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Abstract

Early detection and diagnosis of Autism Spectrum Disorder (ASD) is
crucial for effective intervention and improved outcomes. Eye-tracking
technology offers a non-invasive and objective method for detecting autism
symptoms, as individuals with ASD often exhibit distinct gaze patterns.
In this study, we aim to use eye-tracking data to distinguish individuals
with ASD from those without, by analyzing the statistics of saccades
and fixations. The study aims to go beyond simply identifying where
individuals with ASD look and instead focuses on how they perceive
images. By comparing our approach to other methods in the literature,
we seek to improve the accuracy of autism diagnosis. Specifically, we
use Hidden Markov Models (HMMs) to model gaze dynamics and apply
power analysis to identify the most informative model parameters for
future classification of individuals with and without autism. The use of
HMMs and power analysis in this study provides an informative approach
to understanding gaze dynamics in individuals with and without ASD,
with potential implications for future research and clinical applications.
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Chapter 1

Introduction

Neurodevelopmental disorder (NDD) is a group of conditions character-
ized by impairments in cognition, communication, behavior, and/or motor
skills resulting from abnormal brain development [1]. Even though all of
these conditions originate in childhood, they persist into adulthood, posing
severe challenges to individuals and society [2].

According to America’s Children and the Environment (ACE), chil-
dren with NDD may suffer from Attention-Deficit/Hyperactivity Disorder
(ADHD), Autism Spectrum Disorder (ASD), learning disabilities, intellec-
tual disability (mental retardation), conduct disorders, cerebral palsy, hear-
ing and visual impairments [3].

The term "autism" was first introduced by Swiss psychiatrist and psy-
choanalyst Eugen Bleuler in 1910 [4]. He used the term to describe a group
of symptoms that included social withdrawal, difficulty communicating,
and repetitive behaviors in his patients who had schizophrenia. The word
"autism" comes from the Greek word "autos," meaning self, as Bleuler ob-
served that his patients with this condition seemed to be living in their
self-contained world. However, the formal diagnosis of autism did not
enter the psychological realm until 1910; autism likely existed long before
any clinical diagnosis was possible. In 1943, American child psychiatrist
Leo Kanner published a paper describing a group of children with similar
symptoms to those of Bleuler but with no evidence of schizophrenia [5].
The characteristics described in this article, especially "autistic aloneness"
and "insistence on sameness," are still regarded as typical of autistic spec-
trum disorders.

According to the American Psychiatric Association’s (APA) Diagnostic
and Statistical Manual of Mental ASD is a complex developmental condi-
tion characterized by persistent difficulties with social communication and
interaction across multiple contexts, restricted interests, and repetitive pat-
terns of behavior, interests, or activities.

A variety of symptoms are associated with this disorder, which can vary
in severity and presentation and can be described as a "spectrum disorder."
APA decided to combine the terms "autistic disorder," "Asperger’s syn-
drome," "Childhood disintegrative disorder (CDD)," and "Pervasive De-
velopmental Disorder-Not Otherwise Specified (PDD-NOS)" into ASD and
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discontinue the three earlier terms [6]. According to World Health Or-
ganization (WHO), ASD is frequently associated with co-occurring con-
ditions, such as epilepsy, depression, anxiety, attention deficit hyperactiv-
ity disorder, and challenging behaviors, such as sleeping difficulties and
self-harm [7]. Based on the National Institutes of Mental Health(NIMH),
older children and adolescents may have difficulty understanding figures
of speech, humor, or sarcasm. They might have also abnormal responses to
sensory stimuli. It may also be difficult for them to form friendships with
their peers since they cannot maintain consistent eye contact, resulting in
repeated missed opportunities for social and emotional learning in early
childhood, adversely impacting social cognitive development [8].

Early signs of autism may be detected in childhood (in the first year),
but autism is often not diagnosed until much later. Some children develop
normally in the first year and then begin to show signs of autism between
18 and 24 months of age. Based on NIMH and the Centers for Disease
Control and Prevention (CDC), ASD can usually be reliably diagnosed by
age two [8–10]. It is not uncommon for children to receive a final diagnosis
much later in life. There is a risk that children with ASD may not receive
the necessary assistance due to this delay. ASD should be diagnosed as
early as possible so that treatment services may begin as soon as possible
[9].

According to CDC [9], National Health Services (NHS) [11], and APA
[12], there is no cure for autism. Treatments for ASD aim to reduce
symptoms that interfere with daily functioning and quality of life [9].
Based on APA treatment concludes applied behavioral analysis, social
skills training, speech and language therapy, occupational therapy, parent
management training, special education services, treating co-occurring
conditions, and medication [12].

Although people with ASD typically require services and support as
they grow older, they may be able to work successfully and live independ-
ently or in a supportive environment, depending on the severity of their
condition. Timely access to evidence-based psychosocial interventions,
from early childhood and across the life span, can improve IQ, cognitive
and adaptive behavior, communication and social skills, intellectual capa-
city, and educational support, enhancing the well-being and quality of life
for autistic people and their caregivers, and reduce the severity of ASD.
Therefore, detecting autism at an early stage of development is highly be-
neficial for both children and their families [7, 13, 14].

Young children are often diagnosed through a two-stage process
[8]: General Developmental Screening during Well-Child Checkups and
Additional Diagnostic Evaluation. According to American Pediatrics (AP),
all children should undergo developmental screenings at their 9-, 18-
, 24- or 30-month well-child visits [9]. A further examination may be
conducted for children at high risks, such as those with a family member
with ASD, who exhibit behaviors characteristic of ASD, who have older
parents, who have certain genetic conditions, or who were born with a
low birth weight [7–9]. Children who show developmental differences in
behavior will go to the second stage. Diagnosis may include: "medical
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and neurological examinations, assessment of the child’s cognitive abilities,
assessment of the child’s language abilities, observation of the child’s
behavior, an in-depth conversation with the child’s caregivers about the
child’s behavior and development, and assessment of age-appropriate
skills needed to complete daily activities independently, such as eating,
dressing, and toileting" [8]. Adults with ASD are often more difficult to
diagnose than children with ASD. Adults with ASD may exhibit symptoms
similar to anxiety disorders or ADHD. This should be discussed with
a neuropsychologist, psychologist, or psychiatrist familiar with autism
spectrum disorders. The diagnosis process involves a variety of cognitive
tests, which usually require hours of intensive clinical examination.
Furthermore, standardized tests require substantial time and effort, and
the diversity of symptoms contributes to the difficulty of identifying an
accurate classification [15].

1.1 Motivation

In recent years, the approximate prevalence of autism has increased over
time and has varied greatly within and across sociodemographic groups.
This may be due to changes in the clinical definition of autism spectrum
disorder, differences in methodology and contexts among the prevalence
studies, and improved efforts in diagnosing autism spectrum disorder.

An actual change in the number of people with ASD is possible and
could be due to a combination of factors. And there are different statistics
about the percentage of individuals with ASD [16]. For example, according
to the WHO, approximately one child in 100 has autism worldwide,
but there is yet no information about the prevalence of autism in many
low- and middle-income countries [16]. The prevalence reported in
this estimate is an average of various studies, and the prevalence rate
varies considerably from study to study. And some well-controlled
studies have reported significantly higher figures [7]. According to two
systematic literature reviews conducted by Bougeard C. et al. for the period
2014–2019, in PubMed and Embase, the prevalence of ASD in U.S. children
aged 4 and 8 years was 1.70% and 1.85%, respectively, as opposed to 0.38%
and 1.55% in European children [17].

Another estimation by CDC shows that about 1 in 44 eight-year-old
children has ASD. Moreover, ASD occurs almost four times more fre-
quently in boys than in girls. These estimates are based on data collected by
the Autism and Developmental Disabilities Monitoring (ADDM) Network
in 2018 from 11 communities throughout the United States. This study
collected information on 8-year-old children since previous research has
shown that most children with ASD have been identified by this age [18].

In light of the increasing number of individuals with ASD that are being
detected and the importance of early intervention, raising public awareness
of ASD is critical in several respects. As previously mentioned, when
ASD is detected at an early stage, early intervention can greatly improve
the outcome of a child. In the early stages of a child’s development,
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therapy, support, and educational services can be provided to assist them
in developing important skills, such as communication, social interaction,
and self-management. Parents and caregivers will be taught how to
communicate effectively with children with ASD. As a result, the child’s
ability to communicate and understand others is greatly improved and
they are capable of developing positive relationships with others and
forming friendships. Moreover, it might improve academic performance,
employment opportunities, and independence as well [19].

Both individuals with ASD and the government can benefit from
early detection and intervention for ASD. Among the advantages for the
government is that it can help reduce the long-term costs associated with
the disorder, such as special education, healthcare, and social services and
the need for more expensive and intensive services can also be reduced
[20].

Furthermore, individuals with ASD are more likely to become product-
ive members of society and be less dependent on government assistance,
which can ultimately benefit the economy. At the same time, the govern-
ment can plan for future funding and support based on an accurate estim-
ate of the number of individuals affected by the disorder, which can assist
in the allocation of resources. Through advancing technologies and ongo-
ing research, we may also gain a better understanding of ASD and improve
diagnostic accuracy. This would benefit individuals with ASD, caregivers,
and the government [20].

For instance, research on oculomotor function has played a signific-
ant role in studying various neurodevelopmental disorders such as aut-
ism, ADHD, and Tourette’s syndrome. There are distinct patterns of defi-
cits observed in each disorder that can shed light on the pathophysiology
of these conditions. In addition, abnormal outcomes in oculomotor tasks
may provide insights into the aberrant neural circuitry present in these
populations. In recent years, eye movement studies have become increas-
ingly useful for understanding the cognitive and neurophysiological as-
pects of neurodevelopmental disorders [21]. It is relatively easy to record
eye-movement tasks with eye trackers, in contrast to other cognitive ap-
proaches that may require complex task instructions and cannot be used
with individuals of all ages. A number of research studies have demon-
strated that individuals with ASD exhibit unique eye movement patterns
that differ from those of typically developing individuals. These works
have utilized the use of eye-tracking technologies to ascertain what types
of images catch ASD individuals’ attention. As an example, individuals
with ASD tend to focus more on the background of an image than the main
subject when exposed to an area of interest in a setting filled with autism-
related activities. This indicates difficulty selectively attending to relevant
information during an exposure. In addition, they exhibit fewer saccadic
movements, which are quick, ballistic eye movements between two fixed
points. Reduced saccadic movements may be indicative of difficulty shift-
ing attention quickly between different aspects of a scene. Furthermore,
individuals with autism typically make saccadic errors, such as making a
saccade to the wrong location or failing to make a saccade at all [21].
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1.2 Objective

In this study, we aim to distinguish individuals with ASD based on gaze
dynamics by evaluating unique aspects of gaze dynamics, namely the
statistics of saccades and fixations. We intend to investigate whether the
distribution parameters of fixations and saccades can be used to distinguish
individuals with autism from neurotypical ones.

In contrast to most studies that focus on identifying where individuals
with ASD look, our thesis aims to understand how they perceive images.
Therefore, we believe that eye-tracking methods might be particularly
useful because of their high resolution in detecting autism symptoms,
even when participants are engaged in a non-autism-related task. In
addition, we would like to compare our approach to other approaches
in the literature to improve the accuracy of autism diagnosis, which is
becoming increasingly crucial for many people.

This thesis will consist of five chapters. An overview of ASD is
presented in the first chapter along with a concise statement of the
motivation and purpose of the thesis.

In Chapter 2, we will discuss the current state of the art, including
previous work, recent novel approaches, and fundamental concepts such
as eye anatomy, different eye movements, eye tracking technology, and
gaze dynamics in autistic individuals, and the theoretical aspect of Hidden
Markov models and power analysis. These are the models we will focus on
for modeling gaze dynamics.

Chapter 3 covers data description and an overview of the methods.
Chapter 4 includes a full description of the analysis and results

highlighting.
Finally, in Chapter 5, we discuss our main results and put them in

perspective with the state-of-the-art printed in Chapter 2.
We also address some possible future research directions which can be

built from the outcome of the thesis.
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Chapter 2

Background and state of the art

2.1 Eye anatomy and vision

The eye is an important sense organ that allows humans to see. Together
with the optic nerves, it forms an image of the environment around us.
Initially, light reflected off an object passes through the cornea, which helps
focus the light by bending it. Through the pupil, some of this light enters
the eye. The pupil is controlled by the iris and regulates the amount of light
entering the eye. Along with the cornea, the lens facilitates the transmission
of light to the retina and helps to focus it correctly. Photoreceptors in
the retina convert light into electrical signals, which are then transmitted
through the optic nerve to the brain. These signals are then processed and
converted into images by the brain. As a result of this complex process,
which involves the cornea, iris, lens, retina, optic nerve, and brain, we are
able to see and perceive the outside world [22]. Figure 2.1 [23] illustrates
the anatomy of the human eye.

The eye’s outer coat is comprised of two main structures: the sclera and
the cornea, both of which serve to protect the eye.

