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Abstract 
 

For the optimized operation of a wastewater resource recycle facility (WWRF), it is essential to 

consider significant disturbances such as fluctuations in the influent flow rate and wastewater 

compositions. The online monitoring of influent characteristics is limited by scarce 

instrumentation and high costs. This study demonstrated influent composition prediction of two 

different wastewater treatment plants (WWTPs), with wastewater and sludge 

treatment process. Data-driven models (statistical models used for time series analysis/ Machine 

learning model) have been developed using HIAS wastewater treatment process and VEAS sludge 

treatment process data to predict the influent compositions. 

In this work, statistical models for time series analysis such as ARIMA (Autoregressive Integrated 

Moving Average) and SARIMAX (Seasonal Autoregressive Integrated Moving Average with 

Exogenous input), Linear regression, Lasso, Ridge regression and different machine learning 

algorithms such as Random Forest (RF), Decision Tree (DT), Support Vector Regression (SVR) and 

Artificial Neural Network (ANN) were examined and compared. These models were developed to 

detect inlet phosphate (PO4), and inlet soluble chemical oxygen demand(sCOD) in wastewater 

inlet organic acid in sludge, which served as output variables. 

In both processes, Linear regression, Ridge regression and Neural Network consistently 

demonstrated the best performance for evaluation estimation as evidenced by the lowest values 

of Root Mean Square Error (RMSE), and the highest coefficient of determination (R2). SARIMAX 

exhibited acceptable results with R2 as 0.95 in organic acid prediction modeling. In contrast, 

ARIMA and SARIMAX algorithms in Hias datasets did not meet the requirements because of the 

complex and nonlinear structure of the dataset issue. This study offers an efficient method for 

forecasting the quality of wastewater and sludge influents, which can be advantageous for 

process control and thereby contributing to the zero-pollution objective of the European Green 

Deal and to the European Missions such as one on ‘Restoring our ocean and waters by 2030’. 

Keywords: Wastewater treatment, Sludge treatment, influent composition, SARIMAX, 

Multivariate Regression, Artificial Neural Network 
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 1. Introduction  

1.1 Background 

Severe water pollution caused by rapid population growth and industrialization has threatened 

the environment and human society. Variations in the quality and quantity of wastewater at the 

inlet to wastewater treatment plants (WWTP) often reduce treatment efficiency. As a result, 

WWTP can discharge effluent with above-limit compositions like Chemical oxygen demand (COD), 

Biological oxygen demand (BOD), Total nitrogen (TN), and Phosphate (PO4) concentrations. 

(Andreides et al., 2022) 

One of the crucial strategies to restrict those pollutants into the environment is to optimize the 

efficiency of WWTP (Ly et al., 2022). The accurate forecast of wastewater treatment plant 

(WWTP) key features can be advantageous for plant in several ways: 

• To support process design and controls: The influent composition prediction in advance 

can help the plant operators adjust and optimize the treatment processes and improve 

treatment efficiency. 

• Reduce operational costs: Optimization of treatment process, in terms also help to reduce 

energy and chemical consumption, leading to cost savings for the plant. 

•  Improve system reliability:  Influent composition prediction can help to identify potential 

issues and challenges that may affect the treatment process such as high organic load, 

nutrient imbalances in advance which help to improve system reliability. 

• Predictive Maintenance: Accurate influent composition prediction can help plant 

operators anticipate maintenance needs, such as cleaning filters, unclogging pipes, or 

replacing equipment. This can help reduce downtime and maintenance costs. (Cheng et 

al., 2020). 

Influent wastewater compositions vary depending on the source, region, and dry or wet and 

warm or cold season. Wastewater from different industries like papermaking, petrochemical, and 

food processing are typically enriched in organic carbon and have a low nutrient content, e.g., 
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nitrogen and phosphorus. In contrast, domestic wastewater contains high amounts of nutrients. 

In municipal wastewater chemical composition of influent wastewater could also vary in ratio 

mixtures (e.g., between households, industries, and surface runoff), sewer system length and 

type (i.e., separate or combined), and transformation processes within sewerage networks. Apart 

from this, wastewater quality varies with human behavior-dependent features based on the 

season, day of the week, and time of the day. (Ly et al., 2022). Wastewater flow is relatively stable 

during dry periods whereas flow rate and compositions changes originating from intensive 

precipitation (e.g., heavy rainfall / snow melt) hugely affect the correct prediction of wastewater 

quantity and quality. (Andreides et al., 2022) 

It is essential to observe the quantity and quality of various inlet wastewater and sludge 

parameters to remove pollutants, maintain effluent quality, and reduce energy consumption 

during the plant-scale treatment processes. Offline measurements, hardware sensors, or recently 

highlighted model-based soft sensors monitor those parameters, generating a voluminous 

amount of environmental multivariate time-series data. Selecting a suitable mathematical model 

to accurately predict wastewater and sludge treatment is challenging due to their complex 

composition, different treatment mechanisms, and environmental data's non-linear, dynamic, 

and periodic nature. (Cheng et al., 2020) (Andreides et al., 2022) 

Various mathematical models and machine learning algorithms for forecasting water-related 

variables have recently been developed and even calibrated with full-scale historical data. Model-

based mathematical approaches and data-based machine -learning algorithms have fewer 

assumptions, capable of analyzing vast datasets with less processing preparation and computing 

time. Thus, they effectively handle the complex nonlinear, unstable, and interdisciplinary features 

of water quality parameters. (Ly et al., 2022) (Andreides et al., 2022). Some important types of 

time-series mathematical model to identifying the highly nonlinear systems are, Auto-Regressive 

with eXternal model input (ARX), Auto Regressive moving Average with eXternal model input 

(Armax), Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors 

(SARIMAX) Partial Least Squares, Lasso, Ridge. Linear time-series models such as Autoregressive 

moving-average (ARMA), Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal 

Auto-Regressive Integrated Moving Average (SARIMA) with the ARIMA model being the most 
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widely used one. However, it should be noted that the assumption of data input for the linear 

and normal time series distribution does not typically hold in WWTPs, especially for the real-time 

monitoring sensors, of which biofilm formation, precipitates, and solid deposition could easily 

influence the measurement accuracy. Consequently, this could result in more missing data, 

outliers, uncertainty, and reduced overall prediction performance. In comparison to this machine 

learning models such as Deep Neural Networks (DNNs), Support Vector Machine (SVM), Long 

Short-Term Memory (LSTM), fuzzy-based model, i.e., Adaptive Network based Fuzzy Inference 

System (ANFIS), could offer more advanced functions to reveal nonlinear properties of 

wastewater variables (Ly et al., 2022). 

Research questions 

1. Which prediction model (statistical or machine learning) is more beneficial to accurately 

forecast influent composition in HIAS-process?  

2. Possibility of sludge quality prediction of VEAS-sludge treatment process using the same 

prediction model as WWTP? 

 

1.2 Theoretical Background 

The real-time industrial data for influent compositions of wastewater and sludge treatment 

process is complex. To design, test, and compare accuracy of different data-driven mathematical 

and machine learning models, it is important to first understand the theoretical and mathematical 

background of different models. 

1.2.1 ARIMA model  

ARIMA (Autoregressive integrated moving average) model is one of the most widely used 

approaches to time series forecasting. ARIMA models aim to describe the autocorrelations in the 

data. The ARIMA model was developed by Box and Jenkins in 1976. An ARIMA model consists of 

three components, which are the autoregressive (AR) process, the moving average (MA) process, 

and the integrated component (I).  

Autoregressive Component — AR(p):  In an autoregression model, the predicted variable uses a 

linear combination of past values of the same variable. The term autoregression indicates that it 
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is a regression of the variable against itself. AR model of order p assumes that each observation 

( 𝑌𝑡 ) is a linear combination of prior observations ( 𝑌𝑡−1, 𝑌𝑡−2,……..𝑌𝑡−𝑝 ) and a random error 

component (휀𝑡). The AR equation can be written as: 

𝑌𝑡 =  𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝+휀𝑡        (1.1) 

where φ1 . . . φp are the AR model parameters and 휀𝑡 is white noise. The highest value of p, for 

which φp ≠ 0, is the order of the AR process. Thus, the AR process of order p can be denoted by 

AR(p).(Rob J Hyndman and George Athanasopoulos, n.d.)(Zhang et al., 2019) 

Moving average Component — MA(q):   

Rather than using past values of the predicted variable in a regression, a moving average model 

uses past predicted errors in a regression-like model. The MA process of order q assumes that 

each observation (𝑌𝑡) is a linear combination of prior error components, (휀𝑡−1, 휀𝑡−2,……..휀𝑡−𝑞) and 

a random error component (휀𝑡). The MA equation can be written as: 

𝑌𝑡 =  𝜃1휀𝑡−1 + 𝜃2휀𝑡−2 + ⋯ + 𝜃𝑞휀𝑡−𝑞+휀𝑡         (1.2) 

where θ1 . . . θq are the MA model parameters and 휀𝑡 is white noise. The highest value of q, for 

which θq ≠ 0, is the order of the MA process. Thus, the MA process of order q can be denoted 

by MA(q).(Zhang et al., 2019) (Brendan Artley, 2022) 

Integrated component (I): The I component is for addressing the non-stationarity of the time 

series. A time series is stationary if its statistical properties (e.g., mean, variance, autocorrelation) 

are constant over time. Since the data series in ARIMA needs to be stationary, a non-stationary 

time series needs to be transformed through differencing. Differencing eliminates the trend and 

seasonality of time series data by calculating the difference between consecutive observations 

such as: 

𝑌𝑡
′ = 𝑌𝑡 − 𝑌𝑡−1                     (1.3) 

Sometimes the data should be differenced twice to obtain stationarity, which is known as second 

order differencing like: 
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𝑌𝑡
′′ = 𝑌′𝑡 − 𝑌′

𝑡−1 = (𝑌𝑡 − 𝑌𝑡−1) − (𝑌𝑡−1 − 𝑌𝑡−2) = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2        (1.4) 

The number of transformations that are required to obtain stationarity is denoted by d. A process 

which has dth order differencing transformations is called an integrated process of order d, and 

it can be denoted as I(d).(Zhang et al., 2019) 

If we combine difference with autoregression and a moving average model, we obtain a non-

seasonal ARIMA model. ARIMA is an acronym for Autoregressive Integrated Moving Average 

(“integration” is the reverse of differencing). The full model can be written as 

𝑌′𝑡 =  𝜙1𝑌′𝑡−1 + 𝜙2𝑌′𝑡−2 + ⋯ + 𝜙𝑝𝑌′𝑡−𝑝+𝜃1휀𝑡−1 + 𝜃2휀𝑡−2 + ⋯ + 𝜃𝑞휀𝑡−𝑞 + 휀𝑡         (1.5) 

Where 𝑌′𝑡  is the differenced series. The “predictors” on the right-hand side include both lagged 

values of 𝑌𝑡 and lagged errors. (Rob J Hyndman and George Athanasopoulos, n.d.)Thus, an ARIMA 

model with the order of (p, d, q) is a combination of AR(p), MA(q), and I(d), where, 

  p= order of the autoregressive part; d= degree of first differencing involved; q= order of the 

moving average part. 

  

1.2.2 SARIMA Model 

The ARIMA model is good, but it can only handle non-seasonal data. To include seasonality and 

exogenous variables in the model can be extremely powerful. Since the ARIMA model assumes 

that the time series is stationary, we need to use a different model. A seasonal ARIMA model is 

formed by including additional seasonal terms in the ARIMA models and it is written as follows: 

SARIMA (p,d,q) (P,D,Q)s 

 ↑↑ ↑↑ 

 Non-seasonal part Seasonal part of 

 of the model of the model 

where s= frequency of seasonality.  

𝑌′𝑡 =  𝜙1𝑌′𝑡−1 + 𝜙2𝑌′𝑡−2 + ⋯ + 𝜙𝑝𝑌′𝑡−𝑝 + 𝜃1휀𝑡−1 + 𝜃2휀𝑡−2 + ⋯ + 𝜃𝑞휀𝑡−𝑞 + 𝛼1𝑌′
𝑡−1𝑠 +

𝛼2𝑌′
𝑡−2𝑠 + ⋯ + 𝛼𝑃𝑌′

𝑡−𝑃+ + 𝜂1휀𝑡−1𝑠 + 𝜂2휀𝑡−2𝑠 + ⋯ + 𝜂𝑄휀𝑡−𝑄𝑠 + 휀𝑡            

𝑌′𝑡 =  ∑ 𝜙𝑛𝑌′𝑡−𝑛
𝑝
𝑛=1 + ∑ 𝜃𝑛휀𝑡−𝑛

𝑞
𝑛=1 + ∑ 𝛼𝑛𝑌′𝑡−𝑠𝑛 +𝑃

𝑛=1 ∑ 𝜂𝑛휀𝑡−𝑠𝑛  +  휀𝑄
𝑛=1  𝑡        (1.6) 
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This model is very similar to the ARIMA model, except that there is an additional set of 

autoregressive and moving average components. The additional lags are offset by the frequency 

of seasonality (ex. S=12 for monthly, s=24 for hourly, s=7 for daily). 

SARIMA models allow for differencing data by seasonal frequency, yet also by non-seasonal 

differencing. Knowing which parameters are best can be made easier through automatic 

parameter search frameworks such as pmdarima.(Brendan Artley, 2022; Rob J Hyndman and 

George Athanasopoulos, n.d.) 

1.2.3 SARIMAX 

SARIMAX (Seasonal Autoregressive Moving Average with Exogenous Input) is a popular time 

series model that combines SARIMA model with exogenous variables. It can be used to forecast 

future values of a time series based on its own past values as well as the past values of one or 

more exogenous variables. 

