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Abstract 
Historically, poor sanitation has always been a concern as it causes diseases such as cholera, intestinal 

worm infections, polio, typhoid, and dysentery. Sanitation problems are still a pressing issue for many 

people around the world. Developing an energy and cost-effective wastewater treatment and water 

resource recovery facility that could potentially be scaled up for a wider adoption would be a virtues 

pursuit. The Hias process uses biofilm carriers in anerobic and aerobic basins that absorbs the nutrients 

that comes into the wastewater treatment facility. This enhanced biological phosphorus removal (EBPR) 

process is being performed in moving-bed bioreactor (MBBR). It is able to remove 90% of phosphorus or 

polyphosphate (PO4-P) from the wastewater. Hias IKS Wastewater treatment and water resource recovery 

facilities (WRRF) is an end user in PACBAL research project lead by Tiina Komulainen, which is the 

main supervisor for this master’s thesis. Control strategies in a wastewater treatment plant is crucial, as it 

allows for efficient management of the water purification process to safeguard our environment. The focus 

and goal for this master’s thesis is to improve the Hias process energy efficiency by implementing 

advanced control strategies. Developing the traditional industry standard control strategy, the Proportional-

integral-derivative (PID) controller, will be compared against the novel approach of a model predictive 

controller (MPC) in the Hias process. The MPC designed in this project achieved better results than the 

PID when it comes to disturbance rejection, set point tracking and energy efficiency. However, the PID 

utilizes simpler control structures and has lower computational time than the MPC. This is often more 

desirable for industrial implementation. The development of these control strategies is an important step 

towards industrial implementation. The control strategies are based on transfer functions derived by system 

identification of the online data provided for the Hias process. The datasets contained online measurements 

of soluble chemical oxygen demand (SSins)-, flowrate of wastewater (FS)- and NO2/NO3 (NOX) in the inlet. 

It also contained flow rate of oxygen (FO)- and dissolved oxygen (SO) in the aerobic basins. The datasets 

also contained polyphosphate that comes out the disc filter (SPOd). These variables will be simulated as 

virtual sensors by utilizing Matlab Simulink. The preprocessing of the datasets achieved adequate 

correlation between the variables used for the transfer functions. While the dynamic linear models obtained 

from the system identifications gave sufficient results for control strategy implementation.  

The chapters in this thesis will first describe the first part of the project which is the data preprocessing 

of the online data. Then the system identification to obtain the dynamic linear models represented as 

transfer functions will be discussed for each chapter. The control strategies developed based on the transfer 

functions will be the last part of each section.  
 

Keywords—Nutrient removal process, Model predictive controller, Proportional-integral-derivative 

controller, Hias process, virtual sensors, MBBR, EBPR.  
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I. INTRODUCTION 

Wastewater treatment and water resource recovery facilities (WRRFs) is an expensive- and energy 

demanding process (Nair et al., 2022). WRRFs are one of the most power consuming parts of the electrical 

grid in the public domain (European commission, 2021). This is even more emphasized with the rising 

energy bills economies are facing in the new geopolitical climate. Building a control system that maintains 

the exact amount of energy needed at any time to maintain the correct nutrient level will use less energy 

and this will reduce cost. This will reduce taxpayers’ money and will make it easier for municipalities to 

invest in it because of the cost reduction. This will make it easier to build out this much needed 

infrastructure. The nutrient levels should also not cause any harm to society and the ecological 

environment. Too many nutrients in an environment can lead to eutrophication problems (Rudi et al., 

2019). The Norwegian government requires WRRFs in Norway to remove 90% of phosphorus that comes 

into the WRRF (Forskrift Om Begrensning Av Forurensning (Forurensningsforskriften) - Del 4. Avløp - 

Lovdata, 2021).  

Hias IKS is the company behind the Hias process and is also the company that has provided the data 

needed for this master’s thesis. The Hias process is an enhanced biological phosphorus removal (EBPR) 

process in a moving bed biofilm reactor MBBR. The Hias process has shown that using biofilms that 

absorbs the phosphorus and carbon can make significant impact (Rudi et al., 2019). Achieving a 90% 

removal of phosphorus or polyphosphate (PO4-P) and 66% removal of sCOD, Rudi et al. showcased how 

advantageous the Hias process can be. The removed PO4-P of the Hias process is being used for the 

fertilizer struvite, which is very important for the agriculture industry since this is a limited resource (Rudi 

et al., 2019).  

Model predictive controller (MPC) or other advanced control strategies have not yet been implemented 

to control the phosphorus in the Hias process. Implementing such a system can be a beneficial contribution 

to reduce the energy need for the air supply. Estimating how much each part of the Hias WRRF that uses 

the most energy can be challenging. However, Hias IKS has estimated that the air supply does consume 

the most energy and has estimated it to be around 70%. Controlling the nutrient levels in the most energy 

efficient way in the Hias process will not only reduce the consumption of energy which will benefit the 

environment, but also be cost effective and could possibly reduce the need for maintenance. A MPC is a 

control strategy that predict future behavior of a system and optimize control actions by utilizing 

mathematical models (Darby & Nikolaou, 2012). The MPC will optimize multiple controlled variables by 

using information of process influent variables and dynamic models. The MPC will be a replacement of 

one PID controller and six ratio controllers that controls the flow rate of oxygen in the Hias WRRF.  

Developing the traditional and industry standard PID controller to compare it against a novel approach 

such as MPC will showcase the strengths and weaknesses of the two control strategies. The PID controller 

is a feedback control algorithm broadly used for industrial applications which can be applied to a variety 

of processes (Araki, M. 2009). A PID controller has proportional, integral, and derivative elements that 

serve different objectives. Combinations of these elements can be applied to various purposes such as 

temperature, speed, and position for instance. The PID controller will control the aeration going through 
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the seven aerobic basins of the Hias process. Using a PID controller at the fifth basin (which is the second 

aerobic basin) to control the air supply through the valves for each of the seven aerobic basins will be the 

main objective. The PID controller will control the flow rate of oxygen in basin five (FO5) of the WRRF 

system. The ratio controllers are a percentage of the PID controller. These ratio controllers will control the 

flow rate of oxygen for basin 4, 6, 7, 8, 9 and 10 (FO4s, FO6s, FO7s, FO8s, FO9s, FO10s). The first valve 

has the most impact since the aeration rate is the strongest here and was originally the valve that was going 

to be controlled by the PID controller. That’s why the ratio controller for FO4 has a higher value than for 

the FO5. The next valves have descending impacts on the PID.  

Control strategies can be developed using many different methods. One of which is by collecting online 

data from the real sensors from the WRRF and use them as virtual sensors in a simulation software. Online 

data was collected from the Hias WRRF and was used in the simulation program Matlab Simulink. 

Dynamic linear models in the form of transfer functions can be identified by the software program Matlab 

System identification.  These transfer function will be a mathematical representation of the WRRF and 

control strategies can simulated using these mathematical models.  

A. Research questions 

How energy effective would it be to use a MPC to control the phosphorus levels in the Hias process? 

Are there other control methods such as PID that can reduce the energy consumption better than an MPC? 

These are the research questions that are going to be explored for this master’s thesis. 
 

II. BACKGROUND 

The Hias process is an enhanced biological phosphorus removal (EBPR) process in a moving bed biofilm 

reactor (MBBR). The variables used in this project can be seen in Table 1. This means that microorganisms 

in the form of biofilm seen in Figure 1 will absorb or “eat” the contaminated nutrients in the environment 

it is in (Rudi et al., 2019). The environment here being a MBBR process. The phosphorus accumulative 

organisms (PAO) in the biofilm are the organisms that removes the phosphorus (Xylem YSI Municipal 

Water, 2021). They can store either polyphosphate (SPO) or poly-B-hydorxybutyrate (PHB), which is 

illustrated in Figure 2. The PAO process is depended on how much dissolved oxygen is in the wastewater. 

Volatile fatty acids (VFAs) in the anerobic basins are created in the anaerobic basins by fermentative 

bacteria using wastewater's carbon content.  In the anerobic basins the biofilm will release polyphosphate 

(SPO) which will increase the SPO levels in the first three anerobic basins of the Hias process. This happens 

when the PAO releases stored polyphosphate in biomass. The PAO organism will use polyphosphate as 

energy to get a carbon uptake for VFAs, this will convert the VFAs to poly-B-hydroxybutyrate (PHB) for 

storage. This can be measured by soluble oxygen demand (sCOD, SSins) since it is an indirect way of 

measuring biological oxygen demand (BOD).   

When air is applied in the aerobic basins, the biofilm will take up polyphosphate (SPO) and other 

nutrients which will decrease the levels of the nutrients from basin 4 (B4) until basin 10 (B10), this can 

be seen in Figure 2. It will have the uptake of SPO since the PAOs is able to generate energy by 

metabolizing the stored PHB with dissolved oxygen (SO). Dissolved oxygen and aeration (FO) are closely 

correlated since air applied to the system will increase the oxygen levels. That’s why the aeration rate (FO) 

or the air supply has a crucial role in the process. The conveyer belt moves the biofilm over from basin 10 

(B10) to basin 1 (B1), seen in Figure 1. The process will start over, and this will create a continuous loop. 

The SPO will be separated by the disk filter, where treated wastewater will go out to Gudbrandsdalsågen 

which leads to the Oslofjord, and SPO will be collected and used for fermentation. The PO4-P analyzer 

measures SPO that comes after the disc filter. The variable name chosen for this measurement was set to 

SPOd. The biofilm’s ability to absorb nutrients is also heavily affected by how much wastewater that comes 

into the treatment plant. The measurement of the flow rate of wastewater (FS) at the inlet is therefore 

crucial for estimation of the polyphosphate levels at the disc filter. Soluble chemical oxygen demand 

(sCOD, SSins) at the inlet would be an important measurement since if there are high levels of sCOD it will 

cause an increase of biological oxygen demand, which effects the biofilm’s ability to break down organic 
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matter. Nitrogen dioxide (NO2) and Nitrate (NO3) is important nutrients. Organisms are reliant on it for 

their survival and growth. However, too much of it leads to eutrophication problems.  

Other EBPR processes around the world mostly use active sludge-based processes which struggles with 

efficiency and stability (Rudi et al., 2019). The Hias process has replaced the active sludge-based process 

with a MBBR process. The benefits with this are that MBBR approaches can maintain low process volume 

while also being cost effective and continue a stable phosphorus removal process (Helness & Ødegaard, 

1999).  

 
 

Figure 1 System description of the Hias process 

 

 

 

 

 

Figure 2 The biofilms behavior in anaerobic and aerobic basins (Phosphorus in wastewater, Analysis 

Removal Strategies, 2023) 

The complete online data for December of 2022 are collected industrial data from the Hias process in 

Hamar, Norway. The online data has a sampling time of 10 minutes, containing 4399 data points in total. 

It includes online measurements of wastewater flow (FS)-, soluble chemical oxygen demand (SSins)- at the 

influent which is two of the disturbance variables (DVs) seen in Figure 1. Nitrogen dioxide (NO2) and 

Nitrate (NO3) combined (NOX) at the influent is the third disturbance variable for this project. Disturbance 

Anaerobic basins Aerobic basins 
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variables are variables that creates a lot of noise or instability to a system. The fourth DV are 

polyphosphate (SPO) at the influent, and this are being estimated by another person on the same project, 

Bipasha Mukherjee. She’s doing this by using regression with SSins and the FS as one variable and SPO as 

another in the influent. Since her work won’t be available in time for this master’s thesis, the use of transfer 

function with only SS and the FS to estimate the SPOd out of the system will be the best solution. This will 

deem it unnecessary to have an estimation of SPO at the influent. The last disturbance variable is 

temperature, unfortunately, there are no online measurement of this variable.  

The datasets contain online measurements of flow rate of oxygen (FO) for all the aerobic basins as well. 

These are the manipulated variables (MVs) in the process. Manipulated variables are the variables in a 

system that you want to adjust or change to get the most optimal control variables (CVs). The control 

strategy must be able reject and dampen the DVs as sufficient as possible to contain the set point which is 

based on the control variable.  

The online data for polyphosphate (SPOd) that comes out of the disk filter is being collected as well, this 

is the control variables of the system. A control variable is the desired variable of a system. If the 

measurements that are being controlled by control strategies can follow CV sufficiently it is a suitable 

control strategy that has the potential for industrial implementation.   

The lab data will not be used for this master’s thesis. However, it has been a good instrument for 

validating assumptions. The industrial dataset also includes online measurements of dissolved oxygen (SO) 

in basin 4, 5, 6, 8, and 9. A formula was created for basins 7 and 10, and interpolated values were then 

used as a substitute. These were originally some of the CVs. However, the control strategies for SO were 

not successful since there should have been implemented transfer functions (TFs) between SO and 

polyphosphate that comes out of the disk filter (SPOd) to get it to work.  

The datasets used for the project should have minimal missing values, it should also be a period where 

the SPOd fluctuates as much as possible. Taking this into consideration the period of 20/12/22 until 25/12/22 

(week 51) for one of the datasets, and the period of 13/12/22 until 18/12/22 (week 50) was chosen as the 

datasets used for the master’s thesis. Another dataset was originally used as the validation dataset and was 

the period 06/12/22 until 11/12/22 (week 49). The first time being 07:50 and the last time being 23:40 for 

all the datasets. The names of the datasets were given as Hias_onlinedata_w49 for the week 49 dataset, 

Hias_onlinedata_w50 for the week 50 dataset and Hias_onlinedata_w51 for the week 51 dataset.  

In Table 1 the variables used for this master’s thesis have been provided. The variables without nominal 

values are just variables needed to explain certain aspect of this paper. The nominal values are the mean 

of each of the variables during week 51 of 2022. The variables that were scaled has the “s” notation after 

the variable name to differentiate scaled and unscaled variables, they are all scaled by dividing them by 

1000. The scaled variables are used for the whole project. The unscaled variables were only used for the 

first experiments for system identification. The units will in this case not be accurate for the scaled 

variables. The units placed in this table are the original units for the variable. It is common to work with 

dimensionless variables in control engineering. The NOX and FS variable should have had the “in” 

notation in its name as well. The variable column describes which type of variable it is, where DV is 

disturbance variables, MV is manipulated variables, and CV is control variables. The description column 

explains the variable shortly.  
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Table 1 Online measurements in the Hias process and other variables  

 

 

III. MATERIALS AND METHODOLOGY 

A. Hardware and software 

The software was run on a Macbook Air 2020, 16 gig ram and m1 processor. Google Colab with python 

version 3.10.11 was used for data analysis and preprocessing. The data analysis and preprocessing are 

implemented in the python code, this can be located in the appendix section IX.C. Microsoft Excel for 

Mac version 16.71 (23031200) was used for preprocessing. Matlab software package version R2022a was 

used for the simulations. The simulation method was ode15s with automatic settings for the time step and 

error tolerance. The model parameters and test procedures are implemented in m-script, seen in the 

appendix section IX.A. The datasets are imported to Matlab System Identification toolbox, where different 

models are being tested to get the best parameters and results possible.  

 

Variable Description Nominal 

value at t=0 

Unit Variable 

type 

SF Readily biodegradable substrate  mg COD/ L  

SA Volatile fatty acids/acetate (fermentation products)  mg COD/ L  

PP Stored polyphosphate in biomass  mg P/L  

PHA Stored PHA in biomass  mg COD/ L  

V Volume of one basin 215 m3  

FS Flow rate of wastewater that comes in 0.087 L/s DV 

SS Soluble chemical oxygen demand (sCOD)  mg COD/L  

SSins Soluble chemical oxygen demand (sCOD) in inlet 0.5088 mg COD/L DV 

NO2 Nitrogen dioxide  mg m3/L DV 

NO3 Nitrate  mg/L DV 

NOX NO2 and NO3 combined in inlet 2.6089 mg/L DV 

FO Air supply, flow rate of oxygen (aeration)  Nm3/h MV 

FO4s Flow rate of oxygen (aeration) in B4 2.9980 Nm3/h MV 

FO5s Flow rate of oxygen (aeration) in B5 1.8193 Nm3/h MV 

FO6s Flow rate of oxygen (aeration) in B6 1.5715 Nm3/h MV 

FO7s Flow rate of oxygen (aeration) in B7 1.0550 Nm3/h MV 

FO8s Flow rate of oxygen (aeration) in B8 0.8462 Nm3/h MV 

FO9s Flow rate of oxygen (aeration) in B9 0.6239 Nm3/h MV 

FO10s Flow rate of oxygen (aeration) in B10 0.5214 Nm3/h MV 

SO  Dissolved oxygen O2  mg O2 /L CV 

SO4 Dissolved oxygen O2 in B4 5.3729 mg O2 /L CV 

SO5 Dissolved oxygen O2 in B5 6.0622 mg O2 /L CV 

SO6 Dissolved oxygen O2 in B6 5.8070 mg O2 /L CV 

SO7 Dissolved oxygen O2 in B7 5.4728 mg O2 /L CV 

SO8 Dissolved oxygen O2 in B8 5.1387 mg O2 /L CV 

SO9 Dissolved oxygen O2 in B9 5.0493 mg O2 /L CV 

SO10 Dissolved oxygen O2 in B10 4.9598 mg O2 /L CV 

SPO Polyphosphate PO4-P   mg P/L  

SPOd Polyphosphate PO4-P after disk filter 0.2325 mg P/L CV 
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B. Simulation models  

The simulations models were developed using Simulink, they can be seen in the appendix section IX.B.  

Where Figure 28 shows the simulation model for the dynamic linear model. Figure 29 describes the 

simulation model for the linear model. Figure 30 is the simulation model for the Proportional-integral-

derivative (PID) controller. Figure 31 shows the simulation model for the model predictive controller 

(MPC).  

 

C. Collection of data and pre-processing 

The operational data was obtained by using the Industrial IoT platform KYB. The platform was developed 

by Digitread Connect. The online data used for this project was gathered in .csv format. The datasets 

naturally contained outliers, these where removed. There was also missing values that needed to be filled. 

This can be done by interpolating, or filling values between two datapoints with data that obtains the same 

dynamics as the rest of the dataset. This was done with K-nearest-neighbor (kNN) and manually 

interpolating in Excel with the series function. kNN is a machine learning algorithm that finds the closest 

value in the dataset and uses it to fill in for the missing values between two points (Discriminatory 

Analysis. Nonparametric Discrimination: Consistency Properties on JSTOR, 2023). Linear interpolation 

with the “interp1” function in Matlab was also done after importing the datasets. Linear interpolation uses 

values between two datapoints and will fill them with increasing or decreasing values and not the same 

value for every missing value which is what kNN does (Meijering, 2002).  

 

D. Sampling time 

The time it takes for the wastewater to flow from the inlet to the outlet in the Hias process can be expressed 

by using time delays that are representative of the process. This delay can be derived by the equation 

below, eq. (1), where V is the volume each basin, which must be multiplied with 10 basins. Fmean  is the 

mean of the flowrate of wastewater that comes into the system. This variable had to have the m3/min 

unit. The variable for wastewater in Table 1 section II uses the scaled FS (0.087) where the unit is for this 

variable are actually for the unscaled variable (L/s). This means it must be multiplied by 1000 to get L/s 

(this gives 87 L/s). To get it in minutes it must be multiplied with 60 (5220L/min). Then there is a need 

to convert liters into cubic meters, this is done by dividing by 1000 (5.22m3/min):  
 

 10 ∙ V 

Fmean 
=

10 ∙ 215m3

5.22m3/min
= 411.8774min 

 

(1) 

The time delays (Td) can be seen in Table 3. However, the delay for variables in basin 4-10 will vary. For 

basin 4 for example it would be a sampling time of 164.75min, the next basin would be 205.94min and so 

on.  

 

E. Dynamic models 

The dynamic linearized models were derived by transfer functions that were obtained by the Matlab 

system identification toolbox. The general principle of system identification can be seen in Figure 3. The 

experiment design in this case would be the design of the Hias process. The online measurements collected 

from the Hias process would be the second part. There are many different model sets that can be chosen. 

The model sets can be state-space models, transfer function (TF), polynomial models, and many others. 

For this project many different variations of TFs were explored. Zeroth order, first order, second order 

TFs with and without time delay. A zeroth order TF would not have any time constant, while a first order 

would, and a second order TF would have two time constants. Many of these models produce adequate 

results. However, the problem comes in when the criteria are being chosen. Since the transfer functions 

should represent the system in the best possible way, the parameters are the most important part. For the 
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Hias wastewater resource and recovery facility (WRRF) the Kp value should be negative for all the 

aeration (𝐹𝑂) values and be a small number to remove polyphosphate (SPOd). While the Kp value for the 

disturbance variables ( 𝑆𝑆𝑖𝑛𝑠 , 𝐹𝑆, and NOX) should be positive and relatively small to preserve the quality 

of the wastewater. The time constants and time delays should simulate the time each of the inputs would 

take in the real process as close as possible. If the chosen model and parameters (criteria) gives bad result 

(calculated model) it would have to be revised. This will be done over again until the results are adequate 

to move on. This is decided based on the final prediction error (FPE), mean squared error (MSE), fit to 

validation- and estimation data. The FPE and MSE values should be as low as possible, while fit to 

validation- and estimation data should be as close to 100% as possible.  

 

 

 
Figure 3 How to perform system identification (Ljung, L. (1999) Chapter 1 figure 1.10 P.15) 

 

The transfer functions for polyphosphate in the disk filter (SPOd) can be seen in eq.(2). The equation 

describes a second order transfer function between the output Y(s) (SPOd) and the inputs Ui(s) (SSins, FS, 

NOX, FO4s-FO10s). Where Y(s) contains one gain (Kp), two time constants (Tp1 and Tp2) and one time 

delay (Td). The values in the Table 6, Table 7, and Table 8 section 0 are based on equation (2). The same 

goes for every other table in the appendix chapter IX. The same goes for the tuning of the control strategies. 

The parameters and transfer functions for SPOd can be seen in Table 2. The FO7s_SPOd and FO8s_SPOd 

has been replaced with FO5s_SPOd since FO7s_SPOd and FO8s_SPOd originally had positive Kp which is 

not desirable.  

