
ACIT5900

MASTER THESIS

in

Applied Computer and Information Technology

(ACIT)

May 2023

Applied Artificial Intelligence

Generating Synthetic Medical Images with 3D GANs

Håkon Guttulsrud

Department of Computer Science

Faculty of Technology, Art and Design

Preface

It has been a fulfilling and enlightening experience to undertake the writing of this
thesis, which focuses on the use of artificial intelligence to generate synthetic
medical images with the potential to enhance computer-assisted cancer diagnosis.

During my research, I have been fortunate to receive guidance and support from
several individuals. I would like to express my appreciation to my thesis advisors,
Michael Riegler and Vajira Thambawita, who have provided me with invaluable
support and inspiration. Additionally, I would like to extend my gratitude to my
fellow students for their encouragement and advice.

I cannot overlook the contributions of the patients whose medical images formed
the foundation of this thesis. Their generosity in sharing their data has been
crucial in the creation of synthetic images that have the potential to benefit not just
themselves but also countless others who may benefit from the results of this
thesis.

Oslo, 15.05.2023

Håkon Guttulsrud

1

Abstract

This thesis presents a novel approach to overcoming the challenges associated
with the scarcity of annotated medical image data, a significant hurdle in cancer
detection. We propose the use of Generative Adversarial Networks (GANs) to
generate synthetic high-resolution 3-dimensional CT images and corresponding
tumor masks, thereby enhancing the volume and diversity of available training
data for machine learning models.

This thesis seeks to answer two primary questions: Can GANs generate realistic
high-resolution 3D CT image/mask pairs? And to what extent do synthetic CT
images generated by GANs impact the accuracy of a state-of-the-art cancer
segmentation model?

The thesis conducts a comprehensive evaluation of various GAN models,
including Vanilla GAN, Wasserstein GAN, StyleGAN2, FastGAN, and Hierarchical
Amortized GAN (HA-GAN). The HA-GAN model, in particular, showed exceptional
potential, demonstrating superior capacity in generating high-resolution synthetic
images. These results were substantiated by multiple evaluation metrics, such as
the Inception score, Frechet Inception Distance (FID), and a Visual Turing Test,
where the synthesized images were presented to healthcare professionals. The
results were compelling, as the professionals were frequently unable to distinguish
between synthetic and real images.

The synthetic data, when integrated with actual images, facilitated the training of
the SegResNet model from the MONAI’s Auto3Dseg framework, aiming to
optimize the accuracy of tumor segmentation in 3D CT images. Notably,
incorporating synthetic images into the training set significantly boosted the Dice
Similarity Coefficient (DSC), thereby affirming the effectiveness of our proposed
method. The proposed method surpassed the baseline score of 0.48693,
achieving an improved score of 0.52193 DSC.

This research’s foremost contribution lies in its methodology for generating
high-definition 3D CT image/mask pairs, thus significantly enriching existing
medical datasets and enhancing the precision of medical image segmentation.

2

Moreover, the thesis work has produced two unique datasets of synthesized
image/mask pairs with resolutions of 128× 128× 64 and 256× 256× 128, available
for distribution. The code artifact and datasets are available in appendices.

The work in this thesis underscores the potential of GANs, with a special
emphasis on HA-GAN, to surmount the challenge of limited medical training data,
thereby pushing the boundaries of machine learning models in the realm of
medical image segmentation and cancer detection.

3

Contents

1 Introduction 15
1.1 The Importance of Medical Imaging in Cancer Detection 15
1.2 Leveraging Machine Learning to Improve Cancer Detection 16
1.3 The Problem of Insufficient Training Data for Machine Learning in

Medicine . 17
1.4 Research Questions . 18
1.5 Main Contributions . 19
1.6 Ethical Considerations . 21
1.7 Outline . 22

2 Background 24
2.1 Artificial Neural Networks . 24

2.1.1 Training . 26
2.1.2 Optimization . 26

2.2 Deep Learning and Convolutional Neural Networks 28
2.3 Cancer Segmentation with Deep Learning 31

2.3.1 Deep Learning in Medicine 31
2.3.2 Cancer Segmentation . 32
2.3.3 Evaluating Segmentation Models 34
2.3.4 Current State of Cancer Segmentation with Deep Learning . 35

2.4 Generative Models for Synthetic Data Generation 36
2.5 Generative Adversarial Networks . 38

2.5.1 Limitations . 39
2.6 Beyond GAN: Improved Architectures 41

2.6.1 Wasserstein GAN . 41
2.6.2 StyleGAN2 and FastGAN . 43
2.6.3 Hierarchical Amortized GAN 44

2.7 Evaluating Generative Adversarial Networks 49
2.7.1 Inception Score . 49
2.7.2 Fréchet Inception Distance 49
2.7.3 t-Distributed Stochastic Neighbor Embedding 50

4

2.7.4 Visual Turing Test . 51
2.8 Hyperparameter Optimization . 51
2.9 Related Work . 52

2.9.1 Synthetic 2D Medical Data Generation with GANs 52
2.9.2 Synthetic 3D Medical Data Generation with GANs 55
2.9.3 Segmentation of 3D images 56
2.9.4 Related Work Summary . 57

3 Methodology 58
3.1 Dataset . 58
3.2 Preliminary Data Analysis . 59
3.3 Data Visualization . 67
3.4 Data Preprocessing and Data Transformation 71

3.4.1 Vanilla GAN and WGAN . 72
3.4.2 FastGAN and StyleGAN2 . 74
3.4.3 Hierarchical Amortized GAN 76

3.5 Data Augmentation . 79
3.5.1 Voxel Resampling . 79
3.5.2 Affine Transformation . 80
3.5.3 Elastic Deformation . 81

3.6 Implemented GAN Architectures . 82
3.6.1 Vanilla GAN . 82
3.6.2 Wasserstein GAN . 85
3.6.3 FastGAN . 86
3.6.4 StyleGAN2 . 87
3.6.5 Hierarchical Amortized GAN 87

3.7 Hyperparameter Optimization . 89
3.8 Inference and data Postprocessing 90

3.8.1 Generating Images . 90
3.8.2 Postprocessing . 91

3.9 GAN Evaluation . 92
3.9.1 Loss Diagrams . 92
3.9.2 Inception Score . 94

5

3.9.3 Fréchet Inception Distance 95
3.9.4 t-Distributed Stochastic Neighbor Embedding 97

3.10 Segmentation . 97
3.10.1 Preprocessing . 97
3.10.2 Model . 98
3.10.3 Training . 98
3.10.4 Evalation and Inference . 99

4 Experiments 100
4.1 Experimental Setup . 100
4.2 Vanilla GAN . 101
4.3 Improved Architectures . 103

4.3.1 Vanilla GAN 2 . 103
4.3.2 Wasserstein GAN . 104
4.3.3 Hyperparameter Optimization 105

4.4 2-dimensional GANs . 106
4.4.1 Wasserstein GAN . 106
4.4.2 FastGAN . 107
4.4.3 StyleGAN2 . 108

4.5 Generating Images only with HA-GAN 109
4.6 Generating Image/mask Pairs with HA-GAN 111

4.6.1 Mask Interpolation . 112
4.6.2 Slice-by-Slice Concatenation 113
4.6.3 Modified Hounsfield Unit Interpolation Range 114
4.6.4 Hyperparameter Optimization 115
4.6.5 Data Augmentation . 115
4.6.6 Binarization of Mask Values 116
4.6.7 High-Resolution Images . 117

4.7 Visual Turing Test . 119
4.8 Segmentation . 121

4.8.1 Segmentation Baseline . 121
4.8.2 Training on Real and Generated Images with 5-Fold Cross-

Validation . 123

6

4.8.3 Training on Generated Images, Testing on Real Images . . . 124
4.8.4 Training on Real and Generated Images, Testing on Real Im-

ages . 125

5 Results and Discussion 128
5.1 Vanilla GAN . 128
5.2 Wasserstein GAN . 131
5.3 FastGAN and StyleGAN2 . 132
5.4 HA-GAN Image Generation . 136
5.5 HA-GAN Image/Mask Pair Generation 141

5.5.1 Baseline . 141
5.5.2 Slice by Slice Concatenation 145
5.5.3 Hyperparameter Optimization 147
5.5.4 Modified HU Interpolation Range 149
5.5.5 Data Augmentation . 150
5.5.6 Binary Mask . 152
5.5.7 Post-Processing . 154
5.5.8 High-Resolution Images . 154

5.6 Visual Turing Test . 155
5.7 Segmentation . 157

5.7.1 Baseline . 157
5.7.2 Training on Real and Generated Images 159
5.7.3 Training on Generated Images - Testing on Real Images . . . 163
5.7.4 Training on Real and Generated Images - Testing on Real

Images . 166

6 Limitations 168

7 Conclusion and Future Work 170
7.1 Future Work . 171

Appendices 184

7

List of Figures

1.1 Axial View of a CT Scan . 16
1.2 Objective 1 . 20
1.3 Objective 2 . 20
2.1 The Architecture of an Artificial Neural Network 25
2.2 Backpropagation in ANNs . 26
2.3 Gradient Descent . 27
2.4 Simplified CNN Architecture . 29
2.5 Convolution Operation . 30
2.6 Example lice of CT Image with Mask 33
2.7 Simplified U-Net Architecture . 34
2.8 Simplified GAN Architecture . 38
2.9 HA-GAN Architecture . 48
3.1 3D Image VS. Single 2D Slice . 60
3.2 Number of Image Slices, Grouped by Data Source 61
3.3 HU Ranges . 63
3.4 t-SNE Scatterplot . 66
3.5 Coronal, Sagittal, Axial and 3D Render View in MRIcroGL 67
3.6 Axial Plot CT Image from CHUM . 68
3.7 Axial Plot CT Image from CHUS . 68
3.8 Axial, Coronal, and Sagittal Slices from Example Image 69
3.9 512× 512× 36 2D Image . 69
3.10 Corresponding 512× 512× 36 2D Mask 70
3.11 Center Sagittal Slices from Five Sources 70
3.12 Slices with Mask . 71
3.13 Image Resampling . 72
3.14 Padding a 3D image . 73
3.15 Image and Mask Concatenation along Z-axis 73
3.16 Resampling, Chopping, and Concatenating Image and Mask 74
3.17 Transforming a 3D Image to 2D . 74
3.18 Padding and Chopping 2D Image . 75
3.19 Stacked 2D Image . 75

8

3.20 Interpolation of 3D Image . 76
3.21 Interpolation of 3D Mask . 77
3.22 Images Before and After Cropping 78
3.23 Slice-by-slice Concatenation . 78
3.24 Affine Transformation (Cardoso et al., 2022) 80
3.25 Elastic Deformation (Cardoso et al., 2022) 81
3.26 Vanilla GAN 1 Generator Architecture 83
3.27 Vanilla GAN 2 Generator Architecture 85
3.28 HA-GAN Architecture . 88
3.29 Image/mask Separation . 91
3.30 Example GAN Loss Diagram . 93
3.31 Original Loss (blue), EMA Loss (orange) 94
3.32 Process of Attaining IS Score . 95
3.33 Process of Attaining FID Score . 96
3.34 5-Fold Cross-Validation . 99
4.1 Overview of Experiments . 101
4.2 Visual Turing Test . 120
5.1 Vanilla GAN 1 Generator and Discriminator loss (blue), EMA loss

