-tracking data, and memory tests
- emphasizing the necessity of a multi-faceted approach in diagnosing
ADHD.

Despite the limitations of the study, including questionable quality of
the eye-tracking data and a small dataset size, our research highlights the
promising potential of eye-tracking data and mathematical modelling in
ADHD diagnosis, laying the foundation for future research in this field.
We anticipate that this exploration will inspire further studies into more
objective diagnostic tools, not only for ADHD but also for a wider range of
cognitive disorders.
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Chapter 1

Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) is the most common
neurobiological disorder in children and adolescents. Being one of the main
causes of consultation in both Mental Health Units and schools [1], and can
profoundly affect children’s academic achievement, well-being, and social
interactions [2].

It was first introduced in the American Psychiatric Association’s (APA)
“Diagnostic and Statistical Manual of Mental Disorders” (DSM) in its
third edition, released in 1980, as attention deficit disorder (ADD) with
two variations: the ADD with hyperactivity and the ADD without
hyperactivity. The APA renamed it as attention deficit hyperactivity
disorder (ADHD) in 1987, encompassing inattentiveness, impulsivity, and
hyperactivity. In 1994, the APA’s DSM 4th edition listed three types
of ADHD: mostly inattentive; mostly hyperactive and impulsive; and a
combined type. In the most recent edition, published in 2013, the APA
designated the three types as the three “presentations” of ADHD, which
means the ways the disorder may affect people [3].

According to the Centers for Disease Control and Prevention (CDC), the
estimated number of children aged 3–17 years ever diagnosed with ADHD
in the US is 6 million using data from 2016-2019 [4], while in a meta-analysis
of 175 research studies worldwide on ADHD prevalence in children aged
18 and under, was found an overall pooled estimate of 7.2% of the global
children population [5].

Data from the National Survey of Children’s Health (NSCH) and
the National Health Interview Survey (NHIS) reveal a higher ADHD
prevalence among older age groups, with boys having approximately
double the ADHD diagnoses compared with girls [6]. However, girls
with ADHD displayed greater intellectual impairment, lower levels of
hyperactivity, and lower rates of other externalizing behaviors [7], which
resulted in the fact that many girls are not diagnosed until middle school
or later when learning tasks become more complex [8].

As already mentioned, it is characterized by persistent inattention or
hyperactivity–impulsivity, or a combination of the two, that interfere with
functioning [9]. No gene or structural abnormality of the brain accounts
for the diversity of the ADHD spectrum; instead, it is believed to result
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from the complex interaction of genetic, biological, and environmental risk
factors [8]. While Swanson J. et al. [10], in their study evaluated one of the
prevailing theories, the dopamine deficit theory, and identify critical issues
about etiologic subtypes of ADHD that may involve dopamine.

According to Frazier T. et al. [11] study, their meta-analytic results
indicated a moderate to the large discrepancy in academic achievement
between individuals with ADHD and typical controls. This outcome
substantiates the significant impact of ADHD symptoms on academic
performance and reveals a pattern of impairments beyond the achievement
test decrements identified in previous studies.

That fact makes it even more crucial to have an accurate diagnosis to
ensure appropriate help for students in need and to remove the risk of
misdiagnoses for non-disabled students. However, as is true with most
developmental disorders, there is no definite test for ADHD, and both
diagnosis and classification rely on the description. This lack of definite
diagnostic tools has led to significant variations in ADHD prevalence,
which has been reported from 2.2% to 17.8% [12].

Currently, diagnosis is being performed solely based on observed
behavior and reported symptoms, as well as other subjective measures,
such as clinical interview and rating scales which carries the potential risk
of over-diagnosis or under-diagnosis, given the heterogeneity of ADHD
symptoms [13].

Consequentially, there are ongoing efforts to identify stratification
markers that may one day aid in early diagnosis or help predict prognosis
and treatment response in ADHD. Oculomotor studies have been utilized
to investigate aspects of both motor and cognitive control in ADHD, as
well as the potential value of oculomotor markers in predicting treatment
response.

Understanding the mechanisms between oculomotor control, neuro-
cognitive traits, and broader ADHD symptoms requires a comprehensive
understanding of the spectrum of oculomotor characteristics in ADHD.
Wainstein et. al. [14], conducted a visuospatial experiment, based on a
memory test, on children (subjects) with and without ADHD to determine
if pupil size can be used as a biological marker that could help objectively
define the disorder and provide information about its pathophysiology.

In this thesis, we will utilize their dataset and base our analysis on
it, extending their work by examining the subject’s eye movement during
memory tests from a different perspective to gain additional insights from
these data. Our motivation for this thesis is to explore the potential of eye
movement characteristics as a more objective and accurate diagnostic tool
for ADHD, and to highlight the importance of a comprehensive, multi-
domain approach to ADHD diagnosis. By investigating the relationship
between oculomotor control and ADHD symptoms, we aim to contribute
to the ongoing efforts in identifying stratification markers that could aid in
early diagnosis, prognosis, and treatment response prediction.

We will employ various eye-tracking techniques and algorithms,
including the "Feed and Fly" and Lévy Flight models, to analyze the eye
movement data, focusing on specific eye movement metrics like fixation
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durations, saccade frequency, and others to differentiate between ADHD
and non-ADHD subjects. The mathematical modeling of visual scanpaths
plays a crucial role in understanding these differences and is an integral
part of our analysis.

We will formulate two assumptions throughout this study. The first
would be that the eye movements can be described as an intermittent pro-
cess from which the characterization of eye-movements as two alternat-
ing processes (saccades and fixations) is a natural consequence, while the
second would be that the visual scanpath follows the pattern of a Lévy
flight. Both assumptions will be examined and their derived metrics will
be evaluated upon their capability to differentiate between the ADHD and
non-ADHD group.

Several challenges in analyzing eye-tracking data arise due to the
inherent complexity of human eye movements and the need for accurate
detection and classification of events. Our methodology aims to address
these challenges and enhance the analysis of eye movement data for ADHD
research.

Our initial hypothesis is that there could be a significant difference in
eye movement characteristics, such as fixation duration and saccade fre-
quency, between children with and without ADHD. This assumption is
based on prior research indicating that youths with ADHD perform ab-
normally in these tasks. However, our exploration is open-ended, acknow-
ledging the possibility that these differences might not be universally sig-
nificant, and the importance lies in understanding the potential of eye-
tracking data.

In the upcoming chapters, we will delve deeper into the methodology
and results of our analysis.

Chapter 2, "Background and State of the Art," will provide a compre-
hensive review of the background and state-of-the-art techniques in vision
systems, eye movements, eye tracking, and eye movement analysis. We
will also explore the mathematical modeling of visual scanpaths, differ-
ent types of eye movements, and various event detection methods. The
mathematical background of different event-classification algorithms, such
as velocity-based, dispersion-based, and area-based algorithms, will be
discussed. Additionally, we will delve into eye tracking techniques, the
latest technologies and systems, and the recent advancements in detecting
ADHD through eye-tracking data analysis.

Chapter 3, "Methodology," will focus on our methodology, including
data collection and dataset description, methodology procedure, and
data analysis methods. We will also discuss the benchmark model and
parameter selection process, as well as the assumptions and models used
in our eye-tracking data analysis.

Chapter 4, "Results," will present our results, including the performance
of our benchmark model and the eye-tracking metrics generated using
different models. We will discuss the incorporation of these metrics into
the benchmark model and provide an event-based analysis.

Finally, in Chapter 5, "Conclusion," we will summarize our study,
discuss the results and their implications, and suggest future research
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directions.
While our study hypothesizes certain outcomes, it’s important to note

that our findings might yield a mix of results. These outcomes, whether
they confirm or challenge our initial hypothesis, will provide invaluable
insights into the potential use of eye-tracking data in diagnosing ADHD.

Our research aims to advance our knowledge about ADHD and foster
more objective, precise diagnostic tools. Enhanced diagnostic accuracy can
lead to better outcomes for children with ADHD, improving their academic
achievement, social interactions, and overall quality of life.
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Chapter 2

Background and State of the
Art

2.1 Vision System and Fundamentals of Eye Move-
ment

Vision is the prominent sense among the five primary senses that give
people a rich perceptual experience of the outside world. The primary
sensory system involved in vision is the eye. Through the pupil, light
waves enter the eye after traveling through the cornea, Figure 2.1. The eye’s
clear exterior is called the cornea. It helps focus light waves that enter the
eye and acts as a boundary between the inner eye and the outside world.
The pupil is the tiny opening in the eye through which light travels, and
both light intensity and emotional arousal can affect the pupil’s size.

The pupil will dilate, or widen, to allow more light to enter the eye
when light levels are low. When there is much light, the pupil will contract,
or shrink, to allow less light to enter the eye, [15]. The muscles associated
with the iris, the colorful part of the eye, regulate the size of the pupil.

Light travels via the lens, a curved, transparent device that acts as an
extra focus after passing through the pupil. In order to help focus the light

Figure 2.1: The anatomy of the eye, taken from [15].
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reflected from close or far objects, the lens is linked to muscles that can alter
its shape. A normal-sighted person’s lens will focus images precisely on the
fovea, a small depression in the retina, the light-sensitive lining of the eye
located at the back of the eye. There are specialized photoreceptor cells
packed closely together in the fovea. These cone-shaped photoreceptor
cells are light-detecting cells and are known as cones.

Cones are particular kinds of photoreceptors that function best in bright
light. Cones have outstanding spatial resolution and are highly sensitive
to minute details. They also play a crucial role in how we perceive color.
The cones are concentrated in the fovea, where images typically focus.
The other type of photoreceptors, rods, are distributed across the rest
of the retina, [16]. Although they lack the cones’ spatial precision and
color function, rods are specialized photoreceptors performing well in low
light. They are essential in our vision in dimly lit surroundings and our
perception of movement on the periphery of our visual field.

We, therefore, adapt our eyes so that the light reflected from the object
falls onto the fovea in order to view an object with 100 percent sharpness.
Although our foveal vision is clear and vibrant, it only encompasses a
small portion of our visual field—about 2 degrees, Figure 2.2. Visual clarity
rapidly decreases away from the gaze’s center. For instance, at 5 degrees,
our visual acuity is approximately 50%. Our retina is mainly employed to
detect movements outside of our "useful" visual field of roughly 30 degrees,
[17].

Figure 2.2: Cone of vision, taken from [17].
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We continuously scan our visual field with quick ballistic eye move-
ments to make up for our limited foveal vision. The oculomotor system
facilitates this dynamic interaction with the surroundings. The oculomotor
system regulates gaze-orienting movements as well as maintaining visual
stability. It comprises the vestibular system and the visual system’s effer-
ent limb. The efferent limb carries out eye movements and maintains eye
posture, [18].

On the other hand, the vestibular system provides our brain inform-
ation about motion, head position, and spatial orientation, which in turn
supports motor tasks, including balance, stability when moving, and pos-
ture. There are five fundamental types of eye movements based on their
function: three gaze-orienting movements, saccadic, smooth pursuit, ver-
gence, and two gaze-stabilizing motions, vestibulo-ocular (VOR) and opto-
kinetic nystagmus (OKN), [19].

More specifically, saccadic eye movements might be small (i.e., cover
short distances) or large (i.e., cover larger distances), as in reading (e.g.,
looking around a room). We do not process visual information when our
eyes shift quickly from one region to another during saccades, [17]. Instead,
we process visual information between saccades when we maintain a
relatively stable gaze for brief periods to reposition a new image onto the
fovea or capture an object’s "foveal snapshot". Most of our viewing time
is spent during the brief fixations that occur in between saccades (about 90
percent),[19]. On the other hand, smooth pursuit refers to the movement
generated when our eyes are following a moving object, while vergence is
the movement of eyes in the opposite directions.

In particular, the human visual system utilizes saccades to actively shift
fixations towards areas of interest, allowing for the extraction of detailed
information from the visual environment. This sequence of saccades and
fixations is commonly known as a scanpath [20].

Overall, it is safe to claim that our ability to interact with a complex and
dynamic environment through the seamless coordination of our visual and
oculomotor systems gives us our subjective sense of a stable world with
uniform clarity.

Having established the fundamentals of the vision system and the
various types of eye movements, the next step is to analyze these eye
movements and their underlying patterns. This analysis will involve
the mathematical modeling of scanpaths, which represent sequences of
saccades and fixations that our visual system uses to actively explore areas
of interest in the visual environment. By examining these scanpaths, we
can gain insights into an individual’s cognitive processes and attentional
mechanisms.

In the following section, we will discuss the mathematical modeling
of scanpaths and delve deeper into the specific eye movement types, as
well as the event detection techniques used to identify and analyze these
eye movements. This information will provide a solid foundation for
understanding how eye movement analysis can be utilized in detecting
ADHD using eye-tracking data.
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2.2 Eye Movement Analysis

2.2.1 Mathematical Modelling of Visual Scanpaths

The investigation of visual scanpaths is shaped by three primary factors.
First, top-down processes encompass the observer’s individual character-
istics, which influence their eye movements. These can be intentional, such
as completing a task, or unintentional, stemming from factors like the ob-
server’s background, age, or gender. Second, bottom-up processes are asso-
ciated with the visual stimulus and involve basic image features like color
and motion. Lastly, the third factor pertains to the eye movement system
itself, including the natural inclination to concentrate on the center and the
patterns of eye movements, such as saccades, [21].

In every instance, mathematical modeling of visual scanpaths relies
on the Markov process. This stochastic model describes a sequence of
potential events, where the probability of each event is dependent solely on
the state reached in the preceding event. It is a stochastic process featuring
a series of alternating states, [22].

Coutrot A. [21] outlines three Markov process-based approaches: the
Hidden Markov Model (HMM), the Brownian Motion, and the Lévy Flight.
All three are employed to represent random movement in various fields,
such as physics, finance, and biology. Brownian motion is observed in the
motion of pollen grains on still water or movement of dust in a room and
pollutants in the air, [23], while HMMs have been employed to analyze
the movements of large carnivores, such as African wild dogs, in relation
to human-altered landscapes and their associated effects on connectivity
between isolated populations [24]. Lévy flights are observed in various
natural phenomena, such as the foraging patterns of animals [25], the
search behavior of microorganisms, the strategies of hunter-gatherers [26],
the dynamics of financial markets [27] and the visual gaze.

Brownian Motion

The early attempts to model visual scanpaths were based on the assump-
tion that eye movements during visual search follow a random walk, which
is often modeled using Brownian motion. Brownian motion is a simple
and widely studied random process that exhibits normal diffusion, and it
provided a reasonable starting point for modeling eye movements during
visual search. It is characterized by linear-in-time mean square displace-
ment [29]. This continuous-time stochastic process can model the random
motion of a viewer’s gaze or visual scanpath when observing a scene. The
motion adheres to a Gaussian distribution, implying that the gaze moves
in small, random steps with zero mean (µ = 0) and a fixed standard de-
viation (σ), reflecting the Gaussian nature of the displacement [20]. The
displacement from the starting point typically grows as the square root of
time, signifying a diffusive exploration of the visual scene. This gaze be-
havior model represents a viewer’s attention dispersing over time without
any specific pattern or direction.
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Figure 2.3: Comparison of the trajectories of a Brownian or subdifusive
random walk (left) and a Lévy flight with exponent 1.5 (right). Both walks
are drawn for the same number of steps (approx. 7000), taken from [28].

Lévy flights

While Brownian motion exhibits some similarities with Lévy flights, their
primary distinctions lie in their underlying probability distributions and
the nature of the steps they take. As presented in Figure 2.3 even though
both trajectories are statistically self-similar, the Lévy flight trajectory
possesses a fractal dimension, characterising the island structure of clusters
of smaller steps, connected by a long step, [28].

Recent research in cognitive science suggests that standard diffusion
processes may not be suitable models for human looking behavior.
Specifically, experimental findings affirm that superdiffusive Lévy-type
dynamics emerge in this context, [29]. This is something that Dirk
Brockmann and Theo Geisel highlighted in their study “The ecology of
gaze shifts”, [30] more than 20 years ago. They suggested that visual
scanpaths generated under natural circumstances are similar in their nature
to Lévy fights, meaning that they possess a power law dependency in their
magnitude distribution.

More specifically, a Lévy flight is a stochastic process used to model
the random motion of a viewer’s gaze or visual scanpath when observing
a scene. This motion follows a heavy-tailed, power-law distribution
[31], as opposed to the Gaussian distribution observed in Brownian
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Figure 2.4: Left: Regular difusion process generated from a single-step
distribution with finite second moment. Right: A scale free Lévy flight
generated from a single-step distribution with an algebraic tail, taken from
[30].

motion, Figure 2.4. Lévy flights are characterized by random jumps
with lengths distributed according to a heavy-tailed, power-law density,
and discontinuous trajectories [32]. These jumps allow for long-range
movements, as they are more likely to include larger steps than the average.
The impact of the long-tail behavior of the single-step distribution p(x) is
depicted in Figure 2.4. Furthermore, Lévy flights have infinite propagation
velocities [32], as each jump, regardless of its size, takes one unit of time
according to Viswanathan [33] and Shlesinger [34]. Consequently, the
ratio of step size to time (i.e., velocity) would also follow a power-law
distribution, resulting in a heavy-tailed distribution of velocities in Lévy
flights.

In the context of visual scanpaths, this indicates that a viewer’s atten-
tion may occasionally make extensive shifts across the scene, intermixed
with smaller, local movements. Lévy flights, as already mentioned, are typ-
ified by power-law scaling, with the tails of the distribution adhering to a
power-law, P(x) ∝ |x|−α, with 1 < α ≤ 3. The parameter α determines the
heaviness of the tails, [35]. When α > 3, the process resembles a Gaussian
random walk [36], while values α ≤ 1 do not correspond to normalizable
probability distributions. For 1 < α ≤ 2, the distribution has no mean and
no variance and for 2 < α ≤ 3, the distribution has a mean but no variance
[37]. The impact of the exponent α is presented in the Figure 2.5.

It has been shown that Lévy flights reproduce well human sacaddic
movements over a saliency map [38]. The saliency is associated with
the deterministic part of the dynamics and it drives the gaze to the most
relevant points in the image, while the stochastic component, associated
with large shifts, is responsible for scene exploration.

Building upon this understanding, it is important to note that foraging
models typically exhibit a scaling exponent around 2. It is hypothesized
that visual and oculomotor systems would adapt to a similar Lévy flight
model [39]. While there is limited literature on this aspect, eye-tracking
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Figure 2.5: Impact of the exponent value, with α = 1.5 (green, not present
on the zoom), α = 2 (red), α = 3 (blue), taken from [37].

experiments conducted by Credidio H. et. al. [40] found the exponent
to be approximately 2.9, regardless of the level of difficulty of the visual
task. This finding supports the notion that the Lévy flight model can
be applied to the study of eye-tracking patterns and visual scanpaths in
various contexts, and it emphasizes the potential relevance of the scaling
exponent in characterizing eye movements.

Hidden Markov Model

The Hidden Markov Model (HMM) is another mathematical approach
used to describe visual scanpaths. HMM is a statistical model that assumes
an underlying Markov process with hidden or unobserved states, such as
"saccade" and "fixation" in the context of eye movements. These hidden
states are not directly observed but inferred from the observable data,
namely gaze position and velocity, through a series of algorithms [41].
HMMs have been widely used in various applications, including speech
recognition, computational biology, and natural language processing [41].

"Feed and Fly" Model

Boccignone and Ferraro proposed a novel model known as the "feed
and fly" or IHCS model to simulate the visual scanpaths [20]. The
model addresses the variability in visual exploration patterns among
different observers and even within the same individual, an aspect often
overlooked in other foveation models. The IHCS model generates a
series of fixations and gaze shifts under the influence of an information
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foraging mechanism that alternates between two distinct states: the "feed"
state, which corresponds to fixations when relevant visual information
is encountered, and the "fly" state, akin to saccades, which involves
seeking significant visual stimulus areas. Additionally, the model features
a unique internal gaze-shift simulation step that helps estimate the
optimal motor parameters for the actual shift. The simulations indicate
that the approach is not dependent on specific features for deriving
saliency and can effectively handle both bottom-up and top-down semantic
cues. Furthermore, the "feed and fly" model can be readily adapted
to incorporate object-based paradigms, offering insights into individual
differences in scanpath patterns, an essential aspect of cognitive science.

Considering the "feed and fly" model, which effectively captures the
distinct phases of fixations and saccades in visual exploration patterns, it
is worth revisiting the earlier discussion on Lévy flights. In cases where
the anticipated log-normal distribution [40] does not occur and a power-
law distribution is observed instead, the distinction between fixations and
saccades becomes more challenging. This power-law distribution suggests
the presence of Lévy flights, which complicates the separation between
fixations and saccades, unlike the clear differentiation in the "feed and
fly" model. This crucial difference emphasizes the distinct characteristics
of each modeling approach and warrants further examination of their
respective implications.

In light of these differences between the "feed and fly" model and Lévy
flights, understanding the implications of such discrepancies will be a vital
aspect of this thesis. As we progress through the following chapters, we
will delve deeper into the significance of these distinctions and their effects
on the analysis of visual scanpaths and eye movements.

2.2.2 Eye Movement Types

In Section 2.1, we provided a brief overview of the fundamentals of eye
movement. These fundamentals of eye movements are often characterized
by various parameters that can be measured using eye-tracking systems, as
demonstrated in Table 2.1.

In this section, we will examine the concepts of fixation and saccade
more thoroughly, and introduce both the concept of event detection and
the taxonomy of different classification algorithms used in eye movement
analysis.

A fixation is a movement that occurs while the eye is essentially
stationary and focuses on an object, Figure 2.6. For clear vision, the fixation
movement stabilizes the object on the fovea. Tremor, gradual drift, and
microsaccades are three different tiny movement types that may be present
during fixation events. The eye motion known as a tremor has a frequency
below 150 Hz and an amplitude of about 0.01. Tremors’ specific purpose
still needs to be discovered. When drift and tremor occur together, the eye
slowly moves away from the fixation point. With a period of roughly 25
ms, a microsaccade is the fixational eye movement that moves the fastest.
A microsaccade movement’s purpose is swiftly repositioning the eye to its
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Table 2.1: Most common eye movements measured with eye-tracking,
adjusted from [42].

Eye movements types Definition
Fixation The time the visual gaze maintains on a

single location
Dwell One visit to a relevant part of a stimulus from

entry to exit can consist of several fixations
Saccade Quick movement between fixations, which

relocates the focus of attention to a new
location

Anti-saccade A voluntary eye movement made in the dir-
ection opposite to the side where a stimulus
is presented

Smooth Pursuit Slowly moving fixation occurring only on
moving stimuli

Pupil diameter The diameter of the pupil which reflects the
activity of the autonomic nervous system

Blink Briefly closures of the eyes

starting point. [43]
On the other hand, a saccade is a fast eye movement between two

fixation points. A typical saccade lasts between 30 and 80 ms and moves
at a speed between 30 and 500 m/s. A saccade’s duration, amplitude,
and velocity are all related. Due to this link, it is possible that longer
and faster saccades have bigger velocities. Around 200 ms pass between
the stimulus’s start and the eye movement’s beginning. This interval is
known as the saccadic latency. It includes the time needed for the brain to
decide whether to start a saccade or not, determine how far the eye should
move, and send neural pulses to the muscles that move the eyes. Since the
human brain is thought to not "see" the image during a saccade, accurate
saccade detection is crucial. The saccadic suppression is the name of this
occurrence. [44]

At this point, it worth to be mentioned that saccade velocity is task
but also subject dependable. The saccade velocity has been found to
increase with increasing task difficulty, increasing intrinsic value of visual
information, and increasing task experience, [45].

Finally, the saccade velocity depends also on the condition of the
subject both physical, mental and psychological. Becker and Fuchs, [46],
presented in their study that fatigue and alertness can have a significant
effect on eye movement trajectories, while Russo et.al. [47], demonstrated
a sensitivity of saccade velocity to sleepiness. In their study Boxer A.
et.al., [48], showed that neurodegenerative conditions like frontotemporal
dementia and Alzheimer disease were decreasing the visually guided
saccade velocity, while Baroni N., et. al., [49], presented that in HIV positive
subjects, the accuracy of saccades was also significantly reduced.
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Figure 2.6: Graphical presentation of eye movement events for the
horizontal axis, taken from [44].

More in depth correlation of the saccade velocity with mental disorders,
and more specifically ADHD, will be presented in the following chapter 2.5.

In the graphical representation, Figure 2.6, the post-saccadic oscillations
(PSO) are also presented. The PSO are rapid oscillatory movements or
instabilities that may occur immediately after the saccade. However, for
the purposes of this thesis we will focus only on the fixation and saccades.

The fixation, saccades and PSO, along with smooth pursuit and blinks,
are called events, and the process of distinguish between them is called
event detection, which will be presented more analytically in the following
chapter.

2.2.3 Event Detection

In eye movement research, event detection aims to precisely and consist-
ently extract events—such as fixations and saccades—from a stream of raw
eye movement data. Based on various assumptions about fixation dura-
tions, saccadic amplitudes, and saccadic velocities, the acquired raw data
are split into events. When eye movement events are separated from the
raw eye-tracker data, eye movement analysis is made easier. In the past,
event detection was done manually, which was time-consuming. In 1948,
Hartridge and Thomson [50] created a method to analyze eye movements
at a pace of 10,000 s (almost three hours) of analysis time for 1s of recorded
data, while in 1975, Monty [51] noted that it is customary to spend days
processing data gathered merely in minutes. Computers, however, have
drastically changed how eye movement data are analyzed in the current
day. Currently, the only technique employed for event identification is to
apply a detection algorithm to the raw gaze data.

Two main categories of algorithms were employed to detect eye move-
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ment events. The first category consists of dispersion-based algorithms,
which identify fixations and consider the remaining movements as sac-
cades. The second category comprises velocity-based algorithms, which
identify saccades and consider the remaining movements as fixations, [52].