 

 

 
TF(s) =

Y(s)

Ui(s)
=

Kp

(1 + Tp1s)(1 + Tp2s)
e−Tds 

(2) 
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Table 2 Transfer functions for SPOd (also named tf_ SPOd and tf_s51sfnfspo) by using eq. 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To get the right format for m-script the equation had to be reformulated. The formula for the transfer 

functions for polyphosphate (SPOd) can be seen in eq. (3).  This will give different values for Kp, 𝑇𝑝1, 𝑇𝑝2, 

which is presented in Table 3 

 

 
TF(s) =

Y(s)

Ui(s)
=

Kp

(Tp1 s2 + Tp2s + 1)
e−Tds 

(3) 

   

 

 

 

 

 

 

 

 

 

 

 

 

Transfer 

function name 

Input 

variable 

Output 

variable 
Kp 𝑇𝑝1 𝑇𝑝2 𝑇𝑑 

SSins _SPOd SSins SPOd 0.43109 

 

60 

 

2.3332 

 

359.72 

 

FS _SPOd FS SPOd 1.2924 

 

30 

 

9.2551 

 

79.46 

 

NOX_SPOd NOX SPOd 0.0023115 

 

46.596 

 

0.002675

1 

147.61 

 

FO4s_SPOd FO4s SPOd -0.0029016 18.919 

 

24.979 

 

47.75 

 

FO5s_SPOd FO5s SPOd -0.029011 

 

23.394 

 

28.69 

 

81.34 

 

FO6s_SPOd FO6s SPOd -0.047375 

 

49.545s 

 

6.1161 

 

57.45 

 

FO5s_SPOd FO5s SPOd -0.029011 

 

23.394 

 

28.69 

 

81.34 

 

FO5s_SPOd FO5s SPOd -0.029011 

 

23.394 

 

28.69 

 

81.34 

 

FO9s_SPOd FO9s SPOd -0.053278 

 

60 

 

13.342 

 

304.8 

 

FO10s_SPOd FO10s SPOd -0.21394 

 

60 

 

1.3255 

 

315.41 
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Table 3 Transfer functions for SPOd (also named tf_ SPOd and tf_s51sfnfspo) using eq. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F. Experimental plan for system identification 

Table 4 illustrates the experimental plan for the system identification part of this project. Almost every 

test conducted for system identification can be seen in this table. For validation data the week 49 dataset 

has been chosen first and is the validation data for tf_b4_foso, tf_b5_foso, tfb4_ffoso, tf_b5_ffoso, tf_sspo, 

tf_sfsspo and tf_sfnfspo. The rest of the TFs has week 51 as validation data instead. The week 50 dataset 

is being used as the estimation data. The inputs and outputs for each of the transfer functions (TFs) can be 

seen in Table 4. The first TFs being for the control variable dissolved oxygen (SO), which will not be 

explored further for this project. While the other TFs are for the main control variable, which is the 
polyphosphate out of the disc filter (SPOd).  

Tf_b4_foso and tf_b5_foso were the TFs that was tested first without F, then with F and SSin and lastly 

with FS and SSins. F being the flow rate of wastewater before scaling it by 1000. SSin being the Soluble 

chemical oxygen demand in the inlet before scaling. FS and SSins are the same variable just with scaled 

values. This was done to preprocess and fine tune the model set before doing the same for the rest of the 

TFs. Some work was done on tf_b4_sffoso, tf_b5_sffoso, tf_b6_sffoso, tf_b7_sffoso, tf_b8_sffoso, 

tf_b9_sffoso, tf_b10_sffoso before scaling the variables completely in the dataset for tf_s51sfnfspo. Some 

documentation was made and will be included in the appendix 3. However, it was decided to redo them 

all with week 51 as validation dataset. The first tests with just aeration rate (FO) and dissolved oxygen 

(SO) was done with week 49 as validation data. The tests with F included was also done with week 49 as 

validation data. However, all the TFs with FO, SO, FS and SSins  as input and SO as output was done on the 

scaled datasets for week 50 and week 51. The variables that were scaled has the “s” notation after the 

variable name to differentiate scaled and unscaled variables. The scaled variables are used for the whole 

Transfer 

function name 

Input 

variable 

Output 

variable 
Kp 𝑇𝑝1 𝑇𝑝2 𝑇𝑑 

SSins _SPOd SSins SPOd 0.43109 

 

139.992 62.332 

 

359.72 

 

FS _SPOd FS SPOd 1.2924 

 

277.653 39.2551 

 

79.46 

 

NOX_SPOd NOX SPOd 0.0023115 

 

0.12464 

 

46.59867

5 

147.61 

 

FO4s_SPOd FO4s SPOd -0.0029016 472.5777

01 

43.898 

 

47.75 

 

FO5s_SPOd FO5s SPOd -0.029011 

 

671.1972

5 

52.085 

 

81.34 

 

FO6s_SPOd FO6s SPOd -0.047375 

 

303.0221

745 

 

55.6611 

 

57.45 

 

FO5s_SPOd FO5s SPOd -0.029011 

 

671.1972

5 

52.085 

 

81.34 

 

FO5s_SPOd FO5s SPOd -0.029011 

 

671.1972

5 

52.085 

 

81.34 

 

FO9s_SPOd FO9s SPOd -0.053278 

 

800.52 

 

73.342 

 

304.8 

 

FO10s_SPOd FO10s SPOd -0.21394 

 

79.53 

 

61.3255 

 

315.41 
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project. The unscaled variables were only used for the first attempts for system identification seen in Table 

4. 

The transfer functions for polyphosphate (SPOd) were first tested on the week 49 dataset (tf_sspo, 

tf_sfsspo, tf_sfnfspo). The results here was not adequate. Later in the project the validation dataset was 

swapped with week 51 dataset (tf_51sfnfspo). This improved the results for SPOd. However, the scaling 

of SSins, Fs, and all the FO improved the result even further. There were also tests done with fewer inputs 

to check if this would increase the fit to estimation- and validation data (tf_sfnf456spo and 

tf_sfnf4510spo). This was not the case.  

 

 

Table 4 Experimental plan for the system identification with their transfer function name 

Transfer 

function name 

Input Output 

tf_b4_foso FO4 

 

SO4 

tf_b5_foso FO5, SO4 

 

SO5 

   

tf_b4_ffoso FO4, F 

 

SO4 

tf_b5_ffoso FO5, SO4, F 

 

SO5 

   

tf_b4_ffoso FO4, F, SSin 

 

SO4 

tf_b5_ffoso FO5, SO4, F, SSin 

 

SO5 

   

tf_b4_sffoso FO4s, Fs, SSins 
 

SO4 

tf_b5_sffoso FO5s, SO4, Fs, 
SSins 
 

SO5 

tf_b6_sffoso FO6s, SO5, Fs, 
SSins 
 

SO6 

tf_b7_sffoso FO7s, SO6, Fs, 
SSins 
 

SO7 

tf_b8_sffoso FO8s, SO7, Fs, 
SSins 
 

SO8 

tf_b9_sffoso FO9s, SO8, Fs, 
SSins 
 

SO9 

tf_b10_sffoso FO10s, SO9, Fs, 
SSins 
 

SO10 

   

tf_sspo SO4, SO5... SO10 SPOd 
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tf_sfsspo SSin, F, SO4, 

SO5... SO10 
SPOd 

tf_sfnfspo SSin, F, NOX, 

FO4, FO5…FO10 
SPOd 

   

tf_51sfnfspo SSin, F, NOX, 

FO4s, 

FO5s…FO10s 

SPOd 

tf_s51sfnfspo SSins, Fs, NOX, 

FO4s, 

FO5s…FO10s 

SPOd 

   

tf_sfnf456spo SSins, Fs, NOX, 

FO4s, FO5s, FO6s 
SPOd 

tf_sfnf4510spo SSins, Fs, NOX, 

FO4s, FO5s, 

FO10s 

SPOd 

 

 

G. Simulation of dynamic linear model 

Figure 28 in the appendix section IX.B illustrates the dynamic linear model. The simulation model 

contains the deviation variables that goes into the measurement or transfer function for polyphosphate 

(tf_SPOd). This measurement is compared against the variable of the polyphosphate out of the disc filter  

(SPOd) which is virtual sensor for SPOd. A deviation variable is a variable that operates around zero on the 

y-axis. The transfer function or plant in Matlab only operates with deviation variables. The disturbance 

and manipulated variables could have been deviation variables if the “remove means” function in system 

identification was used. However, this function was used at first and then not used again. That’s why it 

was needed to subtract the disturbance and manipulated variables with the mean of the same variables to 

get them to operate around zero which will make it a deviation variable. The mean had to be added again 

after the measurement to get the measurement to operate around right point on the y-axis.  

 

H. Proportional-integral-derivative (PID) controller 

The simulation model for PID controller is seen in Figure 30 in the appendix section IX.B. Figure 4 is a 

simplified representation of the simulation model for the PID. The closed-loop feedback PID control 

system will have the ability to correct itself when disturbance occurs in the system. The disturbances being 

soluble chemical oxygen demand (SSins), flow rate of wastewater (FS), and NO2 and NO3 combined in 

inlet (NOX) at the inlet of the Hias wastewater treatment and water resource recovery facility (WRRF). 

The measurement of polyphosphate (SPOd_measurement) or the transfer function for SPOd will receive the 

disturbance variables and the manipulated variables as inputs. The manipulated variables being the 

aeration rate for each basin (FO4s-FO10s). The goal of the measurement is to follow the set point of the 

polyphosphate (SPOd_set point) to the best of its ability. The way it achieves this is by the manipulated 

variables being adjusted by the PID controller and the ratio controllers.  The ratio controllers are only a 

percentage or gain of the PID controller. A PID controller is only able to have one input and one output. 

They are controlling the air supply of the valves in the Hias process. Tuning these two types of controllers 

to follow the set point is the goal. The set point is the most desirable operation point of a process. If the 

measurement can follow it completely, the system will not use any unnecessary energy. This is the ideal 

outcome. However, it is unrealistic to be able to achieve this because of disturbances and changes to the 

system.   
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Figure 4 Control design for PID 

 
1) PID controller algorithm  

The feedback part of the controller is a set in series instead of parallel since the process is has a significant 

time delay. The series algorithm for a PID controller can be seen in eq. (4) and is based on (Skogestad, 

2003). Kc are the controller gain of the PID, τi is the integral time, and τd are the derivative time.  
 

 
c(s) = Kc ∙ (

τis + 1

τi
) ∙ (τds + 1)  

(4) 

 
2) Tuning PID controller based on Skogestad IMC tuning rules 

By investigating Skogestad (Skogestad, 2003) IMC tuning rule we can assume that  θ ≈ τc from earlier 

eq. (2). By reformulating eq. (2) to fit the recommended PID controller parameters for a second order 

process, the gain of the controller (Kc) will be as follows: 

 

 

 
TF(s) =

Kp

(1 + τ1s)(1 + τ2s)
e−θs 

 

(5) 

 

 Kc =
τ1

Kp(τc + θ)
 

(6) 
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The integral time (τI ) would be formulated like this according to Skogestads tuning rules: 

 

 τi = min {τ1, 4(τc + θ)} (7) 

 

The derivative time (τd) is only the second time constant (τ2) according to Skogestad. 

 

I. Model predictive controller (MPC) 

The simulation model for MPC is seen in Figure 31 in the appendix section IX.B. Figure 5 illustrates the 

same process as Figure 4 only with one key difference. Instead of the aeration rate or the manipulated 

variables being controlled by PID and ratio controllers, it is controlled by a MPC instead. The MPC can 

have multiple inputs and multiple outputs. The MPC will adjust the manipulated variables to obtain 

SPOd_measurement that follows the SPOd_set point hopefully better than that of the PID. When developing 

control strategies for a system, the objectives, constraints, and test procedures should be the exact same to 

get a fair comparison between them. However, the algorithm or the way the control strategy manipulates 

the system can be completely different.  

 

 

 
Figure 5 Control design for MPC 

 
1) The MPC algorithm 

The MPC algorithm is illustrated in Figure 6. The control horizon, M is the period the MPC algorithm can 

influence the system. The prediction horizon P is a period where the MPC can predict how the system will 

behave. The MPC will utilize mathematical models that represents a certain system to find the ideal values 

for the manipulated variables to reach the set point as effective as possible. The manipulated variables 

should do this within the control horizon M. It does this to get the control variables of the system to obtain 

the optimal operation point within the prediction horizon P. The MPC algorithm can be categorized as a 
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horizon algorithm. This means that after each time step new calculations are made. The controller will 

only execute the next control action based on the most optimal value for the manipulated variable.  

 

 

 

 
Figure 6 Model predictive controller algorithm (Seborg et al.,2017) 

 
2) Tuning of MPC 

Seborg et al. rules for parametrization are a great starting point to obtain initial tuning parameters. These 

initial parameters are based on the dynamic linear model of a system. The process time constant (𝜏) for 

this system is seen in eq. (1). The sampling time for the MPC should be one tenth of process time constant:  

 
 

 Tsampling <
𝜏

10
 

(8) 

 

The settling time according to Seborg should be: 
 

 Tsettling ≈ 4𝜏 + 𝜃 (9) 

 

The modeling horizon N should be a value between 30 and 120. However, Seborg also argues that different 

modeling horizons can be used as well. A general rule for selecting the model horizon is to subtract the 

settling time (Tsettling) with the sampling time (Tsampling): 
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N =

Tsettling

Tsampling
 

(10) 

 

 

The control horizon M should be between 
𝑁

3
 and 

𝑁

2
: 

 

 𝑁

3
 ≤ M ≤  

𝑁

2
  (11) 

 

The prediction horizon P should be the sum of the modeling horizon N and M: 

 

 P = N + M  (12) 

 

The weighting matrixes is also important parameters. The weighting matrix Q can have the initial value 

as 1 and then be tuned accordingly. The weighting matrix R initial value should be low to suppress the 

movement of the manipulated variables. The starting value could be 0.1.  

Appropriate constraints should also be set for all the manipulated variables based on the system.  

 

J. Experiental plan – Test procedure for the control strategies 

The experimental plan for seen in Table 5 shows the step changes in the disturbance variables ( 
SSins, Fs  and NOX) and the control variable (SPOd) that was used for the control strategies. The step 
changes are introduced to test the ability of the control strategy to reject the disturbances.  
 

Table 5 Test procedure for control experiment 

Time 

[min] 

Action Collected 

disturbance 

variables 

t=0 
Initial values 

… 

 

t=0 Start simulation  

t1=100 +5% SPOd 

t2=700 -5%  

t3=2000 +5% SSins 

t4=2600 -5%  

t5=5000 -5% Fs 

t6=5600 +5%  

t7=7000 -5% NOX 

t8=7600 +5%  

t9 Stop simulation  
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K. Experimental plan – Control error indicies for the control strategies 

The controllers are compared using the integral of absolute error (IAE) between the controlled variable and 
its setpoint. The integral of total movement in manipulated variables (IAMV). The IAMV shows how big 
the amplitude changes are of a signal and its ability to obtain the setpoint. While the IAE shows the 
difference between the control variable and the setpoint.  

The IAE is defined as: 

∫|𝑒(𝑡)|𝑑𝑡 = ∫|𝑦𝑠𝑝(𝑡) − 𝑦(𝑡)|𝑑𝑡 

The IAMV is defined as:  

∫|𝑢(𝑡) − 𝑢(𝑡 − 𝑇𝑠)|𝑑𝑡 

 

IV. RESULTS AND ANALYSIS 

A. Preprocessing the datasets based on results gotten from system identification 

To get the correct dataset when importing inputs and output you must switch places the different datasets 

(week 49, 50, 51). The week 51 dataset replaced week 49 dataset eventually and was used for all the TFs 

eventually. The variables were there are not a “s” notation behind them in this section shows that they are 

not scaled.  

The soluble chemical oxygen demand in the inlet without scaling (SSin) variable was not calibrated 

when the complete dataset arrived. Therefore, the variable came separately with a five-minute sampling 

time instead of ten-minute sampling time, and in a combined column that needed to be separated. The 

other variables have a 10 minute sampling times. That’s why a method for deleting every other row for 

the new calibrated variable was necessary. Using zero and ones in a separate column where the ones 

aligned with the times needed for the variable had to be done. This was done by copying the one number 

one and one zero that was aligned with correct times and pressing “opt+shift+down” on the cell right under 

the single one and zero. Then clicking paste for the marked area. There is a filter for every column that 

has the option to remove every row that includes a zero or a one. Clicking away the zeroes will now result 

in there only being every other row with the values needed for the rest of the dataset. This was done in 

Google sheets and then copied and pasted into excel. The columns also needed to be separated into the 

times and values for SSin. This was done in excel by using the “Text to Columns” feature and clicking on 

the semicolon, which is the symbol that separates the times and values. This will generate two separate 

columns. All of this was then included into the original dataset with the correct time periods.  

The datasets were preprocessed by using K nearest neighbor (Knn) for a limited and selected period 

(week 49 and 50). The code used for performing this can be seen in Appendix IX.C. Knn uses the nearest 

value between datapoints and inserts the same value in all the missing values to interpolate. Knn did this 

for most of the values. Removing all outliers such as too high values and NaN values that still occurred 

was also done by looking at plots in both excel and Matlab. There were not many of them, that’s why 

interpolation in excel between the nearest values was an adequate solution to the problem. This was done 

for some values in SPOd and FS. Documentation for those values was not made unfortunately. It was also 

done for values that superseded 4500 in Air_B5 and Air_B6. The values are for 07/12/22 and the times 

were between 14:00 and 16:00 for week 49 dataset. The table of all the different TFs developed with 

system identification can be seen in Table 4 Experimental plan for the system identification with their 

transfer function name. Discovering that new dataset still had too big of a peek for FO5 since a first order 

transfer function model were at -24.3 for tf_b5_ffoso. This jumped to -10.16 for the same TF after 

removing the outlier. Therefore, a new dataset was created where the peek was reduced even more by 

interpolating in excel. The values are still for 07/12/22 and the times were between 13:50 and 20:10 for 

week 49 dataset instead. Interpolation in excel was also done for FO5 and FO10 for week 50. The outlier 

values were at 16/12/22 between 07:10 until 08:00. There were also outliers in FO8 for 13:00 and 13:10 
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on 16/12/22 for week 50. This was done after discovering outliers when looking at the week 49 dataset 

for tf_b5_ffoso in the system identification. The previous dataset was used for tf_b4_ffoso since there was 

no outliers in the datasets for the inputs for this transfer function.  

There has been done a lot of undocumented testing as well. However, most of the testing will be 

presented in later in this section. Rescaling the datasets with the remove means function in system 

identification was done after discovering the problem after a meeting with CEIWA from Tampere 

University of Applied Science. This was when tfb4_ffoso was under development. Most of the testing, 

fine tuning and removing of outliers was done on tf_b5_ffoso since this is one of the most representative 

basins of the system since it’s the earliest basin with two initial inputs. Therefore, the argument of showing 

these results first can be made. However, a chronological order of the results would make more sense. 

There was also fortunately not a lot of preprocessing needed when dealing with SO4 except for scaling 

the datasets. That’s why the results of the tf_b4_ffoso was not redone when replacing the datasets for 

tf_b5_ffoso. The final tf_b4_foso and tf_b5_foso was made after tf_b4_ffoso and tf_b5_ffoso.  

After discovering that the SPOd variable had outliers revolving around almost the same value, were all 

of them started with 0.23 for all three of the datasets when looking at the recommended diagram in excel. 

It was easy to spot the values and replace them with interpolated values. They occurred every hour. There 

was also a big peek at 07/12/22 between 18:20 and 19:30 for the week 49 dataset. There was also too sharp 

of a peek at 18/12/22 between 03:40 and 04:10. Another peek at 15/12/22 between 08:20 and 11:00 in the 

week 50 dataset. The week 51 dataset had many 0.23 anomalies, every hour, and some additional ones as 

well. 

NOX also needed some interpolation. For week 49, there were anomalies with the same value, 

2,58350974, that had to be removed. This was at 9 out 14 of the values between 9:50 and 12:00 for 

07/12/22. It was also the same anomaly for values between 19:30 until 20:00 for the same day. This 

anomaly occurs the next day at 12:20 until 13:00. And the last one at 08:50 for 09/12/22 for week 49. The 

same value appeared for the week 50 dataset but only for one day between 19:20 and 00:40. There was 

also to sharp of a peek at 07:30 on 16/12/22.  
Tf_sfnfspo gave very bad Kp values, they were too low which will result in making it hard to do control 

on them. Therefore, it was decided to scale the FO just for tf_sfnfspo. This was done by copying all the FO 

variables and divide them by 1000 in excel. These variables were given a “s” notation behind them to 

differentiate them from the original FO variables. This improved the results significantly. However, there 

should have been scaling done on F and Sin  as well. This was implemented later.  

There were many difficulties working with the week 49 dataset when working on tf_sfnfspo. Therefore, 

it was decided that some additional testing would be conducted using week 51 instead of week 49 as 

validation dataset. One of the reasons why 51 was not picked first was because there are some missing 

values on 19/12/22 between 22:30 and 23:30 for all the variables. However, these values have been 

interpolated for using Knn. The new dataset also needed some data preprocessing. Variables that were 

going to be used for tf_51sfnfspo was the only ones that was checked for preprocessing. FO10s had to 

sharp of peeks at 24/12/22 between 21:40 and 22:30. Interpolation was done to reduce it somewhat. The 

2,58350974 anomaly appears in the NOX variable at 24/12/22 between 01:40 and 02:10, and some more 

between 02:50 and 04:20 the same day. The last anomaly was at 24/12/22 at 22:00 for NOX. F also had a 

zero value at 24/12/22 at 21:40. The 0.23 anomaly for SPOd appeared for the week 51 dataset as well.  

 

B. All the plots for all the variables for week 50 dataset and week 51 dataset 

The plots shown is for the week 50 and 51 datasets after preprocessing them with the sampling time of ten 

minutes. This will generate 817 datapoints with a sample of the data after 10 minutes. This is the data used 

for system identification. When importing data for system identification it’s possible to set the sampling 

time. This was set to 10 to get every minute of the process. The variables present dynamical changes that 

would occur in an industrial process. This was the goal when preprocessing the variables, to not remove 

too much of the dynamics of the variables.  
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Figure 7 𝐹𝑂  for week 50 dataset 
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Figure 8 𝐹𝑂  for week 51 dataset 
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Figure 9 𝑆𝑂 for week 50 dataset 
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Figure 10 𝑆𝑂  for week 51 dataset 
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Figure 11 Fs, SSins, NOX and SPOd for week 50 
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Figure 12 Fs, SSins, NOX and SPOd for week 51 
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C. All the plots for week 50 dataset after linear interpolating in Matlab 

The variables in the m-script had to be in the same time domain as the system identification part. That’s 

why the variable was interpolated again using the “interp1” function in Matlab. This function uses linear 

interpolation to interpolate. This generated the exact same plots only with the variable being in minutes 

instead of in every ten minutes (it could have been in hours, days, or other time domains as well). The 

validation dataset (week 51) was the only dataset used in the m-script for every variable.  

