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Abstract 
 
 

Due to the underlying complexity of wastewater treatment plant (WWTP) processes, it might be challenging 

to respond appropriately and promptly to the dynamic process conditions in order to ensure the quality of 

the effluent, particularly  when operational cost are a major consideration. In order to avoid various 

limitations of conventional mechanistic models, machine learning (ML) methods have been utilized  to model 

WWTP  processes. Additionally, the time lags between process steps have been neglected, making it difficult 

to explain the relationships between operational factors and effluent quality. Therefore, in this study multiple 

machine learning methods were developed to improve effluent quality control in WWTPs by clarifying the 

relationships between operational parameters and effluent parameters. To be more specific, the objective in 

this study is to predict the concentration of phosphate (PO4) in the effluent of HIAS wastewater treatment 

plant.  

In this study, machine learning  algorithms for effluent quality control in WTTPs is proposed. The various ML 

algorithms consist of Regression models (Linear Regression, Lasso Regression, and Ridge Regression), data-

driven multi-class classification models (Decision Trees, Gradient Boosting Decision Tree, and XGBoost), and 

Long Short-Term Memory (LSTM) model specifically designed for time-series data analysis. 

 

The dataset utilized in this study, contains time-series data, historical operational variables and effluent 

parameters from HIAS wastewater treatment plant in Hamar, involving decent size of samples (8662). One 

effluent parameter, Phosphate in effluent (PO4), and 19 operational parameters are studied. The data 

preprocessing  method used to prepare it for ML models, includes handling missing values and outliers to 

ensure reliable and consistent analysis. The ML models are trained, validated, and evaluated using 

appropriate evaluation metrics, such as R-squared Mean Error (RSME), Mean Absolute Error, and Mean 

Squared Error (MSE) to assess the performance and effectiveness of the machine learning models. 

 

The results demonstrated the effectiveness of the ML models in improving effluent quality control. Among 

the regression model, Linear and Ridge regression performed best, achieving a moderate fit with an R2 score 

0.527. Lasso Regression demonstrated very poor and weak performance . In terms of data-driven muti-class 

classification, Gradient Boosting Decision Tree model outperformed the other classification models  with an 

R2 score of 0.869, indicating a good fit. The LSTM model displayed significant promise in accurately predict 

the PO4 concentration in the effluent among the ML models utilized in this study , achieving an substantial fit 

with an R2 score of 0.926. These results could support the development of more advanced control strategies 

to increase the impact on PO4 removal.  

 



Keywords -  Wastewater treatment, effluent control, Prediction model, Machine learning, LSTM, Regression, data-driven 

multi-class classification, Data preprocessing, Time-series  dataset. 



1 INTRODUCTION 
1.1 General 

Due to its severe effects on the environment and human health, the issue of wastewater 

disposal has grown to be a significant matter on a global scale. As treatment plant play a 

significant part in wastewater management, they should be maintained effectively. Since 

the entire system must be taken into account, years of data must be examined and 

processed in order to develop a sufficient foundation for performance evaluation. The 

performance of the WWTP can be predicted utilizing important pollution variables and 

machine learning models. Certain key parameters in a WWTP can be used to evaluate 

plant performance. Chemical oxygen demand (COD), suspended solids (SS) and 

phosphate (PO4) are examples of these parameters. However the method for 

monitoring the effluent of the plant requires an understanding of the plant’s 

performance as well as the variables impacting the water parameters, such as season, 

time and people’s lifestyle. (Raed Jafar, 2022) 

The Moving Bed Biofilm reactor process of a wastewater treatment plant is complex due 

to the complex nature of the treatment process, different flow rates and the changes in 

the composition of raw wastewater. Also, the effectiveness of controlling the quality of 

wastewater discharge is decreased by the lack of continuous monitoring of the 

pollutants variables. Traditional modelling have its limitations, since microbial reactions 

in conjunction with environmental interactions are time-variable, nonlinear, and 

complicated. Utilizing virtual measurement as a tool for discovering complex 

dependencies between process variables and identifying the system behavior of the 

wastewater treatment plant can be an efficient method to handle this task, where data 

is analyzed and the inter-relationship of process variables in real Enhanced biological 

phosphate removal wastewater treatment plant is diagnosed. (Raed Jafar, 2022) 

Since virtual measurement can provide solution for monitoring of a wastewater 

treatment plant, one should know what exactly virtual measurement is. Rather than 

using physical sensors and instruments, virtual measurement refers to a type of 

measurement that is performed using software simulations or models. In virtual 

measurement, the behavior of a system or process is simulated using a software 

programs, and the result of the simulation are analyzed to obtain measurements of 

various parameters of interest. Virtual measurement is commonly used in scientific 



applications and engineering, where it can provide efficient and cost-effective ways to 

analyze complex processes and systems. Virtual measurement can also be used in 

research, where it can be used to simulate test hypotheses and experiments in a 

controlled manner. Since conducting experiments can be time-consuming, expensive and 

dangerous, virtual measurement can be particularly useful in fields such as chemistry 

and physics. (Maddi Etxegarai, 2022) 

The study of virtual measurements and predicting the PO4 concentration in the effluent of HIAS 

wastewater treatment plant is the subject of this thesis. As well as the development and 

implementation of virtual measurement methods, the analysis of the data gathered, and the 

identification of key parameters that affects the performance of the system. The study will explore 

the potential of machine learning methods as the virtual measurement to optimize the quality 

control of phosphate in effluent of the process based on the data collected through sensor 

measurements. 

The findings of this thesis will contribute to enhancing the efficacy of the wastewater 

treatment process through machine learning and provide a better understanding of how 

to improve the monitoring and control in the effluent. The thesis will be a valuable 

resource for academics and professionals working in the wastewater treatment plant. 

 

1.2 Process description 

 

The HIAS process is a single continuous reactor, multistage, enhanced biological 

phosphorus removal (EBPR), moving bed biofilm reactor (MBBR), wastewater treatment 

plant (WWTP). The movement of biofilms between anaerobic and aerobic zones for 

phosphorus removal and accumulation presents a problem for EBPR. In aerobic 

circumstances, phosphorus-accumulating organisms (PAO) in EBPR systems take up and 

store phosphorus as polyphosphate (polyP). During anaerobic conditions, the organisms 

aggressively incorporates reduced substances like short chain fatty acids (SCFAs), amino 

acids, and transforms them into polymers like polyhydroxyalkanoate (PHA) at the 

expense of energy stored as polyP. When the PAOs are cycled between anaerobic and 

aerobic conditions, these processes are energetically advantageous in phosphate and 

SCFA rich environments. (Didrik Villard, 2022) 

The HIAS process uses active transport of biofilm carriers and wastewater across ten 

basins to meet the anaerobic and aerobic requirements. The first three being anaerobic 

and the follow seven being aerobic. Wastewater and biofilm carriers are combined in the 



mechanically agitated anaerobic phase of the reactor before moving by gravity through 

three anaerobic and seven aerobic zones. The reactor's treated wastewater and 

sloughed-off biofilms exit the tenth zone, while the carriers of the biofilms are 

transported dry back to the reactor's beginning. (Didrik Villard, 2022) 
 
 

 

 

 

 

 

2 State of the Art 

Machine learning based methods have been applied in multiple fields, particularly 

environmental issues. In order to improve the prediction of the treatment process 

machine learning were employed to the wastewater treatment plants. Where some key 

variables was used to evaluate the performance of the treatment plant, such as chemical 

oxygen demand (COD), biological oxygen demand (BOD), nitrates (NO3) and phosphate 

(PO4). The paper (Raed Jafar, 2022) showed that the use of machine learning models can 

provide an effective tool for modeling the complex processes of a treatment plant. (Raed 

Jafar, 2022), also refer to several studies that have employed machine learning. One of 

these studies available mentioned in the research paper evaluated the performance 

using machine leaning in one the wastewater treatment plant in Kuwait city, also known 

as Al-Ardiya. The results demonstrated that machine learning provide a flexible tool for 

modeling the wastewater treatment plants. (Raed Jafar, 2022) mentions that there were 

two model constructed using artificial neural network (ANN) to predict the biological 

oxygen concentration at the influent and the effluent of the Govindpura sewage 

treatment plant in Bhopal. This resulted in 80% removal of biological oxygen demand 

(BOD). In an another procedure machine learning was employed for prediction of 

wastewater treatment plant, where the objective was to predict the treatment efficiency 

and the effectiveness of input parameters on predicting the wastewater treatment plant. 

Figure 1, Schematic of the Hias EBPR wastewater treatment process. (Didrik Villard, 
2022) 



They came to the conclusion that combining the input variables for the inflow rate, the 

effluent of total suspended solids and mixed liquor suspended solids produced the 

optimal model. the results were R2=0.898, and MSE = 0.443. (Raed Jafar, 2022) 
 

In order to overcome the limitations of traditional mechanistic models, (Dong Wang S. T., 

2021) used machine learning methods to model the wastewater treatment plant 

processes. To optimize effluent quality control in WWTPs, they put forward an innovative 

Machine learning context based on Random Forest, Deep Neural Network, partial 

dependence plot (PDP) and variable importance measure (VIM). The suggested machine 

learning framework seems to have the possible improvement of effluent quality 

management approaches at Umeå WWTP in Sweden. (Dong Wang S. T., 2021) 

 

In one of Dong et al research their aim was to develop a machine learning-based method for 

controlling the quality of treated wastewater in treatment plants . The study’s findings recognizes 

the increasing importance of ensuring that discharge from treatment plants meets the stringent 

quality standards set by the agencies.  Traditional control methods have shown to be insufficient to 

meeting these standards, leading to the need for newer approaches. (Dong Wang S. T., 2021) 

 

The authors explain a machine learning framework that makes use of sensors and processed data 

for treatment plant to create prediction models that can accurately estimate the effluent quality. 

The models can be used to optimize the treatment process in real-time and are trained using 

historical data.  The authors also highlight the importance of feature selection, which is the process 

of identifying the most important variables that contribute to the quality of the effluent, as a critical 

component of the machine learning framework. (Dong Wang S. T., 2021) 

 

The study provides data and evidence that effluent quality control in wastewater treatment facilities 

can be greatly enhanced by machine learning approaches. The findings demonstrate that the 

framework is capable of making accurate predictions about the effluent quality, and that these 

predictions are significantly more accurate than those using traditional control approaches. The 

authors further show that the framework is capable of handling non-linear and complex 

relationships between the different variables in treatment processes. (Dong Wang S. T., 2021) 



Quang et al published a paper where the study aimed to explore the potential of 

machine learning algorithms for predicting the quality of wastewater from different full-scale 

wastewater treatment plant based on big data analysis. 

The Authors proceeded by discussing the importance of predicting and monitoring 

wastewater quality in order to ensure the efficient functioning of WWTPs and 

environmental protection. They also pointed out that traditional methods for analyzing 

wastewater quality require a considerable amount of time and effort, which makes them 

inefficient for real-time prediction and monitoring. There, authors suggested using 

machine learning algorithms as a potential solution to this problem. (Quang Viet Ly, 

2022) 

The authors collected a large dataset consisting of 25 032 samples of influent and 

effluent wastewater quality parameters from six different wastewater treatment plant in 

Vietnam. The authors used the dataset containing various parameters such as oxygen 

demand (COD), ammonia nitrogen (NH3-N), total suspended solids (TSS), biochemical 

oxygen demand (BOD) to train and test several machine learning algorithms, including 

support vector regression, random forest, and artificial neural networks. 