Exogenous variables are also called covariates and can be thought of as parallel input sequences 

that have observations at the same time steps as the original series. The primary series may be 

referred to as endogenous data to contrast it from the exogenous sequence(s). The observations 

for exogenous variables are included in the model directly at each time step and are not modeled 

in the same way as the primary endogenous sequence (e.g. as an AR, MA, etc. process). SARIMAX 

model can be written as, 

𝑌′𝑡 =  ∑ 𝜙𝑛𝑌′𝑡−𝑛
𝑝
𝑛=1 + ∑ 𝜃𝑛휀𝑡−𝑛

𝑞
𝑛=1 + ∑ 𝛽𝑛𝑥𝑛𝑡

𝑟
𝑛=1 + ∑ 𝛼𝑛𝑌′𝑡−𝑠𝑛 +𝑃

𝑛=1 ∑ 𝜂𝑛휀𝑡−𝑠𝑛  +  휀𝑄
𝑛=1  𝑡 

(1.7) 

This model considers exogenous variables.(Brendan Artley, 2022) 

1.2.4 Regression  

Regression: Regression is a statistical approach for estimating the relationship between the 

dependent variables and one or more independent variables or predictors. Regression analysis is 

generally used when dealing with a dataset with the target variable in the form of continuous 

data. Regression analysis explains the changes in output with changes in selected predictors. The 

expected outcome depends on the predictors, which determine the average value of the 

dependent variables when the independent variables are altered. Regression analysis serves 
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three primary purposes: evaluating the power of predictors, projecting an outcome, and 

predicting trends. Regression analysis relies on statistics and can provide dependable outcomes 

for identifying both linear and non-linear correlations between independent and 

dependent/target variables.(Veena Ghorakavi, n.d.-a) 

There are several types of regression techniques, each suited for different types of data and 

different types of relationships. The main types of regression techniques are: 

1. Linear Regression 

2. Polynomial Regression 

3. Stepwise Regression 

4. Decision Tree Regression 

5. Random Forest Regression 

6. Support Vector Regression 

7. Ridge Regression 

8. Lasso Regression 

9. Elastic Net Regression 

10. Bayesian Linear Regression 

Before going deeper into different regression processes, it is important to discuss some necessary 

terms related to regression analysis in machine learning. 

Overfitting is a phenomenon that occurs when a regression model is constrained to the training 

set and not able to perform well on unseen data. This is the case when the model memorizes the 

training data instead of learning the patterns in it. 

Underfitting is the case when model is not able to learn even the basic patterns available in the 

dataset. The underfitted model is unable to perform well on both the training data and validation 

data. In this case increase the complexity of the model or add more features to the feature set. 

https://www.geeksforgeeks.org/ml-linear-regression/
https://www.geeksforgeeks.org/python-implementation-of-polynomial-regression/
https://www.geeksforgeeks.org/stepwise-regression-in-python/
https://www.geeksforgeeks.org/python-decision-tree-regression-using-sklearn/
https://www.geeksforgeeks.org/random-forest-regression-in-python/
https://www.geeksforgeeks.org/support-vector-regression-svr-using-linear-and-non-linear-kernels-in-scikit-learn/
https://www.geeksforgeeks.org/implementation-of-ridge-regression-from-scratch-using-python/
https://www.geeksforgeeks.org/implementation-of-lasso-regression-from-scratch-using-python/
https://www.geeksforgeeks.org/implementation-of-lasso-ridge-and-elastic-net/
https://www.geeksforgeeks.org/implementation-of-bayesian-regression/
https://www.geeksforgeeks.org/machine-learning/
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Regularization is a technique used to reduce errors by fitting the function appropriately on the 

given training set and avoiding overfitting. 

Linear Regression 

Linear regression is a straight line that fits a series of points on a two-dimensional plane and is 

used for predictive analysis. It is a linear approach for modeling the relationship between the 

criterion or the output response and the multiple predictors or input variables. Linear 

regression is a method that examines the conditional probability distribution or trend of training 

samples to forecast new sample points. 

The general formula for linear regression is: 

y = Ax + B 

where, A is the model weights or parameters, B is known as the bias. 

After training the model using data from the training set, the optimal values of the two 

parameters A and B in the equation can be determined and used to predict newly observed 

samples to obtain the predicted value of y. Linear regression is a fundamental type of regression 

analysis that can model a linear connection between one dependent variable and one or more 

independent variables. 

This method is called linear regression because the model is composed of linear combinations of 

all features and can be written as: 

�̂� =  ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯  + 𝜃𝑛𝑥𝑛  + ε.      (1.8) 

�̂�: Represents the predicted value of a dependent variable 

n: Represents the number of features 

𝑥𝑛: Represents the observation of the nth feature 

𝜃𝑛: Represents the value of the nth parameter 

𝜃𝑛𝑥𝑛: Represents the regression coefficient of the nth independent variable  

https://www.geeksforgeeks.org/ml-linear-regression/
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 ε : model error (how much variation there is in estimation, cost function 

it is also necessary in regression analysis to define the appropriate cost function, which quantifies 

the error between the predicted and observed values. After selecting an appropriate cost 

function, the training process identifies the minimum value. For the linear regression algorithm, 

the most commonly used cost function is the MSE function and R2. (Nair et al., 2022)(Veena 

Ghorakavi, n.d.-b)(Wang et al., 2021) 

Polynomial Regression 

Polynomial regression is an extension of linear regression and is used to model a nonlinear 

relationship between the dependent and independent variables. In many real-time cases where 

the equation of the line does not fit the data well, polynomial regression may be an alternative. 

In polynomial regression, syntax remains the same as linear regression but includes higher powers 

(such as square or cubic terms) in the input variables. It helps to increase the model freedom and 

to capture nonlinear changes in the data. Including polynomial terms in a model can make it more 

complex, but also increase its capacity to fit data. However, this may lead to a higher risk of 

overfitting, despite reducing the training error. In polynomial regression, the most important 

parameter is the degree of the highest power. If the degree of the highest power is n and there is 

only one characteristic, the polynomial regression equation can be expressed as: 

�̂� =  ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥2 + 𝜃3𝑥3 …  𝜃𝑛−1𝑥𝑛−1 + 𝜃𝑛𝑥𝑛  + ε.         (1.9) (Wang et al., 2021) 

Stepwise regression 

Stepwise regression is used for fitting regression models with predictive models. It is carried out 

automatically. With each step, the variable is added or subtracted from the set of explanatory 

variables. The approaches for stepwise regression are forward selection, backward elimination, 

and bidirectional elimination.(Veena Ghorakavi, n.d.-a) 

Decision Tree Regression 

A Decision Tree is the most powerful and popular tool for classification and prediction. A Decision 

tree is a flowchart-like tree structure, where each internal node denotes a test on an attribute, 

https://www.geeksforgeeks.org/python-implementation-of-polynomial-regression/
https://www.geeksforgeeks.org/stepwise-regression-in-python/
https://www.geeksforgeeks.org/stepwise-regression-in-python/
https://www.geeksforgeeks.org/decision-tree/
https://www.geeksforgeeks.org/decision-tree/
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each branch represents an outcome of the test, and each leaf node (terminal node) holds a class 

label. There is a non-parametric method used to model a decision tree to predict a continuous 

outcome. 

Random Forest Regression 

Random Forest is an ensemble technique capable of performing both regression and 

classification tasks with the use of multiple decision trees and a technique called Bootstrap and 

Aggregation, commonly known as bagging. The basic idea behind this is to combine multiple 

decision trees in determining the final output rather than relying on individual decision trees.  

Random Forest has multiple decision trees as base learning models. We randomly perform row 

sampling and feature sampling from the dataset forming sample datasets for every model. This 

part is called Bootstrap. 

Support Vector Regression (SVR) 

Support vector regression (SVR) is a type of support vector machine (SVM) that is used for 

regression tasks. It tries to find a function that best predicts the continuous output value for a 

given input value. 

SVR can use both linear and non-linear kernels. A linear kernel is a simple dot product between 

two input vectors, while a non-linear kernel is a more complex function that can capture more 

intricate patterns in the data. The choice of kernel depends on the data’s characteristics and the 

task’s complexity.(Veena Ghorakavi, n.d.-a) 

Lasso regression  

Lasso regression is a technique for regression analysis that accomplishes variable selection and 

regularization simultaneously. It implements L1 Regularization and is referred to as LASSO (Least 

Absolute Shrinkage and Selection Operator) regression.  

https://www.geeksforgeeks.org/ensemble-methods-in-python/
https://www.geeksforgeeks.org/ml-bagging-classifier/
https://www.geeksforgeeks.org/random-forest-regression-in-python/
https://www.geeksforgeeks.org/support-vector-regression-svr-using-linear-and-non-linear-kernels-in-scikit-learn/
https://www.geeksforgeeks.org/support-vector-machine-algorithm/
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Lasso Regression involves adding a penalty term to the loss function (L) that considers the 

absolute value of the coefficient's magnitude. This method assists in feature selection by 

penalizing weights that are not useful to the model and bringing them closer to zero. 

 

Cost = 
1

n
 ∑ (yi − ŷi)

2 +  𝜆 ∑ |𝑤𝑖|
𝑚
𝑖=1

n
i=1               (1.10) 

where, m =Number of Features, n = Number of Examples, yi =Actual Target Value,  

ŷi =Predicted Target Value 

Ridge regression   

Ridge regression is a method used to analyze data with multiple regression. In situations where 

multicollinearity is present, the least squares estimates remain unbiased.  

When using polynomial regression, if the polynomial's highest degree is large, the model is at risk 

of overfitting. Therefore, regularization is frequently used to address this issue. Ridge Regression, 

also known as L2 regularization, is a method to prevent overfitting during linear regression. The 

only difference between ridge regression and polynomial regression is the cost function. (Wang 

et al., 2021)    Ridge regression adds “squared magnitude” of the coefficient as a penalty term to 

the loss function(L).The cost function of ridge regression is shown as: 

 

Cost = 
1

𝑛
 ∑ (𝑦𝑖 − �̂�𝑖)2 +  𝜆 ∑ 𝑤𝑖

2𝑚
𝑖=1

𝑛
𝑖=1               (1.11) 

 

Elastic Net Regression 

When there are many features in the dataset, some of which are irrelevant to the predictive 

model, it makes the model more complex with a too-inaccurate prediction on the test set (or 

overfitting). Such a model with high variance does not generalize on the new data. So, to deal 

with these issues, Elastic net regression combines both L-2 and L-1 regularization to get the 

benefits of both Ridge and Lasso simultaneously. The resultant model has better predictive power 

With the help of an extra hyperparameter that controls the ratio of the L1 and L2 regularization. 

https://www.geeksforgeeks.org/implementation-of-lasso-ridge-and-elastic-net/
https://www.geeksforgeeks.org/hyperparameter-tuning/
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It performs feature selection and makes the hypothesis simpler. The modified cost function 

for Elastic-Net Regression is : 

Cost = 
1

𝑛
 ∑ (𝑦𝑖 − �̂�𝑖)

2 +  𝜆((1 − 𝛼) ∑ |𝑤𝑖|
𝑚
𝑖=1 +  𝛼 ∑ 𝑤𝑖

2𝑚
𝑖=1 )𝑛

𝑖=1             (1.12) 

Where, 𝜆(1 − 𝛼) is the regularization strength for the L1 norm. 

 𝜆𝛼  is the regularization strength for the L2 norm.(Wang et al., 2021)(AlindGupta, 

n.d.)(Veena Ghorakavi, n.d.-a) 

1.2.5 Neural Network 

ANN is a machine learning technique that could be used to build predictive models by extracting 

information from past experience. It shows significant improvements of model flexibility 

compared to traditional predictive models.(Zhang et al., 2019) 

An Artificial Neural Network (ANN), or called Neural Network (NN) system, is a computing system 

inspired by the biological neural networks. An ANN is based on a collection of an interconnected 

set of  several simple computational elements called ‘artificial neurons’. The network is built of 

different layers, consisting of different types of neurons connected with the previous layer. In a 

general neural network, there are mainly three types of layers: 

 • Input layer consists of different types of inputs that will come as a part of attributes based on 

which the desired output will be achieved from the network.  

• Hidden layer unit, which consists of multiple neurons. These layers are mainly used as high-

dimension to lower-dimension data transfer. 

• Output layer, which consists of output neurons that will give the desired output based on inputs. 

A simple 1-hidden layer neural network has been described to demonstrate how this algorithm 

works. The input layer is in the form of a matrix (x) or vector, which will be then multiplied with 

randomized initialized weights (W). A bias term will be added with this multiplication data, which 

will be passed through a non-linear function to achieve the next hidden layer output. The size of 

the weights initialization will be of  

https://www.geeksforgeeks.org/implementation-of-elastic-net-regression-from-scratch/
https://en.wikipedia.org/wiki/Biological_neural_network
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                                                                         𝑛ℎ  ∗  𝑛𝑥                     (1.13)  

where 𝑛ℎ, is the number of neurons in the hidden layer and 𝑛𝑥, is the number of neurons in input 

layers. The equation of the first hidden layer is  

                                                                    ℎ =  𝐴(𝑊 ·  𝑥 + 𝑏1)            (1.14)  

where A is the Activation Function. The dot multiplication is the element-wise multiplication here. 

Based on the value of the hidden layer, the output value will be produced. Like the hidden layer, 

the weights will multiply with the hidden value as, in this case, hidden value is the input, and with 

that, the bias will be added. Then the result will be passed through a non-linear function that 

gives the desired output function.  

                                                                 𝑦 =  𝐴(𝑊1 ·  ℎ +  𝑏2)             (1.15)  

where y is the output produced by the neural net. The size of the weights which is coming to the 

output neuron from the hidden layer is of size  

                                                               𝑛ℎ  ∗  𝑛𝑦                                        (1.16)  

where 𝑛𝑦  is the size of the output neuron.  

 

 

 

 

 

 

 

 
Figure 1.1: Example of Neural Network with One Hidden Layer 
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In the neural network, the first run is with randomly initialized weights and then updated to 

minimize the prediction error through an optimization process. There are mainly two steps in a 

neural network: - 

• Feedforward, which means that with the weights, the output will be derived based on the input 

and then hidden layers outputs and the non-linear functions. The flow is left to right, which means 

input layers to output layers. The learning process of a feedforward network occurs in the 

perceptron, which consists of a single neuron with adjustable weights and an 

activation function.(Zhang et al., 2019) 

• Backpropagation means that after the output has been derived, it will be compared to the 

standard output and calculated the loss. Once the loss has been calculated, the error of the 

weights will be distributed going backwards from output to input direction to achieve the 

standardized weights.  