In a more detailed taxonomy carried out by Salvucci, [53], fixation iden-
tification algorithms were classified with respect to spatial and temporal
characteristics, Table 2.2.

Salvucci defined three criteria—velocity-based, dispersion-based, and
area-based—that set the three main types of algorithms apart in terms of
their spatial properties.

Because fixation locations have low velocities and saccade points
have high velocities, velocity-based algorithms highlight the velocity
information in the eye-tracking procedures. Dispersion-based algorithms
emphasize fixation point dispersion (or spread distance) based on the
presumption that fixation points are typically located close to one another.
Area-based algorithms locate the relevant visual targets inside defined
areas of interest (AOIs). These methods offer both lower-level identification
and higher-level assignment of fixations to AOIs, in contrast to the other
techniques.

Two criteria are included for temporal characteristics: whether the
algorithm employs duration information and whether it is locally adaptive.
The fact that fixations are very rarely less than 100ms and frequently
in the range of 200–400ms provides guidance for the usage of duration
information. Incorporating local adaptivity enables the interpretation
of one data point to be affected by the interpretation of temporally
neighboring points; this is helpful, for example, to account for variations
between "steady-eyed" people and those who exhibit big, frequent eye
movements. [53]

Salvucci, focused only on 5 different algorithms, the Velocity-threshold
identification (IVT), the Hidden Markov model identification (I-HMM),
the Dispersion-Threshold Identification (I-DT), the Minimum Spanning
Trees identification (I-MST) and the Area-of-Interest Identification (I-A OI).
Table 2.2 shows main temporal and spatial characteristics, which will be
considered in the next section.

We will see in the following section that there are several other
algorithms. Richard Andersson in his paper, [54] , evaluated ten different

Table 2.2: Taxonomy of fixation identification algorithms, adjusted from
[53].

Criteria
Algorithms

IVT IHMM IDT IMST IAOI

Spatial
Velocity-based x x

Dispersion-based x x
Area-based x

Temporal
Duration sensitive x x
Locally adaptive x x x
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Table 2.3: Classification Algorithms, taken from [54].

Algorithm
Events

Fixation Saccade PSO Smooth Pursuit Blink
(Humans) x x x x x

CDT x
EM x
IDT x x
IKF x x

IMST x x
IHMM x x

IVT x x
NH x x x
BIT x
LNS x x

algorithms, as presented in the Table 2.3 . These algorithms are the
following: Fixation Dispersion Algorithm based on Covariance (CDT),
Engbert and Mergenthalser (EM), Identifiacation by Dispersion-Threshold
(IDT), Identification by Kalman Filter (IKF), Identification by Minimal
Spanning Tree (IMST), Identification by Hidden Markov Model (IHMM),
Identification by Velocity Threshold (IVT), Nyström and Holmqvist (NH),
Binocular-Individual Threshold (BIT), and Larsson, Nyström and Stridh
(LNS).

In the following section, we will review more thoroughly the most im-
portant classification algorithms as well as their mathematical background.

2.3 Mathematical Background of Event-Classification
Algorithms

2.3.1 Velocity-based Algorithms

Identification by Velocity Threshold (IVT)

The easiest identification approach to comprehend and use is the velocity-
threshold fixation identification (IVT). By comparing the point-to-point ve-
locities of fixation and saccade locations, the velocity-based IVT approach
may distinguish between them. For each sample of an eye position, the
velocity value is calculated and then put up against a threshold, [53].

Fixations are defined as segments of samples with point-to-point
velocities below the predefined velocity threshold, and saccades are
defined as segments of samples with velocities above the threshold.
Fixations and saccades are distinguished by this fixed velocity threshold.
Often, other algorithms are built around this fundamental velocity criteria.
The traditional IVT method divides all input data from eye-tracking into
fixations and saccades only. The other event kinds, such as smooth
pursuits, post-saccadic oscillations, and noises, are not considered, [54].
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The algorithm’s primary flaw is that it only considers the gaze velocity
while ignoring other factors like signal acceleration, the direction in which
the gaze moves, the distance between the eye and the camera, etc. As a
result, the velocity ranges of the fastest "slow" eye movements and the
slowest portions of saccades may overlap, leading to incorrect classification
of events. It would seem that utilizing additional eye movement data like
acceleration, amplitude, and position could enhance the outcome.

The performance of the event detection algorithms is impacted by
changing the threshold values because there is no single optimal threshold
velocity value. For these reasons, several researchers have designed and
assessed the effectiveness of IVT algorithms using various threshold levels.
Due to this heterogeneity, it is challenging to compare different studies of
threshold-based event detection algorithms, [44].

However, as mentioned by Salvucci, [53], if angular velocities can be
computed (i.e., the distance from eye to visual stimuli is known), the point-
to-point velocity threshold can be approximated from a reasonable angular
velocity threshold. On that basis Sen and Megaw, [55], in order to register
a saccade, the peak velocity must have exceeded 20 deg/s for a minimum
of 10 ms, while if it was reduced below that, then PSO would be identified
as saccades.

Engbert and Mergenthaler (EM) Algorithm

The algorithm employed by Engbert and Mergenthaler, [56] is an extension
of the algorithm employed by Engbert and Kliegl, [57]. Similar to its
predecessor, this algorithm uses a velocity threshold to detect saccades, but
the threshold is calculated for each recording based on an estimate of the
data’s noise level. In addition, this algorithm enforces a minimum saccade
duration to mitigate the effects of noise.

Its original function was to detect microsaccades, which are erratic,
miniature eye movements that occur during visual fixation on a stationary
target. In contrast to the prevalent belief that microsaccades were randomly
distributed in time, they suggested that microsaccades were triggered
dynamically. As a result of this dynamic triggering mechanism, the fractal
dimension of trajectories could predict the individual microsaccade rate.
Their proposed algorithm for detecting microsaccades could also detect
voluntary (larger) saccades, [54].

Identification by Hidden Markov Model (IHMM)

A more advanced iteration of the IVT model that incorporates a probab-
ilistic depiction of human visual systems is called the hidden Markov al-
gorithm (I-HMM). It employs probabilistic analysis to determine the most
likely identifications for a specific protocol. For example, the domains of
speech and handwriting recognition have extensively used probabilistic fi-
nite state machines called hidden Markov models (HMMs).

As Salvucci and Goldberg, [53], describe the two-state HMM presented
in Figure 2.7 is the core of I-HMM. Both observation and transition
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Figure 2.7: Sample two-state HMM, taken from [53].

probabilities are included in the HMM. The distribution of anticipated
velocities in each state is represented by the observation probabilities
for each state. The distribution in the first state, which corresponds to
saccade points, is centered around greater velocities; in the second state,
which corresponds to fixation points, it is centered around lower velocities.
The transition probabilities show the possibility of staying in one state
or transitioning to another for each state (the arrows leaving the states).
According to Figure 2.7 transition probabilities, there is a high possibility
of staying in each state (.95) and a low likelihood of transitioning (.05). The
observations (i.e., velocities) produced during saccadic eye movements are
thus represented probabilistically by the HMM.

Following up on the above analysis, Komogortsev [58], describes
the process more explicitely while introducing the viterbi algorithm as
described by Forney [59]. He notes that the I-HMM uses three crucial
stages of the procedure. Each eye position sample in the first stage is
categorized as either a fixation or a saccade depending on the velocity
threshold, just like in the IVT and similar to what we mentioned above.
According to the probabilistic parameters (initial state, state transition, and
observation probability distributions) of the model, the Viterbi sampler
defines the second stage, where each eye position is reclassified as a
fixation or saccade. Given the probabilistic parameters of the model, the
Viterbi sampler aims to optimize the probability of the state assignment.
Usually, the I-HMM’s probabilistic parameters are not at their optimal
level and need to be improved. As a result, the Baum-Welch re-estimation
method determines the third and final stage of the I-HMM. In an effort
to reduce state assignment mistakes, this approach re-estimates the initial
probabilistic parameters. The Baum-Welch can re-estimate a parameter
numerous times if necessary.

Identification by Binocular-Individual Threshold (BIT)

Another velocity-based algorithm is the Binocular-Individual Threshold
(BIT) algorithm. It is superior to existing velocity algorithms in three
distinct ways. First, it accommodates binocular viewing and identifies
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fixations and saccades using information about covariations between the
movements of both eyes. Even though it is difficult to distinguish minor
saccades from background noise, it makes sense to exploit the fact that
the eyes are frequently directed at the same object. Therefore, if the
left eye travels toward an item, the right eye should also do so. In
this way, it is easier to identify whether a velocity peak is due to an
actual movement or noise, as both eyes should display this velocity peak
simultaneously. Second, it estimates rather than pre-sets the velocity
threshold to identify fixations and saccades, allowing the threshold to vary
among eye-movement directions, tasks, and users. Thirdly, it accounts for
the intrinsic randomness of eye movements so that not every record that
exceeds the threshold is identified as a saccade. [60]

This algorithm was proposed by Ralf van der Lans, Michel Wedel and
Rik Pieters, and in their paper [60], the note that in order to determine
individual, task, and eye-specific thresholds, they use techniques from
Robust Statistics which allows them to estimate velocity thresholds based
on individual-level variability of the eye movement recordings within a
fixation. Subsequently these velocity thresholds are input to Shewhart
quality control chart procedures, that classify the point of regard (POR) as
a saccade or a fixation. The intuition of the algorithm is that it determines
the variability of the POR of both eyes within a fixation for a specific
individual, and then determines when the velocity of the POR exceeds the
within-fixation variability, and label the corresponding epochs as saccades.

Nyström and Holmqvist (NH) Algorithm

Nystrom and Holmqvist’s, [61] approach was the first algorithm to
specifically recognize post-saccadic oscillations in addition to fixations
and saccades. It is an adaptive method since it modifies the velocity
threshold dependent on the data’s noise level. The algorithm is based
on Smeets and Hooge’s saccade detection velocity algorithm and does not
utilize positional data directly. Bahill et al. recommended using velocity
data instead of position data to identify saccades because it offers more
accurate and intuitive information regarding the precise onset and offset of
a saccade. The proposed technique is comprised of five main steps: filtering
and denoising, peak saccade detection, saccade onset/offset detection,
post-saccade oscillations detection, and fixation detection. In addition to
explicit post-saccade oscillations detection, the algorithm’s contributions
include

• an adaptive, data-driven peak saccade detection threshold,

• a new way for defining saccade onsets and offsets,

• and the usage of thresholds driven by physiological restrictions of eye
movements.

Figure 2.8 presents how the adaptive velocity threshold is being
defined. An initial threshold PT1 is selected. For all samples with
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Figure 2.8: Principle for iterative estimation of saccadic velocity threshold,
taken from [61].

velocities below PT1, the average velocity µ1 and standard deviation σ1
are calculated. The next threshold, PT2, is then set as µ1+6σ1. The iterative
process is continued until |PTn - PTn-1| is smaller than 1◦/sec, and PTn
is selected as the final velocity threshold. This iteration can be done
separately for each participant or even for each trial.

Larsson, Nyström and Stridh (LNS) Algorithm

LNS is another velocity-based algorithm capable of detecting post-saccadic
oscillations, [62]. The algorithm is adaptive, but what is novel about it is
that it was designed to detect saccades and post-saccadic oscillations in
signals recorded when viewing both static and dynamic scenes. This
indicates that it is able to detect saccades and post-saccadic oscillations
even when eye pursuit movements are present.

Smooth pursuit movements generate velocities that algorithms that
maintain standard velocity thresholds handle inconsistently. Because the
velocity of a fast smooth pursuit movement overlaps with the velocity
range of a slow saccade, it is challenging to establish a velocity threshold
for discriminating between these two types of eye movements.

Consequently, there is typically no clear classification of these move-
ments as fixations or saccades; their classification depends on the particu-
lar smooth pursuit movement and the algorithm thresholds in use. Since
the acceleration of saccades is greater than that of smooth pursuit move-
ments, the acceleration signal has been used to detect saccades reliably in
signals containing smooth pursuit movements. This algorithm achieves
this and provides more accurate estimates of the saccades’ on- and offsets,
outperforms a previously proposed estimation method for PSO, and en-
ables modeling of the PSO.

20



2.3.2 Dispersion-based Algorithms

Identification by Dispersion-Threshold (IDT)

The Identification by Dispersion-Threshold (IDT) algorithm is one of the
most popular algorithms for detecting fixations. In contrast to velocity-
based identification algorithms, the dispersion-threshold identification
algorithm takes advantage of the fact that fixation points tend to cluster
close together due to their low velocity. According to Salvucci and
Goldberg [53], it is based on Widdel’s algorithm, [63] for data reduction.

The IDT algorithm combines x and y data with two fixed thresholds:
the maximum fixation dispersion threshold and the minimum fixation
duration threshold. IDT identifies fixations as clusters of consecutive
points within a given dispersion or maximum separation. Because fixations
typically last at least 100 ms, dispersion-based identification techniques
typically incorporate a minimum duration threshold between 100 and 200
ms.

For a data sample to be considered a fixation, it must be contained
within a spatial region that does not exceed the dispersion threshold and
span at least enough time to satisfy the duration threshold. The samples
that meet these criteria are identified as belonging to a particular fixation,
[54].

In particular, the IDT algorithm employs a moving window that spans
successive data points to check for potential fixations. The moving
window commences at the beginning of the procedure and spans an
initial minimum number of points determined by the given duration
threshold and sampling frequency. The dispersion of the points within the
window is determined by calculating the sum of the differences between
the maximum and minimum x-values and the maximum and minimum
y-values. In simpler terms, the dispersion D is calculated as the sum of
[max(x) - min(x)] and [max(y) - min(y)], [53]. If the dispersion is greater
than the dispersion threshold, the window does not represent a fixation
and shifts to the right by one point. If the dispersion is less than the
threshold, the window represents a fixation. In this instance, the window is
expanded (to the right) until its dispersion exceeds the threshold value. The
final window is registered as a fixation at the window’s centroid with the
specified onset and duration. This procedure continues with the window
moving to the right until its conclusion.

The centroid and diameter are employed to characterize fixations.
Typically, a circular area is assumed, and the average distance between
each sample and the fixation centroid is used to estimate the radius. The
dispersion threshold can be set to include between 1/2 and 1 degree of
visual angle if the eye-to-screen distance is known, or it can be estimated
through exploratory data analysis. The duration threshold is typically set
between 100 and 200 milliseconds based on the processing demands of the
task.
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Fixation Dispersion Algorithm based on Covariance (CDT)

The Fixation Dispersion Algorithm based on Covariance (CDT) by Veneri
et al. [64] is an improvement over the fixation dispersion algorithm based
on F-tests (FDT) that the same authors, [65], had previously developed.
The improvement consists of incorporating co-variance calculations on the
x and y coordinates of the gaze into their previous algorithm, which was
based on the F-test.

The FDT algorithm identified fixations using the F-test of equal
variance. During fixations, this technique was based on the assumption
that the variance along the x was not significantly different from that along
the y. In general, the FDT algorithm was able to identify more fixations than
the I-DT algorithm, [53], which according to Shic et. al. [66] was accounted
to be the most robust method in his evaluation.

However, in clinical cases where eye movements were affected by
brain diseases, assumptions such as the normality of distribution and
the number of data points reduced the algorithm’s effectiveness. The F-
test was extremely sensitive to deviations from the normality assumption.
Veneri et al. used a mixed method based on covariance and the F-test for
equal variance to develop the CDT algorithm, which employs variance and
covariance thresholds in addition to a duration threshold.

Identification by Minimal Spanning Tree (IMST)

Identification by Minimal Spanning Tree is another technique for event
detection (IMST). MST identification is based on minimum spanning
trees (MSTs), which are trees that connect a set of points in a way that
minimizes the total length of the tree’s line segments. MSTs can provide
a highly adaptable and controllable representation for dispersion-based
identification of fixations, [54].

The algorithm aims to capture the data comprehensively while minim-
izing branching. It prioritizes creating branches that effectively separate
samples from two distinct clusters into separate nodes higher up in the
tree, rather than forcing extensive branching towards a single node at a
lower level, Figure 2.9. A two-step approach is required, first the construc-
tion of the MST and then a search of the MST. The building process uses
Prim’s algorithm [67].

One and only one MST exists for a set of points. The advantage of
an MST data representation is the degree of control, flexibility, and local
adaptation for dispersion analysis and the improvement of subsequent
characterizations of defined fixations.

Following is the procedure for the IMST algorithm: Utilizing Prim’s al-
gorithm, construct MST from protocol data points initially. The maximum
depth for each MST point is then determined using a depth-first search.
Consequently, the branching depths below a defined setpoint define loca-
tions near the edge of the MST that are unsuitable for separating fixations.
Saccades can be identified if the edges connecting each endpoint exceed the
minimum branching depth. The mean m and standard deviation σ of edge
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Figure 2.9: Two interpretations of an identical sample of eye-gaze locations:
(A) temporal scanpath record, and (B) minimum spanning tree from graph
theory, taken from [67].

lengths provide a locally adaptive comparison for the separation of fixa-
tions, which are identified as clusters of points not separated by saccades.
Comparing the edge under consideration to both m and σ of neighbor edge
lengths can result in separation, [53].

The MST format allows for additional fixation characterization para-
meters. For instance, the MST length is determined by the graph’s longest
path. Areas can define critical paths with a minimal degree of branching.
These parameters and others allow for an estimation of the shape and pos-
sibly the direction of fixations, going beyond simple centroid and size de-
scriptions.

2.3.3 Area-based Algorithms

The previous dispersion-based identification methods can identify fixa-
tions at any location within the visual field. In contrast, area-of-interest
fixation identification (IAOI) only identifies fixations that occur within a
target area. The target areas are rectangular regions of interest in the visual
field representing information units. These target regions, typically used in
subsequent analyses such as tracing, keep identified fixations close to relev-
ant targets. On this basis, Buurman [68], conducted an analysis to determ-
ine whether the changing size of the target window affected the students’
reading behavior.

IAOI utilizes a duration threshold to differentiate between fixations
and saccades in target regions. IAOI begins by associating data points
with target areas, labeling points within a target area as fixation points
for that target, and points outside all target areas as saccades. IAOI then
combines successive fixation points for the same target into fixation groups
and discards saccade points. It then excludes fixation groups that fall
below a specified duration threshold and converts each fixation group into
a fixation tuple, [53].

Overall IAOI can provide a more comprehensive picture than fixations
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alone. Similar to a fixation, dwell time within an area has a beginning
and an end. However, because fixations can serve as input data for AOI
determination, the time between these dwells is insufficient to describe
saccadic behavior. Instead, multiple saccades and fixations may be
interspersed between AOIs. Although AOI-based dwell-time algorithms
are not fixation algorithms in and of themselves, they are useful for
describing higher-level collections of fixations organized around visual
targets and areas.

Astar Lev utilized the above concept of AOI in his work, [69] by
integrating an eye tracker with a neuropsychological performance test that
assessed cognitive impairment related to ADHD.

His study aimed to evaluate the utility of eye movement measures for
distinguishing ADHD patients from healthy controls. Using face-valid
gaze direction measures, it was discovered that ADHD patients spent more
time gazing at irrelevant regions, both on and off-screen, than healthy
controls, Figure 2.10.

The group differences appear to be driven by the inability to suppress
spontaneous eye movements toward different distractors, which corres-
ponds to the distractibility that is characteristic of ADHD.

In the following chapter we will focus on applications of eye-tracking

Figure 2.10: Relative gaze duration heat maps, ADHD patients (A) and
healthy controls (B), taken from [69].
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technology in the field of neurodevelopmental disorders, especially in
studying the clinical characteristics of ADHD. We will review the latest
studies and focus on what is considered to be the State-of-the-Art
techniques for the detection of ADHD.

2.4 Eye Tracking

Eye tracking is the process of recording a viewer’s gaze at a specific
moment of a stimulus. Usually, this is accomplished by watching a
viewer’s eye movements. Eye-tracking technologies use measurements of
the user’s pupil size, movement, and position to identify areas of interest.
The early observations of eye movements were made by the investigator
looking within or utilizing a mirror, telescope, or peephole to observe the
subject’s eye, [70].

Eye tracking was frequently a laborious process that required the
individual to bite on a stationary object or have their head held perfectly
still using a chin rest, which limited its application to research labs, [71].
These techniques were often unreliable because any feature of the eye being
researched may be obscured by the eye performing the study. They were
also frequently intrusive because a portion of the measurement apparatus
was in direct contact with the subject. Therefore, the first significant
development was the development of mechanical tools that could convert
the eye’s movements into long-lasting, impartial records of its motion.

Modern eye trackers are far more adaptable, and non-intrusive tech-
niques have been created to enable the use of the device in settings that are
closer to nature.

Different fields, including neuroscience, marketing, advertising, and
computer science, have utilized eye-tracking technology. In tandem with
new technological advancements, new applications are emerging in a vast
array of research fields.

To capture all these new opportunities, several different eye-tracking
techniques have been developed throughout the years. These techniques
we will analyze more thoroughly in the following chapter.

2.4.1 Eye Tracking Techniques

Eye tracking in literature often involves one of four techniques: the scleral
coil, electro-oculography (EOG), photo-oculography (POG)/infrared-
oculography (IOG), and video-oculography (VOG), [72].

In the scleral coil approach, the eye is directly covered by a contact lens
that has a mechanical or optical reference object, Figure 2.11. Robinson
initially presented it in 1963. When placed in a magnetic field, a coil
linked to the contact lens induces an electric potential that can be used
to determine the position of the eyes. The scleral coil method is the
most precise approach for determining the eyes’ location. In addition, eye
trackers may accurately move an image in line with the eye movements
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Figure 2.11: Scleral Search Coil contact lenses, taken from [73].

Figure 2.12: Electro-oculography device, taken from [73].

by monitoring the infrared wavelength range reflected by the mirror and
recording the eye movements, [73].

This technique also establishes where the eye is in relation to the
head. Both the head posture and the eye position are necessary for gaze
estimation. The lack of head posture data constrains its application for
point gaze estimation. However, the significant discomfort brought on by
its intrusive method precludes its usage in actual applications.

EOG is a practical and affordable method for human-computer inter-
action, Figure 2.12. The EOG method measures the electric potential vari-
ations in the skin’s surface using electrodes positioned near the eye. The
head posture cannot be inferred from the eye movements captured by EOG.
Although EOG is not a technique for everyday usage, medical settings and
labs can benefit from its use. This method can track head movements and is
linearly related to eye movements. However, eye drifts and eye problems
may restrict the use of EOG.

POG is based on the measurement of the corneal light’s deviation from
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Figure 2.13: Infrared oculography approach setup, taken from [73].

the pupil’s center. It measures eye characteristics like corneal refractions
from the light source, limbus sclera boundary, and pupil shape, [74].
As the recording apparatus can be made of two near-infrared cameras
watching each eye by reflection over a heated mirror transparent to visible
light, this method does not require any attribute on the subject’s head
or eye. It measures eye alignment independent of head translations and
distinguishes between lateral and rotary motion. On the other hand,
infrared light can also be created using a pair of spectacles, Figure 2.13.
Algorithms for detecting light and the pupil are primarily employed in this
method.

Video or image-based trackers use camera and image processing
techniques to locate the gaze point in real-time. Infrared or visible lighting
options are available for the VOG method. The VOG is a non-invasive
technique that conducts remote eye tracking. Based on the number of
cameras utilized, there are two approaches to implementing video eye
tracking: the first approach employs a single camera, while the other uses
numerous cameras.

Other video-based eye trackers include head mount, table mount,
and tower mount trackers. Due to changes in head position, there is a
significant disadvantage when employed in Human-Computer interaction
systems. Using two stereo cameras, Figure 2.14, or one wide-angle camera
to look for the person in front and another to point at the person’s face and
zoom in can overcome this problem for remote trackers.

According to published research, image-based eye-tracking techniques
are appropriate for real-world use because they are non-intrusive and
non-contact. In addition, the effectiveness of image-based eye trackers is
improved by the constant advancements in computing power and camera
quality, [72].

In the following chapter we will present the State-of-the-Art eye
tracking systems and methods, as well as more details regarding the
specific eye tracker that was utilized to collect the data used in this thesis.
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Figure 2.14: Video oculography using two cameras, taken from [73].

2.4.2 State of the Art Technologies and Systems

In this chapter, we will focus on three of the most prominent systems
that are currently available: the EyeLink eye-tracker provided by SR
Researchm, which is also the one utilized in the present thesis, the Tobii
eye-tracking system, and the open source eye tracking toolbox Pygaze. For
these three technologies we will review in the following paragraphs, their
embedded classification algorithms, so to get a better understanding what
differentiates them and makes the state-of-the-art technologies.

SR Research - EyeLink Eye-Tracking System

The eye tracker that was utilized to collect the data on which this thesis is
based on, was the EyeLink 1000 by SR Research Ltd., Mississauga, Ontario,
Canada, [14].

Eyelink 1000 is considered to be one of the most precise and accurate
video-based eye tracker. With several mount options, replaceable lenses,
and head-fixed and head-free tracking modes, it is very adaptable. The
Desktop Mount was the chosen mount type. The Desktop Mount, which
is positioned below the tracked area, is ideal for conventional screen-based
eye tracking. It makes it ideal for research using EEG or TMS because the
camera may function at a range of 40-70 cm, and no electronics are required
to be close to the participant’s head. It was paired with the SR Research
Head Support, allowing for more comfort and improved head placement
by allowing for separate height adjustments for the chin, forehead, and chin
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Figure 2.15: EyeLink 1000 configuration, taken from [76].

supports, [75].
The EyeLink 1000 incorporates an exceptional high-speed camera as its

core component, enabling the recording of eye movements at a remarkable
rate of up to 2000 frames per second [76]. Within a mere three milliseconds
of capturing the participant’s eye image, EyeLink systems swiftly identify
the precise location on the screen where the participant is looking and
promptly transmit this information back to the computer responsible
for managing stimulus presentation. The eye-tracking software employs
image processing algorithms to locate two critical areas on each image
supplied by the eye-tracking camera: the pupil’s center and the corneal
reflection’s center. The infrared illuminator, which is positioned adjacent
to the camera, is the fixed light source that is reflected by the cornea, Figure
2.15.