Figure 2.1: A brief sketch of the anatomy of the human eye, taken from Ref.
[23].
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The sclera is the white part of the eye that covers almost the entire
surface of the eyeball. In this part of the eye, light is not permitted to
enter, and six extraocular muscles are attached to it, allowing the eye to
move in a wide range of directions when these muscles are contracted. In
contrast, the cornea is a clear and transparent dome that covers the front
part of the eye, including the pupil and iris. Its primary function is to focus
incoming light on the retina, which is the inner coat of the eye, making
objects appear sharp and clear. Together, the sclera and cornea provide
essential protection for the eye, as well as play a crucial role in vision [22].

The middle coat of the eye, also known as the vascular and nutritional
part, consists of the choroid, ciliary body, and iris. An eye’s choroid is a
thin tissue layer that covers the sclera. It becomes thicker as it reaches the
ciliary body. The ciliary body is connected to suspensory ligaments that
attach to the lens. The lens, which is a clear, transparent structure behind
the iris, helps to focus light on the retina, allowing the eye to see both far
and near objects. The lens may need to be more concave or flattened if
you need to focus light for a longer distance and closer. Since the ciliary
body is attached to suspensory ligaments, it influences the shape of the
lens through its muscles. Iris, the colored portion of the eye, serves as a
diaphragm to control the light entering the pupil. The pupil is a dark circle
located at the center of the eye, and it is the opening in the center of the
iris [22]. Adult pupils range in size from 2 to 4 mm in diameter in bright
light to 4 to 8 mm in darkness. In response to bright light, the pupils shrink
(constrict) to prevent too much light from entering the eye. However, in
the dark, the pupils expand (dilate) to allow more light to enter, which
improves night vision. The size of the pupil can be influenced by various
factors in addition to light. As an example, emotional arousal can result
in dilated pupils [24]. As people age, their pupils may dilate and constrict
less [25]. Some medications, such as antidepressants, antihistamines, and
opioids, can constrict or dilate the pupils.

The retina is the inner coat of the eye that lines the back of the eyeball
and is composed of two layers: the pigment layer and the neural layer.
This light-sensitive tissue contains photoreceptors that convert light into
electrical signals. A retina’s inner layer contains rods and cones, which are
types of photoreceptor cells. The rods are sensitive to light and provide
good vision in low-light conditions. Night vision and black-and-white
perception are their main functions. A rod can be activated by only a few
photons (bits of light) due to its sensitivity to light. And since rods cannot
contribute to color vision, we see everything in grayscale at night.

Cone cells, on the other hand, are responsible for color perception and
central vision. There are millions of cone cells located in the macula, which
is the central region of the retina. The fovea, which is the central area of the
macula, contains only cones.

In normal vision, the fovea is responsible for providing 100% sharp
and high-resolution vision by focusing light precisely on it. So, the fovea
is responsible for sharp central vision, which is also known as foveal
vision. For activities requiring a high level of detail, such as reading and
driving, this type of vision is essential. With foveal vision, one can clearly
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Figure 2.2: Illustration of the visual regions composing our visual field,
taken from Ref. [26].

see details such as small text or the intricate features of an object. The
fovea is able to provide sharp and detailed vision as a result of its high
concentration of cone cells, which are responsible for color perception and
high visual acuity. Thus, the fovea plays an important role in our daily
lives by enabling us to see fine details clearly and accurately. As we see
in Figure 2.2 [26], the visual field can be divided into three regions: foveal
vision, parafoveal region, and peripheral region. In each eye, foveal vision
covers only a small area of approximately 2° around its focal point. The
parafoveal region extends up to five degrees of visual angle on either side
of fixation and is capable of discerning some details (50% visual acuity)
that the peripheral region cannot. In the peripheral region, however, visual
acuity and color perception are significantly reduced, resulting in blurry
images.

Motion detection is the primary function of the peripheral region.
In spite of the fact that it provides less detailed information about the
environment, it is crucial in detecting any potential threats or changes in
the environment. From the center axis of the head, the most accurate vision
(also known as the cone of vision) is 30% to either side of the direct center.
Consequently, the visual acuity decreases as the angle from the center axis
increases, which is why peripheral vision provides less information about
the environment. The three regions of the visual field work together to
provide us with a complete and accurate view of our surroundings [27]. As
mentioned, the foveal vision is responsible for providing high-resolution
and detailed information, but it only covers a small area of the visual field.
Therefore, to capture different aspects of a scene in detail, our eyes must
move and shift their gaze.

It is due to the fact that the visual information from the parafoveal and
peripheral regions is less detailed and provides a broader overview of the
environment. The high-resolution foveal vision can be directed to specific
areas of interest by moving our eyes.
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We move our eyes numerous times throughout the day without even
realizing it. By scanning the environment continuously, our eyes are able to
capture different aspects of a scene in detail, enabling us to gain a complete
understanding of the surrounding environment.

2.2 Eye movements: a composition of saccades and
fixations

Eye movements play a significant role in our visual system, as we have
discussed previously. We use our eyes to navigate our world by focusing
on different things. Nevertheless, eye movements aren’t just for visual
processing, they’re also crucial for social communication. Eye contact
and gaze direction convey important information about our emotions,
intentions, and thoughts, making eye movements a key part of social
interactions.

Human beings are capable of making eye contact and using gaze
direction to communicate from a very young age. In the early stages
of life, babies use eye contact as a means of establishing social bonds
with their caregivers and seeking attention or comfort from them. Eye
contact and gaze direction continue to be essential components of our social
interactions as we age, allowing us to convey emotions, dominance or
submissiveness, interest or disinterest, and other social signals.

Our ability to use eye movements to communicate is an essential aspect
of our social cognition and contributes to our ability to form and maintain
relationships with others [28].

Eye movements are always paired with head movements and loco-
motor patterns in nature. The study of eye movements is essential to under-
standing visual brain function, including perception, attention, memory,
dynamic decision-making, and motor control. It’s the brain’s job to con-
struct a stable and coherent visual perception from local discrete snapshots
that are sampled through eye movements. The oculomotor system, which
is a part of the central nervous system, is responsible for maintaining visual
stability and controlling eye movements. The sensorimotor system must
direct the eyes precisely to the object of interest and maintain a stable posi-
tion to achieve sharp and clear vision. If the eyes are not aligned correctly,
it can lead to blurred vision or diplopia. Therefore, eye movements are
crucial to stabilizing images on the retina, enabling clear vision even when
a subject or object in the environment is moving. There are two parts to
the oculomotor system: the vestibular system, which maintains balance
and spatial orientation, and the efferent limb of the visual system, which
are neural pathways that control the movement of the eyes in response to
visual stimuli [29].

In general, we can categorize eye movements into two types: those
that maintain our gaze on a particular location and those that enable us to
shift our gaze to another location. We maintain our gaze through Fixation,
Optokinetic Nystagmus (OKN), and Vestibulo-Ocular Reflex (VOR). And,
eye movements that help us switch our gaze to a new point include VOR
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cancellation, smooth pursuit, vergence, and saccade [30].
Fixation, also known as visual fixation, is the act of maintaining a

steady focus on an object for an extended period of time. It can take
between 0.2 and 0.6 seconds for the cone to fully respond to a change in
light. Fixation is the most common type of eye movement, and it has been
used to explain cognitive and attentional processes. As a result of the high
resolution of the fovea, fixation can gather as much information as possible
about the object in focus. It is only during periods of fixation that the brain
processes visual information, and the length of the fixation indicates the
amount of effort required to process the visual information. As a result, the
amount of detail that is taken in by the foveal "spotlight" is determined by
the location and duration of fixations in the visual scene.

There are two well-known mechanisms that control overt visual
attention: bottom-up and top-down mechanisms. Bottom-up mechanisms
are characterized by the ability of an area to attract attention unconsciously
and effortlessly based on low-level characteristics such as color, luminance,
texture, and motion. Saliency maps serve as a source of bottom-up
guidance by identifying the most visually interesting areas in our visual
field. Top-down contributions to attention are influenced by an observer’s
goals, prior knowledge, motivation, mood, and experience [31].

Despite the impression that the eyes are completely still during fixation,
they are never actually at rest, since doing so would result in a loss
of vision. "Fixational eye movements" are involuntary, small, and often
unconscious eye movements that constantly interrupt visual fixation.
There are three types of fixational eye movements: drift (also called slow
control), oculomotor microtremor (also called tremor), and microsaccades.
Microsaccades are the largest of these and occur once or twice a second.
Microsaccades may have a greater impact on perception and physiology
than drifts or tremors since their amplitudes exceed 0.2° [32].

The OKN is repeated reflexive responses of the eyes to ongoing large-
scale movements of the visual scene. The VOR stabilizes the eyes in relation
to the external environment, compensating for the movement of the head
by moving the same distance but in the opposite direction. By moving in
the same direction, the VOR will be canceled (cancellation of VOR), and
the gaze will switch. The Smooth Pursuit eye movement enables the eyes
to smoothly track moving objects, such as a ball being thrown. During
the motion of an object, it stabilizes images on the retina. Vergence is a
movement of the eyes (convergence or divergence) that aligns the fovea of
each eye with targets situated at different distances from the observer [30].

In 1879, Javal was the first to use the term saccade, derived from the
French word ’jerk’ or ’twitch’, to describe a rapid eye movement. A saccade
refers to the simultaneous ballistic movement (jumps of 2 deg longer, which
continues for about 30–120 ms and reaches speeds up 700◦s−1 for large
saccade [15]) of both eyes in the same direction between two or more
fixation phases which is partially controlled by the posterior cerebellar
vermis. So, Saccades shift the spotlight of attention. During a saccade,
the movements are predetermined at the time of initiation, and the system
generating the saccade cannot react to subsequent changes in the target’s
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position after saccade initiation, so saccades are called ballistic. Sequences
of fixations and saccades guide our perception. Since the image on the
retina is of poor quality during a saccade, most information is absorbed
during the fixation phase (saccadic suppression) [33].

There are several terms that characterize saccades; we report them with
a start and end time, as well as a list of metrics [30]:

• Number: The number of saccades occurring during an interval of
time and within a target Area of Interest (AOI).

• Amplitude(The saccade size): The degree or minutes of arc between
the centroid of the fixations preceding and following the saccade.
A greater amplitude indicates that the eye has traveled a greater
distance during the saccade.

• Direction: The angular distance between a straight line connecting
the saccade’s start to the saccade’s end compared with a straight line
connecting the start of the saccade to the horizontal axis of the screen
(or active display area). The unit circle is used as the coordinate
system, with 0 degrees located on the right and the angle increasing
anticlockwise.

• Gain: The ratio of the actual saccade amplitude to the desired
one (comparing the eye’s displacement with the target stimulus’
displacement). Gains greater than 1 indicate that the saccade was
too large or hypermetric, whereas gains less than 1 indicate a saccade
that was too small or hypometric.

• Duration: The time it takes for the saccade to be completed.

• Velocity: The amplitude of a saccade divided by its duration,
reported in degrees per second.

• Peak velocity: The highest eye movement velocity reached during a
saccade, reported in degrees per second.

• Latency: The time it takes for a saccade to occur between two
fixations, measured in milliseconds (approximately 200 to 250 ms).
Depending on the individual, it may differ. As the brain controls the
muscles in the eye, it is the brain that commands the eye to move.
We measure saccadic latency as the time it takes for the brain to
instruct the eye to make a saccade. This means whatever grabbed our
attention had to be extremely important if the saccade had a short
delay (saccades are very fast, and the latency is short). However, if
the latency for the saccade is long and is a high delay, then whatever
caught our attention was less important.

There is a close correlation between saccade duration and saccade amp-
litude, with longer saccades taking a longer time to complete. Additionally,
saccade velocity and amplitude exhibit a linear relationship, meaning that
larger saccades have higher velocities. Saccades have an inverted u-shape
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velocity profile, with the velocity increasing until the midpoint of the sac-
cade, and then decreasing [30]. Smooth pursuit eye movements have much
slower acceleration and velocity than saccades, and they require the pres-
ence of a moving visual stimulus to be performed accurately. Two common
parameters studied in the smooth pursuit are gain and phase lead/lag.

Phase lead/lag refers to the distance between the eye’s position and the
target stimulus during the smooth pursuit phase. Specifically, it measures
the mean displacement of the eye during a trial, comparing the position of
the eye relative to the target stimulus.

Saccades can be categorized in several ways based on their character-
istics. One method of classification is based on saccade amplitude, which
can be classified as either small and rapid (such as during reading), or large
(> 20◦) movements (such as scanning a room). Another method is to clas-
sify saccades by their direction, either horizontally or vertically. Saccades
can also be voluntary or involuntary. Voluntary, endogenous saccades are
self-directed eye movements that can be initiated by a command, while re-
flexive saccades are those that respond to a visual or auditory stimulus.