The result showed that all machine learning algorithms performed well in predicting the 

wastewater quality parameters, with artificial neural networks outperforming the other 

two algorithms. The study also found that that the accuracy of machine learning 

algorithms improved when more data were used for training. The authors concluded 

that machine learning algorithms can be used effectively for predicting wastewater 

quality from full-scale wastewater treatment plant based on big data analysis. (Quang 

Viet Ly, 2022) 

In the literature, it widely recognized that the management and operation most 

wastewater treatment plant rely mostly on online monitoring instruments, combined 

with the professional experience and knowledge to evaluate the primary indicators of 

water quality in wastewater treatment plant and sewage treatment, which is risky given 

the increasingly demanding sewage discharge standards. There numerous studies on 

assisted treatment plant operation utilizing machine learning methods have been 



conducted in recent years in order to decrease the risk of over-discharge of wastewater 

treatment plant and improve the efficacy of sewage treatment. (Rui Wang, 2021) 

Previous research has shown that the influent quality was primary used to predict 

effluent quality. Concurrently, the main operating parameters of the WWTPs, such 

dissolved oxygen (DO), MLSS and sludge retention time (SRR), are all in the process of 

dynamic change and adjustment during daily administration and operation. It is well 

recognized that process parameters and water quality indicators have internal logical 

relationships. 

The complexity of wastewater treatment has previously been summarized by (XIN LIU, 

2021) using mechanism models, such as Activated Sludge Model No.1 (ASM1) and 

Activated Sludge Model No.2 (ASM2). Then, scholars and related organizations 

developed the activated sludge treatment benchmark simulation model (BSM1), which 

can monitor important features of wastewater, in order to objectively evaluate the 

performance of the wastewater treatment control strategy. While it may provide better 

experimental results, user need to know the expertise of the various systems in advance 

(XIN LIU, 2021). Additionally, these models are developed implementing specific 

circumstances into consideration. The generality of the models is limited by the 

numerous adjustments and tests needed to apply them in different situations. Data 

driven models can be developed through data and algorithms, in contrast to mechanistic 

modelling, which indicates that they do not require a thorough understanding of the 

process’s mechanism. Furthermore, WWTPs collect, store and monitor a significant 

amount of data during daily operations, which makes data-driven models more practical 

in applications. 

A neural network is a data driven model that imitates the structure of biological neurons 

(XIN LIU, 2021). Neural networks have been gradually incorporated into the wastewater 

treatment industry for data-driven modelling due to its robust fitting and adaptability. To 

determine the correlation between the two parameters, (XIN LIU, 2021) has summarized 

in his article that Matheri et al. developed an ANN model to forecast the concentration 

of COD and trace metals in WWTPs. The results in the article demonstrates that a 

simulation model of WWTP can be developed with neural networks. 

In order to simulate the performance of an auto-aerated immobilized biomass (AIB) 



reactor filled with sponge media, Bakr et al. developed an ANN model that was 

optimized based on the Levenberg-Marquardt algorithm. An experiment displayed that 

the model’s R2 (coefficient of determination) value was satisfactory fit in training, 

testing, and verification and that the model can reflect reality. (XIN LIU, 2021), also 

summarized the effluent COD of the Touggourt WWTP was predicted using ANN model 

by Bekkari et al. and the findings showed that this modelling approach can be a useful 

tool for controlling, predicting and simulating the performance of WTTP. 

The mentioned research above fails to properly resolve the sequence dependence 

between input variables and ignores the time series characteristics of wastewater data, 

which restricts the model’s ability to handle time series forecasting tasks. Common 

issues, such as gradient vanishment and explosion conditions may develop during 

training a neural network, especially as the number of neural network layers rises. 

However these issues has been addressed by LSTM neural network by introducing 

gating. It is an enhanced neural network built on a recurrent neural network (RNN) that 

is capable of balancing the temporal and nonlinear relationship of wastewater data. The 

state of the art of LSTM neural network is at present being used successfully in 

applications for natural language processing, speech recognition and other tasks. Many 

scholars have attempted to apply the LSTM neural network to the field of wastewater 

treatment in recognition of its success in these other fields. To simulate the wastewater 

treatment process, (XIN LIU, 2021) mentioned that Zhiwei et al. created the LSTM model 

to predict the nutrient removal efficiency of WWTP. 

The LSTM neural network is capable of extracting reliable features from data, however it 

is unable to learn locally important features. Recent studies suggest that time-series 

tasks prediction can be achieved using LSTM neural networks based on attentional 

mechanisms. (XIN LIU, 2021) demonstrated that LSTM neural network can gather local 

information and effectively handle long-term dependencies by incorporating a self- 

attention mechanism. In (XIN LIU, 2021) summary of LSTM neural network used in 

recent studies, he also mentions that Zang et al. demonstrates the efficiency of LSTM 

model in time-series prediction tasks by comparing the LST model based on attention 

mechanism with variety of neural network models. The experimental findings 

demonstrates that the accuracy and practicability of the LSTM model can be increased 



by including an attention mechanism. Therefore, implementing an attention mechanism 

to an LSTM neural network can enhance the neural networks ability for obtaining locally 

important features from wastewater data, thus improving the model’s stability and 

predictability (XIN LIU, 2021). 
 

3 Theoretical background 
 

The Utilization of machine learning teaches and train machines how to handle data more 

effectively. Sometimes, even after viewing the data, we are unable to evaluate or 

interpret the information. In that approach, we implement machine learning. The 

accessibility of a significant number of datasets has increased demand for machine 

learning. Machine learning is used in multiple industries to retrieve relevant data. 

Understanding from the data is the objective of machine learning. How to make 

machines learn on by themselves without being explicitly programmed has been topic of 

many research studies. Several programmers use various methods to resolve this 

problem, which involves large data sets. (Mahesh, 2018) 
 

Machine learning uses a variety of methods to address data issues. Data scientist want 

to emphasize that there is no algorithm that works well for every situation. The kind of 

algorithm used depend on the type of problem one attempting to resolve, how many 

variables there are, what kind of model will perform effectively, and other factors 

(Mahesh, 2018). The following is an overview of some machine learning algorithms 

implemented and used in this project.  

 

3.1 Supervised learning 

 

A function that maps an input to an output is learned through supervised learning using 

sample input-output pairs. It utilize labelled data training data composed up of a 

collection of training examples to infer a function. Algorithms that require external 

supervision are those that fall under the category of supervised machine learning. train 

and test datasets are created from the input dataset are constructed from the input 

dataset. The output variable in the train 

dataset has to be classified or predicted. 

All algorithms identify some sort of 

 

 
Figure 2, Supervised learning workflow (Mahesh, 2018). 



patterns from the training dataset and use them to classify or predict the test dataset. 

The flowchart below shows the process used by supervised machine learning algorithms 

(Mahesh, 2018). 

 

3.1.1 Linear Regression 
 
Regression analysis is a statistical method know as linear regression that is frequently used to identify 

the interdependent quantitative relationship between two or more variables. There is linear relationship 

between the input eigenvector x and the output value y.  𝑓 (𝑥)  =  ℎ𝜃 (𝑥)  =  𝜃0 + 𝜃1𝑥1  +

 𝜃2𝑥2 + . . . + 𝜃𝑛𝑥𝑛. (Rui Wang, 2021) 

𝑓(𝑥): 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠; 𝜃0, . . . , 𝜃𝑛: Linear model parameter 

The objective of linear regression is to identify a line that minimize the following loss function and fits 

data points as closely as feasible: 

𝐽 =
1

𝑛
∑ (𝑓(𝑥𝑖) − 𝑦𝑖)

2𝑛
𝑖=1                   (1) 

Where 𝑦𝑖 is the actual value , f(xi) is predicted value; the closer this function fits, the smaller its value.  

Lasso Regression and Ridge Regression both modify the standard linear regression’s loss function while 

maintaining the other components intact. The loss function in Lasso Regression, which adds L1 

regularization to the linear regression’s loss function, is as follows:  

𝐽 =
1

𝑛
∑ (𝑓(𝑥𝑖) − 𝑦𝑖)

2 +  λω1  
𝑛
𝑖=1         (2) 

  𝜆 ∶  weight coefficient, 1 norm. 

Ridge regression adds L2 regularization to the loss function of linear regression, and its loss function is as 

follows:  

𝐽 =
1

𝑛
∑ (𝑓(𝑥𝑖) − 𝑦𝑖)

2 +  λω2
2  𝑛

𝑖=1      (3) 

 

2 Norm: 
 

Ridge and Lasso and be used to resolve the overfitting issues with linear regression, 

because adding L1 and L2 regularization allows the weights to be as minimal as possible 

for all parameters, then a reduced parameter can be constructed. As a result, the 



𝑗 

model’s parameter values are smaller than those that are usually sampled, allowing to 

adapt to various data sets and in certain aspects, avoiding the over-fitting phenomena. 

In particular, Ridge and Lasso makes it easier to obtain a weight close to 0. (Rui Wang, 

2021) 

 

3.1.2 Ridge 

The most commonly utilized form of regularized regression is called Ridge Regression, 

which limits the sum of squares of the weights of the coefficients though a constraint on 

the 𝑝 coefficients (Mayooran Thevaraja, 2019). Ridge regression can be formulated as 

follow: 

𝛽̂  = 𝑎𝑟𝑔 min ∑𝑛 (𝑌𝑖 − 𝑋𝑖𝑇𝛽̂)2 (4) 

𝑟𝑖𝑑𝑔𝑒 
𝛽̂∈𝑅𝑝 

𝑖=1 

 

𝑤𝑖𝑡ℎ 𝑠𝑖𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝛽̂2 ≤ 𝑡 𝑓𝑜𝑟 𝑡 ≥ 0 

 
Therefore, the feasible set for this minimization problem is limited to 𝑆 (𝑡) = {𝛽̂ ∈ 

𝑅𝑝 ∶ ‖𝛽̂‖ ≤ 𝑡} where 𝛽̂ does not include the intercept 𝛽̂0. Due to the L2-penalty, the 

ridge estimator is constant when the 𝑥𝑗 are scaled (Mayooran Thevaraja, 2019). 