The above steps are done in one iteration, called one epoch. Several epochs can be based on the 

stabilized and minimum loss on the output.  

To achieve the best weights and minimize the loss, gradient descent algorithm has been 

formulated. This gradient descent algorithm is performed with the help of the backpropagation 

algorithm. The gradient descent algorithm is nothing, but the partial derivative of the errors 

based on the activation function in each layer. The weights and biases are then adjusted based 

on this error calculation. In a simple case, if we take 𝐼𝑠(𝑓) as the error calculated in the output 

layer, then the below process will happen to adjust the weights and biases in each iteration.  

                                                  𝑊 =  𝑊 −  𝛼𝛿𝑊 𝐼𝑠(𝑓)             (1.17) 

 where W is the weights, α is the learning rate, and it is multiplied by the change of error based 

on weights. The same will be applied to biases to adjust the biases in each layer.  

                                                𝑏 =  𝑏 −  𝛼𝛿𝑏 𝐼𝑠(𝑓)                  (1.18)  

The derivation does not happen in the first layer as that is the input layer, and that does not need 

to be adjusted.  



23 
 

The number of neurons in each layer and the number of hidden layers are called 

hyperparameters of the neural network. To tune the performance of the neural network, the 

hyperparameters need to be tuned. (Zhang et al., 2019) 

K-Fold Cross-Validation for Neural Networks 

Cross-validation is a process used to estimate a neural network's quality. By applying cross-

validation to multiple neural networks that have varying parameter values (number of hidden 

nodes, back-propagation learning rate), the results can be analyzed to determine the best set of 

parameter values. 

To implement k-fold cross-validation with a neural network, the data is first divided into k subsets. 

Then, the neural network is trained on k-1 of the subsets and tested on the remaining subset. This 

process is repeated k times, with each fold being used as the test set exactly once. The network 

performance is then evaluated by averaging the results of the k experiments. 

K-fold cross-validation can be used for a variety of neural network architectures, including 

feedforward neural networks, convolutional neural networks, and recurrent neural networks. It 

is particularly useful when working with limited data since it allows for the efficient use of all 

available data for training and testing the network.(DR NILIMESH HALDER, 2019) 

1.3 Objectives of the thesis 

This work aims to design, test, and validate a data-driven mathematical and machine learning 

model to estimate influent nutrient composition from two different wastewater treatment plant:  

1. Inlet composition of wastewater treatment process, such as PO4, sCOD, and influent flow 

rate in a full-scale municipal wastewater resource recovery facility in Hamar, Norway.  

2. Inlet composition of sludge treatment process, such as Organic Acid, TS%  from one of the 

Norway’s biggest wastewater and sludge treatment process in Asker.  

The real-time online data with a 10min sampling frequency are compared to the data obtained 

from periodic (once daily) lab-analyzed influent flow rate and other compositions. A concise data-
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analysis tool has been used for cleaning and transforming online and lab-analyzed data and 

visualizing the relationship of different parameters. 

The state-of-the-art algorithm deployment strategy of various time-series mathematical and 

machine-learning models has been done in this paper. After that, a well-established comparison 

of accuracy between different models is discussed. 
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2. Literature Review  

To grasp the dynamic changes of influent nutrients composition and flow rate of WWTP in real-

time, machine learning, mathematical modelling, and other forecasting methods are increasingly 

being used to assist WWTP operation and management. 

Data driven statistical models and machine learning models used for influent prediction: 

2.1. Data-driven models 

Data-driven models are usually based on large sets of data (big data). The models aim to find the 

relationship between state variables and control variables, i.e., predictors and predicted output, 

with no additional knowledge about the internals of the processes. These models mainly predict 

selected parameters, detect unusual and faulty situations, and develop soft sensors. Although 

such modeling seems less popular than mechanistic due to lacking deep insight into the process, 

data-driven models can be more accurate than mechanistic for influent flow prediction. Moreover, 

the connection of a data-driven control strategy with artificial intelligence capable of self-learning 

can detect malfunctioning of the treatment process or sensor. It can thus timely detect impending 

equipment failure and choose a backup process strategy.(Andreides et al., 2022)  

Most popular wastewater influent prediction models can be created using statistical methods, 

such as linear (ARMA, ARIMA, multiple regression, etc.) or nonlinear (SARIMAX, polynomial, 

exponential, regression trees, random forests, boosted trees, neural networks, support vectors, 

etc.) models.(Wodecka et al., 2022) 

2.1.1. ARIMA  

ARIMA model has been studied mainly for flow rate prediction.(Boyd et al., 2019)(Zhang et al., 

2019). In all studies, historical flow rate data with various sampling frequencies were used, while 

accuracy was expressed by the correlation coefficient and the coefficient of 

determination(R2).(Andreides et al., 2022).  

(Boyd et al., 2019) used ARIMA for daily influent flow forecasting where five wastewater 

treatment stations across North America are used to validate ARIMA’s performance. Sampling 

frequency of flow data was 5min, 15min and daily and results demonstrate that ARIMA 

models can produce satisfactory daily influent flow forecasts with R2= 0.89. 
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In Canada, (Zhang et al., 2019) developed ARIMA model for predicting wastewater inflow to 

address challenges such as precipitation-runoff relationships in combined sewer systems, 

unpredictability due to aging infrastructure, and frequently inconsistent data quality. Here, 

fifteen-minute flow data over a period of 1 year were collected, and the resampled daily flow 

data were used to train and validate the developed models. The model performances were good 

with R2 as 0.78 for training data and 0.63 for testing data. 

2.1.2. SARIMA 

(Do et al., 2022)aims to investigate patterns of the wastewater inflow behavior and develop a 

seasonal autoregressive integrated moving average (SARIMA) forecasting model at low temporal 

resolution (hourly) for a short-term period of 7 days for a wastewater treatment facility in South 

Australia. Historical wastewater inflow data collected for a 32-month period and result shows 

presence of seasonality with dependence on time of the day and day of the week. 

2.1.3. SARIMAX 

Due to significant variation of influent wastewater constituents and complex treatment 

processes within wastewater treatment plants, real-time data is mostly seasonal and non-

linear.(Ly et al., 2022) has introduced the potential application of Seasonal Autoregressive 

Integrated Moving Average (SARIMAX), to predict wastewater quality. Ten different wastewater 

parameters data was collected hourly over a year from three different WWTP in China to predict 

outlet TP. Irrespective of WWTPs, SARIMAX consistently demonstrated the good performance 

with high R2 value as 0.93. 

 
2.1.4. Multiple Linear Regression (MLR) 

Linear regression models have similar difficulties to ARIMA, that it works only with linear data. In 

(Rahmat et al., 2022) MLR was performed to develop a prediction approach using wastewater 

quality index (WWQI) for a regional WWTP in Melaka, Malaysia. Seven principal components 

analyses were derived with daily data and the coefficients of the WWQI model are directly 

dependent on influent biological oxygen demand (BOD), effluent BOD, influent chemical oxygen 

demand (COD), and effluent COD values. The experimental results showed that the model 

performed well with R2 as 0.85. (Nair et al., 2022) presents development of MLR (Linear 

Regression, Ridge Regression, Baysian Ridge and Lasso Regression) to estimate  
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Total Phosphorus (TP) and Chemical Oxygen Demand (COD) in the influent and effluent streams 

of a full-scale WWTP in Norway. Ridge algorithm shows relatively better results with R2 =0.86 for 

influent TP and 0.72 for influent COD. (Wang et al., 2021) tested four linear regression models 

(Linear Regression, Ridge Regression, ElasticNet Regression and Lasso Regression) to predict flow 

rate, COD and ammonia using the historical data obtained from a WWTP located in western China. 

The accuracy of all the models (86, 82 and 74 % for flow rate, COD and ammonia, resp.) was not 

sufficient for WWTP operators.(Andreides et al., 2022)  

2.1.5. SVM and Boosted tree (Wodecka et al., 2022) presents the use of classification models such 

as support vector machines and boosted trees methods to predict the variability of wastewater 

quality at the inflow to wastewater treatment plants in Poland. TP and TN was predicted on based 

of biochemical oxygen demand, chemical oxygen demand, total suspended solids, and 

ammonium nitrogen and can be identified with sufficient accuracy. Besides SARIMAX, (Ly et al., 

2022) presented other shallow ML based regression models such as Random Forest (RF), Support 

Vector Machine (SVM), Gradient 

Tree Boosting (GTB) to predict outlet TP. Result with RF, SVM, GTB, and ANFIS were unable to 

address large datasets with nonlinear and nonstationary behavior. 

2.1.6. Neural network 

The most popular non-linear models for influent characteristics prediction are based on various 

types of artificial neural networks (ANN). The robustness of the ANN strongly depends on the 

type of ANN and the quality of the training dataset. The use of daily influent data can lead to a 

high prediction accuracy.(Andreides et al., 2022) . In comparison with ARIMA, (Zhang et al., 2019) 

developed an artificial neural network model (i.e., the multilayer perceptron neural network, 

MLPNN) for predicting wastewater inflow. The result of MLPNN was satisfied with R2 value as 0.79 

for training dataset and 0.64 for testing dataset. 

A taxonomy of literature review has been presented in appendix section A in table A.1. 
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3. Materials and Methods 

3.1. Study sites description 

3.1.1. Hias IKS Wastewater Resource Recovery Facility 

Hias IKS is an inter-municipal wastewater transport, treatment and resource recovery facility 

owner, and a water and sewage service provider for the Hamar, Løten, Ringsaker, and Stange 

municipalities. Hias owns and operates the water and sewage treatment plants in Stange, with 

approximately 230 kilometers of transmission line, 11 pumping stations, six high basins, and six 

measuring stations. Hias Water and sewage play an important role in nature's cycle. All water 

that Hias processes and distributes to the municipalities and their networks is obtained from 

lake Mjøsa . At the same time, all treated wastewater is returned to Mjøsa. Hias supplies water 

to approx. 56,000 people and cleans sewage from approx. 65,000 people. Total water production 

capacity of Hias WWRF is 6.13 million m3 and sewage quantity added to the  

 

 Figure 3.1: Hias wastewater treatment process block diagram 

https://www.hias.no/om-hias/vann-og-avlop/mjosa2/
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treatment plant is 6.97 million m3. The treatment plant has a treatment capacity of 140 000 p.e. 

and 3 MW heating capacity from outlet. Hias process is a compact biological nutrient removal 

technology that removes phosphorus and nitrogen with the help of micro-organisms that grow 

as a biofilm on small plastic chips in the basins and circulate the basins with the wastewater. This 

moving bed bioreactor process with enhanced biological phosphorus removal consists of ten 

basins (three anaerobic basins and seven aerobic basins) and small biofilm carriers. The influent 

at Hias treatment plant is strongly affected by emissions from the food industry which can 

amount to up to 50 percent of the load. Wastewater from the food industry, such as 

slaughterhouses and the like, will add nutrients, organic matter, fat, proteins, blood, faeces, and 

washing solutions to a greater extent than typical household wastewater 

(https://www.hias.no/om-hias). 

The Hamar city's weather varies in summer and winter, with the average temperature varying 

from -7° to 16° and precipitation ranges between 0.7mm to 120mm. The climate typically 

features two distinct seasons - High temperature and high precipitation- mainly in the summer 

(May to September), while the dry season lasts from October to April (https://www.yr.no). 

Figure 3.2: Hias wastewater resource recovery process (Photo: Hias process) 

https://www.hias.no/om-hias
https://www.yr.no/
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3.1.2 VEAS process: 

The VEAS wastewater treatment plant is Norway's largest treatment plant and is a crucial 

contributor to keep the Oslo Fjord clean. The wastewater of different municipalities, equal to 

that of 867,000 people, is transported through the VEAS tunnel from the discharge point to the 

Asker treatment plant. VEAS not only purifies water effectively but also contributes to the 

nutrient cycle by producing stabilized, hygienic, and lime-enhanced sewage sludge (known as 

VEAS soil) and a nitrogen solution beneficial for agriculture. (https://www.veas.nu/om) 

VEAS processes 2,300-3,000 liters per second on a dry weather day. When it rains, more water 

comes to VEAS. The treatment plant can handle up to 11,000 liters per second and, in addition, 

store up to 200,000,000 liters in the tunnel. VEAS processes 100-110 million cubic meters of 

wastewater annually. 

VEAS operates the waste tunnel that leads the wastewater from Fagerlia in the east to the 

treatment plant at Bjerkås in Asker. Oslo, Bærum, and Asker municipalities are responsible for 

the sewage network from the residential areas that collect wastewater that leads to the VEAS 

tunnel. 

In addition to wastewater, this network is loaded with rainwater and snowmelt water, also called 

stormwater. 

Water treatment 

Wastewater is pumped up from the inlet pump station, located 23 meters below the treatment 

plant. Rags, plastic, cotton swabs, and other rubbish are removed using a sieve. The sewage 

waste, the screening material, is delivered to an approved landfill. Heavier particles such as sand 

and coffee grounds are removed from the wastewater in an aerated sand trap. To remove 

phosphorus and organic matter, chemicals are added, which cause small particles to bind into 

larger particles that sink down and form sludge. This sludge is pumped out from the bottom of 

the pool, while the water is carried on to biological purification, where nitrogen is removed with 

the help of bacteria. The biological cleaning step consists of biofilm processes with leca as carrier 

material. First, nitrification occurs in aerated pools, and finally, denitrification occurs with 

methanol, an external carbon source. The Leca material also provides good filtration of the water.  
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The purified water is discharged into the Oslo Fjord at a depth of 50 meters via an outlet tunnel, 

and five diffusers distribute the water so that it is stored at a depth of around 20 meters. The 

backwash water from the biological purification step is returned to the VEAS inlet.  