(orange) . 128
5.2 Vanilla GAN 1 Generated Images . 129
5.3 Vanilla GAN 2 Generator and Discriminator loss (blue), EMA loss

(orange) . 130
5.4 WGAN-WC Generator and Discriminator loss (blue), EMA loss (or-

ange) . 131
5.5 FastGAN Generator and Discriminator loss (blue), EMA loss (orange) 133
5.6 Images generated with FastGAN . 134
5.7 StyleGAN2 Generator and Discriminator loss (blue), EMA loss (orange)134
5.8 Images generated with StyleGAN2 135
5.9 HA-GAN (without data shuffling) Generator and Discriminator loss

(blue), EMA loss (orange) . 137
5.10 Images Generated with HA-GAN . 138
5.11 HA-GAN (with data shuffling) Generator and Discriminator loss (blue),

EMA loss (orange) . 138

9

5.12 Slices from a image generated with HA-GAN 140
5.13 Full generated image with HA-GAN 140
5.14 HA-GAN Generator and Discriminator loss (blue), EMA loss (orange) 141
5.15 Image/mask pair generated with HA-GAN 143
5.16 t-SNE comparison between real and generated images 144
5.17 HA-GAN Generator and Discriminator loss (blue), EMA loss (orange) 145
5.18 Example slices from generated mask 146
5.19 t-SNE comparison between real and generated images 148
5.20 Example of a generated image . 150
5.21 HA-GAN Generator and Discriminator loss (blue), EMA loss (orange) 151
5.22 t-SNE comparison between real and generated images 153
5.23 Baseline validation results . 157
5.24 Average 5-Fold Validation DSC for real, generated, and real & gen-

erated images . 160
5.25 Average 5-Fold Validation DSC for real, generated, and real gener-

ated images . 162
5.26 Average validation DSC for models trained on generated images . . 163
5.27 Ground truth and prediction mask with 0.22 score 165
5.28 Ground truth and prediction mask with 0.87 score 167

10

List of Tables

3.1 Dataset average size and resolution, grouped by data source 60
3.2 Number of Slices, Grouped by Data Source 61
3.3 Most Frequent Minimum Hounsfield Units 63
3.4 Most Frequent Maximum Hounsfield Units 64
3.5 Minimum, Maximum and Average HU of the Lowest HU Grouped by

Data Source . 64
3.6 Minimum, Maximum and Average HU of the Highest HU, Grouped by

Data Source . 65
3.7 Transformation Ranges for Affine Transformation 81
3.8 Transformation Ranges for Elastic Deformation 82
3.9 Vanilla/WGAN Hyperparameters . 90
3.10 HA-GAN Hyperparameters . 90
4.1 Hardware . 100
4.2 Software . 101
4.3 Experimental Setup for Vanilla GAN 102
4.4 Hyperparameters for Vanilla GAN . 102
4.5 Experimental Setup for Vanilla GAN 2 103
4.6 Hyperparameters for Vanilla GAN 2 104
4.7 Experimental Setup for WGAN . 104
4.8 Hyperparameters for WGAN . 105
4.9 Hyperparameters and descriptions 106
4.10 Experimental Setup for WGAN 2D 106
4.11 Hyperparameters for WGAN 2D . 107
4.12 Experimental Setup for FastGAN . 107
4.13 Hyperparameters for FastGAN . 108
4.14 Experimental Setup for StyleGAN2 108
4.15 Hyperparameters for StyleGAN2 . 109
4.16 Experimental Setup for Generating Images with HA-GAN 110
4.17 Hyperparameters for Generating Images with HA-GAN 110
4.18 Experimental Setup for Generating Image/mask with HA-GAN 111
4.19 Hyperparameters for generating Image/mask with HA-GAN 111

11

4.20 Experimental setup for Generating image/mask with HA-GAN - Mask
Interpolation . 112

4.21 Hyperparameters for Generating Image/mask with HA-GAN - Mask
Interpolation . 112

4.22 Experimental Setup for Generating Image/mask with HA-GAN - Slice-
By-Slice Concatenation . 113

4.23 Hyperparameters for Generating Image/mask with HA-GAN - Slice-
By-Slice Concatenation . 113

4.24 Experimental Setup for Generating Image/mask with HA-GAN - Mod-
ified HU . 114

4.25 Hyperparameters for Generating Image/mask with HA-GAN - Modi-
fied HU . 114

4.26 Hyperparameters and Possible Values 115
4.27 Experimental Setup for Generating Image/mask with HA-GAN - Aug-

mented Data . 115
4.28 Hyperparameters for Generating Image/mask with HA-GAN - Aug-

mented Data . 116
4.29 Experimental Setup for Generating Image/mask with HA-GAN - Bi-

narization of Mask . 117
4.30 Hyperparameters for Generating Image/mask with HA-GAN - Bina-

rization of Mask . 117
4.31 Experimental Setup for Generating High-Resolution Image/mask with

HA-GAN . 118
4.32 Hyperparameters for Generating High-Resolution Image/mask with

HA-GAN . 118
4.33 Hyperparameters for Generating Image/mask with HA-GAN - Origi-

nal LR . 119
4.34 Images used in VTT . 121
4.35 Experimental Setup for Baseline Segmentation 122
4.36 Hyperparameters for Saseline Segmentation 122
4.37 Experimental Setup for Segmentation on Real and Generated Images 124
4.38 Hyperparameters for Segmentation on Real and Generated Images 124
4.39 Experimental setup for segmentation of generated images 125

12

4.40 Hyperparameters for segmentation of generated images 125
4.41 Experimental setup for segmentation on real and generated images

with testing on real images . 126
4.42 Hyperparameters for segmentation on real and generated images

with testing on real images . 126
4.43 Experimental setup for segmentation on real and generated images

with testing on real images . 127
4.44 Hyperparameters for segmentation on real and generated images

with testing on real images . 127
5.1 Vanilla GAN 1 Minimum, maximum, and average loss for generator

and discriminator . 128
5.2 Vanilla GAN 1 & 2 Minimum, maximum and average loss for genera-

tor and discriminator . 130
5.3 WGAN-WC Minimum, maximum and average loss for generator and

discriminator . 132
5.4 Minimum, maximum, and average loss for FastGAN generator and

discriminator . 133
5.5 Minimum, maximum and average loss for StyleGAN 2 generator and

discriminator . 135
5.6 Comparison of FID and IS scores . 139
5.7 Baseline Image/Mask Pair Performance 142
5.8 SBS Image/Mask Pair Performance 145
5.9 Image and mask quality metrics for each HPO 147
5.10 Results from latent dimension HPO 149
5.11 Results from modified HU interpolation range 149
5.12 Results from Model Trained on Voxel-Resampled Images 151
5.13 Results from Model Trained on Augmented Images 152
5.14 Results from Models Trained on Binary Masks 152
5.15 Comparison of postprocessing . 154
5.16 Comparison of high-resolution models 154
5.17 Scores Assigned by Healthcare Professionals 155
5.18 Scores Assigned by Healthcare Professionals 156
5.19 Aggregated dice metric using 5-fold cross-validation 158

13

5.20 Baselines for segmentation performance 158
5.21 Aggregated dice metric using 5-fold cross-validation 161
5.22 Aggregated dice metric using 5-fold cross-validation 162
5.23 Validation scores for models trained on generated Images 164
5.24 Testing scores for models trained on generated images 165
5.25 Testing scores for models trained on real and generated images . . 167

14

1 Introduction

1.1 The Importance of Medical Imaging in Cancer Detection

Cancer is a diverse and intricate group of illnesses characterized by the
uncontrolled growth and spread of abnormal cells. It is one of the leading global
causes of death (Bray et al., 2021), and early detection is vital for effective
treatment. The prevalence of cancer has been increasing over the years (Ugai
et al., 2022), making it a significant public health concern. Early cancer detection
is crucial because it can significantly impact patient outcomes and prognosis.
Cancer is easier to treat when it is detected early and has not spread beyond the
site of origin. When cancer cells spread to other body parts, it becomes more
challenging to treat, and the chances of survival decrease. In contrast, early
detection allows for prompt treatment, increasing the likelihood of survival.

Moreover, accurate cancer detection is crucial for tailoring personalized treatment
plans to the patient’s specific cancer type and stage. Each cancer type requires
different treatment approaches, and early detection can help clinicians determine
the most effective treatment options. However, false cancer detection can have
severe consequences for patients. Misdiagnosis, delayed diagnosis, or
underdiagnosis can result in incorrect treatment approaches, leading to disease
progression, a worsened prognosis, or even death. Therefore, accurate and
reliable cancer detection methods are crucial to avoid unnecessary treatment or
patient harm.

Medical imaging technologies have dramatically improved the detection of cancer,
providing physicians with invaluable tools to identify and manage the disease.
These imaging modalities offer non-invasive and precise methods for visualizing
the body’s internal organs, tissues, and structures, enabling early detection of
cancerous growths.

Magnetic resonance imaging (MRI) uses magnets and radio waves to create
images of the internal structures in the body. MRIs are particularly beneficial for
detecting brain and spinal cord tumors, breast cancer, and other soft tissue
cancers. MRI images can also provide information about the structure and

15

function of organs, which can help clinicians develop personalized treatment
plans (Vlaardingerbroek and Boer, 2013).

Positron emission tomography (PET) scans use a radioactive tracer to detect
changes in the body’s metabolic activity. PET scans can help detect and stage
various types of cancer, including lung, colorectal, and lymphoma. PET scans can
also help evaluate the effectiveness of cancer treatment, allowing clinicians to
modify the treatment plan as necessary (Muehllehner and Karp, 2006).

Computed Tomography (CT) scans use X-rays and computer processing to create
detailed cross-sectional images of the body’s internal structures, helping to detect
a wide range of cancers, such as lung, liver, and pancreatic cancers. CT scans are
beneficial for detecting minor abnormalities, providing information about the size,
shape, and location of tumors, and assessing whether they have spread to other
body areas (Buzug, 2011).

Figure 1.1: Axial View of a CT Scan

Medical imaging technologies are critical in detecting, diagnosing, and treating
cancer. It allows doctors to identify tumors early, when they are most treatable,
and monitor the effectiveness of cancer treatments over time.

1.2 Leveraging Machine Learning to Improve Cancer Detection

Medical imaging technologies such as MRI, PET, and CT have been greatly
enhanced by the potential of Artificial Intelligence (AI) to improve the accuracy and
speed of cancer detection. Machine learning (ML), a branch of AI, provides
powerful algorithms that can be trained on large datasets of medical images to

16

identify underlying patterns indicative of cancer. After the models have been
trained, they can be used to detect cancer in new medical images, aiding doctors
in the diagnosis (Houssein et al., 2021).

One of the primary benefits of ML in cancer detection is its ability to analyze large
volumes of medical images (Sidey-Gibbons and Sidey-Gibbons, 2019).
Traditionally, radiologists manually review images to identify potential signs of
cancer, which can be time-consuming and subjective. ML algorithms can analyze
images in seconds and provide a more objective analysis, potentially leading to a
faster and more accurate diagnosis. ML can also help overcome the variability in
medical images due to differences in imaging protocols, equipment, and human
interpretation. By training models on a diverse range of medical images, the
models can learn to recognize patterns and features indicative of cancer,
regardless of the source of the images (Dexter et al., 2020).

The potential of ML to improve cancer detection using medical imaging
technologies is vast. With the development of accurate models, machine learning
in cancer detection can potentially lead to faster and more precise diagnoses,
ultimately improving patient outcomes.