 

 
Figure 13 𝐹𝑂 variables for week 51 
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Figure 14 𝑆𝑂 variables for week 51  
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Figure 15 The rest of the variables for week 51 

D. Correlation matrix and pair plot 

In Figure 16 the correlation matrix for all the variables is being presented. The best correlation between 

variables is 1, while the worst is -1. Achieving correlation values close to one is the most optimal result. 

The correlation matrix does not show the diagonal or the variables above the diagonal. The reason for this 

is because the diagonal is just one because the correlation between the same variables is one which is 

unnecessary to show. The matrix doesn’t show the variables above the diagonal either. The reason for this 

is because it is the exact same correlations as the ones under the diagonal. By analyzing the correlation 

matrix, the correlation is the highest for variables that are close to each other. For example, correlation 

between SO6s and SO5s is at 0.98 which is almost one. The reason for this is because dissolved oxygen 

(SO) values in basin six should be close to basin five since it’s the closest basin. The aeration rates (FO) 

have close relationships with the dissolved oxygen (SO) in the correlation matrix since applying aeration 

will have the biggest effect on measurements of dissolve oxygen. That’s why it would be a good idea to 

use close SO and aeration (FO) variables to predict other SO variables in the system identification part. The 

original plan was to use FO to SO transfer functions. However, it was discovered too late that transfer 

function between SO and polyphosphate (SPOd) was also needed for the control strategies to work. The 

correlation between SPOd and the FO variables have a high correlation. Sins, FS and NOX has an adequate 

correlation with SPOd. These variables would be reasonable to use as inputs for estimating phosphate. 

Almost all the correlations with FO10s are negative. The reason for this is because the conveyer belt that 

is placed in B10 causes disruptions to the process.  

In Figure 17 the pair plot is illustrated between all the variables in the week 51 dataset. The histograms 

on the diagonal shows that the correlation is one. This is because the same variable will meet on the 

diagonal. The pair plots above the diagonal are the exact same as the ones under the diagonal. Pair plots 

where the plots are clustered in clear linear shapes shows that the correlation is very high. The pair plots 

where the plot is very scattered with no clustering, presents poor correlation between the two variables in 

question. Investigating plots close to the diagonal illustrates the same findings as the correlation matrix. 
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That the correlation is high between close by variables. Pair plots is in many ways a great tool to illustrate 

the correlation matrix visually. There are definitively some outliers between SPOd and other variables such 

as FO variables and Sins, FS and NOX variables. However, they’re for the most part clustered with 

somewhat of a linear shape in some of the pair plots. This reflects the correlation found in the correlation 

matrix.  

 

 

 
Figure 16 Correlation matrix of all the variables for week 51 
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Figure 17 Pair plot of all the variables used, the axis being dependent on which two variables that’s being presented 
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E. System identification results 

The system identification results for dissolved oxygen (SO) can be seen in the appendix section IX.D. 

Table 6, Table 7, and Table 8 follows the eq. (2) format in section III.E for the transfer functions in the 

table. The first Kp (Kp1) value is for the first input which is in this case soluble chemical oxygen demand 

in the inlet (SSins) which is the first input mentioned in the table description, the next being flow rate of 

wastewater (FS)  for Kp2 and so on. All the time constants (Tp1, Tp2 and Td) for the first variable (SSins) is 

under the Tp1 section, the same goes for Tp2 section (Tp1, Tp2 and Td) for the second input or variable 

(which is  flowrate of wastewater, FS) and so on. This can be somewhat confusing but was the best solution 

that was made. The order of every input is also given in Table 4 section III.E, which is the order for every 

TF table in this master’s thesis, which is for the most part in the appendix section IX.D.  

Changing the parameters for many inputs while trying to obtain good enough results was very 

challenging. The results achieved for model P2 seen in Table 6 showcases that it is possible to obtain 

promising fit to estimation- and validation data, final prediction error (FPE), mean squared error (MSE) 

results with second order systems. The reason why second order models achieve better results than other 

models for tf_s51sfnfspo is because the system is very complex, and a second order function will fluctuate 

more than a lower order function. However, the parameters that gets generated for the P2 model is not 

representative of Hias process.  

 

 

Table 6 tf_s51sfnfspo transfer functions for the P2 model, with SSins, FS, NOX, FO4s, FO5s, FO6s, FO7s, 

FO8s, FO9s, FO10s as input and SPOd as output, and week 51 as validating data and week 50 as 

estimation data 

 

Mode
l 
name 

Process 
gain 
Kp1, 
mg/L 

Time 

constan

t(s) 
Tp1, 

min 

Process 
Gain 
Kp2, 
mg/L 

Time 

constan

t Tp2, 
min 

Process 
Gain 
Kp3, 
mg/L 

Time 

constan

t Tp3, 
min 

Process 
Gain 
Kp4, 
mg/L 

Time 

constan

t Tp4, 
min 

Process 
Gain 
Kp5, 
mg/L 

Time 

constan

t Tp5, 
min 

Process 
Gain 
Kp6, 
mg/L 

Time 

constant 

Tp6, min 

P2 880.52 
+/- 
6.1443∙
107 

3.0154

105                                                             
+/- 

2.1056 

∙ 1010                                                              
and 

190.84 
+/- 

1.2081∙
104                                                                        

-4.9684 
+/- 
462.09 

18.223 

+/- 

538.59                                                                      

and 

767.99 

+/- 

7.3503 

∙ 104                                                                       

-
0.1326
9 +/- 
4.5832 

473.04 

+/- 

17324                                                                       

and 

11.8 

+/- 

478.98                                                                        
 

1.3065 
+/- 
3477.2 

 88.878 

+/- 

4411.1                                                                      

and 1∙
104   
+/- 
2.6788  

∙ 107                                                                  
 

0.7998
1 +/- 
4.6246∙
108 

1.7106∙
106  
+/- 

9.8931 

∙ 1014                                                              
and 

371.68 

+/- 

5.1668 

∙ 107                                                                
 

1.704 
+/- 
1.2172∙
109 

1.1932 ∙
104  +/- 

1.3415 ∙
1012                                                                 
and 

8.8824 ∙
104  +/- 

7.3432 ∙
1013                                                                  

 Process 
Gain 
Kp7, 
mg/L 

Time 

constan

t Tp7, 

min 

Process 
Gain 
Kp8, 
mg/L 

Time 

constan

t Tp8, 

min 

Process 
Gain 
Kp9, 
mg/L 

Time 

constan

t Tp9, 

min 

Process 
Gain 
Kp10, 
mg/L 

Time 

constan

t Tp10, 

min 

Final 
predicti
on error 

(FPE) 

Mean 

squared 

error 

(MSE) 

Fit to 
estimati
on data 
in % 

Fit to 

validatio

n data 

(fitness 

index) in 

% 

P2  6.3353 

∙ 10−2  
+/- 
11.922 

242.48 

+/- 

4.9773 

∙ 104                                                                       
and 

13.06 

+/- 

1953.8                                                                       

 

7.0445 

∙ 10−2 
+/- 
29.669 

294.77 

+/- 

1.2631∙
105                                                                    
and 

5.877 

+/- 

2704.1   

-99.591 
+/- 
4.2053∙
105 

2.8804 

+/- 

246.29 

and                                                                       

2.9505∙
104 +/- 

1.2456 

∙ 108                                                                  
 

-
0.2154
7 +/- 
184.06 

844.49 

+/- 

7.3544∙
105                                                                  
and 

1.4417 

∙ 10−2 
+/- 

3950.2        

1.567∙
10−3 

1.386∙
10−3 

34.61 32.54 
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Table 7 showcases that adding a delay to the P2 model still achieves prominent results. Adding a delay to 

the system would be beneficial. Since this will simulate the process better. However, this model has no 

constraint or criterion that would provide the most representative parameters for the system.  

 

Table 7  tf_s51sfnfspo transfer functions for the P2D model, with SSins, FS, NOX, FO4s, FO5s, FO6s, 

FO7s, FO8s, FO9s, FO10s as input and SPOd as output, and week 51 as validating data and week 50 as 

estimation data 

 

 

Mode
l 
name 

Process 
gain 
Kp1, 
mg/L 

Time 
constan

t(s) 

Tp1, 

min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constan

t Tp2, 

min 

Process 
Gain 
Kp3, 
mg/L 

Time 
constan

t Tp3, 

min 

Process 
Gain 
Kp4, 
mg/L 

Time 
constan

t Tp4, 

min 

Process 
Gain 
Kp5, 
mg/L 

Time 
constan

t Tp5, 

min 

Process 
Gain 
Kp6, 
mg/L 

Time 
constant 
Tp6, min 

P2D -
0.6934
1 +/- 
1976.2 

2.1762 

+/- 

1.6152∙
104                                                                                  
     and 

1.0852∙
104  
+/- 

3.1022 

∙ 107                                                                            
and Td 
= 
352.58 
+/- 
1.5870∙
104 

5.2236∙
10−3  
+/- 
2.9565 

142.48 

+/- 

8.7993                                                                                 

 ∙ 104 
and 
0.6587

9 +/- 

4.0586∙
107                                                                           
and 

Td = 

113.04 

+/- 

4.077∙
107                                                                            
 

0.1095
3 +/- 
2.3696∙
106 

4.6536 

∙ 104 
+/- 

1.1636∙
1012                                                                             
and 
6394.8 

+/- 

2.1573∙
1010                                                                           
and Td 

= 

324.36 

+/- 

5.6415∙
105                                                                             
 

1.1007 
+/- 
1.1612∙
106 

6.5756∙
105  
+/- 

6.937 ∙
1011                                                                        
and 

40.185 

+/- 

2.7947  

∙ 104                                                                                
and Td 

= 36.87 

+/- 1.6 

∙ 104                                                                                  
 

3.5075 
+/- 
3.6715∙
106 

10833 

+/- 

1.134 ∙
1010                                                                             
and 

0.2252
8 +/- 

8.0511∙
1011                                                                            
and Td 
= 90.79 
+/- 
8.0513 

∙ 1011                                                                             

-5.9134 
+/- 
6371.8 

14.447 

+/- 

197.03                                                                                

and 

2.4765∙
104  +/- 

2.673∙
107  and                                                                       

         Td 

= 16.59 

+/- 

114.26                                                                                 
 

 Process 
Gain 
Kp7, 
mg/L 

Time 
constan
t Tp7, 
min 

Process 
Gain 
Kp8, 
mg/L 

Time 
constan
t Tp8, 
min 

Process 
Gain 
Kp9, 
mg/L 

Time 
constan
t Tp9, 
min 

Process 
Gain 
Kp10, 
mg/L 

Time 
constan
t Tp10, 
min 

Final 
predicti
on error 

(FPE) 

Mean 
squared 
error 
(MSE) 

Fit to 
estimati
on data 
in % 

Fit to 
validatio
n data 
(fitness 
index) in 
% 

P2D  0.3389
1 +/- 
67.901 

5.8822 

+/- 

643.5                                                                                 

and 

1550.4 

+/- 

3.1114 

∙ 105                                                                           
and Td 

= 

132.41 

+/- 

470.1                                                                                 
 

-2.07 
+/- 
991.46                                                                                 

15.739 

+/- 

441.17                                                                                

and 

6301.7 

+/- 

3.008∙
106                                                                             
and    
Td = 
136.68 
+/- 
518.36                                                                                

5.3444 
+/- 
1.0491∙
105                                                                            

339 +/- 

1.0087∙
105                                                                               
and 

2.9511 

∙ 104 
+/- 

5.8319∙
108                                                                             
and Td 
= 46.33 
+/- 
7884                                                                                   

-1.4738 
+/- 
5.5640∙
104 

112.64 

+/- 

2.4175 

∙ 104                                                                                 
and 

3.5294 

∙ 104 
+/- 

1.3337∙
109                                                                              
and Td 

= 

311.85 

+/- 

6311.4                                                                                
 

2.168∙
10−3   

1.871∙
10−3   

24.01 31.31 
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The P2DL model shown in Table 8 was an attempt on getting the criteria as close as possible to be as 

representative to the Hias process as possible. The values in this table are generally smaller since it is 

derived by eq. (2) instead of eq. (3) from section III.E. The values for FO7s and FO8s is also presented in 

this table. The FPE and MSE are very low which indicates that the model is very accurate at representing 

the actual data. However, the fit to estimation- and validation data are also low. These values should have 

been higher. The model seems to be overfitting the data. However, this is the transfer functions that will 

be utilized for the rest of the project with some adjustments.  

 

 

Table 8  tf_s51sfnfspo transfer functions for the P2DL model, with SSins, FS, NOX, FO4s, FO5s, FO6s, 

FO7s, FO8s, FO9s, FO10s as input and SPOd as output, and week 51 as validating data and week 50 as 

estimation data 

 

 

Mode
l 
name 

Process 
gain 
Kp1, 
mg/L 

Time 
constan
t(s) 
Tp1, 
min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constan
t Tp2, 
min 

Process 
Gain 
Kp3, 
mg/L 

Time 
constan
t Tp3, 
min 

Process 
Gain 
Kp4, 
mg/L 

Time 
constan
t Tp4, 
min 

Process 
Gain 
Kp5, 
mg/L 

Time 
constan
t Tp5, 
min 

Process 
Gain 
Kp6, 
mg/L 

Time 
constant 
Tp6, min 

P2D
L 

0.4310
9 +/- 
51.65 

60 +/- 

7026.4                                                                                    

and 
2.3332 

+/- 

799.03                                                                                

and       

Td = 

359.72 

+/- 

838.8                                                                                 
 

1.2924 
+/- 
42.05 

30 +/- 

730.98                                                                                    

and 
9.2551 

+/- 

584.05                                                                            

and Td 

= 79.46 

+/- 

287.77                                                                                 

2.3115∙
10−3  
+/- 
8.7999∙
104   

46.596 

+/- 

1.6008∙
109  
and 

2.6751 

∙ 10−3  
+/- 

2.0291 

∙ 1012                                                                        
and   

Td = 

147.61 

+/- 

2.0292 

∙ 1012                                                                           
 

-
2.9016∙
10−3 
+/- 
0.1492
8 

18.919 

+/- 

1.8742∙
104                                                                                  
and 

24.979 

+/- 

1.9438  

∙ 104                                                                                 
and   

Td = 

47.75 

+/- 
2213.6                                                                                 
 

-2.9011 

∙ 10−2 
+/- 
0.7829 

23.394 

+/- 

6485.3                                                                                
and 

28.691 

+/- 

8129.6                                                                              

and Td 

= 81.34 

+/- 

415.09   

-4.7375 

∙ 10−2 
+/- 
1.0079 

49.545 

+/- 

1137.8                                                                                
        and 

6.1161 

+/- 

429.72                                                                                
        and 
Td = 
57.45 +/- 
251.73                                                                                 

 Process 
Gain 
Kp7, 
mg/L 

Time 
constan
t Tp7, 
min 

Process 
Gain 
Kp8, 
mg/L 

Time 
constan
t Tp8, 
min 

Process 
Gain 
Kp9, 
mg/L 

Time 
constan
t Tp9, 
min 

Process 
Gain 
Kp10, 
mg/L 

Time 
constan
t Tp10, 
min 

Final 
predicti
on error 

(FPE) 

Mean 
squared 
error 
(MSE) 

Fit to 
estimati
on data 
in % 

Fit to 
validatio
n data 
(fitness 
index) in 
% 

P2D
L  

0.1382
1 +/- 
45.776 

60 +/- 

2.39∙
104 
and 30 

+/- 

2495.5                                                                                   

and    

Td = 

132.74 

+/- 

392.31                                                                                
 

0.1227
5 +/- 
15.364 

40.808 

+/- 
2.2766 

∙ 104                                                                                  
and 30 

+/- 

1.3772∙
104                                                                                      
and Td 

= 

118.58 

+/- 
446.06                                                                                
 

-
5.3278∙
10−2   
+/- 
1.4885 

60 +/- 

3913.1                                                                                  
and 

13.34 

+/- 

2525.6                                                                                 

and Td 

= 304.8 

+/- 

1425.3                                                                                 
 

-
0.2139
4 +/- 
9.2486 

60 +/- 

2573.7                                                                                    
 and 

1.3255 

+/- 

1620.2                                                                                

and      

Td = 

315.41 

+/- 

1503.4                                                                                
 

3.494∙
10−3 

3.015∙
10−3 

3.543 -2.063 



ACIT5900 Master’s thesis ©einar-nermo@hotmail.no 43 

 
1) Fitness index and plot of tf_s51sfnfspo model outputs 

The fitness index and plot each of the model outputs is illustrated in Figure 18. This describes the 

differences of the models to each other.   

 
Figure 18 s51sfnfspo fitness index and plot of the best model outputs with 𝑆𝑆𝑖𝑛𝑠 , 𝐹𝑆, NOX, FO4s, FO5s, 

FO6s, FO7s, FO8s, FO9s, FO10s as input and 𝑆𝑃𝑂𝑑  as output, and week 51 as validating data and week 

50 as estimation data. The x-axis being in minutes 

F. Simulated dynamic model of 𝑆𝑃𝑂𝑑   

The original dynamic linearized model is shown in Figure 19. This shows the same output as the system 

identification model. However, because FO7s_SPOd and FO8s_SPOd transfer functions (TFs) had positive 

proportional gains (Kp), it made the system unstable. Which is why they were replaced. They were 

replaced with the TFs between FO8s_SPOd. The dynamic linear model used for this project is seen in 

Figure 20. This will give completely different results for the system identification part. It most likely 

would give worse system identification results. This is unknown, and there could be ways to improve the 

results as well. However, there are still some similarities between the original linear model and the linear 

model used for the control part. The original linear model has an absolute integral index (IAE) of 919.9, 

while the linear model used for this project has a 1152, between the linear model and the measurement of 

polyphosphate (SPOd). This can be seen in Table 9. The IAE for the linear model indicates that there are 

some large differences. However, by visual inspection of Figure 20, the linear model does an adequate job 

of representing the measurement SPOd. It does follow some dynamic trends and are not too far off from 

the measurement of SPOd.  

All the deviation variables used are completely the same as the subplots for week 51 in IV.B section. 

Except that the subplots show the variables for every ten minutes which is the sampling time for the 

dataset. While the deviation variables, the system identification models, all outputs for the control part 

shows the data for every minute, this is seen in the IV.C section. The purpose of system identification is 

to get the parameters that represents the system well enough based on the datasets provided. While getting 

adequate fit to validation data results would be preferable, it is not the most important part.  
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Figure 19 Original dynamic linear model of 𝑆𝑃𝑂𝑑 , y-axis being mg P/L, and x-axis being in minutes 

 

 
Figure 20 Dynamic linear model of 𝑆𝑃𝑂𝑑 , y-axis being mg P/L, and x-axis being in minutes 
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Table 9 IAE of the original linear model and the linear model error against measurement of 𝑆𝑃𝑂𝑑  

Linear model IAE_𝑺𝑷𝑶𝒅 

Original linear model 919.9 

Linear model 1152 

Difference in % 

(
𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑑𝑒𝑙

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑑𝑒𝑙
∙

100%) 

125.23% 

 

G. The results for the control startegies  

1) Controller tuning 
Table 10 presents the tuning parameters for the Proportional-integral-derivative (PID) controller. The 

skogestad tuning rules are a great way getting initial parameters (Skogestad, 2003). The parameters in this 

project are based on those rules. This has been explained in section III.H.2). The transfer function (TF) 

FO5s_SPOd is the TF used for the PID. The TF has the time constants Tp1 (τ1) = 28.6533 and Tp2 (τ1) 

=23.4192 which can be seen in Table 2 in chapter III.E. This was the initial values used and they achieved 

adequate result. However, they were tuned based on trial-and-error in Simulink. The values presented in 

Table 10 gave better results visually and better Integral of absolute error (IAE) and Integral of total 

movement in manipulated variables (IAMV). The Kp value for FO5s_SPOd were -0.02901, this value was 

not tuned further. The Td (which is the same as θ and τc) value for FO5s_SPOd are 81.34 min. Calculating 

Kc were done by utilizing eq. (6) from section III.H.2). Calculating τi can be done by utilizing eq. (7) in 

the same section. τd parameter is based on Tp2 for FO5s_SPOd. This was originally 23.4192. However, τd 

= 30.5810 min achieved better results. Table 11 shows the gains used for the ratio controller. The initial 

parameters for the ratio controllers were based on the mean of the aeration rate (FO) for each of the 

controllers in relationship to the aeration rate for the fifth basin (FO5). However, they were tuned further 

to achieve better IAE and IAMV results.  

Limits has been set to 0.3 as an upper limit and -0.3 as a lower limit for all the manipulated variables 

(aeration rate, FO). The reason for the upper limit having the same value as the lower limit just as a negative 

one instead is because it’s deviation variables and it should fluctuate around zero. These can be set in the 

settings of the PID. This was done for the model predictive controller (MPC) as well. However, the limits 

are being set in the m-script instead and can be seen in Table 12. 