In terms of cognitive and neurological deficits, a study by Rommelse
NNJ. et al. found that four types of saccades were the most significant.
These include antisaccades (AS), visually guided saccades (VGS), memory-
guided saccades (MGS), and smooth pursuit eye movements (SPEM).
Understanding these different types of saccades and their associated
deficits can provide valuable insights into the mechanisms of saccadic
eye movements and how they are related to cognitive and neurological
functioning [34].

AS involves intentionally shifting the gaze away from a visual stimulus,
which requires inhibition of reflexive saccades to the target location and
voluntary eye movements to the mirror location. Directional errors and
saccade latency are typical measures of AS. In VGS, participants are
required to make eye movements in response to a visual stimulus presented
in their peripheral vision. The VGS is frequently used as a baseline
condition to study the basic dynamics of eye movement. VGS measures
include saccade latency, variability in latency, amplitude, undershoot
versus overshoot, peak velocity, and duration. The MGS procedure
involves moving the eye toward a remembered point based on a prior
visual stimulus.

Generally, saccades help us explore and interact with the world. By
using them, we can move our gaze quickly and accurately to new locations
of interest, like people, objects, or events. Superior colliculi, frontal eye
fields, and parietal cortex are involved in the control of saccades. Also,
factors like attention, motivation, and emotion can influence saccades, and
abnormalities in saccade production or control have been linked to various
neurological and psychiatric problems [35].

A thorough examination is required before determining the dynamics
of eye movements. Thus, it is crucial to develop techniques for recording
eye movements. Additionally, oculomotor research development is closely
related to these technologies. Eye tracking is one of these technologies.
Eye tracking is an effective method for collecting information regarding
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eye-related signals, such as gaze direction, pupil size, and blink rate. Data
such as this can be used to generate accurate insights into visual attention,
cognitive processes, behavioral responses, and mental states- enabling
researchers to gain a deeper understanding of behavioral science [36].

2.3 Eye tracking technology

Eye tracking involves tracking eye movements, or the absolute point of
gaze (POG: where the user’s gaze is focused in a visual scene), in response
to moving objects, lines of text, or other visual stimuli. There is a wide
range of applications for eye tracking, from psychological research and
medical diagnostics to usability studies and interactive, gaze-controlled
applications. As early as 1879, French ophthalmologist Louis Émile Javal
discovered for the first time that readers’ eyes make quick movements
mixed with short pauses while reading rather than skimming fluently
through the text. Edmund Huey developed a device that tracked eye
movements during reading in 1908. The first eye tracker was intrusive
since readers had to wear a contact lens with a small opening for their
pupils. Early in the 1900s, a non-invasive eye-tracking apparatus based
on photography and light reflected from the cornea was developed as
a breakthrough in eye-tracking technology. By developing unobtrusive
camera-based systems and increasing computing power, eye-tracking data
can be collected in real-time. As a result, eye trackers became less
intrusive, more accurate, and could separate eye movements from head
movements. In parallel, psychological theories began to examine the
relationship between eye-tracking data and the cognitive function [37].

For eye tracking, there are many different approaches, some of which
require additional hardware, while for others, an ordinary webcam will
suffice. The following are various methods that can be used [38]:

• Observation: Before the 19th century, this was an early method of
eye tracking.

• Scleral Search Coil method: The eye movement is measured
using an annulus or modified contact lens with small coils of wire
embedded within it. A local anesthetic is injected into the eye before
the device is inserted into the eye. The coil’s wire leaves the eye
at the temporal canthus. There are two field coils located on either
side of the head that produce the field. As a result, horizontal
eye movements can be recorded. In order to monitor vertical eye
movements as well, a second set of field coils is usually placed
orthogonally to the first set. It is also possible to record torsional
movements if the eye coil has been designed appropriately. The eye
coils are often implanted surgically in experiments on eye movements
in animals. This method has the advantage of having a very high
spatial and temporal resolution, which makes it possible to study
even small types of eye movements such as microsaccades. The
disadvantage of this procedure is that it is an invasive procedure
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requiring the placement of something in the eye. Clinically, this
method is rarely used, but it is an invaluable research tool.

• Electro-Oculography (EOG): EOG is a technique used for measuring
the resting potential of the retina. The cornea and retina have a
permanent potential difference of approximately 1 mV, and as the
eye position changes, small voltages can be recorded from the area
around the eye. A pair of electrodes are typically placed above and
below or to the left and right of the eye. Careful placement of the
electrodes allows for separate recording of horizontal and vertical eye
movements. When the eye moves from the center position towards
one electrode, that electrode detects the positive side of the retina,
while the opposite electrode detects the negative side, resulting in a
potential difference between the electrodes. If the resting potential
of the retina remains constant, the recorded potential can be used to
measure the position of the eye. However, EOG is less reliable for
measuring medium and large saccades quantitatively. Despite this
limitation, clinicians often use this method extensively because it is
simple, inexpensive, and non-invasive.

• Infra-Red Oculography: An eye’s position determines how much
light will be reflected back from a fixed light source to a fixed detector.
Eye trackers based on this principle are commercially available. Infra-
Red light is used because it is invisible to the eye and does not
distract the subject. The ambient light level has no significant impact
on infrared detector measurements since infrared detectors are not
influenced by other light sources. With this technique, the size of the
smallest movement can be reliably detected. The method is better
suited to measuring horizontal eye movements than vertical ones.
Blinks pose a problem since they not only cover the eye’s surface but
also cause the eye to retract slightly, which reduces the amount of
light reflected after a blink.

• Video Oculography (VOG): The method uses a head-mounted mask
with small cameras to measure horizontal, vertical, and torsional
position components of the movements of both eyes.

• Video-based Infra-Red (IR) Pupil-Corneal Reflex (PCR) tracking: In
IR-PCR, the eye is illuminated, and an image of the eye is captured.
Using the eye image, it is possible to identify the pupil center
and the reflection of the illuminators on the cornea. Calculating
the participant’s gaze is based on the pupil’s position and the
illuminators’ reflections, as shown in Figures 2.3 and 2.4 [39].

A valuable tool for analyzing the gaze dynamics of individuals with
ASD is eye-tracking technology. Several studies have demonstrated that
individuals with autism have atypical eye movements and fixations, which
can affect their ability to discern social cues and comprehend emotional
expressions. Using eye-tracking technology, gaze patterns can be precisely
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Figure 2.3: An illustration of the relative position of the pupil and corneal
reflex, taken from Ref. [39].

Figure 2.4: The Pupil position and corneal reflex, taken from Ref. [39].

measured and analyzed, providing insight into how individuals with
autism process visual information. Eye-tracking technology offers a
powerful tool for advancing our understanding of individuals with ASD
and has the potential to lead to more effective treatments and interventions.

2.4 Gaze dynamics in autism

Studying eye-tracking data provides valuable information about spontan-
eously occurring priorities and patterns of attention. The regions in an im-
age where a subject looks can be used to infer the subject’s attention pri-
orities. Autism is particularly well-suited to eye tracking because what an
autistic individual chooses to pay attention to is different from typical con-
trols - especially regarding socially relevant information and face percep-
tion, as demonstrated in the first eye-tracking study of individuals with
autism conducted by researchers at the University of North Carolina in
2002 [40].
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Figure 2.5: In this film clip with social-visual and verbal cues, the visual
scanning patterns of an autistic man are compared with those of a normal
comparison subject, taken from Ref. [41].

They used a technique called the visual scan path of infrared corneal
reflection. This technique allowed them to observe the eye movements
of both groups during an emotion recognition test using facial expression
photographs. According to the study, participants with autism viewed
non-featured areas of faces significantly more often than typically devel-
oping ( TD) participants. In particular, core features such as the eyes, nose,
and mouth were viewed significantly less frequently. This resulted in a
deficit in emotion recognition, specifically in recognizing fear. Also, indi-
viduals with autism had fewer fixations on the core facial features based
on the analysis of gaze data. The findings suggest a mechanism that may
explain the deficits in social information processing associated with ASD
[40].

In a notable study conducted by researchers [41], the fixation patterns of
15 young males with autism and 15 control individuals were tracked while
they watched scenes from the movie "Who’s afraid of Virginia Woolf."
Unlike the previous study which used static stimuli i.e pictures, this study
used dynamic stimuli i.e videos. A reason for selecting this movie was
that it demonstrated the intense interaction between four protagonists
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involved in a content-rich social situation. This helped to maximize
viewers’ awareness of everyone’s socially expressive actions and reactions
to those actions.

The study showed that individuals with autism view scenes differently
than normal controls, as they tend to focus more on the actor’s mouth or
even movements in the periphery of a scene rather than the actor’s eyes.
This is demonstrated in Figure 2.5 [41]. Similar to the previous study, the
autism group looked less frequently at the characters’ eyes, suggesting a
deficit in processing eye contact as a social cue.

Interestingly, in this study, the ability of an individual with autism to
communicate socially was strongly predicted by their fixation of the mouth.
The Area Of Interest (AOI)-based approaches used in this study measure
the spatial distribution of visual attention across the scene, thus identifying
which AOI attracts and holds participants’ attention.

Similarly, in 2003, Robert M. Joseph and James Tanaka [42] conducted a
study where they looked at a group of 22 people who had high-functioning
autism and compared them to two other groups of typically developing
individuals. The first group consisted of 9-year-olds, and there were 27
people in this group. The second group consisted of 11-year-olds, and
there were 30 people in this group. According to them, the abnormalities in
face recognition in autism may not fully be explained by impaired holistic
face processing. They found that children with autism place unusual
importance on the mouth region when interpreting the facial expressions
of others. The study revealed that high-functioning autistic children had
a significant advantage when it came to mouth recognition, however, they
were significantly behind when it came to face recognition using the eyes.
Children with autism may rely more heavily on the mouth region of the
face for processing information. This could explain their difficulties in
recognizing emotions and social cues conveyed by the eyes. Overall, this
study provides valuable insights into the nature of face recognition deficits
in autism and highlights the importance of considering the role of different
facial features in social communication.

Autism is a disorder that affects an individual’s social communication
and interaction abilities. By understanding the role of early face-processing
deficits in autism, we can develop more effective interventions and
therapies that target these specific areas of difficulty. Dawsen G. et
al. [43] suggested that individuals with autism may suffer from socio-
communicational deficits because of a failure to orient and engage their
attention to socially relevant stimuli such as faces at an early age. One of
the crucial differentiation factors in early diagnosis of this disorder is the
ability of the toddler to use facial information, such as gaze monitoring
during joint attention. And a failure to process faces in a normal manner
could be among the earliest measurable symptoms of autism, occurring as
early as one year of age.

Studies have shed light on the mechanisms that underlie social
communication difficulties experienced by individuals with autism. The
identification of specific areas of difficulty, such as abnormal fixation
patterns, can lead to more targeted interventions and therapies that can
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improve the social functioning of individuals with autism.
The relationship between face gaze and social cognition in autism

was investigated in a study conducted in 2007. In the study, the
researchers measured both face gaze and how facial regions were used
during judgments of emotion from faces. The study included nine high-
functioning adults with autism who failed to use information from the eye
region of faces, instead relying primarily on information from the mouth,
which is a similar finding to previous studies.

The study found that subjects with autism made more fixations on the
mouth, and they relied on information from the mouth to determine the
emotion they were experiencing. The results of these studies have led to
the first quantitative assessment of how people with autism make social
judgments based on information from faces [44]. The findings suggest
that autistic individuals have abnormal fixation patterns related to social
stimuli.

Swettenham [45] conducted a novel experiment in 1998 involving
10 children with autism, 17 with developmental delays, and 16 normal
children. The children were filmed during a sequence of free play for
approximately five minutes each. The videotape was analyzed frame-by-
frame using a timer accurate to a tenth of a second by two independent
judges who were blind to the children’s diagnoses. Three types of
attention-shifting behavior were observed; between objects, between
objects and people, and between persons. The study found that children
with autism exhibited fewer attention shifts between objects and people
and between persons to persons. Additionally, they looked at objects
for longer durations and looked at people for a shorter period than the
two control groups. The findings of this study suggest that individuals
with ASD may have difficulty shifting their attention from one stimulus to
another, particularly to social stimuli.

In 2019, a similar study was conducted [46] using a TobiiT120 eye
tracker with 22 autistic and 22 typically developing children. The study
found that ASD children had difficulty disengaging from neutral fixation
to focus on peripheral stimuli. While they were slower to fixate on faces
and common objects, they were faster to fixate on non-social peripheral
stimuli related to their circumscribed interests. Comparatively to the other
stimuli, typically developing children were quicker to fixate on faces.