1.3 The Problem of Insufficient Training Data for Machine
Learning in Medicine

Data quality and especially data quantity are crucial in ML because the underlying
data directly impacts the performance and accuracy of the model (Jain et al.,
2020). The development of accurate ML models heavily depends on the training
data. To recognize patterns and make accurate predictions, ML models require
large amounts of high-quality data. Insufficient or poor-quality data can result in
inaccurate or biased models that produce incorrect or unreliable results.
Therefore, ensuring that the training data is representative, diverse, and free of
errors is essential.

In the field of medicine, the issue of insufficient quality data for machine learning
can be especially challenging. Healthcare data is often incomplete, inconsistent,

17

and subject to errors and biases, limiting the effectiveness of machine learning
models. Several factors can be attributed to the problem of insufficient quality data
in medicine. One of the primary factors is the need for more standardization in
medical data collection, as medical data is collected using various methods and
formats, making comparing and analyzing data from different sources difficult. The
lack of standardization can lead to high data quality and format variability.

Additionally, healthcare data is often fragmented and scattered across various
healthcare systems, making it difficult to access and integrate for analysis. The
inherent complexity of medical data, with multiple variables and noise sources,
also makes it challenging to collect and analyze high-quality data. Another factor is
due to privacy concerns. Medical images contain sensitive information about
patients’ health, limiting their sharing and use due to ethical and legal constraints.
While this is essential to protecting patient privacy, it can also limit the amount of
data available for research. This further complicates the development of new
diagnostic and treatment tools, such as ML models. In summary, insufficient
quality data in medicine is a significant obstacle to developing accurate and
reliable machine-learning models for cancer detection.

1.4 Research Questions

In this thesis, it is proposed to utilize Generative Adversarial Networks
(GANs) (Aggarwal et al., 2021), an ML algorithm, to generate synthetic medical
images to solve the problem of insufficient quality data in the field of medicine. The
use of GANs presents a promising method to address the challenge of limited and
low-quality medical imaging data by generating synthetic images that can enhance
the performance of ML models. Specifically, this thesis will focus on creating
3-dimensional CT images and their corresponding masks that highlight the tumor
area in the CT image. In order to optimize their utility for future applications, it is
desirable that the synthetic image/mask pairs have the highest attainable
resolution. The first research question is as follows:

Research question 1 Can GANs generate realistic high-resolution 3-dimensional
CT image/mask pairs?

18

The generated image/mask pairs should be properly evaluated to validate their
application. By incorporating quantitative and qualitative assessments, the
evaluation process can comprehensively evaluate the synthetic data quality and
suitability for segmentation purposes. This ensures that the generated
image/mask pairs are accurate and can be used to improve tumor segmentation in
medical images. The most crucial step involves utilizing the artificially generated
dataset as either the complete or a portion of the training data for a state-of-the-art
segmentation model to assess the viability of the synthetic data in real-world
settings. The second research question is as follows:

Research question 2 To what extent do synthetic CT images generated by GANs
impact the accuracy of a state-of-the-art cancer segmentation model?

1.5 Main Contributions

The dataset from the HECKTOR (Heack and Neck Tumor Segmentation) 2022
challenge (Andrearczyk et al., 2023) will be used as training data. The challenge
dataset contains real CT images with associated tumor masks and will serve as
the dataset for training various GAN algorithms in this thesis.

Based on Research Question 1, the first objective of the thesis is to use the CT
images to train a GAN algorithm to create synthetic images visually similar to
authentic medical images. Moreover, the GAN should also generate
corresponding image masks that comprise synthetic tumor regions. Figure 1.2
shows the overall process for Objective 1.

Objective 1 Implement and train a GAN algorithm that can generate synthetic
3-dimensional CT images and corresponding tumor masks

19

Figure 1.2: Objective 1

Based on Research Question 2, the second goal of this thesis is to evaluate the
quality of synthetic medical images and their impact on the accuracy of algorithms
capable of detecting cancer.

Objective 2 Implement and train a state-of-the-art cancer segmentation model
and determine if using synthetic CT images can improve the accuracy

Figure 1.3 shows the overall process for Objective 2.

Figure 1.3: Objective 2

20

As a component of the thesis, GANs are utilized to produce synthetic CT datasets
that will be published for use by others.

Objective 3 Create and release synthetic datasets containing CT image/mask
pairs

These datasets comprise pairs of 3D image/mask sets that should closely
resemble authentic CT data and will be available in resolutions 128× 128× 64 and
256× 256× 128. The image and mask sets are stored in separate folders and
saved in NIFTI (Neuroimaging Informatics Technology Initiative) format - a
standard format utilized in neuroimaging research to preserve and distribute
medical imaging data.

1.6 Ethical Considerations

Applying GANs to generate synthetic images has demonstrated exceptional
performance in various fields, including medical imaging (Yi et al., 2019).
However, using GANs to synthesize CT images raises significant ethical concerns.

Data privacy is a major ethical concern when training GANs on medical data. The
security of patient data must be safeguarded to prevent unauthorized access and
misuse. Using patient data to train GANs may pose risks to patient privacy and
could result in harm. To prevent these potential dangers, researchers must ensure
that patient data is de-identified and appropriately secured to prevent unauthorized
access. With the help of novel techniques, it is becoming more and more feasible
to completely anonymize datasets, to the extent that it becomes impossible to
trace any data point back to a real person (Arora and Arora, 2022). The dataset
used in this thesis is entirely anonymized, with no identifying information contained
in the data.

GANs rely on existing datasets to generate images, and the accuracy of synthetic
images depends on the quality of the training data. There is a risk that the biases
present in the training data could be amplified in the synthetic images.
Researchers must use representative training datasets to generate unbiased
synthetic images that are not skewed toward any specific demographic. The

21

dataset used in this thesis is comprised of CT data from 7 different medical
centers, ensuring a broad and representative population of patients.

Another significant ethical concern is the validity and reliability of synthetic CT
images generated using GANs. Synthetic images may not be entirely accurate,
which, if used as training data for other algorithms, could potentially lead to an
incorrect diagnosis or treatment. Therefore, it is crucial that researchers validate
the synthetic images generated by GANs and thoroughly evaluate the
performance of the model. This thesis will evaluate the synthetic images with
qualitative and quantitative metrics to ensure the reliability of the generated data.

Using GANs to generate synthetic CT images for medical applications raises
several ethical considerations, including data privacy, bias, validity, and reliability.
To ensure the ethical and responsible use of GANs in medical contexts,
researchers must ensure that synthetic images generated by GANs are reliable,
unbiased, and do not pose any risks to patients. Although GANs have the potential
to advance medical research and patient care, their use must be done ethically
and responsibly.

1.7 Outline

The thesis explores the potential of synthetic medical images generated by GANs
for cancer detection. Chapter 1 introduced the importance of early and accurate
cancer detection, the role of medical imaging in cancer detection, and the use of
ML to improve cancer detection. The chapter also discusses the problem of
insufficient quality data for machine learning in medicine and presents the
research questions and main contributions of the thesis. Finally, the ethical
considerations surrounding the research are presented.

Chapter 2 provides background information on artificial neural networks,
convolutional neural networks, deep learning, and their application in medical
imaging. It also reviews the current state of machine learning for cancer detection
and segmentation and the use of GANs for generating synthetic data for
healthcare applications. The chapter also presents different types of GANs, their

22

limitations, and evaluation metrics. Finally, the chapter delves into the related work
in the field, including the utilization of GANs for generating synthetic medical data
in both 2D and 3D spaces. The chapter also covers the relevant research on the
segmentation of 3D CT images.

Chapter 3 outlines the methodology, including preliminary dataset analysis, data
preprocessing, visualization, and GAN models for generating synthetic medical
images. It also covers data augmentation, hyperparameter optimization, and
segmentation. The chapter comprehensively overviews the techniques and tools
used to achieve the research objectives.

Chapter 4 presents the experiments conducted in the thesis, including using
different GAN models for generating synthetic CT images and segmentation
experiments.

Chapter 5 presents and discusses the results in detail, highlighting the strengths
and weaknesses of the various GAN models and the segmentation network
trained on synthetic data.

Chapter 6 explores the constraints and drawbacks associated with the thesis,
specifically focusing on the generation of CT images using GANs, as well as the
limitations of the segmentation model and experimental procedures.

Chapter 7 serves as the conclusion and outlines potential future research
directions. The chapter summarizes the study’s main findings and emphasizes the
contributions made to medical image synthesis and segmentation.

23

2 Background

This chapter provides an overview of the theoretical and practical aspects of ML in
medicine. We introduce Artificial Neural Networks (ANN), Deep Learning (DL),
and Convolutional Neural Networks (CNN), then explore DL’s application in
medical imaging and cancer segmentation. We also cover GAN architectures, loss
functions, hyperparameter optimization, and evaluation metrics. Finally, we review
research related to this thesis.

2.1 Artificial Neural Networks

Machine Learning (ML) is a subset of artificial intelligence that uses algorithms to
analyze data, learn from that data, and make predictions or decisions based on
that learning. The objective of machine learning is to construct models that
possess the ability to make accurate predictions or decisions without the need for
explicit programming (Zhou, 2021). Artificial Neural Networks (ANNs), inspired by
the structure and function of the human brain, are an ML model comprised of
interconnected nodes or neurons organized into layers (Bishop, 1994). Input
signals are received by each neuron from the previous layer and processed, and
then the output is passed on to the next layer. An ANN is composed of different
layers, including the input layer, hidden layers, and the output layer, as shown in
Figure 2.1.

24

Figure 2.1: The Architecture of an Artificial Neural Network

The input layer is the first layer of the network, and it receives the input data, which
could be a set of features xn. The value of xn depends on the specific problem
being addressed and is determined by the number of features that describe the
input data. The input layer does not perform any computation but merely passes
the input data to the first hidden layer.

The hidden layers are intermediate layers between the input and output layers.
These layers are called ”hidden” because their computations are not directly
observable from the outside. The number of hn depends on the specific problem.
Each hidden layer contains a set of neurons, and each neuron computes a
weighted sum of the inputs it receives, applies a non-linear activation function f to
the sum of its inputs, and passes the output to the next layer. The output layer is
the last layer of the network, producing the final output ŷ of the model.

25

2.1.1 Training

A neural network is a set of interconnected neurons processing input data through
a series of mathematical operations to produce an output. The strength of these
connections between nodes is controlled by a set of parameters known as weights,
denoted by w in Figure 2.1. Training a neural network involves feeding training
data (x and y) to the network and adjusting these weights so that the network can
accurately predict the output for a given input. The network will adjust the weights
to minimize the difference between the predicted output ŷ and the actual output y.

The most common approach to training a neural network is using
backpropagation (Kelley, 1960). This algorithm involves computing the gradient of
a loss function with respect to the network weights w. The loss function measures
the difference between a given input’s predicted and actual output. The network
can gradually converge towards weights that produce accurate predictions by
adjusting the weights. The backpropagation process is shown in Figure 2.2.

Figure 2.2: Backpropagation in ANNs

2.1.2 Optimization

Optimization is a critical part of training an ANN, with the most common
optimization algorithm being gradient descent (Ruder, 2016). Gradient descent

26

works by starting with a random set of weights and repeatedly adjusting them in
the direction that decreases the error of the model. The ”gradient” refers to the
slope of the loss function, which indicates the direction of the steepest descent.
Following the gradient, the algorithm can eventually converge on the optimal set of
parameters that minimizes the loss function. Figure 2.3 illustrates the gradient
descent process.