The parameters for the model predictive controller (MPC) are shown in  

Table 12. The equations used to get initial values for the parameters is seen in section III.I.2). The 

process time constant in equation (1)  section III.D is 411.8774 min. However, the process time constant 

was chosen to be 600 min instead due to prior knowledge about the system. The sampling time (Tsettling) 

is one tenth of the process time constant, which is 60. The settling time (Tsettling) should have been 2800 

min according to Seborgs, this was too high of a settling time. 600 min achieved the best results. The 

model horizon N is just the Tsettling divided by Tsettling, which is 10. The control horizon M should have 

been between 
10

3
 and 

10

2
. However, this was chosen to be 10 instead. The weighting matrix Q was set to 

10. Many different values were tested for the weighting matrix R. However, the best weight was the initial 

value. All the tuning was done to achieve better IAE and IAMV results and get the best possible visual 

representation of the system.  
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Table 10 PID controller parameters after tuning 

CV-MV Controller τc Kc τi τd  

SPO- FO5 PID 81.34 -8.5098 40.1606 30.5810 

 

 

Table 11 Ratio controller gains for each of the MVs 

 

 

 

 

 

 

 

 

 

 

Table 12 MPC parameters after tuning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2) Controller testing  

In Figure 21, the test procedure trends for control variable polyphosphate (SPOd ) and for setpoint of 

SPOd using the Proportional-integral-derivative (PID) controller can be observed. The disturbances can be 

seen in Figure 25, Figure 26 and Figure 27. The results illustrates that the PID are cable of suppressing 

the disturbances that occurs. It does an excellent job of tracking the setpoint. The amplitude of the 

measurement of SPOd are not very high either by investigating the y-axis of the output. One of the highest 

peeks at about 1000 minutes is on about 0.24 mg phosphorus/L, while the set point is on 0.2325 mg 

phosphorus/L.  

CV-MV Ratio 

Controller 

Gain 

SPO- FO4 rFO4 1.8 

SPO- FO6 rFO6 0.72418 

SPO- FO7 rFO7 0.4519 

SPO- FO8 rFO8 0.38225 

SPO- FO9 rFO9 0.2081 

SPO- FO10 rFO10 0.10 

  MPC controller 

Tsampling Sampling time 60 

Tsettling Settling time 600 

N Model horizon 10 

M Control horizon 10 

P Prediction horizon 610 

Q Weighting CVs 10 

R Weighting MVs [0.1 0.1 0.1 0.1 0.1 0.1 0.1] 

MV Constraints MVs 

[FO4 FO5 FO6 FO7 FO8 

FO9 FO10] 

MV1 = (min, -0.3, max, 0.3) 

MV2 = (min, -0.3, max, 0.3) 

MV3 = (min, -0.3, max, 0.3) 

MV4 = (min, -0.3, max, 0.3) 

MV5 = (min, -0.3, max, 0.3) 

MV6 = (min, -0.3, max, 0.3) 

MV7 = (min, -0.3, max, 0.3) 

 

OV Constraints CV 

[SPO] 

OV1 = (min, -0.3, max, 0.3) 
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Figure 22 however, presents the test procedure trends for control variable 𝑆𝑃𝑂𝑑  and setpoint of 𝑆𝑃𝑂𝑑  

using the MPC controller instead. The MPC can be visually seen as achieving impressive results. The 

settling time after each disturbance occurs are remarkable. The overall changes in the output of the MPC 

and the PID are very similar in the sense of them following the set point and the disturbances occur at the 

same time which is expected. The MPC has one of its highest peeks at 3 000 min, between 0.235 mg 

phosphorus/L and 0.24 mg phosphorus/L.  

 
Figure 21 Test procedure trends for control variable 𝑆𝑃𝑂𝑑  (red graph) and setpoint (black graph) using 

the PID controller, y-axes being mg P/L and x-axis being in minutes  

 

 
Figure 22 Test procedure trends for control variable 𝑆𝑃𝑂𝑑  (red graph) and setpoint (black graph) using 

the MPC controller, y-axes being mg P/L and x-axis being in minutes 
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Figure 23 illustrates the test procedure trends for the aeration rates (FO), which is the manipulated variables 

(MVs) for the PID controller. By visual inspection it’s possible to see the disturbances and the set point 

changes which is also seen in Figure 21 and Figure 22. The constraints set as -0.3 to 0.3 is also visible. 

Except for test procedure for FO4s. The reason for this is because of the gain being higher than for the 

FO5s. Figure 24 presents the same things as Figure 23 just for the MPC. However, the MVs are much 

smaller for the MPC than for the PID. 

 

 
Figure 23 Test procedure trends for MV1 (FO4s), MV2 (FO5s), MV3 (FO6s), MV4 (FO7s), MV5 

(FO8s), MV6 (FO9s), MV7 (FO10s) for PID 
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Figure 24 Test procedure trends for MV1 (FO4s), MV2 (FO5s), MV3 (FO6s), MV4 (FO7s), MV5 

(FO8s), MV6 (FO9s), MV7 (FO10s) for MPC 

The test procedure trends for the disturbance variables (DVs) are based on Table 5 seen in III.K section. 

The DVs are only five percent of the mean of the DV in question. The reason for this is to provide stability 

to the system while also introducing small disturbances at varying time instances to see how it effect the 

system. If all the DVs was introduced to the system at ones the system would be unstable and no analysis 

of the behavior of the DVs would be possible. The direction of the DVs is based on the hypothesis that 

when the flow rate of wastewater (FS) goes up (because of rain for the most part) then soluble chemical 

oxygen demand (SSins) will go down, since it will be diluted. NOX will also be diluted and should go down. 

However, it goes up here instead. The effect of NOX is not significant; therefore, it doesn’t matter as much 

which directing it is. The disturbances are visible in Figure 21 and Figure 22.  
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Figure 25 Test procedure trend for DV1 (𝑆𝑆𝑖𝑛𝑠), y-axis being mg COD/L and x-axis being in minutes 

 
Figure 26 Test procedure trend for DV2 (𝐹𝑆), y-axis being L/h and x-axis being in minutes 
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Figure 27 Test procedure trend for DV3 (NOX), y-axis being 𝜇𝑔/𝑚3and x-axis being in minutes 

 

H. Control error indicies and computational time for control strategies 

Table 13 presents the Integral of absolute error (IAE) for the model predictive controller (MPC) and the 

Proportional-integral-derivative (PID) controller, and the difference between them. The difference being 

the IAE_𝑺𝑷𝑶𝒅 for MPC divided by the IAE_𝑺𝑷𝑶𝒅 for the PID and multiplying with 100%. Having a low 

IAE indicates that the difference between the set point and the measurement are not very large. The MPC 

has significantly lower IAE_𝑺𝑷𝑶𝒅 than the PID which illustrates the MPCs abilities.  

Table 14 describes the Integral of total movement in manipulated variables (IAMV), and the difference 

between them. This shows the changes in the control systems input over time. A low IAMV would indicate 

that the manipulated variables are able to track the set point. The MPC has a lower IAMV than the PID.  

The computational time is presented in Table 15. The PID achieves better computational time. The 

computational time for the MPC was 4.859 seconds, and 2.782 seconds for the PID.  

The cumulative sum of the aeration rate (FO) described in Table 16 provides an estimate of the total 

aeration that of the system. The actual value column in this table takes the total sum of the FO before the 

MPC and PID is implemented. One of the reasons why this value is so high might be because of the scales 

in the system. However, the scales are the same for all of them. The MPC has exceptionally lower 

cumulative sum for the aeration rate than that of the actual value and the PID.  
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Table 13 Integral of absolute error (IAE), and the difference between them 

 

 

Table 14 Integral of total movement in manipulated variables (IAMV), and the difference between them 

Controlle

r 

paramete

rs 

IAMV_

FO4s 

IAMV_

FO5s 

IAMV_

FO6s 

IAMV_

FO7s 

IAMV_

FO8s 

IAMV_

FO9s 

IAMV_

FO10s 

Sum_IAMV 

PID 394.1 218.9 158.6 98.94 83.69 45.56 21.89 1.0217∙ 103 

MPC 40.62 47.98 194.1 47.98 47.98 6.834 27.32 412.8140 

ΔIAMV_

𝐹𝑂 

(
 𝑀𝑃𝐶

𝑃𝐼𝐷
∙10

0%) 

10.31 21.92 122.38 48.49 57.33 15 124.81 40.4 

 

 

Table 15 Computational time for MPC and PID 

Controller 

parameters 

Time 

(seconds) 

PID 2.782 

MPC 4.859 

 

 

Table 16 Cumulative sum of Fo 

 Cumulative sum 

of 𝑭𝑶(MVs) 

Actual value 6.3413 ∙ 1011 

PID 7.2625 ∙ 105 

MPC 422.6788 

 

 

 

 

 

 

 

Controller 

parameters 

IAE_

𝑺𝑷𝑶𝒅 

PID 10.19 

MPC 5.009 

ΔIAE_SPOd 

(
 𝑀𝑃𝐶

𝑃𝐼𝐷
∙100%

) 

46.4 
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V. DISCUSSION  

A. Limitations 

An industrial dataset will produce more noise and there are more uncertainties. The fitness index will not 

be as high because of this. A fitness index of 50% is seen as a very good performance in this case.  

Temperature was unfortunately not measured with online data. This is an important disturbance 

variable. Rudi et al. found that the temperature effected phosphorus removal capabilities of the Hias 

process significantly. Incorporating this would be beneficial.  

There was not made online measurements of soluble oxygen demand (𝑆𝑆) for basin 7 which resulted in 

there not being made TFs with  SS as output. Making control strategies that control SS could be explored 

in future projects.  

The control strategies works very well because the model that gets tested has the exact same parameters 

as the control algorithms. Normally the models get tested against first principle’s models with ordinary 

differential equations that represents the same system. However, development of control strategies is very 

important work towards industrial implementation.  

 

B. Data preprocessing 

The data provided is very noisy with many sudden changes which illustrates the dynamic changes that 

occurs in a such a process. There could have been added several different data preprocessing techniques. 

However, capturing the dynamic changes that may occur in real life is important as well. Therefore, 

balancing between capturing the dynamic changes in the process and achieving better results must be 

taken into consideration. Achieving even better correlation between the variables would also be preferable.  

The raw data is static and will not take the time delay that occurs throughout the process. That’s why a 

time delay is added to the process. This will make the simulations dynamic and will take an important 

element into consideration in the process.  

The correlation matrix illustrates that the correlation between polyphosphate (SPOd) and the aeration 

rate (FO) variables have a high correlation. The soluble oxygen demand (Sins)-, the wastewater flow rate 

(FS)- and NO2/NO3 (NOX) in the inlet has an adequate correlation with SPOd. These variables were 

reasonable to use as inputs for estimating phosphate. The pair plots described many of the same things as 

the correlation matrix and was able to visualize the correlation matrix.  

C. System identification for the dynamic linear models 

The P2DL model shown in Table 8 was an attempt on getting the criteria as close as possible to be as 

representative to the Hias process as possible. The parameters could have been even closer to the desired 

parameters. It achieved low final prediction error (FPE) and mean squared error (MSE) which indicates 

that the model is accurate. The fit to estimation- and validation data was also low. This should have 

preferably been higher. However, the reason why it is not that high can be several reasons. One of them 

being that there are too many inputs that predicts the output. However, there have been conducted tests 

that checks this hypothesis. Fewer inputs did not achieve better results. The scaling of the variables could 

possibly be different as well. Better data preprocessing with the emphasis on achieving better correlation 

between the variables is also a reason for low fit to validation data results.  

In theory polyphosphate (SPOd) should have a tenth order TF since SPOd reacts with the bacteria in all 

the basins. That’s why a higher order output model will in theory fit better than lower order equations.  

The proportional gain (Kp) values of the transfer function for FO7 (FO7s_SPOd) and FO8 (FO8s_SPOd) 

should have been positive. This could have been done in system identification. However, the 

understanding of how detrimental a negative Kp value would affect the system was not understood early 

enough in the project. These two transfer functions were replaced with FO5 (FO5_SPOd) which provided 

sufficient results for the modeling part of the project.  

The “+/-“ values that comes after gain Kp , time constant Tp, and time delay Td  values varies a lot. If 

the “+/-“ value are very big it indicates that there are somewhat of an uncertainty around the actual value 

and vice versa.  
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The system identification part could have been performed again where the emphasis on getting all the 

aeration rates to have negative values was higher. This would have given better insight in how well the 

final prediction error, mean squared error, fit to estimation- and validation data would have been with the 

right criteria. The solution of swapping FO7s and FO8s with FO5s was the best solution that could have 

been taking at that stage of the project. The correlation FO5s has with FO7s and FO8s are also very high 

which justifies the swap. The system identification results were sufficient to use them for control 

strategies.   

After doing all the tests on all the TFs for system identification with Sins for the validation dataset 

(week 49) without interpolating for the peek that appears, it was decided to not redo all the TFs. It would 

improve results if this peek would have been reduced. This also applies many other places as well. 

However, it was also discovered that using week 51 as the validation dataset and week 50 as the estimation 

dataset significantly improved the results. The week 49 dataset is very noisy and not the best dataset to 

achieve good results on. Fine tuning the datasets with preprocessing techniques will improve results. 

However, if the result is adequate for doing control strategies it would be beneficial to move forward with 

worse results than to use too much time on this task. The main objective is getting the model output to 

follow the trends of the validation dataset as good as possible with gain and time constants that makes 

sense.  

In theory dissolved oxygen (SO) will either be a process where oxygen in air bubbles gets taken up or 

it is a process where the bacteria consume the oxygen in the basins. This is both first order reactions which 

fits well with the models developed in the system identification process.  

NOX will have a big impact on the bacteria at the inlet and for the anerobic basins. The bacteria will 

rather denitrify NOX (NOXN2 gas) than eat carbon and release polyphosphate, PO4-P, which will result 

in a poor effect in the aerobic basins. NOX will however not influence the oxygen uptake in the aerobic 

basins, it will rather indirectly affect the bacteria consumption of oxygen in the aerobic basins. That’s why 

it’s not included for the dissolved oxygen transfer functions. It’s just included for the transfer function for 

polyphosphate, SPOd (tf_s51sfnfspo). 

 

D. Control strategies 

The model predictive controller (MPC) performance was mostly better than that of the Proportional-

Integral-Derivative controller (PID). The MPC setpoint tracking was significantly better. The settling time 

of the multivariate controller after each disturbance introduced is notably smaller than that of the PID 

controller. The MPC has much better disturbance rejection as well. This can be seen by visual inspection 

of Figure 21 and Figure 22 seen in IV.G.2) section. The IAE index showcases the same as the outputs, 

with the MPC having 46.4% of the IAE as the PID. The IAMV values for the MPC for the manipulated 

variables was also superior to that of the PID IATV_SPOd result except for IAMV_FO6 and IAMV_FO10 

when looking at Table 14 in section IV.H. The IAMV index illustrated the similar results as the outputs, 

with the MPC having 40.4% of the IAMV as the PID. The computation time gave the PID the advantage. 

Generally, a PID structure is simpler than that of a MPC which will result in less computation time.  

There could have been conducted more tests to determine the direction of test procedure trends of the 

disturbance- and control variable. However, the results obtained for the control strategies was optimal. 

Therefore, further testing was not performed. There could also been performed tests with different 

procedures and step changes. Some inaccurate tests were also performed earlier in the project. 

The control strategies were able to track the setpoint and adjust after the setpoint. This is mostly because 

of the closed-loop structure of the control strategies. A closed-loop system can correct itself when errors 

occur. This is highly advantageous when dealing with systems with volatile changes. 

The constraints could possible been different. The upper limit was 0.3 and the lower limit was -0.3. 

The upper limit could have been higher. This would have been more realistic since there are some values 

above 0.3 that does not get taken into consideration. However, by limiting the control strategies the process 

will operate in safer conditions and will ensure better efficiency.  

The initial tuning parameters derived by the Skogestad and Seborg et al. was good starting points for 

getting the right parameters for the control strategies. However, these were not applied in the end since 
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some additional tuning with trial-and-error testing in Simulink achieved better results for the strategies. 

Therefore, somewhat of a difference between the theoretically correct parameters and the parameters that 

achieves the optimal results can be the case in some systems.  

In section IV.G.2), Table 16 presents the cumulative sum of the aeration rate (FO). The cumulative sum 

for the system without control strategies was 6.3413 ∙ 1011. While for the PID it was  
7.2625 ∙ 105  and 422.6788 for the MPC. The cumulative sum of the FO for the MPC being such low 

values compared to the cumulative sum of FO for both the actual value and the PID showcases how energy 

effective the MPC would be in a real system. However, the cumulative sum for the PID and the actual 

value seems to be unrealistic. It’s possible that the actual value accounts for more values than the MPC 

and PID. This can be because of the constraints set on the MPC and PID. There are some uncertainties if 

this is the correct cumulative sum for each of them. Therefore, further investigation is needed.  

This project is a novel control strategy for the Hias wastewater treatment and water resource recovery 

facilities (WRRF). There are possibilities of comparing the results achieved with other people’s findings. 

Comparing how well this approach is compared to others would be insightful. However, this comparison 

has not been made.  

 

VI. CONCLUSION  

The data preprocessing could have been improved with other techniques than K-nearest-neighbor for 

filling the missing values. However, the dynamic changes of the industrial dataset were captured and 

utilized. K-nearest neighbor were still able to achieve satisfying correlations between the variables as well. 

The results of the system identification part were sufficient since parameters where able to represent the 

Hias Wastewater treatment and water resource recovery facilities (WRRF) adequately. The dynamic linear 

model used for this project was somewhat different from the dynamic linear model derived from the 

system identification. However, it did not differentiate itself too much from the measurement of 

polyphosphate at the disk filter (SPOd). This thesis aim was to assess the energy efficiency by utilizing a 

MPC to control the phosphorus levels in the Hias process and see if the PIDs performance was better. The 

control strategies achieved preferable results. With closed-loop control strategies the errors in a system 

that occurs gets corrected very well. Both control strategies can be implemented at the Hias WRRF with 

the tuning parameters in this project. The model predictive controller (MPC) showcased a better 

performance than the Proportional-integral-derivative (PID) controller. With Integral of total movement 

in manipulated variables (IAMV), Integral of absolute error (IAE) for the control variables being lower 

for the MPC. The cumulative sum of aeration rate or the total amount of aeration was substantially lower 

for the MPC than that of the PID and for the actual system. This indicates that the MPC will be notably 

energy efficient if implemented in the Hias WRRF. However, for industrial implementation, PID 

controllers is for the most part preferred because of its simplicity and faster computation time, even though 

the MPC performance is better. The MPC takes approximately twice as long to compute as the PID does. 

The results show that both control strategies are able to follow setpoint changes and reject disturbances. 

As future work, this should be validated with first principles simulator. 

 

VII. FUTURE WORK 

Other data preprocessing for the missing values could have been utilized. Using other methods such as 

cubic spline could have improved the correlation between the variables. Other resampling methods could 

have been explored as well.   

Making transfer functions for two weeks in January to get some more comparisons would also be an 

important task to perform.  

Developing a first principle’s model to test the control strategies would also be very important to 

implement for a future project involving the same strategies in this project.  

Developing the feedforward control strategy can achieve preferable results. Comparing a feedforward 

controller with the PID and MPC controller would give suitable insight in how well each controller would 

perform in the Hias process. 
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Controlling Nitrogen dioxide (NO2) and Nitrate (NO3) with advanced control strategies would also be 

beneficial for the environment. Controlling soluble oxygen demand (SS) would be very beneficial for a 

wastewater treatment and water resource recovery facilities as well. 

There was a lot of time spent on trying to implement PID controllers in a cascade where seven PIDs 

was implemented to control the aeration rate (FO) to get the right dissolved oxygen (SO) values. However, 

there should have been transfer functions between SO and polyphosphate (SPOd) to get this to work. This 

was not realized until it was too late to implement it. The idea was to make a cascade structure with a PID 

controller that was a part of the outer loop, which makes it the master PID that sets the set point. The 

valves being a part of the inner loop and has one slave PID controller for each of them that controls how 

much air that will be applied to the system. Each of these PID controller would have different impacts on 

maintaining the setpoint for outer loop PID. The first valve has the most impact since the aeration rate is 

the strongest there, and the next valves has descending impacts on the outer loop PID. However, this did 

not work out after all. The idea for the MPC was to implement it in some of the same ways as the cascade 

PID structure described above. With the MPC just replacing the inner loop PIDs. Some of the work on the 

system identification part has been presented in the appendix section IX.D. Some of the simulation models 

is presented in the appendix section IX.E.1). The results have been better with a different m-script. 

However, due to time limited reasons the poor results that occurs now, this will not be presented.  

A stochastic model predictive controller (SMPC) is a great MPC algorithm that could be implemented 

to this process. A SMPC is an extension of MPC that takes the presence of uncertainty of the nutrient 

composition and flow rate in the influent into consideration and utilizes probabilistic models to predict 

future behavior and optimize control actions (Ali Meshbah, 2016). Both SMPC and MPC will optimize 

multiple controlled variables by using information of process influent variables and dynamic models. 

Developing a SMPC could enhance the performance even further.  
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IX. APPENDIX 

A. Appendix 1 

1) M-script for the master’s thesis 
%%% 
%Hias MBBR process parameters and variables 
%PACBAL project 
%ACIT5900 Master's Thesis 
%by Einar Nermo (s331440@oslomet.no) 
%%% 
 
 
 
 
%To switch datasets just switch the place of where the variables 
%for the datasets are 
%The "not used" remarks shows that that part was not used for the final 
%product. However, they were a part of the process.  
 