Centering the predictors solves this problem and can be formulated using Lagrange 

multiplier as: 

𝛽̂  = 𝑎𝑟𝑔 min { ∑𝑛 (𝑌𝑖 − 𝑋𝑇𝛽̂)2 + ∑𝑝 𝛽̂2} (5) 

𝑟𝑖𝑑𝑔𝑒 
𝛽̂∈𝑅𝑝 

𝑖=1 𝑖 𝑗=1 𝑗 

 

Convex Minimization can be to solve the optimization problem in equation (5). Because 

X is assumed to be full-rank, it follows that the Residual Sum of squares, or RSS is convex 

in if XTX is positive definite. The sum squares for j can also be demonstrated to be 

convexity quite simply (Mayooran Thevaraja, 2019). One way to formulate the RSS for 

ridge regression is as follows: 

RSS(β; λ) = (y − Xβ)T(y − Xβ) + λβTβ (6) 
 

As conducted for the conventional OLS criterion for multiple linear regression, one can 

minimize this criterion by applying straightforward matrix calculus approaches 

(Mayooran Thevaraja, 2019). To put it another way, by setting the first derivative to zero, 

we can obtain: 

𝜕𝜕𝛽̂ 𝑅𝑆𝑆(𝛽̂; 𝜆) = 2(𝑋𝑇𝑋)𝛽̂ − 2𝑋𝑇𝑦 + 2𝜆𝛽̂ = 0 (6) 



𝑖=1 

The following sentence would further simplify this expression: 

(𝑋𝑇𝑋 + 𝜆𝐼)𝛽̂ = 𝑋𝑇𝑦 (8) 

The ridge estimator are, therefore: 

  
𝑟𝑖𝑑𝑔𝑒 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦 (9) 

 

 
3.1.3 Lasso 

By setting a number of the slope parameters to zero, the lasso regression aims to 

provide a sparse solution. Additionally, the lasso is constructed in relation to the central 

matrix, X. the intercept, 0 is also not included in the penalty term because the L1-penalty 

is only applied to the slope coefficients (Mayooran Thevaraja, 2019). As a constrained 

minimization problem, the Lasso can be represented as: 

𝛽̂  = 𝑎𝑟𝑔 min ∑𝑛 (𝑌𝑖 − 𝑋𝑇𝛽̂)2 (10) 

 
Subject to: ∑𝑝 

𝑙𝑎𝑠𝑠𝑜 
 
 

|βj | ≤ 𝑡 

𝛽̂∈𝑅𝑝 
𝑖=1 𝑖 

 

For 𝑡 ≥ 0 using the Lagrangian for the penalty, which is formulated as follows: 
 

𝛽̂  = 𝑎𝑟𝑔 min { ∑𝑛 (𝑌𝑖 − 𝑋𝑇𝛽̂)2 + 𝜆 ∑𝑝 |β | } (11) 

𝑟𝑖𝑑𝑔𝑒 
𝛽̂∈𝑅𝑝 

𝑖=1 𝑖 𝑗=1 j 

 

Where 𝜆 ≥ 0 and, as before, here exist a one to one correspondence between 𝑡 𝑎𝑛𝑑 𝜆. 

The lasso does not allow a closed-form solution, in contrast to ridge regression. The L1- 

penalty renders the 𝑦𝑖 solution non-linear. An effective approximation can be made to 

the solution of the quadratic programming problem described by the restricted 

minimization mentioned above (Mayooran Thevaraja, 2019). 
 
 

3.1.4 Decision Tree 

A decision Tree is a method for decision analysis that be used to determine the 

probability that the expected value of net present value, also referred as NPV is greater 

than or equal to zero, determine whether a project is feasible by considering the 

probability that various scenarios will occur and evaluate the project risk. It is graphical 

method for using probability analysis intuitively. A decision tree is prediction model 

used in machine learning that illustrates the mapping between object values and object 

attributes. (Rui Wang, 2021) 

𝛽̂ 



A decision tree is a tree structure in which each leaf node represent the Y values to be 

predicted, each inner node represent a judgment on an attribute, and in each branch 

reflects the judgment’s result. The following two processes , which are carried out be 

learning the training data, constitute the majority of the development of a decision tree. 

Nodes are generally split into two child notes (or N child nodes, if the structure being 

represented is not a binary tree) depending on how difficult it is to determine the 

attribute represented by each node. (Nashia Deepnarain, 2019) 
 

Determining the threshold value: select the appropriate one to reduce the prediction 

error rate. An index called information entropy is used to evaluate information 

uncertainty. The following is information entropy formula: 
 

𝐻(𝑥) = − ∑𝑥∈𝑋 𝑃(𝑥) log2 𝑃(𝑥) (12) 

 

𝑃(𝑥): the probability of x 
 

This formula is to divide information entropy change value before and after the dataset, 

and the feature with the largest information entropy change range is selected as the 

base for the data set partition. To select the best data row molecular dataset, the feature 

with the largest information gain is selected as the splitting node, the sub-dataset is 

processed recursively after partitioning, and after following processes are repeated for 

the features that have been picked. Two things must happen in order for recursion to 

stop: first, all of the features must be utilized, and second, the information entropy gain 

after division must be sufficiently small. (Rui Wang, 2021) 

 
 

 
3.1.5 Gradient Boosting Decision Tree 

A common used algorithm for Regression and Classification is Gradient Boosting 

Decision Tree (GBDT). The Regression and Classification Trees provide as the decision 

tree utilized by GBDT. Identifying the ideal partition point is the crucial element of the 

tree algorithm. Furthermore, all of the desirables values for each feature are contained 

at the partition point in the regression tree. The entropy or Gini coefficient serves as the 

optimum partition point criterion in the classification tree, whereas the sample label in 

the regression tree continuous number. As a result, it no longer appropriate to utilize 



𝑖=1 
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metrics like entropy and should instead use the square error, a reliable measure fitness. 

(Rui Wang, 2021). 

The steps of GBDT are presented as follows: 
 

1. The initial constant values of the model β is given : 

𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛β ∑𝑛 𝐿(𝑦𝑖 , β ) (13) 

 

 

2. The gradient direction of residuals is determined for m = 1 : M, where M is the 

number of iterations. 

𝑦∗ = − [
𝜕𝐿(𝑦𝑖,𝐹(𝑥𝑖))

]
 , 𝐼 = {1, 2, … . . , 𝑁} (14) 

𝑖 (𝜕𝐹(𝑥𝑖)) 𝐹(𝑥𝑖)−𝐹_𝑚(𝑥) 

 
 

3. To fit simple data and create the initial model, the fundamental classifiers are 

utilized. The model’s parameter 𝑎𝑚 is calculated using the last square approach 

and the model ℎ(𝑥𝑖, 𝑎𝑚) is fitted. 

𝑎𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛α,β ∑𝑛 [𝑦∗ − βh(xi, 𝑎)] 2 (15) 

 

 

4. The loss function is reduced. A new step for the model, or the weight of the 

existing model, is determined by Eq. (8) 

𝑎𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛α,β ∑𝑛 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥) + 𝛽̂ℎ(𝑥𝑖, 𝑎)) (16) 

 

 

5. Following is an update to the model: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛽̂𝑚ℎ(𝑥𝑖, 𝑎) (17) 

 
 

However, when raw data is fed into GBDT to be analyzed, information gain of feature 

branch points must be calculated several times due to the dimension and size of the 

data sample. It causes the number of iterations to rise while slowing convergence and 

update rates. According to (Haidi Rao, 2019), it is suggested that employing Adaptive 

Boosting with classification Trees to optimize the initial data is fed into GBDT. The 

proposed approach ensures the correctness and efficiency of GBDT while forcibly 

reducing the initial feature dimensions of sample data and quickly creating a decision 

tree to determine the weight of features. (Haidi Rao, 2019) 

𝑖=1 

𝑖=1 



1) XGBOOST: eXtreme Gradient Boosting: In this study another form of GBDT is 

used and therefore introduced under this chapter. Xgboost is short for eXtreme 

Gradient boosting package. Is a scalable and effective use of the gradient 

boosting framework (Tianqi Chen, 2017). Linear model solver and a tree learning 

algorithm are included in the package. It provides a number of objective 

operations, such as classification, regression and ranking. The package is 

developed to be extensible, so that the users are also allowed to define their own 

objectives. (Hui Chen, 2020). 

 

 
3.1.6 LSTM 

Long Short-Term memory (LSTM) is a type of Recurrent Neural network (RNN) with 

ability to store values from earlier stages for use in the future (Sima Siami-Namini, 2018). 

It is vital to get a general idea of how a neural network works before diving into LSTM. 

1) Artificial Intelligence (ANN): A neural network consist of 3 three layers, an input 

layer, a hidden layer and an output layer. The dimensionality, or number of nodes in 

the input layer, depends on how many features are included in the data set. The 

nodes created in the hidden layer(s) are connected to these nodes via structures 

called “synapses”. For each node in the input layer, the synapses carries weights. The 

weights simply act as a decision maker to determine which input or signal should be 

allowed pass through and which shouldn’t. The weights also demonstrate the 

strength or extensive the hidden layer is. In basic terms, neural network learns by 

adjusting the weight for each synopsis. The nodes in the hidden layers uses an 

activation function, such as tangent hyperbolic or sigmoid to convert the weighted 

sum of the inputs to the outputs, or predicted values. The tanh and sigmoid 

functions both shape like an “S”, where the output of sigmoid range is (0,1) and the 

outputs of tanh vary between (-1,1) (Hui Chen, 2020). Their mathematical functions 

are defined below. 



Sigmoid function: 
 

𝑺(𝒙) = 
𝟏

 
𝟏+𝒆−𝒙 

 

 
(18) 

 

Tanh function:  
𝑇(𝑥) = 

𝑒 𝑥−𝑒−𝑥 

( ) 

𝑒 𝑥+𝑒−𝑥 
19 

 
 
 

 
 

 
 

 

The output layer generates a vector of probabilities for several outputs and chooses 

the one with lowest error rate or cost, that is by minimizing the difference between 

expected and predicted values, also known as the cost, using a function called 

SoftMax.values and subsequently in the cost. Model training occurs when the cost 

function is minimized. (Sima Siami-Namini, 2018) 

 
 

 
 

 
 
 

2) Recurrent Neural Network (RNN): 
 

A recurrent neural network is particular type of neural network where the objective is to 

predict the subsequent observations in an ongoing sequence of observations in relation 

to the previous observation. RNNs have been developed to use sequential observations 

and learn from prior phases in order to predict future trends. As a result, when 

Figure 3, , graphical display of sigmoid and 
tanh function 

Figure 4, Graphical display of Artificial Neural Network 



predicting on the subsequent stages, the earlier stages data must be kept in mind. The 

information gathered in earlier phases of reading sequential data is stored in RNN’s 

hidden layers, which act as internal storage. The reason RNNs are known as “recurrent” 

is because they carry out the same tasks for every element of the sequence and have the 

ability to forecast/predict future sequential data that has yet to be observed by the user. 

The primary issue with a typical Recurrent Neural Network is that these networks are 

not ideal for remembering longer data sequences, since the only remember a few earlier 

steps in the sequence. The “memory line” developed in the Long Short-Term Memory 

(LSTM) recurrent network is used to solve this difficult challenge (Sima Siami-Namini, 

2018). 

3) Long Short-Term Memory (LSTM) : 
 

LSTM are a special kind of RNNs that have additional features memorizing the sequence 

of data. Data streams are gathered and stored in each LSTM’s set of cell, or system 

modules. The upper line of each cell resembles a transport line that connects from one 

module to another, carrying data from the past and gathering it for the present module. 

Data in each cell can be removed, filtered, or added for the subsequent cell due to the 

work of some gates in each cell. As a result, the cells can choose whether to allow data 

to travel though or dispose of it using the gates, which are based on sigmoidal neural 

network layer. Numbers ranging from 0 to 1 are generated by each sigmoid layer, 

indicating how much of each segment of data should pass through each cell. More 

specifically, a value estimation of zero indicates “let nothing pass though”, whereas a 

value estimation of value of one indicates “let everything pass though”. Each LSTM 

utilize three different types of gates to regulate the state of each cell (Sima Siami- 

Namini, 2018). Following illustrates the three different types of gates. 