Figure 2.3: Gradient Descent

During the optimization process, the learning rate η is an important
hyperparameter that controls the size of the updates to the weights (shown in
Figure 2.3 as an incremental step). The learning rate determines how quickly the
network learns and how sensitive it is to changes in the loss function. A high
learning rate can cause the network to converge quickly but may overshoot the
optimal weights. On the other hand, a low learning rate may result in slow
convergence and get stuck in local minima.

27

However, the ”vanishing gradient” problem can arise when the gradient of the loss
function becomes very small as it propagates back through the network layers,
making it difficult to train deeper networks with many hidden layers (Bengio et al.,
1994).

ADAM (Adaptive Moment Estimation) (Kingma and Ba, 2014), a variant of gradient
descent, is a popular optimization algorithm for training ANNs. ADAM addresses
the vanishing gradient problem by using a technique called adaptive learning
rates, which adjusts the learning rate for each weight parameter based on the
historical gradients of that parameter. This helps prevent the learning rate from
becoming too small and allows the algorithm to converge faster and more reliably.
ADAM also includes a momentum term, which helps the algorithm overcome local
minima in the optimization landscape.

ADAM has multiple hyperparameters besides the η, namely β1, β2, and ϵ. β1

determines how much of the past gradients’ first moment (mean) should be used
when computing the current gradient estimate. A higher value of β1 means that
more weight is given to the past gradients, which can help smooth out the updates
and make them more stable. β2 determines how much of the past gradients’
second moment (variance) should be used when computing the current gradient
estimate. A higher value of β2 means that more weight is given to the past squared
gradients, which can help adapt the learning rate for each weight based on how
the variance of the gradient is changing. ϵ is a small constant added to the
denominator of the adaptive learning rate to avoid division by zero.

2.2 Deep Learning and Convolutional Neural Networks

Deep learning is a subfield of ML that uses ANNs with many layers (i.e., ”deep”).
In contrast to traditional ML models that often utilize only a few layers, DL models
exhibit a much deeper architecture, allowing them to learn intricate patterns and
representations from complex datasets (Zhou, 2021). This makes DL particularly
well-suited for various domains with complex data, such as computer
vision (Voulodimos et al., 2018), natural language processing, and speech
recognition (Kamath et al., 2019). In particular, deep learning has revolutionized

28

the field of computer vision, enabling machines to see and interpret the world
around them more accurately than before (Voulodimos et al., 2018). This surge in
popularity can be attributed to the ever-growing computational power of computers
and the abundance of accessible data.

Convolutional neural networks are a type of deep neural network that is particularly
well-suited for tasks involving image and video analysis. CNNs were introduced
by (Forsyth et al., 1999). However, it was not until the mid-2010s that they gained
widespread popularity due to their success in computer vision tasks such as image
classification, object detection, and segmentation (Russakovsky et al., 2015).

Like other deep neural networks, CNNs consist of multiple layers of interconnected
nodes, but their architecture is specifically designed to take advantage of the
spatial structure of images. CNNs consist of several layers that perform specific
functions in the network. In addition to the input and output layers found in
traditional ANNs, CNNs have a set of hidden layers that includes convolutional
layers, pooling layers, and fully connected layers. A simplified version of a CNN
architecture is shown in Figure 2.4.

Figure 2.4: Simplified CNN Architecture

Convolutional layers are the backbone of CNNs. They are designed to perform
convolutions on the input data, which involves applying filters to small regions of
the input image. A convolution operation is matrix-multiplying the input image
patch with the learned filter and using the sum as the output.

29

The mathematical notation for a convolutional layer is expressed with Equation 1.

Y = f(x× w + b) (1)

The output of the convolutional layer is denoted by Y . This output represents the
result of convolving the input x with the set of learnable filters w and adding the
bias term b. The activation function f is then applied to this result to produce the
final output of the layer.

The filter is iteratively convolved with the image, one image patch at a time, until
the entire image has been processed. The first iteration in a simple 2-dimensional
convolution operation is shown in Figure 2.5.

Figure 2.5: Convolution Operation

Each filter produces a feature map highlighting certain features in the input image,
such as edges or corners. Convolutional layers learn these features automatically
during the training process without the need for explicit feature engineering.

Pooling layers reduce the spatial dimensionality of the feature maps produced by
the convolutional layers. They do this by extracting a single value by taking a small
region of the feature map and applying a function f . The pooling operation
reduces the number of parameters in the network and helps prevent overfitting.

Fully connected layers are used to produce the final output of the network. They

30

combine the high-level features extracted by the convolutional and pooling layers
into a prediction or classification. Each neuron in a fully connected layer is
connected to every neuron in the previous layer, allowing for complex nonlinear
relationships to be learned.

CNNs are commonly used for image processing tasks where the input data is a
two-dimensional image. In a 2D CNN, the filters are typically 2D vectors, and the
convolution operation is performed along the width and height dimensions of the
input image. On the other hand, 3D CNNs are designed to work with 3D data,
such as volumetric data. In a 3D CNN, the filters are 3D vectors, and the
convolution operation is performed along the width, height, and depth dimensions
of the image (Jnawali et al., 2018).

One of the main advantages of 3D convolutions is their ability to capture spatial
features from volumetric data. By convolving a filter over the input data in all three
dimensions, a 3D CNN can learn to detect patterns and features that evolve over
space, such as texture changes or shape variations. However, 3D convolutions
require more computational resources and memory than 2D convolutions due to
the increased number of parameters and the additional dimension of the input
data.

2.3 Cancer Segmentation with Deep Learning

2.3.1 Deep Learning in Medicine

The application of DL in medicine has vastly improved the healthcare industry by
improving disease detection and diagnosis (Wang et al., 2019). The main
contribution is algorithms that detect cancer from medical images, such as MRI,
CT, and PET. Known as Computer-Assisted Diagnosis (CAD), ML and DL
algorithms can analyze medical images to identify potentially cancerous cells and
help doctors make accurate diagnoses (Giger and Suzuki, 2008), making ML an
increasingly popular approach in medical imaging in the field of medicine.

CNNs have been used to analyze medical images, classifying cancer such as
breast cancer (Benhammou et al., 2018), cervical cancer (Kavitha et al., 2023),

31

lung cancer (Alakwaa et al., 2017) and head and neck cancer (Halicek et al.,
2017).

DL in medicine has both benefits and limitations. One of the main benefits is its
ability to analyze large amounts of data quickly and accurately. This enables the
identification of patterns and relationships in the data that may not be apparent to
human experts. ML algorithms can also learn from experience, enabling them to
improve over time with additional data. However, there are also limitations to the
use of DL in medicine. One major limitation is the data quality used to train the
algorithms. DL algorithms require high-quality, reliable data to learn effectively,
and if the data is biased or inaccurate, this can lead to incorrect predictions and
diagnoses. The accuracy of DL algorithms depends heavily on the quality of the
data, especially for DL algorithms, making the availability of quality data a crucial
factor in the success of DL applications in medicine.

2.3.2 Cancer Segmentation

Cancer detection and segmentation are critical to diagnosing cancer from medical
images. Cancer detection involves identifying the presence of cancer in medical
images, while cancer segmentation involves dividing medical images of tumors
into distinct regions or segments based on their characteristics. The ultimate goal
of cancer segmentation is to accurately identify the boundaries of the tumor and its
various regions, which can help healthcare professionals diagnose the disease.

Figure 2.6 shows an example 2D slice from a 3D CT image with the corresponding
tumor mask separately and overlayed on the image. In a segmentation DL model,
the image is the input x, and the mask is the output Ŷ .

32

Figure 2.6: Example lice of CT Image with Mask

With the advancements in DL and medical imaging technologies such as MRI,
PET, and CT, it is now possible to detect and segment cancer from medical
images with high accuracy and efficiency (Rezaei, 2021). Algorithms that segment
cancer use images and corresponding tumor masks as training data.

A common neural network architecture for image segmentation is the U-Net
architecture, introduced by (Ronneberger et al., 2015). The U-Net is particularly
suited for image segmentation, due to its effectiveness and simplicity. The U-Net
consists of a contracting path and an expanding path. An example U-Net
architecture is shown in Figure 2.7.

33

Figure 2.7: Simplified U-Net Architecture

The contracting path is a series of convolutional and pooling layers that are used
to extract features from the input image. These layers reduce the spatial resolution
of the features, and are called encoders. The expanding path is a series of
convolutional and upsampling layers that are used to decode the features back
into the original input image resolution. The components of the expanding path are
called decoders.

In addition to the encoders and decoders, the U-Net also includes skip
connections between corresponding layers in the contracting and expanding
paths. These connections allow the network to preserve high-resolution details
from the input image, even as it is downsampled and then upsampled again.

2.3.3 Evaluating Segmentation Models

The Dice Score Coefficient (DSC) (Bertels et al., 2019) is a common metric used
to evaluate the performance of image segmentation algorithms. It measures the

34

similarity between the predicted segmentation and the ground truth segmentation
of an image and is expressed with Equation 2.

DSC = 2 ∗ (TP)/(2 ∗ TP + FP + FN) (2)

where TP is the number of true positive voxels (voxels that are correctly classified
as part of the tumor), FP is the number of false positive pixels (voxels that are
incorrectly classified as part of the tumor), and FN is the number of false negative
voxels (voxels that are incorrectly classified as background).

The DSC ranges from 0 to 1, with 1 indicating perfect overlap between the
predicted and ground truth segmentation and 0 indicating no overlap. A higher
DSC indicates better segmentation performance.

2.3.4 Current State of Cancer Segmentation with Deep Learning

(Kao and Yang, 2022) conducted a systematic review investigating the utility of
DL-based segmentation with PET and CT scans. They gathered eight articles and
presented the first systematic review of deep learning-based segmentation of lung
tumors in PET and CT scans. The most commonly used methods were
3-dimensional CNNs and the U-net architecture. Additionally, multimodal
segmentation strategies were employed, with six articles using individual
extractors for CT and PET before integrating the features for final predictions. The
study concludes that DL-based segmentation of lung tumors in PET/CT scans can
achieve good performance, with potential for future clinical applications.

The HECKTOR 2021 challenge (Oreiller et al., 2022) focused on developing
automatic segmentation methods for cancerous cells in the Head and Neck (H&N)
region using PET/CT images. A total of 18 teams participated in the challenge.
Participants in the challenge primarily utilized U-Net-based DL models with a 3D
architecture. Factors that contributed to the success of these segmentation
methods included effective preprocessing techniques, normalization, data
augmentation, and the ensembling of multiple models. The positive results from
this challenge suggest that automatic segmentation methods can take advantage

35

of the combined properties of PET and CT images to significantly improve studies
in H&N cancer. The winning method in the challenge was proposed by (Iantsen
et al., 2021) with a model designed with the U-Net architecture. The method
significantly outperforms the proposed baseline method for the challenge. The
results from this challenge demonstrated that the performance of automatic
segmentation methods could surpass those of manual annotations in radiomics
studies, which has promising implications for future research.

Building upon the success of the previous editions, the HECKTOR 2022 challenge
evolved by doubling the dataset size from the previous year and including
metastatic lymph nodes in addition to the tumors. Eighteen teams participated in
the challenge. The winning team, (Myronenko et al., 2023), used a
SegResNet-based (Siddique et al., 2022) approach with the Auto3DSeg
framework from the MONAI platform (Cardoso et al., 2022).