The eye-tracking mechanism operates based on the pupil-corneal
reflection (P-CR) phenomenon. As the eye rotates, the center of the pupil
moves across the camera sensor. Conversely, the position of the corneal
reflection (CR) on the camera sensor remains relatively constant when
the head is stabilized since the source of the reflection remains stationary
relative to the camera. In Figure 2.16, depicted below, you can observe the
camera’s perspective as an eye turns to one side and subsequently rotates
in the opposite direction. Notably, the center of the pupil undergoes a
noticeable shift, while the center of the CR remains relatively fixed in terms
of camera pixel coordinates.

SR Research develops and sells high-speed, video-based eye-tracking
equipment. The company has expertise in all areas of eye-tracking techno-
logy, including hardware development, manufacturing, and software de-

Figure 2.16: Pupil-Corneal Reflection (P-CR) Eye Tracking, taken from [76].
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velopment, [75].
The EyeLink 1000 Host PC performs real-time eye tracking at speeds of

250, 500, 1000, or 2000 samples per second with no loss of spatial resolution
while also computing the subject’s true gaze position on the display. Eye-
motion events such as saccades and fixations are detected and analyzed in
real-time. These events can be saved in a data file on the Host PC, sent
with minimal delay over the Ethernet link to the Display PC, or output as
analog signals (if the analog/digital I/O card is installed). The operator
can perform subject setup, monitor performance, and communicate with
applications running on a Display PC from the Host PC.

The stored samples are time-stamped in milliseconds and contain
monocular or binocular eye-position data in eye-rotation angle or display-
gaze coordination. Pupil sizes such as area or diameter can also be
recorded. Samples may also include eye-movement resolution (used to
calculate true velocity or saccadic amplitudes), button presses, or the status
of digital inputs. Fixations, blinks, and saccades are examples of eye-
movement events detected by the EyeLink tracker’s on-line parser. The
beginning and end of these events are marked, allowing samples to be
assigned to eye-movement periods without using complex algorithms.
Important data for analysis, such as average position for fixations and
peak velocity for saccades, is also recorded in the events. Other events
record subject responses (such as button presses), synchronization, and
data messages from applications. These can be used to record the time
of a change in the display or an experimental condition.

For saccade detection, three thresholds are used: velocity (◦/sec),
acceleration (◦/sec2), and motion (◦). The velocity threshold is the speed
at which the eye must move for a saccade to be detected. With a velocity
threshold of 22 degrees per second, saccades as small as 0.3° can be
detected, making it ideal for smooth pursuit and psychophysical research.
A conservative threshold of 30°/sec is preferable for reading and cognitive
research, as it reduces saccades while increasing fixation durations. The
higher the threshold, the fewer microsaccades detected, and thus the fewer
short fixations (less than 100 msec in duration) in the data. Short fixations
(2% to 3% of total fixations) are to be expected, and most researchers simply
ignore them.

Eye-movement acceleration is critical for detecting small saccades,
particularly in smooth pursuit. Because acceleration data contains far more
noise than velocity data, thresholds of 4000◦/sec2 are recommended for
small saccade detection and 800◦/sec2 for reading and cognitive research.
False saccade reports will result from lower acceleration thresholds. The
EyeLink tracking system’s acceleration data and thresholds sometimes may
be higher than those reported for analog eye trackers. For noise reduction,
these systems employ multi-pole filters, which add delay and smooth the
data, significantly lowering the measured acceleration.

The saccadic motion threshold is used to keep a saccade from starting
until the eye has moved significantly. Saccades can be reduced by a
threshold of 0.1◦ to 0.2◦. Larger values should be used with caution to
eliminate short saccades: a threshold of 0.4◦, for example, will always
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merge fixations separated by 0.5◦ or less but may also eliminate some 1◦

saccades. However, it should be noted that for non-cognitive research or
when statistics such as saccadic duration, amplitude, and average velocity
are required, the threshold should be set to zero.

However, in the case of other type of eye-movements, like smooth
pursuit and nystagmus, saccades must be detected against a background
of smooth eye motion as fast as 70◦/sec. While acceleration can be used
to detect these saccades, velocity data must also be used to ensure that all
saccades are detected reliably. During pursuit, the EyeLink 1000 parser
raises the saccadic velocity threshold by the average velocity over the last
40 milliseconds. This is dependable and has no negative impact on parser
performance during non-pursuit eye movements.

Tobii Eye-Tracking System

Tobii is the world’s leading provider of eye-tracking solutions, with the
most patents and a diverse product portfolio. That makes them a one-
stop shop for eye-tracking tools, providing eye-tracking hardware, analysis
software, and research consulting, [77]. Tobii’s eye trackers combine high
accuracy and precision with a wide tolerance for large head movements
and a wide range of environments. As a result, they are suitable for a
wide range of applications. The company, however, primarily focuses on
three areas: scientific research, marketing and user research, and human
performance.

In her 2012 publication [78], Anneli Olsen outlines the fundamental
principles underlying an I-VT fixation filter and details its implementation
in the Tobii I-VT Fixation Filter. Olsen also highlights the primary
challenges encountered during the eye-tracking process, summarizing
them into four categories: noise, missing data, eye selection, and sequences
of fixations/saccades disrupted by very short saccades/fixations.

Addressing the first challenge, noise represents a pervasive issue in
eye-tracking data collection. It can originate from design flaws within
the system itself and can also stem from environmental factors that
introduce influences and disturbances during the measurement process.
For example, minor eye movements such as tremors and microsaccades
can be seen as noise in eye tracking research, where the fixation is the
eye movement of interest. I-VT filters calculate velocity, in their most
basic form, by dividing the angle measured from the eye between two
consecutive sample points by the sampling frequency. This works very
well if the sampled gaze data is noise-free.

The higher the sampling frequency the smaller the eye movement
between two samples at the same speed. This means that if the eye
tracker makes even minor errors in the direction of the gaze or detects
minor eye movements such as tremors or microsaccades, this will appear
as significant noise in the velocity calculations when using data collected
with a high-speed eye tracker, Figure 2.17.

However, there is another type of issue with lower-frequency eye
trackers. Noise introduced by measurement issues will typically have the
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Figure 2.17: Charts showing noisy data sampled at 60Hz (top), 300Hz
(middle) and after a moving average noise reduction algorithm has been
applied (bottom). The calculated gaze points are along the x-axis. Taken
from [78].

same amplitude in the gaze data as for high-frequency eye trackers, but
filtering out that noise introduces the risk of severely modifying the actual
real gaze data as the time between each sample increases.

Although noise in a high-frequency eye tracking data set can introduce
amplified noise in the calculated velocity, this can often be removed using
either a low pass filter which when applied smoothes out and reduces
the noise spikes by removing high frequency signals, a noise reduction
algorithm; however, with noisy low-frequency data, this must be done with
extreme caution, Figure 2.17. In the Tobii software there are two different
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Figure 2.18: Chart showing raw eye tracking data sampled at 30Hz as well
as data subjected to the Moving Average noise reduction function with a
window size of 3 and 5 samples, taken from [78].

noise reduction functions: Moving average and Median.
In signal processing terms, the noise reduction algorithm implemented

in the moving average noise reduction function is known as a non-
weighted moving-average filter. This means that the signal’s output for
each sample is an average of a specified number of samples preceding
and following the current sample. Because the previous and subsequent
samples should have the same weight on the average, an equal number
of previous and subsequent samples should be included in the average.
Therefore, the average includes the current sample as well. This implies
that the total number of samples included in such an averaging window
must be an odd number. The ’Window size’ parameter allows you to
specify the size of the averaging window.

The smaller the window, the faster shifts between the sample being
calssified as a saccade and a fixation will be retained, allowing the onset of a
saccade or fixation to be recognized closer to the recording time. A smaller
window permits more noise in the data; thus, false saccades and fixations
may be spotted. Larger windows smooth data. After noise reduction, the
steep fixation transitions in the raw data will become smoother. Saccade
velocity will be much lower, so the velocity threshold should be modified.
Figure 2.18 shows that as the "Window size" increases, saccade duration
increases too which subsequently decreases the fixation duration. This
means that saccades will appear longer and slower, making short fixations
followed by prolonged saccades even shorter and perhaps rejected if their
duration is less than the duration threshold parameter. The default value
for the ‘Minimum fixation duration’ parameter is 60ms as this commonly
used in the existing literature. Overall, all the above dictates the importance
of a correct and careful selection of the "window size".

A median noise reduction algorithm, like the moving average al-
gorithm, iterates a sliding window through the data stream, but the middle
data point is replaced with coordinates that are the median values for the
set of points in the window. When compared to a moving average al-
gorithm, a median noise reduction algorithm produces less smoothed data
while removing the most prominent noise, Figure 2.19.

The second challenge of eye-tracking data, is the data loss which is
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Figure 2.19: Chart showing raw eye tracking data sampled at 30Hz
subjected to the Moving Average noise reduction function and the Median
noise reduction filter. Both filters were set to use a window of 5 samples.
Taken from [78].

frequently caused by the participant blinking, looking away, or putting
something between the eye tracker and the eye, obscuring the eye
tracker’s view of the eyes, resulting in gaps of a hundred milliseconds
or more. However, data loss can also occur due to other factors, such
as delays in data transfers within hardware systems, temporary hardware
malfunctions, time-out issues, temporary reflections in prescription glasses
that make it impossible for the eye tracker to identify the eyes, and so on.
In these cases, the data loss is typically much shorter than caused by the
previous reasons. Suppose the data loss occurs in the middle of a fixation.
In that case, the fixation classification algorithm may interpret the fixation
as two separate fixations if valid data do not replace the lost data. As a
result, a gap-filling algorithm is required.

The following three steps should be taken by this algorithm. To begin,
a scaling factor is created. The scaling factor is calculated by dividing the
timestamp of the sample being replaced by the total duration of the gap by
the timestamp of the last valid sample before the gap. That would be as
follows:

SF =
timestamp(sample to be replaced) - timestamp(1st sample after gap)
timestamp(last sample prior gap) - timestamp(1st sample after gap)

The scaling factor is then multiplied by the position data from the first
valid sample after the gap. Finally, the result is combined with the position
data of the last valid sample before the gap, Figure 2.20.

It is critical to remember that it should not fill in blinks or other gaps
caused by the participant or researcher, such as the participant turning
away from the eye tracker or the eye tracker’s view of the participant’s
eyes being obstructed. As a result, the value chosen should be shorter than
a standard blink. 75ms is a value used by, for example, Komogortsev et
al. [58], and it is also the value chosen by Tobii as the default value for
this parameter. This value is also consistent with results from other eye-
tracking studies.

Another aspect of gap fill-in interpolation is that it can either increase
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Figure 2.20: Missing or invalid samples have been replaced by interpolated
samples. The interpolated samples are highlighted in red. Taken from [78].

or decrease the duration of fixations and saccades. Because of the linear
interpolation, the measured speed between two samples within the gap
will be the same. If that velocity is less than the ’Velocity threshold’
parameter in the I-VT classification filter, all samples within the gap will
be classified as fixation samples. The position data of the last valid sample
before the gap and the first valid sample after the gap determine whether
the samples in the gap are saccade or fixation. If the samples are close,
they will be classified as fixation samples. Otherwise, the samples will be
labeled as saccades.

The third challenge addresses the issue of the intrinsic differences in
our eyes. Even though it is assumed that our eyes are identical, that is not
the case, and it can happen that there is difference between one eye and
the other when it comes to start time and end time of fixations as well as
for blinks. For that reason, if the eye tracker is recording both eyes, there
should be an algorithm that merges the data into a single stream of data
which can be further classified.

Finally, the last challenge which is very crucial, is the assumption by
the algorithms that the data are perfect. That results in situations that the
algorithm classifies, what should have been a long fixation, into 2 short
fixations inflitrated by a very short saccade in between. For that reason
the algorithm should be "smart" enough in the post-processing of the data
to identify and merge those fixations that are very close in time and very
close in space. Same challenge is also when a long saccade is interupted
and split into two sequences, by a very short fixation moment. In that case
the algorithm should have a filter to remove data points or groups of data
points that are labeled as fixations but last too short a time for the visual
input to be registered by the brain.

Pygaze

The PyGaze toolbox is a free and open-source software package for
the Python programming language. It is intended for creating eye-
tracking experiments in Python syntax with as little effort as possible,
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and it provides programming ease and script readability without limiting
functionality and flexibility, [79].

PyGaze can be used to present visual and auditory stimuli, collect
responses via keyboard, mouse, joystick, and other external hardware,
and detect eye movements online using a custom algorithm. Eye trackers
from various brands (EyeLink, SMI, and Tobii systems) are supported.
PyGaze’s uniqueness lies in its provision of an easy-to-use layer on top
of the numerous software libraries required for implementing eye-tracking
experiments. PyGaze is a software bridge for eye-tracking research.

The creators of PyGaze in their publication, [80], mentioned that the
algorithm for online saccade detection is similar to the Kliegl [57] algorithm
for (micro)saccade detection in that it identifies saccades by calculating
eye movement velocity across multiple samples. However, because the
current algorithm was designed for online saccade detection, events should
be detected as soon as possible. As a result, eye movement velocity is
calculated using the fewest number of samples possible, which is two: the
most recent and the previous sample.

The Kliegl algorithm, on the other hand, "looks ahead" to two samples
and uses a total of five samples. Furthermore, the current algorithm uses
eye movement acceleration as a saccade indicator. Because the acceleration
in the previous sample is based on the speed in that sample and the sample
before it, the sample window for calculating acceleration is actually 3.
Because this algorithm was designed for speed and responsiveness, it is less
reliable than more advanced algorithms for offline event detection. As a
result, researchers are advised to analyze the raw eye-movement data using
an offline event detection algorithm, such as those described by Engbert
and Kliegl [57] or Nyström and Holmqvist [61], as one would typically do
when analyzing eye-movement data.

2.5 Detecting ADHD through Eye-Tracking Data Ana-
lysis: Background and Latest Improvements

Attention-Deficit/Hyperactivity Disorder (ADHD) stands as one of the
most common neuro-developmental disorders affecting children. It is dis-
tinguished by symptoms such as inattention, impulsivity, and hyperactiv-
ity, which manifest across different environments and significantly impact
daily functioning [42].

High rates of comorbidity with other disorders and high intra-disorder
heterogeneity make it difficult for clinicians to diagnose ADHD and
predict treatment responses, [81]. ADHD is typically diagnosed based
on behavioral observations and symptoms reported by parents, teachers,
and the child himself or herself. Unfortunately, all of these evaluations are
characterized by a high degree of subjectivity, which carries the risk of over-
or under-diagnosis and the possibility of inappropriate interventions.

Efforts have been made to develop more objective and dependable
diagnostic assessment tools, but results remain inconsistent. Efforts are
ongoing to identify stratification markers that may one day aid in the early
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diagnosis of ADHD or in predicting prognosis and treatment response,
[82].

The use of eye movements, as measured by eye-tracking systems, has
garnered increasing focus in recent years. In addition, oculomotor studies
have been utilized to investigate aspects of both motor and cognitive
control in ADHD, as well as the potential value of oculomotor markers
in predicting treatment response.

The significant advances in non-invasive, high-precision video-
oculography methods during the last twenty years have greatly facilitated
the assessment of oculomotor control in ADHD, especially in child pop-
ulations. In addition, they have provided novel insights into the neuro-
physiology and neurocognitive profiles of ADHD that traditional neuro-
psychological assessments or tasks may not capture, [83].

Using a variety of behavioral tasks that assess different aspects of
cognitive control and studying the range of ocular motor responses elicited
by these tasks can help in comprehending the heterogeneity of hyperactive,
impulsive, and inattentive behaviors among individuals with ADHD.

Maron D. et. al. [83] in their systematic review identified 275
unique studies which they are combining eye-movement terminology
with ADHD. However, after filtering through several eligibility criteria of
theirs, such as the study to include a sample of individuals with a formal
diagnosis of ADHD and the oculomotor metrics to be measured using
simple reflexive, volitional or pursuit eye movement tasks, along with an
explicit study of the saccades, fixation or pursuit the number of studies was
reduced down to only 27.

More than 70% of the above studies were conducted prior to 2010. Their
participants spread from children and young adults, up to people in their
late 30s. On the other hand, Levantini V. et. al. [42] are focusing on their
paper, to summarize the findings of eye-tracking studies which carried out
on youths only.

Combining these two very interesting reviews we provide in the
following paragraphs a chronological summary of what has been done
till today in the field of eye-tracking for youths with ADHD, and what
constitutes the state-of-the-art methodologies.

2.5.1 Historical Review

Ross in 1994, [84] evaluated a group of 23 children (13 with ADHD and
10 the control group) on their reaction in an oculomotor delayed response
task. In a task like that the subject is cued as to where he/she should
look but must delay a short period and then shift gaze to the location
where the cue previously existed but no longer exists. Children with
ADHD showed, relative to normal controls, deficits on inhibiting response
during the delay period. As presented in the Figure 2.21, the child with
ADHD exhibited a saccade during the delay period (a premature saccade).
However, no differences in latency (preparation of motor response) or
accuracy of visuospatial memory were detected.
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Figure 2.21: Delayed oculomotor response task, taken from [84].

To arrive to these conclusions they recorded raw data consisting of
eye position and target position for each millisecond of tracking and then
divided the eye movements into discrete segments. The saccades were
identified on the basis of peak velocity greater than 30◦/second, an initial
acceleration greater than 2000◦/sec2, and a minimum duration (9 msec).
Finally the saccades were further classified based on time relative to cue
activiry, Figure 2.21. Those saccades that occurred from 80 msec after cue
onset to 80 msec after fixation point extinction, i.e., during the time when
the subject was supposed to maintain gaze on the fixation stimulus were
classified as premature saccades.

In 2000, Castellanos F. X. et. al. [85], tested fifty two girls (32 with
ADHD and 20 age-matched, normal control) on a variety of oculomotor
tasks requiring attention, working memory, and response inhibition, which
included smooth pursuit, delayed response, and go/no-go tasks.

The results showed that the group of the girls with ADHD performed
the delayed response task with significantly lower scores than the control
group, confirming the fact that ADHD impairs the executive function. The
setup was similar with the experiment performed by Ross [84], where a
cue appeared and disappeared, and the evaluation was on the basis if the
premature saccade occured, middle pannel at the Figure 2.22. In such cases
the trial was considered as failed. Also in the case there was no memory
guided saccade at all, third panel in the Figure 2.22 it was also scored
as an error. On the other hand, at the smooth pursuit experiment, the
performance was equivalent across the two groups.
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Figure 2.22: Representative tracing from delayed response task, taken from
[85].

Gould et. al. [86] in their study, in 2001, compared 53 children with
ADHD to 44 healthy control children on a 21-second fixation task. They
found out that children with ADHD made significantly more intrusive
saccades during fixation than did the control subjects. These data dictate
that children with ADHD not only have difficulty on inhibiting response
but also on maintaining fixation in the absence of any external or internal
distractor, possibly reflecting an intrinsic neurological dysfunction.

In this experiment the task was that the subject would fixate at a dot
showing in the center for about 30 sec, and then as the dot will bounce
back and forth across the screen the subject would follow it with his
eyes. Eye position data automatically clasiffied to saccades if they were
meeting the follwoing criteria: peak velocities greater than 25°/sec, an
initial acceleration of greater than 1500°/second2, and a minimum duration
of greater than 8 msec.

However, Gillian O’Driscoll et. al. [87] focused not only on
the differences between the ADHD and the control group, but also
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within ADHD group itself. They had two different ADHD groups,
covering two types, the ADHD-inattentive, ADHD-I, which has only
inattention symptoms, and the ADHD-combined, ADHD-C, which has
both inattention and hyperactivity/ impulsivity symptoms. Both ADHD
groups and the control group were evaluated on four different tasks,
Saccade Control Task, Motor Planning, Response Inhibition (Antisaccade
Task), and Task Switching (Saccade–Antisaccade Mixed Task).

Throughout their results they found that ADHD-I and ADHD-C
subtypes differed in measures of executive function, with ADHD-C but
not ADHD-I showing deficits in motor planning and response inhibition,
while neither of these two subtypes was impaired in task switching. With
these results it is obvious how much difficult it can be to classify ADHD
diagnosed subjects, when even on a subtype level there are such significant
differentations.

The classification of the eye movement data was carried out with
a semi-automated custom analysis software package by SR Research.
However, the data were also visually inspected. In terms of the criteria
the saccades were identified with velocity greater than 22°/sec and
acceleration greater than 4000°/second2 criteria.

In 2006, Hanisch et. al. [88] evaluated 44 children, 22 with ADHD
and 22 as a control group, on a series of different tasks covering
fixation task, prosaccade task, countermanding task, and antisaccade task.
Throughout their experiment, the ADHD children showed a lower number
of successfully inhibited saccades than controls, while they also took longer
to stop a saccade into the right than the left hemi-field. They concluded that
there is a specific oculomotor inhibition deficit for initiated and ongoing
responses in children with ADHD, which confirms the observation of an
ADHD-related impairment in cognitive inhibition that has been associated
with prefrontal lobe functions.

In 2008, Rommelse et. al. [89] assesed in their paper the visuo-spatial
working memory and inhibition in children with ADHD by recording
saccades during a memory-guided saccade task with two types of delays.
The novel thing in their study was that apart from the ADHD group and the
control group, they introduced a third group consisted of the non-affected
brothers of the ADHD group.

The experiment setup was as follows: the participants were instructed
to fixate at a central fixation point (a light gray dot on a black background)
until it disappeared and then to move their eyes to the memorized location.
After 1200 msec, a light-gray circle was presented for 50 msec, positioned
on one of four corner locations of an imaginary square. Each target location
was equally probable. This circle was indicating the location to which a
saccade had to be made after a variable delay (the memory location).The
delay was either 3000 or 7000 msec and it was signaled by the removal of
the central fixation point. The sequence of 40 trials was counterbalanced
and randomized for each participant.

The task variables to assess the visuo-spatial working memory were
the accuracy of saccades toward the memorized location of the target, the
latency of the correctly performed memory saccades, the percentage of
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Figure 2.23: Visuo-spatial working memory: The means are adjusted for the
covariate age and error bars represent 1 standard error. left bar; 3 second
delay, right bar; 7 second delay, taken from [89].

anticipatory saccades, i.e. saccades towards the target during the delay
period, the percentage of intrusive saccades, i.e. saccades directed towards
another location than the target during the delay period, the peak velocity,
the tendency to under- versus overshoot saccades and the duration.

The criteria for an eye movement to be classified as a saccade
were either when the movement velocity exceeded 35°/sec or when the
movement acceleration exceeded 9500°/second2.

Their findings showed that the memory-guided saccade deficits may
relate to a familial predisposition for ADHD, especially regarding the
variables of accuracy of visuospatial working memory and anticipatory
saccades, Figure 2.23.

A year later, two more studies were published in the Journal of
American Academy of Child and Adolescent Psychiatry. The first one was
by Loe et. al. [90], which had as a goal to evaluate the differences in
cognitive control in children with ADHD compared with controls using
oculomotor tests of executive function. Their test covered the following
three main tasks; The fixation, where the subject had to look straight ahead
despite the appearance of peripheral distractors, and was assessing its
ability to inhibit a response toward the distractors; the antisaccade which
was requiring the subject to inhibit a reflexive response to a suddenly
appearing stimulus and instead, to look to the mirror location and it
was assessing the voluntary response suppression or response inhibition
which consitutes a core component of executive function; and finally the
memory-guided saccade task which was requiring the subject to look to
the location of a previously presented visual target and it was assessing the
maintenance of spatial working memory. The raw data that were recorded
from thei eye tracker were classified into saccades based on a velocity
algorithm using a 30°/s criterion.

Their findings showed that, the inability of children with ADHD to
complete tasks or assignments was also confirmed during the antisaccade
task trials which was lasting only for a few seconds, as it is showen in the
Figure 2.24. Children with ADHD made the same proportion of errors
on the antisaccade task regardless of the duration of fixation, while the
performance of the control group was improving as the fixation time was
increasing.
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Figure 2.24: Antisaccade proportion of errors, taken from [90].

The second study was carried out by Mahone M. et. al. [91], and its
objective was to examine patterns of executive and oculomotor control
in a group of children with ADHD. In an experiment including 120
children, 60 with ADHD and 60 as a control group, going through different
types of tasks, visually guided saccades (VGS), antisaccades, memory-
guided saccades, and a go/no-go test, they concluded that the children
with ADHD demonstrated significant deficits in oculomotor response
preparation (VGS latency and variability) and response inhibition but not
on working memory. In this case the eye movements were recorded by
using bitemporal electrooculography, while the saccade onset was defined
when the eye velocity was reaching 25°/s.

In 2010, Carr, Henderson and Nigg [92] addressed in their paper
the question whether ADHD is related to early- or late-stage attentional
control mechanisms and whether this differentiates a nonhyperactive
subtype (ADD). Similarly to O’Driscoll’s, [87], it was again confirmed
once again that ADHD does not only differentiate from the control group,
but also within different subtypes itself. In this case it was presented
that the ADHD-combined showed greater weakness in response inhibition
compared to the nonhyperactive subtype (ADD).