• The Forget Gate generates a value between 0 and 1, with 1 indicating 

“completely keep this” and 0 indicating “completely forget this” 

• Memory Gate makes decision to which new data should be stored in the cell. 

First, the “input door layer” of a sigmoid layer selects the value to be adjusted. A 

tanh layer creates a vector of potential a new values to be added to the state 

next. 

• Each cell’s yield is determined by the Output Gate. The cell state, together with 
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filtered and newly added data, will all be variables in the yielded value. 
 
 
 

3.2 Cubic Spline Interpolation 
The basic concept of cubic spline interpolation is based on the tool used by engineers to 

construct curved paths through a collection of points. Weights are attached to flat 

surface at the connection points of this spline. Then a flexible strip is bent across each of 

these weights to create an pleasingly smooth curve. In theory, the mathematical spline is 

similar. In this particular case, the points are numerical data. The coefficients of the cubic 

polynomials used to interpolate the data are weights. These coefficients “bend” the line, 

allowing it to pass through each data point without indicating any unpredictable 

behavior or discontinuities (Sky McKinley, 1998). 
 

The important concept is to fit a piecewise function of the form: 
 

 
𝑆(𝑥) = { 

𝑠1 (𝑥) , 𝑥1 ≤ 𝑥 ≤ 𝑥2 

𝑠2(𝑥), 𝑥2 ≤ 𝑥 ≤ 𝑥3 

 
(20) 

𝑠𝑛−1 (𝑥), 𝑥𝑛−1 ≤ 𝑥 ≤ 𝑥𝑛 

 

 

Where 𝑠𝑖 is a third degree polynomial defined by: 

𝑠𝑖 (𝑥) = 𝑎𝑖 (𝑥 − 𝑥𝑖 )3 + 𝑏𝑖 (𝑥 − 𝑥𝑖 )2 + 𝑐𝑖 (𝑥 − 𝑥𝑖 ) + 𝑑𝑖 (21) 

For 𝑖 = 1, 2, … . . , 𝑛 − 1 

The method relies primarily on the first and second derivatives of these n-1 equations 

which are: 

𝑠′(𝑥) = 3𝑎𝑖(𝑥 − 𝑥𝑖 ) + 2𝑏𝑖(𝑥 − 𝑥𝑖 ) + 𝑐𝑖 (22) 

𝑠′′(𝑥) = 6𝑎𝑖(𝑥 − 𝑥𝑖 ) + 2𝑏𝑖 (23) 

 

For 𝑖 = 1, 2, … , 𝑛 − 1. (Sky McKinley, 1998) 
 

 

3.3 Pearson correlation coefficient 

Assume that the data consist of 𝑛𝑥𝑚 matrix, where 𝑛 represent the number of instances 

and 𝑚 represent number of attributes associated with each instance. Let 𝑋 and 𝑌 

represent instances with 𝑚 characteristics (Ekasit Kijsipongse, 2011). The Pearson 

correlation coefficient, represented as 𝑟𝑥,𝑦 between two occurrences X and Y described 



  𝑖 i 

∑𝑛 

mathematically as follows (Ekasit Kijsipongse, 2011): 
 

𝑚 ̄ ̄ 
∑ (𝑋 −X)(Y −𝑌) 

𝑟𝑥,𝑦 = 𝑖=1  

√∑
𝑚 

(𝑋𝑖−X̄ )2√∑
𝑚 

(𝑌𝑖−�̄� )2 
(24)

 

Where X̄ and �̄� are defined as: 

𝑖=1 𝑖=1 

 

X̄ = 
1 
∑𝑚  

𝑋 
 

(25) 

𝑚 
𝑖=1  𝑖 

 

�̄� = 
1 
∑𝑚  

𝑌 
 

(26) 

𝑚 
𝑖=1  𝑖 

 

The linear relationship between two instances is quantified by the Pearson correlation 

coefficient. 𝑟𝑥,𝑦 value falls between -1 and 1. In the case of two uncorrelated instances, it 

is close to zero. 𝑋 and 𝑌 have a relationship when the value is positive. The correlation is 

stronger the higher the value. 𝑋 and 𝑌 are negatively correlated if 𝑟𝑥,𝑦 has a negative 

value. The correlation matrix, where each element represents the Pearson correlation 

coefficients, 𝑟𝑋,𝑌 of the various instances pairs (𝑋, 𝑌), can be used to express the 

correlation between all pairs of instances. Due to the ability to individually calculate 

each 𝑟𝑋,𝑌, the correlation matrix is very parallelizable. 

 

3.4 Evaluation Metrics 

The Mean Absolute Error (MAE) and Root-Mean-Squared error (RMSE) are two 

standards metrics used in model evaluation (Hodson, 2022). The MAE and RMSE are 
 

𝑀𝐴𝐸 = 
1 
∑
𝑛
 |yi − ˆyi | (27) 

𝑛 𝑖=1 

 
 

1 𝑅𝑀𝑆𝐸 = √ (𝑦 − ȳ )2 (28) 

𝑛 𝑖=1 𝑖 i 

 

The mean squared error (MSE), as its name indicates, is the square root of the RMSE. 

The relative rankings of the models are unaffected by taking the root, but it yields a 

metric with the same units as y serve as a simple representation of the usual or 

“standard” error for normally distributed error.  (Hodson, 2022). The  Root-Mean-Squared error 
always lies between 0 and 1, where  a higher R-squared score indicates  a better model fit. It is 
difficult to provide rules regarding what R-squared should be, as it varies from study to study. R-
squared values of 0.75, 0.50 or 0.25 can be interpreted as rule, where they indicates substantial, 
moderate or weak. (Sarstedt, M., & Mooi, E. (2014,p.211) )



4 METHODOLOGY AND MATERIALS 
 

In this chapter the focus will be on machine learning domain. Where we will aim to develop 

smart models based on data-driven algorithms that can accurately generate predictions 

without the explicit necessity to program them for that objective. It can be seen as training a 

function that maps input variables to output variables. Once the function are defined it can 

be used to generalize the learned behavior and make predictions given a new unseen 

instance of input variables. The data-driven approach depends on historical and existing data 

sets to infer the unknown function based on parametric or non-parametric algorithms. 

(Maddi Etxegarai, 2022). 

In this thesis we propose the use of supervised learning, more specifically regression 

algorithms for the virtual sensor implementation, as illustrated in Figure 2. The proposed 

algorithm relies heavily on labelled datasets providing both input and output variables to 

infer the function. Furthermore, in regression problems, the output variables are continuous 

values instead of the categorical data type required in classification problems. (Maddi 

Etxegarai, 2022) 
 

 
 

 

Cross Industry Standard Process for Data Mining (CRISP-DM) methodology provides 

flexible framework, and it is organized into seven phases as illustrated in figure 3. To 

successfully conduct data-driven projects, it necessary to follow the mentioned 

standardized method to translate business problems into tasks, provide means and 

suggest data transformation for evaluating the process and the final results. As 

illustrated in figure 3 the data mining process is a cycle. Since it is a necessity to go back 

and forth between stages until a valid solution is found and meets the quality criteria. 

(Maddi Etxegarai, 2022) 

Figure 5, Supervised learning paradigm. 



 
Figure 6, Phases of the CRISP-DM process 

 

 

 
 

The Process of CRISP-DM starts with understanding the business requirements, 

perspective and objectives to create a method or a project plan together with the field 

expert. Once the objectives have been established, the initial data are gathered and 

analyzed. This initial analysis can help to detect interesting subsets and identify quality 

problems to enable hidden information. The final datasets will be constructed during 

data preparation phase and used to feed and validate the algorithms. This process 

typically requires a substantial amount of effort since it is the most-time consuming and 

complex phase that produces the training dataset, that generates one of the most 

critical outcomes. This is crucial since data in the field of data science provides as the 

foundation for all solutions, thus it must be dependable and consistent. Data cleaning, 

data scaling, feature selection or feature engineering are some of the common processes 

carried out in this stage and require experience for a successful implementation. (Maddi 

Etxegarai, 2022) 



4.1 Data analytics for WWTP 

The following is an overview of data analytics for wastewater treatment plant. 
 

 
 

The data used in this study is a timeseries dataset and was sent from the HIAS 

wastewater treatment plant. The data contains 8862 wastewater treatment historical 

data points from 1.december 2022 to 

31.January 2023. The data set consist of a decent amount of data with a file size of 1.66 

MB. The data contains a total of 20 columns which is illustrated in table 1. The Dataset 

used in this study is time series dataset, which requires a thoroughly analysis to prepare 

the data for the incoming task. The measurements in the dataset is measured frequently 

and has a frequency of 10 minutes. 

The preparation, processing and model indexes in this study is performed using Excel 

and Python 3.10 Jupyter Notebook, windows 11. Jupyter Notebook is an open-source 

software containing equations, visualization and codes. Data cleaning, data visualization, 

statistical modeling, machine learning and other applications are included in the 

program by calling forth libraries containing and supporting these applications. The data 

set collection was analyzed, selected and prepared into a suitable dataset utilizing the 

program in order to develop a prediction model. 

4.2 Data preparation 
Reviewing the currently available data is essential, as is determining how it relates to the 

work and determining whether it is feasible to source new data that has been acquired 

especially for the intended task. Whether there is enough data to realistically produce 

the necessary machine learning results, also be evaluated. Data sets are frequently of 

Figure 7, Flowchart of data analytics in WWTP using machine learning 



low quality, hence data quality should also be investigated into. Manual data collectors 

could not be very effective and it may arise human errors when assuring data accuracy. 

For instances, default values offered by a system have tendency to be substantially 

overrepresented in the data obtained. There is also a chance that automated data 

collection procedure will produce incomplete data or inaccurate. The precision of a 

measuring instrument may be lower than desirable. (Zahraa Said Abdallah, 2017) 

The process of preparation usually involves many changes and conversions and needs to 

be repeated numerous times. Despite improvements in data processing tools, each of 

those conversions or changes still require a lot of manual work and usually consumes a 

significant amount of effort and time. Working with large data still remains a challenge. 

It is generally acknowledged that data preparations is the most time consuming aspect 

of data analysis. (Zahraa Said Abdallah, 2017) 

To prepare the data for the next task the integration of multiple datasets is required in 

the datamining process. The integration of data from multiple datasets is known as data 

integration. Redundancies and inconsistencies in dataset can be reduced and avoided 

with thorough integration. The efficiency and accuracy of mining process can be 

improved by data integration (Wongburi, 2021). The difficulty with data integration is 

finding ways to align objects and structures from different datasets. In this study, the 

integration of data was done in Excel. There were a total of 3 data sets, where two of 

them are online data variables from the wastewater treatment plant HIAS. The two 

dataset are measurements from December 2022 and January 23, where the frequency is 

10 minutes. December and January where collected into one dataset all together with 

the 3rd dataset which contains data on corrected sCOD values. Since the dataset with 

corrected sCOD values is measured every 5 minutes, it required manually work to get 

the same frequency (10 minutes) for all measurements. 