%Online data 
%Load data and set them into variables for week 49 dataset 
%This dataset was not used after all, it was replaced for week 51 dataset 
Data1 = load('Data49.mat'); 
 
Ssin= Data1.Hiasonlinedataw49.Ssin; %Soluble chemical oxgyen demand (COD) in the inlet, mg COD/L, DV, not 
used 
F= Data1.Hiasonlinedataw49.F; %Wastewater flow into the system, L/s, DV, not used 
 
Ssins= Data1.Hiasonlinedataw49.Ssins; %Soluble chemical oxgyen demand (COD) in the inlet, mg COD/L, DV, 
scaled 
Fs= Data1.Hiasonlinedataw49.Fs; %Wastewater flow into the system, L/s, DV, scaled 
NOX=Data1.Hiasonlinedataw49.NOX; %NO2 and NO3 combined, DV 
 
 
FO4= Data1.Hiasonlinedataw49.FO4; %Flow rate of oxygen (aeration) in basin 4, L/h, MV  
FO5= Data1.Hiasonlinedataw49.FO4; %Flow rate of oxygen (aeration) in basin 5, L/h, MV  
FO6= Data1.Hiasonlinedataw49.FO4; %Flow rate of oxygen (aeration) in basin 6, L/h, MV  
FO7= Data1.Hiasonlinedataw49.FO4; %Flow rate of oxygen (aeration) in basin 7, L/h, MV  
FO8= Data1.Hiasonlinedataw49.FO4; %Flow rate of oxygen (aeration) in basin 8, L/h, MV  
FO9= Data1.Hiasonlinedataw49.FO4; %Flow rate of oxygen (aeration) in basin 9, L/h, MV  
FO10= Data1.Hiasonlinedataw49.FO4; %Flow rate of oxygen (aeration) in basin 10, L/h, MV  
 
FO4s= Data1.Hiasonlinedataw49.FO4s; %Flow rate of oxygen (aeration) in basin 4, L/h, MV  
FO5s= Data1.Hiasonlinedataw49.FO4s; %Flow rate of oxygen (aeration) in basin 5, L/h, MV  
FO6s= Data1.Hiasonlinedataw49.FO4s; %Flow rate of oxygen (aeration) in basin 6, L/h, MV  
FO7s= Data1.Hiasonlinedataw49.FO4s; %Flow rate of oxygen (aeration) in basin 7, L/h, MV  
FO8s= Data1.Hiasonlinedataw49.FO4s; %Flow rate of oxygen (aeration) in basin 8, L/h, MV  
FO9s= Data1.Hiasonlinedataw49.FO4s; %Flow rate of oxygen (aeration) in basin 9, L/h, MV  
FO10s= Data1.Hiasonlinedataw49.FO4s; %Flow rate of oxygen (aeration) in basin 10, L/h, MV  
 
 
SO4= Data1.Hiasonlinedataw49.SO4; %Dissolved oxygen in basin 4, mg O2/L, CV 
SO5= Data1.Hiasonlinedataw49.SO5; %Dissolved oxygen in basin 5, mg O2/L, CV 
SO6= Data1.Hiasonlinedataw49.SO6; %Dissolved oxygen in basin 6, mg O2/L, CV 
SO8= Data1.Hiasonlinedataw49.SO8; %Dissolved oxygen in basin 8, mg O2/L, CV 
SO9= Data1.Hiasonlinedataw49.SO9; %Dissolved oxygen in basin 9, mg O2/L, CV 
 
SO7= (SO6+SO8)/2; %Dissolved oxygen in basin 7, mg O2/L, CV 
SO10= SO9-(SO8-SO9); %Dissolved oxygen in basin 10, mg O2/L, CV 
 
SPOd= Data1.Hiasonlinedataw49.SPOd; %Soluble phosphate (PO4) that comes out of the disk filter, mg P/L, CV 
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%Online data 
%Load data and set them into variables for week 50 dataset 
 
Data1 = load('Data50.mat'); 
 
 
 
Ssin= Data1.Hiasonlinedataw50.Ssin; %Soluble chemical oxygen demand (COD) in the inlet, mg COD/L, DV, not 
used 
F= Data1.Hiasonlinedataw50.F; %Wastewater flow into the system, L/s, DV, not used 
 
Ssins= Data1.Hiasonlinedataw50.Ssins; %Soluble chemical oxygen demand (COD) in the inlet, mg COD/L, DV 
scaled 
Fs= Data1.Hiasonlinedataw50.Fs; %Wastewater flow into the system, L/s, DV scaled 
NOX=Data1.Hiasonlinedataw50.NOX; %NO2 and NO3 combined, DV 
 
 
FO4= Data1.Hiasonlinedataw50.FO4; %Flow rate of oxygen (aeration) in basin 4, L/h, MV, not used 
FO5= Data1.Hiasonlinedataw50.FO5; %Flow rate of oxygen (aeration) in basin 5, L/h, MV, not used 
FO6= Data1.Hiasonlinedataw50.FO6; %Flow rate of oxygen (aeration) in basin 6, L/h, MV, not used  
FO7= Data1.Hiasonlinedataw50.FO7; %Flow rate of oxygen (aeration) in basin 7, L/h, MV, not used  
FO8= Data1.Hiasonlinedataw50.FO8; %Flow rate of oxygen (aeration) in basin 8, L/h, MV, not used  
FO9= Data1.Hiasonlinedataw50.FO9; %Flow rate of oxygen (aeration) in basin 9, L/h, MV, not used 
FO10= Data1.Hiasonlinedataw50.FO10; %Flow rate of oxygen (aeration) in basin 10, L/h, MV, not used 
 
FO4s= Data1.Hiasonlinedataw50.FO4s; %Flow rate of oxygen (aeration) in basin 4, L/h, MV  
FO5s= Data1.Hiasonlinedataw50.FO5s; %Flow rate of oxygen (aeration) in basin 5, L/h, MV  
FO6s= Data1.Hiasonlinedataw50.FO6s; %Flow rate of oxygen (aeration) in basin 6, L/h, MV  
FO7s= Data1.Hiasonlinedataw50.FO7s; %Flow rate of oxygen (aeration) in basin 7, L/h, MV  
FO8s= Data1.Hiasonlinedataw50.FO8s; %Flow rate of oxygen (aeration) in basin 8, L/h, MV  
FO9s= Data1.Hiasonlinedataw50.FO9s; %Flow rate of oxygen (aeration) in basin 9, L/h, MV  
FO10s= Data1.Hiasonlinedataw50.FO10s; %Flow rate of oxygen (aeration) in basin 10, L/h, MV  
 
 
SO4= Data1.Hiasonlinedataw50.SO4; %Dissolved oxygen in basin 4, mg O2/L, CV 
SO5= Data1.Hiasonlinedataw50.SO5; %Dissolved oxygen in basin 5, mg O2/L, CV 
SO6= Data1.Hiasonlinedataw50.SO6; %Dissolved oxygen in basin 6, mg O2/L, CV 
SO8= Data1.Hiasonlinedataw50.SO8; %Dissolved oxygen in basin 8, mg O2/L, CV 
SO9= Data1.Hiasonlinedataw50.SO9; %Dissolved oxygen in basin 9, mg O2/L, CV 
 
SO7= (SO6+SO8)/2; %Dissolved oxygen in basin 7, mg O2/L, CV 
SO10= SO9-(SO8-SO9); %Dissolved oxygen in basin 10, mg O2/L, CV 
 
SPOd= Data1.Hiasonlinedataw50.SPOd; %Soluble phosphate (PO4) that comes out of the disk filter, mg P/L, CV 
 
 
 
 
 
 
%Online data 
%Load data and set them into variables for week 51 dataset 
Data1 = load('Data51.mat'); 
 
SSin= Data1.Hiasonlinedataw51.Ssin; %Soluble chemical oxygen demand (COD) in the inlet, mg COD/L, DV, not 
used 
F= Data1.Hiasonlinedataw51.F; %Wastewater flow into the system, L/s, DV, not used 
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SSins= Data1.Hiasonlinedataw51.Ssins; %Soluble chemical oxygen demand (COD) in the inlet, mg COD/L, DV, 
scaled 
Fs= Data1.Hiasonlinedataw51.Fs; %Wastewater flow into the system, L/s, DV, scaled 
NOX=Data1.Hiasonlinedataw51.NOX; %NO2 and NO3 combined, DV 
 
 
FO4= Data1.Hiasonlinedataw51.FO4; %Flow rate of oxygen (aeration) in basin 4, L/h, MV, not used  
FO5= Data1.Hiasonlinedataw51.FO5; %Flow rate of oxygen (aeration) in basin 5, L/h, MV, not used  
FO6= Data1.Hiasonlinedataw51.FO6; %Flow rate of oxygen (aeration) in basin 6, L/h, MV, not used   
FO7= Data1.Hiasonlinedataw51.FO7; %Flow rate of oxygen (aeration) in basin 7, L/h, MV, not used   
FO8= Data1.Hiasonlinedataw51.FO8; %Flow rate of oxygen (aeration) in basin 8, L/h, MV, not used  
FO9= Data1.Hiasonlinedataw51.FO9; %Flow rate of oxygen (aeration) in basin 9, L/h, MV, not used   
FO10= Data1.Hiasonlinedataw51.FO10; %Flow rate of oxygen (aeration) in basin 10, L/h, MV, not used   
 
FO4s= Data1.Hiasonlinedataw51.FO4s; %Flow rate of oxygen (aeration) in basin 4, L/h, MV  
FO5s= Data1.Hiasonlinedataw51.FO5s; %Flow rate of oxygen (aeration) in basin 5, L/h, MV  
FO6s= Data1.Hiasonlinedataw51.FO6s; %Flow rate of oxygen (aeration) in basin 6, L/h, MV  
FO7s= Data1.Hiasonlinedataw51.FO7s; %Flow rate of oxygen (aeration) in basin 7, L/h, MV  
FO8s= Data1.Hiasonlinedataw51.FO8s; %Flow rate of oxygen (aeration) in basin 8, L/h, MV  
FO9s= Data1.Hiasonlinedataw51.FO9s; %Flow rate of oxygen (aeration) in basin 9, L/h, MV  
FO10s= Data1.Hiasonlinedataw51.FO10s; %Flow rate of oxygen (aeration) in basin 10, L/h, MV  
 
 
SO4= Data1.Hiasonlinedataw51.SO4; %Dissolved oxygen in basin 4, mg O2/L, CV, not used  
SO5= Data1.Hiasonlinedataw51.SO5; %Dissolved oxygen in basin 5, mg O2/L, CV, not used  
SO6= Data1.Hiasonlinedataw51.SO6; %Dissolved oxygen in basin 6, mg O2/L, CV, not used  
SO8= Data1.Hiasonlinedataw51.SO8; %Dissolved oxygen in basin 8, mg O2/L, CV, not used  
SO9= Data1.Hiasonlinedataw51.SO9; %Dissolved oxygen in basin 9, mg O2/L, Cv, not used  
 
SO7= (SO6+SO8)/2; %Dissolved oxygen in basin 7, mg O2/L, CV 
SO10= SO9-(SO8-SO9); %Dissolved oxygen in basin 10, mg O2/L, CV 
 
 
SPOd= Data1.Hiasonlinedataw51.SPOd; %Soluble phosphate (PO4) that comes out of the disk filter, mg P/L, CV 
 
 
 
 
%Assumptions: 
%Assuming FO4(s)-FO10(s) is manipulated variables (MVs) 
%Assuming SSin(s), F(s) and NOX is disturbance variables (DVs) 
%Assuming SO4-SO10 and SPOd is control variables (CVs) 
 
 
%This is the mean for week 51 variables and will be used to get initial 
%values and used for deviation variables and set point 
FO4m= mean(FO4s); %FO4m=2.9980 
FO5m= mean(FO5s); %FO5m=1.8193 
FO6m= mean(FO6s); %FO6m=1.5715 
FO7m= mean(FO7s); %FO7m=1.0550 
FO8m= mean(FO8s); %FO8m=0.8462 
FO9m= mean(FO9s); %FO9m=0.6239 
FO10m= mean(FO10s); %FO10m=0.5214 
 
SO4m= mean(SO4); %SO4m =5.3729 
SO5m= mean(SO5); %SO5m =6.0622 
SO6m= mean(SO6); %SO6m =5.8070 
SO7m= mean(SO7); %SO7m =5.4728 
SO8m= mean(SO8); %SO8m =5.1387 
SO9m= mean(SO9); %SO9m =5.0493 
SO10m= mean(SO10); %SO10m =4.9598 
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Fsm= mean(Fs); %Fsm=0.0870 
SSinsm=mean(SSins); %SSinsm=0.5088 
NOXm=mean(NOX); %NOXm=2.6089 
 
SPOm=mean(SPOd); %SPOm=0.2325 
 
 
 
 
 
 
%Interpolate measurement vectors from 144 sample/day to 1440 samples/day 
%Current sampling of measurement 144/day. 
%This will make the dataset go from having 817 datapoints to 8170, this 
%will make x-axis be in minutes, which is the same as the system 
%identification models or transfer functions 
 
N0=max(size(Fs)); 
N=(N0-1)*10; 
t0=0:10:N; 
t1=0:1:N; 
 
 
%Interpolate 
Fs=interp1(t0,Fs,t1); 
SSins=interp1(t0,SSins,t1); 
NOX=interp1(t0,NOX,t1); 
SPOd=interp1(t0,SPOd,t1); 
 
FO4s=interp1(t0,FO4s,t1); 
FO5s=interp1(t0,FO5s,t1); 
FO6s=interp1(t0,FO6s,t1); 
FO7s=interp1(t0,FO7s,t1); 
FO8s=interp1(t0,FO8s,t1); 
FO9s=interp1(t0,FO9s,t1); 
FO10s=interp1(t0,FO10s,t1); 
 
SO4=interp1(t0,SO4,t1); 
SO5=interp1(t0,SO5,t1); 
SO6=interp1(t0,SO6,t1); 
SO7=interp1(t0,SO7,t1); 
SO8=interp1(t0,SO8,t1); 
SO9=interp1(t0,SO9,t1); 
SO10=interp1(t0,SO10,t1); 
 
 
%Cumulative sum of the FOs 
 
FO4s_c = cumsum(FO4s); 
FO5s_c = cumsum(FO5s); 
FO6s_c = cumsum(FO6s); 
FO7s_c = cumsum(FO7s); 
FO8s_c = cumsum(FO8s); 
FO9s_c = cumsum(FO9s); 
FO10s_c = cumsum(FO10s); 
sum (FO4s_c); 
 
sum (FO4s_c+FO5s_c+FO6s_c+FO7s_c+FO8s_c+FO9s_c+FO10s_c) % 1.0e+11 * 6.3413 
 
 
%To get each of the subplots switch places and have the plot you want 
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%in the end of the plots section 
%Plots for dissolved oxygen variables (SO) 
subplot(7,1,1);  
plot(SO4);  
title('SO4');  
xlabel('Time (minutes)'); 
 
subplot(7,1,2);  
plot(SO5);  
title('SO5');  
xlabel('Time (minutes)'); 
 
subplot(7,1,3);  
plot(SO6);  
title('SO6');  
xlabel('Time (minutes)'); 
 
subplot(7,1,4);  
plot(SO7);  
title('SO7');  
xlabel('Time (minutes)'); 
 
subplot(7,1,5);  
plot(SO8);  
title('SO8');  
xlabel('Time (minutes)'); 
 
subplot(7,1,6);  
plot(SO9);  
title('SO9');  
xlabel('Time (minutes)'); 
 
subplot(7,1,7);  
plot(SO10);  
title('SO10');  
xlabel('Time (minutes)'); 
 
%Plots for all the aeration variables  
subplot(7,1,1);  
plot(FO4s);  
title('FO4s');  
xlabel('Time (minutes)'); 
 
subplot(7,1,2);  
plot(FO5s);  
title('FO5s');  
xlabel('Time (minutes)'); 
 
subplot(7,1,3);  
plot(FO6s);  
title('FO6s');  
xlabel('Time (minutes)'); 
 
subplot(7,1,4);  
plot(FO7s);  
title('FO7s');  
xlabel('Time (minutes)'); 
 
subplot(7,1,5);  
plot(FO8s);  
title('FO8s');  
xlabel('Time (minutes)'); 
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subplot(7,1,6);  
plot(FO9s);  
title('FO9s');  
xlabel('Time (minutes)'); 
 
subplot(7,1,7);  
plot(FO10s);  
title('FO10s');  
xlabel('Time (minutes)'); 
 
%Plots for the rest of the variables  
subplot(4,1,1);  
  
plot(Fs); % plot all input data  
title('Fs');  
xlabel('Time (minutes)'); 
 
subplot(4,1,2);  
plot(SSins);  
title('SSins');  
xlabel('Time (minutes)'); 
 
subplot(4,1,3);  
plot(NOX);  
title('NOX');  
xlabel('Time (minutes)'); 
 
subplot(4,1,4);  
plot(SPOd);  
title('SPOd');  
xlabel('Time (minutes)'); 
 
 
 
%The out variable in workspace that gets generated after running the 
%simulink for the PID must be deleted after generating the test procedure trends for FO 
%for the PID and then run the simulink for the MPC to generate plots for 
%the both of them 
%This code won't run the first time becouse of this section, since this 
%section require the out variable that is generated by the simulink model 
 
%Plotting all the test procedure trends for FO for the PID 
subplot(7,1,1);  
plot(out.FO4sPID);  
title('FO4s(PID)');  
xlabel('Time (minutes)'); 
 
subplot(7,1,2);  
plot(out.FO5sPID);  
title('FO5s(PID)');  
xlabel('Time (minutes)'); 
 
subplot(7,1,3);  
plot(out.FO6sPID);  
title('FO6s(PID)');  
xlabel('Time (minutes)'); 
 
subplot(7,1,4);  
plot(out.FO7sPID);  
title('FO7s(PID)');  
xlabel('Time (minutes)'); 
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subplot(7,1,5);  
plot(out.FO8sPID);  
title('FO8s(PID)');  
xlabel('Time (minutes)'); 
 
subplot(7,1,6);  
plot(out.FO9sPID);  
title('FO9s(PID)');  
xlabel('Time (minutes)'); 
 
subplot(7,1,7);  
plot(out.FO10sPID);  
title('FO10s(PID)');  
xlabel('Time (minutes)'); 
 
%Plotting all the test procedure trends for FO for the MPC 
subplot(7,1,1);  
plot(out.FO4sMPC);  
title('FO4s(MPC)');  
xlabel('Time (minutes)'); 
 
subplot(7,1,2);  
plot(out.FO5sMPC);  
title('FO5s(MPC)');  
xlabel('Time (minutes)'); 
 
subplot(7,1,3);  
plot(out.FO6sMPC);  
title('FO6s(MPC)');  
xlabel('Time (minutes)'); 
 
subplot(7,1,4);  
plot(out.FO7sMPC);  
title('FO7s(MPC)');  
xlabel('Time (minutes)'); 
 
subplot(7,1,5);  
plot(out.FO8sMPC);  
title('FO8s(MPC)');  
xlabel('Time (minutes)'); 
 
subplot(7,1,6);  
plot(out.FO9sMPC);  
title('FO9s(MPC)');  
xlabel('Time (minutes)'); 
 
subplot(7,1,7);  
plot(out.FO10sMPC);  
title('FO10s(MPC)');  
xlabel('Time (minutes)'); 
 
 
 
 
%Transpose 
%This is needed to not get dimension error for the variables, transposing 
%the variables will give the right directions of the columns and rows.  
Fs = [t1' Fs']; 
SSins = [t1' SSins']; 
NOX = [t1' NOX']; 
SPOd = [t1' SPOd']; 
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FO4s = [t1' FO4s']; 
FO5s = [t1' FO5s']; 
FO6s = [t1' FO6s']; 
FO7s = [t1' FO7s']; 
FO8s = [t1' FO8s']; 
FO9s = [t1' FO9s']; 
FO10s = [t1' FO10s']; 
 
SO4 = [t1' SO4']; 
SO5 = [t1' SO5']; 
SO6 = [t1' SO6']; 
SO7 = [t1' SO7']; 
SO8 = [t1' SO8']; 
SO9 = [t1' SO9']; 
SO10 = [t1' SO10']; 
 
 
 
 
%These are the transfer functions between FO and SO which will not be used 
%after all 
%There are also other codes that have been tested out and not been a part 
%of the final product. 
%There are also many different simulink models where a lot of time has been spent on 
%developing it but will not be a part of the final product after all. 
%The same goes for the system identification part. 
 