The VEAS process has a capacity of around 3.2-3.5m3/s with normal wastewater. Up to 5.1-5.2 

m3/s can be treated on increasingly diluted wastewater. In the case of diluted wastewater, the 

VEAS plant can process up to 11 m3/s. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: VEAS water and sludge treatment process(Jonassen et al., n.d.) 

Sludge treatment 

The sludge from the purification process is fed to the bioreactors. Particulate matter such as 

sludge is pumped from the sedimentation basins2 in the main facility via pre-dewatering to the 

eradication plant. Here, the sludge is broken down, and biogas is formed. The decay process 

produces approximately 1,400-1,500 Nm3 of biogas per hour, corresponding to an energy 

amount of about 70 GWh per year. Until 2020, VEAS used biogas for energy and heat in facilities 

and administration buildings. However, after the new refinery was built, the biogas is upgraded 

and became liquid fuel for the transport sector. 
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 After the sludge has decayed, lime is added and dewatered/vacuum dried. When the sludge has 

been treated, it is dry and free of infectious agents and weed seeds. The end product, VEAS soil, 

is rich in phosphorus, lime, and organic matter and is used as a soil conditioner in grain-growing 

areas. Agriculture annually receives around 38,000 tons of Veas's soil.  

The water squeezed out of the sludge is rich in ammonia and cleaned in the stripping and 

absorption plant. An ammonium nitrate solution of around 4,000 tons per year is produced, 

which can be used as fertilizer or industrial fertilizer raw material.(Jonassen et al., n.d.) 

 

3.2. Data collections and pre-processing 

Data preparation was conducted with two stages: (1) Data collection and (2) Data pre-processing 

to gather and transform raw data into a time series dataset for statistical and machine learning 

modelling and forecasting wastewater influent composition. The procedures are described in Fig. 

3.4. 

 

 

 

 

 

 

 

 

 

The same process was applied to collect and transform raw data to usable data for sludge 
influent. 

Figure 3.4: Data collection and data pre-processing procedure 
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3.2.1 Data Collection 

 The data collection has been done in two phases for online and laboratory-analyzed data.  

HIAS online dataset: The treatment plant is equipped with a state-of-the-art online monitoring 

system with remote data access capabilities. sCOD(mg/l), NO2(mg/l), NO3(mg/l) and flow-rate(l/s) 

sensors that relay real-time information to a data acquisition system. Data is collected from 1st 

December 2022 to 31st January 2023 with a sampling frequency 10min. Air temperature(°C) and 

precipitation(mm) data has been collected from The Norwegian Meteorological Institute website 

(yr.no) of same time with 10 min. sampling frequency. The statistical descriptive summary of the 

wastewater influent parameters of Hias online dataset is tabulated in Table 3.1. 

Table 3.1:  Statistical description of Hias online dataset (1st December 2022-31st January 2023) along with 
data from yr.no 

 

 

  

 

 

 

 

 

HIAS Laboratory-analyzed dataset: Two years' historical data of water temperature at inlet, 

influent flow rate(m3/h), inlet sCOD(mg/l), PO4-P in(mg/l) and ammonia (NH4-N) (mg/l) is 

collected from laboratory-analysed data. Parameters are analysed once a day on every 

weekday.  The statistical descriptive summary of the wastewater influent parameters is 

tabulated in Table 3.2. 

 

 

Flow 

rate 

(l/s) 

sCOD 

(mg/l) 

NO2 

(mg/l) 

NO3 

(mg/l) 

Temp.(°C) Percip. 

(mm) 

count 8752 8843 4601 7582 8852 8852 

mean 89.35 460.35 0.62 2.80 -5.63 0.05 

std 22.27 95.96 0.52 1.02 5.64 0.40 

min 20.37 69.25 0 0.31 -20.4 0 

25% 72.91 393.17 0.20 1.94 -9.73 0 

50% 92.13 469.84 0.50 2.75 -5.14 0 

75% 108.01 523.91 0.93 3.58 -0.66 0 

max 123.60 751.76 3.39 5 6.4 10.22 
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Table 3.2:  Statistical description of Hias lab dataset (2021-2023) 

 

 

 

 

 

 

 

 

VEAS Online dataset: Sludge treatment process is complex, and it is difficult to apply direct 

sensors at the inlet of sludge treatment process. As we are interested to predict the influent 

compositions of sludge treatment process it was not possible to get online sensor data for inlet 

composition of sludge from treatment process, which leads us to work with only laboratory 

analyzed data of sludge influent composition.  

VEAS Laboratory-analyzed dataset: One month data (30th June to 29th July 2022) are collected 

from lab analyzed data from the inlet of pre-dewatering section. Dataset consists of several 

parameters such as Flow rate(l/s), sCOD(mg/l), NH4-N(mg/l), pH, TS%(Total solid), Organic 

acid(meq/l), total alkalinity(meq/l), Protein, raw fat, carbohydrate etc. These parameters were 

analyzed at VEAS laboratory once a day on every weekday. Statistical description of the 

monitored sludge influent parameters at VEAS is shown in Table 3.3. 

 

 

Q (m3/h) Temperature PO4 in 

(mg/l) 

SCOD in 

mg/l) 

NH4 in 

(mg/l) 

count 702.0 702.0 702.0 702.0 702.0 

mean 344.9 10.86 5.2 436.1 60.8 

std 50.4 2.55 1.3 121.1 12.4 

min 163.2 6.30 1.5 122.0 25.0 

25% 310.8 8.40 4.4 350.7 54.0 

50% 336.4 10.80 5.2 442.5 61.0 

75% 376.7 13.30 6.2 527.0 68.4 

max 502.3 15.20 9.2 804.0 120.0 
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Table 3.3:  Statistical description of VEAS lab dataset(June-July, 2022) 

 

3.2.2 Data pre-processing 

Data integration combines data from multiple sources into a single dataset for analysis. The 

online monitored dataset of Hias was combined with precipitation and average temperature data 

from yr.no. Parameters chosen from the laboratory dataset are Flow rate at inlet Q (m3/h), Water 

temperature (°C), PO4 in(mg/l), sCOD in(mg/l) and NH4(mg/l). In addition, we have combined 

precipitation and average temperature data from yr.no with laboratory data. 

Data transformation involves converting the data into a suitable format for analysis. This step 

may include normalization, standardization, encoding categorical variables or resample into 

suitable time frequency. For example, VEAS lab analysed data of daily frequency is resampled to 

time-series data with sampling frequency of one-hour to make better prediction model with 

SARIMAX. It increases the size of dataset from 30 rows to 697 rows. 

 

 

Flow 

rate(l/s) 

SCOD 

(mg/l) 

NH4-N 

(mg/l) 

pH TS% Organic 

acid 

(meq/l) 

Total 

alkalinity 

Protein Raw 

fat 

carbohyd

rate 

count 673 673 673 673 673 673 673 673 673 673 

mean 6.78 9438.61 645.56 5.94 6.81 101.43 75.50 19.21 0.88 24.17 

std 1.16 1608.30 198.29 0.38 0.92 19.92 15.06 2.48 0.13 3.68 

min 4.59 6575.00 374.20 5.33 4.45 70.90 53.61 12.69 0.53 15.08 

25% 5.99 8207.23 512.32 5.73 6.20 85.97 67.58 17.78 0.78 22.55 

50% 6.90 9348.48 592.47 5.85 6.76 99.45 72.76 19.03 0.88 24.16 

75% 7.54 10567.0 721.15 6.04 7.65 110.90 79.33 20.66 0.99 25.73 

max 9.380 14018.0 1395.20 7.38 8.25 160.7 132.0 24.45 1.27 36.84 
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df_hourly = raw_data.resample('H').interpolate()  

 

 

 

 

 

 

 

Data cleaning is conducted to identify and correct or remove probable inaccurate or irrelevant 

data. Many data errors are detected, including non-numerical, abnormally large and unexpected 

values. These data points are called outliers. They are determined by sorting the dataset 

ascending and descending order. All of them are handled to achieve a more consistent and better 

accuracy dataset to build a predictive model for wastewater inflow and PO4 at inlet. These outliers 

can be removed by python script library numpy. It can identify the outliers as data points greater 

than the threshold value, where threshold is the number of standard deviations from the mean. 

The filtered Hias lab-dataset with 3790 data points remaining after error elimination is converted 

to a daily time series dataset.  

This converted dataset is then inspected to find out any missing data. As laboratory-analyzed data 

are only recorded once in 24 hours and from Monday to Friday, almost 1537 missing values are 

detected. These missing values are handled by the "spline interpolation" method. Spline 

interpolation is a mathematical method commonly used to construct new data points within the 

boundaries of a set of known points, and there was no impact on the nonlinear datasets. The 

remaining NaN values are handled by drop functions and at the end we get 702 days of dataset. 
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Figure 3.5: PO4 data vs time plot (top): before interpolation, (bottom): after interpolation 

From Hias online dataset the influent parameter NO2 need to be discarded as it has 4261 missing 

or NaN values.  

 

 

 

 

 

After data interpolation and removing outliers and missing parameters from Hias online dataset, 

8819 count of flow rate, sCOD and NO3 parameters are further used for model development. 

 

 

 

 

 

 

 

 

Data partition: The laboratory-analysed and online dataset of wastewater and sludge influent 

parameters are then divided into output, input, training, and testing datasets. As stated by 

Hyndman and Athanasopoulos (2018), typically, the size of the testing set accounts for around 

20% of the entire dataset and is ideally at least equal to the longest forecasting duration. 

Therefore, the ratio of training to testing set is 80:20. The training set is used for model 

development, and the testing set is reserved for model validation.(Do et al., 2022)  
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3.3 Software Packages 

The open-source programming language Python (www.python.org) was used to process the raw 

lab-analyzed and online sensor data, generate mathematical models, and deploy algorithms for 

real-time estimation. The open-source library, pandas, version 1.3 (https://pandas.pydata.org/), 

was used to clean and preprocess raw data and generate concurrent datasets of the same 

timestamp. 

statsmodels is an open-source Python module (https://www.statsmodels.org/)that provides 

classes and functions for the estimation of many different statistical models, as well as for 

conducting statistical tests, and statistical data exploration. This module was used to train ARIMA 

and SARIMAX model with different datasets. 

Scikit-learn, a free Python library (https://scikit-learn.org/) provides several algorithms to train 

MLR models and obtain the regression coefficients. (Nair et al., 2022) 

TensorFlow is an end-to-end open-source platform for machine learning 

(https://www.tensorflow.org/). TensorFlow is a rich system for managing all aspects of a machine 

learning system. Keras (https://keras.io/) is a high-level neural network library that runs on top of 

TensorFlow and it was used to build and optimize the neural network model. 

3.4. Data analysis  

Analysis of Influent Nutrient Composition and Quantity  

The first and most important requirement for the development of time-series mathematical or 

machine learning model is to analyse the wastewater influent parameters data. The main 

criterion for developing time-series mathematical models such as ARIMA, SARIMA or SARIMAX 

model is that time-series data is stationary. A time series is stationary when its statistical features 

(e.g., mean and variance) are constant over time, or not impacted by the time at which the series 

is observed. The term “stationarity” is used to imply the stationary status of a time series. In 

contrast, when a time series exhibits trends (e.g., upward or downward) or seasonal patterns (e.g., 

quarterly, monthly, or weekly), it is non-stationary. (R. Wang et al., 2021). 

Therefore, before employing model development the stationarity of the original training time 

series of raw wastewater and sludge inflow data was investigated. The ADF and KPSS tests, and 

the ACF and PACF plots were used to verify the data’s stationarity.(Do et al., 2022) 

https://www.statsmodels.org/stable/about.html#about-statsmodels
https://keras.io/
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• ADF test  

Augmented Dickey Fuller test (ADF Test) is a common statistical test used to test whether a given 

Time series is stationary or not. It is one of the most commonly used statistical tests with a 

hypothesis testing involved with a null and alternate hypothesis and as a result a test statistic is 

computed and p-values get reported.  

The ADF test belongs to a category of tests called ‘Unit Root Test’, where Unit root is a 

characteristic of a time series that makes it non-stationary. A unit root is said to exist in a time 

series of the value of α = 1 in the equation:    𝑌𝑡 = α𝑌𝑡−1 + β𝑋𝑒 + ε           (3.1) 

where, Yt is the value of the time series at time ‘t’ and Xe is an exogenous variable. the number 

of unit roots contained in the series corresponds to the number of differencing operations 

required to make the series stationary. 

A Dickey-Fuller test is a unit root test that tests the null hypothesis that α=1 in the following model 

equation. alpha is the coefficient of the first lag on Y. 

Null Hypothesis (H0): α=1 

𝑦𝑡 = 𝑐 + 𝛽𝑡 + α𝑦𝑡−1 + ϕδ𝑌𝑡−1 + 𝑒𝑡        (3.2) 

where, y(t-1) = lag 1 of time series 

delta Y(t-1) = first difference of the series at time (t-1) 

the coefficient of Y(t-1) is 1, implying the presence of a unit root. If not rejected, the series is 

taken to be non-stationary. 

The ADF (Augmented Dicky-Fuller) test expands the Dickey-Fuller test equation to include high 

order regressive process in the model, can be expressed as: 

𝑦𝑡 = 𝑐 + 𝛽𝑡 + α𝑦𝑡−1 + 𝜙1δ𝑌𝑡−1 + 𝜙2δ𝑌𝑡−2 + ⋯ + 𝜙𝑝δ𝑌𝑝−1 + 𝑒𝑡         (3.3) 

Since the null hypothesis assumes the presence of unit root, that is α=1, the p-value obtained 

should be less than the significance level (say 0.05) in order to reject the null hypothesis. 

Therefore, inferring that the series is stationary.(Selva Prabhakaran, 2019) 

The statsmodel package in python provides a reliable implementation of the ADF test  with  

from statsmodels.tsa.stattools import adfuller . It returns: 

1. The p-value 

2. The value of the test statistic 

https://www.machinelearningplus.com/statistics/p-value/
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3. Number of lags considered for the test. 