At the same year, Karatekin C. [93] with his experiment to ADHD
children, challenged the theories and the models that posit inhibition as
a core cognitive impairment. While evaluating not only children with
ADHD but also with psychosis, he concluded that the ADHD group did not
have elevated antisaccade error rates, suggesting that improving topdown
control of attention over time should be a target of cognitive remediation
efforts in ADHD examinations. However, this was in contradiction of
what Goto Y. et. al. [94] suggested, as according to their analysis the
ADHD group showed significantly higher percentage of anticipatory errors
in memory-guided saccade task and percentage of direction errors rates in
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antisaccade task than the control group.
In 2012 Pishyareh E. et. al. [95], conducted a study to evaluate if

children with ADHD react explosively and inappropriately to emotional
stimuli, due to some impairment in attending to emotional cues. They
compared two groups of 30 children each, one group with ADHD and one
control group. The participants were presented with pairs of emotional
and neutral scenes selected from the International Affective Picture System
- IAPS. Their findings showed that children with ADHD spent less time
on pleasant pictures than the normal group and more time on unpleasant
pictures compared to the normal group, which leads to their emotional
reactivity. It could be interpreted that children with ADHD since they do
not spent much time to look at pleasant pictures, they may not recognize
pleasant pictures properly compared to normal children.

In this case the methodology was not based on velocity algorithms, and
evaluation of saccades, like we have seen in the majority of the previous
studies, but on the area of interest approach. The stimuli was presented
on a 19 inch monitor with a resolution of 1400 by 900 pixels and if the
eye position was remaining within a 50 pixel area for more than 100ms
was considered as fixation. The variables were the mean number and the
duration of first fixation on each emotion as well as the duration of first
gaze which was the time taken to fixate on one picture before moving to
another picture.

2.5.2 Recent Developments

In more recent developments, we have the study in 2015 by Matsuo et.
al. [96] which had as main goal to examine whether children with ADHD
exhibit abnormalities during a visually guided pro-saccadic eye-movement
and to clarify the neurophysiological mechanisms associated with their
behavioral impairments. They evaluated 125 children out of which thirty
seven had ADHD and eighty eight were in the control group, and they
concluded that the ADHD group had a significantly longer reaction time
than the control group.

The experimental setup was requiring the children to maintain their
eyes on the fixation point and to move their eyes toward the peripheral
stimulus in response to its appearance as quickly and accurately as
possible. Two different conditions were probable to occur. In the first,
the step condition, the peripheral stimulus appeared at the same time as
the fixation point disappeared, while in second, the gap condition, the
peripheral stimulus appeared 200 ms after the fixation point disappeared.

The study team concluded that also the gap effect, which is the
difference in the reaction time between the two conditions was markedly
attenuated for the ADHD children, especially in some ages, Figure 2.25.

The eye movement data were collected by the eye tracker and they were
classified into saccades based on a radial eye velocity criteria threshold of
30°/s. The detected saccades were further analyzed if their amplitude is
greater than 2°, their peak velocity greater than 50°/s, and their duration
greater than 20 ms.
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Figure 2.25: Saccade reaction time during gap and step trials, taken from
[96].

A year later, Turkan et. al. [97], performed a study on 48 children, half
of which had ADHD and the other half was the control group, in order to
evaluate change detection performance and visual search patterns between
the two groups. In order to evaluate the change detection performance they
used the Flicker paradigm, [98], where an original image is alternated with
its modified image and a blank field is placed between successive images.
This change cycle repeats until either the subject responds or an elapse of
60s.

They concluded that the change detection performance, associated with
visual attention and memory, was worse in children with ADHD, while
regarding the eye movement analysis, the control group fixated mostly
on the changed area whereas ADHD children fixated on the whole scene.
However, the fixation duration of the ADHD group was lower than of the
control group, Figure 2.26. However, no notable differences were observed
in terms of reaction time.

In 2017, two studies were published regarding the identification of
ADHD children with eye-tracking methodologies. The first was from Bucci
et. al. [99] which evaluated the difference in the elicited saccades from
different paradigms on children with and without ADHD.

They evaluated 62 children half of which had ADHD, in three
paradigms which were used to stimulate horizontal visually guided
saccades (gap, step, and overlap paradigms) and one for antisaccades,
Figure 2.27. The classification of the data was done automatically by
the software of the eye tracking system. Also a fixation paradigm was
performed, where the children had to fixate on a target for 30s.

In this study, the researchers concluded that children with ADHD
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Figure 2.26: Mean fixation duration on the changed area, taken from [97].

Figure 2.27: Schematic diagram of the temporal and spatial arrangement
used in different paradigms, taken from [99].

exhibited a general decline in oculomotor ability, as observed through
the examination of saccades, antisaccades, and fixation paradigms. The
ADHD group demonstrated a higher number of saccades during the
fixation paradigm and a higher error rate during the antisaccade paradigm.
These findings indicated a deficiency in inhibitory control and executive
resources, particularly attention, dedicated to the task. Refer to Figure 2.28
for a graphical representation of the performance.

The second study that was published the same year, was by Wainstein
et.al. [100], and evaluated how the pupil size diameter can be utilized as
a biological marker for ADHD detection among children. This study was
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Figure 2.28: Means of error rate during antisaccade paradigm (left graph),
of number of saccades during fixation paradigm (right graph) in ADHD
and TD (control) children. Vertical bars indicate the standard error. *p <
0.05. ADHD. Taken from [99].

based on the same dataset that we will utilize in this thesis. However, the
analysis that was carried out by Wainstein et. al. was focused mainly on the
impact of the ADHD on the pupil diameter of the subject. They monitored
pupil size from an ADHD group and a control group, during a visuospatial
working memory task, and concluded that pupil size is correlated with
the subjects’ performance and reaction time variability, which both are
indicators of attention.

The subjects had to follow a sequence of presentation of different dot
arrays, followed by a distractor, while in the end of the trial they had to
answer if a dot array that was presented to them it was the same with
one of those presented in the beginning of the trial. The pupil diameter
data were gathered by an eye-tracker and then normalized by means of
a z-score, separately for each trial. Apart from the control group and the
ADHD group, a subset of the ADHD group was re-evaluated once again
but under medication.

Figure 2.29 illustrates the connection between changes in pupil dia-
meter and behavioral performance markers in ADHD, highlighting the
contrasting associations observed between ADHD and non-ADHD chil-
dren. These findings indicate that alterations in pupil diameter during a
visual-spatial working memory task hold potential as a valuable biological
marker for ADHD.

Similar to the work already presented by Pishyareh E. et. al. [95], who
evaluated the correlation between the emotional stimuli and the ADHD,
in 2018 Serrano et. al. [101] compared in their study the viewing patterns
for emotion stimuli between children with ADHD and a control group and
examined the relationship of the ADHD symptoms, with viewing patterns,
emotion knowledge accuracy and response time. The study involved 45
children, out of which 26 with ADHD.

The eye tracking system was collecting the data while the subjects ware
going through the task trial. Face and situation images were displayed on
a computer screen for 4 and 7 seconds respectively, and then were replaced
by a screen showing the response options. In the whole task trial process
a total of 38 facial expression and 20 situation images were shown. A
fixation was defined as a relatively stable eye position (within 6 degrees
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Figure 2.29: Maximum pupil diameter. Each dot represents the mean
session value for a subject. Horizontal bars correspond to session averages
across subjects. Taken from [100].

horizontally and 4 degrees vertically) for a minimum of 100 ms.
In this study the protocol was based on the Areas of Interest. The eye-

tracking dependent measure was the proportion of total fixation duration
on all areas of interests, i.e. the total AOI fixation duration divided by the
total duration of all fixations on each image.

Even though the viewing patterns of children with and without ADHD
were fairly similar, the children with ADHD spent less time viewing
relevant areas of images and took longer to respond, i.e., detect an emotion
in comparison to the children without ADHD, Figure 2.30.

One year later, Cladani et. al. [102] published their study in which they
explored the corellation between the oculomotor behavior and executive
motor control with ADHD through an oculomotor and postural dual task.
They evaluated 42 children out of which half of them had ADHD.

They evaluated the children in two visual paradigms; a simple fixation
case, where the children had to to fixate on the target appearing in the
center of the black screen for 30 s, while the second paradigm was a fixation
with distractors where the child had to maintain fixation on the central
target and to inhibit saccades toward the distractors, a white smile target
appearing for a random duration from 500 to 2000 ms, Figure 2.31.

The novelty of this experiment was that it was combined with three
postural conditions for the children; a simple sitting condition, a complex
standing on stable platform condition and a complex standing on unstable
platform condition.

The analysis of the raw data was done automatically by the built-in
saccade algorithm of the MeyeAnalysis software, and all the saccades equal
or greater than 2 degrees were counted.

The authors concluded that the children with ADHD had poor fixation
capabilities compared to the control group, while they also showed
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Figure 2.30: Profile plots for proportion of fixation duration on Area of
Interst, and response time for children with and without ADHD. Taken
from [101].

Figure 2.31: Temporal arrangement of simple fixation (A) and of fixation
with distractor (B) task, taken from [102].

more difficulties in the simple fixation visual task. Even though all the
children had more difficulty standing on the unstable platform, those
with ADHD showed poor postural stability also in the other cases too.
Finally the number of sccades performed by the children was increased
for both groups while standing on the unstable platform than in the sitting
condition.

Finally, the last two most recent publications were carried out by
Fernandez-Ruiz et. al. [103], and Huang et. al. [104], both published in
2019.

In the first study, Fernandez-Ruiz and his team, evaluated 42 children
out of which the twenty two were diagnosed with ADHD. The task
they had to undergo was a prosaccade/antisaccade task. The trial
was comprised with a preparatory stage that cued a prosaccade or an
antisaccade without the presentation of a peripheral target. This allowed
testing inhibitory control without the confounding activation from an
actual response. The study concluded that the adhd group showed longer
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reaction time compared to the control group. Also they had more direction
errors during the antisaccade task. These findings align with previous
studies in which the oculomotor inhibitory control was evaluated.

On the other hand, Huang et. al. [104], examined in their study 24
children out of which had ADHD. These children were evaluated in a
visual guided saccade and in anti-saccade task. The visual guided saccade
requires the capability of orientation of attention and sequential procedure,
while the anti-saccade task could evaluates the response inhibition. In
the first, latency and accuracy values were collected, while in the latter
the percentage of direction errors was also recorded. The recording and
classification of the data was performed by the built-in software of the eye-
tracker.

More specifically, the visual guided saccade task was starting with a
fixation point at the center of the screen, which was disappearing after 1000
or 1500 ms, randomly set. Then a gray screen was presented followed by a
visual target which was appearing in the horizontal direction left or right
position from the center of fixation point, either 7◦ or 15◦ from the center of
the fixation point, as presented in the Figure 2.32.

In the anti-saccade task, the participants were instructed not to look at
the target but to look at a position in the opposite direction at a similar
distance from the target. Once the visual target disappeared, a black dot
appeared in the correct position where the participants were expected to
look, providing in this way a response feedback to the participants.

Their main findings in this study were the following. Firstly, during
the visual guided saccade task, that the latency time of the children
with ADHD and the control group in the 7.5◦ target showed statistically
significant differences. However, in the case of the 15◦ target, there was
no significant difference, indicating that small saccade amplitude tasks
could induce some difficulty in regulating processes of saccade initiation
of children with ADHD. Moreover, the ADHD children had a significantly
larger ratio of saccade amplitude over target eccentricity compared to the

Figure 2.32: The procedure of the visual guided saccades task (left image)
and anti-saccade task (right image), taken from [104].
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control group, presenting a significantly less saccade precision.
During the anti-saccade task, different saccade amplitude targets may

influence saccade latency and accuracy values. The study concluded
that short latency in children with ADHD on anti-saccade tasks indicates
difficulty inhibiting prepotent response, resulting in faster but less accurate
responses. This finding also implies that ADHD children were unable
to inhibit their initial prepotent responses to an external event, resulting
in stimulus-driven behavior. This dysfunction may contribute to ADHD
children’s impulsive and hyperactive behavior, which is aligned with the
higher percentage of direction errors of the ADHD children in the anti-
saccade tasks that was showed in this study.

In conclusion the ADHD children presented weaknesses in the recruit-
ment of visual attention resources and limited saccade precision, as well as
deficit of inhibition and impulsive control, compared to the control group.

2.6 Eye-Tracking Criteria to Differentiate ADHD and
Non-ADHD Subjects

In this chapter, we synthesize the findings from the literature review
presented earlier and emphasize the key criteria for differentiating ADHD
and non-ADHD children using eye-tracking data. Based on the reviewed
literature, a comprehensive list of potential criteria is compiled and
presented in Table 2.4.

Although each criterion in the table has demonstrated potential utility
in distinguishing between ADHD and non-ADHD children, our analysis
primarily focuses on measures that can be derived from the x, y coordinates
and timestamps, which are the primary data utilized in this thesis.

Based on the focus of this thesis, the following criteria have been iden-
tified as most relevant and will be further evaluated for their applicability:

• Saccade Frequency. Saccade frequency, defined as the number of
saccades per unit of time, has been found in multiple studies to

Table 2.4: List of eye-tracking criteria that can be used to differentiate
children with ADHD.

No. Eye-Tracking Criteria
1 Fixation duration
2 Saccade frequency
3 Saccade amplitude
4 Interference saccade frequency
5 Smooth pursuit accuracy
6 Blink rate
7 Pupil dilation during cognitive tasks
8 Visual search efficiency
9 Anticipatory saccade frequency
10 Microsaccade frequency
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be higher in children with ADHD compared to their non-ADHD
counterparts.

• Fixation Duration. Fixation duration, representing the duration of
time during which the eyes remain stationary in a fixation, has been
observed to be shorter in children with ADHD compared to non-
ADHD children in various studies.

These quantitative measures have demonstrated the potential to dif-
ferentiate between ADHD and non-ADHD children through the analysis
of eye-tracking data. It is important to note, however, that the indicative
values derived from previous studies may vary depending on the specific
eye-tracking tasks employed and the sample size and characteristics of the
participants. Consequently, these criteria may be more effective for pattern
recognition rather than absolute basis comparison.

In the subsequent chapter, we will introduce an additional metric,
derived from the novel IVT Optimization algorithm, 3.4.1, which will
complement the aforementioned eye-tracking criteria in distinguishing
between ADHD and non-ADHD subjects.
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Chapter 3

Methodology

In the previous chapter, a comprehensive literature review was conducted,
examining various eye-tracking algorithms, state-of-the-art technologies,
and their corresponding software. It was found that the majority of studies
primarily relied on the embedded algorithms within the eye-tracking
commercial software for data analysis, with only a few cases utilizing more
in-depth mathematical analysis.

This thesis aims to address this issue by establishing a stronger con-
nection between the test data and the mathematical models governing the
eye-tracking system. The ultimate goal is to gain a deeper understanding
of the correlations between ADHD status, performance test results, and
eye-tracking data.

In the upcoming sections, we will explore the dataset utilized in this
thesis, the experimental setup on which it was based, and the proposed
methodology we will employ for our analysis. This will include a
discussion of the algorithms and mathematical models we will use to better
integrate and analyze the data, with a focus on uncovering novel insights
into the relationship between ADHD and eye movement patterns.

3.1 Dataset Description

The dataset was generated from an experiment reported in [14] on
visuospatial working memory conducted on participants with and without
ADHD. Before examining the dataset in detail, it is essential to understand
the experimental design and its framework.

The participants completed a Sternberg-type delayed visuospatial
working memory (WM) task, which was adapted from Dolcos & Mc-
Carthy’s study, [14]. The stimuli used in the task were 1- or 2-dot arrays,
with the dots positioned in any of the sixteen locations within a 4×4 grid,
as illustrated in Figure 3.1. In each trial, the participants were instructed
to fixate on a black cross at the center of the screen and, after 500ms, a dot
array presentation (load) began. Three different dot arrays were presented
in succession, with delay periods in between each presentation.

Following the final delay period, a distractor image was displayed for
500ms, after which a ’probe’ dot was presented for 1.5 seconds. The probe
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Figure 3.1: Schematic representation of a single trial, taken from [100].

dot was located within the grid, and the participants had to respond ’yes’
if the probe dot had appeared in any of the previous arrays in the trial, or
’no’ if it had not appeared, [14]. A total of 160 trials were presented on
each session, separated in 8 blocks of 20 trials. Sessions usually lasted 30
minutes.

Based on the aforementioned experiment, Rojas-Líbano D. et. al. [14]
compiled a dataset that contained various pieces of information regarding
the participants and their performance. The original format of the dataset
was structured in MATLAB arrays, as shown in the Figure 3.2, which we
needed to analyze and filter in order to generate specific (.csv) files that
could be used for our project, which was conducted using Python.

More specifically, the ‘Task data’ field in the dataset contains a table
array that includes all the raw data from each participant and session. The
data are organized into four columns, with one row for each timestamp.
The columns are as follows: Time, Diameter, Position, and Events. The
Time column offers precise timestamps of each session in milliseconds,
sourced from the Eyelink recording. The Diameter column contains

Figure 3.2: Screenshot samples of data structure Pupil data within the
Matlab® environment. The file contains a structure array with six fields
(‘Subject’, ‘Age’, ‘Group’, ‘Task data’, ‘Task epochs’, and ‘WISC’), taken
from [14].
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Table 3.1: List of Events in the Dataset.

Event Description
1 Presentation of one-dot memoranda
2 Presentation of two-dot memoranda
3 Presentation of neutral distractor
4 Presentation of empty-grid distractor
5 Presentation of task-related distractor
6 Presentation of emotional-image distractor
7 Presentation of probe array
8 Presentation of feedback screen
9 Occurrence of button press with participant answering ‘yes’
10 Occurrence of button press with participant answering ‘no’

the participant’s pupil diameter in arbitrary units, also recorded by the
Eyelink equipment. The Position column is divided into two sub-columns
representing the x- and y-coordinates of gaze positions in pixels, relative
to the screen size in pixels (1920 × 1080). Lastly, the Events column
records relevant task and behavioral events using integers from 1 to 10.
These integers correspond to specific events such as the presentation of
memoranda, distractors, probe arrays, and the participant’s response, Table
3.1.

Although the ‘Task data’ field provides a comprehensive event-by-
event breakdown for each participant, the primary focus of our analysis
will be on the complete dataset for each participant, rather than a granular
event analysis. By examining the overall patterns and trends in the data,
we aim to gain a broader understanding of the participants’ performance
and the potential impact of ADHD on visuospatial working memory.

In this context, it is important to note that the dataset encompasses
a sample of 50 participants, each characterized by their age and gender.
This sample is divided into two distinct groups: the non-ADHD group,
consisting of 22 participants, and the ADHD group, with 28 participants.
Furthermore, the ADHD group contains two subgroups representing off-
and on-medication states, the latter of which includes a subset of 17
participants.

Initially, we aimed to explore the potential of both on- and off-
medication subgroups to provide additional insights. We performed an
ANOVA test, a statistical technique used to determine whether the means
of two or more groups differ significantly from one another, with our null
hypothesis being that the means between the two groups were the same or
at least did not have any significant difference, [105].

By performing the ANOVA test, Figure 3.3, we found that the p-
value was greater than 0.05, indicating that we could not reject the
null hypothesis, and that the means between the two groups were not
significantly different from each other, [106]. Therefore, we decided to
disregard the on-medication subgroup in our analysis.

Moreover, the dataset includes behavioral data on the participant
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Figure 3.3: ANOVA analysis for on- and off-meds groups.

based on the Weschler Intelligence Scale for Children (WISC), [107], which
provides information on their intelligence test results, including Full-Scale
IQ and other metrics that we will evaluate for their applicability in this
analysis.

Finally, as already mentioned, the dataset includes performance data
on the different subtasks, which we will analyze on an average basis to
generate a benchmark for our analysis with the eye-tracking data.

3.2 Methodology Overview

Our proposed methodology entails a two-fold approach, which seeks to
comprehensively evaluate the impact of incorporating eye-tracking metrics
into the classification model for ADHD diagnosis.

In the first stage, we will establish a classification model based on
non eye-tracking related metrics, including the age of the children, their
performance on the memory task test, and relevant metrics from their
WISC test results. The accuracy of this initial model will be used as a
benchmark to evaluate the extent to which the subsequent inclusion of eye-
tracking metrics can enhance its diagnostic power.

In the second stage, we will investigate two assumptions regarding the
eye-tracking data: 1) the visual scanpath follows a "feed and fly" model,
[20], and 2) the visual scanpath follows a Lévy flight model, [31]. For the
"feed and fly" model, we will apply corresponding eye-tracking algorithms
to generate additional metrics. For the Lévy flight model, we will derive
the metric from the velocity distributions of the participants. In both cases,
the resulting metrics will be incorporated into the classification model. We
will then re-evaluate the accuracy of the model, with the aim of assessing
whether the inclusion of eye-tracking data can result in a more robust and
accurate classification of children with ADHD. Our goal is to demonstrate
that by leveraging eye-tracking metrics, we can enhance the classification
model’s sensitivity and specificity, and ultimately improve our ability to
diagnose ADHD in children.

Overall, this dual approach methodology will provide a more compre-
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hensive and nuanced understanding of the diagnostic value of eye-tracking
data, and help to identify the potential for novel diagnostic and treatment
approaches for ADHD.

3.3 Benchmark Model and Parameter Selection

In this section, we will discuss in more detail the three types of parameters
used for the benchmark model: age, WISC metrics, and participant test
performance.

3.3.1 Non-Eye Tracking Parameters

Age

The first parameter will be the age of the children. All the children vary
from ages from 8 years old up to 13 years old. However the age distribution
within the two groups is not equal, Figure 3.4. This discrepancy makes the
age parameter crucial for our analysis.

WISC Metrics

The second parameter is the WISC metrics. The Wechsler Intelligence Scale
for Children (WISC) is a widely used cognitive test designed to measure
the intellectual ability of children between the ages of 6 and 16, [107]. In
our dataset, all children were tested individually on the WISC-III or the
WISC-R (3 children) by trained neurologists or neuropsychologists from
the clinical team at Universidad Católica de Chile, [14].

Figure 3.4: Age Distribution.

57



Figure 3.5: Theoretical structure of the WISC-III, taken from [108].

The WISC-III is a comprehensive measure of cognitive abilities and
includes 13 subtests that assess different aspects of intelligence, including
Verbal Comprehension, Perceptual Organization, Processing Speed, and
Freedom from Distractibility, Figure 3.5. These subtests are combined
to provide a Full-Scale IQ score, as well as scores for Verbal IQ and
Performance IQ.

Numerous studies in the literature indicate that children with ADHD
exhibit specific cognitive deficits, in addition to symptoms of inattention
and hyperactivity-impulsivity. In their study, Moura et al. [109] found
that WISC-III Full-Scale IQ was significantly lower in children with ADHD
than in the non-ADHD group. On the other hand, A. Wood et al.
[110] concluded that lower IQ does not account for the key cognitive
impairments observed in ADHD.

For this reason, it is essential to evaluate other WISC metrics as well, in
order to have a combination of them in our analysis.

Susan Dickerson Mayes and Susan L. Calhoun [111] found that
children with ADHD have lower mean scores on WISC-III Freedom
from Distractibility index and Processing Speed index than on Verbal
Comprehension index and Perceptual Organization index. This suggests
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Figure 3.6: WISC metrics distribution per group.

that low scores on the subtests of the first two indices may be indicators of
neurological dysfunction due to their consistent and reliable association
with neurological disorders. This aligns with what Moura et al. [109]
suggested regarding the importance of the Freedom from Distractibility
Index as being the index score most impaired in children with ADHD.

Mealer et al. [112] also found that the ADHD group scored significantly
lower than the non-ADHD group on Freedom from Distractibility. Similar
findings were presented by Lopes et al. [113], who identified that WISC-III
Digit Span and Arithmetic subtests could aid in the diagnosis of ADHD.

Based on these findings, we decided to include two parameters from
the WISC test in our benchmark model: the Full-Scale IQ and the Freedom
from Distractibility, as shown in Figure 3.6. Since data for the Freedom from
Distractibility index is not available for all children, we decided to use the
sum of the specific subtests of that index, Arithmetic and Digit Span, which
we will refer to as "FD" as we want to keep the correlation with their Index.

As shown in the Figures 3.6, there is an apparent trend between the
ADHD group and the non-ADHD group when it comes to the Full-Scale
IQ. However, as mentioned earlier, the age distribution between the two
groups is not equal. Thus, this trend becomes more apparent when the IQ
distribution is combined with the age distribution, as seen in Figure 3.7.

Performance on the Memory Task Test

The final parameter for the benchmark model is the children’s performance
on the memory task test. As mentioned in paragraph 3.1, each child
completed 160 trials. Each trial was either a low-load trial, where only one
dot was presented on each image, or a high-load trial, where two dots were
presented on each image, combined with a distractor image.

For the purposes of this study, we decided not to distinguish between
the different combinations of loads and distractors. Instead, we will
calculate the average performance across the complete set of 160 trials for
each child.

Since the performance on each trial was binary (1 if the child was correct
and 0 if the child was incorrect), taking the average of the complete set of
160 trials will yield a linear score ranging between 0 and 1.

Figure 3.8 ppresents the distribution of children based on their group
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Figure 3.7: Full-Scale IQ vs. Age for both Groups.

Figure 3.8: Performance distribution for both Groups.

and average performance. The non-ADHD group appears more concen-
trated at higher performance levels, while the ADHD group seems to be
more scattered across a broader performance range. We expect that ac-
counting for age and IQ will make the distinction between the two groups
more explicit.

3.3.2 Classification Algorithms for Benchmark Model

In this chapter we will establish a classification model based on non-eye-
tracking related metrics, as described in Section 3.3.1.

To accomplish this, we will evaluate several different classification
algorithms to determine which one provides the best performance in our
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specific context. Some of the classification algorithms that we plan to
evaluate include logistic regression, support vector machines, decision
trees, and random forests. These algorithms were selected because they
have been shown to perform well in other classification tasks and are
commonly used in the field of machine learning.

In the following paragraphs, we provide a more detailed description
of the algorithms that we used, along with a brief explanation of how
they work, their main options, and the importance of cross-validation and
hyperparameter tuning in optimizing their performance. These techniques
ensure that the selected model is robust and accurately generalizes to
unseen data.