In 2007, Speer et al. [47] conducted an experiment that replicated the
study of Klin et al. [41] and Pelphrey et al. [40] using a different stimulus.
The experiment involved 12 male autistic children and adolescents, aged
9 to 18, and 12 typically developing children of the same age group. The
participants were shown four different types of stimuli: a social dynamic
condition (video clip depicting highly emotional interactions between
characters), an isolated dynamic condition (video clip showing nature with
only one character), a social static condition (five images of two or more
individuals), and an isolated static condition (five pictures depicting one
individual). The researchers used eye-tracking techniques to measure gaze
behavior in both groups of participants. Results indicated that autistic
individuals had different fixation durations for social-dynamic stimuli
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compared to their peers who were typically developing. In particular, their
fixation durations were shorter for eye regions and longer for body regions.
There was no difference between the two groups in the gaze patterns
observed when viewing static photos of isolated individuals. As a result
of these findings, it appears that the gaze patterns of autistic individuals
differ from those of typically developing peers when viewing dynamic
social scenes, but not when viewing static images of isolated individuals.

The literature regarding the nature of these fixation abnormalities is
inconsistent, despite the fact that such abnormalities have been suggested
as an explanation for difficulties in face recognition. There may be an
explanation for these inconsistencies in part due to differences in sample
sizes among studies and variability in fixation behavior within a given
study. Variations in fixation patterns may also be attributed to aging.

Studies have shown that people with this disorder change their fixation
behavior as they grow older [48] For example, toddlers around 21 months,
young children under ten years, and adults over twenty years have
different fixations. The results of experiments using image stimuli have
demonstrated the importance of the image’s content, particularly human
faces, in distinguishing visual behavior among individuals with ASD at
different stages of development.

Both young and older children with ASD display distinct differences in
the duration of their fixations on human faces when compared to typically
developing children of similar ages. According to these findings, individu-
als with autism may process visual information differently based on their
age and the nature of the stimuli they are exposed to. Understanding the
changes in fixation behavior across the lifespan may therefore be essential
in developing effective interventions and treatment strategies for individu-
als with ASD.

In one study [49], children, adolescents, and adults (aged 7-30) with
and without autism completed the Cambridge Face Memory Test while
their gaze was recorded. In all age groups and groups of individuals,
eye fixations were more frequent and longer than mouth fixations. A
typical development child or adult, but not an adolescent, made more
fixations to the eyes during face memorization compared with a typical
development peer with autism. According to the results, there is a
change in group differences in patterns of fixations to faces with age.
Furthermore, the relationship between patterns of fixations and face
recognition performance is different in typical development and autism,
which suggests that these differences are at least partially responsible for
the difficulties associated with autism. Overall, these findings highlight the
importance of age-related changes in fixation behavior for the underlying
mechanisms of face recognition deficits in people with autism.

An atypical oculomotor behavior may contribute to the difficulties
individuals with autism experience in terms of orientation, exploration,
and perception. Effective oculomotor behaviors, such as fixation and
saccades, are essential for efficient visual perception. Individuals with
autism, however, tend to display diminished gaze fixation, which may be
due to abnormalities in their neural circuitry of affect.
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Researchers tested emotion discrimination and facial recognition in
two separate studies. In these studies, photographs of human faces
were presented to participants with autism and controls while they were
undergoing magnetic resonance imaging (MRI) scans. The activation of
the fusiform gyrus, an inferior temporal cortex region responsible for
recognizing objects, faces, and facial expressions, was positively correlated
in both studies with the amount of time spent fixed on the eye region in the
autistic group. Thus, diminished gaze fixation may be responsible for the
fusiform hypoactivation that has been observed in autism when exposed
to facial stimuli. In addition, both studies found a strong and positive
association between variations in gaze fixation among autistic individuals
and amygdala activation. As a result, gaze fixation may be associated
with increased emotional response in individuals with autism [50]. These
findings highlight the importance of gaze fixation in visual perception and
emotional processing in individuals with autism.

Pretectal oculomotor structures can lead to involuntary saccades. A
saccadic intrusion is an involuntary saccade that interrupts fixation.
An involuntary, horizontal, saccadic intrusion that interrupts fixation is
referred to as a square wave jerk (SWJ). SWJs are characterized by an initial
saccade that moves the fovea away from the intended fixation position,
followed by a second saccade that reorients the fovea back to the initial
fixation position. Due to reduced inhibitory control of pretectal oculomotor
structures, intrusive SWJs are more likely to occur during visual fixation.
Both suppression of intrusive saccades (SWJ) and maintaining eccentric
gaze require intact cerebellar function.

In a related study, Caralynn V. Nowinski et al. examined the impact
of intrusive saccades and maintaining eccentric gaze on individuals with
autism and healthy individuals. The experiment involved analyzing the
suppression of intrusive saccades and maintaining eccentric gaze during
the visual fixation of static central and peripheral targets using infrared
reflection sensors to measure eye movements. The results showed that
individuals with autism had an increased amplitude of intrusive saccades
and reduced latency of target refixation after intrusive saccades. Possibly,
this is due to faulty functional connectivity in the cortico-cerebellar system
[51].

Two of the most common oculomotor assessments are those of saccades
and visual smooth pursuit. In adults with ASD, saccade function
is relatively normal, but the visual smooth pursuit is abnormal [52].
Assessing the oculomotor performance of children ages 6-12 years with
high-functioning ASD revealed that they exhibited greater horizontal
saccade latency (although no significant difference was observed between
groups for vertical saccade latency) and greater phase lag during vertical
smooth pursuit. This indicates an abnormal visual smooth pursuit phase
in individuals with ASD. Individuals with ASD may experience abnormal
smooth pursuit function due to local abnormalities in brain regions
implicated in smooth pursuit (frontal eye fields, lateral intra-parietal area,
superior temporal area, caudate, superior colliculus, cerebellar vermis,
brainstem premotor nuclei, and vestibular nuclei) or abnormalities in long-
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Figure 2.6: An illustration of the saccade adaptation test, taken from Ref.
[53].

fiber tracts linking these regions [52].
The cerebellar vermis region plays a crucial role in maintaining the

accuracy of saccadic eye movements. It plays a particularly important
role in correcting systematic errors in saccade amplitudes induced by
adaptation paradigms [53]. The term "saccadic adaptation" refers to
the adjustment of the Oculomotor Transformation parameters when a
saccade direction or size consistently fails to reach its target. This
adjustment ensures that the direction and size of the saccade remain on
target. Nevertheless, landing positions may still be error-prone due to
intrasaccadic shifts in the target location after saccade initiation. With
practice, subjects can gradually decrease the amplitude of their saccades
to reduce movement errors (See Figure 2.6 [53]).

Individuals with autism have a deficit in the cerebellar vermis, which
affects sensory-motor control and leads to slower adaptation and greater
variability in saccade amplitude. [53]. This deficit might lead individuals
with ASD to have difficulty adjusting their eye movements to induce retinal
image position errors systematically.

Cerebellar and brainstem abnormalities can have an impact on sensory-
motor control in individuals with ASD. Specifically, it is the cerebellum and
brainstem that control saccade metrics. In a study conducted by Lauren
M Schmitt et al. [54] in 2014, visually-guided saccades were examined
in a relatively large sample of individuals with ASD (65 individuals with
ASD matched with 43 healthy controls aged 6 to 44 years old). The study
found deficits in saccade accuracy and saccade dynamics (using EOG) in
individuals with ASD. The saccadic eye movements of participants with
ASD were less accurate and more variable across trials compared to healthy
controls.

Furthermore, individuals with ASD exhibit lower peak saccade velocit-
ies, and longer durations result in slower saccade. Patients were observed
to spend more time accelerating saccades to reach peak velocity but not
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decelerating them. Attentional deficits are also believed to contribute to
saccade initiation abnormalities in individuals with ASD. Increased latency
variability in individuals with ASD is indicative of increased variability in
attention control [54].

Eye-tracking technology has been used to record these atypicalities in
gaze dynamics. Moreover, the combination of eye-tracking technology and
machine learning could ultimately improve our understanding of visual
processing differences in individuals with ASD and might lead to earlier
diagnosis and more effective intervention. The next chapter will explore
how machine-learning techniques have been applied to eye-tracking data
in autism research.

2.5 Basic concepts in machine learning

Before proceeding further with our discussion, it is crucial to have a clear
grasp of the essential terminology and concepts associated with machine
learning approaches, which are frequently utilized to model gaze dynamics
in ASD participants. In this section, we will provide definitions and
explanations [55] for the key terms used throughout the next section. These
terms are as follows:

• Object annotation: The process of object annotation involves identi-
fying and labeling objects within an image, allowing us to describe
important characteristics such as the object’s location, size, and cat-
egory.

• Image pre-processing: At times, it is necessary to perform certain
adjustments on our images before they can be used in a machine
learning algorithm. Some examples of these adjustments include
noise reduction, resizing the image, and normalization, which are
done to make the image suitable for use as input data. This process is
commonly known as image pre-processing.

• Image augmentation: Image augmentation is the process of applying
transformations to images, such as rotations or zooms, in order to
generate additional variations of the original images. This is done
to increase the size of the image dataset, which can lead to better
performance and accuracy in machine learning models.

• Minimum Redundancy Maximum Relevance (MRMR) feature
selection method: MRMR is a process used to select the most
important and relevant features for a specific task. This helps to
minimize the number of features used as input. One important aspect
of MRMR is that it avoids selecting similar or redundant features that
may not add much new information.

• Logistic Regression: In statistics, logistic regression is a widely used
statistical model that is used to estimate the probability of an event
occurring, based on one or more independent variables. In binary
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logistic regression, the dependent variable takes on only two values,
typically labeled "0" and "1". The independent variables can either be
binary variables (with two classes) or continuous variables (with any
real value).

Unlike linear regression, which cannot be used to estimate the prob-
ability of a dependent variable due to the possibility of negative prob-
abilities, logistic regression uses a function that produces outputs
between 0 and 1 for all values of the independent variable. This func-
tion is commonly referred to as the sigmoid function, and its output
value is always between zero and one.

The sigmoid function results in an S-shaped curve, which ensures
that regardless of the value of the independent variable, the predicted
probability will always be sensible and not negative. Therefore,
logistic regression is a powerful tool for predicting the probability
of an event occurring, particularly in cases where the dependent
variable is binary.

• Support Vector Machine (SVM): SVM is a supervised learning
algorithm that can be used for tasks such as classification and
regression. An SVM algorithm is designed to find a hyperplane
in P-dimensional space (P corresponds to the number of features)
that distinguishes data points from one another. Several possible
hyperplanes may be selected to separate the two classes of data
points. Hyperplanes are decision boundaries that categorize data
points. There are different classes of data points that fall on either
side of the hyperplane. Additionally, the hyperplane’s dimension
depends on how many features there are. Data points near the
hyperplane are called support vectors, and they influence the
hyperplane’s position and orientation.

• Deep Support Vector Machine (DSVM): DSVM is a type of machine
learning algorithm that combines the power of deep learning and
support vector machines (SVM). The architecture of DSVM is similar
to a deep neural network, which has multiple hidden layers of
neurons. In a regular deep neural network, the neurons in the
hidden layers are connected by weights, but in DSVM the weights
are initialized using SVM functions that have been modified with
a special parameter called the SVM regularization parameter. To
get the best output for a given input, DSVM updates all the SVM
functions in the hidden layers to find the most optimal set of weights.
This approach allows DSVM to benefit from the strengths of both
deep learning and SVM, resulting in a powerful algorithm that can
be used for a variety of tasks.

• Decision Trees (DT): Supervised learning techniques, such as DT,
can be applied to both classification and regression problems, but are
most commonly used to solve classification problems. Essentially, it is
a tree-structured classifier with internal nodes representing features,
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branches representing decision rules, and leaf nodes representing
outcomes

• Random Forests (RF): For making decisions, Random Forest, which
is an ensemble method, utilizes the power of multiple decision trees.
Every tree in the random forest predicts a class and the class with the
most votes becomes our model’s prediction.

• Boosted Decision Tree (BDT): In the Boosting method for classific-
ation, misclassified events are given a higher weight so that future
learners can focus on these examples and improve their accuracy.
BDT is a type of machine learning algorithm that combines many de-
cision trees into one model. The algorithm trains the decision trees
iteratively, using re-weighted versions of the training data in each
iteration. The weights are adjusted to give more importance to the
examples that were misclassified in the previous iteration. This ap-
proach helps BDT to create a more accurate model by focusing on
the areas where it made mistakes and improving upon them. In the
end, the algorithm combines all the decision trees to create a powerful
model that is better at classifying data and making predictions than
any individual decision tree could be on its own.

• Convolutional Neural Network (CNN): CNNs are a type of deep
learning algorithm that have been designed to perform image
classification, object detection, and other related tasks. They use a
series of convolutional filters to analyze the input image, and then
apply non-linear transformations and pooling operations to extract
important features.

• Linear Discriminant Analysis (LDA): LDA is a statistical method
that helps us to identify the features that best separate different
groups of objects or events. It tries to find a linear combination of
these features that highlights the differences between the groups.
This is useful for tasks like classification, where we want to assign
new objects or events to the correct group based on their features.
LDA is a commonly used method for classification in machine
learning.

• Principal Component Analysis (PCA): PCA is a method that is
commonly used to make sense of complex data sets with a lot of
features. It helps to reduce the number of dimensions, making
it easier to understand the information contained within the data.
This method helps to maintain as much information as possible
while enabling the data to be visualized in a way that is easier to
comprehend.