4. The critical value cutoffs. 

• KPSS test 

Like ADF test, the KPSS test is also commonly used to analyse the stationarity of a series. However, 

it has couple of key differences compared to the ADF test in function and in practical usage. The 

KPSS test, short for, Kwiatkowski-Phillips-Schmidt-Shin (KPSS), is a type of Unit root test that tests 

for the stationarity of a given series around a deterministic trend. A key difference from ADF test 

is the null hypothesis of the KPSS test is that the series is stationary. So practically, the 

interpretation of p-value is just the opposite to each other.                                                         

That is, if p-value is < significant level (say 0.05), then the series is non-stationary. In python, 

the statsmodel package provides a convenient implementation of the KPSS test.(Selva 

Prabhakaran, 2019) 

from statsmodels.tsa.stattools import kpss 

 

• Differencing 

After checking the stationarity of the training time series using statistical tests, the non-seasonal 

differencing d and seasonal differencing D were determined. If the series is stationary, it is not 

required to execute the process of differencing, and the value of parameters d and D is zero. In 

case the series is non-stationary with the presence of seasonality and trend, the seasonal 

difference is applied. When there is no trend and seasonality component, the series is 

transformed by the non-seasonal difference. The value of parameters d and D implies the number 

of times the wastewater inflow series needs to be different to satisfy stationarity. (Do et al., 2022) 

• ACF/PACF 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) plots of the 

original training time series are created if required to further confirm its stationarity. 

In this study, the ACF plots depict the correlation coefficient between the wastewater influent 

parameter (ex. PO4 and sCOD for Hias dataset ) and sludge influent parameter (ex. Organic acid 

for VEAS dataset ) time series and its own lagged values, and the PACF plots measure the partial 

correlation coefficient between this data series and lagged versions of itself. The next step was to 

https://www.staging33machinelearningplus.com/statistics/p-value/
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plot the ACF and PACF of the stationary time series. It could be the original training time series 

with stationary status or the differenced series after differencing process obtained from the 

previous step. The non-seasonal and seasonal orders of AR (parameters p and P) and MA 

(parameters q and Q) were identified based on the ACF and PACF plots. Different values of those 

parameters were combined to identify possible configurations of (p,d,q) and (P,D,Q) for potential 

ARIMA or SARIMAX models.(Do et al., 2022) 

• AIC/BIC 

AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) are statistical metrics 

used to evaluate the goodness-of-fit of an ARIMA or SARIMA model. Both AIC and BIC provide a 

measure of the quality of a model while penalizing for model complexity. 

AIC is defined as follows: 

AIC = 2k - 2ln(L)         (3.4) 

Where, k is the number of parameters in the model, and ln(L) is the log-likelihood of the data 

given the model. AIC is a measure of the trade-off between the goodness-of-fit of the model and 

the number of parameters used in the model. The lower the AIC, the better the model fits the 

data. 

BIC is similar to AIC but places a more substantial penalty on models with more parameters. BIC 

is defined as: 

BIC = kln(n) - 2ln(L)         (3.5) 

Where n is the number of observations in the data. BIC measures the relative quality of the model 

compared to other models under consideration. The lower the BIC, the better the model fits the 

data. 

AIC and BIC can be used to compare different ARIMA or SARIMA models and choose the best one 

for a particular dataset. The model with the lower AIC or BIC value is generally preferred when 

comparing models. ( https://fr.mathworks.com/) 
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3.5. Model Development  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 3.6 illustrates the flowchart of the step-by-step methodology applied for modelling and 

forecasting wastewater inflow COD and PO4 concentration at inlet. The procedures are based on 

Box and Jenkins methodology. (Do et al., 2022) 

Stage 1. Model identification 

After data pre-processing and data analysis, the first step of the Box-Jenkins model development 

process is the identification stage.  

a) For visualization, we need to plot and decompose the time series into its components to 

observe any trends, seasonality, and residuals.  

Figure 3.6: Flow chart of general model development process for 
ARIMA and SARIMAX 
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b) The autocorrelation (AC) and partial autocorrelation (PAC) graphs are usually used to 

determine if there were any signs of trends within the series. When no trends are present 

in the series, the AC and PAC graphs quickly converge to zero, meaning that value of (d), 

which denotes the number of times that the observation data are differenced, can be 

determined for the ARIMA model. 

c) Along with AC and PAC plot, Augmented Dickey-Fuller (ADF) test or Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) test has been done to check if the time series is stationary or non-

stationary. 

d) If the time series is non-stationary, apply differencing to make it stationary. Determine the 

order of differencing (d) required by finding the minimum value of d that makes the time 

series stationary. 

 

Stage 2. Parameter estimation 

In this stage, various potential models identified in stage 1 were examined. If the time series 

exhibits seasonal patterns, then a seasonal ARIMA (SARIMA) model is more appropriate. 

Determine the seasonal period (s) and repeat previous steps to identify the seasonal AR and MA 

terms. In this way, determine the order of the seasonal component (P, D, Q) required to make the 

time series stationary. Use the seasonal decomposition plot to help determine these parameters. 

The coefficient of determination (R2), root mean square error (RMSE), and normalized Bayesian 

information criterion (BIC) were used to select one amongst the potential models. The best model 

with the optimal set of parameters has the highest R2, and the least RMSE and normalized BIC 

and lowest AIC value. (Do et al., 2022) 

Fit the model: Use the identified orders of p, d, and q to fit the ARIMA or SARIMA model to the 

data. This has been done using python software packages statsmodels library. 

 

Stage 3. Diagnostic checking 

Diagnostic tests such as residual plots, ACF and PACF plots, and Ljung-Box tests are used to 

evaluate the model's goodness-of-fit. If the model does not fit the data well, try adjusting the 
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orders of p, d, and q and repeat stage 2(parameter estimation) until a satisfactory model is 

obtained.  

 

3.4.1 ARIMA model 

For ARIMA model, for the training set, three parameters, including p, d, and q, were configured 

manually. The integrated value d was first found in the identification process, then a number of 

(p, q) sets were searched using a grid search algorithm. For each (p, q) set, the other coefficients 

in the ARIMA model were estimated with fixed p, q, d values. The optimal (p, d, q) combination 

would be found by choosing the set with the lowest root mean square error (RMSE) and lowest 

AIC value. Searching for the optimal combination of (p, d, q) could help calibrate the model for 

best performance. Once the best combination of (p, d, q) was found and the other coefficients 

were calibrated, the model could be finalized and loaded to make one-step ahead predictions for 

the testing period. (Boyd et al., 2019) 

Stage 4. Forecasting 

Once a satisfactory model has been obtained, use it to make predictions for future time periods. 

A model with the highest accuracy in simulating wastewater composition PO4 at inlet would be 

employed to forecast data. Applying the selected ARIMA model, the wastewater time series are 

forecasted using the python software function model.predict(data). The predicted values are 

then matched against the testing set and evaluate model performance in terms of R2 and RMSE. 

3.4.2. SARIMA and SARIMAX: 

SARIMA is developed by including additional seasonal components to the ARIMA model, which 

handles the seasonality in the time series. SARIMA model, in general, is a combination of the non-

seasonal module (p,d,q) and seasonal module (P, D, Q)s with seven parameters. It is denoted as 

SARIMA (p, d, q)(P, D, Q)s ; where p and P is the order of non-seasonal and seasonal AR(Auto 

Regression) terms; d and D is the degree of non-seasonal and seasonal differencing; q and Q are 

the order of non-seasonal and seasonal MA (Moving Average) term and s is the length of 

seasonality in the time series. For example, in an hourly time series, s = 24; in a daily time series, 

s = 7; in a monthly time series, s = 12; and in a quarterly time series, s = 4.(Do et al., 2022) 
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SARIMAX (Seasonal Auto-Regressive Integrated Moving Average with Exogenous factors) is an 

updated version of the SARIMA model. SARIMAX is a seasonal equivalent model like SARIMA and 

Auto ARIMA, which can also deal with external effects. This feature of the model differs from 

other models. 

3.4.3.  Multiple linear regression (MLR): 

As discussed in the theoretical background section multiple regression models have been 

developed with different datasets and evaluated their accuracy. Regression models are used to 

describe relationships between variables by fitting a line to the observed data. Every value of the 

independent variable x is associated with a value of the dependent variable y. The population 

regression line for n explanatory variables x1, x2, ... , xp is defined to be 

 y = β0 + β1x1 + β2x2 + ... + βnxn +ε.            (3.6) 

where y = the predicted value of the dependent variable, β0= the y-intercept (value of y when all 

other parameters are set to 0), β1x1 = the regression coefficient (β1) of the first independent 

variable (x1) ( the effect that increasing the value of the independent variable has on the 

predicted y value).  

βnxn = the regression coefficient of the nth independent variable.   = model error (how much 

variation there is in estimation of y) (Nair et al., 2022) 

For purpose of this study, y represents PO4 in Hias lab dataset, sCOD in Hias online dataset and 

Organic Acid in VEAS lab dataset. x1, x2 …xn represents sCOD, Flow rate and NH4-N in Hias lab 

dataset, Flow rate and NO3 in Hias online dataset and flow rate, NH4-N, pH and TS%  in VEAS lab 

dataset. 

To increase prediction accuracy, high order terms and interaction terms can be involved as inputs. 

In this study, square terms of original variables and two-effect-interaction terms were applied in 

MLR models. All the original variables, square terms and interaction terms were included to train 

an over-fitted model at the first step. (X. Wang et al., 2019) 

In this study, we have added the previous output steps and all input steps to improve the accuracy 

of regression models.  

Including the previous output step as a feature can capture temporal dependencies in the data. 

As in real-life time-series data, where data are collected over time, the previous step's output can 
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provide useful information about the current observation, which can help the model better 

capture trends and patterns in the data, resulting in more accurate predictions. 

Including all inputs ensures that the model captures all relevant information about the problem. 

Omitting important features can lead to underfitting, where the model needs to be more complex 

and capture the complexity of the data. By including all inputs, the model has a better chance of 

accurately modeling the relationships between the inputs and the output. Also, including all 

inputs in the regression model can reduce the impact of confounding variables. Confounding 

variables correlate with both the inputs and the output but are not themselves inputs. By 

incorporating all inputs, the model can effectively separate the impact of individual variables on 

the output, leading to more precise predictions. 

However, it is important to note that adding too many features can also lead to overfitting, where 

the model becomes too complex and performs poorly on new, unseen data. 

3.4.4. Neural Network 

The ANN (Artificial neural network) is fed by a series of input-output pairs and is trained to 

reproduce the outputs. The learning process of a feedforward network occurs in the  perceptron, 

which consists of a single neuron with adjustable weights and an activation function. When multi-

layer feedforward network has perceptron with two or more trainable weight layers, it might also 

be called an MLPNN (Multilayer perceptron neural network).(Zhang et al., 2019) 

In this study, an MLPNN model was developed for wastewater and sludge influent composition 

forecasting. First, in Hias laboratory-analyzed dataset, The inputs were prior daily flow rate data, 

daily inlet PO4 concentration, daily inlet sCOD concentration and daily inlet NH4-N.  

In Hias online dataset, the inputs were prior flow rate data, inlet sCOD concentration and inlet 

NO3 concentration data with a sampling frequency of one hour. 

In VEAS laboratory-analyzed dataset, the inputs were prior hourly flow rate data, hourly inlet 

organic acid concentration, hourly inlet NH4-N concentration , hourly inlet pH measure and hourly 

inlet TS(Total suspended solid) percent data. 

A four-layer MLPNN was selected as the best model structure, based on a series of exploratory 

experiments. The exploratory experiments manually searched and tested different numbers of 

hidden layers, neurons, and epochs.  
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In this study, Adam optimizer has been used, with a learning rate of 0.01. Adam (short for 

Adaptive Moment Estimation) is an optimization algorithm that is commonly used for training 

neural networks. Like other optimization algorithms, Adam works by iteratively adjusting the 

weights of a neural network to minimize the loss function during training. Adam uses a moving 

average of the gradient and the second moment of the gradient to adaptively adjust the learning 

rate for each weight in the neural network. This allows it to converge faster and more reliably 

than traditional stochastic gradient descent methods. Additionally, Adam can handle sparse 

gradients, which makes it well-suited for problems with large datasets or sparse features. 

 

The MLPNN used in this study consists of one input layer with the same shape as the number of 

features in the training data, followed by two hidden layers with 15 and 10 nodes respectively, 

both using the ReLU activation function. The output layer has a single node and uses the linear 

activation function. The loss function used for training is squared error (MSE). The epoch 

used in this study is 100.(Zhang et al., 2019) 

ReLU activation function returns 0 for negative inputs and the input itself for positive inputs. 

Mathematically, ReLU is defined as f(x) = max(0,x). This function can help the model learn faster 

due to its non-linear nature. 

Linear activation function, on the other hand, is a simple activation function that returns the input 

as is. It is defined as f(x) = x. This function was used in the output layer because it allows the 

model to predict continuous values without any range limitations. 

After initializing input, output, and hidden layers a python function was called that performs k-

fold cross-validation on the neural network model. 

• The function first takes the training data X_train and y_train, the number of folds 

num_folds, the number of epochs n_epochs for training the model, and a model instance 

model as input. 

• The function initializes a K-Fold object with the specified number of folds, and then 

iterates over each fold to train and evaluate the model. 
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• For each fold, the function compiles a new neural network model instance using the 

compile_NN function, and then creates a Pipeline object that first scales the input data 

using StandardScaler() and then applies the neural network model. 

• The model is trained using the training data for the current fold, and then evaluated using 

the validation data. The evaluation metrics used are the R-squared coefficient (R2), root 

mean squared error (rmse), and mean absolute error (mae). 

This method provides a way to evaluate the performance of a neural network model using k-fold 

cross-validation, which can help to assess the model's generalization ability and prevent 

overfitting. 