Logistic Regression

The logistic regression method estimates the relationship between a
dependent variable and one or more independent variables but predicts
a categorical variable instead of a continuous variable. True or false, one or
zero, yes or no, and so on are all examples of categorical variables. The unit
of measure differs from linear regression in that it generates a probability,
whereas the logit function transforms the S-curve into a straight line, Figure
3.9, [114].

Logistic regression models are classified into three types based on
categorical response.

• Binary logistic regression: The response or dependent variable in this
approach is dichotomous in nature, with only two possible outcomes
(e.g., 0 or 1). This is the most common approach within logistic
regression, and it is also one of the most common classifiers for binary
classification in general. And this is the one we’ll be using for this
project.

• Multinomial logistic regression: The dependent variable in this type
of logistic regression model has three or more possible outcomes, but
the order of these values is not specified.

• Ordinal logistic regression: When the response variable has three or
more possible outcomes, but these values have a defined order, this
type of logistic regression model is used. Ordinal responses include
grading scales ranging from A to F and rating scales ranging from 1
to 5.

The logistic function is defined by the expression:

ρ(x) =
1

1 + e−(β0+β1x)

where β0 is known as the intercept, and β1 as inverse scale parameter
or rate parameter.
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Figure 3.9: Graph of a logistic regression curve fitted to the (xm,ym) data,
taken from [115].

Support Vector Machine / C-Support Vector Classification

The Support Vector Machine (SVM) is a machine learning technique that
can be used for classification and regression tasks. It is a powerful
method because it is able to predict outcomes with high accuracy while
avoiding the problem of overfitting, which occurs when a model becomes
too complex and fits the training data too closely. The SVM algorithm
is particularly well-suited to analyzing datasets with a large number of
predictor fields [116].

The goal of the Support Vector Machine (SVM) algorithm is to locate a
hyperplane within an N-dimensional space that distinctly classifies data
points into separate groups, Figure 3.10. The dimensionality of this
hyperplane is contingent upon the number of features, translating to a line
for two features, a 2-D plane for three features, and higher dimensional
spaces for an increased number of features [117].

Figure 3.10: Hyperplanes in 2D and 3D feature space, taken from [118].
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Figure 3.11: Possible hyperplanes, taken from [118].

SVM endeavors to identify the optimal hyperplane by amplifying the
margin, defined as the distance between the nearest data points belonging
to the two distinct classes, Figure 3.11. This strategy instills greater
confidence in the classification of future data points. By maximizing the
space between the two classes, the probability of misclassifying newly
introduced data points is reduced [118].

Decision Tree Classifier

A decision tree is a non-parametric method utilized in supervised learning,
suitable for both classification and regression tasks. It employs a tree-like
structure, depicted in the Figure 3.12, comprising a root node, internal
nodes, branches, and leaf nodes. Each decision tree commences with a
root node devoid of any incoming branches. The root node subsequently
branches out to internal nodes, otherwise referred to as decision nodes.
These nodes, both root and internal, scrutinize the provided features to
yield homogeneous subsets which are then demarcated as leaf nodes or
terminal nodes. These terminal nodes represent all potential outcomes
derived from the dataset [119].

There are two main types of decision trees used in data mining, the
classification tree and the regression tree.

The classification tree analysis is used when the expected outcome is the
class (discrete) to which the data belongs, and the regression tree analysis
is used when the predicted outcome may be regarded a real number (e.g.,
the price of a house or the duration of stay in a hospital).

Random Forest Classifier

The random forest method is a popular machine learning technique that
mixes the output of numerous decision trees to produce a single conclusion.
Its ease of use and versatility, as well as its ability to tackle classification and
regression challenges, have boosted its popularity [120].
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Figure 3.12: Schematic of a Decision Tree, taken from [119].

It is made up of a huge number of independent decision trees that work
together as an ensemble. Figure 3.13 shows how each individual tree in the
random forest generates a class prediction, and the class with the highest
votes becomes our model’s forecast [121].

The requirements for the random forest to perform well are that there
is some actual signal in our features so that models created using those
features outperform random guessing and that the predictions (and hence
mistakes) generated by the individual trees have minimal correlations with
one another.

Figure 3.13: Visualization of a Random Forest Model Making a Prediction,
taken from [119].
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K-Nearest Neighbors Algorithm

The k-nearest neighbors algorithm, often known as KNN or k-NN, is a
non-parametric, supervised learning classifier that employs proximity to
classify or predict the grouping of a single data point. While it may be used
for either regression or classification issues, it is most commonly utilized
as a classification technique based on the idea that similar points can be
discovered nearby [122].

Figure 3.14: Image showing how similar data points typically exist close to
each other, taken from [123].

Figure 3.14 shows that similar data points are usually adjacent to one
other. The KNN algorithm is based on the premise that this assumption is
true enough for the algorithm to be beneficial. KNN captures the concept
of similarity (also known as distance, proximity, or closeness) with certain
mathematics we may have learned as children, such as calculating the
distance between the points on a graph.

Before concluding this section, it is crucial to discuss three concepts that
are highly relevant to the classification algorithms described above: cross-
validation, automated feature selection methods and hyperparameter
tuning.

Cross-Validation

Cross-validation is a prevalent technique in machine learning for assess-
ing the performance of classification algorithms. It is a statistical method
that assists in estimating a model’s accuracy by evaluating its generaliza-
tion capabilities to unseen data. Cross-validation is employed to counteract
overfitting, a phenomenon where the model demonstrates excellent per-
formance on the training dataset but underperforms on new, unseen data.

This technique facilitates hyperparameter tuning, algorithm selection
for a specific problem, and overall performance assessment of a classifica-
tion algorithm. Cross-validation is a critical step in constructing robust and
accurate machine learning models.

Cross-validation entails partitioning the dataset into multiple parts or
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"folds." The most common method is k-fold cross-validation, wherein the
data is divided into k equally-sized parts. In each iteration, one fold serves
as the validation set, while the remaining k-1 folds form the training set.
The classification algorithm is trained on the training set and tested on the
validation set. This procedure is repeated k times, with each fold used as
the validation set exactly once. The algorithm’s performance is averaged
across all k iterations, providing an overall accuracy estimate.

In this study, two distinct cross-validation methods were utilized
to evaluate the performance of classification algorithms: Stratified K-
fold Cross-Validation and Leave-One-Out Cross-Validation (LOOCV). The
former, an extension of the standard k-fold cross-validation method [124],
maintains the ratio of target classes in each fold consistent with the full
dataset (i.e., 56% ADHD individuals and 44% non-ADHD individuals),
optimizing the bias-variance tradeoff in the testing process. The latter,
LOOCV, is a special case of cross-validation where the number of folds
matches the number of instances in the dataset [125], offering minimal bias
in the testing process but introducing substantial variance due to using a
single data point for testing in each iteration. This method is employed due
to the small size of the dataset.

By comparing the outcomes of these methods, a comprehensive
evaluation of the classification algorithm’s performance can be achieved,
facilitating the development of a robust and accurate model.

Automated Feature Selection Methods

Automated feature selection techniques aim to identify the most pertinent
features for a model, reducing the likelihood of overfitting and enhancing
computational efficiency. In this study, we utilized three automated feature
selection approaches: Recursive Feature Elimination (RFE), Recursive
Feature Elimination with Cross-Validation (RFECV), and SelectKBest.

RFE is a method that iteratively fits a model to the data, assesses the
significance of each feature, and removes the least important features. This
process continues until the desired number of features is achieved.

RFECV is an enhancement of RFE that integrates cross-validation to
further optimize the feature selection process. It expands upon RFE’s
iterative procedure by evaluating the model’s performance and ranking
the features based on their importance in each cross-validation fold. By
removing the least significant features and reconstructing the model,
RFECV offers a more reliable assessment of the model’s performance
and improves generalization by retaining influential, independent features
while discarding superfluous and weak ones [126].

SelectKBest, conversely, is a univariate feature selection technique that
chooses the top k features according to their statistical relationship with the
target variable[127].

Although automated feature selection methods offer potential advant-
ages, they may not consistently outperform manual feature selection.
Manual feature selection, which relies on domain expertise and informed
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judgment, can occasionally generate better models by incorporating con-
textual information that automated methods might miss.

Hyperparameter Tuning and Model Training

Hyperparameter tuning is an essential aspect of machine learning, as
it significantly influences a model’s performance. The process involves
adjusting specific parameters that guide the model’s learning process,
ultimately aiming to optimize its performance on unseen data. In
this study, we concentrate on several key hyperparameters for logistic
regression. As we will discuss later in the results section, logistic regression
will be chosen as the preferred method for this study. The following
parameters are considered ([128]):

• Penalty (or regularization): This is designed to minimize the error in
model generalization and serves as a control mechanism to prevent
and manage overfitting.

• C (or regularization strength): This parameter works in tandem with
the penalty to manage overfitting. Lower values indicate stronger
regularization, while higher values instruct the model to assign
significant weight to the training data. It is essential that this value is
a positive floating-point number.

• Solver: This is the algorithm employed to solve the optimization
problem. The available options include:

– Lbfgs: This solver tends to perform well compared to others and
is memory-efficient. However, it can sometimes struggle with
convergence issues.

– sag: This is more efficient than other solvers when dealing with
large datasets, particularly when both the number of samples
and features are substantial.

– Saga: This solver is the recommended choice for sparse multi-
nomial logistic regression, and it is also suitable for very large
datasets.

– newton-cg: This solver can be computationally costly due to the
calculation of the Hessian Matrix.

– liblinear: This is suggested for high-dimensional datasets, as it
efficiently handles large-scale classification problems.

Finally, to find the optimal values for these hyperparameters and
optimize the accuracy of our logistic regression models, we will use
GridSearchCV. GridSearchCV is an exhaustive search technique that
evaluates a model with various combinations of hyperparameter values.
It systematically explores the search space of possible hyperparameter
values, selecting the combination that yields the best performance based
on a specified evaluation metric.
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3.4 Eye-Tracking Data Analysis

Eye-tracking data analysis is an essential step in understanding the rela-
tionship between a participant’s ADHD status and their eye movements.
This section aims to detail the methods and techniques employed to pro-
cess and analyze the eye-tracking data collected during the experiments.
We will discuss various algorithms, their characteristics, and their applica-
tion in our study. Furthermore, we will outline the specific steps taken to
process the data and extract meaningful insights from it.

By leveraging these techniques and the insights obtained from the data,
we aim to enhance the diagnostic power of our Benchmark model and
better understand the behavioral patterns exhibited by participants with
ADHD.

In this study, as already mentioned in the methodology overview
(Section 3.2), we will make two main assumptions regarding the eye-
tracking data, which are based on different models describing the visual
scanpath of the participants. These assumptions will guide our choice of
metrics and algorithms used to analyze the eye-tracking data.

3.4.1 Assumption I: Feed and Fly Model

The main aspect of this model is that the two phases are discrete. This
means that, with the appropriate fixation-saccade detection algorithm, we
will be in a position to define specific metrics that distinguish these two
events. In the following sections, we present the chosen algorithm, which
is the Identification by Velocity Threshold (IVT), as well as an optimization
for it, while defining the derived metrics.

Identification by Velocity Threshold (IVT)

The Identification by Velocity Threshold (IVT) as already presented in
Section 2.3.1 is a commonly used approach for the identification of
fixations and saccades in eye-tracking studies. The core of the IVT
algorithm is rooted in geometry and calculus, allowing us to determine
the instantaneous velocities of eye movements.

Firstly, the Cartesian coordinates of two consecutive gaze points are
used to calculate the Euclidean distance between them. If the coordinates
are (x1, y1) and (x2, y2), then the straight-line or Euclidean distance
between the points d, i.e., the length of the vector, is computed using the
Pythagorean theorem:

d =
√
(x2 − x1)2 + (y2 − y1)2 . (3.1)

After calculating the Euclidean distance, the time difference between
consecutive points is determined by subtracting the timestamp of the
previous point from that of the current point. With this information, we
can compute the instantaneous velocities between consecutive gaze points
using the basic distance divided by the time equation. This calculation is
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derived from the concepts of differentiation in calculus and approximates
the derivative of the position function concerning time.

Once we have the point-to-point velocities for all gaze points, a
threshold is applied to classify the data as fixations (low velocities) or
saccades (high velocities). A fixed threshold may not provide optimal
results, as it can impact the detection capability of the algorithm. To
address this issue, researchers have explored dynamic velocity thresholds,
as described in Section 2.3.1.

In the present study, our approach will incorporate a novel algorithm
called the Fixation-Saccade Transition Ratio Algorithm (FSTR) algorithm,
which will be presented and thoroughly described in the following
chapter. This algorithm aims to improve the mathematical modeling of
eye movements by refining the velocity-based classification of fixations
and saccades, enhancing the overall detection capability. By highlighting
the mathematical principles behind the IVT algorithm, we emphasize the
role of mathematics in understanding and analyzing eye movement data
to detect ADHD.

Fixation-Saccade Transition Ratio Algorithm for IVT Optimization

The FSTR algorithm is an advanced, adaptive, and versatile tool for me-
ticulously analyzing eye-tracking data, specifically tailored for identifying
the optimal velocity threshold necessary to differentiate between fixations
and saccades. By testing a range of thresholds, the FSTR algorithm adapts
its sensitivity to individual differences in eye movement patterns, ensuring
a comprehensive understanding of the unique ways in which participants
process visual information.

In the initial stage of the analysis, the FSTR algorithm detects fixations
and saccades by employing a specific velocity threshold. It is based on
the assumption that saccades and fixations can be distinguished by their
respective velocities, with saccades having a higher velocity than fixations.
Furthermore, it assumes that both saccades and fixations last longer than
the sampling frequency of the data, implying that a saccadic or fixational
data point is likely to follow from one in the same category.

This assumption directly addresses the challenge identified by Olsen
[78], where traditional algorithms often misclassify long fixations or
saccades that are interrupted by very short saccades or fixations. By
making this assumption, the FSTR algorithm aims to provide a more robust
and accurate identification and differentiation of these eye movements.
The assumption sets the stage for the calculation of the FSTR value, as it
establishes the foundation for the calculation of empirical and theoretical
(independent) probabilities of transitions between fixations and saccades.

The FSTR value is a specialized metric that quantifies the proportion of
observed transitions, empirical, between saccades and fixations compared
to the expected number of transitions if the occurrence of one does not
affect the probability of the other, independent. The FSTR value is
calculated using the following formula:
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FSTR =
Pemp(S → F)
Pind(S → F)

. (3.2)

Here, Pemp(S → F) represents the empirical probability of observing a
transition from a saccade (S) to a fixation (F) from the measured/collected
data. Conversely, Pind(S → F) represents the theoretical probability of
observing the same set of points if the occurrence of one does not affect
the probability of the other, independent probability. Mathematically,
Pind(S → F) can be calculated as:

Pind(S → F) = Pind(F → S) = Pemp(S)Pemp(F) . (3.3)

In this equation, Pemp(S) and Pemp(F) represent the probabilities of
empirically observing a single point as a saccade and fixation, respectively.

To calculate the FSTR value, Equation 3.2, the algorithm following
the detection of fixations and saccades, generates a binary vector wherein
fixations are coded as 0 and saccades as 1. This binary vector is crucial for
creating a 2x2 transition frequency matrix contingent on the chosen velocity
threshold. This matrix effectively illustrates the frequency of transitions
between fixations and saccades throughout the eye-tracking task, serving
as a valuable resource for understanding the temporal dynamics of visual
attention.

Each element of the 2x2 transition matrix represents the frequency of a
specific transition:

• Element (1,1) represents the frequency of transitions from a fixation
to another fixation (F → F).

• Element (1,2) represents the frequency of transitions from a fixation
to a saccade (F → S).

• Element (2,1) represents the frequency of transitions from a saccade
to a fixation (S → F).

• Element (2,2) represents the frequency of transitions from a saccade
to another saccade (S → S).

The elements of the matrix are used to calculate the empirical and
independent probabilities required for the FSTR formula, Equation 3.2. To
calculate the probabilities, the following steps are performed:

1. Divide each element of the matrix by the sum of all elements to obtain
the empirical transition probabilities:

Pemp(F → F), Pemp(F → S), Pemp(S → F), and Pemp(S → S).

2. Calculate the marginal probabilities of observing a fixation (Pemp(F))
and a saccade (Pemp(S)):

Pemp(F) = Pemp(F → F) + Pemp(F → S)

Pemp(S) = Pemp(S → F) + Pemp(S → S)
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The FSTR value, therefore, provides insight into how well the chosen
threshold can separate saccades and fixations based on their velocities.
A lower FSTR value (closer to 0) indicates better separation between
fixations and saccades, as fewer transitions between the two states mean
that the algorithm is more successful in identifying and maintaining the
two different states without frequently switching between them. A higher
FSTR value, on the other hand, suggests a poor separation between
fixations and saccades, implying that the chosen threshold is not effective
in differentiating the two types of eye movements. This metric provides
valuable information on the effectiveness of the chosen threshold in
delineating eye movement patterns.

In addition to the FSTR value, the algorithm also calculates the log p-
value using Fisher’s exact test to assess the statistical significance of the
association between fixations and saccades for each velocity threshold.
Fisher’s exact test is applied to the 2x2 transition matrix and computes
the probability of observing the given matrix (or a more extreme one)
under the null hypothesis, which assumes that the row and column
variables (fixations and saccades) are independent. A lower log p-value
indicates stronger evidence against the null hypothesis, suggesting that the
observed association between fixations and saccades is not due to random
chance and that the given velocity threshold effectively separates these eye
movements.

This information can be used in conjunction with the FSTR value to help
determine the optimal threshold that best differentiates between fixations
and saccades based on their velocities.The identification of this optimal
threshold enables for gaining deeper insights into the complex processes
underlying visual information processing and environmental navigation
through eye movements.

In summary, the FSTR algorithm is a cutting-edge analytical tool for
the in-depth examination of eye-tracking data, designed to uncover the op-
timal threshold for separating fixations and saccades. Its adaptive nature
accommodates individual differences in eye movement patterns, ensuring
a comprehensive understanding of visual attention and information pro-
cessing. By calculating the FSTR value and log p-value, the algorithm
provides a robust evaluation of the quality of separation between these eye
movements.

Ultimately, by determining the participant-specific threshold that offer
the most accurate grouping of fixations and saccades, the FSTR algorithm
paves the way for a more precise analysis of the participants’ visual
perception and attention. This adaptability and precision are particularly
beneficial for studies focusing on attentional disorders, such as ADHD.

Fixation-Saccade Transition Ratio Algorithm and Derived Metrics

The FSTR Algorithm allows us to derive several valuable metrics that can
be used to examine the differences in eye movement patterns between
ADHD and non-ADHD participants. In the following sections, we will
discuss three specific metrics derived from the FSTR algorithm, which
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include:

1. Minimum FSTR Value: A metric that highlights the differences in eye
movement patterns between ADHD and non-ADHD participants by
examining the minimum FSTR values.

2. Cumulative Sum FSTR Value: A metric that aggregates the FSTR
values across the tested threshold range, magnifying the distinction
between ADHD and non-ADHD participants.

3. Saccade Frequency and Fixation Duration Metrics: Metrics that use
the velocity threshold corresponding to the minimum FSTR value
to calculate the saccade frequency and fixation duration for each
participant.

Each of these metrics will be explored in detail in the subsequent
sections, focusing on their potential to differentiate between ADHD and
non-ADHD participants based on their eye movement patterns.

Minimum FSTR Value

Capitalizing on the FSTR algorithm’s strengths, we can explore an
interesting hypothesis within the context of attentional disorders, such as
ADHD. We propose that participants with ADHD may exhibit distinct
eye movement patterns, characterized by more frequent and shorter
interfering saccades. These unique patterns could make it challenging
to differentiate between fixations and saccades, potentially leading to
higher minimum FSTR values for participants with ADHD compared to
non-ADHD participants. The rationale behind this hypothesis is that
the algorithm may struggle to find an optimal threshold that effectively
separates the eye movements in ADHD participants due to their atypical
patterns.

To evaluate the validity of this hypothesis, we can apply the FSTR
algorithm to both ADHD and non-ADHD groups to determine if there
is a significant difference in the minimum FSTR values between the two
populations. If our hypothesis is supported, this finding would suggest
that the FSTR algorithm captures a distinctive aspect of eye movement
patterns in participants with ADHD. This information could contribute to
more accurate assessments of visual attention and information processing
and potentially enhance the Benchmark model’s performance, as discussed
in Section 3.3.

Cumulative Sum FSTR Value

Building upon the hypothesis that participants with ADHD may exhibit
higher minimum FSTR values, examining the cumulative sum of FSTR
values across the tested threshold range could further emphasize this
difference, making it even more evident.

The cumulative sum represents the aggregated FSTR values through-
out the tested threshold range, which could help accentuate the distinction
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between ADHD and non-ADHD participants. Incorporating the cumulat-
ive sum analysis within the FSTR algorithm could offer an additional layer
of precision when differentiating between ADHD and non-ADHD parti-
cipants.

By uncovering unique aspects of attentional dynamics in the ADHD
population, this combined approach could lead to a more accurate
and comprehensive understanding of visual attention and information
processing in participants with ADHD. Ultimately, this could enhance the
performance of the Benchmark model, as discussed in Section 3.3.

Utilizing Velocity Threshold for Saccade Frequency and Fixation Dura-
tion Metrics

After obtaining the velocity threshold corresponding to the minimum FSTR
value from the FSTR Algorithm, we can effectively differentiate between
fixations and saccades for each participant. By utilizing this threshold,
we will calculate the saccade frequency and fixation duration metrics, as
introduced in Section 2.6. These metrics will then be assessed for their
potential to differentiate between ADHD and non-ADHD participants
based on the eye-tracking data, potentially providing valuable insights into
the attentional differences between these groups.

3.4.2 Assumption II: Lévy Flight Model

In this section, we will investigate the Lévy flight model’s ability to char-
acterize the eye-tracking data by focusing on the power-law distribution,
a key aspect of the model, as already described in the Section 2.2.1. To do
so, we will evaluate the distribution of the velocities for each participant,
following a similar process to the one used in the Identification by Velocity
Threshold (IVT) section.

Initially, we prepare the data by loading the eye-tracking data for
all participants. The x and y positions, along with the time values,
are extracted from the data, and the velocities for each participant are
calculated using the same method as in the IVT Section 3.4.1. These results
are then stored in appropriate data structures.

Next, we analyze the distribution of velocities by creating histograms
for each participant. To better visualize and fit a power-law model to the
velocity histograms, we transform the data to a log-log scale and calculate
the log-bin centers. This step allows for a clearer representation of the data
distribution when dealing with heavy tails and a wide range of values.

Following the plotting of histograms, we fit a linear regression model
to the log-transformed histograms, estimate the scaling exponent of the
power-law distribution, and calculate the coefficients of determination (R-
squared values) for each participant. These results can help us assess the
goodness of fit for the Lévy flight model and provide insights into the eye-
tracking patterns of the participants.

Lévy flights are characterized by power-law scaling, with the tails of
the distribution adhering to a power-law, P(x) ∝ |x|−α, with 1 < α ≤ 3,
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as described in Section 2.2.1. The exact value of the exponent α varies
depending on the specific system being modeled. In our analysis, we
estimate the scaling exponent α for each participant to assess the goodness
of fit for the Lévy flight model and provide insights into their eye-tracking
patterns.

As mentioned in Section 2.2.1, literature on expected values of the
scaling exponent for visual scanpaths is limited, apart from the study by
Credidio H. et. al. [40] which reported a value for the scaling exponent
close to 2.9, while the general exponent value on foraging models is
approximately 2.

In this study, we would expect that the exponent values of all the
participants in general should be within that range. We hypothesize that
participants with ADHD may have smaller scaling exponents compared to
those without ADHD, as the Lévy flights with smaller exponents exhibit
more diffusive behavior and longer steps. This is based on the assumption
that individuals with ADHD may exhibit more frequent and longer gaze
shifts due to their difficulty in maintaining attention. Additionally, since
Lévy flights consider each step, regardless of its size, to occur in the same
unit of time, these longer gaze shifts would correspond to larger velocities.

To test this hypothesis, we will compare the scaling exponents between
the two groups and explore any potential differences in their eye-tracking
patterns. The scaling exponent will be used as a metric in the benchmark
model with the aim of improving the classification accuracy between
participants with ADHD and those without ADHD. By incorporating this
metric, we hope to develop a more accurate and robust classification model
that can better distinguish individuals with ADHD from those without the
condition.
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Chapter 4

Results

In this Chapter, as already described in the Methodology Procedure Section
3.2, we will evaluate the impact of incorporating eye-tracking metrics into
the classification model for ADHD diagnosis on children. This will be
achieved in two steps.

In the first step, we will create a classification model solely dependent
on non eye-tracking related metrics, 3.3, i.e. the age of the children, the
specific metrics from their WISC test, and their test performance. The
accuracy of this model will serve as the benchmark for our analysis.

In the second step, we will revise our classification model with eye-
tracking metrics this time, and evaluate if its accuracy has been increased.
The eye-tracking metrics will be based on both assumptions regarding the
visual scanpath, i.e. that it follows either a "feed and fly" model or a Lévy
flight pattern.

Throughout the following sections, we will first present the results
of the classification model that relies solely on non-eye-tracking related
metrics, providing a benchmark for our analysis. Next, we will revise our
classification model by incorporating eye-tracking metrics and evaluate
whether its accuracy has been increased. Finally, we will thoroughly
analyze and discuss the results.

4.1 Benchmark Model

As presented in the Section 3.3.1, the selected parameters for the Bench-
mark model are the following:

• Age

• Full Scale IQ (IQ)

• Arithmetic and Digit Span (FD)

• Test Performance (Perf.)

The cross validation results are presented in the Table 4.1, and in both
methods the Logistic Regression has the highest accuracy.
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Table 4.1: SKF and LOOC cross validation results.