The best method obtained an average DSC of 0.7591 in the HECKTOR 2021
challenge. The winning team in the HECKTOR 2022 challenge, (Myronenko et al.,
2023), achieved the highest DSC with their approach, reaching a DSC of 0.78802.

2.4 Generative Models for Synthetic Data Generation

Synthetic data is artificially generated data that mimics real-world data but is not
derived from real-world observations. Synthetic data can be used as a substitute
for real-world data in ML and DL applications, which can be beneficial when
real-world data is challenging to obtain. The use of synthetic data in ML in
healthcare applications has become increasingly popular in recent years, as it can
provide an alternative to using real-world data (Chen et al., 2021).

The limited nature of high-quality biomedical training data creates the need for
methods to increase the number of training samples without acquiring new
time-consuming scans of real people. Data augmentation (DA) is useful by
transforming original data and creating new data by applying transformations such
as geometric or intensity methods (Shorten and Khoshgoftaar, 2019). Cropping,
rotating, translating, and flipping are common image data augmentation

36

techniques used to increase the diversity of a training dataset. The intuition behind
DA is that more information can be extracted from the original dataset (Shorten
and Khoshgoftaar, 2019). However, the transformed images offer more training
data but do not necessarily introduce novel features as they are still based on the
original data (Frid-Adar et al., 2018).

An alternative to DA is generative ML models, a family of machine learning models
that can learn the underlying distribution of a given dataset and generate new data
samples that follow a similar distribution. In the field of DL, GANs, Variational
Autoencoders (VAEs) (Kingma and Welling, 2013), and Diffusion models (Croitoru
et al., 2023) are popular generative models in recent years.

GANs are DL models that consist of a generator and a discriminator. The
generator generates synthetic samples, and the discriminator tries to differentiate
between synthetic and real samples. The two models are trained together, with the
generator learning to produce samples similar to the real data and the
discriminator learning to distinguish between real and fake samples.

VAEs are models that learn a compressed representation of the input data, also
known as the latent space. This latent space can be used to generate new
samples by sampling from a distribution that is learned during training. However,
some challenges are associated with using VAEs for generating synthetic medical
images. One of the key challenges is ensuring that the generated images are
accurate and realistic representations of the underlying medical conditions. This
requires careful tuning of the VAE architecture and training parameters and
thorough validation and testing of the generated images, which is only feasible in
some scenarios.

Diffusion models are generative models that generate new samples from a given
dataset by applying a series of noise-reduction steps to the original data. These
steps gradually refine the noise to create a new sample that follows the same
distribution as the original data. Diffusion models may not be feasible for medical
data in scenarios where there is not a lot of data available, as these models
typically require a significant amount of high-quality data to generate realistic
samples.

37

While VAEs and Diffusion models have advantages, they may not always be the
best choice for generating synthetic medical data compared to GANs. VAEs can
sometimes produce blurry images and may not capture the complex features of
the input data. At the same time, Diffusion models can be computationally
expensive and require large amounts of data. In contrast, GANs are known for
generating high-quality and diverse samples that capture the underlying data
distribution, making them an appropriate choice for generating synthetic medical
data with a limited dataset.

In the next chapter, we will focus on the technical details of GANs and explore their
advantages and limitations.

2.5 Generative Adversarial Networks

GANs are a type of DL algorithm used for generating new data similar to a given
dataset. GANs learn to generate new samples by training two neural networks in a
game-like setting and have two main components: a generator network and a
discriminator network. The generator network generates fake data similar to the
input data. The generator is trained to generate data that is as realistic as possible
to fool the discriminator network into thinking that the generated data is real.
Figure 2.8 illustrates the overall design and training of a conventional GAN model.

Figure 2.8: Simplified GAN Architecture

38

The generator and discriminator networks are trained adversarially, which is how
the method gets its name. The generator is trained to generate data that is as
realistic as possible, while the discriminator is trained to correctly identify which
data is real and which is fake. The generator and discriminator are trained
iteratively, with the generator trying to improve its ability to generate realistic data
and the discriminator trying to improve its ability to distinguish between real and
fake data. Known as MinMax loss, the loss function in a traditional GAN is
expressed in Equation 3.

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (3)

Where G denotes the generator, and the discriminator is denoted by D. The first
term in the equation represents how well the discriminator can identify real data x

drawn from the true data distribution pdata(x). The second term in the equation
represents how well the discriminator can distinguish between synthetic data
generated by the generator and real data. The generator tries to minimize this
term by producing synthetic data that the discriminator classifies as real.

In medical imaging, GANs can generate synthetic images that can help augment
or supplement real-world medical imaging data. For example, GANs can be
trained in medical images to learn the patterns and features characteristic of
certain conditions or diseases. The synthetic images can be used to train other
ML algorithms and validate the accuracy of CAD systems.

Overall, GAN is a powerful and versatile DL architecture that can generate new
data similar to a given dataset. The adversarial training process allows the
generator to learn from the discriminator’s feedback and generate increasingly
realistic data, making GANs an effective tool for generating synthetic medical
images.

2.5.1 Limitations

Traditional GANs have several limitations that can make them challenging to train
and result in poor image quality. One of the main limitations is the instability of the

39

training process. GANs use a min-max game between the generator and the
discriminator. As a result, the training process can become unstable if the
generator produces poor-quality images and the discriminator gets too strong.
This can lead to problems such as mode collapse (Durall et al., 2020), where the
generator gets stuck in sub-optimal parameter space and produces only a limited
number of distinct images. The issue of vanishing gradients (Li et al., 2018) is
another problem for GANs, just like conventional ANNs. This occurs when the
gradients become too small, impeding the generator’s learning process and
producing bad images.

During the training process of a GAN, the goal is to achieve an equilibrium
between the generator and the discriminator, i.e., a balance between the two. The
idea is to get the generator to produce realistic images that can fool the
discriminator while the discriminator can accurately distinguish between the
generated and real images. However, achieving this equilibrium can be
challenging, especially when dealing with complex image datasets like 3D medical
data.

One of the main challenges in achieving this equilibrium is setting the appropriate
strengths of the generator and the discriminator. If the discriminator is too weak, it
can fail to identify generated images as fake, allowing the generator to produce
poor-quality images that are not realistic. On the other hand, if the discriminator is
too strong, it can quickly identify generated images as fake, making it difficult for
the generator to produce high-quality images. In addition, traditional GANs may
also suffer from overfitting (Yazici et al., 2020), where the generator learns to
produce images similar to the training set but lacking diversity. In simpler terms,
the generator memorizes the training data, which results in poor generalization
performance, i.e., severely limiting the generation of new, realistic images.

Finally, traditional GANs may struggle with generating high-resolution images. As
the image size increases, the number of parameters in the generator and
discriminator also increases, making the training process more difficult and
time-consuming. The larger number of parameters means that more data is
required to train the networks effectively. This can be challenging to obtain,

40

especially for medical datasets, where data is often limited or expensive to acquire.

The vanishing gradient problem occurs when the gradients in the network become
extremely small during backpropagation, which makes it difficult for the network to
update its weights. In the case of GANs generating high-resolution images, the
increase in image size results in a correspondingly larger number of parameters in
the generator and discriminator networks. During training, the generator network
receives gradients from the discriminator network, which helps it update its
weights to generate more realistic images. However, as the number of parameters
in the network increases, the gradients may become smaller, leading to the
vanishing gradient problem. This can be particularly problematic for GANs
generating high-resolution images since they require many layers to capture the
complexity of the image.

Traditional GANs have several limitations that can make them challenging to train
and result in poor image quality. These limitations have led to the development of
new GAN architectures and training techniques that aim to overcome these issues
and improve the stability and quality of GANs. The following chapters will focus on
improved GAN architectures, loss functions, and evaluation metrics. We will
discuss how these factors can impact the performance of GANs and their ability to
generate high-quality synthetic medical data.

2.6 Beyond GAN: Improved Architectures

Alternative architectures have been proposed to overcome the limitations of
traditional GANs, with the aim of addressing training stability issues and improving
the quality of generated images. This chapter will introduce a selection of
improved GAN architectures related to the thesis.

2.6.1 Wasserstein GAN

Wasserstein GANs (WGAN), introduced by (Arjovsky et al., 2017), are a type of
GAN that aims to improve the training process stability and generate higher-quality
images. The main differences are how the training is performed, the loss function,

41

and the network optimizer.

In traditional GANs, the generator produces generated samples, and the
discriminator distinguishes between real and generated samples. The loss
function used in GANs can be challenging to optimize and may lead to instability in
the training process. WGANs, on the other hand, use the Wasserstein
distance (Vallender, 1974) to measure the difference between the real and
generated samples. This distance is more effective than the traditional measures
used in GANs, making learning more manageable for the generator and avoiding
issues such as mode collapse and vanishing gradients in traditional
GANs (Arjovsky et al., 2017).

Wasserstein loss is a modification of the original GAN MinMax loss
function (Goodfellow et al., 2020), in which the discriminator does not classify
instances. Instead, the discriminator output is a probability representing whether
the input image is real or fake. In this loss scheme, the discriminator is called a
”critic,” as it does not discriminate between real and fake images. The critic loss is
expressed in Equation 4.

CriticLoss : D(x)−D(G(z)) (4)

The discriminator tries to maximize this function, meaning it tries to maximize the
difference between its output on real images and its output on fake images. The
generator loss is expressed in Equation 5.

GeneratorLoss : D(G(z)) (5)

The generator tries to maximize this function, meaning it tries to maximize the
discriminator’s output for the fake images provided by the generator.

One of the critical advantages of WGANs is that they provide a stable training
process and can generate high-quality images. Additionally, they allow for better
control over the quality of the generated images, as the value of the Wasserstein
distance can be used to measure the quality of the generated samples. Another

42

difference is that the discriminator network in WGAN is modified to satisfy the
Lipschitz constraint (Hager, 1979), which limits the slope of the discriminator
function and helps to ensure the stability of the training process.

To enforce the Lipschitz constraint, WGANs use a technique called weight clipping
(WGAN-WC), setting a maximum and minimum value for the weights of the
discriminator network. Any weight that exceeds this maximum value is clipped to
this value during training. Similarly, if any weight falls below the minimum value, it
is clipped to the minimum value. By enforcing the Lipschitz constraint through
weight clipping, WGANs encourage the discriminator to have a smoother decision
boundary, improving the training process’s overall stability. However, it is worth
noting that weight clipping can also introduce some drawbacks, such as causing
the model to converge to a suboptimal solution or leading to poor sample quality.

An alternative version of WGAN with weight clipping is WGAN with gradient
penalty (WGAN-GP), introduced by (Gulrajani et al., 2017). WGAN-GP also tries
to enforce the Lipschitz constraint with a gradient penalty, which is computed by
randomly sampling points on the straight lines connecting real and generated
samples. If the gradient deviates from a predefined value, the discriminator is
penalized. This penalty term promotes smooth gradients in the input space for the
discriminator, preventing it from assigning excessively high gradients to specific
points that could disrupt the training process. WGAN-GP addresses the limitations
of weight clipping and provides a more stable and efficient way to enforce the
Lipschitz constraint on the discriminator.

2.6.2 StyleGAN2 and FastGAN

StyleGAN2, introduced by (Karras et al., 2020), is an enhanced version of the
original StyleGAN (Karras et al., 2019), specifically designed to generate
high-quality, diverse, and customizable 2-dimensional images with precise control
over various aspects of image synthesis.