 

4.3 Data Preprocessing 

The collected treatment data often contain accidental errors and system errors. These 

errors may be caused by the sensor malfunctions. When predicting the output using 

non-preprocessed data it could greatly reduce the prediction accuracy. Therefore is 

preprocessing of data critical step to avoid such issues. Data preprocessing is how the 

data are encoded or transformed to a state that a computer can easily comprehend. 



Preprocessing of data help the computer to understand the data (Wongburi, 2021). The 

following is a summary of data preprocessing steps used in this study. 

1. Data cleaning: 
 

Cleaning data includes several task, such as smoothing noisy data, removing or 

identifying outliers, correcting inconsistencies and filling in missing values. Data which is 

unclean can cause unpredictability for the mining process, resulting in inaccurate output. 

Thus, one of the most crucial methods of data preprocessing is the data cleaning 

process. To identify inconsistencies, noisy data and missing values several approaches 

were used in Jupyter notebook using python 3.10. 

In figure 8 and 9 it is demonstrates missing values for each parameter in the dataset. 

The data set used in this study is collected into one dataset as mentioned. 

December is a month that are heavily effected by holidays, which is taken into 

consideration, since it can create unusual patterns in the data. For example, December 

might have increased organic load, since there is often an increase in food consumption, 

which may result in higher organic load In the wastewater. This could cause spikes in 

parameters, such as chemical oxygen demand (COD). There could also be increase in the 

concentration of certain parameters in the wastewater, due to heavily usage of 

household chemicals. This may result in higher concentrations of parameters, such as 

phosphate, ammonia and nitrate.  

 

The missing values where identified using pandas, to be more specific the isnull.().sum() 

function. The mentioned function is used mainly for detection of missing values. The 

function where used to identify missing values for the time-series dataset, it is also 

noteworthy to mention that under the identification of missing values, was done 

seasonally, as well it was done for the whole dataset to get a better understanding of 

the data and the missing values. As illustrated in figure 8 and 9 you can see there are a 

larger amount of missing values in December. This could be because of the holiday 

season, were some industries may reduce their operations or even 

shutdown the operations during this period. 



 
Figure 9, Amount of missing values in dataset (December)  

 
Figure 10, Amount of missing values in dataset (January)

 

To fill in the missing values several interpolation methods were approached to try to 

create one or more functions to fit the discrete datapoints. Interpolations functions 

such as Linear interpolation, Lagrange interpolation and newton interpolation are used 

to draw the corresponding curves or lines, and also can obtain derivatives of different 

data points by executing derivative functions. By using cubic spline interpolation one can 

fit the data points so as to obtain the derivatives of the points on a smoother curve with 

less error between the actual function and the fit function, therefore in this study cubic 

spline interpolation is selected to calculate and estimate the missing values. Cubic spline 

interpolation can transform the data points of time series into the ones on a smooth 

curve. (Hailin Li, 2014) 

2. Handling outliers 
 

To successfully process data it is necessary to identify potential outliers in the dataset. 

An outlier is another type of data irregularity or inconsistency that requires attention in 

the cleaning process. Data that deviates from the normal distribution of data are 

considered outliers. (Zahraa Said Abdallah, 2017). When analyzing the data outliers may 

appear and can be seen from two different perspectives. Either they might be 

Figure 8, Amount of missing values in the dataset 
(both December and January) 



discovered some interesting elements that could potentially represent significant elements 

in the data or they might only be some glitches that may appear when 

cleaning the data. To get a better understanding of reasoning behind the occurrence of 

outliers and to classify them, one must define what the usual behavior of the data is and 

how significant or different the outliers are relative to the usual behavior of the data 

being processed.  

Figure 12, Visualization of PO4 in effluent (December) 

Figure 11, Visualization of sCOD in effluent (December) 



The process of handling outliers is done using Python 3.10 Jupyter Notebook. Figure 11 

and 12 illustrates irregularity and inconsistency when visualizing the data set. These are 

outliers and might be some glitches that may have appeared when interpolating the 

missing values. This is rather the case, since the usual behavior of the data set and how 

significant the outliers are do not relate to each other. After identifying the outliers one 

can remove them by using pandas to remove the outliers identified. This is done by 

calculating the absolute deviation of each value in the Data Frame from its mean. Then 

we check if the absolute deviation of each value is greater than three times the standard 

deviation of the Data Frame. Thereafter, it is created a mask where values that meet the 

conditions we set are set to NaN, also known as missing values. To fill the missing values in 

the Data Frame forward fill method is used. The forward fill method (ffill) fills the missing 

values with the last non-NaN value in the same column. For now only values forward in 

the Data Frame are handled, by handling the other missing values backwards in the Data 

Frame the backward fill method is used to fill the missing values with the next non-NaN 

value in the same column. This approach to remove outliers is a useful method for dealing 

with excessive values that can be affecting the modeling or analysis.  

 
 
 

3. Data mining 
 

The preprocessed data were used to extract information using a variety of statistical 

methods, such as seaborn pairplot and correlation matrix. Seaborn pairplot is a tool for 

visualizing the pairwise relationship between multiple variables in a dataset. Correlation 

matrix is a table that demonstrates the correlation coefficients between multiple 

variables in a dataset. It provides direction and shows the importance of those 

correlations, And helping in directing further analysis and modelling



 
4.4 Time lag calculation 

Due to dynamic characteristics of the wastewater treatment processes’ multiple flows of 

both water and sludge, there are lags in the time at which the water in the process 

streams reaches different meters (Dong Wang S. T., 2021). The original dataset, though, 

are time series. In order to interpret the machine learning models in terms of WWTP 

processes, the original time-series data must be shifted. To handle this lag in a WWTP 

involves shifting the values of the parameters forward in time by a certain number of 

time steps. This is done to take into consideration the possibility that changes in some 

factors, like influent flowrate or pollutant concentrations, may take some time to filter 

through the treatment flow process and causes changes in the effluent quality. 

By using Python 3.10 in Jupyter notebook, it possible to handle such task by first 

defining the number of time steps to lag the features. In this study, after several 

discussions with supervisor, it was concluded to use a range of 5 to 10 hours, with each 

time step being 6 minutes. Then the shift method in Pandas is used to shift the values of 

the 

parameters/features forward in time by the specified number of time steps. 

 

4.5 Models development 

The development of the proposed models is established using regression models, time- 

series forecasting models and data-driven multi-classification models. The proposed 

approach in this study comprises of 5 different models. Linear regression, Lasso 

regression, Ridge regression, decision tree, GBDT, xgboost and 

LSTM are the models used to predict PO4 in the effluent. After making predictions for all 

5 models, the evaluation of their performance will be executed using evaluation metrics 

proposed in this study, such as mean absolute error, mean squared error and r2. 

Visualizations of the performance will also be implemented utilizing scatter plots to gain 

insights into the performance off the models. 

In this study, the training rate and network structure in wastewater treatment of HIAS 

was analyzed using the parameters presented in table 1. The WWTP online data 

variables presented in table 1 were used as input data in the models, as illustrated in 

    Figure  13. 



 
 
 

Table 1, Parameters from dataset of online measurements. 

Name Name Tag in 
excel  

Unit of 

measurement 

O2 zone 4 O2_sone_4 mg/l 

O2 zone 5 O2_sone_5 mg/l 

O2 zone 6 O2_sone_6 mg/l 

O2 zone 8 O2_sone_8 mg/l 

O2 zone 9 O2_sone_9 mg/l 

Aeration rate zone 4 Mengde_luft_s
one_4 

Nm/h 

Aeration rate zone 5 Mengde_luft_s
one_5   

Nm/h 

Aeration rate zone 6 Mengde_luft_s
one_6 

Nm3/h 

Aeration rate zone 7 Mengde_luft_s
one_7 

Nm3/h 

Aeration rate zone 8 Mengde_luft_s
one_8    

Nm3/h 

Aeration rate zone 9 Mengde_luft_s
one_9 

Nm3/h 

Figure 13, Block diagram of input and output for virtual measurement of PO4 in the effluent 



Aeration rate zone 10 Mengde_luft_s
one_10 

Nm3/h 

Wastewater flow in Vannmengde_i
nn_linje_1 

l/s 

NO2 zone 7 NO2_sone_7_li
nje_1   

mg/l 

NO3 inlet NO3_inn_bio mg/l 

SCOD inlet sCOD_korrigert       mg/l 

Suspended solids out SS_ut_bio mg/l 

Suspended solids 

after disc filter 

SS_ut_diskfilter   mg/l 

PO4 in the effluent PO4_ut_diskfilt
er 

mg/l 

 
 

4.5.1 Regression 

In this section we’ll go through the development of the predictive models for the PO4 

effluent using linear regression, Lasso regression and Ridge regression. Since the target 

value is PO4 in the effluent, the data of PO4 was initially preprocessed to remove it 

from the dataset. The PO4 effluent variables was assigned to the y variable, whereas 

the 

remaining variables were assigned to the X variables. Y variable, also known as 

dependent variable (output) can be seen as the state, target pr final goal we study and 

try to predict. X variable or the independent variable (input) can be seen as the cause of 

those states. Thereafter the data was split into training and testing sets using a 80/20 

split. The random state parameter was set to 42 for reproducibility and consistency. 

In this analysis, the three regression models as mentioned above were developed. The 

development of these models utilized the features of sklearn library. The following 

subsection describe the model development process for each regression model. 

1) Linear regression: 
 

Linear regression is a commonly used method for predicting continuous variables. It 

works by finding a linear relationship between the input features and the output 

variable, allowing the algorithm to make predictions for new data points. The model was 



developed using sklearn’s LinearRegression function. The model was then trained using 

fit method with the training set of data. During the training, the model learned the 

weights for each feature that best predicted the output variable. Once the model was 

trained, the predict method was used to make predictions on the testing data. 

Evaluation metrics, such as means squared error and R-squared were used to evaluate 

the performance of the linear regression model. The R2 evaluate how well the model fits 



the data in comparison to a simple average of the target variable, while MSE evaluate 

the average squared difference between the predicted variable and actual values. These 

metrics provide a measure of how well the model is able to generalize to new data. 

2) Lasso regression: 
 

Lasso regression is a type of linear regression that performs both feature selection and 

regularization by reducing the coefficients of the less important features to zero. When 

dealing with high-dimensional data, it is practically useful, since it can help prevent 

overfitting and improve the models generalization performance. In this study, Lasso 

regression was used to predict PO4 in the effluent. To develop the model, sklearn 

library was also used here. The fit method, which identifies the coefficient that 

reduce the sum of squared error between predicted value and actual values, was 

used to train the model on the training data. Once the model has been trained, it was 

used to predict the values of PO4 variable for the testing data using the predict 

method. The performance of the model was also evaluated by using the same 

metrics, such as MSE and R2. These metrics indicates how well the model correlates 

with the data and can be used to compare how well various models perform. 

3) Ridge regression: 
 

Ridge regression is also a type of linear regression that use L2 regularization, which is 

mentioned in chapter 3. It uses L2 regularization to prevent overfitting. It works by 

reducing the variable coefficients closer to zero, which improves the variance of the 

model. In contrast to Lasso regression, Ridge regression decreases each coefficients in 

the direction of zero rather than setting any to zero. Ridge regression model was 

developed to predict the PO4 in the effluent. The model was also developed by using 

sklearn’s Ridge function. The model was fit to the training data using the fit method. 