• Evaluation metrics: The assessment of a classifier or predictor’s
performance can be accomplished through several metrics, with
varying preferences based on the specific objectives of different
fields. In the medical domain, the use of specificity and sensitivity
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Figure 2.7: Comparison between actual and predicted conditions.

is frequent, while the computer science field favors precision and
recall. The evaluation metrics are calculated based on the comparison
between the predicted and real data, as illustrated in Figure 2.7.

Accuracy is a widely used metric in classification tasks, which
evaluates the algorithm’s ability to correctly classify a given data
point. It is calculated as the proportion of correctly predicted data
points out of all the data points. The calculation of accuracy based on
Figure 2.7 can be expressed mathematically as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (2.1)

Recall, also known as sensitivity, is an essential evaluation metric,
especially in medical applications. It refers to a test’s ability to
correctly identify individuals with a particular disease as positive.
A highly sensitive test has fewer false negative results, reducing the
likelihood of missing cases of the disease. The recall based on Figure
2.7 can be calculated using the following formula:

Recall =
TP

TP + FN
. (2.2)

Precision is another important metric that is often used to assess the
performance of a classification model. Precision is a measure of the
accuracy of the positive predictions made by the model. It answers
the question: "How many of the positive identifications made by the
model were correct out of all the positive identifications?". In other
words, precision tells us how precise the positive predictions made
by the model are. Based on Figure 2.7 it can be calculated using the
following formula:

Precision =
TP

TP + FP
. (2.3)

The F1 score is an evaluation metric that combines the precision and
recall measures to provide a single value that summarizes the overall
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performance of a classifier. It is calculated as the harmonic mean of
precision and recall, giving equal weight to both measures. The F1
score can be calculated using the following formula:

F1 = 2 ∗ ·precision · recall
precision + recall

. (2.4)

• Receiver Operating Characteristic (ROC):A ROC curve is a graph-
ical representation of the trade-offs between different classification
thresholds. The plot displays the relationship between the true posit-
ive rate (sensitivity) and the false positive rate (specificity) for various
threshold values. A well-performing classification model should ex-
hibit more true positives than false positives at all thresholds.

The ROC curve is used to determine the optimal position, which is
towards the top left corner, where the sensitivity and specificity are
at their maximum values. The area under the ROC curve (AUC) is a
commonly used metric to assess the classification model’s accuracy.
The AUC value represents the degree of separation between true and
false positives. A higher AUC indicates that the model can more
accurately predict the training dataset’s members.

A model with an AUC of 0.5 indicates random classification perform-
ance, and a good classifier should strive to stay as far away from this
value as possible. An AUC value of 1 is ideal, indicating perfect clas-
sification performance. In general, a higher AUC value implies a bet-
ter classifier. Therefore, it is desirable to have an AUC value that is as
close to 1 as possible.

2.6 Predictive modeling of gaze dynamics in autism
spectrum disorder using machine learning tech-
niques

As we discussed, atypical visual attention patterns reflect higher-order
differences in information processing, as the focus of attention directs the
input of information from the environment. Visual attention is related
to concentration, interest, perception, learning, the ability to form joint
attention, cognitive effort, and other indicators, the combination of which
can be used to detect autism. For example, many people with ASD tend to
avoid the eye region when looking at faces.

As a cost-effective method of measuring gaze behavior, eye tracking
has become increasingly popular for diagnosing and predicting ASD.
Researchers have applied various machine learning models to eye-tracking
data, in addition to choosing different stimuli, in order to understand
the difference between autistic and typically developing individuals (of
varying ages). As part of this literature review, we will explore some of
these machine learning models and their applications in understanding
autism through eye-tracking data.
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The study by Wang et al. [56] provided further insights into the visual
processing differences in individuals with ASD. They used a novel three-
layered computational saliency model to examine how people with ASD
and controls allocate visual attention and eye movements while viewing
natural scene images. The study was conducted with 20 people with
ASD and 19 controls who were matched on age, IQ, gender, race, and
education. The model took into account different factors such as pixel level
(e.g., contrast), object level (e.g., shape), and semantic-level attributes (e.g.,
faces) to 5551 annotated objects with a SVM classifier to predict fixation
allocation. These findings suggest that individuals with ASD may have
different strategies for processing and allocating visual attention. The
results showed that people with ASD exhibited a stronger image center
bias, regardless of object distribution, compared to controls. They also
showed reduced saliency for faces and locations indicated by social gaze,
as well as increased pixel-level (such as color, intensity, and orientation)
saliency at the expense of semantic (such as face) saliency. Strong center
bias in ASD was associated with a slower saccade velocity but not with
fewer fixations or a different distribution of objects. This finding could have
implications for our understanding of how individuals with ASD process
and respond to visual information and may inform the development of
interventions and treatments for ASD [56].

Various stimuli and approaches have been used to study visual
processing in ASD individuals. For example, the study by Zhao et al.
(2021) [57] builds on this by examining whether eye-tracking data from
face-to-face conversations could be used to differentiate between children
with ASD and typical development children. They utilized four areas of
interest (AOIs) in four conversation sessions, including the eyes, mouth,
whole face, and whole body, and calculated the percentage of visual
fixation time on each AOI as a feature. They also included features related
to session length. The study investigated whether combining features
related to visual fixation and length of conversation would result in better
classification performance. Four machine learning classifiers (such as SVM,
decision trees, and random forests) were utilized to determine maximum
classification accuracy and their corresponding features. The results
showed that eye-tracking data collected from face-to-face conversations
could be used to accurately classify children with and without ASD, with
a maximum classification accuracy of 92.31 percent for the SVM classifier
when combining features on both visual fixation and session length. This
finding may provide further evidence of the potential usefulness of eye-
tracking technology as a diagnostic tool for ASD, and may also have
implications for understanding the social and communication differences
between children with and without ASD during face-to-face interactions.

The SVM is one of the most commonly used classifiers among
researchers. For example, Kang et al. (2020) [58] conducted a study to
explore machine-learning techniques for identifying children with ASD.
This was done based on data from EEG and eye-tracking measurements.
In order to achieve this, they extracted features from two modalities - EEG
and eye-tracking - and used them as inputs to an SVM algorithm. In the
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study, 97 children between the ages of 3 and 6 performed eye-tracking
tests while their resting-state EEG data was recorded. These tests used
either own-race or other-race stranger faces as stimuli. Analyzing EEG
data involved power spectrum analysis while analyzing eye tracking data
involved selecting AOIs to analyze face gaze.

A minimum redundancy maximum relevance (MRMR) feature selec-
tion method was used with SVM classifiers to identify autistic children.
According to their results, the classification accuracy from combining the
two types of data reached 85.44 percent. This was when 32 features were
selected. This finding may have significant implications for ASD early de-
tection and treatment. Moreover, it could be used to gain a better under-
standing of neural and behavioral differences between children with and
without ASD.

Yaneva et al. [59] conducted a study in which they used a 60 Hz
Gazepoint GP3 video-based eye-tracker to observe the eye movements
of 31 adults with high-functioning autism and 40 adults without autism
while viewing web pages. Their goal was to determine how the visual
processing of these two groups differed. According to this study, autism
could be detected automatically with an accuracy rate of around 74%. The
authors also examine the effects of a variety of factors on the accuracy of
classification, such as gaze-based and page-related features, the number of
tasks, and different approaches and levels of granularity to defining AOIs.
With and without specific instructions regarding location and at different
times, people with autism process information contained on web pages
differently. Aside from the content and granularity level of the AOI, they
also found that the visual complexity of the pages and the gender of the
participants did not affect the classification accuracy [59].

Instead of adults Kanhirakadavath et al. [60] also tested the applicabil-
ity of eye-tracking data in children to aid in the early detection of autism us-
ing machine-learning techniques. Their study examined the effectiveness
of various machine learning techniques to identify the most accurate model
for predicting autism based on images of Eye-Tracking Scan Paths (ETSP).
This data set consists of 547 graphical eye-tracking scan paths taken from
328 typically developing children and 219 children with autism. In order to
avoid model overfitting, they used image augmentation. On the populated
dataset neural network model outperformed typical machine learning ap-
proaches such as BDT, and DSVM (see Figure 2.8 [60]).

Even though machine learning techniques have been successful in some
cases for analyzing gaze data, they may not be the most appropriate
method for studying the temporal dynamics of gaze behavior in individu-
als with autism. Most of these techniques require training models on large
datasets of gaze data and then using those models to make predictions
about new data. The literature currently lacks investigation into the math-
ematical properties of eye-tracking data collected from individuals with
and without autism. To address this gap, I have chosen to use models
that can capture the dynamic nature of gaze behavior and account for the
stochastic (random) nature of the data [61]. This approach will allow me to
gain insight into my dataset and potentially uncover new findings.
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Figure 2.8: Proposed models for image pre-processing and feature extrac-
tion in the classification of ASD and typically developing children, taken
from Ref. [60]. The framework includes two main components: (1) im-
age pre-processing, which involves RGB to grayscale conversion and image
resizing, and (2) feature extraction, which is performed by either a machine
learning algorithm using PCA or a CNN with four layers. PCA reduces the
dimensionality of the data while preserving important information.

Hidden Markov Model ( HMM) is a mathematical model that is useful
for analyzing time-series data, including gaze patterns. By employing
HMMs, researchers can capture the intricate temporal dynamics of gaze
and compare them between different groups, such as individuals with and
without autism. This approach can help gain insights into the underlying
gaze behavior processes and identify differences between groups that may
not be evident using simpler machine-learning methods. Using HMMs
may lead to a better understanding of gaze behavior in this population and
potentially uncover new insights that were previously unknown.

2.7 Markov processes and hidden Markov models

Markov processes, also known as Markov chains (shown in Figure 2.9 [62]),
are mathematical models used to study systems that undergo a series of
probabilistic transitions from one state to another over time.

A Markov process is a stochastic process, which means that it involves
random variables. It is called "Markov" because it satisfies the Markov
property, which states that the probability of transitioning to a new state
depends only on the current state, and not on any of the previous states.
In other words, the future behavior of the system is independent of its past
behavior given the present state.

HMM is a mathematical model for representing sequences of observ-
able events that arise from unobserved (hidden) processes. There is no
knowledge of the underlying processes that generated the events [62].
There are many applications of HMMs, including speech recognition,
handwriting recognition, bioinformatics, natural language processing, and
many other areas where the underlying process generating a sequence of
observations is unknown.

A full probabilistic description of a system such as the Figure 2.9
[62])requires knowledge of the current state and all previous states (in
addition to knowledge of the probability of a transition between two
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Figure 2.9: A visual representation of a Markov chain, taken from Ref.
[62], consisting of 5 distinct states (S1 to S5) and pre-defined transition
probabilities. For example the transition probability from state S1 to S5,
labeled as a12.

states). In HMM, there is an assumption based on the Markov property
stating that our decision in each state is conditionally independent of our
history given our immediate predecessor (the current hidden state only
depends on the previous hidden state).

It is possible to characterize a HMM with a set of parameters
{N, M, A, B, π} which are define as follow:

• N = number of distinct states in the model (a set of N distinct states
can be written as S = {S1, S2, . . . , SN}). Although these states are
hidden, they generally correspond to something we know about the
world. These states are ergodic, which means all states are connected.
If we consider t = as a time instance associated with the state. Then qt
is actual state at time t, ∀i: qi ∈ S, 1 ≤ i ≤ t . And Q = {q0, q1, . . . , qT}
is a sequence of states of the Markov process.

• M = number of observable symbols. They are what can be observed,
and we can identify the set of possible observations in each state as
V = {v1, v2, . . . , vM}. An observation sequence O = (O1, O2, . . . , OT)
is a sequence of observed symbols, but we do not know which specific
values in the sequence correspond to which state in the HMM.

• A = {aij} = state transition matrix in which aij = P(qt = Sj|qt−1 =
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Si), 1 ≤ i, j ≤ N and ∑N
j=1 aij = 1.

If aij = 0, then a transition between two states Si and Sj is impossible.

Rows in A correspond to hidden states, and columns correspond to
probabilities of transitioning from one hidden state to another.

• B = {bj(k)} = Observation probabilities matrix (probability distribu-
tion of seeing one of the observable symbols given that you are in a
particular state, each state has different distribution and we represent
it by B) in which bj(k) = P(vk at t|qt = Sj), 1 ≤ j ≤ N and 1 ≤ k ≤ M.

• π = {πi} = initial hidden state probabilities (probability of
beginning in the particular state) in which πi = P(q1 = Si), 1 ≤
i ≤ N.

The following are three typical types of problems that can be solved
using hidden Markov models:

• Given a sequence of observations O and λ = (π, A, B), calculate
the probability that a model generated O. Or for a given set of
model probabilities λ = (π, A, B)) and a sequence of observations
O, calculate P(O|λ). By using the forward backward algorithm, we
can solve this problem.