A significant breakthrough in StyleGAN2 lies in its progressive, growing
architecture, which allows the generation of high-resolution images without
compromising quality or stability. Initially, the model generates low-resolution

43

images and gradually incorporates additional layers and features to produce
progressively higher-resolution images. This progressive approach enables the
model to acquire more intricate data representations over time, resulting in
superior image quality.

StyleGAN2 also incorporates an adaptive discriminator augmentation technique, a
crucial feature that enhances the model’s stability and robustness during training.
This technique introduces random data augmentations to the discriminator
network throughout training. By doing so, overfitting is mitigated, and the model’s
ability to generalize is improved.

FastGAN is a GAN model introduced by (Liu et al., 2021). The model is designed
to generate high-quality 2D images with improved training efficiency and scalability
compared to traditional GAN models.

One of the critical innovations of FastGAN is its use of a new generator
architecture called Skip-GAN, which enables the model to generate high-quality
images with fewer training iterations. The Skip-GAN architecture uses skip
connections between different layers of the generator network, which allows the
model to learn more efficiently and generate higher-quality images with fewer
training iterations.

Another important feature of FastGAN is its use of a new training algorithm called
decoupled training, which enables the model to train the generator and
discriminator networks separately. This approach allows each network to learn
quickly, resulting in faster and more efficient training.

FastGAN also introduces a novel regularization technique that helps stabilize the
training process and prevent overfitting. The method involves applying spectral
normalization to each group of neurons in the network, which limits the magnitude
of the weights and prevents instability during training.

2.6.3 Hierarchical Amortized GAN

(Sun et al., 2022) proposes a novel approach for generating high-resolution
3-dimensional medical images using a Hierarchical Amortized GAN (HA-GAN).

44

Most current 3D GAN models are trained on low-resolution medical images due to
limited GPU memory, which can lead to patchy artifacts or an inability to scale to
high-resolution images. HA-GAN is a memory-efficient method that generates
sub-volumes of the high-resolution input image during training while retaining
anatomical consistency. They achieve this through a hierarchical structure during
training, which produces a low-resolution image and a randomly selected
sub-volume of the high-resolution image.

The input to the network is a real high-resolution image XH . There are two
generators in HA-GAN, the high-resolution generator GH and a low-resolution
generator GL, which generate a low-resolution full-size image X̂L and a
high-resolution sub-volume X̂H . The high-resolution sub-volume is selected
randomly from different parts of the image, allowing for overlapping sub-volumes
to better cover junctions between the parts. This memory-efficient approach uses
a simplified image to help the model learn.

The HA-GAN architecture has two discriminators. The high-resolution
discriminator DH discriminates high-resolution sub-volumes, while the
low-resolution discriminator DL discriminates low-resolution full volumes. The
high-resolution discriminator ensures that local details in the sub-volume look
realistic, while the low-resolution discriminator preserves the proper global
structure. The model’s memory cost is reduced by feeding a sub-volume instead
of the entire image to the high-resolution discriminator. The location of the
sub-volume is also fed into the discriminator to help it distinguish sub-volumes
from different locations. Because the model is generating both low and
high-resolution volumes, there are two GAN losses in HA-GAN, LL

GAN and LH
GAN .

LL
GAN is the low-resolution loss function, expressed in Equation 6.

LL
GAN(G

L, GA, DL) = min
GL,GA

max
DL

E
X∼PX

[logDL(XL)] + E
Z∼PZ

[log(1−DL(X̂L)] (6)

Where GL, GA, and DL are the low-resolution generator, generator common block,
and the low-resolution discriminator, respectively. The goal is to minimize the value

45

of LL
GAN . The equation consists of two terms. The first term, E

X∼PX

[logDL(XL)], is

the expected value of the logarithm of the output of the discriminator when given a
real low-resolution volume XL from the data distribution PX . In other words, it’s the
average probability that the discriminator assigns to real input data being real.

The second term, E
Z∼PZ

[log(1−DL(X̂L)], is the expected value of the logarithm of

discriminator output when fed a generated low-resolution full volume X̂L. The
volume X̂L is generated by the low-resolution generator GL from the noise vector
Z. In other words, it’s the average probability that the discriminator assigns to fake
data being fake.

LH
GAN is the high-resolution loss function, expressed in Equation 7, which is used

to train the high-resolution generator GH , the generator common block GA, and the
high-resolution discriminator DH .

LH
GAN(G

A, GH , DH) = min
GH ,GA

max
DH

E
r∼U

[
E

X∼PX

[logDH(SH(XH ; r), r)] + E
Z∼PZ

[log(1−DH(X̂H
r , r)]

]
(7)

The equation consists of two main terms inside the expectation denoted by E
r∼U

,
where r is randomly selected from a uniform distribution U and represents the
location of the high-resolution sub-volume (in the full volume).

The first term, E
X∼PX

[logDH(SH(XH ; r), r)], is the expected value of the logarithm

of the output of the discriminator when it’s given a real high-resolution sub-volume
XH extracted from the real data volume X at location r. The function SH(XH ; r) is
the extraction of the sub-volume from location r. In simpler terms, it’s the average
probability that the discriminator gives to real sub-volumes being real.

The second term, E
Z∼PZ

[log(1−DH(X̂Hr, r)], is the expected value of the logarithm

of the discriminator output when it’s given a generated high-resolution sub-volume
X̂Hr. This sub-volume is generated by the high-resolution generator GH from the
noise vector Z at location r. It is the average probability that the discriminator
gives to fake sub-volumes being fake.

46

The HA-GAN model also has two encoders, which are trained to encode the
low-resolution full-volume and the high-resolution sub-volume. The generated
volumes are then compared with the real volumes, and reconstruction loss is
calculated. The high-resolution encoder loss is expressed in Equation 8.

LH
recon(E

H) = min
EH

E
X∼PX ,r∈U

JSH(XH ; r)−GH(Âr)K1 (8)

The equation consists of a single term, E
X∼PX ,r∈U

JSH(XH ; r)−GH(Âr)K1, which is

the expected value of the absolute difference between the real high-resolution
sub-volume SH(XH ; r) and the generated high-resolution sub-volume GH(Âr).
The average difference between real sub-volumes of high-resolution data and the
generated sub-volumes is calculated, and used to train the encoder.

The total reconstruction loss function, LG
recon(E

G) is used to train the shared
encoder EG. It is the sum of the low-resolution and high-resolution reconstruction
losses. The goal is to make both the low-resolution image and the high-resolution
sub-volume generated by the generators as similar as possible to the
corresponding real ones. The equation is expressed in Equation 9.

LG
recon(E

G) = min
EG

E
X∼PX

[
JXL −GL(GA(Ẑ))K1 + E

r∼U

[
JSH(XH ; r)−GH(SL(GA(Ẑ); r))K1

]]
(9)

The equation has two terms. The first term, E
X∼PX

[
JXL −GL(GA(Ẑ))K1

]
is the

expected value of the difference between the real low-resolution volume XL and
the generated low-resolution volume GL(GA(Ẑ)). XL is a low-resolution volume
and GA(Ẑ) is the output of the generator common block GA when fed with the
latent representation Ẑ, which is then used to generate the low-resolution volume
GL(GA(Ẑ)).

The second term, E
r∼U

[
JSH(XH ; r)−GH(SL(GA(Ẑ); r))K1

]
is the expected value of

the difference between the real high-resolution sub-volume SH(XH ; r) and the
generated high-resolution sub-volume GH(SL(GA(Ẑ); r)). The low-resolution

47

sub-volume is used to generate the high-resolution sub-volume GH(SL(GA(Ẑ); r)).
Simply explained, the measurement of the average difference between the real
low and high-resolution volumes and the generated volumes are used to optimize
the shared encoder EG.

The overall loss function for HA-GAN is shown in Equation 10.

L = LH
GAN(G

H , GA, DH) + LL
GAN(G

L, GA, DL) + λ1LH
recon(E

H) + λ2LG
recon(E

G), (10)

The overall architecture is shown in Figure 2.9, with some parts excluded for
visibility.

Figure 2.9: HA-GAN Architecture

There are two variations of the HA-GAN architecture. It has the ability to take as
input and generate images with dimensions of 128× 128 and 256× 256× 256.

48

2.7 Evaluating Generative Adversarial Networks

Evaluation metrics are used to measure the performance and effectiveness of
machine learning models, including GANs. These metrics measure model
performance, which is essential for assessing the quality of the model and making
improvements. The goal of a GAN is to generate synthetic data similar to
real-world data, and evaluation metrics provide a way to measure the similarity
between the generated and real data.

2.7.1 Inception Score

Introduced by (Salimans et al., 2016), the Inception Score (IS) is an evaluation
metric for GANs that measures the quality and diversity of generated images. The
generated images are fed to a pre-trained Inception model (Szegedy et al., 2015),
a popular CNN image classification network.

The Inception model calculates the class probabilities for each generated image.
IS is calculated by comparing the distribution of the class probabilities of all the
generated images with the distribution of class probabilities for each individually
generated image. The comparison uses a mathematical formula called the
Kullback-Leibler (KL) divergence (Joyce, 2011). The final IS value is obtained by
taking the exponential of the expected value of this comparison.

A higher IS score indicates that the generated images have a good variety of
features that are representative of the training dataset. In contrast, a lower score
indicates that the generated images are less diverse or of lower quality.

2.7.2 Fréchet Inception Distance

The Fréchet Inception Distance (FID) was first introduced by (Heusel et al., 2017)
and compares the distribution of generated images with the distribution of a set of
real images. In other words, FID measures how similar the generated images are
to the real images by comparing them.

First, a pre-trained image classifier, like the Inception model, is used to define a
feature space. Then, the FID measures the distance between the multivariate

49

Gaussian distributions of the real and generated images in that feature space.
This distance is calculated by finding the squared Euclidean distance between the
means of the two distributions, adding the sum of their variances, and then
subtracting twice the square root of their product.

A lower FID indicates that the generated images are more similar to the real
images in their statistics and are of higher quality.

2.7.3 t-Distributed Stochastic Neighbor Embedding

Introduced by (Van der Maaten and Hinton, 2008), t-Distributed Stochastic
Neighbor Embedding (t-SNE) is not typically used as an evaluation metric for
GANs but rather as a visualization tool to explore the structure and diversity of
data. By applying t-SNE to GAN-generated images, it is possible to visualize the
distribution of the generated data in a lower-dimensional space and gain insight
into the diversity and structure of the generated data. t-SNE can help identify
patterns or clusters in the generated data and highlight areas where the GAN may
produce similar or redundant images. Most importantly, t-SNE can be applied to
both the original training data and compared with the generated data. A
pre-trained image classifier is used to extract feature representations for each real
and generated image, like in the IS and FID calculations. Finally, t-SNE analysis is
applied to both image set activations to visualize and compare the images in a
lower-dimensional space.

t-SNE has several hyperparameters that can be tuned to affect its performance
and the quality of the resulting visualization. The hyperparameter Components
define the number of dimensions in which the data will be embedded. A common
choice is two, allowing for easy visualization of the data in a scatter plot.

Perplexity is a measure of how well the algorithm balances attention between local
and global aspects of the data. Higher values of perplexity result in t-SNE focusing
more on the global structure, while lower values make it focus more on local
neighborhoods.

The learning rate controls the step size during the optimization process. If the

50

learning rate is too high, the optimization process may overshoot the optimal
solution, whereas if it is too low, it may take a long time to converge.