%Transfer function for tf_b4_sffoso, with FO4s, Fs and SSins as input and SO4 as output 
FO4s_SO4=tf(0.00076014);  
SO4_SO4=tf(0); %just to get right dimensions 
Fs_SO4=tf(14.62,[120.38 1]); 
SSins_SO4=tf(4.0728,[121.65 1]); 
 
tf_SO4=[FO4s_SO4 SO4_SO4 Fs_SO4 SSins_SO4]; 
 
%Transfer function for tf_b5_sffoso, with FO5s, SO4, Fs and SSins as input and SO5 as output 
FO5s_SO5=tf(0.56743); 
SO4_SO5=tf(0.56743);  
Fs_SO5=tf(11.544,[300 1]); 
SSins_SO5=tf(-0.11662,[300 1]); 
 
tf_SO5=[FO5s_SO5 SO4_SO5 Fs_SO5 SSins_SO5]; 
 
%Transfer function for tf_b6_sffoso, with FO6s, SO5, Fs and SSins as input and SO6 as output 
FO6s_SO6=tf(0.63581); 
SO5_SO6=tf(0.80471);  
Fs_SO6=tf(-0.14453,[228.01 1]); 
SSins_SO6=tf(0.048607,[240.18 1]); 
 
tf_SO6=[FO6s_SO6 SO5_SO6 Fs_SO6 SSins_SO6]; 
 
%Transfer function for tf_b7_sffoso, with FO7s, SO6, Fs and SSins as input and SO7 as output 
FO7s_SO7=tf(1.4266); 
SO6_SO7=tf(0.38308);  
Fs_SO7=tf(15.348,[420 1]); 
SSins_SO7=tf(1.5279,[420 1]); 
 
tf_SO7=[FO7s_SO7 SO6_SO7 Fs_SO7 SSins_SO7]; 
 
 
%Transfer function for tf_b8_sffoso, with FO8s, SO7, Fs and SSins as input and SO8 as output 
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FO8s_SO8=tf(5.6197);  
SO7_SO8=tf(0.23002); 
Fs_SO8=tf(-8.8233,[41.37 1]); 
SSins_SO8=tf(0.23383,[480 1]); 
 
tf_SO8=[FO8s_SO8 SO7_SO8 Fs_SO8 SSins_SO8]; 
 
 
%Transfer function for tf_b9_sffoso, with FO9s, SO8, Fs and SSins as input and SO9 as output 
FO9s_SO9=tf(3.4222);  
SO8_SO9=tf(0.75981); 
Fs_SO9=tf(-3.6539,[125.15 1]); 
SSins_SO9=tf(-1.1004,[75.244 1]); 
 
tf_SO9=[FO9s_SO9 SO8_SO9 Fs_SO9 SSins_SO9]; 
 
 
 
%Transfer function for tf_b10_sffoso, with FO10s, SO9, Fs and SSins as input and SO10 as output 
FO10s_SO10=tf(3.4631);  
SO9_SO10=tf(0.89267); 
Fs_SO10=tf(-8.5198,[750 1]); 
SSins_SO10=tf(-1.1618,[342.08 1]); 
 
tf_SO10=[FO10s_SO10 SO9_SO10 Fs_SO10  SSins_SO10]; 
 
 
%not used 
plantSO=[tf_SO4 tf_SO5 tf_SO6 tf_SO7 tf_SO8 tf_SO9 tf_SO10]; 
 
 
 
%This is also not used 
%SO4 
%t5 increase 5% 
t5=240; 
step1=1.05; 
%t6 decrease 5% 
t6=840; 
step2=-0.05; 
 
 
%SO5 
%t7 increase 5% 
t7=300; 
step1=1.05; 
%t8 decrease 5% 
t8=900; 
step2=-0.05; 
 
 
%SO6 
%t9 increase 5% 
t9=360; 
step1=1.05; 
%t10 decrease 5% 
t10=960; 
step2=-0.05; 
 
 
%SO7 
%t12 increase 5% 
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t11=420; 
step1=1.05; 
%t12 decrease 5% 
t12=1020; 
step2=-0.05; 
 
 
%SO8 
%t13 increase 5% 
t13=480; 
step1=1.05; 
%t14 decrease 5% 
t14=1080; 
step2=-0.05; 
 
 
%SO9 
%t15 increase 5% 
t15=540; 
step1=1.05; 
%t16 decrease 5% 
t16=1140; 
step2=-0.05; 
 
 
%SO10 
%t17 increase 5% 
t17=600; 
step1=0.05; 
%t18 decrease 5% 
t18=1200; 
step2=-0.05; 
 
%PID FO4 
tau4=10; 
tauc4=10;  
Ti4=min(tau4, 4*tauc4); 
Kc4=1000; 
 
%PID FO5 
tau5=10; 
tauc5=10;  
Ti5=min(tau5, 4*tauc5); 
Kc5=1000; 
 
%PID FO6 
tau6=10; 
tauc6=10;  
Ti6=min(tau6, 4*tauc6); 
Kc6=1000; 
 
%PID FO7 
tau7=10; 
tauc7=10;  
Ti7=min(tau4, 4*tauc7); 
Kc7=1000; 
 
%PID FO8 
tau8=10; 
tauc8=10;  
Ti8=min(tau8, 4*tauc8); 
Kc8=1000; 
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%PID FO9 
tau9=10; 
tauc9=10;  
Ti9=min(tau9, 4*tauc9); 
Kc9=1000; 
 
%PID FO10 
tau10=10; 
tauc10=10;  
Ti10=min(tau4, 4*tauc10); 
Kc10=1000; 
 
%PID SPOd 
tauSPOd=1; 
taucSPOd=1;  
TiSPO=min(tauSPOd, 4*taucSPOd); 
KcSPO=1000; 
 
%This is the end of things that are not used after all, from this point 
%everything else is used 
 
 
%Transfer function for tf_s51sfnfspo, with SSins, Fs, NOX in, FO4s, FO5s...FO10s as input and SPOd as output 
SSins_SPOd=tf(0.43109, [139.992 62.332 1],'IODelay',359.72); %(60s+1)(2.3332s+1)=139.992s^2+62.332s +1 
Fs_SPOd=tf(1.2924,[277.653 39.2551 1],'IODelay',79.46); %(30s+1)(9.2551s+1)=277.653s^2+39.2551s+1 
NOX_SPOd=tf(0.0023115,[0.12464 46.598675 1],'IODelay',147.61); % 
(46.596s+1)(0.0026751s+1)=0.12464s^2+46.598675s+1 
FO4s_SPOd=tf(-0.0029016,[472.577701 43.898 1],'IODelay',47.75); % 
(18.919s+1)(24.979s+1)=472.577701s^2+43.898s+1 
FO5s_SPOd=tf(-0.029011,[671.19725 52.085 1],'IODelay',81.34); % 
(23.394s+1)(28.691s+1)=671.19725s^2+52.085s+1 
FO6s_SPOd=tf(-0.047375,[303.0221745 55.6611 1],'IODelay',57.45); % 
(49.545s+1)(6.1161s+1)=303.0221745s^2+55.6611s+1 
FO7s_SPOd=tf(-0.029011,[671.19725 52.085 1],'IODelay',81.34); % (60s+1)(30s+1)=1800s^2+90s+1 
FO8s_SPOd=tf(-0.029011,[671.19725 52.085 1],'IODelay',81.34); % (40.808s+   
1)(30s+1)=1224.24s^2+70.808s+1 
FO9s_SPOd=tf(-0.053278,[800.52 73.342 1],'IODelay',304.8); % (60s+1)(13.342s+1)=800.52s^2+73.342s+1 
FO10s_SPOd=tf(-0.21394,[79.53 61.3255 1],'IODelay',315.41); % (60s+1)(1.3255s+1)=79.53s^2+61.3255s+1 
 
 
%This is the original FO7s_SPOd and FO8_SPOd, replaced with FO5 since  
%FO7s_SPOd and FO8s_SPOd has positive Kp values 
 
%FO7s_SPOd=tf(0.13821,[1800 90 1],'IODelay',132.74); % (60s+1)(30s+1)=1800s^2+90s+1 
%FO8s_SPOd=tf(0.12275,[1224.24 70.808 1],'IODelay',132.74); % (40.808s+1)(30s+1)=1224.24s^2+70.808s+1 
 
 
 
tf_SPOd=[SSins_SPOd Fs_SPOd NOX_SPOd FO4s_SPOd FO5s_SPOd FO6s_SPOd FO7s_SPOd 
FO8s_SPOd FO9s_SPOd FO10s_SPOd]; 
 
 
 
%SPOd 
%t1 increase 5% 
t1=100; 
step1=-0.05; 
%t2 decrease 5% 
t2=700; 
step2=0.05; 
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%SSins  
%t5 decrease 5% 
t3=2000; 
step1=-0.05; 
%t6 increase 5% 
t4=2600; 
step2=0.05; 
 
 
%Fs 
%t3 increase 5% 
t5=5000; 
step3=0.05; 
%t4 decrease 5% 
t6=5600; 
step4=-0.05; 
 
%NOX 
%t7 decrease 5% 
t7=7000; 
step1=-0.05; 
%t8 increase 5% 
t8=7600; 
step2=0.05; 
 
 
 
%The mean for SO will be set as sp for FO:  
%SO4m =5.3729, SO5m =6.0622, SO6m =5.8070, SO7m =5.4728, SO8m =5.1387, SO9m =5.0493, SO10m 
=4.9598 
 
SO4sp=5.3729; %SO4m =5.3729 
SO5sp=6.0622; %SO5m =6.0622 
SO6sp=5.8070; %SO6m =5.8070 
SO7sp=5.4728; %SO7m =5.4728 
SO8sp=5.1387; %SO8m =5.1387 
SO9sp=5.0493; %SO9m =5.0493 
SO10sp=4.9598; %SO10m =4.9598 
 
 
 
 
%Ratio controllers based on mean of FO, and then tuned futher 
rFO4=1.8; 
rFO5=1; 
rFO6=0.72418; 
rFO7=0.4519; 
rFO8=0.38225; 
rFO9=0.2081; 
rFO10=0.10; 
 
 
%PID FO5 to SPOd 
 
Tp1=40.1606; %originally 28.6533 
Tp2=30.5810; %originally 23.4192 
 
theta=81.34; 
tauc=theta; 
Kp=-0.02901; 
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Kc=1/(Kp)*(Tp1/(tauc+theta)); %-8.5098 
taui=min(Tp1,(4*(tauc+theta))); %40.1606 
taud=Tp2;%30.5810  
 
 
 
 
%%% 
% MPC controller % 
%%% 
plant3=setmpcsignals(tf_SPOd,'MD',[1, 2, 3]); 
 
%Define MPC sampling time 
%1/10 of 600min, which is the time it takes from basin 1 to 10 (this is not 
%based on the calculated sampling time but rather the sampling time 
%conveyed early on in the project) 
 
%Sampling time Ts 
Ts=60; 
 
%Horizon for prediction and control 
Tsettling=600; 
N=Tsettling/Ts; %10 
 
M=10; %N/3<M<N/2 
P=610; %P=N+M 
 
 
%Constraints for the manipulated(input)variables 
MV1=struct('Min',-0.3,'Max',0.3); 
MV2=struct('Min',-0.3,'Max',0.3); 
MV3=struct('Min',-0.3,'Max',0.3); 
MV4=struct('Min',-0.3,'Max',0.3); 
MV5=struct('Min',-0.3,'Max',0.3); 
MV6=struct('Min',-0.3,'Max',0.3); 
MV7=struct('Min',-0.3,'Max',0.3); 
 
 
 
 
MV=[MV1 MV2 MV3 MV4 MV5 MV6 MV7]; 
 
%Constraints for the controlled (output) variable 
OV1=struct('Min',-0.3,'Max',0.3); 
OV=OV1; 
 
%Q equal weighting between controlled variables 
Q=10; 
 
%Ru zero weighting for the values of the manipulated variables(u) 
Ru=[0 0 0 0 0 0 0]; 
 
 
%0.01 
%Rd weighting for the changes in the manipulated variables(du) 
Rd=[0.1 0.1 0.1 0.1 0.1 0.1 0.1]; 
 
 
W=struct('ManipulatedVariables',Ru,'ManipulatedVariablesRate',Rd,'OutputVariables',Q); 
 
%Specifies MPC controller with prediction horizon (p), control horizon(m) 
%and input 
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%and the properties of manipulated variables (MV), outputvariables (OV) and 
%input disturbance. 
 
mpcB=mpc(plant3,Ts,P,M,W,MV,OV); 
XmpcB=mpcstate(mpcB); 
 
 
 
%Cumalative sum will generate error first time running the m-script   
%Cumulative sum of the FOs for the PID 
 
FO4sPID_c = cumsum(out.FO4sPID); 
FO5sPID_c = cumsum(out.FO5sPID); 
FO6sPID_c = cumsum(out.FO6sPID); 
FO7sPID_c = cumsum(out.FO7sPID); 
FO8sPID_c = cumsum(out.FO8sPID); 
FO9sPID_c = cumsum(out.FO9sPID); 
FO10sPID_c = cumsum(out.FO10sPID); 
 
 
sum (FO4sPID_c+FO5sPID_c+FO6sPID_c+FO7sPID_c+FO8sPID_c+FO9sPID_c+FO10sPID_c); %7.2625*e+05 
 
 
%Cumulative sum of the FOs for the MPC 
 
FO4sMPC_c = cumsum(out.FO4sMPC); 
FO5sMPC_c = cumsum(out.FO5sMPC); 
FO6sMPC_c = cumsum(out.FO6sMPC); 
FO7sMPC_c = cumsum(out.FO7sMPC); 
FO8sMPC_c = cumsum(out.FO8sMPC); 
FO9sMPC_c = cumsum(out.FO9sMPC); 
FO10sMPC_c = cumsum(out.FO10sMPC); 
 
sum (FO4sMPC_c+FO5sMPC_c+FO6sMPC_c+FO7sMPC_c+FO8sMPC_c+FO9sMPC_c+FO10sMPC_c); 
%422.6788   
 

 

B. Appendix 2 

1) Simulation models for the linear models 
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Figure 28 Simulation model for the original dynamic linear model 

 
Figure 29 Simulation model for the dynamic linear model 

 
2) Simulation model for the PID 
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Figure 30 simulation model for the PID 

3) Simulation model for the MPC 
 

 

 
Figure 31 simulation model for the MPC 

C. Appendix 3 

1) Code for filling missing values in the whole december dataset with heat map and pair plot for 
december and for just week 51 dataset: 
https://github.com/s331440/DAVE3625/blob/main/5900_project.ipynb 

 

https://github.com/s331440/DAVE3625/blob/main/5900_project.ipynb
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D. Appendix 4 

1) tf_b4_foso with week 49 as validation dataset 
This appendix is incomplete, there was not time to fill everything out. There should also have been 

system identification results for the failed attempts for the transfer functions for polyphosphate (𝑆𝑃𝑂𝑑) 

 

 
Figure 32 tf_b4_foso time plot for week 50 (purple graph) and week 49 (green graph) with FO4 as input 

and SO4 as output for channel 1 which is FO4 

 
Figure 33 tf_b4_foso fitness index and plots of all model outputs with FO4 as input and SO4 as output, 

and week 49 as validating data and week 50 as estimation data 
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Figure 34 foso fitness index and plots of the best model outputs with FO4 as input and SO4 as output, 

and week 49 as validating data and week 50 as estimation data 

 

Table 17 tf_b4_foso transfer functions with FO4 as input and SO4 as output, and week 49 as validating 

data and week 50 as estimation data 

Model 
name 

Proces
s gain 
Kp1, 
mg/L 

Time 
constant(s) 
Tp1, min 

Final 
predicti
on error 

(FPE) 

Mean 
squared 
error 
(MSE) 

Fit to 
estimati
on data 
in % 

Fit to 
validati
on data 
(fitness 
index) 
in % 

P1 1.111
9∙
10−3 

4.8569∙
10−2 

0.2235 0.2224 55.38 53.51 

P2 1.111
9∙
10−3 

0.33052 
and 
4.7603∙
10−4 

0.224 0.2224 55.38 53.51 

P1D 1.124
4∙
10−3 

9.63 and 
Td=0 

0.2313 0.2296 54.66 53.03 

P0 1.107
5∙
10−3 

 0.2404 0.2398 53.66 52.39 
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P2D 1.140
2∙
10−3 

19.887 and 
0.13695 

0.2449 0.2425 53.4 51.56 

P2DI 5.720
7∙
10−7 

2.7228∙
10−2 and 
1.8597 

0.7501 0.7373 18.74 22.96 

P1DI 6.305
9∙
10−7 

2.7708∙
10−2 and 
Td=0 

0.7413 0.7323 19.02 -17.92 

 
2) tf_b5_foso first attempt with unscaled datasets 

 

 

 
Figure 35 Fitness index and plots of all model output with FO5 and SO4 as input and SO5 as output 

with unscaled datasets 

Notably, the documentation of this attempt was insufficient, and the parameters of the models could not 

be successfully determined. However, there is room for improvement in future attempts to better document 

the process and increase the likelihood of success in finding the parameters. 

 
3) tf_b5_foso with week 49 as validation dataset 
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Figure 36 tf_b4_foso time plot for week 50 (yellow graph) and week 49 (green graph) with FO5 and 

SO4 as input and SO5 as output for channel 1 which is FO5  

 
Figure 37 tf_b4_foso time plot for week 50 (yellow graph) and week 49 (green graph) with FO5 and 

SO4 as input and SO5 as output for channel 2 which is SO4 
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Figure 38 tf_b4_foso fitness index and plots of all model outputs with FO5 as input and SO5 as output, 

and week 49 as validating data and week 50 as estimation data 
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Figure 39 tf_b4_foso fitness index and plots of the best model outputs with FO5 as input and SO5 as 

output, and week 49 as validating data and week 50 as estimation data with unscaled datasets 

 

Table 18 tf_b5_foso transfer functions with FO5 and SO4 as input and SO5 as output, and with week 49 

as validating data and week 50 as estimation data 

Model 
name 

Proces
s gain 
Kp1, 
mg/L 

Time 
constant(s) 
Tp1, min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constant 
Tp2, min 

Final 
predicti
on error 

(FPE) 

Mean 
squared 
error 
(MSE) 

Fit to 
estimati
on data 
in % 

Fit to 
validati
on data 
(fitness 
index) 
in % 

P2DI -
1.032∙
10−6 

8256.3 and 
5668, and 
Td=20.68 

7.4004∙
10−4 

732.46 
and 
10 000 
and 
Td=297.
5 

0.8662 0.837 24.83 10.44 

P1DI -
1.898
5∙
10−7 

10 000 and 
Td=15.83 

2.6828∙
10−4 

7522.7 
and 
Td=75.2
4 

0.8694 0.8484 24.33 9.196 

P2 1.999
8∙
10−3 

1∙ 10−6 
and 4.1599 

-1.4081 10 000 
and 
1.5347∙
10−3 

0.2914 0.2872 55.97 8.665 
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P2D 1.288∙
10−3 

1.11166∙
10−3  and 
1.1352∙
10−3 

0.53597 1.8277 
and 
0.19284 
and Td=0 

0.1047 0.1026 73.68 -11.7 

P1D 1.287
1∙
10−3 

0.47415 
and 
Td=0.35 

0.53653 0.25632 
and 
Td=4.24 

0.1041 0.1026 73.68 -11.76 

P1 1.293
6∙
10−3 

1.8903∙
10−3 

0.53651 0.22468 0.1036 0.1026 73.69 -11.9 

P0 1.174
1∙
10−3 

 0.61317  0.06651 0.06619 78.86 -18.93 

 

 

The fitness index is not very high for tf_b4_foso and tf_b5_foso. That’s why it is necessary to add more 

inputs. The flowrate of the wastewater is an important disturbance variable. There are fortunately online 

data for this variable, and the following transfer functions will have this input included. There would also 

be a good idea to add temperature as an input as well. However, this DV was not measured unfortunately. 

Adding SSin as an input will also be investigated later.  

 
4) tf_b4_ffoso with unscaled datasets and with week 49 as validation dataset 

 

 

 
Figure 40 tf_b4_ffoso time plot for week 50 (blue graph) and week 49 (yellow graph) with FO4 and F as 

input and SO4 as output for channel 1 which is FO4 with unscaled datasets  
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Figure 41 tf_b4_ffoso time plot for week 50 (blue graph) and week 49 (yellow graph) with FO4 and F as 

input and SO4 as output for channel 2 which is F with unscaled datasets  

 
Figure 42 tf_b4_ffoso fitness index and plots of all model outputs with FO4 and F as input and SO4 as 

output, and week 49 as validating data and week 50 as estimation data with unscaled datasets  
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Figure 43  tf_b4_ffoso fitness index and plot of the best model outputs with FO4 and F as input and SO4 

as output, and week 49 as validating data and week 50 as estimation data with unscaled datasets  

 

 

 

 

Table 19 tf_b4_ffoso transfer functions with FO4 and F as input and SO4 as output with unscaled 

datasets, and with week 49 as validating data and week 50 as estimation data 

Model 
name 

Proces
s gain 
Kp1, 
mg/L 

Time 
constant(s) 
Tp1, min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constant 
Tp2, min 

Final 
predicti
on error 

(FPE) 

Mean 
squared 
error 
(MSE) 

Fit to 
estimati
on data 
in % 

Fit to 
validati
on data  
(fitness 
index) 
in % 

P1 1.169
6∙
10−3 

436.69 2.5519∙
10−2 

16.472 0.2097 0.2067 56.98 40.56 

P0P1 1.177
6∙
10−3 

 2.639∙
10−2 

488.18 0.2166 0.215 56.12 33.14 

P2 1.690
3∙
10−3 

2416.5 and 
5.3445 ∙
10−4 

5.0435∙
10−2 

10 000 
and 10 
000 

0.6341 0.6188 25.56 31.77 

P1P1
C 

1.037
2∙
10−3 

0.39726 2.788∙
10−2 

20 0.5513 0.5433 20.25 22.72 
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P1D 1.678
6∙
10−3 

428.35 1.2834∙
10−2 

10 000 0.4703 0.4612 35.74 22.15 

P0P1
A 

1.237
2∙
10−3 

 2.4169∙
10−2 

200 0.3221 0.3198 46.49 22.01 

P1P1
D 

1.055
8∙
10−3 

0.9882 2.7422∙
10−2 

20 0.5859 0.5787 28.01 21.95 

P0P1
B 

1.060
5∙
10−3 

 2.7273∙
10−2 

20 0.57 0.5658 28.82 20.75 

P2DI 9.295
5∙
10−6 

39.261 and 
10 000 

-2.4033∙
10−4 

0.76605 
and 
9625.5, 
and 
Td=2.71 

1.272 1.229 -4.907 15.59 

P0 1.283
1∙
10−3 

 2.0255∙
10−2 

 0.6489 0.6458 23.96 10.3 

P2D 1.876
9∙
10−3 

300.98 and 
0.28751 

3.7147∙
10−3 

229.26 
and 
0.034272
, 
Td=245.
12 

0.493 0.4787 34.53 -5.047 

P1DI -
6.905
7∙
10−7 

1897.2, 
Td=63.26 

1.0714∙
10−4 

2738.6 0.75 0.7319 19,04 -171 

 

 

In (Table 19 tf_b4_ffoso transfer functions with FO4 and F as input and SO4 as output) the P1 model gave 

the best fitness index. However, this model had a very high time constant (Tp1=436,69) for the FO4 input. 

This is very unrealistic, since 436,69 minutes (which is the sampling time) is too long. The aeration rate 

will be between 30 minuets and 90 minutes for F and SO4. That’s why it was necessary to reduce the time 

constant Tp1 by setting limits. This will make the model more realistic and unfortunately reduce the fitness 

index. Model structure with integrator did not give good results, fitness index was under 0. That’s why 

this was not included.  