Method Logistic SVC Random K-Neighbors Decision
Regression Forest Tree

SKF (k = 5) 0.720 0.540 0.680 0.540 0.611
LOOC 0.720 0.540 0.720 0.540 0.596

4.1.1 Random State Analysis and Model Training

We would split the data into a training set and a testing set. We will use
a ratio of 4:1, aligning with the 5-fold cross validation from the previous
paragraph. An important parameter in the train_test_split method, is the
random state. In Scikit-learn, the random state hyperparameter takes one
of the following values:

• None: This is the default value. This allows the function to use
the global random state instance from np.random. Calling the
same function multiple times with random_state=None, will produce
different results across different executions.

• int: We can use an integer for random_state. Any positive integer
including 0. When this option is used, the function will produce the
same results across different executions. The results are only changed
if the integer value is changed. [129]

It is expected that for different random states, the accuracy of the
model will vary slightly. However, as presented in Figure 4.1, our model’s
accuracy variation is large, with mean value at 0.7 and a standard deviation
of 0.14. The main reason is that the dataset is very small, only 50 points,
and with a 4:1 split, the 40 datapoints is not enough to train the model

Figure 4.1: Model Accuracy for various random state values.
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accurately. Therefore, the model is not stable enough to proceed any
further.

4.1.2 An Alternative Approach – A Set of Models

Our new approach will be the following. We will use the same concept with
the Leave-One-Out Cross-Validation, to create a model, using 49 datapoints
as train dataset, and 1 datapoint for testing. We will repeat this process 50
times, to cover all possible combinations. Therefore, we will have a set of
50 trained models, Figure 4.2, which they will differentiate from each other
only on a single datapoint in their training dataset.

Figure 4.2: Alternative Approach – A Set of Models.

In our approach, we make the following critical assumption:
Critical Assumption: We assume that the average accuracy of the set of

the 50 models is representative of the individual accuracy of any of the 50
models.

This assumption is key to understanding how the average accuracy of
the set of models can be used to predict the status (ADHD or not) of a new
child in our dataset.

Of course, similarly to the LOOCV, with this training approach we
cannot achieve the bias-variance tradeoff in our testing process. Each
individual model will have low bias, and high variance, towards the testing
data. However, as a collective set of all 50 models, we will overcome that
problem, and get a good estimation of the prediction accuracy.

Our steps forward will be first to perform a hyperparameter tuning to
optimize our model settings and then to evaluate the set of the 50 models
with a confusion matrix.

The result from the GridSearchCV on the train data, for the LeaveO-
neOut() method, is presented in Table 4.2. We will apply the above para-
meter settings, to all 50 models.

4.1.3 Model Accuracy

Now we can run all 50 models, in sequence, and generate a collective
confusion matrix, Figure 4.3. Out of the set of the 50 models, 16 of them
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Table 4.2: Tuned Hyperparameters and Accuracy.

Hyperparameter C Penalty Solver
Value 10.0 l2 newton-cg

Accuracy 0.755

predicted that an individual belongs to the non-ADHD group (“0”) and
they were correct, and 22 predicted that an individual belongs to the ADHD
group (“1”) and they were also correct. However, six models predicted that
an individual belongs to the ADHD group while it belonged to the non-
ADHD group and another six models predicted the individual belongs to
the non-ADHD group while it belonged to the ADHD group.

Based on the results presented in the collective confusion matrix, Figure
4.3, our accuracy will be:

Accuracy =
38
50

= 0.76 (4.1)

This accuracy represents the accuracy of the set of the 50 regression
models, which based on our assumption from Section 4.1.2, will also be
the individual accuracy of any of these 50 models. Therefore, if we need to
predict the status of any new entry, using any of these 50 models we will
have a 76% probability to predict it accurately.

Based on the collective confusion matrix, we can also calculate preci-
sion, recall, and specificity [130] to further evaluate the performance of the
set of 50 models. Precision measures the proportion of true positive predic-
tions among all positive predictions made by the model. In our case, preci-
sion is equal to 0.79, which means that out of all the children predicted to
have ADHD by the model, 79% actually had ADHD, while the remaining
21% were falsely identified as having ADHD.

Figure 4.3: Collective Confusion Matrix for the set of 50 Models.
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Figure 4.4: Model1/50 accuracy moving average.

Recall, on the other hand, measures the proportion of true positive
predictions among all actual positive instances in the dataset. Our recall is
also equal to 0.79, indicating that out of all the children in the dataset who
actually had ADHD, the model correctly identified 79% of them, while the
remaining 21% were falsely identified as not having ADHD.

Finally, specificity is the proportion of true negative predictions among
all negative predictions made by the model. Our specificity is equal to 0.73,
meaning that out of all the children predicted by the model to not have
ADHD, 73% of them actually did not have ADHD, while the remaining
27% were falsely identified as having ADHD.

These metrics suggest that the logistic regression models have a good
ability to identify children with ADHD, but may also falsely identify some
children as having ADHD when they do not. Therefore, additional analysis
may be needed to determine the root causes of these false predictions and
how to improve the models further.

We can now re-check the accuracy of one out of the 50 models,
Model1/50, by running it through a large range of random states and
calculate its moving average. As shown in Figure 4.4, the average accuracy
of the model stabilizes at the same level as calculated from the collective
confusion matrix.

The Logistic regression equation of the Model1/50 is the following:

logit(p) = 17.3079 − 0.6343 × Age − 0.0349 × IQ
−0.2417 × FD − 3.0135 × Perf.

(4.2)

Of course, the above coefficients will slightly vary between the 50
models, but this variation is marginal because, as it has already been
mentioned, the difference between the 50 models is only one datapoint in
their training set.
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Figure 4.5: Logistic Regression Curve.

Based on the coefficients of each parameter, it is obvious that the main
impact on the prediction of the status of a individual (ADHD or not)
derives from its average performance.

On the other hand, between the Full-Scale IQ and the Arithmetic and
Digit Span (FD), it is obvious that the latter has the higher impact which
aligns with what we described in the Section 3.3.1.

Finally, the age appears also to have some impact on the individual’s
status.

We can visualize the correlation of ADHD and average task perform-
ance, where the other three parameters, Age, Full-Scale IQ (IQ) and Arith-
metic and Digit Span (FD), are kept constant, Figure 4.5.

In this visualization we can see the performance level/ threshold, at
which an individual of average age and IQ, will shift from the non-ADHD
to the ADHD group, and vice versa. The curve is slightly steeper than a
typical sigmoid curve due to the value of the hyperparameter C which is
equal to 10, Table 4.2, while in a typical sigmoid curve it is equal to 1. It
is clear, that the task performance can be a good indicator of ADHD for
children.

Now that we have set up our Benchmark Model, we can proceed to
the evaluation of the eye-tracking data, in order to generate those metrics
that could potentially increase the accuracy of our model. The subsequent
analysis and discussion of these metrics will inform us whether they are
useful in differentiating between ADHD and non-ADHD populations, and
if so, they can be incorporated into our model for improved performance.
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4.2 Eye Tracking Data

In this section, we will conduct a Data Pre-Analysis to evaluate the quality
and reliability of the eye-tracking dataset before diving into the investiga-
tion of the two assumptions and their derived metrics. Our analysis will
include visualizations such as mean velocity for each participant, stand-
ard deviation, kurtosis, and skewness. These visualizations will help us
identify any potential issues with the dataset and provide insights into the
overall distribution of the eye-tracking data.

One critical issue we need to highlight is the missing ’Y’ coordinate
data for two participants, one with ADHD and one without. The absence
of this data significantly limits our ability to conduct a complete and
comprehensive analysis for these individuals, as both the pre-analysis
and the main analysis are based on velocity, which inherently requires
both ’X’ and ’Y’ coordinates for calculation. This missing data might
introduce some bias in our results, affecting the overall generalizability of
our findings.

In addition to the visualizations, we also need to address a concern

Figure 4.6: Mean Velocity for all participants.

Figure 4.7: Standard Deviation of Velocity for all participants.
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Figure 4.8: Skewness of Velocity for all participants.

Figure 4.9: Kurtosis of Velocity for all participants.

regarding the consistency of the experimental setup reported in the dataset
paper [14] and subsequent publications [100]. More specifically, there are
discrepancies in the information provided about the distance to the monitor
and the size of the monitor used in the experiments. It is known that eye-
tracker data is very sensitive and should be collected with care and such
inconsistencies may introduce potential biases impacting the validity of the
derived metrics and, consequently, our results.

To account for these concerns, we will carefully examine the available
information and, if necessary, consider the potential impact of these in-
consistencies on our analysis. By addressing these concerns in the Data
Pre-Analysis section, we can ensure that our subsequent investigation of
the two assumptions and their derived metrics is based on a solid founda-
tion, ultimately contributing to a more accurate and reliable understanding
of the relationship between eye movement characteristics and ADHD dia-
gnosis.
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4.3 Feed and Fly Model: Eye-tracking Metrics

In this section, we present and discuss the results obtained from the
analysis of eye-tracking data using the FSTR Algorithm, as described in
Section 3.4.1. Our analysis focuses on four key metrics: the minimum FSTR
value, the Cumulative Sum FSTR value, the saccade frequency, and the
fixation duration, as outlined in Section 3.4.1.

Through our analysis, we found no statistically significant differences
between the ADHD and non-ADHD groups for these metrics, suggesting
that they may not be sufficient to differentiate between individuals with
and without ADHD based on their eye-tracking data.

4.3.1 Minimum FSTR Value and Cumulative Sum FSTR Value

The FSTR value, derived directly from the optimization algorithm, is
visually represented in the graph below, Figure 4.10. As previously
mentioned, the lower FSTR value indicates better separation between
fixations and saccades, suggesting that the algorithm has successfully
identified distinct groups of these eye movements with minimal overlap
or ambiguity. In the context of our hypothesis discussed in Section 3.4.1,
we expect the FSTR value to differentiate between ADHD and non-ADHD
groups.

Next, we explore the validity of our hypothesis by comparing the
minimum FSTR values between the two populations. If supported, this
finding would suggest that the FSTR algorithm captures a distinctive
aspect of eye movement patterns in individuals with ADHD, which could
be used as an additional parameter to improve our Benchmark model
outlined in Section 3.3.

Similarly, we do also for the Cumulative Sum FSTR value, which
according to our hypothesis would magnify the difference betweeen the
groups even further.

Before performing statistical tests, visual inspection of the data is often

Figure 4.10: FSTR vs. Velocity Threshold for all participants.
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Figure 4.11: FSTR vs. Velocity Threshold for ADHD participants.

Figure 4.12: FSTR vs. Velocity Threshold for non-ADHD participants.

a useful first step in analyzing eye-tracking data. Upon examining the
graphs for the two groups in Figures 4.11 and 4.12, it becomes evident that
there is no visible difference between the shapes of the curves or the lower
minimum FSTR values for both ADHD and non-ADHD participants. In
both graphs, there are FSTR curves with more erratic behavior, and at first
glance, there is no actual differentiation between the curves corresponding
to the ADHD and non-ADHD groups.

To further clarify this visually, a summary of the corresponding
minimum FSTR values is presented in Figure 4.13.

The same result we have also for the Cumulative Sum FSTR, as
presented in the Figure 4.14, and more explicitely in the Figure 4.15

Next we proceed to investigate whether there are significant differences
between the two groups, we performed independent samples t-tests on the
’Minimum FSTR Value’ and ’Cumulative Sum FSTR Value’ scores.

The t-test is a commonly used statistical test that allows us to determine
if there is a significant difference between the means of two groups. The
t-statistic measures the size of the difference between the two groups
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Figure 4.13: Minimum FSTR value for all participants.

Figure 4.14: Cumulative Sum FSTR vs. Velocity Threshold for all
participants.

Figure 4.15: Cumulative Sum FSTR value for all participants.

relative to the variability in the sample data, and the p-value represents the
probability of obtaining a result as extreme as the one observed, assuming
that there is no real difference between the two groups.

Based on the results of the t-tests, there was no significant difference
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between the means of the ’Minimum FSTR Value’ and ’Cumulative Sum
FSTR Value’ scores for participants with ADHD and those without ADHD.
The t-tests yielded t-statistics of 1.31 (p-value = 0.1967) for the ’Minimum
FSTR Value’ and 1.11 (p-value = 0.2720) for the ’Cumulative Sum FSTR
Value’.

These results suggest that the FSTR algorithm was equally effective in
identifying distinct groups of fixations and saccades with minimal overlap
or ambiguity, regardless of the presence of ADHD. However, the absence
of significant differences between the two groups does not necessarily
mean that there are no differences between their eye movement patterns.
Additional analyses using different metrics or measures may be necessary
to more accurately differentiate between participants with and without
ADHD based on their eye-tracking data.

Overall, the results of the t-tests suggest that the ’Min FSTR Value’ and
’Cumulative FSTR Value’ may not be strong enough metrics to differentiate
between participants with and without ADHD based on their eye-tracking
data. However, it is important to consider that these metrics are only one
aspect of the eye-tracking data and may not be representative of the full
range of differences in eye movement patterns between the two groups.

For that reason we will incorporate these two metrics on our Benchmark
model to see if the benchmark accuracy will improve.

4.3.2 Saccade Frequency and Fixation Duration

In this section, we discuss the calculation of saccade frequency and mean
fixation duration for each participant, based on the participant-specific
threshold obtained using the FSTR algorithm. The participant-specific
threshold, 4.16 corresponds to the minimum FSTR value and yields the
most accurate separation of fixations and saccades for each individual’s
data. These metrics provide additional insights into the eye movement
patterns of individuals with and without ADHD.

It would have been beneficial to compare the thresholds calculated us-
ing our FSTR algorithm with the commonly accepted fixed thresholds sug-
gested by literature, typically at 30°/s, as discussed in Section 2.5. How-

Figure 4.16: Velocity Threshold for all participants
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ever, to convert the velocity from degrees/second to pixels/second, one
needs to know the participant’s distance from the monitor and the monitor
size. Unfortunately, given the inconsistencies in the provided information
about the experimental setup, particularly the distance from the monitor
and the size of the monitor, we are unable to perform this comparison.
This missed comparison opportunity may have offered additional insights
and contributed to a more comprehensive understanding of our findings.
Despite this, the results obtained using the FSTR algorithm still provide
valuable insights into the differentiating eye movement patterns between
the ADHD and non-ADHD groups.

Before we dive into the metrics, the scatter plots in Figure 4.17 show
the eye movement data for selected ADHD and non-ADHD participants
during the first 1-second duration of the eye-tracking task. Fixations and
saccades are differentiated by color, providing a visual representation of
the eye movement patterns for each participant.

Saccade frequency, as already presented in Section 2.6 is the number

Figure 4.17: Scatter plots of eye movement data, for 1sec duration, for
selected ADHD and non-ADHD participants, with fixations and saccades
differentiated by color
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Figure 4.18: Saccade Frequency for all participants.

Figure 4.19: Fixation Duration for all participants.

of saccades per unit of time. To calculate this metric for each participant,
we first identified the saccades using the participant-specific threshold
determined by the FSTR algorithm. We then counted the number of
saccades throughtout the complete test period and divided it by the
duration of that period, 4.18. The resulting saccade frequency provides
an indication of how often a participant’s eyes make rapid movements.

Mean fixation duration is another important metric for understanding
eye movement patterns, 2.6. To calculate this metric for each participant,
we identified the fixations using the participant-specific threshold determ-
ined by the FSTR algorithm. We then calculated the duration of each fix-
ation and computed the average duration across all fixations for that par-
ticipant 4.19. This mean fixation duration offers insights into how long,
on average, a participant’s eyes remain relatively stable during the eye-
tracking task.

However, it should be noted that Participant 10, who has been
diagnosed with ADHD, was excluded from the mean fixation duration
calculation. This participant’s data exhibited an extraordinarily high
fixation duration that stood out as an extreme outlier, significantly
diverging from the rest of the dataset. This anomaly was likely due to a
computational error rather than representing a realistic fixation duration.
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Including this data point would skew the overall results, potentially
creating a misleading representation of the mean fixation duration for
the ADHD group. Consequently, we decided to exclude this participant
from this specific analysis to maintain the accuracy and reliability of our
findings.

Visually, from the graphs, we do not observe any major difference
between the participants with and without ADHD in terms of saccade
frequency and mean fixation duration. To further investigate whether
there are significant differences between the two groups, we performed
independent samples t-tests for both metrics. The t-test results for both
Saccade Frequency and Mean Fixation Duration are as follows: Saccade
Frequency: t-statistic = 1.58, p-value = 0.1214; Mean Fixation Duration:
t-statistic = -1.23, p-value = 0.2255. These results indicate that there is
no statistically significant difference between the ADHD and non-ADHD
groups in terms of both metrics. This finding suggests that these metrics
may not be sufficient to differentiate between individuals with and without
ADHD based on their eye-tracking data.

However, similarly with the minimum FSTR value and the Cumulative
Sum FSTR value, we will also incorporate these two metrics on our
Benchmark model to see if the benchmark accuracy will improve.

4.3.3 Incorporate the Metrics into the Benchmark Model

Now that we have established the four key metrics: the minimum FSTR
value, the Cumulative Sum FSTR value, the saccade frequency, and the
fixation duration, we will incorporate them into our Benchmark model, to
evaluate if its accuracy will be improved.

As it is presented in the Figures 4.20, 4.21, in none of the cases any of
the four metrics contributed to an improvement of the benchmark model.
On the contrary, by incorporating these metrics, the accuracy of the model
dropped by 4pp when using the Cumulative Sum FSTR value, and by 2pp
for the other 3 metrics.

Figure 4.20: Confusion Matrix and Moving Average for the Benchmark
Model inclunding either of the 3 metrics (Minimum FSTR Value, Saccade
Frequency, Fixation Duration).
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Figure 4.21: Confusion Matrix and Moving Average for the Benchmark
Model inclunding the Cumulative Sum FSTR Value.

4.4 Lévy Flight Model: Eye-tracking Metrics

In this section, we present the findings of our investigation into the
Lévy flight model as a method for characterizing eye-tracking data, as
detailed in the Methodology Section 3.4.2. Our analysis concentrates
on the distribution of velocities for individual participants, the scaling
exponent, and the model’s goodness of fit, with the goal of identifying
potential differences in eye-tracking patterns between ADHD and non-
ADHD participants.

4.4.1 Lévy Exponent

Following the procedure outlined in the methodology section, we pro-
cessed the eye-tracking data, computed velocities, and generated histo-
grams for each participant. In Figure 4.22 we present a representative ex-
ample of 4 participants (2 with ADHD and 2 without ADHD). We then
fitted a linear regression model to the log-transformed histograms and es-
timated the scaling exponent of the power-law distribution. As part of the
linear regression model fitting, we calculated the R-squared values (coef-
ficients of determination) for each participant, offering insights into the
goodness of fit for the Lévy flight model and the participants’ eye-tracking
patterns.

To identify the most representative power-law region within the
velocity histograms, we employed a factor to define the region’s upper
limit. This factor is multiplied by the location of the mode (lmode) in the
histogram to establish the range where power-law behavior is observed.
We iteratively tested various factors, computed the R-squared values for
each participant using the linear regression model, and selected the factor
that yielded the highest average R-squared value across all participants,
as illustrated in Figure 4.23. By opting for the factor that results in the
maximum average R-squared value, we aim to capture the optimal power-
law behavior in the data for the majority of participants.

Based on the selected factor, the corresponding power-law region is
illustrated in Figure 4.24 for the sample of the 4 participants (2 with ADHD
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Figure 4.22: Velocity Histograms.

Figure 4.23: R-squared values per participant for the optimal factor.
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Figure 4.24: Selected Power-Law Region and Fitted Linear Regression
Model.

and 2 without ADHD). In this region, as previously mentioned, we fitted a
linear regression model (red line) and estimated the scaling exponent of the
power-law distribution, as shown in Figure 4.25, and for all the participants
in the Figure 4.26.

Average Exponent Values
The average exponent values for the ADHD and non-ADHD groups

were calculated based on the Lévy Exponents obtained from the linear
regression models. The average exponent values are as follows:

• Mean Value of the exponents of the ADHD group: -1.38

• Mean Value of the exponents of the non-ADHD group: -1.43

These average values indicate that the ADHD group has a slightly
lower exponent value than the non-ADHD group, which aligns with
our hypothesis that participants with ADHD may have smaller scaling
exponents compared to those without ADHD.
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Figure 4.25: Fitted Linear Regression Model, R-squared, Lévy Exponent.

Figure 4.26: Lévy Exponent for all participants.

Comparison to Expected Exponent Values
In the Mathematical Modelling Section 2.2.1 and Methodology Section

3.4.2, we discussed the limited literature on expected exponent values for
visual scanpaths. The study by Credidio H. et. al. [40] reported a scaling
exponent value close to 2.9, while the general exponent value for foraging
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models is approximately 2.
The average exponent values obtained in our study (-1.38 for ADHD

and -1.43 for non-ADHD) fall outside the expected range from the
literature. This discrepancy may be due to the specific characteristics of our
sample or the eye-tracking data. Nevertheless, it is essential to take these
differences into account when interpreting the results and considering their
implications for the classification of participants with and without ADHD.

T-Test Comparison between the two Groups
To further investigate whether there are significant differences between

the two groups, we performed an independent samples t-test. The t-
test result is as follows: t-stat = 0.459, p-value = 0.648. This result
indicates that there is no statistically significant difference between the
ADHD and non-ADHD groups in terms of Lévy Exponent metric. This
finding suggests that this metric alone may not be sufficient to differentiate
between individuals with and without ADHD based on their eye-tracking
data.

Incorporating the Lévy Exponent metric into our benchmark model
will provide additional insights into whether this metric can contribute
to improving the classification accuracy between individuals with ADHD
and those without the condition. By considering the average exponent
values and comparing them to the expected values from the literature,
we can better understand the eye-tracking patterns of our participants and
potentially uncover new insights into the differences between individuals
with and without ADHD.

However, the absence of significant differences between the two groups
does not necessarily mean that there are no differences between their
eye movement patterns. Additional analyses may be necessary to more
accurately differentiate between participants with and without ADHD
based on their eye-tracking data. For that reason we will incorporate this
metric on our Benchmark model to see if the benchmark accuracy will
improve.

4.4.2 Incorporate the Metric into the Benchmark Model

Now that we have established the Lévy Exponent metric, we will
incorporate it into our Benchmark model, to evaluate if its accuracy will
be improved.

As it is presented in the Figure 4.27, the metric did not contribute to
an improvement of the benchmark model. Unlike the metrics of the Feed
and Fly Model, 4.3, which worsened the Benchmark Model’s accuracy,
the incorporation of the Lévy Exponent metric maintained the model’s
accuracy, which could be promising for its future usability.

However, our analysis so far has been conducted on the entire eye-
tracking dataset for each participant, without considering the specific
events during the memory test. This motivates us to perform an event-
based analysis, which might uncover more nuanced differences in the eye
movement patterns of ADHD and non-ADHD participants.
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Figure 4.27: Confusion Matrix and Moving Average for the Benchmark
Model including the Lévy Exponent.

4.4.3 An Event-Base Analysis

The initial analysis of the Lévy Exponents was conducted using the entire
eye-tracking data for each participant, without separating the data based
on specific events.

While this approach can offer valuable insights into the overall eye
movement patterns of ADHD and non-ADHD participants, it may be
interesting to also explore potential differences in eye-tracking patterns
during specific events. By analyzing the data on an event-by-event basis,
we might be able to uncover more nuanced differences in eye movement
patterns between the two groups during various stages of the memory test,
such as when focusing on specific memoranda or distractor, as already
described in Table 3.1. This additional analysis could potentially provide
further insights into the unique eye-tracking characteristics of individuals
with and without ADHD, and contribute to a better understanding of the
underlying differences between the two groups.

Building upon this idea, we have now performed an event-based
analysis of the Lévy Exponents to explore whether analyzing the eye-
tracking data on an event-by-event basis would reveal more significant
differences between the ADHD and non-ADHD groups. The results of this
analysis are presented in Table 4.3.

The event-based analysis reveals statistically significant differences in
the Lévy Exponents between the ADHD and non-ADHD groups for Events
1 and 4 (p-values < 0.05). For the other events, the differences are not
statistically significant (p-values > 0.05).

These findings suggest that the eye movement patterns of individu-
als with and without ADHD may differ more significantly during cer-
tain stages of the memory test. Specifically, the analysis indicates that the
ADHD and non-ADHD groups exhibit different eye-tracking characterist-
ics when viewing one-dot memoranda (Event 1) and empty-grid distractor
(Event 4). This insight can be valuable for better understanding the eye
movement patterns of individuals with and without ADHD during the
memory test and could potentially improve the classification accuracy of
the models by incorporating the event-based Lévy Exponents.
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Table 4.3: The t-test Results for the Lévy Exponents of the two Groups
(ADHD and non-ADHD) per Event

t-statistic p-value

Event 1 2.490 0.016
Event 2 1.748 0.087
Event 3 1.591 0.118
Event 4 2.046 0.046
Event 5 1.111 0.272
Event 6 0.666 0.509
Event 7 1.212 0.232
Event 8 1.564 0.125
Event 9 0.780 0.439
Event 10 0.129 0.898

For the purposes of our study we will focus on the Event 1 case, which
has the lowest p-value. In terms of data size, the Event 1 case corresponds
approximately to a 23% of the complete dataset, ranging from 20% - 25%
depending on the participant.

Building on this, we incorporated the Lévy Exponent metric into
our Benchmark model to evaluate if the model’s accuracy could be
improved. In our initial attempt, the accuracy of the benchmark model was
maintained at the same level of 76%, as shown in Equation 4.1. In this case,
we used the default benchmark model with its four metrics (Age, IQ, FD,
and Performance) along with the Lévy Exponent for the Event 1 analysis,
as presented in Table 4.3.