 

3.6. Model performance evaluation  

There are several error measures that could be used for making comparisons between 

observed and predicted time series. Since no one measure is superior on all criteria, different. 

measures were used for model evaluation. To determine the accuracy of the different models in 

wastewater and sludge influent predictions, the mean-square error (MSE), mean absolute error 

(MAE), root-mean-square error (RMSE), mean absolute percentage error (MAPE) and the 

coefficient of determination (R2) are used as statistical indicators to evaluate the fit of the 

forecasted to the observed values.  

RMSE is the square root of the average of square differences between the actual and predicted 

values at specific timestamps. RMSE describes the magnitude of the error which could be useful 

to decide the accuracy of a forecasting method. Can be described as : 

RMSE = √
1

𝑁
∑ (𝑋𝑎 − 𝑌𝑎)2𝑁

𝑎             (3.7) 

where 𝑋𝑎 is the actual value, 𝑌𝑎 is the predicted value, and N is the total number of data points. 

RMSE depends on a few different factors. RMSE depends on the units and the frequency. 

of the dataset, meaning it cannot be absolutely defined as a good or bad value. If the RMSE 

is the same as the standard deviation, the model would only be as accurate as using the 

mean as the prediction. Hence, if the RMSE value is lower than the standard deviation, it implies. 
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that the model predicts the data better compared to using the mean as the prediction. RMSE also 

depends on the variance between the actual and predicted values because the 

difference is squared. Therefore, the primary benefit of RMSE is that it gives high weights to larger 

deviations, which in return, represents a better model performance. However, a disadvantage 

includes the fact that outstanding outliers can heavily skew the RMSE results and show a 

misleading model performance. (Boyd et al., 2019) 

MAPE has also been used widely in scientific research as it is simple to use. MAPE is the mean of 

the individual theoretical errors calculated at each timestamp, as seen in Equation. 

MAPE = 
1

𝑁
∑

|𝑋𝑎−𝑌𝑎|

𝑋𝑎
∗ 100𝑁

𝑎            (3.8) 

The lower values of RMSE and MAPE imply a more reliable and robust model.  

The coefficient of determination (R-squared) is another error criterion which was used for model 

validation. R-squared has been used frequently for model evaluation. It is a statistical measure 

which represents the ability of the independent variable (observed) to predict the variations of 

the dependent variable (predictions). Therefore, the correlation is between the line of best fit 

and the predicted values. The closer the R-squared is to the value of one, the better the model 

has performed as there is less error variance. The opposite is said to be as the R-squared 

approaches zero. In general, an R-squared value greater than 0.5 is acknowledged as being 

acceptable. (Boyd et al., 2019)R-squared is the sum of the distance between the predicted value 

and the linear line, divided by the sum of the distance between the predicted value and the mean 

of predictions and can be expressed as: 

R2 = 1 −  
∑ (𝑋𝑎−𝑌𝑎)2𝑁

𝑎

∑ (�̅�−�̅�)2𝑁
𝑎

         (3.9) 

where N is the total number of measurements, Xa are the actual values, Ya are the corresponding 

estimated values, �̅� is the mean of the actual values of the X variables, and �̅�  is the mean of the 

estimated values in Y variables.(El-Rawy et al., 2021) 

Python library scikit learn is used to find these parameters: sklearn.metrics.r2_score 

 

 

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
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4. Results 

Real time data of sCOD, Flow rate and NO3 from online measurement (with additional data of 

average temperature and precipitation from yr.no ) and lab- analyzed values of PO4, sCOD, 

flowrate and NH4-N were obtained from Hias process system. Laboratory- analyzed data of Flow 

rate(l/s), sCOD(mg/l), NH4-N(mg/l), pH, TS%(Total solid), Organic acid(meq/l), total 

alkalinity(meq/l), Protein, raw fat, carbohydrate has been used from VEAS process. Result section 

is divided mainly into the three sections: 

• Result for HIAS laboratory analysed data 

• Result for HIAS online data 

• Result for VEAS laboratory analysed data 

Each section is divided into several subsections to show result of analyzed data, result of model 

developing stages, best model to fit for time series analysis such as ARIMA or SARIMA, Prediction 

plot with ARIMA or SARIMA, Predicted vs. Actual plot for different Regression methods and 

Neural network method. Lastly all model performance evaluation has been tabulated in measure 

of R2 and RMSE. 

4.1.  Result HIAS laboratory analysed data 

4.1.1. Result of data analysis 
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As shown in Figs 4.1 a-d, there was no drastic change in influent quantity during 2021-2023, and 

the average influent flow from May to August (wet season) was higher than that from November 

to March (dry season), and the highest one-day inflow occurred in May 2021. Some higher values 

are found in the dry winter season, which could be caused by snow melting. The average influent 

PO4 value in 2021 was lower than in 2022. Influent quality was typically higher from November 

to March (dry season) and lowered between May and August (wet season) because of much-

diluted nutrients in the rainy season. The highest one-day value occurred in January 2022, and 

the lowest was in October 2021. From 2021 to 2023, the average influent COD value was stable. 

There were no significant higher or lower values, and it did not show any seasonality. The average 

values of influent NH4-N were stable from 2021 to 2023, while the maximum increased in 2022. 

Compared with 2021, the maximum NH4 concentration in August 2022 was much higher. Overall, 

the influent flow rate and other parameters concentration data are non-linear in nature. Inflow 

rate and PO4 concentration data have shown a certain seasonality, however we can see the data 

are moreover stationary in nature. 

Figure 4.1: The influent characterstics of Hias WRRF during 2021-2023 (a)Flow rate, 
(b)PO4 in, (c) NH4 in, (d) sCOD in 
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Figure 4.2: Correlation matrix and heat map between different parameters from Hias lab dataset 
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The correlations among wastewater-influent parameters collected for Hias laboratory-analyzed 

data is illustrated in Fig. 4.2. It shows that flowrate is negatively correlated with inlet composition 

PO4, sCOD, and NH4 means more diluted wastewater has less concentration of influent 

composition. The temperature parameter was excluded further for the model building of the poor 

correlation between inlet water temperature and compositions. The positive relationship of inlet 

PO4, NH4-N and sCOD is confirmed with correlation coefficient greater than 0.5, meaning that 

influent sCOD concentration increased proportionally to inlet PO4. Thus for inlet PO4 prediction 

flow rate, sCOD and NH4 are used as input parameters whereas for inlet sCOD prediction PO4, 

NH4, and flow rate are used as input parameters. 

Figure 4.3: Pairplot between different parameters from Hias lab 
dataset 
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4.1.2.  Result of Model Development 

Stage 1. Model identification 

Before employing the ARIMA technique to develop a forecasting model, the time series data 

needs to be in a stationary condition. Therefore, the stationarity of the original training time 

series of daily inlet PO4 concentration of WWRF was investigated. 

• Plotting and decomposing the time series into its components to observe any trends, 

seasonality, and residuals with the help of seasonal_decompose function of python.  

 

decompose_data = seasonal_decompose(df_daily['PO4 Inn Linje 1'], model="additive", 

period=7 ) 

 

Figure 4.4: seasonal decompose plot for PO4 in Hias lab dataset 

Stationarity test: 

The Ad-fuller test(ADF) and KPSS tests, and the ACF and PACF plots were used to verify the 

stationarity of time series. As discussed in method section if p-value < 0.05 then we can reject the 
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null hypothesis and consider the series as stationary. The result of ADF test with the p-value=0.05 

has been shown below: 

ADF Statistic: -3.3396386431185765 

p-value: 0.059990430803381865 

Lags used: 20 

Number of observations used: 681 

Critical values: {'1%': -3.9721255561961075, '5%': -3.416956617564839, '10

%': -3.1308553037306632} 

Whereas, for KPSS test, p-value should be > 0.05 to reject the null hypothesis. In this case KPSS 

test returns p-value as 0.01. 

Kwiatkowski-Phillips-Schmidt-Shin test 

--------------------------------------------- 

KPSS Statistic: 1.098246 

p-value: 0.010000 

Number of lags used: 14 

Critical values of KPSS test: 

10% 0.347 

5% 0.463 

2.5% 0.574 

1% 0.739 

From two above tests we can conclude the time series for PO4 in is not stationary. 

ACF and PACF plot: 

to ensure that the data for ARIMA analysis is stationary or not, the AC and PAC graphs were 

plotted and presented below. From this plot we can see that it shows that seasonality is present 

in the data as it does not converge to zero. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5: ACF / PACF plot for PO4 in Hias lab dataset 
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Differentiation: As two previous tests showed that the data is non-stationary, we need to 

differentiate the time-series to make it stationary before applying to ARIMA model. Below the 

differentiated time series has been presented in figure 4.6. 

Stage 2. Parameter estimation and model selection 

4.1.3 ARIMA model with Hias laboratory dataset: 

After differentiation, the stationary time-series is used to calibrate ARIMA time series model for 

prediction of PO4 at inlet. The ARIMA(p,d,q) model were ascertained by potential values for the 

non-seasonal AR order (p),nonseasonal MA order (q). 

 Determine the optimum parameters: The selection of the best fitting model from all potential 

ones was based on the lowest AIC and normalized BIC, Ljung-Box test result and the highest R2.(Do 

et al., 2022) This best fitting model finding was done by python pandas library “pmdarima” 

“auto_arima”.Table 4.1 presents the results of those evaluation metrics for all potential models. 

 

 

 

Figure 4.6: Differentiated plot for PO4 in hias lab dataset 
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Table 4.1: ARIMA potential models for PO4 in Hias lab dataset 
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Stage 3. Forecasting 

Wastewater inlet PO4 concentration forecasting: The ability of the proposed ARIMA model in 

predicting wastewater inlet PO4 concentration data was assessed in this last stage. The testing 

dataset (2 January to 31 january 2023) was used for the model validation procedure. The 

ARIMA(3,0,3) model was directly utilized for the entire testing process. There were 2 weeks (1st 

February to 14th February 2023) forecasts generated outside the testing period, as this study 

mainly focuses on the predicting future values. The result of model calibration showing a 

comparison between the model predicted and lab-analysed values is presented in Figure 4.7. Two 

weeks forecast of inlet PO4 concentration plot is shown in figure 4.8. ARIMA model was evaluated 

with statistical analysis and result was not satisfactory with RMSE 1.45 and coefficient of 

determination (R2) = 0.72. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Model evaluation with comparison 
of predicted mean and testing dataset 

Figure 4.8: two weeks advance prediction of PO4 in 
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4.1.4 SARIMAX Model with Hias laboratory dataset: 

The same differentiated time-series of PO4 in has been used to develop SARIMAX model for PO4 

prediction with input sCOD, Flow and NH4 as Exogeneous inputs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2: Best fit SARIMAX model for prediction of PO4 
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The Best fit model has been chosen with auto-arima function and it shows the result that best 

model was SARIMAX(1, 1, 1) (0,0,0)7 where seasonal P, D,Q are 0 as the series has no seasonlaity 

and s=7 as the series has daily data frequency. 

Below the result of diagonstic test has been presented in figure 4.9 . Residual plot has not been 

converged near zero and the predicted plot was unable to catch the trend of actual test dataset, 

which is shown in figure . The Model evaluation score was not satisfacory with R2 = 0.43. 

 

 

 

 

 

 

 

Figure 4.9: Diagnostic check for SARIMAX model For PO4 prediction 

Figure 4.10: Predicted vs actual test test dataset plot for PO4 prediction with SARIMAX model 
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In addition, we have tried SARIMAX model for sCOD prediction with input Flow PO4in and NH4 

and the result of best model fit, and diagnostic check have been presented in appendix section A 

in figure A.1 and figure A.2 respectively. The best model was found as SARIMAX (1, 1,,4)(1,0, 1)7 

where seasonal D=0 and s=7 for daily sampled data. The Result for sCOD prediction with SARIMAX 

was nearly not satisfactory same as PO4 prediction with R2 score as 0.43. The predicted plot vs 

actual test dataset plot has been presented in below figure.  

 

   

 

 

4.1.5. Regression and Neural network with Hias laboratory dataset: 

In this study, different machine learning methods were used to predict the influent PO4 

concentration with Flow rate, sCOD in and NH4-N as input in 2023 in Hias WWRF with different 

regression analysis and Neural network model.  

As regression model has few parameters and model was too simple to capture the non-linearity 

of data, previous time steps of output and all input have been added to increase the accuracy of 

all machine learning model. In this way, the accuracy measurement of R2 value has been increased 

from 0.62 to 0.77 in case of linear regression and all other models which is quite significant. K-

fold cross validation has been used with K fold value as 5 and number of epochs used in NN is 

100. The function first takes in training and test data along with a list of algorithms to test. It trains 

each algorithm using cross-validation, and then uses the best algorithm on the test data to 

Figure 4.11: Predicted vs. actual plot for sCOD prediction 
SARIMAX model with Hias lab dataset 
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evaluate its performance. It returns a summary data frame containing evaluation metrics (R2, mae, 

rmse) for each algorithm and a list of predicted y values for the best algorithm. 

The results of model calibration showing a comparison between the model predicted and lab 

measured values are presented in Figure 11. The plots also show the root mean-square error 

(RMSE) and the coefficient of determination (R2) for the models calibrated using the different 

calibration algorithms.  The scatter plot of a perfect prediction model would be a 45-degree line 

with a slope = 1 and intercept = 0 and an R2 value of 1. A quantitative assessment of different 

prediction models is conducted by comparing the values of R2 and regression line equations. The 

plots presented in Figure 4.12 as well as a comparison between correlation coefficients (R2 and 

MSE) show minimal difference between the results obtained with all the algorithms. However, 

the model coefficient obtained by the SVR, Linear Regression algorithm, Ridge and Bayesian Ridge 

algorithm shows relatively better results with (R2 =0.77 and RMSE = 0.68) as compared to an R2 

=0.68 for Ada Boost regression regression algorithm, R2 =0.38 for Decision Tree Regression 

algorithm. Lasso algorithm cannot capture the learning trend and showed extremely poor result. 