 
5) tf_b4_ffoso with scaled datasets and with week 49 as validation dataset 
 

After some new information came to light about the preprocessing, there were made some adjustments to 

improve the results. Rescaling the datasets with the remove means function in system identification 

significantly improved the results. Which will be the following time plots, model outputs and transfer 

functions for tf_b4_ffoso and so on. 
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Figure 44 tf_b4_ffoso time plot for week 50 (purple graph) and week 49 (green graph) with FO4 and F 

as input and SO4 as output for channel 1 which is FO4  

 
Figure 45 tf_b4_ffoso time plot for week 50 (purple graph) and week 49 (green graph) with FO4 and F 

as input and SO4 as output for channel 2 which is F  
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Figure 46 tf_b4_ffoso fitness index and plot of the best model outputs with FO4 and F as input and SO4 

as output, and week 49 as validating data and week 50 as estimation data  

 

 
Figure 47 tf_b4_ffoso fitness index and plot of the best model outputs with FO4 and F as input and SO4 

as output, and week 49 as validating data and week 50 as estimation data 
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Table 20 tf_b4_ffoso transfer functions with FO4 and F as input and SO4 as output, and week 49 as 

validating data and week 50 as estimation data 

Model 
name 

Proces
s gain 
Kp1, 
mg/L 

Time 
constant(s) 
Tp1, min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constant 
Tp2, min 

Final 
predicti
on error 

(FPE) 

Mean 
squared 
error 
(MSE) 

Fit to 
estimati
on data 
in % 

Fit to 
validati
on data 
(fitness 
index) 
in % 

P1P1
L 

1.006∙
10−3 

6.2589 1.76717∙
10−2 

240 0.2055 0.2025 57.42 53.3 

P1P1
G 

1.001
0607∙
10−3 

0.17136 1.5918∙
10−2 

240 0.2274 0.2252 55.1 50.77 

P1P1
F 

1.197
5∙
10−3 

0.21143 2.639∙
10−2 

9.5452∙
10−3 

0.2214 0.2192 55.69 50.51 

P1 1.223
5∙
10−3 

0.32173 -5.2662∙
10−3 

14.591 0.2203 0.2182 55.8 49.4 

P0 1.273
9∙
10−3 

 -8,4902∙
10−3 

 0.2267 0.2256 55.05 46.09 

P2 1.269
4∙
10−3 

581.81 and 
1.2894∙
10−3 

2.6547∙
10−2 

8.7285 
and 
8.7112 

0.2301 0.2267 54.94 44.18 

P1D 1.287
3∙
10−3 

588.26 and 
Td=0 

2.6278∙
10−2 

9.7725 
and 
Td=7.28 

0.2296 0.2263 54.99 43.45 

P1DI 1.292
2∙
10−6 

30769 and 
Td=127.56 

-8.6827∙
10−4 

1.003 

∙ 10−6 
and 
Td=19.9
3 

0.7053 0.6882 21.5 30.71 

P2D 2.334
5∙
10−3 

341.45 and 
0.24376 
and Td=0 

-7.6652∙
10−2 

697.47 
and 
0.62596 
and 
Td=187.
88 

0.296 0.2902 49.02 9.604 

P2DI 3.345
5∙
10−8 

2.9987 and 
782.38 and 
Td=0 

-7.4046∙
10−7  

0.66601 
and 
4.1836 
and 
Td=2.18 

0.6812 0.6582 23.23 2.035 

 

Unfortunately, there was not made good enough documentation of how P0P1, P0P1A, P0P1B, P1P1C, 

P1P1D was made in the process models tab. However, the values are still available and there is probably 
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a way of recreating them. However, it is decided that using new models was better for time limited reasons. 

P1P1D, P1P1L and P1PG have very similar structures and can be regarded as almost the same method.  

 
6) tf_b5_ffoso reducing the peek somewhat with interpolation  

 

 
Figure 48 tf_b5_ffoso time plot for week 50 (green graph) and week 49 (purple graph) with FO5, SO4 

and F as input and SO5 as output for channel 1 which is FO5 

 
Figure 49 tf_b5_ffoso time plot for week 50 (green graph) and week 49 (purple graph) with FO5, SO4 

and F as input and SO5 as output for channel 2 which is SO5 
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Figure 50 tf_b5_ffoso time plot for week 50 (green graph) and week 49 (purple graph) with FO5, SO4 

and F as input and SO5 as output for channel 3 which is F 

 
Figure 51 f_b5_ffoso fitness index and plot of all the model outputs with FO5, SO4 and F as input and 

SO5 as output, and week 49 as validating data and week 50 as estimation data 
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Figure 52 f_b5_ffoso fitness index and plot of the best model outputs with FO5, SO4 and F as input and 

SO5 as output, and week 49 as validating data and week 50 as estimation data 

 

Table 21 tf_b5_ffoso transfer functions with FO5, SO4 and F as input and SO5 as output, and week 49 

as validating data and week 50 as estimation data with somewhat reduced peek 

Model 
name 

Proces
s gain 
Kp1, 
mg/L 

Time 
constant(
s) Tp1, 
min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constant 
Tp2, min 

Process 
Gain 
Kp3, 
mg/L 

Time 
constant 
Tp3, min 

Final 
predic
tion 
error 

(FPE) 

Mean 
square
d 
error 
(MSE
) 

Fit to 
estimati
on data 
in % 

Fit to 
validation 
data 
(fitness 
index) in 
% 

P2DI -
4.281
9∙
10−7+
/-
1.044
3∙
10−2 

125.57+/
-2.8519 
∙ 107 and 
10 000+/
-7.7856 
∙ 105 and 
Td=0.17
+/-2.077 

∙ 105 

4.8388∙
10−4 

118.27+/-
28482 and 
61.586+/-
6707.4 and 
Td=0.64 
+/- 1.3626 

∙ 105 

5.33∙
10−5+/-
8.8882 
∙ 10−3 

0.96707
+/-
7.7991∙
105 and 
1.9061+/
-7.8122∙
105 and 
Td=1.90
61+/-
836.05 

0.831
6 

0.789
9 

26.98 6.104 

P2D -
1.236
3∙
10−2+

10000 +/- 
8194.3 
and 
9.2009 

0.56725
+/-

3.3575 +/- 
774.52 and 
4.1315+/-
536.72 and 

0.24731 
+/- 
0.4192 

6216.7 
+/- 
10552 
and 

0.456
7 

0.437 45.69 -17.87 
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/- 
1.108
5∙
10−2 

+/- 
249.81 
and 
Td=28.6
7 +/- 
242.8  

0.05669
1 

Td=0+/- 
340.69 

3.695 +/- 
631.39 
and 
Td=0+/- 
615.36 

P1 1.299
9 ∙
10−3+
/-
3.278
2∙
10−5 

1.9252 
+/- 
3.5962 

0.53373
+/-
0.01890
2 

5.0717+/-
1.5801 

-
0.20441 
+/-
0.96307 

62119+/- 
3.0987∙
105 

0.108 0.106
4 

73.2 -24.3 

P2 1.250
5∙
10−3 
+/- 
939.7
4 

3.277  
∙ 10−4+/- 
5.4236  

∙ 1010 

0.50383 
+/- 
11.774 

14.365+/- 
331.45 and 
1.1089∙
10−5+/- 
4.9162 

4.6235∙
10−3+/-
10047 

3.1555∙
10−6+/- 
4.2971∙
109 and 
1.8239∙
10−4+/-
2.403∙
1011 

0.102
5 

0.100
3 

73.98 -27.47 

P1D 1.352
1∙
10−3+
/-
88.33
8 

5.2641  
∙ 10−3+/-
9.2054 
∙ 1011 
and 
Td=0+/-
42921 

0.55851 
+/- 
2.0383∙
10−2 

41.858+/-
7.142 and 
Td=0+/- 
4.7772 

1.9321  
∙
10−3+/-
557.87 

8.1142∙
10−4+/-
2.5221∙
1012 and 
Td=400+
/- 2.0013∙
10−3 

0.117
2 

0.114
6 

72.18 -30.77 

P1DI -
1.259
8∙
10−5+
/- 
9.344
5∙
10−6 

109.3+/-
137.39 
and 
Td=0+/-
188.7  

-6.03∙
10−3+/-
7.7486∙
10−3 

720.71+/-
1285.8 and 
Td=2.62+/
- 812.4 

7.61667
∙
10−4+/-
2.0212∙
10−4 

20.556+/
- 110.52 
and Td = 
0 +/- 
96.769  

22.24 21.44 -280.4 -1011 

                             

                                                                   
7) tf_b5_ffoso and with week 49 as validation dataset 

 

Table 22 tf_b5_ffoso transfer functions with FO5, SO4 and F as input and SO5 as output, and week 49 

as validating data and week 50 as estimation data 

Model 
name 

Proces
s gain 
Kp1, 
mg/L 

Time 
constant(
s) Tp1, 
min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constant 
Tp2, min 

Process 
Gain 
Kp3, 
mg/L 

Time 
constant 
Tp3, min 

Final 
predic
tion 
error 

(FPE) 

Mean 
square
d 
error 
(MSE
) 

Fit to 
estimati
on data 
in % 

Fit to 
validation 
data 
(fitness 
index) in 
% 
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P1          -11 

           

           

           

           

           

 
8) tf_b4_sffoso with week 49 as validation dataset 

 
Figure 53 f_b5_ffoso fitness index and plot of the best model outputs with FO4, F and SSin as input and 

SO4 as output, and week 49 as validating data and week 50 as estimation data 

 

Table 23 tf_b4_sffoso transfer functions with SO4s, Fs and SSins as input and SO5s as output, and week 

49 as validating data and week 50 as estimation data 

Model 
name 

Proces
s gain 
Kp1, 
mg/L 

Time 
constant(
s) Tp1, 
min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constant 
Tp2, min 

Process 
Gain 
Kp3, 
mg/L 

Time 
constant 
Tp3, min 

Final 
predic
tion 
error 

(FPE) 

Mean 
square
d 
error 
(MSE
) 

Fit to 
estimati
on data 
in % 

Fit to 
validation 
data 
(fitness 
index) in 
% 

P1 6.250
8 ∙
10−4+
/- 

1.3666∙
10−7+/- 

2.0606∙
10−2+/- 

129.69 +/- 
12.846 

5.3183∙
10−3 
+/- 

= 53.59 
+/- 
8.5287                                                       

0.117
4 

0.115
7 

67.81 63.09 
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1.435
3 

3.1868∙
107 

1.3224∙
10−3 

2.2563     

∙ 10−4                                          

P1L 5.859
1∙
10−4 
+/- 
3.067
1∙
10−5 

 2.2703 ∙
10−2+/- 
1.2525∙
10−3 

129.27 +/- 
11.679 

5.5161 ∙
10−3+/- 
2.21∙
10−4 

55.843 
+/- 
8.5198 

0.118
1 

0.116
7 

67.68 62.8 

P2 5.268
1 ∙
10−4+
/- 
4.931
2∙
10−3 

214.23 
+/- 
2000.7 
and 
1.6529∙
10−3 +/- 
19.642 

2.7703 ∙
10−2+/- 
1.7368∙
10−3 

18.064 +/- 
5.1176 and 
3.8363 +/- 
3.249 

5.7826 ∙
10−3+/- 
89.74 

49.026 
+/- 
7.6083∙
105 and 
7.2962 ∙
10−7+/- 
9.9379∙
10−4 

0.150
6 

0.147
3 

63.68 57.59 

 

 

 
9) tf_b5_sffoso, accidently used week 50 as validation data and week 49 as estimation data and 

documented it 
 

 
Figure 54 tf_b5_sffoso time plot for week 50 (purple graph) and week 49 (green graph) with FO5, SO4, 

F and SSin as input and SO5 as output for channel 1 which is FO5 
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Figure 55 b5_sffoso time plot for week 50 (purple graph) and week 49 (green graph) with FO5, SO4, F 

and SSin as input and SO5 as output for channel 2 which is SO4 

 
Figure 56 b5_sffoso time plot for week 50 (purple graph) and week 49 (green graph) with FO5, SO4, F 

and SSin as input and SO5 as output for channel 3 which is F 
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Figure 57 b5_sffoso time plot for week 50 (purple graph) and week 49 (green graph) with FO5, SO4, F 

and SSin as input and SO5 as output for channel 4 which is SSin 

 
Figure 58 f_b5_sffoso fitness index and plot of all the model outputs with FO5, SO4, F and SSin as input 

and SO5 as output, and week 49 as estimation data and week 50 as validation data 
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Figure 59 f_b5_sffoso fitness index and plot of the best model outputs with FO5, SO4, F and SSin as 

input and SO5 as output, and week 49 as validating data and week 50 as validation data 

                                                                   

Table 24 tf_b5_sffoso transfer functions with FO5, SO4, F and SSin as input and SO5 as output, and 

week 49 as estimation data and week 50 as validation data 

Mod
el 
nam
e 

Proces
s gain 
Kp1, 
mg/L 

Time 
constan
t(s) 
Tp1, 
min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constan
t Tp2, 
min 

Proces
s Gain 
Kp3, 
mg/L 

Time 
constan
t Tp3, 
min 

Proces
s Gain 
Kp4, 
mg/L 

Time 
constan
t Tp4, 
min 

Final 
predi
ction 
error 

(FPE
) 

Mea
n 
squa
red 
error 
(MS
E) 

Fit 
to 
esti
mati
on 
data 
in % 

Fit 
to 
valid
ation 
data 
(fitn
ess 
inde
x) in 
% 

P2 1.329
5∙
10−3+
/-
3.527
5 

1∙ 10−6 
+/-
11.56 
and 
10.336
+/-
27416                           

-433.36 
+/- 
3.0844∙
107                            

2.2872∙
106+/- 
1.6352∙
1011 
and 
10000 
+/- 
3.8306∙
106 

2.845
4∙
10−2+
/- 
3.723
4∙
10−2 

663.37 
+/-1025 
and 
1.1221 
+/- 
72.862 

1.423∙
10−2+
/- 
2.570
6 

74.473
+/-1576 
and 
10811+
/-
1.9834∙
106 

0.13
51 

0.12
87 

43.7
9 

63.4
5 
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P1D
1L 

1.012
9∙
10−3+
/-
6.125
2∙
10−5 

1.1193 
+/- 
4262.2 

-
4.7537∙
10−2 
+/- 
4.4722∙
10−2 

10+/- 
116.55 
and Td 
= 0+/- 
136.17 

1.258
3∙
10−2+
/- 
2.134
6∙
10−3 

178.42 
+/- 
51.061 
and 
Td=55.
39+/- 
29.847 

7.684
4∙
10−3 
+/- 
4.985
3∙
10−4 

20+/- 
6.9048 
and Td 
= 
2.69+/- 
5.2847 

0.44
61 

0.43
32                                           

-
3.13
6 

41.6
2 

P1D 1.174
4 ∙
10−3+
/-
3.241 

∙ 10−5 

5.122 
+/- 
7.9659 
and Td 
= 0+/- 
16.145 

0.48989 
+/- 
0.16627 

1202.8 
+/- 
329.54 
and 
Td=255
.21 +/- 
45.907 

4.695
5∙
10−3+
/-
8.095
7∙
10−4  

5.2176 
+/- 
17.712 
and 
Td=204
.03 +/-
22.159 

0.188
76 +/- 
6.002 

3.925 ∙
105+/-
1.2606∙
107 and 
Td=0+/
-623.19 

0.10
63 

0.10
22 

49.9
1 

41.3
4 

P1D
1G 

9.015
6 ∙
10−4+
/- 
1.657∙
10−4 

1.5335 
+/- 
363.72 
and 
Td=5.8
8 +/- 
977.05 

-
0.39618 
+/- 
2053.4 

2.4144∙
10−3+/
- 
1.7431∙
1011 
and 
Td=10 
+/- 
6.2986∙
109 

4.191
1∙
10−2+
/- 
0.178
76 

300+/- 
1301.8 
and 
Td=0 
+/-12.4 

6.553 
∙
10−3+
/- 
5.585
7 ∙
10−4 

16.981 
+/- 
7.4119 
and 
Td=0+/
- 
6.9301 

0.28
63 

0.27
53 

17.7
8 

36.4 

P1 -
1.959
3∙
10−2+
/-
145.9
1 

3.8541∙
105+/-
2.8706∙
109 

-
0.65356
+/-
4.5676∙
105 

1.1345∙
106+/-
4.5976∙
105 

6.828∙
10−2+
/-
5.044
2∙
10−2 

867.4 
+/- 
537.93 

0.178
6 +/- 
1984.
1 

3.925∙
105+/-
4.3599∙
109 

0.38
85 

0.37
72 

3.75
7 

28.8
7 

P2D
I 

1.477
7∙
10−6 
+/-
3.754
6∙
10−7 

1.7482 
+/- 
59199 
and 
2.6295 
+/- 
32998 
and Td 
= 
0.68+/- 
26213 

5.2419∙
10−7 
+/- 
9.9901∙
10−6 

5.2419∙
10−7+/
- 
9.9901∙
10−6 
and 
3.8975 ∙
10−3+/
- 
6.2301∙
10−8 

1.216
4∙
10−7 
+/- 
6.447
6∙
10−6 

18.117 
+/- 
2291.6 
and 
73.218 
+/- 
53.756 
and 
Td=24.
39 +/- 
13393 

3.771
6e-08 
+/- 
9.530
9e-08 

5.3546 
+/- 
2247.7 
and 
8.7439 
+/- 
1588.9 

0.39
45 

0.36
83 

4.90
1 

-
417.
3 

P2D 3.451
2∙
10−3 
+/- 
8.758∙
107 

38418 
+/- 
9.8144∙
10−14 
and 
9.8047 
+/- 
2.765∙
1011  

0.1213 
+/- 
2.9239∙
107 

431.95 

+/- 

1.1927 

∙
1011 an

d 63.69 

+/- 

5.4883 

3.961
7∙ 106                             
+/- 
5.919
1∙
1018                             

1∙ 10−6                             

+/- 

6.5726∙
107                             
and 

31106 

+/- 4.65 

-
1.130
3 ∙
10−2                            
+/- 
5.253

7∙ 105                             

973.05 

+/- 

3.0186∙
1010                             
and 

41.241 

+/- 

1.1093∙

2.61
6∙
1015                             

2.51
5e+1
5∙
1015                             

-
7.85∙
109                             

-
4.17
4∙
107 
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and 
Td=11.
22 +/- 
2.6229∙
1011                           

∙ 1010    
and                           

         

Td=108

.67 +/- 

4.0582 

∙ 1010                             
 

∙ 1016                               
and                              

         

Td=103

.09 +/- 

1.1644e 

∙ 109                                                        
 

1010                             
and                              

         

Td = 

84.53 

+/- 

9.9747 

∙ 109                                                           
 

                                                                   

                         

 

Unfortunately, there was not adequate documentation of how P0P1, P0P1A, P0P1B, P1P1C, P1P1D was 

made in the process models tab. However, the values are still available and there is probably a way of 

recreating them. However, it is decided that using new models was better for time limited reasons. P1P1D, 

P1P1L and P1PG have very similar structures and can be regarded as almost the same method. To improve 

the result even more it would be appropriate to interpolate values for SSin for the week 49 dataset to 

reduce the peek that is occurring. P2D and P2D1 keep producing bad results and will be disregarded for 

the rest of the TFs.  

                                                 
 
 

10) tf_b5_sffoso with week 49 as validation dataset 
 

11) tf_b6_sffoso with week 49 as validation dataset 
 

12) tf_b7_sffoso with week 49 as validation dataset 
 

13) tf_b8_sffoso with week 49 as validation dataset 
 

14) tf_b9_sffoso with week 49 as validation dataset 
 

15) tf_b10_sffoso with week 49 as validation dataset 
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Figure 60 f_b10_sffoso fitness index and plot of all the model outputs with FO5, SO4, F and SSin as 

input and SO5 as output, and week 49 as validating data and week 50 as estimation data 

 
Figure 61 f_b10_sffoso fitness index and plot of the best model outputs with FO5, SO4, F and SSin as 

input and SO5 as output, and week 49 as validating data and week 50 as estimation data 

 

 

 
16) tf_spo with week 49 as validation dataset 
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17) tf_sfspo with week 49 as validation dataset 

 
18) tf_sfnfspo without scaling FO with week 49 as validation dataset 

 

 
Figure 62 tf_sfnfspo fitness index and plot of the best model outputs with SSin, F, NOX, FO4, FO5, FO6, 

FO7, FO8, FO9, FO10 as input and SPOd as output, and week 49 as validating data and week 50 as 

estimation data 

 

 

 

 

Table 25 tf_sfnfspo transfer functions with with SSin, F, NOX, FO4, FO5, FO6, FO7, FO8, FO9, FO10 

as input and SPOd as output, and week 49 as validating data and week 50 as estimation data 

Mod
el 
nam
e 

Proces
s gain 
Kp1, 
mg/L 

Time 
consta
nt(s) 
Tp1, 
min 

Proces
s Gain 
Kp2, 
mg/L 

Time 
consta
nt 
Tp2, 
min 

Proces
s Gain 
Kp3, 
mg/L 

Time 
consta
nt 
Tp3, 
min 

Proces
s Gain 
Kp4, 
mg/L 

Time 
consta
nt 
Tp4, 
min 

Proces
s Gain 
Kp5, 
mg/L 

Time 
consta
nt 
Tp5, 
min 

Proces
s Gain 
Kp6, 
mg/L 

Time 
constan
t Tp6, 
min 
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P1L 3.610
3 ∙
10−3+
/- 
4.711
5∙
10−4 

600 
+/- 
90.17
8 

-
1.446
3∙
10−3 
+/- 
2.778
3∙
10−4 

48.69
8 +/- 
13.30
5 

-
0.269
48 +/- 
3.768
9∙
10−2 

555.8
8 +/- 
97.80
1 

2.403
5∙
10−5 
+/- 
8.259
6∙
10−5 

 -
3.499
6∙
10−5 
+/- 
1.692
6∙
10−5 

 7.213
1∙
10−5 
+/- 
2.173
3∙
10−5 

 

 Proces
s Gain 
Kp7, 
mg/L 

Time 
consta
nt 
Tp7, 
min 

Proces
s Gain 
Kp8, 
mg/L 

Time 
consta
nt 
Tp8, 
min 

Proces
s Gain 
Kp9, 
mg/L 

Time 
consta
nt 
Tp9, 
min 

Proces
s Gain 
Kp10, 
mg/L 

Time 
consta
nt 
Tp10, 
min 

Final 
predic
tion 
error 

(FPE) 

Mean 
square
d 
error 
(MSE
) 

Fit to 
estima
tion 
data 
in % 

Fit to 
validati
on data 
(fitness 
index) 
in % 

P1L 
(sam
eone
) 

1.001
5 ∙
10−5+
/- 
4.845
9∙
10−5 

 -
4.964
6∙
10−5 
+/- 
8.236
4∙
10−5 

 6.016∙
10−5 
+/- 
1.098
9∙
10−4 

 0.000
76315 

∙
10−7+
/- 
9.494
7∙
10−5 

 4.04∙
10−3 

3.885∙
10−3 

-9.483 -15.34 

 

 
19) tf_sfnfspo with week 49 as validation dataset 

 

 

 

 

 

 

 

 

 

Table 26 tf_b7_sffoso transfer functions with FO7s, SO6, Fs, and SSins as input and SO7 as output, and 

week 51 as validating data and week 50 as estimation data 

Mod
el 
nam
e 

Proces
s gain 
Kp1, 
mg/L 

Time 
constan
t(s) 

Process 
Gain 
Kp2, 
mg/L 

Time 
constan
t Tp2, 
min 

Proces
s Gain 
Kp3, 
mg/L 

Time 
constan
t Tp3, 
min 

Proces
s Gain 
Kp4, 
mg/L 

Time 
constan
t Tp4, 
min 

Final 
predi
ction 
error 

Mea
n 
squa
red 

Fit 
to 
esti
mati

Fit 
to 
valid
ation 
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Tp1, 
min 