However, after utilizing Recursive Feature Elimination with Cross-
Validation (RFECV) and GridSearchCV, outlined in Section 3.3.2, the
feature selection was refined to include only three metrics: FD, Lévy
Exponent, and Performance.

The RFECV process resulted in the exclusion of the Age and IQ metrics.
This decision by the RFECV process aligns with previous observations
from our benchmark model and findings in the literature. In our initial
benchmark model, IQ had a low impact, as indicated by the relatively
small coefficient in Equation 4.2. The impact of IQ was less compared
to other features such as Performance and FD, suggesting that its role in
classifying ADHD might not be as significant in our model. Furthermore,
the exclusion of IQ also aligns with the contradictory findings regarding
the relationship between IQ and ADHD in the literature. Given these
contrasting findings, the exclusion of IQ from our refined model might
indeed help to eliminate potential noise and enhance the overall predictive
accuracy.

This feature selection refinement, along with hyperparameter tuning,
improved the accuracy of our model. As shown in Figure 4.28, the inclusion
of the Lévy Exponent metric notably enhanced the performance of the
model. Unlike previous metrics and attempts, this addition resulted in an
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Figure 4.28: Confusion Matrix and Moving Average for the Benchmark
Model including the Lévy Exponent of the Event 1.

increase in accuracy by 2 percentage points, reaching an accuracy of 78%,
as presented in Equation 4.3.

Accuracy =
39
50

= 0.78 (4.3)

In terms of performance metrics, our model achieved a precision of
0.815, a recall of 0.786, and a specificity of 0.773. This demonstrates the
model’s improved capacity to correctly identify ADHD cases and predict
non-ADHD cases accurately. The detailed confusion matrix is presented in
Figure 4.28.

Subsequent to this feature refinement and performance improvement,
we derived the logistic regression equation for the optimized model,
termed Model1/50. The equation is as follows::

logit(p) = 9.7586− 0.1489×FD− 1.1973×Lévy Exp.− 6.7556×Perf. (4.4)

This equation quantifies the relationship between the logit transform-
ation of the probability of a positive ADHD classification and the selected
metrics, facilitating a deeper understanding of the model’s predictive cap-
abilities and the influence of each metric on the outcome.

The logistic regression equation for the revised Model1/50 suggests a
consistent influence of certain variables compared to the initial model,
Equation 4.2.

The Performance metric stands out as a significant predictor of ADHD
status in the revised model, which is consistent with its role in the initial
model where it also had the highest impact.

Arithmetic and Digital Span (FD), although having a lesser impact, still
plays a notable role, mirroring its contribution in the initial model.

The introduction of the Event-based Lévy Exponent in the revised
model adds a new dynamic. Its substantial coefficient highlights its
importance, suggesting it as a valuable addition to the predictive model.
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4.5 Discussion of Results and their Implications

Throughout this investigation, we examined two distinct models - the Feed
and Fly Model and the Lévy Flight Model - to analyze and characterize eye-
tracking data. We aimed to identify discernible differences in eye-tracking
patterns between ADHD and non-ADHD participants.

Our initial exploration centered around the Feed and Fly Model,
which incorporated a novel algorithm for dynamic velocity threshold,
known as the Fixation-Saccade Transition Ratio (FSTR) Algorithm. This
algorithm, designed to offer a more accurate and individualized analysis
of eye-tracking data, represents a promising approach to improving the
mathematical modeling of eye movements, with potential applications for
understanding attentional disorders like ADHD. Despite this, the Feed and
Fly Model failed to offer significant differentiation between the ADHD
and non-ADHD groups based on the evaluated metrics. Furthermore,
incorporating these metrics into our benchmark model led to a decrease
in classification accuracy. This suggests that these metrics may not be
particularly suitable for predicting ADHD status using our current dataset.

Subsequently, we turned to the Lévy Flight Model, offering a unique
approach for characterizing eye-tracking patterns. The Lévy Exponent
metric, derived from velocity histograms, hinted at potential variations
in eye-tracking behaviors between ADHD and non-ADHD groups. Yet, a
preliminary analysis did not reveal any statistically significant differences
between the groups.

Despite this, we were driven to further our investigation by conducting
an event-based analysis. This examination unveiled statistically significant
differences in Lévy Exponents between the groups for specific events.
Remarkably, integrating the Lévy Exponent metric from this event-based
analysis into our benchmark model led to an enhancement in model
performance.

Despite the mixed results from the two models, our research journey
underscored the significance of rigorous data analysis and the exploration
of varied models and perspectives. Each step, regardless of the outcomes,
enriched our understanding of eye-tracking patterns and their potential
relation to ADHD. Moreover, this study can serve as a launching pad for
future research in this domain, aiming to refine diagnostic tools and our
understanding of ADHD.

Interestingly, the three key metrics contributing to the final model
each represent different domains of analysis: The Arithmetic and Digital
Span (FD) from the WISC test, Performance scores from the memory
tests, and the Lévy Exponent derived from eye-tracking analysis. This
highlights the necessity for a multi-faceted approach in understanding and
diagnosing ADHD, signifying that a single metric or test may not offer a
comprehensive picture of the disorder.

Despite the promising findings, this study isn’t without limitations. The
first limitation is the small dataset size. Restricted to merely 50 subjects, the
size of the dataset inevitably limited our analysis. Models trained on such
a small dataset could only achieve a maximum accuracy of approximately
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70%-80%, and the diminutive size of the test dataset could potentially bias
our final results.

The second limitation revolves around the credibility of the experi-
mental setup. There are questions surrounding this, given the conflicting
information about the participants’ distance from the screen and the lack of
details regarding the monitor size.

The third issue pertains to the quality of the eye-tracking data. This
type of data is notoriously sensitive and requires meticulous collection
processes. Extreme values observed in the velocity skewness and kurtosis
raise concerns about the dataset’s reliability. Of particular note, the eye-
tracking data for two participants - one with ADHD and one without
- were incomplete, missing all y-coordinate information. This further
compounds the challenges faced in the analysis and potentially limits the
generalizability of our findings. Consequently, it is plausible that this
dataset may not meet the quality standards necessary for this study.

Lastly, the potential misdiagnosis of ADHD introduces inherent uncer-
tainty. ADHD diagnosis is complex and error-prone, leading to the possib-
ility of misdiagnosis. In a dataset of this size, any misclassified data could
significantly impact our analysis and models.

Despite these limitations, this study offers a valuable contribution to
the field, providing a stepping stone for future research. We hope that our
findings will inspire further exploration into the potential of eye-tracking
data in enhancing our understanding and diagnosis of cognitive disorders
like ADHD.
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Chapter 5

Conclusion

In this thesis, we undertook the ambitious endeavor of enhancing the pre-
diction of Attention-Deficit/Hyperactivity Disorder (ADHD) using eye-
tracking data and mathematical modelling. Our objective was to ex-
plore the intricate relationship between oculomotor control, neurocognitive
traits, and ADHD symptoms, through the lens of eye movement character-
istics and mathematical models.

To this end, we adopted a two-fold approach: an initial classification
model based on non-eye-tracking metrics, and the subsequent inclusion of
eye-tracking metrics derived from two mathematical models, the "Feed and
Fly" and Lévy Flight models. Our findings from these investigations have
been enlightening, albeit with a mix of results.

The "Feed and Fly" model did not yield significant differentiation
between ADHD and non-ADHD groups, yet it added to our understanding
of the complex nature of ADHD. On the other hand, the Lévy Flight model,
particularly when applied in an event-based analysis, showed promise and
led to an enhancement in the performance of our benchmark model.

One of the most striking findings of our study has been the refinement
of the feature selection in our model to only three metrics: Arithmetic
and Digital Span (FD), Lévy Exponent, and Performance, which represent
different aspects of the analysis - WISC test, eye-tracking analysis, and
memory test respectively. This highlights that there is no singular approach
to diagnosing ADHD, but rather a combination of various metrics from
distinct domains that together can improve diagnostic accuracy.

However, it’s important to note that our findings do not conclusively
confirm our null hypothesis of significant differences in eye movement
characteristics between children with and without ADHD. Instead, they
offer a glimpse into the potential of eye-tracking data as a diagnostic tool
and lay the foundation for future research in this field.

Moving forward, it is important to address the limitations of the present
study in future research. With larger and more reliable datasets, the
application of the mathematical models explored in this study could be
further evaluated. The exploration of additional eye-tracking and non-eye-
tracking metrics may also enhance our understanding of ADHD and its
diagnosis.
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Aside from the direct findings, this research also has broader implic-
ations. By demonstrating that eye-tracking data and mathematical mod-
elling can provide useful insights, it encourages their inclusion in future
research and clinical practice. Further, it underlines the need for a shift
from reliance on single-domain diagnostic tools to a more encompassing
approach. Lastly, by striving to develop a more objective and precise dia-
gnostic tool, it aims to improve the quality of care for individuals with
ADHD, with potential for enhancing academic achievement, social interac-
tions, and overall quality of life. Future research should continue to explore
these promising avenues.

In conclusion, the path to understanding ADHD is complex and non-
linear, filled with challenges and surprises alike. While there is much left to
explore, we remain hopeful and committed to this endeavor. We anticipate
that the findings from this study will inspire further research, not only in
ADHD diagnosis but also in the broader field of cognitive disorders.

102



Bibliography

[1] I. N. Soria et al. ‘Detecting Differences between Clinical Presenta-
tions in ADHD through the Cognitive Profile Obtained from WISC-
IV’. In: Universal Journal of Psychology 21 (2017), pp. 179–186. DOI:
10.13189/ujp.2017.050403.

[2] M. L. Wolraich et al. ‘Clinical Practice Guideline for the Diagnosis,
Evaluation, and Treatment of Attention-Deficit/Hyperactivity Dis-
order in Children and Adolescents’. In: Pediatrics 144 (2019). DOI:
10.1542/peds.2019-2528..

[3] T. Gunnerson. What’s the History of ADHD? 2022. URL: https://www.
webmd.com/add-adhd/adhd-history (visited on 29/12/2022).

[4] Centers for Disease Control and Prevention. Data and Statistics About
ADHD. 2022. URL: https ://www.cdc.gov/ncbddd/adhd/data .html
(visited on 29/12/2022).

[5] R. Thomas et al. ‘Prevalence of attention-deficit/hyperactivity
disorder: a systematic review and meta-analysis’. In: Pediatrics 135
(2015). DOI: 10.1542/peds.2014-3482.

[6] Centers for Disease Control and Prevention. Mental Health Surveil-
lance Among Children — United States, 2013–2019. 2022. URL: https:
//www.cdc .gov/mmwr/volumes/71/su/su7102a1 .htm (visited on
29/12/2022).

[7] M. Gaub and C. L. Carlson. ‘Gender differences in ADHD: a meta-
analysis and critical review’. In: Journal of the American Academy of
Child and Adolescent Psychiatry 36 (1997), pp. 1036–1045. DOI: 10 .
1097/00004583-199708000-00011.

[8] M. M. Gottesman. ‘Helping parents make sense of ADHD diagnosis
and treatment’. In: Journal of Pediatric Health Care 17 (2003), pp. 149–
153. DOI: 10.1067/mph.2003.55.

[9] B. Kiely and A. Adesman. ‘What we do not know about ADHD. . .
yet’. In: Current Opinion in Pediatrics 23 (2015), pp. 395–404. DOI:
10.1097/MOP.0000000000000229.

[10] J. M. Swanson et al. ‘Etiologic subtypes of attention-deficit/hyperactivity
disorder: brain imaging, molecular genetic and environmental
factors and the dopamine hypothesis’. In: Neuropsychology Review
17 (2007), pp. 39–59. DOI: 10.1007/s11065-007-9019-9.

103

https://doi.org/10.13189/ujp.2017.050403
https://doi.org/10.1542/peds.2019-2528.
https://www.webmd.com/add-adhd/adhd-history
https://www.webmd.com/add-adhd/adhd-history
https://www.cdc.gov/ncbddd/adhd/data.html
https://doi.org/10.1542/peds.2014-3482
https://www.cdc.gov/mmwr/volumes/71/su/su7102a1.htm
https://www.cdc.gov/mmwr/volumes/71/su/su7102a1.htm
https://doi.org/10.1097/00004583-199708000-00011
https://doi.org/10.1097/00004583-199708000-00011
https://doi.org/10.1067/mph.2003.55
https://doi.org/10.1097/MOP.0000000000000229
https://doi.org/10.1007/s11065-007-9019-9


[11] T. W. Frazier et al. ‘ADHD and achievement: Meta-analysis of the
child, adolescent, and adult literatures and a concomitant study
with college students’. In: Journal of Learning Disabilities 40 (2007),
pp. 49–65. DOI: 10.1177/00222194070400010401.

[12] M. Skounti, A. Philalithis and E. Galanakis. ‘Variations in pre-
valence of attention deficit hyperactivity disorder worldwide’. In:
European Journal of Pediatrics 166 (2007), pp. 117–123. DOI: 10.1007/
s00431-006-0299-5.

[13] A. Crippa et al. ‘The utility of a computerized algorithm based on
a multi-domain profile of measures for the diagnosis of attention
deficit/hyperactivity disorder’. In: Front Psychiatry 8 (2017). DOI: 10.
3389/fpsyt.2017.00189.

[14] D. Rojas-Líbano et al. ‘A pupil size, eye-tracking and neuropsycho-
logical dataset from ADHD children during a cognitive task’. In:
Scientific Data 6 25 (2019). DOI: 10.1038/s41597-019-0037-2.

[15] Lumen. Anatomy of the Visual System. 2022. URL: https : / / courses .
lumenlearning.com/waymaker-psychology/chapter/vision/ (visited on
15/01/2023).

[16] BrainFacts/SfN. Vision: Processing Information. 2016. URL: https : //
www.brainfacts.org/thinking-sensing-and-behaving/vision/2012/vision-
processing-information (visited on 20/02/2023).

[17] S. Djamasbi. ‘Eye Tracking and Web Experience’. In: AIS Transactions
on Human-Computer Interaction 6 (2014). DOI: 10.17705/1thci.00060.

[18] J. F. Hejtmancik et al. ‘Vision’. In: Conn’s Translational Neuroscience
(2017), pp. 399–438. DOI: 10.1016/B978-0-12-802381-5.00031-2.

[19] A. Duchowski. Eye tracking methodology: Theory and practice.
Springer, 2017.

[20] G. Boccignone and M. Ferraro. ‘Feed and fly control of visual
scanpaths for foveation image processing’. In: Ann. Telecommun. 68
(2013), pp. 201–217. DOI: 10.1007/s12243-012-0316-9.

[21] A. Coutrot, J.H. Hsiao and A.B. Chan. ‘Scanpath modeling and
classification with hidden Markov models’. In: Behav Res 50 (2018),
pp. 362–379. DOI: 10.3758/s13428-017-0876-8.

[22] Wikipedia contributors. Markov chain — Wikipedia, The Free Encyclo-
pedia. 2023. URL: https://en.wikipedia.org/w/index.php?title=Markov_
chain&oldid=1150001760 (visited on 16/04/2023).

[23] A. M. Helmenstine. An Introduction to Brownian Motion. 2019. URL:
https : / / www . thoughtco . com / brownian - motion - definition - and -
explanation-4134272 (visited on 16/04/2023).

[24] S. Creel et al. ‘Hidden Markov Models reveal a clear human
footprint on the movements of highly mobile African wild dogs’.
In: Scientific Reports 10.1 (2020). DOI: 10.1038/s41598-020-74329-w.

104

https://doi.org/10.1177/00222194070400010401
https://doi.org/10.1007/s00431-006-0299-5
https://doi.org/10.1007/s00431-006-0299-5
https://doi.org/10.3389/fpsyt.2017.00189
https://doi.org/10.3389/fpsyt.2017.00189
https://doi.org/10.1038/s41597-019-0037-2
https://courses.lumenlearning.com/waymaker-psychology/chapter/vision/
https://courses.lumenlearning.com/waymaker-psychology/chapter/vision/
https://www.brainfacts.org/thinking-sensing-and-behaving/vision/2012/vision-processing-information
https://www.brainfacts.org/thinking-sensing-and-behaving/vision/2012/vision-processing-information
https://www.brainfacts.org/thinking-sensing-and-behaving/vision/2012/vision-processing-information
https://doi.org/10.17705/1thci.00060
https://doi.org/10.1016/B978-0-12-802381-5.00031-2
https://doi.org/10.1007/s12243-012-0316-9
https://doi.org/10.3758/s13428-017-0876-8
https://en.wikipedia.org/w/index.php?title=Markov_chain&oldid=1150001760
https://en.wikipedia.org/w/index.php?title=Markov_chain&oldid=1150001760
https://www.thoughtco.com/brownian-motion-definition-and-explanation-4134272
https://www.thoughtco.com/brownian-motion-definition-and-explanation-4134272
https://doi.org/10.1038/s41598-020-74329-w


[25] A. Edwards et al. ‘Revisiting Lévy flight search patterns of wan-
dering albatrosses, bumblebees and deer’. In: Nature 449 (2007),
pp. 1044–1048. DOI: 10.1038/nature06199.

[26] D. A. Raichlen et al. ‘Evidence of Lévy walk foraging patterns in
human hunter–gatherers’. In: Proceedings of the National Academy of
Sciences 111.2 (2014), pp. 728–733. DOI: 10.1073/pnas.1318616111.

[27] H. Yarahmadi and A. A. Saberi. ‘A 2D Lévy-flight model for the
complex dynamics of real-life financial markets.’ In: Chaos 32 3
(2022), pp. 033–113. DOI: 10.1063/5.0082926.

[28] R. Metzler and J. Klafter. ‘The random walk’s guide to anomalous
diffusion: a fractional dynamics approach’. In: Physics Reports 339.1
(2000), pp. 1–77. DOI: 10.1016/S0370-1573(00)00070-3.

[29] P. Błażejczyk and M. Magdziarz. ‘Stochastic modeling of Lévy-like
human eye movements’. In: Chaos 31 (2021). DOI: 10.1063/5.0036491.

[30] D. Brockmann and T. Geisel. ‘The ecology of gaze shifts’. In:
Neurocomputing 32-33 (2000), pp. 643–650. DOI: 10 . 1016 / S0925 -
2312(00)00227-7.

[31] Wikipedia contributors. Lévy flight — Wikipedia, The Free Encyclope-
dia. 2023. URL: https://en.wikipedia.org/w/index.php?title=L%C3%
A9vy_flight&oldid=1142022673 (visited on 26/03/2023).

[32] B. Dybiec et al. ‘Lé vy flights versus Lévy walks in bounded
domains’. In: Physical Review E 95.5 (2017). DOI: 10.1103/physreve.
95.052102.

[33] G. M. Viswanathan et al. ‘Lévy flights in random searches’. In:
Physica A: Statistical Mechanics and its Applications 282 (Jan. 2009),
pp. 1–12. DOI: 10.1016/S0378-4371(00)00071-6.

[34] M. F. Shlesinger and J. Klafter. ‘Lévy Walks Versus Lévy Flights’.
In: On Growth and Form: Fractal and Non-Fractal Patterns in Physics.
Dordrecht: Springer Netherlands, 1986, pp. 279–283. DOI: 10.1007/
978-94-009-5165-5_29.

[35] J. Klafter and I. M. Sokolov. First Steps in Random Walks: From Tools
to Applications. Oxford University Press, 2011. DOI: 10.1093/acprof:
oso/9780199234868.001.0001.

[36] S. Buldyrev et al. ‘Generalized Levy-Walk Model for DNA Nucle-
otide Sequences’. In: Physical review. E, Statistical physics, plasmas,
fluids, and related interdisciplinary topics 47 (June 1993), pp. 4514–23.
DOI: 10.1103/PhysRevE.47.4514.

[37] O. Bé nichou et al. ‘Intermittent search strategies’. In: Reviews of
Modern Physics 83.1 (2011), pp. 81–129. DOI: 10 .1103/ revmodphys .
83.81.

[38] G. Boccignone and M. Ferraro. ‘Modelling gaze shift as a con-
strained random walk’. In: Physica A: Statistical Mechanics and its Ap-
plications 331.1 (2004), pp. 207–218. ISSN: 0378-4371. DOI: 10.1016/j.
physa.2003.09.011.

105

https://doi.org/10.1038/nature06199
https://doi.org/10.1073/pnas.1318616111
https://doi.org/10.1063/5.0082926
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1063/5.0036491
https://doi.org/10.1016/S0925-2312(00)00227-7
https://doi.org/10.1016/S0925-2312(00)00227-7
https://en.wikipedia.org/w/index.php?title=L%C3%A9vy_flight&oldid=1142022673
https://en.wikipedia.org/w/index.php?title=L%C3%A9vy_flight&oldid=1142022673
https://doi.org/10.1103/physreve.95.052102
https://doi.org/10.1103/physreve.95.052102
https://doi.org/10.1016/S0378-4371(00)00071-6
https://doi.org/10.1007/978-94-009-5165-5_29
https://doi.org/10.1007/978-94-009-5165-5_29
https://doi.org/10.1093/acprof:oso/9780199234868.001.0001
https://doi.org/10.1093/acprof:oso/9780199234868.001.0001
https://doi.org/10.1103/PhysRevE.47.4514
https://doi.org/10.1103/revmodphys.83.81
https://doi.org/10.1103/revmodphys.83.81
https://doi.org/10.1016/j.physa.2003.09.011
https://doi.org/10.1016/j.physa.2003.09.011


[39] T. Rhodes, C. T. Kello and B. Kerster. ‘Intrinsic and extrinsic
contributions to heavy tails in visual foraging’. In: Visual Cognition
22 (2014), pp. 809–842. DOI: 10.1080/13506285.2014.918070.

[40] H. Credidio et al. ‘Statistical patterns of visual search for hidden
objects’. In: Sci Rep 2:920 (2012). DOI: 10.1038/srep00920.

[41] L. R. Rabiner. ‘A tutorial on hidden Markov models and selected
applications in speech recognition’. In: Proceedings of the IEEE 77.2
(1989), pp. 257–286. DOI: 10.1109/5.18626.

[42] V. Levantini et al. ‘EYES Are The Window to the Mind: Eye-Tracking
Technology as a Novel Approach to Study Clinical Characteristics
of ADHD’. In: Psychiatry Research 290 (2020), pp. 113–135. DOI: 10.
1016/j.psychres.2020.113135.

[43] L. Larsson. Event Detection in Eye-Tracking Data for Use in Applications
with Dynamic Stimuli. Ph.D. Thesis, Department of Biomedical
Engineering, Faculty of Engineering LTH, Lund University. 2016.

[44] B. Birawo and P. Kasprowski. ‘Review and Evaluation of Eye
Movement Event Detection Algorithms’. In: Sensors 22.22 (2022).
DOI: 10.3390/s22228810.

[45] B. Mahanama et al. ‘Eye Movement and Pupil Measures: A Review’.
In: Frontiers of Computer Science 3 (2022). DOI: 10.3389/fcomp.2021.
733531.

[46] W. Becker and A.F. Fuchs. ‘Further properties of the human saccadic
system: Eye movements and correction saccades with and without
visual fixation points’. In: Vision Research 9.10 (1969), pp. 1247–1258.
DOI: 10.1016/0042-6989(69)90112-6.

[47] M. Russo et al. ‘Oculomotor impairment during chronic partial
sleep deprivation’. In: Clinical Neurophysiology 114.4 (2003), pp. 723–
736. DOI: 10.1016/S1388-2457(03)00008-7.

[48] A. L. Boxer et al. ‘Saccade Abnormalities in Autopsy-Confirmed
Frontotemporal Lobar Degeneration and Alzheimer Disease’. In:
Archives of Neurology 69.4 (2012), pp. 509–517. DOI: 10 . 1001 /
archneurol.2011.1021.

[49] E. Castello, N. Baroni and E. Pallestrini. ‘Neurotological and Aud-
itory Brain Stem Response Findings in Human Immunodeficiency
Virus—Positive Patients without Neurologic Manifestations’. In:
Annals of Otology, Rhinology & Laryngology 107.12 (1998), pp. 1054–
1060. DOI: 10.1177/000348949810701210.

[50] H. Hartridge and L. C. Thomson. ‘Methods of Investigating Eye
Movements’. In: British Journal of Ophthalmology 32 (1948), pp. 581–
591. DOI: 10.1136/bjo.32.9.581.

[51] R. A. Monty. ‘An advanced eye-movement measuring and record-
ing system’. In: The American psychologist 30 (1975), pp. 331–335. DOI:
10.1037/0003-066X.30.3.331.

106

https://doi.org/10.1080/13506285.2014.918070
https://doi.org/10.1038/srep00920
https://doi.org/10.1109/5.18626
https://doi.org/10.1016/j.psychres.2020.113135
https://doi.org/10.1016/j.psychres.2020.113135
https://doi.org/10.3390/s22228810
https://doi.org/10.3389/fcomp.2021.733531
https://doi.org/10.3389/fcomp.2021.733531
https://doi.org/10.1016/0042-6989(69)90112-6
https://doi.org/10.1016/S1388-2457(03)00008-7
https://doi.org/10.1001/archneurol.2011.1021
https://doi.org/10.1001/archneurol.2011.1021
https://doi.org/10.1177/000348949810701210
https://doi.org/10.1136/bjo.32.9.581
https://doi.org/10.1037/0003-066X.30.3.331


[52] R. Zemblys et al. ‘Using machine learning to detect events in eye-
tracking data’. In: Behav Res 50 (2018), pp. 160–181. DOI: 10.3758/
s13428-017-0860-3.

[53] D. D. Salvucci and J. H. Goldberg. ‘Identifying Fixations and
Saccades in Eye-Tracking Protocols’. In: Proceedings of the 2000
Symposium on Eye Tracking Research & Applications. New York, NY,
USA: Association for Computing Machinery, 2000, pp. 71–78. DOI:
10.1145/355017.355028.