Once the model fitted, the predict method was applied in order to generate prediction 

for the testing data. The evaluation for this method is similar to the previous ones. 

 

4.5.2 Data-driven multi-classification 

Data-driven multi-classification is widely used method in data science, where the aim is 

to predict the class label of a sample based on its features. In many real-world scenarios, 

in this case prediction of the effluent of PO4 in HIAS wastewater treatment plant, it is 

needed to predict multiple class labels for a given input, which is known as multiclass- 



classification. In this study it is investigated various methods to develop data-driven 

multiclass classification models for the prediction of PO4 in the efluent, such as decision 

tree, gradient boosting and XGBoost. These algorithms have illustrated in literature 

promising results in predicting class labels accurately. To decide which algorithm 

provides the best results for the data set given, evaluation of each methods 

performances will be compared with the methods used in this study. 

To develop the data-driven multi-class classification models, we will be using the same 

dataset as in the linear regression. The train_split function from sklearn will also be 

utilized for splitting the dataset into training and testing sets. Once the dataset is split, 

the three different algorithms presented below will be used to train our models on the 

training set. The trained models will then be used to make predictions on the testing set 

and evaluated using the same evaluation metrics used for regression. The objective is to 

determine the algorithm that performs the best in terms of efficiency and accuracy for 

predicting the labels of PO4 in the time series dataset. 

 

 
1) Decision Tree: 

 

For the decision tree model, the DecisionTreeRegressor function from sklearn library will 

be used. The decision tree has internal nodes that represents a decision on a 

feature, each branch indicates the decision’s outcome, and each leaf node represents a 

prediction for the target variable, which is also described in chapter 3. Decision trees are 

a sort of algorithm that generates a tree like model of decisions. For the development of 

this model the DecisionTreeRegressor function will be used to fit the model to the 

training set. During this process, the algorithm will search for the optimal set of decision 

rules that will result in the most accurate predictions of the target variable. Once the 

model is fit to the training data, it will be used to make predictions on the testing data 

using the predict method. This allow us to evaluate the performance of the model and 

determine its accuracy in predicting the target variable for new data points. To evaluate 

the effectiveness of the decision tree model, evaluation metrics proposed in this study 

will be used to compare the predicted class labels to the actual class labels in the testing 

data. 



2) Gradient boosting decision tree (GBDT): 
 

For the GBDT model, the GradientBoostRegressor function from sklearn library will be 

utilized. A prediction is made using the ensemble learning method of gradient 

boosting by combining several decision trees. It functions by developing each tree one at 

a time, with each new tree attempting to correct the errors produced by the previous 

trees. According to literature this creates an accurate prediction model that can handle 

complex datasets. To develop the gradient boosting model for our data-driven multi- 

class classification problem, a similar methodology for decision tree model will be used. 

Using the sklearn library and the train_test_split function, we have to split the 

dataset into training and testing sets. The model will then be fitted to the training set of 

data utilizing GradientBoostingRegressor function. This includes developing multiple 

decision trees repeatedly and minimizing the loss function, which evaluates the 

difference between the predicted values and actual values of the target variable, in this 

case PO4 in the effluent. Using the same method for evaluation, the predict method will 

be utilized to make the predictions on the testing data once it has fitted to the training 

data. This allows evaluation of the model’s performance and evaluation of its accuracy in 

predicting the target variable for new data points. 

3) XGBoost: 
 

For the XGBoost model, similar approach as the previous model will be utilized as well. 

Were XGBRegressor function will be used from the XGBoost library, which is a gradient 

boosting framework. In contrast to conventional gradient boosting, XGBoost minimizes 

overfitting with a more regularized model formalization, which can improve the 

performance. The development of the XGBoost model has the same structure as 

decision tree model and GBDT model, were the sklearn’s train_test_split function will 

be used again to split the data into training and test sets. The model will then be fitted 

to the training data through the XGBRegressor function. This will include 

optimizing a loss function to minimize errors between the predicted values and actual 

values. When the model is fit to the training data, the predict method will be used to 

make predictions on the testing data. As stated previously this will allow evaluation of 

the model’s performance and evaluate its accuracy in predicting the target variable for 

new data points. 



4.5.3 LSTM 

In this chapter the methodology used to develop an LSMT model for time series 

forecasting, will be discussed. The LSTM model is an effective tool for 

predicting/forecasting time series data, and its ability to model long-term dependencies 

makes it suitable for this research goal. The objective is to develop a model using 

historical data to accurately predict future values of PO4 in the effluent. In order to 

develop such a model, various steps will be involved, such as data preprocessing, model 

architecture, training/test, and evaluation. 

The development of the LSTM model for time series forecasting/predictions, Keras 

library, which is a deep learning library in python will be used. Further it necessary to 

preprocess the data and split the it into training and test sets with the train_test_split 

function available from the sklearn library. This will allow us to avoid overfitting and 

evaluate the model’s performance on unseen and new data. 

To ensure that the LSTM model is able to learn from the input data, it is required to 

apply feature scaling. This is done by utilizing the StandardScaler function from sklearn 

library. For models that rely on gradient-based optimization methods such as the one 

utilized in this study, the scaling technique will help to standardize the range of 

features. After scaling the data, it was reshaped into a three-dimensional array that fit 

the input shape requirements of LSTM model. The data was reshaped specifically to 

have 𝑛 features and 11 time steps. The LSTM model takes in a sequence of past values as 

in input and learns to predict future values based on those inputs. We were able to 

provide the LSTM with the information it required to accurately forecast/predict future 

values of the target by preparing the data in this manner. 

Following that, we proceed to the development of the LSTM model by utilizing the Keras 

Library. The model architecture is comprised of two LSTM layers, each 256 units, which 

also included a dropout layer to reduce overfitting and a dense layer to generate the 

predicted value. The complexity of the model and its ability to recognize patterns in the 

input data is usually depending on the number of units in the LSTM layer. In broad terms 

increasing the number of units allows the model to learn more complex representations 

of the input data, but it also increases the risk of overfitting. Therefore is the dropout 

layer included in the development of this model. The choice of units used in each LSTM 



layer in this study is based on literature and visual demonstrations regarding this field. 

256 is frequently used value that has been shown to perform well for a variety of 

applications, including time series prediction/forecasting (XIN LIU, 2021). 

To compile the model, the mean squared error loss function and Adam optimizer is used. 

Mean squared error loss function measures the averaged squared difference between 

the predicted and actual value. The Adam optimizer is an effective stochastic gradient 

descent algorithm that can handle large datasets. It is also implemented early stopping 

to improve training efficiency and prevent overfitting. This method monitors the 

validation loss while training and interrupts the process if it fails to improve over a 

certain number of epochs (XIN LIU, 2021). 
 

To train the model, the same approach used for the other models is used for this model 

as well, were the data is split into testing and validation sets using the train_test_split 

function obtained from the sklearn library. 80% of data were utilized for training and 

20% were used for validation. Under the training process, the fit method from Keras was 

used to train the model on the training data and monitor the validation loss to avoid 

overfitting. Early stopping then was implemented to interrupt the training when the 

validation loss did not improve for five continuous epochs. After the training is done, the 

performance of model will be evaluated using the same evaluation metrics is proposed 

in this study, but to evaluate the performance of the model, the function evaluate(), 

which is obtained from the Keras library will be utilized instead. 

 

 
5 Results 

The findings of our research of time series prediction of PO4 in the effluent utilizing various 

machine learning models are presented in this chapter. Firstly we start by discussing the data 

preprocessing methods that were applied to prepare the data for modelling. Further the 

performance of several kinds of regression models, decision Tree, 

GBDT, XGBoost, LSTM is then evaluated. For each model it will be presented the 

evaluation metrics score used in this study, which are MSE, MAE and R2. In addition to this, 

visualization of the predicted value and actual value will be illustrated to better 

understand the performance of each model. By analyzing and comparing the results, the 

research aim is to identify the most effective model for predicting future values in the 



time series dataset provided by HIAS. 

 

5.1 Data Preprocessing 

In order to prepare dataset for analysis for, several data preprocessing steps, were 

utilized as described in chapter 4. This needed several tasks, such as getting rid of 

missing values, smoothing noisy data, identifying and removing outliers. It is necessary 

to keep in mind that unclean data can have significant effect on the results of the mining 

process, which can lead to inaccurate output. To assure the quality and accuracy of the 

results of the analysis. Data cleaning is therefore an essential step in the data 

preprocessing process. To identify the missing values we utilized python 3.10 and 

Jupyter Notebook. The cubic spline interpolation method was used to identify and fill in 

missing values using Pandas library as illustrated in figure 13. 

 

 

After handling the missing values, it is crucial to identify potential outliers in the dataset. 

To identify outliers, we visualized the dataset and noticed inconsistence and irregularity, 

which was displayed in figure 11 and 12. By using Pandas library the outliers was removed. 

Figure 14 and 15 illustrates the results of handled outliers. 

 

Figure 14, Display of the NaN values 
handled 

Figure 15, PO4 effluent visualization after outliers are handled 



 
Figure 16, sCOD handled outliers 

  
Next, correlation matrix was created. The correlation matrix provided a table of correlation 

coefficients between multiple parameters in the dataset. The correlation matrix allowed us to identify 

which parameters were highly correlated to each other, which parameters were not, and which 

parameters had a negative or weak correlation. The correlation was further visualized as a heatmap, 

where red indicates positive and high correlation, blue indicates negative and weak correlation, and 

colors between indicates no correlates between the parameters, which is also displayed in figure 16. 

The correlation matrix heatmap, enabled us to extract information to identify the most relevant 

parameters for the analysis and modeling executed in this study.

Figure 17, Correlation Matrix heatmap 



 

In addition to the correlation matrix, a pairplot was also created with to visualize the pairwise correlation 

between the parameters in the dataset. The pairplot allowed us to study how different the parameters were 

correlated with each other, and to see whether there are any interesting correlation between the parameters. 

From the pairplot it was observed that some parameters had high positive correlations with each other and 

others had negative correlation. A visualization of every pairwise correlation between the parameters used in 

this study are illustrated in figure 17.  

 

 
Figure 18, Seaborn pairplot 

 
 
 
 
 



5.2 Regression 

In this section, the results of regression predictive models for predicting the PO4 effluent are 

displayed. These model’s objective is to accurately predict the PO4 in the effluent based on the 

other parameters. There were several experiments conducted, but it is worth nothing that the 

results displayed in table 2 are the best ones.  

 

           Table 2, Evaluation score of each metrics for regression 

 
Regression 

 
R2 

 
MAE 

 
MSE 

 
Linear 1 

 
  0.3642 

 
0.0702 

 
0.0137 

 
Lasso 1 

 
  0.0832 

 
  0.0802 

 
0.0198 

 
Ridge 1 

 
  0.3644 

 
  0.0701 

 
0.0137 

 
Linear 2 

 
0.5275 

 
0.1198 

 
0.0756 

Lasso 2   0.0155   0.1322   0.1576 

Ridge 2   0.5275   0.1197   0.0756 

  

 

Linear 1 achieved an R2 score of 0.36, MAE score of 0.07 and an MSE score of 0.014, as demonstrated 

in table 2. Linear 2 performed better on  the second attempt, with an R2 score of 0.527, MAE score of 

0.119 and an MSE score of 0.075. These results demonstrates that linear 2 was able to capture a 

larger proportion of the variation in the PO4 effluent and created a more accurate prediction 

compared to Linear 1.  