(FPE
) 

error 
(MS
E) 

on 
data 
in % 

data 
(fitn
ess 
inde
x) in 
% 

POP
1L 

1.426
6 +/- 
7.628
9∙
10−2                               

 0.38308 
+/- 
1.1257∙
10−2                               

 15.34
8 +/- 
1.07 

420 +/- 
61.971 

1.527
9 +/- 
0.213
65 

420 +/- 
58.098 

5.97
2∙
10−2                               

5.85
7∙
10−2                               

69.1
5 

41.3
2 

P0 1.601 
+/- 
0.067
446 

 0.30381 
+/- 
0.01075
6 

 8.264
6 +/- 
0.527
72 

 3.330
9 +/- 
0.129
6 

 6.21
8∙
10−2                               

6.15
7∙
10−2                               

68.3
7 

34.2
6 

P1 1.670
3 +/- 
8.348
6∙
10−2                               

1.6315 
+/- 
12.283 

0.21778 
+/- 
1.387∙
10−2                               

9.8743 
+/- 
2.5117 

10.84
4 +/- 
0.655
73 

2.0238 
+/- 
10.228 

3.713
7 +/- 
84322 

0.04446
9 +/- 
2.5504∙
1012                               

8.14
6∙
10−2                               

7.90
9∙
10−2                               

64.1
5 

33.3
5 

 

 

 

 

 
20) tf_b8_sffoso  

 
Figure 63 f_b8_sffoso fitness index and plot of the best model outputs with FO8s, SO7 Fs and SSins as 

input and SO8 as output, and week 51 as validating data and week 50 as estimation data 
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Unrelated 

 

 

Table 27 tf_b8_sffoso transfer functions with FO8s, SO7, Fs, and SSins as input and SO8 as output, and 

week 51 as validating data and week 50 as estimation data 

Mod
el 
nam
e 

Proces
s gain 
Kp1, 
mg/L 

Time 
constan
t(s) 
Tp1, 
min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constan
t Tp2, 
min 

Proces
s Gain 
Kp3, 
mg/L 

Time 
constan
t Tp3, 
min 

Proces
s Gain 
Kp4, 
mg/L 

Time 
constan
t Tp4, 
min 

Final 
predi
ction 
error 

(FPE
) 

Mea
n 
squa
red 
error 
(MS
E) 

Fit 
to 
esti
mati
on 
data 
in % 

Fit 
to 
valid
ation 
data 
(fitn
ess 
inde
x) in 
% 

P0P
1L 

2.185
8+/- 
0.107
37 

 0.48261 
+/- 
0.01992
5 

 -
23.54
8 +/- 
0.545
45 

65.337 

+/- 

3.2489 

-
3.156
7 +/- 
0.146
36                                   

217.25 

+/- 

25.694 

3.79
5∙
10−2 

3.73
9∙
10−2 

58.7
8 

60.2
387 
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P1D
K 

3.167
5 +/- 
0.228
23 

5.7307 

+/- 

3.5647                                     
and Td 
= 0 +/- 
5.4759 

0.81652 
+/- 
7810.4 

3.1016∙
105+/- 

2.9663∙
109                          
        Td 
= 0.01 
+/- 
13590 

-15.72 
+/- 
0.968
33 

68.868 

+/- 

11.456 

and        

Td = 

21.03 

+/- 

6.405                                       
 

74.63
8 +/- 
7.251

1∙ 105 

1.0236 

∙ 106+/- 

9.9392 

∙ 109                            
        Td 

= 400 

+/- 

2317.8                                        
 

7.38∙
10−2 

7.09
6∙
10−2 

43.2
1 

53.7 

P1 3.053
7 +/- 
1.041

9∙ 105 

6.8536e

-05 +/- 

1.498∙
1010 

0.9369 
+/- 
4.3929∙
10−2 

193.37 

+/- 

15.882 

-
34.08
8 +/- 
1.015
5 

153.93 

+/- 

7.3955 

-7.54 
+/- 
0.340
26 

227.2 3.42
4∙
10−2 

3.35
8∙
10−2 

60.9
3 

40.9
1 

 
21) tf_b4_sffoso  

 

 

 
Figure 64 f_b4_sffoso fitness index and plot of the best model outputs with FO4s, Fs and SSins as input 

and SO4 as output, and week 51 as validating data and week 50 as estimation data 

 

Table 28 tf_b4_sffoso transfer functions with with FO4s, Fs, and SSins as input and SO4 as output, and 

week 51 as validating data and week 50 as estimation data 

Mod
el 
nam
e 

Proces
s gain 
Kp1, 
mg/L 

Time 
constan
t(s) 
Tp1, 
min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constan
t Tp2, 
min 

Proces
s Gain 
Kp3, 
mg/L 

Time 
constan
t Tp3, 
min 

Final 
predicti
on error 

(FPE) 

Mean 
squared 
error 
(MSE) 

Fit to 
estima
tion 
data 
in % 

Fit to 
validatio
n data 
(fitness 
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index) in 
% 

P1 7.882
1∙
10−4 
+/- 
1.736
4 ∙
10−4 

0.38238 
+/- 
2.6854∙
108 

14.79 
+/- 
0.84909                                     

162.83 
+/- 
23.537 

3.901
8 +/- 
0.161
62 

56.446 
+/- 
10.698                                     

0.1157 0.1131 68.17 11.06 

P0P
1L 

7.601
4∙
10−4 
+/- 
2.860
3∙
10−5 

 14.62 
+/- 
0.89273 

120.38 
+/- 
18.264 

4.072
8 +/- 
0.139
27 

121.65 
+/- 
21.76 

0.1238 0.1217 66.98 10.56 

P2D 7.290
2∙
10−4 
+/- 
3.381∙
10−4 

57.82 
+/- 
4.2767 ∙
104  an
d 
0.67903 
+/- 
6.495∙
106 and 
Td=0.0
7 +/- 
6.5654∙
106                                                                                                

12.834 
+/- 
1.0762  

21.599 
+/- 
21.762 
and 
4.194 
+/- 
58.749 
and Td 
= 0 +/- 
49.444 

4.512
8 +/- 
3.639
4 ∙
103 

0.65066 
+/- 
1.6997∙
1010 
and 
1.6683 
+/- 
3.6893∙
106and 
Td = 0 
+/- 
2.7823∙
1010                               

 0.1694 0.1621 61.9 9.956 

 
22) tf_b5_sffoso  
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Figure 65 f_b5_sffoso fitness index and plot of the best model outputs with FO5s, SO4 Fs and SSins as 

input and SO5 as output, and week 51 as validating data and week 50 as estimation data 

 

 

Table 29 tf_b5_sffoso transfer functions with FO5s, SO4, Fs, and SSins as input and SO5 as output, and 

week 51 as validating data and week 50 as estimation data 

Mod
el 
nam
e 

Proces
s gain 
Kp1, 
mg/L 

Time 
constan
t(s) 
Tp1, 
min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constan
t Tp2, 
min 

Proces
s Gain 
Kp3, 
mg/L 

Time 
constan
t Tp3, 
min 

Proces
s Gain 
Kp4, 
mg/L 

Time 
constan
t Tp4, 
min 

Final 
predi
ction 
error 

(FPE
) 

Mea
n 
squa
red 
error 
(MS
E) 

Fit 
to 
esti
mati
on 
data 
in % 

Fit 
to 
valid
ation 
data 
(fitn
ess 
inde
x) in 
% 

P0 1.032
4 +/- 
2.497
2∙
10−2 

 0.55741 
+/- 
1.5893∙
10−2    

 4.986
3 +/- 
0.554
11 

 1.68 
+/- 
0.113
3 

 6.79
3∙
10−2 

6.72
7∙
10−2 

78.6
9 

75.1
9 

P0P
1L 

1.203 
+/- 
2.712

 0.56743 
+/- 
2.2813∙
10−2 

 11.54
4 +/- 
1.135
4 

300 +/- 
57.206 

-
0.116
62 +/- 
0.242
36                                  

300 +/- 
42.824 

7.18∙
10−2 

7.04∙
10−2 

78.2 70.2
3 
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6 ∙
10−2 

P1 1.014
1 +/- 
4.108
3∙
10−2 

8.3128 
+/- 
1.5102 

0.45484 
+/- 
2.7553∙
10−2 

5.2591 
+/- 
2.1929 

8.518
6 +/- 
0.929
79 

5.3731 
+/- 
4.8978 

2.203
8 +/- 
1.587
3 

0.38767 
+/- 
1.6251∙
109 

0.10
95 

0.10
63 

73.2
1 

68.9
1 

 
23) tf_b6_sffoso  

 

 

 
Figure 66 f_b6_sffoso fitness index and plot of the best model outputs with FO6s, SO5 Fs and SSins as 

input and SO6 as output, and week 51 as validating data and week 50 as estimation data 

 

 

 

Table 30 tf_b6_sffoso transfer functions with FO6s, SO5, Fs, and SSins as input and SO6 as output, and 

week 51 as validating data and week 50 as estimation data 

Mod
el 
nam
e 

Proces
s gain 
Kp1, 
mg/L 

Time 
constan
t(s) 
Tp1, 
min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constan
t Tp2, 
min 

Proces
s Gain 
Kp3, 
mg/L 

Time 
constan
t Tp3, 
min 

Proces
s Gain 
Kp4, 
mg/L 

Time 
constan
t Tp4, 
min 

Final 
predi
ction 
error 

(FPE
) 

Mea
n 
squa
red 
error 
(MS
E) 

Fit 
to 
esti
mati
on 
data 
in % 

Fit 
to 
valid
ation 
data 
(fitn
ess 
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inde
x) in 
% 

P0P
1L 

0.635
81 +/- 
3.934
9    ∙
10−2                               

 0.80471 
+/- 
2.4212∙
10−2 

 -
0.144
53 +/- 
0.819
94 

228.01 
+/- 
1882.2 

4.860
7∙
10−2 
+/- 
0.144
68 

240.18 
+/- 
1955.6 

5.82
1∙
10−2 

5.70
8∙
10−2 

83.5 78.7
4 

P0 0.727
42 +/- 
2.806
4     ∙
10−2                              

 0.80311 
+/- 
1.9523∙
10−2 

 1.209
4 +/- 
0.517
64 

 -
0.310
17 +/- 
0.120
84 

 5.24
9∙
10−2 

5.19
8∙
10−2 

84.2
5 

73.3
3 

P1D 0.489
19 +/- 
4.006
3e+09 

0.1296

6 +/- 

2.8881∙
1012                             
        Td 

= 3.66 

+/- 

2.0458 

∙ 1019                               
 

12.444 
+/- 
1.938e+
10∙
1010 

1.5937 

+/- 

3.2679e

+08                                 

        Td 

= 1.59 

+/- 

5.9773∙
108                                   
 

12.44
4 +/- 
1.938∙
1010                                

1.5937 

+/- 

3.2679 

∙ 108                            
        Td 

= 1.59 

+/- 

5.9773 

∙ 108                             
 

-
2.055
2 +/- 
2.040
8e+09 

9789.4 

+/- 

8447.1                                     

        Td 

= 

159.18 

+/- 

8.1755∙
108  
 

0.16
9 

0.16
25 

72.1
5 

66.6
2 

 
24) tf_b7_sffoso  
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Figure 67 f_b7_sffoso fitness index and plot of the best model outputs with FO7s, SO6 Fs and SSins as 

input and SO7 as output, and week 51 as validating data and week 50 as estimation data 

 

Table 31 tf_b7_sffoso transfer functions with FO7s, SO6, Fs, and SSins as input and SO7 as output, and 

week 51 as validating data and week 50 as estimation data 

Mod
el 
nam
e 

Proces
s gain 
Kp1, 
mg/L 

Time 
constan
t(s) 
Tp1, 
min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constan
t Tp2, 
min 

Proces
s Gain 
Kp3, 
mg/L 

Time 
constan
t Tp3, 
min 

Proces
s Gain 
Kp4, 
mg/L 

Time 
constan
t Tp4, 
min 

Final 
predi
ction 
error 

(FPE
) 

Mea
n 
squa
red 
error 
(MS
E) 

Fit 
to 
esti
mati
on 
data 
in % 

Fit 
to 
valid
ation 
data 
(fitn
ess 
inde
x) in 
% 

POP
1L 

1.426
6 +/- 
7.628
9∙
10−2                               

 0.38308 
+/- 
1.1257∙
10−2                               

 15.34
8 +/- 
1.07 

420 +/- 
61.971 

1.527
9 +/- 
0.213
65 

420 +/- 
58.098 

5.97
2∙
10−2                               

5.85
7∙
10−2                               

69.1
5 

41.3
2 

P0 1.601 
+/- 
0.067
446 

 0.30381 
+/- 
0.01075
6 

 8.264
6 +/- 
0.527
72 

 3.330
9 +/- 
0.129
6 

 6.21
8∙
10−2                               

6.15
7∙
10−2                               

68.3
7 

34.2
6 

P1 1.670
3 +/- 
8.348

1.6315 
+/- 
12.283 

0.21778 
+/- 

9.8743 
+/- 
2.5117 

10.84
4 +/- 

2.0238 
+/- 
10.228 

3.713
7 +/- 
84322 

0.04446
9 +/- 

8.14
6∙
10−2                               

7.90
9∙
10−2                               

64.1
5 

33.3
5 
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6∙
10−2                               

1.387∙
10−2                               

0.655
73 

2.5504∙
1012                               

 
25) tf_b8_sffoso  

 

 
Figure 68 f_b8_sffoso fitness index and plot of the best model outputs with FO8s, SO7 Fs and SSins as 

input and SO8 as output, and week 51 as validating data and week 50 as estimation data 

Table 32 tf_b8_sffoso transfer functions with FO8s, SO7, Fs, and SSins as input and SO8 as output, and 

week 51 as validating data and week 50 as estimation data 

Mod
el 
nam
e 

Proces
s gain 
Kp1, 
mg/L 

Time 
constan
t(s) 
Tp1, 
min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constan
t Tp2, 
min 

Proces
s Gain 
Kp3, 
mg/L 

Time 
constan
t Tp3, 
min 

Proces
s Gain 
Kp4, 
mg/L 

Time 
constan
t Tp4, 
min 

Final 
predi
ction 
error 

(FPE
) 

Mea
n 
squa
red 
error 
(MS
E) 

Fit 
to 
esti
mati
on 
data 
in % 

Fit 
to 
valid
ation 
data 
(fitn
ess 
inde
x) in 
% 

P0P
1L 

5.619
7 +/- 
0.221
08                                     

 0.23002 
+/- 
4.3428  

∙ 10−2 

 -
8.823
3 +/- 
1.047
7 

41.37 

+/- 

13.422 

0.233
83 +/- 
0.209
08 

480 +/- 

701.83                                        

0.23
25 

0.22
91                                           

-
2.04
1 

-
69.0
4 
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P1D
K 

3.167
5 +/- 
0.228
23 

5.7307 

+/- 

3.5647                                     
and Td 
= 0 +/- 
5.4759 

0.81652 
+/- 
7810.4 

3.1016∙
105+/- 

2.9663∙
109                          
        Td 
= 0.01 
+/- 
13590 

-15.72 
+/- 
0.968
33 

68.868 

+/- 

11.456 

and        

Td = 

21.03 

+/- 

6.405                                       
 

74.63
8 +/- 
7.251

1∙ 105 

1.0236 

∙ 106+/- 

9.9392 

∙ 109                            
        Td 

= 400 

+/- 

2317.8                                        
 

7.38∙
10−2 

7.09
6∙
10−2 

43.2
1 

53.7 

P1 6.343
1 +/- 
0.346
23                                    

16312 

+/- 

18391 

1.0385 
+/- 
0.15556 

71.739 

+/- 

20.862                                     

-
36.91
6 +/- 
4.184
1 

105.04 

+/- 

20.486 

-
6.163
6 +/- 
1.263
8 

148.88 

+/- 

44.917 

7.92∙
10−2 

7.69
8∙
10−2 

40.8
5 

13.2
4 

 

 

 
26) tf_b9_sffoso  

 

 
Figure 69 f_b9_sffoso fitness index and plot of the best model outputs with FO9s, SO8 Fs and SSins as 

input and SO9 as output, and week 51 as validating data and week 50 as estimation data 
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Table 33 tf_b9_sffoso transfer functions with FO9s, SO8, Fs, and SSins as input and SO9 as output, and 

week 51 as validating data and week 50 as estimation data 

Mod
el 
nam
e 

Proces
s gain 
Kp1, 
mg/L 

Time 
constan
t(s) 
Tp1, 
min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constan
t Tp2, 
min 

Proces
s Gain 
Kp3, 
mg/L 

Time 
constan
t Tp3, 
min 

Proces
s Gain 
Kp4, 
mg/L 

Time 
constan
t Tp4, 
min 

Final 
predi
ction 
error 

(FPE
) 

Mea
n 
squa
red 
error 
(MS
E) 

Fit 
to 
esti
mati
on 
data 
in % 

Fit 
to 
valid
ation 
data 
(fitn
ess 
inde
x) in 
% 

P1D 4.314
5 +/- 
0.177
03 

1.6306 

+/- 

16.473                                     

        

Td= 

5.57 +/- 

43.769                                       
 

0.97863 
+/- 
0.03120
9 

429.05 

+/- 

40.313                                     
        Td 
= 0 +/- 
11.045                                          

-
12.28
2 +/- 
0.688
61 

= 

63.698 

+/- 

7.5864                                     

        Td 

= 17.95 

+/- 

3.8439                                      

 

-
3.079
2 +/- 
0.165
85                                   

149.44 

+/- 

18.513                                     
        Td 
= 
179.93 
+/- 
8.5705                                     

3.75
6∙
10−2 

3.61
2  ∙
10−2                                       

61.3
7 

35.9
6 

P0P
1L 

3.422
2 +/- 
9.64∙
10−2                                     

 0.75981 
+/- 
1.0668∙
10−2                                   

 -
3.653
9 +/- 
0.335
36 

125.15 
+/- 
23.695 

-
1.100
4 +/- 
7.929
3∙
10−2 

75.244 
+/- 
16.354 

2.50
9∙
10−2 

2.47
3∙
10−2 

68.0
4 

19.0
8 

P0 3.256
7 +/- 
0.104
89 

 0.77257 
+/- 
1.2052∙
10−2                                  

 -1.697 
+/- 
0.256
11 

 -
1.356
9 +/- 
8.943
5∙
10−2                               

 3.04
8∙
10−2 

3.01
8 ∙
10−2                                        

64.6
9 

16.0
7 

 
27) tf_b10_sffoso  
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Figure 70 f_b10_sffoso fitness index and plot of the best model outputs with FO10s, SO9, Fs and SSins 

as input and SO10 as output, and week 51 as validating data and week 50 as estimation data 

 

 

Table 34 tf_b10_sffoso transfer functions with FO10s, SO9, Fs and SSins as input and SO10 as output, 

and week 51 as validating data and week 50 as estimation data 

Mod
el 
nam
e 

Proces
s gain 
Kp1, 
mg/L 

Time 
constan
t(s) 
Tp1, 
min 

Process 
Gain 
Kp2, 
mg/L 

Time 
constan
t Tp2, 
min 

Proces
s Gain 
Kp3, 
mg/L 

Time 
constan
t Tp3, 
min 

Proces
s Gain 
Kp4, 
mg/L 

Time 
constan
t Tp4, 
min 

Final 
predi
ction 
error 

(FPE
) 

Mea
n 
squa
red 
error 
(MS
E) 

Fit 
to 
esti
mati
on 
data 
in % 

Fit 
to 
valid
ation 
data 
(fitn
ess 
inde
x) in 
% 

P0 1.920
3 +/- 
0.100
18 

 0.96055 
+/- 
0.01248
1                                   

 -
1.964
3 +/- 
0.280
12 

 -
1.477
3 +/- 
0.087
927                                   

 0.03
776 

0.03
739                                         

69.4
5 

67.2
7 

P1L 3.463
1 +/- 
0.212
63 

 0.89267 
+/- 
0.01805
1 

 -
8.519
8 +/- 
1.870
9 

750 +/- 
203.64 

-
1.161
8 +/- 
0.251
66 

342.08 
+/- 
113.69                                     

0.03
594 

0.03
524                                         

70.3
4 

61.5 

P1D 1.910
2 +/- 

146.36 
+/- 
133.43 

0.96124 
+/- 

8.9938 
+/- 
4.7501   

-
4.254
7 +/- 

10481 
+/- 

-
0.890
88 +/- 

207.35 
+/- 
145.21 

0.06
389 

0.06
143 

60.8
4 

48.4
1 
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1.038
1 

and 
Td=0 
+/- 
69.981                                          

4.8447∙
10−2 

and Td 
= 0+/- 
5.2148                                 

13.31
6 

1.1942∙
105and 
Td=0 
+/- 
2728.9 

0.392
91 

and 
Td=120
+/- 
78.095 

 

E. Appendix 5 

1) Old simulation models with transfer functions between the aeration and dissolved oxygen were 
implemented 

 
Figure 71 Simulation model for the whole system with the subsystem being where linear models and PID controllers for each of the CVs 

(SO4-SO10, and 𝑆𝑃𝑂𝑑) have been developed 
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Figure 72 One of the subsystems where the SO5 CV was developed, with the linear model and the PID that controls FO5s. The other 

subsystems have the exact same concept just for each of the 𝑆𝑂 in question 

 
Figure 73 The subsystem for 𝑆𝑃𝑂𝑑 CV was developed, with the linear model and the PID that sets the setpoint for 𝐹𝑂, where the setpoint is 

the mean of 𝑆𝑃𝑂𝑑 
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Figure 74 Simulation model for the whole system with the subsystem being where MPC controllers for each of the CVs (SO4-SO10, and 

S_POd) have been developed 

 
Figure 75 One of the subsystems where the SO5 CV was developed. The other subsystems have the exact same concept just for each of the 

S_O in question 
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Figure 76 The subsystem for 𝑆𝑃𝑂𝑑 CV was developed, with the MPC. 

F. Appendix 6 

1) Gantt diagram 

Figure 77 Gantt diagram 
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