[54] R. Andersson et al. ‘One algorithm to rule them all? An evaluation
and discussion of ten eye movement event-detection algorithms’.
In: Behavior research methods 49 (2017), pp. 616–637. DOI: 10 .3758/
s13428-016-0738-9.

[55] T. Sen and T. Megaw. ‘The Effects of Task Variables and Prolonged
Performance on Saccadic Eye Movement Parameters’. In: Theoretical
and Applied Aspects of Eye Movement Research. Vol. 22. Advances in
Psychology. North-Holland, 1984, pp. 103–111. DOI: 10.1016/S0166-
4115(08)61824-5.

[56] R. Engbert and K. Mergenthaler. ‘Microsaccades are triggered by
low retinal image slip’. In: Proceedings of the National Academy of
Sciences 103.18 (2006), pp. 7192–7197. DOI: 10.1073/pnas.0509557103.

[57] R. Engbert and R. Kliegl. ‘Microsaccades uncover the orientation of
covert attention’. In: Vision Research 43.9 (2003), pp. 1035–1045. ISSN:
0042-6989. DOI: 10.1016/S0042-6989(03)00084-1.

[58] O. V. Komogortsev et al. ‘Standardization of Automated Analyses of
Oculomotor Fixation and Saccadic Behaviors’. In: IEEE Transactions
on Biomedical Engineering 57.11 (2010), pp. 2635–2645. DOI: 10.1109/
TBME.2010.2057429.

[59] G. D. Forney. ‘The viterbi algorithm’. In: Proceedings of the IEEE 61.3
(1973), pp. 268–278. DOI: 10.1109/PROC.1973.9030.

[60] R. van der Lans, M. Wedel and R. Pieters. ‘Defining eye-fixation
sequences across individuals and tasks: the Binocular-Individual
Threshold (BIT) algorithm’. In: Behav Res 43 (2011), pp. 239–257. DOI:
10.3758/s13428-010-0031-2.

[61] M. Nyström and K. Holmqvist. ‘An adaptive algorithm for fixation,
saccade, and glissade detection in eyetracking data’. In: Behavior
Research Methods 42 (2010), pp. 188–204. DOI: 10.3758/BRM.42.1.188.

[62] L. Larsson, M. Nyström and M. Stridh. ‘Detection of Saccades and
Postsaccadic Oscillations in the Presence of Smooth Pursuit’. In:
IEEE Transactions on Biomedical Engineering 60.9 (2013), pp. 2484–
2493. DOI: 10.1109/TBME.2013.2258918.

[63] H. Widdel. ‘Operational Problems in Analysing Eye Movements’.
In: Theoretical and Applied Aspects of Eye Movement Research. Vol. 22.
Advances in Psychology. North-Holland, 1984, pp. 21–29. DOI: 10.
1016/S0166-4115(08)61814-2.

107

https://doi.org/10.3758/s13428-017-0860-3
https://doi.org/10.3758/s13428-017-0860-3
https://doi.org/10.1145/355017.355028
https://doi.org/10.3758/s13428-016-0738-9
https://doi.org/10.3758/s13428-016-0738-9
https://doi.org/10.1016/S0166-4115(08)61824-5
https://doi.org/10.1016/S0166-4115(08)61824-5
https://doi.org/10.1073/pnas.0509557103
https://doi.org/10.1016/S0042-6989(03)00084-1
https://doi.org/10.1109/TBME.2010.2057429
https://doi.org/10.1109/TBME.2010.2057429
https://doi.org/10.1109/PROC.1973.9030
https://doi.org/10.3758/s13428-010-0031-2
https://doi.org/10.3758/BRM.42.1.188
https://doi.org/10.1109/TBME.2013.2258918
https://doi.org/10.1016/S0166-4115(08)61814-2
https://doi.org/10.1016/S0166-4115(08)61814-2


[64] G. Veneri et al. ‘Automatic eye fixations identification based on
analysis of variance and covariance’. In: Pattern Recognition Letters
32.13 (2011), pp. 1588–1593. DOI: https://doi.org/10.1016/j.patrec.
2011.06.012.

[65] G. Veneri et al. ‘Eye fixations identification based on statistical
analysis - Case study’. In: 2010 2nd International Workshop on
Cognitive Information Processing. 2010, pp. 446–451. DOI: 10 . 1109 /
CIP.2010.5604221.

[66] F. Shic, B. Scassellati and K. Chawarska. ‘The Incomplete Fixation
Measure’. In: Proceedings of the 2008 symposium on Eye tracking
research & applications (Jan. 2008), pp. 111–114. DOI: 10.1145/1344471.
1344500.

[67] J. H. Goldberg and J. C. Schryver. ‘Eye-gaze-contingent control
of the computer interface: Methodology and example for zoom
detection’. In: Behavior Research Methods, Instruments, & Computers
27 (1995), pp. 338–350. DOI: 10.3758/BF03200428.

[68] R. Den Buurman. ‘Eye Movements and the Perceptual Span in
Reading’. In: Reading Research Quarterly 16 (1981), p. 227. DOI: 10 .
2307/747557.

[69] A. Lev et al. ‘Eye Tracking During a Continuous Performance
Test: Utility for Assessing ADHD Patients’. In: Journal of Attention
Disorders 26 (2020), pp. 245–255. DOI: 10.1177/1087054720972786.

[70] D. Richardson and M. Spivey. ‘Eye-Tracking: Characteristics and
Methods’. In: Encyclopedia of Biomaterials and Biomedical Engineering
(2008). DOI: 10.1081/E-EBBE2-120013920.

[71] P. Olsson. Real-time and Offline Filters for Eye Tracking. 2007.

[72] A. George. Image based Eye Gaze Tracking and its Applications. 2019.
arXiv: 1907.04325 [cs.CV].

[73] A. F. Klaib et al. ‘Eye tracking algorithms, techniques, tools, and
applications with an emphasis on machine learning and Internet of
Things technologies’. In: Expert Systems With Applications 166 (2021).
DOI: 10.1016/j.eswa.2020.114037.

[74] C. Buquet et al. ‘Photo-oculography: A new method for eye
movements study, interest in ophthalmological and extra pyramidal
neurological diseases’. In: 1992 14th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society. Vol. 4. 1992,
pp. 1555–1556. DOI: 10.1109/IEMBS.1992.5761922.

[75] SR Research Ltd. EyeLink® 1000 User Manual. 2009.

[76] SR Research Ltd. About Eye Tracking. 2023. URL: https : //www. sr -
research.com/about-eye-tracking/ (visited on 15/02/2023).

[77] Tobii AB. Psychology and neuroscience research. 2023. URL: https : / /
www . tobii . com / solutions / scientific - research / psychology - and -
neuroscience (visited on 15/03/2023).

108

https://doi.org/https://doi.org/10.1016/j.patrec.2011.06.012
https://doi.org/https://doi.org/10.1016/j.patrec.2011.06.012
https://doi.org/10.1109/CIP.2010.5604221
https://doi.org/10.1109/CIP.2010.5604221
https://doi.org/10.1145/1344471.1344500
https://doi.org/10.1145/1344471.1344500
https://doi.org/10.3758/BF03200428
https://doi.org/10.2307/747557
https://doi.org/10.2307/747557
https://doi.org/10.1177/1087054720972786
https://doi.org/10.1081/E-EBBE2-120013920
https://arxiv.org/abs/1907.04325
https://doi.org/10.1016/j.eswa.2020.114037
https://doi.org/10.1109/IEMBS.1992.5761922
https://www.sr-research.com/about-eye-tracking/
https://www.sr-research.com/about-eye-tracking/
https://www.tobii.com/solutions/scientific-research/psychology-and-neuroscience
https://www.tobii.com/solutions/scientific-research/psychology-and-neuroscience
https://www.tobii.com/solutions/scientific-research/psychology-and-neuroscience


[78] A. Olsen. The Tobii IVT Fixation Filter Algorithm description. 2012.

[79] E. S. Dalmaijer. PyGaze: Open-source toolbox for eye tracking in Python.
2023. URL: http://www.pygaze.org/ (visited on 15/03/2023).

[80] E. S. Dalmaijer, S. Mathôt and S. Van der Stigchel. ‘PyGaze: An open-
source, cross-platform toolbox for minimal-effort programming of
eyetracking experiments’. In: Behav Res 46 (2014), pp. 913–921. DOI:
10.3758/s13428-013-0422-2.

[81] Z. Hawi, T. Cummins and J. et al. Tong. ‘The molecular genetic
architecture of attention deficit hyperactivity disorder’. In: Mol
Psychiatry 20 (2015), pp. 289–297. DOI: 10.1038/mp.2014.183.

[82] J. T. Nigg et al. ‘Toward a Revised Nosology for Attention-
Deficit/Hyperactivity Disorder Heterogeneity’. In: Biological Psychi-
atry: Cognitive Neuroscience and Neuroimaging 5.8 (2020). Understand-
ing the Nature and Treatment of Psychopathology: Letting the Data
Guide the Way, pp. 726–737. DOI: 10.1016/j.bpsc.2020.02.005.

[83] D. N. Maron et al. ‘Oculomotor deficits in attention deficit hyper-
activity disorder (ADHD): A systematic review and comprehensive
meta-analysis’. In: Neuroscience & Biobehavioral Reviews 131 (2021),
pp. 1198–1213. DOI: 10.1016/j.neubiorev.2021.10.012.

[84] R. G. Ross et al. ‘Eye Movement Task Related to Frontal Lobe
Functioning in Children with Attention Deficit Disorder’. In: Journal
of the American Academy of Child & Adolescent Psychiatry 33.6 (1994),
pp. 869–874. DOI: 10.1097/00004583-199407000-00013.

[85] F. X. Castellanos et al. ‘Executive Function Oculomotor Tasks in
Girls With ADHD’. In: Journal of the American Academy of Child
& Adolescent Psychiatry 39.5 (2000), pp. 644–650. DOI: 10 . 1097 /
00004583-200005000-00019.

[86] T. D. Gould et al. ‘Altered performance on an ocular fixation task
in attention-deficit/hyperactivity disorder’. In: Biological Psychiatry
50.8 (2001), pp. 633–635. DOI: 10.1016/S0006-3223(01)01095-2.

[87] G. A. O’Driscoll et al. ‘Executive Functions and Methylphenidate
Response in Subtypes of Attention-Deficit/Hyperactivity Disorder’.
In: Biological Psychiatry 57.11 (2005), pp. 1452–1460. DOI: 10.1016/j.
biopsych.2005.02.029.

[88] C. Hanisch, R. Radach and K. et al. Holtkamp. ‘Oculomotor inhib-
ition in children with and without attention-deficit hyperactivity
disorder (ADHD)’. In: Neural Transm 113 (2006), pp. 671–684. DOI:
10.1007/s00702-005-0344-y.

[89] N. N. Rommelse et al. ‘Deficits in visuo-spatial working memory,
inhibition and oculomotor control in boys with ADHD and their
non-affected brothers’. In: Neural Transmission 115 (2008), pp. 249–
260. DOI: 10.1007/s00702-007-0865-7.

109

http://www.pygaze.org/
https://doi.org/10.3758/s13428-013-0422-2
https://doi.org/10.1038/mp.2014.183
https://doi.org/10.1016/j.bpsc.2020.02.005
https://doi.org/10.1016/j.neubiorev.2021.10.012
https://doi.org/10.1097/00004583-199407000-00013
https://doi.org/10.1097/00004583-200005000-00019
https://doi.org/10.1097/00004583-200005000-00019
https://doi.org/10.1016/S0006-3223(01)01095-2
https://doi.org/10.1016/j.biopsych.2005.02.029
https://doi.org/10.1016/j.biopsych.2005.02.029
https://doi.org/10.1007/s00702-005-0344-y
https://doi.org/10.1007/s00702-007-0865-7


[90] I. M. Loe et al. ‘Oculomotor performance identifies underlying
cognitive deficits in attention-deficit/hyperactivity disorder’. In:
American Academy of Child and Adolescent Psychiatry 48 (2009),
pp. 431–440. DOI: 10.1097/CHI.0b013e31819996da.

[91] E. M. Mahone et al. ‘Oculomotor anomalies in attention-deficit/ hy-
peractivity disorder: evidence for deficits in response preparation
and inhibition’. In: American Academy of Child and Adolescent Psychi-
atry 48 (2009), pp. 749–756. DOI: 10.1097/CHI.0b013e3181a565f1.

[92] L. Carr, J. Henderson and J. T. Nigg. ‘Cognitive Control and
Attentional Selection in Adolescents with ADHD Versus ADD’. In:
Journal of Clinical Child & Adolescent Psychology 39.6 (2010), pp. 726–
740. DOI: 10.1080/15374416.2010.517168.

[93] C. Karatekin, C. Bingham and T. White. ‘Oculomotor and Pupillo-
metric Indices of Pro- and Antisaccade Performance in Youth-Onset
Psychosis and Attention Deficit/Hyperactivity Disorder’. In: Schizo-
phrenia Bulletin 36.6 (2009), pp. 1167–1186. DOI: 10 . 1093 / schbul /
sbp035.

[94] Y. Goto et al. ‘Saccade eye movements as a quantitative measure
of frontostriatal network in children with ADHD’. In: Brain and
Development 32.5 (2010), pp. 347–355. DOI: 10.1016/j.braindev.2009.
04.017.

[95] E. Pishyareh et al. ‘Attentional Bias towards Emotional Scenes in
Boys with Attention Deficit Hyperactivity Disorder’. In: Iranian J
Psychiatry 7 (2012), pp. 93–96.

[96] Y. Matsuo et al. ‘Gap Effect Abnormalities during a Visually Guided
Pro-Saccade Task in Children with Attention Deficit Hyperactivity
Disorder’. In: PLoS ONE 10 (2015). DOI: 10 . 1371 / journal . pone .
0125573.

[97] B. N. Türkan et al. ‘Comparison of change detection performance
and visual search patterns among children with/without ADHD:
Evidence from eye movements’. In: Research in Developmental Disab-
ilities 49-50 (2016), pp. 205–215. DOI: 10.1016/j.ridd.2015.12.002.

[98] R. A. Rensink, J. K. O’Regan and J. J. Clark. ‘To See or not to See: The
Need for Attention to Perceive Changes in Scenes’. In: Psychological
Science 8.5 (1997), pp. 368–373. DOI: 10 . 1111 / j . 1467 - 9280 . 1997 .
tb00427.x.

[99] M. P. Bucci et al. ‘Oculomotor Abnormalities in Children with
Attention-Deficit/Hyperactivity Disorder Are Improved by Methyl-
phenidate’. In: Journal of child and adolescent psychopharmacology 27.3
(2017), pp. 274–280. DOI: 10.1089/cap.2016.0162.

[100] G. Wainstein, D. Rojas-Líbano and N. A. Crossley. ‘Pupil Size
Tracks Attentional Performance In Attention-Deficit/Hyperactivity
Disorder’. In: Sci Rep 7 8228 (2017). DOI: 10.1038/s41598-017-08246-
w.

110

https://doi.org/10.1097/CHI.0b013e31819996da
https://doi.org/10.1097/CHI.0b013e3181a565f1
https://doi.org/10.1080/15374416.2010.517168
https://doi.org/10.1093/schbul/sbp035
https://doi.org/10.1093/schbul/sbp035
https://doi.org/10.1016/j.braindev.2009.04.017
https://doi.org/10.1016/j.braindev.2009.04.017
https://doi.org/10.1371/journal.pone.0125573
https://doi.org/10.1371/journal.pone.0125573
https://doi.org/10.1016/j.ridd.2015.12.002
https://doi.org/10.1111/j.1467-9280.1997.tb00427.x
https://doi.org/10.1111/j.1467-9280.1997.tb00427.x
https://doi.org/10.1089/cap.2016.0162
https://doi.org/10.1038/s41598-017-08246-w
https://doi.org/10.1038/s41598-017-08246-w


[101] V. J. Serrano, J. S. Owens and B. Hallowell. ‘Where Children With
ADHD Direct Visual Attention During Emotion Knowledge Tasks:
Relationships to Accuracy, Response Time, and ADHD Symptoms’.
In: Journal of Attention Disorders 22.8 (2018), pp. 752–763. DOI: 10 .
1177/1087054715593632.

[102] S. Caldani et al. ‘The Effect of Dual Task on Attentional Performance
in Children With ADHD’. In: Frontiers in integrative neuroscience
12.67 (2019). DOI: 10.3389/fnint.2018.00067.

[103] J. Fernandez-Ruiz et al. ‘Dorsolateral prefrontal cortex hyperactivity
during inhibitory control in children with ADHD in the antisaccade
task. Brain imaging and behavior’. In: Frontiers in integrative neuros-
cience 14.6 (2020), pp. 2450–2463. DOI: 10.1007/s11682-019-00196-3.

[104] J. H. Huang and Y. S. Chan. ‘Saccade eye movement in children
with attention deficit hyperactivity disorder’. In: Nordic Journal of
Psychiatry 74.1 (2020), pp. 16–22. DOI: 10 . 1080 / 08039488 . 2019 .
1666919.

[105] G. Singh. ANOVA: Complete guide to Statistical Analysis & Applica-
tions. 2023. URL: https://www.analyticsvidhya.com/blog/2018/01/
anova-analysis-of-variance/ (visited on 12/02/2023).

[106] Statistics How To. ANOVA Test: Definition, Types, Examples, SPSS.
2023. URL: https://www.statisticshowto.com/probability-and-statistics/
hypothesis-testing/anova/ (visited on 12/02/2023).

[107] Wikipedia contributors. Wechsler Intelligence Scale for Children —
Wikipedia, The Free Encyclopedia. 2023. URL: https://en.wikipedia.org/
w/index.php?title=Wechsler_Intelligence_Scale_for_Children&oldid=
1139727872 (visited on 18/03/2023).

[108] T. Z. Keith and E. L. Witta. ‘Hierarchical and cross-age confirmatory
factor analysis of the WISC-III: What does it measure?’ In: School
Psychology Quarterly 12 (1997), pp. 89–107. DOI: 10.1037/h0088950.

[109] O. Moura, P. Costa and M. R. Simões. ‘WISC-III Cognitive Profiles
in Children with ADHD: Specific Cognitive Impairments and
Diagnostic Utility’. In: The Journal of General Psychology 146.3 (2019),
pp. 258–282. DOI: 10.1080/00221309.2018.1561410.

[110] A. C. Wood et al. ‘The relationship between ADHD and key
cognitive phenotypes is not mediated by shared familial effects with
IQ’. In: Psychological medicine 41.4 (2011), pp. 861–71. DOI: 10.1017/
S003329171000108X.

[111] S. D. Mayes and S. L. Calhoun. ‘WISC-IV and WISC-III Profiles in
Children With ADHD’. In: Journal of Attention Disorders 9.3 (2006),
pp. 486–493. DOI: 10.1177/1087054705283616.

[112] C. Mealer, S. B. Morgan and R. L. Luscomb. ‘Cognitive functioning
of ADHD and non-ADHD boys on the WISC-III and WRAML: An
analysis within a memory model’. In: Journal of Attention Disorders 1
(1996), pp. 133–145. DOI: 10.1177/108705479600100302.

111

https://doi.org/10.1177/1087054715593632
https://doi.org/10.1177/1087054715593632
https://doi.org/10.3389/fnint.2018.00067
https://doi.org/10.1007/s11682-019-00196-3
https://doi.org/10.1080/08039488.2019.1666919
https://doi.org/10.1080/08039488.2019.1666919
https://www.analyticsvidhya.com/blog/2018/01/anova-analysis-of-variance/
https://www.analyticsvidhya.com/blog/2018/01/anova-analysis-of-variance/
https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/anova/
https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/anova/
https://en.wikipedia.org/w/index.php?title=Wechsler_Intelligence_Scale_for_Children&oldid=1139727872
https://en.wikipedia.org/w/index.php?title=Wechsler_Intelligence_Scale_for_Children&oldid=1139727872
https://en.wikipedia.org/w/index.php?title=Wechsler_Intelligence_Scale_for_Children&oldid=1139727872
https://doi.org/10.1037/h0088950
https://doi.org/10.1080/00221309.2018.1561410
https://doi.org/10.1017/S003329171000108X
https://doi.org/10.1017/S003329171000108X
https://doi.org/10.1177/1087054705283616
https://doi.org/10.1177/108705479600100302


[113] R. Lopes et al. ‘WISC-III Sensibility in the identification of Attention
Deficit Hyperactivity Disorder (ADHD)’. In: Panamerican Journal of
Neuropshychology 6 (2012), pp. 128–140. DOI: 10.7714/cnps/6.1.208.

[114] IBM. What is logistic regression? 2023. URL: https://www.ibm.com/
topics/logistic-regression (visited on 12/02/2023).

[115] Wikipedia contributors. Logistic regression — Wikipedia, The Free
Encyclopedia. 2023. URL: https://en.wikipedia.org/w/index.php?title=
Logistic_regression&oldid=1140140318 (visited on 18/03/2023).

[116] IBM. About SVM. 2021. URL: https://www.ibm.com/docs/en/spss-
modeler/saas?topic=models-about-svm (visited on 18/03/2023).

[117] A. Sasidharan. Support Vector Machine Algorithm. 2022. URL: https :
//www.geeksforgeeks.org/support-vector-machine-algorithm/ (visited
on 18/03/2023).

[118] R. Gandhi. Support Vector Machine — Introduction to Machine Learning
Algorithms. 2018. URL: https : / / towardsdatascience . com / support -
vector - machine - introduction - to - machine - learning - algorithms -
934a444fca47 (visited on 18/03/2023).

[119] IBM. What is a Decision Tree? 2023. URL: https://www.ibm.com/topics/
decision-trees (visited on 18/03/2023).

[120] IBM. What is random forest? 2023. URL: https://www.ibm.com/topics/
random-forest (visited on 18/03/2023).

[121] T. Yiu. Understanding Random Forest: How the Algorithm Works and
Why it Is So Effective. 2019. URL: https : / / towardsdatascience . com/
understanding-random-forest-58381e0602d2 (visited on 18/03/2023).

[122] IBM. K-Nearest Neighbors Algorithm. 2023. URL: https : //www. ibm.
com/topics/knn (visited on 18/03/2023).

[123] O. Harrison. Machine Learning Basics with the K-Nearest Neighbors
Algorithm. 2018. URL: https : / / towardsdatascience . com / machine -
learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
(visited on 18/03/2023).

[124] Analyse Up. Stratified Kfold Tutorial. 2023. URL: https : / / www .
analyseup.com/python-machine- learning/stratified-kfold.html (visited
on 03/04/2023).

[125] G. I. Webb et al. ‘Leave-One-Out Cross-Validation’. In: Encyclopedia
of Machine Learning. 2011, pp. 600–601. DOI: 10 . 1007/978 - 0 - 387 -
30164-8_469.

[126] P. Misra and A. S. Yadav. ‘Improving the classification accuracy
using recursive feature elimination with cross-validation’. In: Int. J.
Emerg. Technol 11.3 (2020), pp. 659–665.

[127] E. Bisong. ‘More supervised machine learning techniques with
scikit-learn’. In: Building Machine Learning and Deep Learning Models
on Google Cloud Platform: A Comprehensive Guide for Beginners (2019),
pp. 287–308. DOI: 10.1007/978-1-4842-4470-8_24.

112

https://doi.org/10.7714/cnps/6.1.208
https://www.ibm.com/topics/logistic-regression
https://www.ibm.com/topics/logistic-regression
https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=1140140318
https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=1140140318
https://www.ibm.com/docs/en/spss-modeler/saas?topic=models-about-svm
https://www.ibm.com/docs/en/spss-modeler/saas?topic=models-about-svm
https://www.geeksforgeeks.org/support-vector-machine-algorithm/
https://www.geeksforgeeks.org/support-vector-machine-algorithm/
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://www.ibm.com/topics/decision-trees
https://www.ibm.com/topics/decision-trees
https://www.ibm.com/topics/random-forest
https://www.ibm.com/topics/random-forest
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://www.ibm.com/topics/knn
https://www.ibm.com/topics/knn
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://www.analyseup.com/python-machine-learning/stratified-kfold.html
https://www.analyseup.com/python-machine-learning/stratified-kfold.html
https://doi.org/10.1007/978-0-387-30164-8_469
https://doi.org/10.1007/978-0-387-30164-8_469
https://doi.org/10.1007/978-1-4842-4470-8_24


[128] M. Gusarov. Do I need to tune logistic regression hyperparameters? 2022.
URL: https://medium.com/codex/do-i-need-to-tune-logistic-regression-
hyperparameters-1cb2b81fca69 (visited on 03/04/2023).

[129] R. Pramoditha. Why do we set a random state in machine learning
models? 2022. URL: https://towardsdatascience.com/why-do-we-set-
a-random-state-in-machine-learning-models-bb2dc68d8431 (visited on
03/04/2023).

[130] A. Lekhtman. Data Science in Medicine — Precision & Recall or
Specificity & Sensitivity? 2019. URL: https://towardsdatascience.com/
should-i-look-at-precision-recall-or-specificity-sensitivity-3946158aace1
(visited on 23/03/2023).

https://medium.com/codex/do-i-need-to-tune-logistic-regression-hyperparameters-1cb2b81fca69
https://medium.com/codex/do-i-need-to-tune-logistic-regression-hyperparameters-1cb2b81fca69
https://towardsdatascience.com/why-do-we-set-a-random-state-in-machine-learning-models-bb2dc68d8431
https://towardsdatascience.com/why-do-we-set-a-random-state-in-machine-learning-models-bb2dc68d8431
https://towardsdatascience.com/should-i-look-at-precision-recall-or-specificity-sensitivity-3946158aace1
https://towardsdatascience.com/should-i-look-at-precision-recall-or-specificity-sensitivity-3946158aace1




Appendix A

Code repository

The codes used in the project are available on GitHub at the following
address:

https://github.com/Chris-s366258/Eye_Tracking.
The code files are written in Python format.
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