Next, the predictive performance of the Lasso regression models (Lasso 1 and Lasso 2)was evaluated. 

The results of Lasso 1 and Lasso 2 are shown in table2, where Lasso 1 displays R2 score of 0.0832, 

MAE score of 0.0802 and an MSE score of 0.0198. However, Lasso 2 displayed a decrease in 

performance, obtaining an R2 score of 0.0155, MAE score of 0.1198 and an MSE score of 0.1576. 

These results show that the Lasso regression models encountered challenges in capturing the 

correlations between the input variables and the PO4 effluent. The Lasso regression models were 

unable to produce satisfactory results in this setting, demonstrated by the relatively low R2 score and 

higher MAE and MSE scores.  

 

 



Lastly for regression models, the predictive performance of Ridge regression model was evaluated. 

Ridge 1 displays an R2 score of 0.0364, MAE score of 0.0701, and an MSE score of 0.0137. Ridge 

performance achieved a R2 score of 0.5275, MAE score of 0.01197 and an MSE score of 0.0756. 

Displayed in table 2, the results of Ridge performed similarly to the linear regression model, but an 

important observation  is that Linear 2 and Ridge 2 showed improved performance compared to 

Linear 1 and Ridge 1.  

Additionally to the evaluation scores, scatter plots of the regression models for both attempts are 

presented. The scatter plots visualize the correlation between the predicted values and the actual 

values of PO4 effluent for each model. The more linear the data points are, the better the prediction 

of the model are. Linear 1, Lasso 1 and Ridge 1 are displayed below: 

 

Figure 19, Scatter plots of Linear 1 

 

  
Figure 20, Scatter plots of Lasso 1 

 
 
 
 



 
 
 
 

 

Figure 21, Scatter plots of Ridge1 

 

The scatter plots demonstrates a somewhat good fit for the Linear and Ridge regression models , with 

the predicted  values being relatively near the actual values. On the other had  the Lasso regression  

model shows a poor fit , a wide  spread of data points. In the scatter plots, there are some vertical 

lines that deviates from the values and do not follow the general pattern of data, which indicating 

outliers.  

The scatter plots for each model for the second attempt are displayed below:  

 

Figure 22, Scatter plots of Linear 2 



 

  
Figure 23, Scatter plots of Lasso 2 

 

 

  

Figure 24, Scatter plots of Ridge 2 

 

The Scatter plots for the second  attempt demonstrates an improvement  in the predictions accuracy, 

compared to the first attempt, where the Linear and Ridge  regression models displays a better fit, with the 

predicted values nearer to the actual values. However, the scatter plots of Lasso regression model displays a 

poor fit, with a clear underprediction of the target variable.  

 

 

 



5.3 Data driven multi-class classification 

 
In this study, Data driven multi-class classification models was also evaluated to see if it accurately can 

predict PO4 effluent using the same parameters, and a similar approach used for the regression 

models was used for DT and GBDT models. Several experiments were conducted to evaluate the 

performance of the DT model and GBDT model. However, note that the result presented in table 3 

represent  the best performance achieved in this study as well.   

Table 3, Evaluation score of each metrics for Classification 

 

 

 

 

 

 

 

 

 

 

DT 1 achieved  an R2 score of 0.708, MAE score of 0.0310 and an MSE score of 0.0063. GBDT 1 

performed better, with an R2 score of 0.757, MSE score of 0.058 and MSE score of 0.0096.  For DT 2 

and GBDT 2, we see an increase in performance, where  DT 2 displays an R2 score of 0.736, MSE score 

of 0.040 and MSE score of 0.042. However,  for the second  attempt , GBDT achieved a significant 

increase in performance with an R2 score of 0.869, MAE  score of 0.059 and MSE score of 0.020 and 

outperformed the DT model. Overall the result  displays that both DT and GBDT models shows  

promise to develop accurate data-driven multi-class classification models for predicting the PO4 

effluent.  

Next, the results for the XGBoost was also displayed in table 3, since it provided a decent result. Only 

one attempt is displayed, because the others attempts neither showed increase or decrease in 

performance. The XGBoost model achieved an R2 score of 0.567, MSE score of 0.058 and MSE score of 

0.0096. The result demonstrates that the XGBoost showed a moderate performance in predicting the 

labels of the PO4 effluent variables.  

 

 

 

 

 

 
Classification 

 
R2 

 
MAE 

 
MSE 

 
DT 1 

 
0.708 

 
0.0310 

 
0.0063 

 
 GBDT 1 

 
  0.757 

 
  0.0459 

 
  0.0052 

 
 XGBoost  

 
  0.567 

 
  0.058 

 
  0.0096 

 
DT 2 

 
0.736 

 
0.040 

 
0.042 

 
  GBDT 2 

 
  0.869 

 
  0.059 

 
 0.020 



In addition to the evaluation scores, the scatter plots are also presented in this section to visualize the 

correlation between the predicted values and the actual values of PO4 effluent. Scatter plot of DT, 

GBDT and XGBoost are all displayed below:  

 

Figure 25, Scatter plots of DT 1 

The scatter plot for DT 1 displays a clear correlation between the predicted values and the actual values of PO4 

effluent values and a somewhat linear line. Where the scatter plot shows a satisfactory level of prediction 

accuracy for the model.  

 

  
Figure 26, Scatter plots of GBDT 1 

The scatter plot of GBDT 1 displays a better result, where it demonstrates a good fit and better 

alignment of the predicted values and actual values. Compared to DT 1, this shows an improved 

accuracy in the predictions.  

 



 
Figure 27, Scatter plot of DT 2 

DT 2 also demonstrates how well the model fits the data. Since the R2 score of DT 2 is on a 

satisfactory level and shows a strong alignment of the predicted values and actual values, which is 

indicating a high level of accuracy in the model’s prediction.  

 

Figure 28, Scatter plot of GBDT 2 

GBDT 2 demonstrates great improvement in the model’s performance, where the R2 score and the 

scatter plot illustrates a better fit to the data and a stronger predictive capability.  



 

Figure 29, Scatter plot of XGBoost 

The scatter plot of XGBoost model displays a decent alignment between the predicted values and the 

actual values, which demonstrates a moderate level of accuracy in the prediction of the model.  

 

Figure 30, Display of parameters importance in the prediction of XGBoost model. 

  

  

 

 

 

 

 



5.4 LSTM 

LSTM was the last model conducted to observe if it was able to predict the PO4 effluent based on a 

time series dataset. Therefore, in this section the results of LSTM predictive model are displayed. 

There were several experiments conducted, but only the best result is worth displaying. The results 

are displayed on table 4.  

 

Table 4, Evaluation score of each metrics for LSTM 

 

 

 

 

 

 

The  results displayed how effective the LSTM model is in predicting values  of PO4 in the effluent. The 

first attempt  illustrated in table 1, shows that the model achieved an R2 score of 0.8678. Based on 

the R2 score the model is indicating a satisfactory level of accuracy and the ability to capture the  

patterns and trends in the data. The models also achieved  an MAE score of 0.0322 and MSE score of 

0.0534, where the score of MAE illustrates a reasonable average deviation between  the predicted 

values and the actual values. On the other hand, the MSE is indicating reduction in the overall squared 

difference between the actual and predicted values.  

 

Attempt 2 displays  an experiment with further training of the same model. Attempt 2 showed 

improved performance compared to Attempt 1, where R2 score increased to 0.9259 and 

demonstrates high level accuracy in capturing  patterns and trends of the data.  The MAE decreased 

to 0.00223 and shows a reduction of average deviation between predicted values and actual values. 

The MSE also shows a decrease, where the core is 0.0399 indicating  more reduction in the overall 

squared difference between actual and predicted values. Scatter plots  is also utilized for LSTM to 

visualize the alignment between predicted values and actual values of PO4 in the effluent.  
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Figure 31, Scatter plot of Attempt 1 (LSTM) 

The scatter plot for Attempt 1 displays the predicted values plotted against the actual values of PO4 in 

the effluent. The scatter plots demonstrates a great sequence  between the predicted values and the 

actual values, which indicates a high satisfactory level of accuracy in the model’s prediction .  

 

Figure 32, Scatter plot of Attempt 2 (LSTM) 

For the Attempt 2 the scatter plot also displays how well the predicted values are plotted against the 

actual values of PO4 effluent. Attempt 2 demonstrates an even better sequence between the 

predicted values and the actual values, which suggest an improved performance of the model 

predictions compared to Attempt 1. 



 

Figure 33, Display of Model Loss of Attempt 1 (LSTM) 

In addition to the scatter plots and evaluation of the performance of the LSTM model, the model loss 

was also displayed. Figure 34 demonstrates the Train and Validation Loss throughout the training 

process. The Train loss curve illustrates the model’s ability to fit the training data over  consecutive 

epochs. As displayed in figure 34 the Train Loss curve starts with a higher value as the model begins 

learning and adjusting to the parameters. As the training continues, the Curve gradually decreases, 

which indicates that the model is improving its predictive  performance on the training set. 

 

The Validation Loss curve, on the other hand, gives an estimate of how well the model performs on 

unseen data. As displayed in the figure above, the validation loss follows a similar decreasing trend as 

the Train Loss curve. There are few increase in the trend, which may indicate that model is overfitting 

to the training data.  

 

Figure 34, Display of Model Loss of Attempt 2 (LSTM) 



The Model Loss of Attempt 2 demonstrates something similar to Attempt 1, where the decreasing 

trend of both Train and Validation Loss is even greater in figure 34. There are also some few increase 

in the trend, which also indicates overfitting.  

 

6 Discussion  
 

The objective of this study was to predict the PO4 concentration in the effluent of HIAS wastewater 

treatment plant using various machine learning models. In this chapter the effectiveness and performance of 

the three different regression models are proposed in this study. Additionally, the data driven multi-class 

classification methods are explored for predicting PO4 concentration in the effluent and lastly, the 

investigation of the LSTM model, for predicting the same target parameter will all be discussed. The 

performance of these models are evaluated to gain insight into their strengths, weaknesses and to see if 

there are any notable differences in accurately predicting the PO4 in the effluent. Through this chapter, we 

aim to identify the most suitable model for predicting the PO4 concentration in the effluent based on time 

series dataset.  