• Given a sequence of observations O and λ = (π, A, B), determine the
best sequence of hidden states Q that result in O. Or for a given set of
model probabilities λ = (π, A, B) and a sequence of observations O,
calculate the maximum a posteriori probability estimate of the most
likely Q. By using the Viterbi algorithm, we can solve this problem.

• Given only a sequence of observations O, determine the optimal set
of model probabilities π, A, and B. Or for a sequence of observations
O, guess an initial set of model probabilities λ = (π, A, B) and use
the forward and Viterbi algorithm iteratively to recompute P(O|λ)
as well as to readjust λ. Whenever P(O|λ) stops increasing, or after a
set number of iterations, the calculations will stop.

The first problem is known as the evaluation problem. This involves
calculating the probability that a model produced a given sequence of
observations. Alternatively, we can view this problem as a way to score
how well a given model matches a given observation sequence. This
view is particularly useful when choosing between multiple models, as
it helps us to select the model that best matches the observations. The
second problem is the decoding problem, which involves uncovering the
hidden part of the model - specifically, finding the correct state sequence.
However, for most models, there is no single correct state sequence to be
found. Therefore, we typically use an optimality criterion to find the best
possible solution. The choice of criterion depends on the intended use of
the uncovered state sequence. For example, it could be used to learn about
the model’s structure or to find optimal state sequences for continuous
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speech recognition. The third problem is the training problem, which
involves optimizing the model parameters so that it can best describe a
given observation sequence. To do this, we use a training sequence to
adjust the model parameters. This problem is crucial for most HMM
applications, as it allows us to create the best models for real phenomena
by optimally adapting model parameters to observed training data [62].

We are working on the third problem of HMMs, which is finding
the optimal set of model probabilities given a sequence of observations.
Specifically, we are using eye-tracking data to estimate the parameters of
the HMM, such as the transition probabilities between states and the mean
and standard deviation of velocity observations for each state.

After defining our parameters, we will conduct a power analysis to
determine if there are significant differences between the two groups
regarding these parameters.

2.8 Power analysis

When conducting a statistical hypothesis test, there are two main hypo-
theses to consider: the null hypothesis and the alternative hypothesis. The
null hypothesis assumes that there is no difference between the two groups,
while the alternative hypothesis assumes the opposite. If there is no dif-
ference between the populations of the two groups being compared, it is
unlikely that the samples from these populations will show differences in
the test. However, there is still a chance of making an error, which is called
a type I error. To minimize the risk of this error, we need to decide how
much risk we are willing to take. In medical situations, for example, a type
I error could be quite serious, and we may want to have a smaller risk [63].

The level of significance, or α, is defined as the probability of rejecting
the null hypothesis when it is true. Another type of error is a type I I error,
which is the probability of accepting the null hypothesis when it is not
correct. We want to balance these two types of errors, and the statistical
power of a hypothesis test is the probability of correctly rejecting the null
hypothesis or accepting the alternative hypothesis if it is true. The higher
the statistical power for a given test, the lower the probability of making a
type I I error [63].

To calculate the statistical power, we can use the formula:

Power = 1 − β = P(rejectH0|H1is true), (2.5)

where β is the probability of a type II error, or failing to reject the null
hypothesis when it is false. The power of a statistical test is influenced by
several factors, including the alpha level (when the alpha level decreases,
power also decreases), sample size, and effect size.

The effect size is a measure of the magnitude of the difference between
groups or the strength of the relationship between variables in a study.
Common effect size measures include Cohen’s d, Pearson’s r, and odds
ratios. Cohen’s d is a commonly used effect size measure for comparing
the means of two groups. It is calculated as:
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d =
µ1 − µ2

sp
, (2.6)

where µ1 and µ2 are the means of the two groups being compared, sp is
pooled standard deviation and is calculated as:

sp =

√
[(n1 − 1)× s2

1 + (n2 − 1)× s2
2]

n1 + n2 − 2
, (2.7)

where s1 and s2 are the standard deviations of the two groups, and n1
and n2 are the sample sizes of the two groups.

So, power analysis is an essential tool in experimental design, consisting
of four variables: Effect Size, Significance Level, Power, and Sample Size.
These variables are interconnected in such a way that a change in one will
affect the other three. Power analysis enables us to determine the fourth
variable when the other three variables are known. A power analysis can
be used to determine the minimum sample size needed to achieve a given
power level or to estimate the power of a study based on the sample size.

There are several software packages available that can perform power
analyses, including Python, R, and SAS. These packages typically require
the user to specify the effect size, the significance level, and the desired
power level and can provide sample size estimates or power estimates for
a given sample size.
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Chapter 3

Data and methods

3.1 Data description

Carette et al. [15] developed a raw eye-tracking data set to study and
analyze gaze behavior in children with and without autism. The aim was
to generate insights and develop useful ASD applications, such as machine
learning models for ASD diagnosis. The study involved collaboration
between psychologists from the CRP-CPO lab and AI researchers from the
MIS lab at the University of Picardie Jules Verne in France.

The eye-tracking data were collected from 59 children aged 3 to 12
years, including 29 with ASD and 30 TD children from schools in the Hauts
de France region, using an SMI Red-M eye tracker with a 60 Hz sampling
rate.

In this study, eye gaze was stimulated by presenting photos and videos
on a screen. The ocular activity was analyzed using a variety of videos
from different perspectives. Visual items, such as colorful balloons and
cartoons, were used in the photos and videos to capture children’s interest.
As depicted in Figure 3.1 [15], human actors were included in the videos to

Figure 3.1: The figure, taken from Ref. [15], illustrates a screenshot taken
from one of the videos used to record eye-tracking data. The video features
an actress holding a colorful balloon, designed to attract the attention of
child participants.
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(a) (b)

Figure 3.2: Figure, taken from Ref. [15], (a) shows the eye-tracking paths
of one autistic participant, while Figure (b) depicts the eye-tracking paths
of typically developing participants. The comparison highlights potential
differences in gaze patterns between these groups, providing insights into
the mechanisms underlying visual attention in autism. The color shift
along the line denoted the underlying pattern of eye movements. To
achieve this, the RGB values were adjusted in accordance with the velocity,
acceleration, and jerk at each instance. To prevent color values from
exceeding the limit, all values were restricted to a quarter of the diagonal
length of the screen. As a result, Saccadic eye movements were represented
by yellow or white, with the latter indicating extremely fast eye movements
that exceeded the limit. Fixations were represented by cyan, providing a
visual representation of eye motion.

attract children’s attention to the visual items. The study employed
various types of stimuli, such as static and dynamic naturalistic scenes,
static faces or objects, cartoons, and joint attention stimuli. The average
duration of an eye-tracking experiment was around five minutes.

The eye-tracking device captured three types of eye movements,
including fixations, saccades, and blinks. Additionally, the points of gaze
which refer to the location on a visual display where a person is looking at
a particular moment in time coordinates were recorded. This can be used
to track eye movements and analyze gaze behavior.

3.2 Data processing and visualization

Figures 3.2 depict the eye-tracking paths of participants with and without
ASD in a study conducted by Carette et al. [15]. We are using the same
data set. Analysis of the data revealed that participants with ASD tended
to look more frequently toward the bottom of the screen, where the eye-
tracking device was positioned.

In our data exploration, we focused on two participants initially: one
with ASD (participant 15) and one TD participant (participant 46) for the
first experiment. The main variables of interest were the x and y positions
of the eye at different time points, along with the classification of the
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eye movements (fixations, saccades, blinks, and null data) as recorded
by the eye tracker. However, we excluded blink and null data in the
initial analysis as they were of little interest and had a small number of
occurrences. We then separately analyzed the data for each participant to
gain a better understanding of the data statistics.

3.2.1 Introduction to eye-tracking metrics and terminology

Eye tracking is a powerful tool for understanding visual attention and
cognitive processes. However, interpreting the data can be challenging
without a foundational understanding of key metrics. In this section,
we will introduce and define several relevant eye-tracking metrics that
will be used throughout the following section. By establishing a clear
understanding of these concepts, we can better interpret and analyze the
eye-tracking data presented in the following section.

x and y-position of the point of gaze: The x-position of the point of
gaze represents the horizontal location on the screen where the participant
is looking, while the y-position of the point of gaze represents the vertical
location. These coordinates are denoted by x and y, respectively, and are
typically measured in terms of pixel coordinates on the screen.

Distance between two eye coordinates: The Euclidean distance
between two eye coordinates (x1, y1) and (x2, y2) is given by the formula:

d =
√
(x2 − x1)2 + (y2 − y1)2, (3.1)

where d is distance.
Velocity: Velocity is defined as the rate of change of position over time

which can be calculated as:

v =
d

t2 − t1
, (3.2)

where d is the distance from one point to another point and t2 − t1 is the
time duration between those two points.

In the context of eye-tracking, we can calculate the velocity for the
horizontal position of the gaze (vx), the vertical position of the gaze (vy),
velocity during fixation (v f ixation), and velocity during the saccade (vsaccade)
using the following formulas:

vx =
xt2 − xt1

t2 − t1
, (3.3)

where (xt1) and (xt2) are two consecutive eye coordinates in the
horizontal direction at time t1 and t2 respectively.

vy =
yt2 − yt1

t2 − t1
, (3.4)

where (yt2 , t1) and (yt1 , t2) are two consecutive eye coordinates in the
vertical direction at time t1 and t2 respectively.
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Figure 3.3: Illustration of the position (Pi) of three points, taken from Ref.
[64]: P1, P2, and P3. r⃗1 shows the relocation from P1 to P2. ϕ is the angle
between consecutive relocation vectors, and θ is the angle between the first
relocation vector and the horizontal axis.

We can calculate v f ixation and vsaccade using the same formula as velocity,
but only considering data points classified as fixations and saccades,
respectively.

v f ixation =
d f ixation

t f ixation
, (3.5)

where d f ixation =
√
(x f2 − x f1)

2 + (y f2 − y f1)
2 represents the total

distance traveled during two consecutive fixations, and t f ixation represents
the duration of the fixation.

vsaccade =
dsaccade

tsaccade
, (3.6)

where dsaccade =
√
(xs2 − xs1)

2 + (ys2 − ys1)
2 represents the total dis-

tance traveled during two consecutive saccades, and tsaccade represents the
duration of the saccade.

Overall speed (vs): Overal speed or scalar velocity refers to the speed of
eye movement without considering direction. Usually expressed as pixels
or degrees per second, it is the magnitude of the velocity vector. It measures
how fast the eyes are moving without regard to whether they are moving
up, down, left, or right. For example, If the participant’s gaze is moving
quickly to the right (with a high x-position velocity (vx)), but not moving
up or down (with a low y position velocity vy), the overall velocity (vs)
would still be high. Using the scalar value of velocity, you can measure or
compare the overall speed of eye movements during a task. Accordingly, it
calculates as follows: √

v2
x + v2

y. (3.7)
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Angle between two consecutive measurements: To find this angle,
we need to measure the position of the gaze at different points in time.
Let’s say we have three measurements of the position (P) of the gaze on
the screen: one at time 1, one at time 2, and one at time 3 same as what
we have in Figure 3.3 taken from [64]. Using these three measurements
and considering relocation (⃗r) between the positions, we can calculate the
velocities of the gaze at the first two points and at the second two points.
The velocity is just how fast your gaze is moving on the screen. We can
calculate the velocity magnitude by dividing the distance the gaze moves
between two points or relocation by the time it takes to move that distance.

Once we have the velocities at each pair of points, we can use a formula
to find the angle between those velocities. This angle tells you how much
the gaze direction changes between those two points and can be calculated
as:

ϕ = cos−1
(

v1 · v1

∥v1∥ · ∥v2∥

)
, (3.8)

where v1 and v2 are the velocities at two consecutive points. The symbol
∥·∥ denotes the magnitude (or absolute value) of the vector and · denotes
the dot product between the two vectors. The angle ϕ is measured in
radians. If we need the result in degrees, you can convert it by multiplying
it by 180

π .
By repeating this process for every pair of consecutive points, we

can get an idea of how the gaze direction changes over time while the
participant is watching the screen.

Angle of given velocity with horizontal axis: We can calculate the
angle of each velocity component vx and vy with respect to the horizontal
axis as shown in Figure 3.3, denoted as θ.

Autocorrelation (ρk): The autocorrelation shows how a signal correlates
with itself over time. x-position velocity autocorrelation in eye-tracking
datasets is the correlation between the x-position velocity at different time
lags. Over time, it can identify trends or patterns. The autocorrelation of a
time series Xt at lag k can be computed as:

ρk =
∑n

t=k+1(Xt − X̄)(Xt−k − X̄)

∑n
t=1(Xt − X̄)2 , (3.9)

where X̄ is the mean of the time series and n is the number of
observations in the time series.

A high autocorrelation means the x velocity at a given moment is highly
correlated with the x velocity one second later. A repetitive gaze pattern
may indicate this.

A low autocorrelation means the x velocity at a given moment is not
strongly correlated with the x velocity one second later.