2.7.4 Visual Turing Test

A Visual Turing Test (VTT) (Chuquicusma et al., 2018) involves presenting an
expert human evaluator with pairs of images, where one image is real, and the
other is generated by the GAN. The evaluator must then determine which image is
real and which is generated. The process is repeated for the number of images in
the experiment. The VTT for GANs is a challenging task as it requires the GAN to
generate images that are not only visually similar to real images but also capture
the subtle details and nuances that make them appear real.

2.8 Hyperparameter Optimization

Hyperparameters are parameters set before training a model and cannot be
learned during training. Hyperparameter optimization (HPO) finds the best set of
hyperparameters for a machine learning model that yields optimal
performance (Yang and Shami, 2020). HPO aims to find the best combination of
hyperparameters that maximizes the model performance. This is important
because the choice of hyperparameters can significantly impact the model’s
performance.

Several HPO methods are available, but manual search is the most widely used
technique. This approach involves selecting hyperparameters based on personal
experience and judgment and then making arbitrary adjustments after evaluating
the model.

Another commonly used HPO approach is random search, where
hyperparameters are randomly selected from a given parameter space. Random
search does not sample evenly across the entire search space but explores it
randomly. As a result, a random search may need to run for a considerable period
to find the optimal set of hyperparameters (Liashchynskyi and Liashchynskyi,
2019).

51

Another HPO technique is grid search, where a predefined set of hyperparameters
is specified, and the model is trained and evaluated for every combination of these
hyperparameters. This approach systematically explores the entire search space,
ensuring that every combination of hyperparameters is tested. However, grid
search can be computationally expensive, especially for high-dimensional search
spaces with many hyperparameters (Liashchynskyi and Liashchynskyi, 2019).

HPO is an important aspect of machine learning model development and can
significantly improve the performance of the model. It is commonly used in DL
models, including GANs, to find the best hyperparameters. By selecting the
optimal hyperparameters, HPO can help to reduce overfitting, improve training
speed and stability, and ultimately lead to better performance.

2.9 Related Work

This chapter reviews existing research on synthetic medical data generation with
GANs and 3D image segmentation. It covers relevant studies in synthetic 2D and
3D medical data generation using GAN and explores current techniques for the
segmentation of 3D images. The chapter concludes with a summary of key
findings and gaps in the current research, highlighting its significance in setting the
stage for the thesis contribution.

2.9.1 Synthetic 2D Medical Data Generation with GANs

The use of GANs to generate synthetic medical data is an active area of
research. (Sorin et al., 2020) performed a systematic review of image generation
for radiology applications using GANs. Their study analyzed 33 publications,
primarily emphasizing various modalities, including MRI and CT. Interestingly, out
of the total publications, only six studies focused on generating synthetic images.
Most concentrate on generating synthetic CT images, while the remainder focus
on MRI. The authors in the review note that almost all of the six DA publications
observed an increase in the performance of ML algorithms trained on synthetically
generated data. However, they note that generated images sometimes struggle to
compete with real images, seeing as they may be blurred or have low resolution.

52

The authors note that a solution to the problem is possible by training the
algorithms on fake images and then further fine-tuning the algorithms by training
them on real images.

None of the six studies that aimed to create synthetic CT and MRI images were
trained directly with 3D images. Instead, they used single slices of 3-dimensional
images for training purposes. Most studies utilized smaller image sizes, such as
64× 64, while one study utilized the largest size of 256× 256.

(Russ et al., 2019) explores synthetic training data generated using GAN to
improve the potential of medical image analysis with neural networks. The authors
evaluate eleven GAN architectures for synthesizing CT images and assess image
quality regarding anatomical accuracy and realistic noise properties. The
best-performing network configuration is identified, and three networks are trained
using the ideal configuration in combination with an extended training dataset and
a task-based loss function. The authors demonstrate the applicability of this
simulation-driven approach in a proof-of-principle, showing that a task-based
network trained on a combination of real and synthetic data can achieve superior
performance in blood vessel segmentation compared to a network trained on real
data alone.

(Hussain et al., 2022) proposes a solution to the problem of data deficiency in
COVID-19 radiograph images using a Wasserstein GAN. The authors show that
using a WGAN can lead to an effective and lightweight solution for generating
synthetic images at par with the original images.

(Yang et al., 2021) addresses the issue of obtaining both MRI and CT images for
clinical applications, which is often costly and sometimes unavailable, particularly
for special populations. The paper presents a novel generative network that
combines the advantages of VAE and GAN. The network is applied to synthesize
multi-contrast MRI images from single CT images, and experiments are conducted
on brain datasets. The study’s main contributions include using random-extraction
patches for data augmentation, solving image blurriness and mode collapse
problems, and demonstrating the effectiveness and stability of the proposed
network. Compared to typical methods, the network yields more accurate and

53

higher-quality synthetic MR images for visual inspection and quantitative
assessment. However, the paper notes that the deep network is somewhat
sophisticated, with many system parameters that result in high computational
complexity.

(Woodland et al., 2022) evaluates the use of the StyleGAN2 architecture, namely
StyleGAN2-ADA, for generating high-resolution medical images, addressing the
limitations of GANs in medical imaging, such as computational cost, data
requirements, evaluation measures, and training complexity. The authors trained a
StyleGAN2 network on a liver CT dataset and four publicly available datasets
comprising various imaging modalities. The authors conclude that
StyleGAN2-ADA consistently produces high-quality medical images and achieves
state-of-the-art FIDs on all datasets. They find that the generated images are of
sufficient quality that an expert’s ability to tell whether or not an image was
generated approaches random guessing. Furthermore, they report that the
”realness” score based on a 5-point Likert scale differs between the generated and
real images by less than the standard deviation between clinicians.

(Thambawita et al., 2022) presents a novel synthetic data generation pipeline
called SinGAN-Seg, which produces synthetic medical images. What
differentiates this approach is the generation of synthetic images with
corresponding tumor masks. The pipeline can be used to produce alternative
artificial segmentation datasets with corresponding ground truth masks. The
authors used image quality and FID scores to compare several GAN architectures:
DCGAN, Progressive GAN, FastGAN, and SinGAN-Seg. Based on the results
presented, it is evident that FastGAN and SinGAN-Seg versions produce superior
synthetic images in comparison to DCGAN and Progressive GAN. Additionally,
FastGAN performs better regarding FID scores than SinGAN-Seg without style
transfer. Notably, when 1,000 images were used for training, SinGAN-Seg with
style transfer outperformed all other GANs.

To demonstrate the effectiveness of the pipeline, the authors train a segmentation
U-Net model using both real data and synthetic data generated from the
SinGAN-Seg pipeline. They show that the models trained on synthetic data

54

perform close to those trained on real data when both datasets have considerable
training data. In contrast, when the training datasets are small, the synthetic data
generated from the SinGAN-Seg pipeline improves the performance of
segmentation models. The authors conclude that the SinGAN-Seg pipeline is an
effective data augmentation technique that can improve segmentation
performance when training datasets are small and can be used as an alternative
method to provide and share data when real datasets are restricted.

2.9.2 Synthetic 3D Medical Data Generation with GANs

In the research paper by (Yu et al., 2018), a 3D GAN is introduced, designed for
synthesizing MRI images. The evaluation of this method is conducted using the
Brain Tumor Image Segmentation Benchmark (BRATS) 2015 dataset, which
includes data from 274 subjects. To enhance the brain tumor segmentation using
a single T1 (MRI) modality, the study explores the possibility of synthesizing
Fluid-Attenuated Inversion Recovery (FLAIR) images from T1. For this purpose, a
3D GAN is designed specifically for FLAIR image synthesis to more accurately
represent the details of the synthesized FLAIR images. The method proves to be
effective in managing the segmentation of brain tumors that vary considerably in
appearance, size, and location across different samples. The generated MRI
images from this process have dimensions of 128× 128× 128.

(Cirillo et al., 2021) presents a 3D GAN called Vox2Vox for segmentation of brain
tumors. The model generates realistic segmentation outputs from multi-channel
3D MR images, segmenting the whole, core, and enhanced tumor with mean dice
scores for the BRATS testing set after ensembling 10 Vox2Vox models obtained
with a 10-fold cross-validation. The Vox2Vox model is trained and validated on
sub-volumes of size 128× 128× 128 from 369 and 125 subjects, respectively.

(Bu et al., 2021) propose a novel method based on a conditional generative
adversarial network (CGAN) to generate new samples for DA. This method
employs a 3D GAN to synthesize realistic and diverse lung nodules in CT images
to improve the performance of a CAD system. The method uses a generator with
a U-Net architecture and a concurrent squeeze excitation module. The authors

55

used t-SNE and a Visual Turing Test to evaluate the generated images. The
authors used synthetic samples for DA to train the lung nodule detection network
to evaluate the proposed method. The results indicate that these synthetic
samples could boost the overall performance of the nodule detection network.
One limitation of the paper is the small image size of the generated images, which
are only 32× 32× 32.

(Pesaranghader et al., 2021) introduced a novel GAN-based architecture to
produce authentic-looking CT images. The authors conducted a quantitative study
to demonstrate the effectiveness of DA using GAN for cancer detection. The
proposed architecture is capable of synthesizing images of
resolution224× 224× 224. By training a cancer detection algorithm on a vast
number of synthetic and real data, the classifier performance was improved,
proving the usefulness of synthetically generated images.

HA-GAN (Sun et al., 2022) outperforms previous state-of-the-art image generation
models such as (Pesaranghader et al., 2021), as demonstrated by 3D CT and
brain MRI experiments. The authors compare HA-GAN with other state-of-the-art
GAN models and show that HA-GAN produces higher-quality synthetic images
than other GAN models, as evidenced by FID and IS scores. The sharpness of the
images generated by HA-GAN is also superior to other methods. HA-GAN
outperforms baseline models at 128× 128× 128 and 256××256× 256 resolutions,
with greater performance improvements observed at 256× 256× 256 resolutions.
HA-GAN’s ability to directly generate images at 256× 256× 256 resolution without
upsampling and the model architecture contribute to sharper image generation.

2.9.3 Segmentation of 3D images

In their winning solution to the HECKTOR 2022 challenge, (Myronenko et al.,
2023) utilize the Auto3DSeg framework within the MONAI platform. Their
approach is based on a SegResNet network that employs a U-Net architecture.
The authors use a simple approach to crop the approximate region based on the
relative anatomy position within the PET/CT images. They detect the top of the
head based on simple thresholding and the H&N center-line based on the average

56

foreground of top slices. The authors voxel resample the input CT and PET
images to include the intensity pattern variations within the foreground regions to
resolution 1.0× 1.0× 1.0mm.

The authors use 5-Fold Cross-Validation to train and select the best model. The
ensemble model achieves an average of 0.7989 Cross-Validation DSC, making it
the best method for the HECKTOR 2022 challenge.

2.9.4 Related Work Summary

In order to adequately supplement training datasets for cancer segmentation, it is
essential to include the medical image and a corresponding ground truth mask
that highlights the tumor in the image. This is because cancer segmentation
algorithms require both components to learn how to detect and segment tumors in
medical images accurately.

Previous research has explored using GANS to generate images and
corresponding masks in the 2D image domain. For instance, (Thambawita et al.,
2022) proposed a GAN-based framework that can generate synthetic medical
images and corresponding masks. However, to the best of our knowledge, no such
research has yet been conducted on 3D medical images for high-resolution
images.