Neural Network showed satisfactory results with R2 as 0.69 and RMSE as 0.78. 
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 Figur 4.22: Lab-measured versus predicted values using different model calibration algorithms for 
Hias Lab analyzed data. 
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4.1.6. Model evaluation: 

The result of model performance evaluation for all models for influent parameter prediction with 

HIAS Lab-dataset have been tabulated in below table: 

Table 4.3: Evaluation of different model with HIAS Lab - dataset 

Model  Predicted 

parameters 

Input 

parameters 

R2 RMSE 

ARIMA  PO4 Previous values 

of PO4 

0.72 1.45 

SARIMAX PO4 Flow rate, 

sCOD, NH4-N 

0.43 0.96 

sCOD NH4-N, PO4, 

Flow rate 

0.42 88.3 

LinearRegression PO4 Flow rate, 

sCOD, NH4-N 

0.77 0.68 

Lasso 0.002 1.42 

Ridge 0.77 0.67 

BayesianRidge 0.77 0.67 

DecisionTreeRegressor 0.38 1.11 

RandomForestRegressor 0.76 0.68 

XGBRegressor 0.74 0.72 

AdaBoostRegressor 0.65 0.83 

SVR 0.77 0.68 

DummyRegressor 0.002 1.42 

NeuralNetwork 0.69 0.78 
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4.2. Result HIAS online-data 

4.2.1. Result of data analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.13a): Distribution of data from December2022-January2023 from online measurement 
(Hias)         
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The correlations among wastewater-influent parameters collected for Hias online dataset is 

illustrated in Fig. 4.13b. Same as lab-dataset flow rate and sCOD is negatively correlated with 

coefficient -0.19, whereas NO3 is positively correlated with sCOD with correlation coefficient 0.30. 

Apart from these, correlation matrix demonstrates very poor correlation between different 

parameters. The results indicated that advanced algorithms are needed for predicting inlet sCOD, 

rather than basic statistical methods. In general, there are two typical approaches to predicting 

the output variable; In the first approach, the output variable is constructed based on other input 

variables (SARIMAX, MLR), while in the second, the output variable relies on the previous output 

variable data itself (ARIMA, SARIMA). (Ly et al., 2022)This weak correlation coefficient suggests 

that the second approach is a better option for predicting inlet sCOD or flow rate with online 

dataset. 

 

Analysis of Average temperature and Precipitation 

Figure 4.13b: Heatmap of correlation between parameters of online dataset (Hias) 
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Historical data of average temperature and precipitation in Hamar, Norway from year 2022 to 

2023 is captured from yr.no. The aim to collect this dataset was to use it as exogeneous dataset. 

As correlation matrix (figure 4.13b) showed negative correlation between precipitation and flow 

rate which is not meaningful, we need to proceed without average temperature and precipitation 

parameters for model development. 

After data preprocessing and removing all outliers cleaned data of sCOD(mg/l), flow rate(l/s) and 

NO3(mg/l) have been chosen as parameters for further model development. 

4.2.2.  Result of Model Development 

Stage 1. Model identification 

Same as Hias lab analyzed data, the stationarity of Hias online dataset has been checked original 

training time series of inlet sCOD concentration with 10min sampling frequency was investigated 

by plotting and decomposing the time series into its components to observe any trends, 

seasonality, and residuals. Here the period of sesaonal_decompose function was chosen 144 as 

data was sampled 10 min frequency(24*6=144). 

decompose_data = seasonal_decompose(data_ten_min['sCOD(mg/l)'], period=144) 

 

Figure 4.14: seasonal decompose plot for sCOD of online dataset (Hias) 
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Stationarity test: 

The Ad-fuller test(ADF) and KPSS tests, and the ACF and PACF plots were further used to verify 

the data’s stationarity. 

ADF Statistic: -5.608364218299525 

p-value: 1.4020833656437163e-05 

Lags used: 25 

Number of observations used: 8793 

Critical values: {'1%': -3.9597999482271584, '5%': -3.410989423202829, '10

%': -3.127344102884938} 

ADF test return P-value quite < 0.05, so we can reject null hypothesis and conclude the series as 

stationary. 

Kwiatkowski-Phillips-Schmidt-Shin test 

--------------------------------------------- 

KPSS Statistic: 0.735242 

p-value: 0.010342 

Number of lags used: 56 

Critical values of KPSS test: 

10% 0.347 

5% 0.463 

2.5% 0.574 

1% 0.739 

 

Whereas, from KPSS test result we can see the series is non-stationary. For this contradiction of 

result, the time series was further tested with ACF/PACF test. 

 

ACF and PACF plot: 

To ensure that the data for ARIMA analysis is stationary, the AC and PAC graphs were analyzed 

with Hias online data and presented below. From this plot we can see both the AC and PAC graphs 
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do not meet all the criteria. They tended to show a seasonality, and most of the correlations does 

not remain within the confidence limits.(Boyd et al., 2019) 

 

Figure 4.15: ACF/PACF plot for origianl time series sCOD of online dataset(Hias). 

Differentiation 

As above two test show the presence of seasonality in the series, we have twice differentiated 

the series to make it stationary. The ACF plot for two times differentiation has been shown in 

below figures.  
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Figure 4.16a: ACF plot of 1st order differentiation of 
sCOD 

 

 

Stage 2. Parameter estimation and model selection 

4.2.3 ARIMA model with Hias online dataset: 

As it is very poor correlation coefficient between different parameters of Hias online dataset, this 

dataset is used to calibrate ARIMA time series model for prediction of sCOD at inlet.  

The ARIMA(p,d,q) model were ascertained by potential values for the non-seasonal AR order 

(p),nonseasonal MA order (q). 

 Determine the optimum parameters: The selection of the best fitting model was done by python 

pandas library “pmdarima” “auto_arima”. Figure A.3 in appendix section(A) presents the results 

of those evaluation metrics for all potential models. The best fit model was ARIMA (0,0,1) where 

both non seasonal p and d terms were 0. 

 

 

 

Figure 4.16b: ACF plot of 2nd order 
differentiation of sCOD 
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Stage 3. Forecasting 

Wastewater inlet sCOD concentration forecasting: The ability of the proposed ARIMA model in 

predicting wastewater inlet sCOD concentration data was assessed in this stage. The testing 

dataset (20% of totat dataset) was used for the model validation procedure. The ARIMA (0,0,1) 

model was directly utilized for the entire testing process. The result of model calibration showing 

a comparison between the model predicted and test dataset values is presented in Figure 4.17. 

RMSE score was 11.5 and R2 score was 0.21. 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.5. Regression and Neural network with Hias online dataset: 

In this study, different machine learning methods were used to predict the influent SCOD 

concentration from HIAS online dataset. 

The results of model calibration showing a comparison between the model predicted and actual  

values are presented in Figure 4.18. The table below also show the root mean-square error 

(RMSE) and The coefficient of determination (R-squared (R2) for the models calibrated using the 

different calibration algorithms.  The plots presented in Figure 4.18 as well as a comparison 

between correlation coefficients (R2 and MSE) show minimal difference between the results 

obtained with all the algorithms. However, the model coefficient obtained by the Linear 

regression, Ridge, Lasso, Random forest and Neural network algorithm shows relatively better 

Figure 4.17: Model evaluation with comparison of predicted mean and testing 
dataset for sCOD prediction with online dataset(Hias) 
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results with (R2 =0.891) as compared to an R2 =0.63 for SVR algorithm, R2 =0.76 for decision tree 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Predicted vs. Actual plot for different regression model and Neural network 
for sCOD in online dataset(Hias). 
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4.2.6. Model evaluation: 

Below table has shown summary of model performance evaluation for all models for prediction 

of SCOD in with HIAS online-dataset 

Table 4.4: Evaluation of different model with HIAS online dataset 

Model  Predicted 

parameters 

Input 

parameters 

R2 RMSE 

ARIMA sCOD Previous values 

of sCOD 

0.21 11.5  

LinearRegression sCOD Flow rate, NO3 0.89 30.6 

Lasso 0.88 31.20 

Ridge 0.89 30.6 

BayesianRidge 0.89 30.6 

DecisionTreeRegressor 0.76 45.6 

RandomForestRegressor 0.88 32.01 

XGBRegressor 0.86 34.66 

AdaBoostRegressor 0.86 34.50 

SVR 0.63 56.17 

DummyRegressor 0.002 93.24 

NeuralNetwork 0.88 31.66 
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4.3. Result VEAS Lab-analyzed data 

4.3.1. Result of data analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Correlation heatmap matrix between different parameters from VEAS lab dataset 
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The correlations among sludge-influent parameters collected for VEAS laboratory-analyzed data 

is illustrated in Fig. 4.19. Organic acid or fatty acid is an important compound of sludge influent 

composition, which is the result of the decomposition of organic matter during the wastewater 

treatment process. Organic acids can have a negative impact on the quality of the treated 

wastewater if they are not properly managed. High concentrations of this compound can lead to 

increased biological oxygen demand (BOD) and chemical oxygen demand (COD) in the treated 

wastewater, which can be visualized by positive correlation with high coefficient (0.93) in figure 

8. Due to corrosive and complex nature of sludge components, it is difficult to measure organic 

acid with sensor, which leads us to develop organic acid prediction model with flow rate, NH4-N, 

pH and TS% as input hourly data. 

4.3.2.  Result of Model Development 

Stage 1. Model identification 

Same as before, the stationarity of VEAS lab analyzede dataset has been checked original training 

time series of inlet Organic acid concentration with 1hour sampling frequency was investigated 

by plotting and decomposing the time series into its components to observe any trends, 

Figure 4.20: Pairplot between different parameters from VEAS lab dataset 
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seasonality, and residuals. Here the period of sesaonal_decompose function was chosen 24 as 

data was sampled hourly. 

decompose_data = seasonal_decompose(df_hourly['Organiske syrer'], period=24) 

 

Stationarity test: 

The Ad-fuller test(ADF) and KPSS tests, and the ACF and PACF plots were further used to verify 

the data’s stationarity. 

ADF Statistic: -4.239825386616874 

p-value: 0.0038948926384970305 

Lags used: 1 

Number of observations used: 671 

Critical values: {'1%': -3.972325535886194, '5%': -3.4170532894859873, 

'10%': -3.1309121448362194} 

ADF test return P-value 0.003 < 0.05, so we can reject null hypothesis and conclude the series as 

stationary. 

Kwiatkowski-Phillips-Schmidt-Shin test 

Figure 4.21: seasonal decompose plot for organic acid in VEAS lab dataset 



77 
 

--------------------------------------------- 

KPSS Statistic: 0.741382 

p-value: 0.010000 

Number of lags used: 17 

Critical values of KPSS test: 

10% 0.347 

5% 0.463 

2.5% 0.574 

1% 0.739 

 

Whereas, from KPSS test result we can see the series is non-stationary. For this contradiction 

 of result, the time series was further tested with ACF/PACF test. 

ACF and PACF plot: 

To ensure that the data for ARIMA analysis is stationary, the AC and PAC graphs were analyzed 

with VEAS lab data and presented below.  

 

 

Stage 2. Parameter estimation and model selection 

Figure4.22 : Figure 15: ACF/PACF plot for original time series of organic acid in VEAS lab dataset 
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4.3.3 SARIMAX model with VEAS lab analyzed dataset: 

As it was quite good poor correlation coefficient between different parameters of VEAS lab-

dataset, this dataset is used to calibrate SARIMAX time series model for prediction of organic acid 

at inlet with 'Flow rate(l/s)','NH4-N FOR', 'pH FOR', 'TS% FOR' as exogeneous inputs.  

The SARIMAX(p,d,q) (P,D,Q)s model were ascertained by potential values for the non-seasonal 

and seasonal AR order (p) (P) and , MA order (q) and (Q)and differentiation order (d), (D) and 

period for seasonality s . 

 Determine the optimum parameters: The selection of the best fitting model was done by python 

pandas’ library “pmdarima” “auto_arima”. Figure A4 in appendix section presents the results of 

those evaluation metrics for all potential models. The best fit model was SARIMAX (1,1,1) 

(2,0,0)24 where both seasonal D and Q terms were 0 and seasonality was s=24.Diagnostic check 

have been done which shows some deviation from 0 in residual plot. 

Stage 3. Forecasting 

Sludge inlet Organic acid concentration forecasting: The ability of the proposed SARIMAX model 

in predicting sludge influent organic acid concentration data was assessed in this stage. The 

testing dataset (20% of total dataset) was used for the model validation procedure. The result of 

model calibration showing a comparison between the model predicted and test dataset values is 

presented in Figure 9. The result was satisfactory with RMSE score being 3.40 and R2 score was 

0.95.  

 

 

 

 

 

 

 

 

Figure 4.23: Model evaluation with comparison of predicted mean and testing dataset SARIMAX for 
organic acid in Veas lab dataset 
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4.3.4. Regression and Neural network with VEAS lab analyzed dataset: 

In this study, different machine learning methods were used to predict Sludge inlet Organic acid 

concentration from VEAS lab dataset. 

The results of model calibration showing a comparison between the model predicted and actual 

values are presented in Figure 4.24. The table below also show the root mean-square error 

(RMSE) and the coefficient of determination (R-squared (R2) for the models calibrated using the 

different calibration algorithms.  The plots presented in Figure 4.24 as well as a comparison 

between correlation coefficients (R2 and MSE) show minimal difference between the results 

obtained with all the algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24: Predicted vs. Actual plot for different regression model and Neural network 
for organic acid prediction with VEAS lab dataset. 
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4.3.5. Model evaluation: 

Below table has shown summary of model performance evaluation for all models for prediction 

of influent Organic acid with VEAS lab-dataset 

Table 4.5: Evaluation of different model with VEAS Lab - dataset 

 

Predicted 

parameters 

Input parameters Model name R2  mae RMSE 

Organic 

acid 

Flow rate,  

NH4-N, pH, 'TS%  

SARIMAX 0.95  3.40 

Linear Regression 0.999725 0.263953 0.324187 

Lasso 0.995785 0.980631 1.269679 

Ridge 0.998946 0.507910 0.634970 

Bayesian Ridge 0.999725 0.263864 0.324080 

Decision Tree 

Regressor 
0.996074 0.813642 1.225406 

Random Forest 

Regressor 
0.997599 0.614842 0.958192 

XGB Regressor 0.997588 0.649894 0.960487 

Ada Boost 

Regressor 
0.995674 1.028502 1.286253 

SVR 0.926766 2.930638 5.292422 

Dummy Regressor -0.006383 15.448105 19.619184 

Neural Network 0.997377 0.778148 1.001653 
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5 Discussions 

To find an effective and efficient way to predict important influent compositions of wastewater 

and sludge treatment process, an ARIMA model, SARIMAX model, Regression model and an 

neural network model were developed in this study. 