Moving average: A moving average is a common method of smoothing
time-series data. Essentially, it involves calculating the mean of a specified
number of consecutive data points, known as the "window size," and then
moving the window forward one point at a time until the end of the
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(a) (b)

Figure 3.4: Visual representation of eye movements during an eye-tracking
task for an autistic individual (a) and a typically developing participant
(b). The red parts of the figure depict the recorded fixations, indicating the
times at which the individual’s attention was attracted to different areas.
The blue parts represent the recorded saccades, showing the times at which
the individual made rapid eye movements between different areas.

data series is reached. Using a window size of n, the moving average is
calculated as follows:

MAVi =
xi + xi−1 + ... + xi−n+1

n
, (3.10)

where MAVi is the moving average at time point i, and xi to xi−n+1 are
the data points included in the window.

When a moving average index is calculated between consecutive eye
tracking data points for participants with and without autism and plotted
over a time window, it can be used to estimate the distance covered by the
participants’ gaze over the given time window. A higher moving average
index indicates a wider area of coverage over the time window, while a
lower index indicates a narrower area.

3.2.2 Interpreting eye-tracking data from autistic and typically
developing participants

The eye-tracking data presented in this study suggests that individuals
with autism may exhibit different scanning patterns compared to typically
developing individuals. Figure 3.4 depicts the gaze paths of the two
participants, showing that the participant with ASD covered a wider
area horizontally compared to the TD participant, who might have more
attention directed towards the center of the screen. Additionally, the ASD
participant had longer fixation durations on specific areas except for the
center, resulting in a more random or fragmented scan path.

Figure 3.5 corroborates the findings from the gaze pattern visualization.
The variability of the x-position values, as shown in this figure with peaks
and valleys, is larger for the autistic participant, suggesting that their eye
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(a) (b)

Figure 3.5: Horizontal gaze patterns of an autistic individual (Figure a,
blue) and a typically developing individual (Figure b, orange) during the
same eye-tracking task.

Figure 3.6: The figure demonstrates estimating distance covered by
participants with and without autism through moving average analysis of
eye tracking data. This analysis technique involves using a moving average
index to estimate the distance covered by participants’ gaze over a specific
time window (in this case, 300 points).

movements might be more erratic. The moving average index shown
in Figure 3.6 also suggests that the ASD participant’s gaze covered more
ground than the TD participant.

Figure 3.7 shows during the eye-tracking task, both participants
attempted to return to the x-position of 600 pixel on the screen, with a few
data points falling outside this amount. This suggests that their gaze is
primarily focused on the center of the screen, with occasional deviations
to the left or right. However, the autistic participant exhibited more
variability in their gaze patterns, as evidenced by the larger spread of data
points around the central region.

We can analyze the horizontal and vertical movements of gaze by
examining the values of vx and vy, which respectively indicate the speed

41



(a) (b)

Figure 3.7: The figures compare horizontal eye movement histograms of a
participant with autism (Figure (a)) and a typically developing participant
(Figure (b))

(a) (b)

(c) (d)

Figure 3.8: Figure displays four histograms that illustrate the distribution
of eye movement velocities for participants with and without autism. The
first two histograms, Figures (a) and (b), depict the horizontal velocity
distribution for autistic and TD participants, respectively. The next two
histograms, Figures (c) and (d), show the vertical velocity distribution for
autistic and TD participants, respectively.

and direction of gaze movement in the horizontal and vertical direc-
tions on the screen.

Based on the histograms of horizontal velocity shown in Figure 3.8,
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(a) (b)

Figure 3.9: This plot compares the gaze velocity scalar (vs) values between
individuals with and without autism, which reflects the overall speed of
their eye movement on the screen. The results reveal that the participant
with ASD exhibited a broader range of gaze velocity values than the TD
participant, suggesting that the former made more rapid gaze shifts.

both ASD (Figure 3.8a) and TD (Figure 3.8b) participants had a similar
frequency of eye movements with low horizontal velocity values around
zero. However, there were some differences in velocity ranges between
the two groups. While most horizontal velocities for TD participants fell
between −10 and 10, those with ASD had wider horizontal velocity ranges,
ranging from -20 to 20. This suggests that the ASD participant may make
rapid gaze shifts at a higher rate than the TD participant.

However, when it comes to horizontal eye movements, both individu-
als with autism (Figure 3.8c) and those without (Figure 3.8d) exhibit almost
similar speeds and directions. There is a slightly greater concentration of
data points in the −20 to 20 range for the TD participant, indicating slightly
higher speed in that range, but overall the two groups have almost similar
horizontal velocity distributions.

In addition to examining the horizontal and vertical velocity of eye
movements, we can also gain insights into the overall speed of eye
movements, which is represented by the velocity scalar (vs) values. The
velocity scalar plots in Figures 3.9a and 3.9b demonstrate that the ASD
participant had a higher range of high-velocity values reaching to almost
35, indicating more sudden and rapid changes in gaze direction. In
contrast, the TD participant had a higher frequency of lower velocity
values, suggesting more consistent and smoother eye movements.

Since the histograms for vx and vs showed differences between
participants, we decided to investigate whether data points in vx and vs
are correlated with each other. To do this, we examined the autocorrelation
plots.

Figure 3.10 illustrates that there is no significant correlation between
data points for either vx or vs for either participant, as seen by the
small fluctuations around zero in the autocorrelation plots. This lack of
correlation indicates that the velocity values are essentially random, with
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(a) (b)

(c) (d)

Figure 3.10: Autocorrelation plots for eye movement variables. (a)
autocorrelation of vx for the ASD participant. (b) autocorrelation of vx for
the TD participant. (c) autocorrelation of vs for the ASD participant. (d)
autocorrelation of vs for the TD participant.

no discernible pattern.
However, there is a positive autocorrelation in the first lag for the vx

for both participants as shown in Figure 3.10a and 3.10b, and a negative
autocorrelation in vs as shown in Figure 3.10c and 3.10d. This suggests that
the gaze direction from one moment to another is positively correlated,
while the gaze’s overall speed is negatively correlated.

The positive autocorrelation in the first lag of the vx suggests that
the gaze direction from one moment to another is positively correlated,
meaning that if the gaze moves quickly to the right at a given moment, it’s
more likely to keep moving that way at the next moment. The negative
autocorrelation in the vs suggests that the gaze overall speed is negatively
correlated, meaning that it’s more likely to slow down or move at a slower
speed at the next moment. This kind of pattern could be indicative of
specific gaze behavior, such as fixations or saccades.

The angle histograms depicted in Figure 3.11 provide valuable insights
into the distribution of eye movement directions and the stability and
consistency of gaze movements.

Figure 3.11 reveals that there is no qualitative difference between the
two participant groups.

From the single angle histograms shown in Figure 3.11c and Figure
3.11d, it is evident that the angles are concentrated around 90 or 270 de-
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(a) (b)

(c) (d)

Figure 3.11: Histograms of the angle between vx and vy for ASD and TD
participants are shown in figures (a) and (b), respectively. Histograms of
the angle between vx and vy with respect to the x-axis for ASD and TD
participants are shown in figures (c) and (d), respectively

grees, indicating a greater frequency of vertical eye movements compared
to horizontal ones. Conversely, if the angles were concentrated around 0 or
180 degrees, it would indicate a higher frequency of horizontal eye move-
ments.

Moreover, both Figures 3.11a for ASD participants and 3.11b for TD
participants indicate periodic eye movements in both groups.

Having examined the gaze direction and speed patterns in our eye-
tracking data set, we now turn our attention to analyzing fixation and
saccade velocities in both ASD and TD participants. Fixations and saccades
are essential components of eye movements that reflect different cognitive
and perceptual processes, and their velocity profiles can provide insights
into the underlying mechanisms that drive gaze behavior. By examining
the histograms of fixation and saccade velocities for both groups, we
aim to investigate potential group differences in these fundamental eye
movement parameters.

The comparison of fixation and saccade velocities for ASD and TD
participants in Figure 3.12 shows that the fixation velocities of the ASD
participant are more widely spread out compared to the TD participant.
This could suggest that the individual with ASD has difficulty maintaining
fixation on stimuli. On the other hand, the distribution of saccade velocities
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(a) (b)

Figure 3.12: Comparison of fixation and saccade velocities for ASD and
TD participants. Figure (a) displays the histogram of fixation and saccade
velocities for an autistic individual, while Figure (b) displays the same
histogram for a typically developing individual. The x-axis represents
the velocity values in degrees per second, and the y-axis represents the
frequency of occurrence. The blue bars represent the fixation velocities and
the orange bars represent the saccade velocities.

for both participants is quite similar, making it difficult to differentiate
between them based on this figure alone.

As a result of the information above, it seems that the data set may
be of use to researchers interested in studying the differences between
individuals with ASD and those with TD, as well as shedding light on
potential underlying mechanisms associated with ASD.

3.3 Methodology plan

In Section 2.7, we discussed the characterization of a Hidden Markov
Model (HMM) using a set of parameters N, M, A, B, π. Our hidden states
are defined as N = Fixation, Saccade, and M represents the velocity data,
with two observable velocities: fixation velocity (vfixation) and saccade
velocity (vsaccade). The state transition matrix A represents the transition
rates (expected number of events) between saccade and fixation states,
which can be calculated using the formula:

T = −log(n/m ∗ 60), (3.11)

where T is the transition rate, n represents the count of transitions
between two distinct states, whereas m denotes the total number of states,
which could either be saccadic or fixation. As the data were sampled at a
rate of 60 Hz, we normalized our calculations by using a denominator of
60. In fact, the eye tracker samples the position of the eyes 60 times per
second (number of frames per second (fps)). The duration of each frame is
1/60 seconds, which is approximately 16.7 milliseconds.

The probability distribution of observing velocities, given a particular
state of fixation or saccade, is denoted by the variable B, which assumes a
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(a) (b)

Figure 3.13: Figure shows the normal distribution fitted on the log fixation
velocities (a) and log saccade velocities (b)

lognormal distribution [65].
As an example, as shown in Figure 3.13 for one participant in one

experiment, both fixation and saccade velocities exhibit a log-normal
distribution, and the data has been fitted to the log-normal distribution.

Additionally, the initial probability of starting from each state, represen-
ted by the variable π, is determined by dividing the number of observable
states saccade or fixation by the total number of states.

The analysis of the data indicated potential differences between the
two groups of participants, those with and without autism. To further
investigate and identify any significant differences, we plan to follow the
steps outlined in Figure 3.14. Our first step will involve data preprocessing
to separate the participants.

The dataset comprises 25 CSV files, each representing an eye-tracking
experiment. It is important to note that different experiments involved
different participants from both groups.

Upon analyzing the complete dataset and separating the participants,
we discovered that data was unavailable for participants 12 and 16, who
were both diagnosed with autism. Consequently, the final number of
participants comprised 27 children with autism and 30 children without
autism. The experiments involved 167 samples from autistic participants
and 226 samples from typically developing children.

Our initial attempt is to assume that the current classification of saccade
and fixation with the algorithm used for eye-tracking is correct. We will
investigate whether there are any differences between the two groups using
this classification method.

Our next step involves extracting hidden Markov parameters from each
participant in both groups. The following are the key parameters used in
our analysis:

Transition rates between saccade and fixation: Two transition rates are
considered: one from saccade to fixation (Ts2 f ) and the other from fixation
to the saccade (Tf 2s).

Mean and standard deviation of fixation velocity: These parameters
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Figure 3.14: Plan for data analysis.

refer to the mean (X̄ f ixation) and standard deviation (s f ixation) of the velocity
observed during the fixation state, which is modeled by a log-normal
distribution.

Mean and standard deviation of saccade velocity: These parameters
refer to the mean (X̄saccade) and standard deviation (ssaccade) of the velocity
observed during the saccade state, also modeled by a log-normal distribu-
tion.

Following this step, we will draw the distribution of each parameter for
each group to visually inspect for any differences. Finally, we will perform
a power analysis between the two groups for each parameter to determine
if the observed differences are statistically significant.
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Chapter 4

Results and Discussion

In this chapter, we present the results of our analysis of eye-tracking
data for both autistic and non-autistic participants. Table 4.1 presents a
summary of the dataset that will be analyzed in this study.

Specifically, we analyzed the transition rates from saccade to fixation
and fixation to saccade, as well as the mean and standard deviation of
fixation and saccade velocities for both groups. An example of the extracted
parameters for participant 1 in different experiments is provided in Table
4.2.

After the process of extracting parameters from the sample of size 393,
we calculated the distribution of each parameter separately for each group
and compared them.

The distributions of the transition rates from saccade to fixation and
from fixation to saccade for the TD and ASD groups are displayed in
Figures 4.1a and 4.1b, respectively. The TD group has a distribution of the
transition rate from saccade to the fixation that is skewed towards lower
values, with a higher peak compared to the ASD group. This suggests that
individuals in the TD group tend to have longer saccade durations and less
frequent fixation compared to the ASD group. On the other hand, the ASD
group has a distribution of the transition rate from fixation to saccade that
is also skewed towards lower values but with a higher peak compared to
the TD group.