 

6.1 Regression  

 
Linear, Lasso and Ridge regression models were all evaluated based on their performance in Predicting PO4, 

utilizing the evaluation metrics. The Result based on table 2 showed that Linear 2 and Ridge 2 had the best 

performance accuracy when predicting PO4 in the effluent. Both Linear 2 and Ridge 2 achieved an R2 score of 

0.5275, MAE score of 0.1198 and MSE score of 0.075, which are decent. Since the R2 score ranges from 0 to 

1, where 0 indicates poor fit and the model does not explain any the variance in the target variable, 1 on the 

other hand indicates a perfect fit. Therefore we want to achieve a relative high R2 score to know whether the 

model to the data is a good fit. An R2 score of 0.75 indicates a great or substantial fit, an R2 score of 0.50 

indicates a moderate fit, anything under is considered weak. Since Linear 2 and Ridge 2 demonstrates a 

relatively moderate fit, it suggest that Linear and Ridge regression is capturing a sizeable percentage of the 

variation in the PO4 effluent based on the parameters used in this study. It also suggest that there are still 

some variations in the sequence that are unexplained and influenced by factors not included in the model, 

which may be the reason that the accuracy of the prediction is not on a satisfactory level. It is worth noting 

that the R2 score of 0.5275 is our best result for Linear and Ridge. In our first attempt we achieved an R2 

score of 0.364, which is below moderate. The increase in score happened after training the model several 

times, which allows them to learn from data and make adjustments to the provided parameters. A thought, is 

that during the first attempt, model was not able to capture the patterns in the data, and is the reason for 

the weak score.  



Lasso 1 and Lasso 2, however demonstrates a very poor and weak fit, where the R2 score is 0.0832 and 

0.0155. These result indicates that they were unable to capture the correlation between the input 

parameters and the PO4 concentration in the effluent. The fact Linear and Ridge regression were able to 

capture non-linear correlations between the input parameters and the target parameter may be one 

explanation for their stronger performance. The reason for this may be because these models utilized 

regularization methods to prevent overfitting, while the Lasso regression model may have removed 

important parameters from the model due to their L1 regularization penalty and also may struggle when 

correlations are complex. Over all Linear and Ridge Regression models demonstrated better performance 

than Lasso regression in predicting the PO4 concentration In the effluent.  

 

6.2 Data driven multi-class classification 

 
When comparing the performance of DT and GBDT models, it is apparent that both models demonstrate 

potential in developing accurate data-driven multi-class classification models for predicting PO4 in the 

effluent. DT 1 displayed a R2 score of 0.708, on the other hand GBDT achieved an R2 score of 0.757. Both DT 

1 and  GBDT demonstrates a moderate fit of the model, where they was successfully able to capture a larger 

proportion of the variation in the PO4 effluent. Even if they both demonstrated good results, GBDT 1 

outperformed DT 1, which indicates that GBDT is able to capture an even bigger proportion of the variation in 

the PO4 effluent and generates more precise predictions compared to DT 1. In the second attempts, notable 

improvements in performance was observed for both DT 2 and GBDT 2 models and demonstrated an 

enhanced predictive ability compared to the previous attempts. However, It is worth nothing that GBDT 2 

showcased significant improvements and outperformed the other attempts with an R2 score of 0.869. These 

results imply that GBDT model is capable to identify the underlying correlations and patterns in time-series 

data, which provides more accurate predictions of the PO4 concentration in the effluent. Nevertheless, the 

XGBoost model displayed a moderate performance where it only achieved an R2 score of 0.567 when 

predicting the labels of the PO4 effluent variables. The XGBoost model was able to provide a decent accurate 

prediction, but it did not achieve the same level of performance as the GBDT model.  

 

The DT model has notable strengths in terms of simplicity and comprehension. The decision making process is 

simple to comprehend and visualized, which is beneficial for gaining insights about the predictive factors for 

the PO4 effluent. The risk of overfitting with DT models must, however, be taken into consideration, 

especially when the three depth is not well controlled. Overfitting can lead to excessively complex models 

that may not generalize well to new data. Therefore to reduce the risk of overfitting in DT models, careful 

parameter tuning and regularization methods are necessary. GBDT model, in contrast display significant  

abilities to handle  complex correlations and identify non-linear patterns in the data. The iterative nature of 



GBDT allows it to correct errors made by  previous trees, resulting in increased overall performance. 

However, due to sequential nature of tree construction, it is important to consider that GBDT models can be 

computational demanding, especially when dealing with large datasets. Furthermore, without a proper 

regularization methods, GBDT can be vulnerable to overfitting, which could reduce the generalization ability. 

As a result, careful regularization and tuning of hyperparameters are important to balance between the 

performance in GBDT models and model complexity. Fortunately, the GradientBoostingRegressor library 

available in python solve majority of this.  

 

In this  study, the XGBoost model demonstrated a moderate level of accuracy in predicting the PO4 

concentration in the effluent. While XGBoost has attributes such as scalability, efficiency and the ability to 

handle large datasets, its performance fell short compared to LSTM, DT and GBDT. There could be several 

reasons for the poor performance of XGBoost in this study, such as insufficient hyperparameter tuning and 

optimizers. The XGBoost model requires careful hyperparameter tuning to achieve optimal performance. One 

possibility in this study, may be that they were not finely tuned, which resulted to the moderate performance 

of XGBoost. Further experimenting and investigation with different combinations of hyperparameters and 

optimizers could potentially improve the model’s performance.  

 

6.3 LSTM  
 

The LSTM model utilized in this study demonstrated significant promise in accurately predicting the PO4 

concentration in the effluent based on the time series dataset, where in Attempt 1 we achieved an R2 score 

of 0.868 and achieved an R2 score of 0.926 in Attempt 2. If we follow the benchmark set for the R2 score 

proposed in this study, they both demonstrates substantial and excellent model fit, where 1 indicates perfect 

model fit. Specifically notable was the improvement noticed in Attempt 2 compared to Attempt 1, 

demonstrating the model’s ability to identify complex patterns and trends in data. One of the advantages of 

the LSTM model is its ability to handle time-series data by considering temporal dependencies. The 

improvement achieved can be because to the iterative training process used for the LSTM model. The model 

obtains the ability to identify and make use of the temporal patterns present in the data by being trained 

multiple times. The iterative training allows the LSTM model to improve its internal representations and 

identify dependencies over time. As a result, the model becomes better at comprehending the complex 

correlations and patterns of the time-series dataset, which improved its ability to predict the PO4 

concentrations in the effluent accurately.  

 

Sequential the data must be incorporated by the model in order to accurately estimate the PO4 in the 

effluent, which is enabled by the recurrent architecture. By identifying long-term dependencies, the LSTM 



model can effectively learn and understand the underlying patterns in the data. However, like any model, the 

LSTM model also has its weaknesses. One important consideration is necessary to optimize the model to 

fullest, where it requires rigorous parameter tuning. Selecting suitable hyperparameters, such as the number 

of LSTM layers, the learning rate, number of hidden units, is all essential for achieving optimal performance. 

Since the accuracy of the model’s prediction can be affected by unsuitable parameter selection, which can 

result in overfitting or underfitting. Furthermore, the LSTM model can be computationally demanding, 

especially when working with large datasets. The model is computationally more demanding than other 

models due to its recurrent nature and the requirement to convey information over multiple steps. 

Therefore, it is important to implement and assign computational resources in order to effectively train LSTM 

models. In our LSTM model various computational resources was utilized to handle the complexity, such as  

StandardScaler function from sklearn library, Reshaping and optimizers like Adam, which are all described in 

chapter 4.5.3.  

 

6.4 Outliers 

 
In the investigation of scatter plots for regression, data-driven multi-class classification and LSTM model, we 

were able to observe sudden vertical lines of data points that was spread away from the rest of the scatter 

plot. After further examination, this random vertical line of data points can indicate outliers that may have 

appeared in the model’s predictions. The appearance of outliers can have several effects on the model. One 

potential reason for the appearance of outliers may be caused under the prediction of PO4, where a sample 

of data frequently deviates in its predictions. These deviations could develop from errors in the data 

collection or patterns  in the dataset that the model fails to identify accurately. The effectiveness of the 

model and the accuracy of its predictions can be affected by the presence of outliers or in this case a clear 

vertical line in the scatter plot. Outliers may have an effect on the models’ fitting process, which could result 

in inaccurate predictions and biased estimates. For the model to be robust and generalizable, these outliers 

must be identified and dealt with. Therefore , further investigation into the causes of these outliers and the 

development of robust outlier detection and handling methods are recommended, where the removal of 

outlier could improve the model’s accuracy and ensure more reliable predictions.  

 

 

 

 

 

 

 



 

 

7 Further work  
 
Although the research in this study has proved valuable insights into predicting the PO4 concentration in the 

effluent using different machine learning models, there are still several areas that need further research and 

development. To improve the findings and open up new areas for investigation, the following suggestions are 

presented below:  

 

1. Feature selection: Predefined Parameters were used as inputs in this model. However, investigating 

which parameters could optimize the prediction accuracy, since having to many features may lead to 

overfitting. Feature selection overall could help to remove redundant or irrelevant features that may 

negatively affect the model’s performance.  Feature selection methods could be applied to identify 

the most informative features for prediction.  

 

2. Hybrid Model: Investigating potential hybrid models that could work together with different machine 

learning models could be a research for further work. For example, combining MPC model with LSTM 

model, where the integration of these two models could potentially enhance the accuracy and control 

the abilities of the system.  

 
3. Separate the Dataset: In this study, the dataset use for analysis consist of December and January. 

December have some unique challenges due to the potential factors and missing values that affect 

variables in a wastewater treatment plant. Factors, such as the industrial activities during the holiday 

season, change in water usage pattern,  weather conditions, increased organic loads etc. are 

commonly observed during this month. By predicting each month individually, the model can capture 

these seasonal patterns more accurately, which may result in improved predictions. The months have 

their characteristics, and modeling them separately allows better understanding of the underlying 

dynamics.   

 
 

 

 

 

 

 

 



8 Conclusion  
 
 

In this study, we investigated various machine learning models for predicting the PO4 concentration in the 

effluent of a wastewater treatment plant. Regression model, such as Linear, Lasso and Ridge were evaluated, 

where Linear and Ridge demonstrated the best performance among the regression models achieving a 

moderate fit with an R2 score of 0.5275. Lasso showed weak performance, suggesting that its L1 

regularization penalty may have removed important parameters from the model. Data driven multi-class 

classification models (DT and GBDT ) were also evaluated, where GBDT outperformed the other classification 

models, with an R2 score of 0.869, indicating a good fit. The XGBoost on the other hand demonstrated a 

moderate accuracy compared to other classification models, highlighting the need for careful 

hyperparameter. The LSTM model displayed significant promise in accurately predicting the PO4 in the 

effluent based on time-series dataset. It achieved an substantial or excellent fit with R2 score of 0.926. The 

LSTM model’s ability to capture temporal dependencies and identify complex pattern in time-series data 

contributed to its improved predictive ability.  

 

It is important to note that outliers were observed in the scatter plots of the regression, classification and 

LSTM models. These outliers could affect the model’s accuracy and prediction abilities. Therefore, to increase 

the accuracy of the model’s predictions, further investigation into what causes the outliers is suggested as 

well as the development of robust outlier detection.  

 

In conclusion, the LSTM model proved to be the most suitable and effective model for predicting the PO4 

concentration in the effluent of the wastewater treatment plant, considering the complex environment and 

the time-series nature of the data. Its ability to capture complex correlations, handle temporal dependencies 

and identify patterns made it dependable choice for accurate predictions.  
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APPENDIX 
 

The  appendix for this study are available as a separate zip file. The zip file contains materials, such as code 

files and its results for all the models. The code files included in the appendix can be opened and executed in 

Jupyter Notebook. Please refer to the provided zip file for the complete set of appendices with this study. 













 