5.1. ARIMA 

Despite the few drawbacks that ARIMA possesses, ARIMA has proven to be a reliable model for 

hydrological purposes, such as flow forecasting. Like all models, the ARIMA model has advantages 

as well as disadvantages.  

Some advantages that ARIMA possess include the fact that it is a simplistic model which can be 

interpreted and calculated easily. To continue, while most data-driven models typically use 

information from exogenous variables, no weather data is needed for ARIMA to make its 

prediction. This is beneficial as not all historical data is accurate or even exists, especially higher 

frequency data. Also, real-time industrial data usually does not have good correlations with other 

parameters. For instance, both Lab-analyzed and online dataset has correlation matrix with very 

low correlation between Influent compositions such as Flow rate PO4, sCOD, NH4-N and Flow rate, 

sCOD, NO3. ARIMA avoids these issues as it only requires its own historical data of output to 

forecast output. In this study, ARIMA is successfully applied to the forecasting of inlet PO4 in HIAS 

laboratory analyzed dataset with R2   as 0.72. 

Although the ARIMA model has many advantages, it also has some drawbacks. To begin with, 

ARIMA does not use information from exogenous variables, which leads to a limit of predictability. 

Meanwhile, ARIMA can only run a continuous time series, meaning the missing values in the 

dataset must be either filled with interpolation method or need to be dropped. This makes the 

process long and interpolated data can decrease the model performance as the variations in the 

data may be incorrectly represented. Moreover, one of ARIMA’s assumptions is that there is no 

seasonality presence in the data. The model accuracy may be affected when this assumption is 

not satisfied, which is very usual in influent forecasting problems. Another problem of ARIMA 

model is that it cannot handle the non-linear nature in data and shows very poor prediction result 

in this case. In our research, ARIMA model showed very poor prediction in influent SCOD 

prediction with HIAS online dataset. There was lots of noise in the original dataset which was not 



82 
 

removed after removal of outliers. In addition, also after differentiating twice there was still some 

seasonality or non-linearity present in the data. This makes the ARIMA prediction result not 

satisfactory with high RMSE score as 11.5 and poor R2 score of 0.21.(Boyd et al., 2019) 

 

5.2. SARIMAX 

The SARIMAX method was applied due to its capability to handle shortcoming of the ARIMA 

model in dealing with seasonal components in the time series. There has not been many uses of 

SARIMAX model application in wastewater influent prediction before except inlet and outlet TP 

prediction by (Ly et al., 2022) . Besides, low temporal resolution forecast of 10 min or 1hour for 

wastewater or sludge influent with ARIMA family models has not been demonstrated in the 

literature.  

SARIMAX technique was partially successful in wastewater influent modelling and forecasting for 

the case study WWTP at low temporal resolution with hourly time series data from VEAS lab 

dataset. SARIMAX (1,1,0)(2,0,0)24 was identified as the best model amongst potential ones. The 

orders (p,d,q) and (P,D,Q) of the proposed SARIMAX model were diagnostically checked by 

performing visualization (ACF and PACF graphs), and statistical test (Ljung-Box test) for the 

residuals. The results indicate the proposed SARIMAX model provides high accuracy forecasts 

based on several evaluation criteria including RMSE = 3.40 and R2 = 0.95. The sludge influent 

forecasts for low temporal resolution of 60 min generated from the proposed SARIMAX model 

can be utilized as an input for sludge treatment operations optimization model or controller in 

real-time. Sludge influent composition predictions are an important factor in optimizing the 

treatment operations. As sludge influent composition is corrosive and it is difficult to use direct 

sensor for high maintenance, it is quite helpful and cost saving if influent composition 

concentration can be predicted in advance. 

An advantage of the SARIMAX technique is that in addition with the simplicity of SARIMA model 

methodology, this can include other attributes that have influences on the wastewater and sludge 

influent composition as its inputs.  

However, it is also a limitation of SARIMAX model that if exogeneous inputs have poor correlation 

coefficient with output, then the model performance decreases which we can see in results of 
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PO4 and sCOD prediction with HIAS lab-analyzed dataset. Performance evaluation of SARIMAX 

with both cases showed poor result with R2 = 0.43. However, a comparative study on forecasting 

wastewater and sludge influent composition using SARIMAX model have been done in this 

paper.(Do et al., 2022) 

5.3. Regression methods and Neural network 

This study aimed to develop a practical method to predict wastewater and sludge influent 

composition, which can operate on the individual plant to analyze and identify the problem in 

real-time.(Rahmat et al., 2022) 

This work uses the daily average value of flow rate, PO4, sCOD, and NH4-N from the Hias lab 

dataset, an hourly dataset of COD, flowrate, NO3 from the online dataset, and an hourly dataset 

of organic acid, flow rate, NH4-N, pH, TS% from VEAS lab-dataset to calibrate the regression 

models. The regression algorithms have demonstrated a reasonably accurate estimation of 

selected output parameters in all cases. The variations in result observed in some algorithms 

(Lasso regression or dummy regression) is due to weakness of those models to capture and learn 

the trend of non-linear dataset. 

A possible solution to improve the accuracy of different regression methods is to increase the 

time resolution of the lab-measured data used in calibrating the MLR models. In this instance, 

performance evaluation of HIAS online data and VEAS lab data with hourly time resolution 

showed way better R2 as 0.88 or 0.99 than HIAS daily lab data with R2 as 0.77. The MLR models 

calibrated using higher time resolution can better capture data variations and subsequently 

improve the estimation results.(Nair et al., 2022) 

Data is the most crucial factor of machine learning, and the size of the data set has a significant 

impact on the accuracy of prediction. In the wastewater and sludge treatment process, the online 

monitoring system is adopted to obtain the data of influent quality and quantity, which is 

relatively easy to obtain a large number of training data and one of the main reasons for adopting 

the machine learning method to predict the influent quality. However, due to the high cost of the 

analyzer and the cost of application and development of online monitoring systems in wastewater 

and sludge treatment, the amount of online data is limited, or some parameters are missing from 

online data. This leads to proceeding with daily average lab analyzed data of small periods (1-



84 
 

month data for VEAS process), which indirectly leads to low prediction accuracy. This limitation 

was overcome by including previous steps of all inputs and output in training the model to 

increase the dataset size, which increases the model's accuracy. For example, accuracy result of 

MLR has increased from R2 is 0.22 to R2= 0.89 with this method.(Wang et al., 2021) 

Neural Network 

Results of observations and predictions obtained by the multiple-layer ANN model are plotted 

result section. It is clearly shown that the NN has good generalization ability and could capture 

the trend of different datasets. The scatter plot of the NN model in the result section shows that 

most points are close to the diagonal line, indicating that the NN model could be used to predict 

the influent parameters wastewater and sludge treatment process. 

Meanwhile, the NN model has no requirement regarding data stationarity, and exogenous 

variables can be included for training and prediction purposes. It is worth mentioning that, in this 

case study, since the range of the training set is larger than that of the testing set, the model’s 

extrapolation ability was not tested. Considering that predictions made beyond the range of the 

training set tend to be unreliable if the testing data contain values that exceed the training data 

range in future applications, the model’s extrapolation ability should be evaluated to provide a 

more reliable and reasonable prediction.(Zhang et al., 2019) 

 

 

 

 

 

 

 

 

 

 



85 
 

6. Conclusion and Future work 

This study aimed to develop an efficient and practical method to predict wastewater and sludge 

influent composition, which any individual plant can incorporate to analyze and estimate the 

influent quality in real time. This is important for real time control strategy in wastewater and 

sludge treatment processes. 

For this purpose, different datasets from laboratory analysis and online sensor measurements of 

different time sampling frequencies (10 min, 1 hour, daily) have been collected from two 

wastewater treatment facilities in Norway, namely the HIAS and VEAS processes. 

The characterization and parameters of the three datasets used differed from each other, with a 

different correlation matrix. In this work, two mathematical model algorithms are used, ARIMA 

and SARIMAX, the most popular time series analysis in wastewater influent prediction. Compared 

to previous research, this study only shows a significantly better result for the SARIMAX model 

with VEAS lab data with high accuracy of R2 as 0.95. 

Besides this, a list of multiple linear regression algorithms (Linear regression, Lasso, Ridge), 

shallow machine learning algorithms like Decision Tree, Random Forest, SVR, and deep learning 

algorithms like Multiple layer neural networks were developed to detect and predict parameters 

such as PO4 and sCOD from wastewater influent and organic acid from sludge influent.  

Despite a significant variation in datasets induced by external activities (rain, snowmelt, human 

activities, slaughterhouse, and industrial activities), internal activity (error or failure in plant 

operation), and complicated wastewater and sludge treatment processes, SARIMAX, MLR, and 

Neural network demonstrated entirely satisfactory performances for model evaluation 

estimation as evidenced by low values of RMSE and near to one value of R2. In terms of efficiency, 

SARIMAX exhibited acceptable results in VEAS dataset, whereas MLR and NN models exhibited 

overall acceptable result in all three datasets, confirming that the application of these algorithms 

for influent prediction modeling was successful.  

In contrast, ARIMA and SARIMAX algorithms in Hias datasets did not meet the requirements 

because of the complex and nonlinear structure of the dataset issue.  

This work offers a comprehensive comparison between different statistical and machine learning 

algorithms, it illustrates control strategies to optimize wastewater and sludge treatment efficiency 
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by predicting the inlet compositions. This study is essential and beneficial when considering the 

environmental factors of managing wastewater and sludge from households and industries. 

Despite the impressive results reported here, many limitations should be addressed in future 

work to successfully apply these algorithms for influent prediction.  

It is necessary to collect more data with small time resolution from different WWTPs to ensure 

the algorithms are generalized.  

Deep machine learning architectures such as ANFIS, and LSTM can overcome the issues of 

addressing large datasets with nonlinear and nonstationary behavior and helping enhance 

forecasting capability. 

If there are ways to enhance the performance of these algorithms, particularly SARIMAX, using 

additional tools would be beneficial. 

Finally, this study of influent prediction plays a vital role and can be further used for controlling 

the wastewater and sludge treatment process with a control strategy such as stochastic MPC. 

Stochastic Model Predictive Control (MPC) incorporates stochastic or random variations in the 

system model. It considers the probability distribution of uncertain parameters in the model, 

which makes it useful in wastewater treatment processes, where there are often uncertainties in 

influent flow rates, concentrations, and compositions.  

Accurate influent prediction enables the control strategy to adjust the control parameters, 

optimize the process, minimize the operating costs, improve the effluent quality, and plan 

maintenance activities effectively. This research plays a role in achieving the zero-pollution goal 

outlined in the European Green Deal. 
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Appendix  

Table A.1 : Taxonomy on literature review 

Predicted 

parameters(Quantity 

and Quality 

prediction) 

Input parameters Mathematical approach/ 

Model used 

Accuracy  Literature 

reference 

Quantity: Flow rate 
Quality: COD and 

NH3-N 

precipitation, 
temperature 
(Exogeneous input) 
influent flow, COD,  
and ammonia 

Linear Regression, Ridge 

Regression, ElasticNet 

Regression Lasso 

Regression 

Quantity prediction: 
86.19% 
COD conc. 
pred.:82% 
NH3-N conc. pred: 

82% 

10.15244/pjoes/

132821 

Outlet TP(Total 

phosphate) 

Influent water 

flow(IWF), pump 

level(PPL),Inlet-COD, 

Inlet-NH3, Inlet-TP, 

Inlet-TN ,Outlet-

COD ,Outlet-

NH3 ,Outlet-

TP ,Outlet-TN 

SARIMAX, Random Forest 
(RF), Support Vector 
Machine (SVM), Gradient 
Tree Boosting (GTB), 
Adaptive Neuro-Fuzzy 
Inference System (ANFIS)  
Long Short-Term Memory 

(LSTM) 

R
2
= 92% 

http://dx.doi.org

/10.1016/j.scitot

env.2022.15493

0 

Flow rate, COD, SS, 

TN and TP  

COD, TN and TP k-Nearest neighbor MAPE <8.9 % for all  
parameters on both 
wet  
and dry days  

10.1007/s11783-

015-0825-7 

Total Phosphorus 

(TP) and Chemical 

Oxygen Demand 

(COD) in both 

influent and effluent 

pH, TSS, Flowrate, 
conductivity, 
ORP, PAX and Polymer 

dose flow-meters 

Artificial Neural Network 
(ANN), Support vector 
machine(SVM), 
Enesemble Tree(ET), 
Multiple Linear 
Regression(MLR) 
Nelder–Mead (NM) . 
Trust-region Newton 
conjugate gradient (TR)  
Sequential Least Squares 
Quadratic Programming 
(SLSQP)  and Broyden–
Fletcher– 
Goldfarb–Shanno (BFGS) 

TP: SLSQP: R
2
= 76% 

COD: SLSQP: R
2
= 

70% 

https://doi.org/1

0.3390/w140303

32 
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Figure A1:Best fit SARIMAX model for sCOD prediction with HIAS lab data 
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Figure A2: Diagnostic check for SARIMAX model For sCOD prediction with HIAS labdata 
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Figure A33:ARIMA potential models sCOD prediction with Hias online 
dataset 
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Fit the SARIMAX model with the selected order: 

 

Figure A4:Best Model to fit SARIMAX model prediction of Organic acid with VEAS lab-data 