Total number of participants 57
Number of autistic participants 27

Number of non-autistic participants 30
Age (Mean / Median) 7.88 years / 8.1 years

Number of experiments 25
Number of samples from the autistic group 167

Number of samples from the non-autistic group 226

Table 4.1: Data statistics overview.
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Experiment Ts2 f Tf 2s X̄ f ixation s f ixation X̄saccade ssaccade
9 4.96 6.90 6.70 1.02 8.29 1.15
12 4.94 7.14 6.58 0.94 8.33 1.14
18 5.33 6.94 6.29 1.16 8.49 1.38
19 4.96 6.87 6.71 1.07 8.54 1.10

Table 4.2: Table shows transition rates and velocity distribution parameters.
Ts2 f is the transition rate from saccade to fixation, and Tf 2s is the transition
rate from fixation to saccade. X̄ f ixation and s f ixation represent the mean and
standard deviation of the fixation velocities, respectively. Similarly, X̄saccade
and ssaccade represent the mean and standard deviation of the saccade
velocities, respectively.

(a) (b)

Figure 4.1: Figure (a) displays the distribution of the transition rate
from saccade to fixation, and figure (b) illustrates the distribution of the
transition rate from fixation to saccade for the autistic and non-autistic
groups. The distribution of the autistic group is depicted by the orange line,
while the blue line represents the distribution of the non-autistic group

(a) (b)

Figure 4.2: Figure (a) shows the distribution of the fixation velocity means
and figure (b) displays the distribution of the fixation velocity standard
deviation for both participants with and without autism. The distribution
of the autistic group is depicted by the orange line, while the blue line
represents the distribution of the non-autistic group.
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(a) (b)

Figure 4.3: Figure (a) shows the distribution of the saccade velocity means
and figure (b) displays the distribution of the saccade velocity standard
deviation for both participants with and without autism. The distribution
of the autistic group is depicted by the orange line, while the blue line
represents the distribution of the non-autistic group.

This indicates that individuals in the ASD group tend to have longer
fixation durations and less frequent saccades compared to the TD group.
Therefore, there might be a significant difference between the two groups
in terms of their oculomotor behavior.

The results from the fixation velocities mean plot, which is more
about the average speed of eye movements during fixations, in Figure
4.2a suggest that the ASD group exhibits a higher peak and a more
positively skewed distribution towards higher values, indicating that
individuals with ASD might have longer fixation durations compared to
TD individuals since on average they tend to have faster fixation velocity.
It is what exactly we saw in the transition rate in Figure 4.1b. Conversely,
the fixation velocity standard deviation plot in Figure 4.2b suggests that the
TD group has a higher peak and less symmetrical distribution compared to
the ASD group, indicating that TD individuals have more consistent and
stable fixation durations. There seems to be a difference in the fixation
velocity characteristics between the TD and ASD groups.

The saccade velocities standard deviation plots in Figures 4.3b shows
that the ASD group has a higher peak compared to the TD group. It
means that there is a higher density of individuals in the ASD group with
similar or higher saccade velocity standard deviations compared to the TD
group. Based on the fact that the standard deviation is the same in both
distributions and the mean values are almost identical, it is possible that
there is no significant difference between the two groups.

The saccade velocities mean plot in Figures 4.3a, same as saccade
velocities standard deviation plots, does not provide information on
whether this difference is significant.

Next, we will investigate whether there is a significant difference
between the two groups in terms of various parameters by conducting
a power analysis. By performing power analysis, we can determine the
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Ts2 f Tf 2s X̄ f ixation s f ixation X̄saccade ssaccade
Effect size 0.51 0.66 0.71 0.48 0.14 0.21

Sample size 62 37 33 71 749 365

Table 4.3: Table showing the effect size and required sample size for each
parameter using a significance level of 0.05 and power of 0.8 for conducting
a two-sample t-test to compare the groups in our study. These sample sizes
will enable us to accurately and reliably test our null hypothesis for each
parameter.

required sample size to detect significant differences between the two
groups with a desired level of statistical power.

In our study, each observation is independent, meaning that the
measurements for one observation do not affect measurements for any
other observation. We have set our null hypothesis to test whether the
mean of the first group is equal to the mean of the second group for
each parameter. To test this hypothesis, we will use the t-test, which is a
commonly used statistical test for two independent samples.

Before conducting the t-test, we need to determine the sample size
required for the test. To do this, we have set the significance level at 0.05
and the power at 0.8. Additionally, we have calculated the effect size using
Cohen’s d. Table 4.3 presents the required sample size for each parameter
along with its corresponding effect size.

Overall, our study has ensured that each observation is independent,
and we have carefully calculated the required sample size to ensure
accurate and reliable results when conducting the t-test.

Since the effect size is very small, with values of 0.14 and 0.21 for
the mean and standard deviation of saccade velocities, respectively, this
suggests that there is only a small difference between the mean saccade
velocities of the ASD and TD groups and that the variability within each
group is similar. As a consequence, the statistical test may not demonstrate
a significant difference between the two groups, which would lead to the
acceptance of the null hypothesis that states that the two groups are similar.
This finding differs from what we found in the literature review, which
suggests that saccade velocity is slower in children with autism [54].

In order to proceed with the remaining parameters, we have calculated
the power values using the necessary sample size and effect size that
were previously calculated, along with a significance level of 0.05 for each
parameter. The results of these calculations are presented in Table 4.4.

Based on the table, the calculated power values for each parameter
are all above 0.97, which indicates that there is a high probability of
correctly rejecting the null hypothesis if it is indeed false. This means
that with the given sample size and effect size, we have sufficient
statistical power to detect significant differences between the groups for
each parameter. These parameters, namely the transition rate from saccade
to fixation, transition rate from fixation to saccade, fixation velocity mean,
and standard deviation, exhibit informative characteristics and indicate a
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Ts2 f Tf 2s X̄ f ixation s f ixation
EEfect size 0.51 0.66 0.71 0.48
Sample size 62 37 33 71

Power 0.977 0.974 0.977 0.979

Table 4.4: The table presents the calculated power values, using the effect
size and required sample size calculated in the previous step, for each
parameter with a significance level of 0.05.

precision recall f1-score
TD 0.63 0.97 0.77

ASD 0.96 0.58 0.72

Table 4.5: The table presents evaluation metrics values based on the
confusion matrix.

statistically significant difference between the two groups. These findings
suggest that these parameters may hold promise for future research in this
area.

In this study, we utilized logistic regression as a classification model
to distinguish between individuals with ASD and TD individuals. To
accomplish this, we derived four parameters from HMM and used them
as inputs to our model. The dataset was split into training and testing sets
with a ratio of 80:20, respectively.

Our findings demonstrate that, based on 5-fold cross-validation, the
logistic regression classifier achieved an Area Under the Curve (AUC) of
0.85, as illustrated in Figure 4.4. Additionally, the accuracy of the model
was found to be 75 percent. This result surpasses the AUC values reported
in previous studies, such as Carette et al.’s research [15] where logistic
regression was also utilized for classification. To gain further insight into
the classifier’s performance, we analyzed the confusion matrix depicted
in Figure 4.5. Our study’s analysis of the logistic regression classifier
using test data revealed that the classifier correctly predicted 26 children
with ASD (True Positives, TP) and 33 TD children (True Negatives, TN).
However, it also falsely predicted one child as an ASD participant (False
Positive, FP) and 19 children as TD when they actually have ASD (False
Negatives, FN).

After computing various evaluation metrics based on the confusion
matrix, we presented them in Table 4.5. The F1-score, which is a weighted
average of the precision and recall, where a value of 1 represents perfect
precision and recall, was found to be 0.72 for ASD participants. This score
is lower than the F1-score for TD participants (0.77), indicating that the
model’s performance for identifying ASD participants is not as good as its
performance for identifying TD participants.

Such misclassification is undesirable in our study, as it may result in
incorrect diagnosis and treatment decisions for the affected children.

However, these findings suggest that our approach, which incorporates
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Figure 4.4: The ROC curve of the classification by logistic regression.

HMM-derived parameters and logistic regression classification, may offer
an improved and more accurate method for classifying individuals with
ASD. Although we achieved a higher AUC in our study, there is still room
for improvement.

After exploring the eye-tracking dataset and drawing a series of plots
depicting the standard deviation of the x and y positions, we observed that
there might be differences between the two participant groups. Specifically,
the y position standard deviation showed greater differences, with the
mean y position standard deviation for ASD participants appearing to be
larger than that for TD participants, as shown in Figure 4.6. This could
indicate that there is more variability in the y position of ASD participants
compared to TD participants, providing a measure of how much the eye
gaze location varies in the up and down direction across a series of time
points or trials.

We investigated this feature further to determine whether it could
distinguish between the two groups. However, after conducting a power
analysis for both x and y position standard deviation for both groups, we
found that the statistical power was low, even with sufficient sample size.
The power for the x position standard deviation was 0.331, and for the y
position standard deviation, it was 0.41. This suggests that our study may
not have had sufficient statistical power to detect a significant difference
between the two groups in terms of the standard deviation of eye position.

The low power for the x position may be due to the low effect size
of 0.36, while the high degree of variability in the data may explain
the low power for both x and y positions. Using these two features
in the classification resulted in a negative outcome, with AUC dropping
from 0.85 to 0.76. This suggests that these features were not effective in
distinguishing between the two groups.
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Figure 4.5: The figure displays a confusion matrix for the classification
model, providing an overview of the predicted and actual classification
results for each class, ASD and TD participants. This matrix can be utilized
to determine multiple evaluation metrics, including accuracy, precision,
recall, and F-score.

Figure 4.6: The figure shows the standard deviation of x and y eye gaze
positions for ASD and TD participants. Orange lines represent ASD
participants, and blue lines represent TD participants. The plot indicates
that ASD participants have higher variability in both x and y positions, but
the difference is more noticeable for y position.
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Chapter 5

Conclusion

In this study, we investigated the statistics of fixation and saccade in eye
movements using a hidden Markov model on an eye-tracking dataset
from autistic and non-autistic participants who had a free viewing task
in different experiments. We extracted six parameters from the dataset
and found that four of them, namely transition rate from saccade to
fixation, transition rate from fixation to saccade, mean, and standard
deviation of fixation velocities were informative enough to distinguish
between the two groups. Our objective was to determine whether
the distribution parameters of fixations and saccades can effectively
differentiate individuals with autism from those who are neurotypical. We
have discovered that the distribution parameters of fixations, along with
the transition rate from saccade to fixation and fixation to saccade, could
potentially aid in achieving this objective. However, we could not find
the difference between the saccade velocities mean and standard deviation
between participants with and without autism. This finding contradicts
the existing literature, which suggests that saccade velocity is slower in
children with autism. However, it is crucial to note that discrepancies in
study design, methodology, and participant characteristics may contribute
to divergent findings across studies, as is the case with the present study
that utilized a free viewing task for autistic participants rather than saccade
guidance, as seen in the existing literature. Moreover, it is important
to acknowledge that the current study may have limitations regarding
sample size or statistical power that could influence the ability to detect
significant differences. Further research is necessary to reconcile these
discrepancies and to gain a more comprehensive understanding of the
relationship between autism and saccade velocity.

In terms of the classification of individuals with ASD versus TD indi-
viduals using logistic regression, our study was able to achieve superior
results compared to those reported in the literature. Specifically, our ap-
proach, which incorporated four parameters derived from HMM as inputs
to the logistic regression classifier, yielded an improved classification per-
formance in terms of accuracy and/or AUC metrics.

One limitation of this study is that we had to include participants
performing different tasks to increase the sample size. We assume that
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the eyes behave consistently regardless of the task being performed when
analyzing the features such as transitions, fixation, and saccade mean and
velocities. However, it is possible that this assumption is not entirely
accurate. It may be necessary to conduct an experiment that focuses on
a single task to obtain equal sample sizes and improve the validity of
the results. Unfortunately, due to time constraints, it was not feasible to
conduct such an experiment in the scope of this thesis

As a future direction, it may be useful to investigate the gaze dynamics
of individuals with autism in the absence of social stimuli. One way to
achieve this is to design an experiment in which participants are presented
with non-social stimuli, such as objects, and their eye movements are
recorded using eye-tracking technology. By comparing the gaze dynamics
of individuals with and without autism in this context, we may gain
a deeper understanding of how autism affects visual attention and
perception.

In conclusion, this study provides some insight into the differences in
eye movements between individuals with and without autism. The results
suggest that differences in fixation velocity may be a more informative
metric than saccade velocity when distinguishing between the two groups.
The lack of significant differences in saccade velocity between the two
groups is a novel finding that contradicts the existing literature.
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Appendix A

Code repository

The codes used in the project are available on GitHub at the following
address:

https://github.com/MaryamLG/Eyetracking.
The code files are written in Python format, and the extracted paramet-

ers for each group are provided in Excel format.
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