The lack of research on generating 3D medical images with corresponding masks
may be attributed to the computational cost of generating such data. Unlike 2D
images, 3D medical images require a much larger storage capacity and
computational resources, posing significant challenges for data generation.
Consequently, many approaches have focused on generating low-resolution 3D
images, which may not be sufficient for accurate tumor segmentation. Thus, there
is a need for the generation of 3D medical images and corresponding tumor
masks. The generated images and masks should be properly evaluated using
state-of-the-art segmentation methods like the Auto3Dseg framework.

57

3 Methodology

This chapter describes the methodology for generating synthetic CT image/mask
pairs using GANs. The methodology includes the dataset used, preliminary data
analysis, data preprocessing, GAN architectures and training procedures, data
augmentation, data postprocessing, evaluation, and hyperparameter optimization.

3.1 Dataset

This thesis utilizes the HECKTOR grand challenge 2022 dataset (Andrearczyk
et al., 2023). The dataset consists of PET and CT images of the head and neck
region, collected from nine data sources, of patients with head and neck cancer
confirmed by histology. Patient information, including center, age, gender, weight,
tobacco and alcohol consumption, performance status, HPV status, and treatment
details, is also included in the dataset alongside the images. However, only the
images were utilized in this thesis, as the metadata is not used.

The dataset consists of 845 subjects and is split into two separate datasets, one
with 524 samples for training machine learning algorithms and the other for testing
the trained algorithms. Because the testing dataset only includes the images and
not the corresponding masks, it will not be used in this thesis, as both are needed
for the generation of new samples.

Each case in the dataset contains a CT scan, PET scan, and a corresponding
tumor mask. However, as this thesis only uses CT scans, the PET scans are
disregarded. The images and masks are saved in the NIFTI format, containing
image data and meta-data.

The training dataset is a combination of PET/CT images originating from seven
data sources:

• CHUM

• CHUP

• CHUS

58

• CHUV

• HGJ

• HMR

• MDA

3.2 Preliminary Data Analysis

To load the 3D NIFTI images, we used Python (Van Rossum and Drake, 2009) and
Nibabel (Brett et al., 2023), a Python library for working with neuroimaging data.
We load the data from the NIFTI files to retrieve the image data and meta
information. The image data is stored as a 3D NumPy (Harris et al., 2020) array,
where each element represents the intensity value of a voxel (3D pixel) in the
image. The header information contains metadata about the image, such as the
dimensions of the image, the voxel size, and the image orientation. The affine
matrix is a transformation matrix that maps the voxel coordinates to the physical
coordinates in the image.

Once we have loaded the 3D NIFTI images using Nibabel, we can use various
NumPy and Matplotlib (Hunter, 2007) functions to manipulate and visualize the
data. First, we use Pandas (McKinney et al., 2010) to group the data based on the
original data source. We identify the image sizes and how they vary throughout
the dataset by obtaining the images’ X, Y, and Z sizes.

Most images in the dataset have dimensions 512× 512 for the x and y-axis. The
average size of the images is 512× 512× 234 voxels at 1.04× 1.04× 2.8mm

average resolution. Table 3.1 show the number of images and their average size
and resolution per data source.

59

Table 3.1: Dataset average size and resolution, grouped by data source

Source Images Average Size Average Resolution
MDA 198 510× 510× 167 0.99× 0.99× 3.26mm
CHUP 72 512× 512× 619 0.98× 0.98× 1.51mm
CHUS 72 512× 512× 151 1.17× 1.17× 2.82mm
CHUM 56 512× 512 ×215 0.99× 0.99× 1.97mm
HGJ 55 512× 512× 93 0.98× 0.98× 3.27mm
CHUV 53 512× 512× 276 1.25× 1.25× 3.03mm
HMR 18 512× 512× 129 1.06× 1.06× 3.27mm

The number of elements on the Z-axis varies depending on the data source within
the dataset from where the images originate. In simpler terms, the images have
different amounts of ”slices”. One slice is a single 2D image from a 3D image. A
3D image consists of n number of 2D slices, making up the full 3D image. An
illustration of what a slice is, is shown in Figure 3.1.

Figure 3.1: 3D Image VS. Single 2D Slice

We create histograms to show the number of slices in each data source. We group
the images by data source and visualize the number of slices per source, as

60

shown in Figure 3.2.

Figure 3.2: Number of Image Slices, Grouped by Data Source

As seen in Figure 3.2, the number of slices has large variations in the dataset,
even within each data source. Table 3.2 show the minimum, maximum and
average number of slices of the images for each data source in the dataset.

Table 3.2: Number of Slices, Grouped by Data Source

Source Minimum Maximum Average
CHUM 91 348 215
CHUP 485 736 619
CHUS 109 218 150
CHUV 67 392 276
HGJ 91 135 92
HMR 83 267 129
MDA 87 407 166

61

Hounsfield Units (HU) is a measurement of the X-ray attenuation of tissues in a CT
scan and can be used to interpolate a set of CT images before training a GAN to
improve performance. In NIFTI CT images, HU can be calculated using the image
voxel values and a calibration factor. The NIFTI format stores CT images as a 3D
array of integer values, with each value representing the image intensity at a
specific voxel. To convert these pixel values to HU, a calibration factor is needed to
account for differences in the scanner calibration and X-ray beam energy. To
convert the raw data values to HU, a calibration factor (slope) and an offset value
(intercept) are usually applied, as expressed in Equation 11.

HU = (voxel × slope) + intercept (11)

By iterating over all images in the dataset, we extract the slope and intercept to
perform the HU calculation. However, we observe that the slope is set to 1 and the
intercept to 0 in all images, meaning that the raw data values have already been
converted to Hounsfield Units, and do not require any additional conversion.

Each image in the dataset have a low and high voxel value (HU). We aggregate the
lowest and highest values of the minimum values. We do the same calculcation for
the maximum values. We create histograms to show the distribution of all
minimum and maximum HU across the entire dataset, shown in Figure 3.3.

62

Figure 3.3: HU Ranges

As seen in Figure 3.3, the lowest voxel value across the dataset has the range
[−17500,−2500]. The highest voxel value is in the range [3000, 30000]. The five
most frequent minimum values are shown in Table 3.3.

Table 3.3: Most Frequent Minimum Hounsfield Units

Value Number of images
-2048.0 175
-1024.0 152
-3024.0 130
-1000.0 50
-5048.0 1

The five most frequent maximum values are shown in Table 3.4.

63

Table 3.4: Most Frequent Maximum Hounsfield Units

Value Number of images
3071 340
2976 114
31743 5
3070 2
1964 1

We use Pandas to group the dataset on the data source. We analyze the HU
min-max distribution per source. We compute the minimum and maximum values
for the lowest HU observed in each group, as well as the minimum and maximum
values for the highest HU. Furthermore, we calculated the average values for both
the lowest and highest HU within each group.

Table 3.5 shows the minimum, maximum, and average of the lowest HU per
source.

Table 3.5: Minimum, Maximum and Average HU of the Lowest HU Grouped by Data
Source

Source Minimum Maximum Average
CHUM -3024 -1000 -1253
CHUP -1024 -1024 -1024
CHUS -1024 -1024 -1024
CHUV -3024 -3024 -3024
HGJ -16989 -3024 -3489
HMR -3024 -3024 -3024
MDA -16156 -1000 -2206

Table 3.6 shows the minimum, maximum, and average of the highest HU per
source.

64

Table 3.6: Minimum, Maximum and Average HU of the Highest HU, Grouped by
Data Source

Source Minimum Maximum Average
CHUM 1870 3071 2938
CHUP 2688 3071 3060
CHUS 2976 2976 2976
CHUV 1695 3071 3019
HGJ 1997 3174 5714
HMR 1738 3071 2865
MDA 1588 31743 5066

As seen in Tables 3.5 and 3.6, the HU minimum, maximum and average values
have rather large variations in the dataset.

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a visualization technique
to explore the structure and diversity of a given dataset by transforming the data to
a low-dimensional space. We group the images by data source and apply t-SNE to
the data and create a scatterplot with Matplotlib. Figure 3.4 show the results.

65

Figure 3.4: t-SNE Scatterplot

Referring to Figure 3.4, it is evident that the majority of the data sources create
separate, distinct clusters within the scatterplot. The clusters formed by the CHUS
and HGJ data sources stand out as the most unique. The data source labeled as
MDA contains the highest number of samples, as depicted in both the figure and
Table 3.1. Although this data source predominantly forms a single unique cluster, it
also has data samples that diverge and overlap with other clusters, extending as
far right on the plot as the HGJ data sources. This overlap suggests that despite
their differences, the images within these data sources have certain
commonalities. In later chapters, t-SNE will be applied to the real, and GAN
generated samples to compare the distributions.

66

3.3 Data Visualization

Before training a GAN, it is important to carefully examine the data to ensure its
quality and understand the anatomy.

MRIcroGL (NITRC, 2022) is a widely used tool for visualizing 3D images and is
available as standalone software developed by Neuroimaging Informatics Tools
and Resources Clearinghouse (NITR). To visualize NIFTI images using
MRIcroGL, we load the image into the software and can visualize the image in a
variety of ways. We can then view the image from different angles and zoom in or
out to examine the image in more detail. Additionally, we can render the image in
3D to have a more detailed inspection of the image. An example CT image is
shown in Figure 3.5.

Figure 3.5: Coronal, Sagittal, Axial and 3D Render View in MRIcroGL

Creating a 2D plot with Python and Matplotlib can provide a more detailed and
customizable image view. To create a 2D plot, we extract each image slice. Then
we iterate over the image along the z-axis and plot each slice on a 2D plane.
Figures 3.6 and 3.7 show five slices of two images from different data sources.

67

Figure 3.6: Axial Plot CT Image from CHUM

Figure 3.7: Axial Plot CT Image from CHUS

As seen in the figures, the color is different due to the fact that the Hounsfield
Units are different, making the intensity of the images appear visually different.

Figure 3.8 show an example image created with Matplotlib of various image
orientations.

68

Figure 3.8: Axial, Coronal, and Sagittal Slices from Example Image

Figure 3.9 shows a full image from the CHUM center, with resolution
512× 512× 36. Because the Z-dimension is 36, this will result in 36 slices, or 36
2D images in the plot.

Figure 3.9: 512× 512× 36 2D Image

69

The corresponding tumor mask is shown in Figure 3.10.

Figure 3.10: Corresponding 512× 512× 36 2D Mask

As seen in Figure 3.10, the slices are empty when there are no voxel values. The
slices with values in them represent the tumor.

To visualize sagittal slices, we begin by transposing the data with NumPy. we
extract the slices along the sagittal plane using Python and plot the center sagittal
slice using Matplotlib. The center sagittal slice of five images from five data
sources is shown in Figure 3.11.

Figure 3.11: Center Sagittal Slices from Five Sources

70

These techniques showed visually what we observed in the preliminary data
analysis (Chapter 3.2). The images from different data sources vary in size. Some
data sources have CT images of the whole body, while others have only the head
and neck area, as seen in Figure 3.11.

Another approach for visualizing NIfTI images is to overlay the tumor mask on the
image along the sagittal center slice. However, it is not always guaranteed that the
tumor will be visible on the center slice. Therefore, a calculation can be performed
to determine which sagittal slice of the tumor mask is most visible, and the
corresponding image and tumor mask can be visualized together. We use Numpy
to calculate which mask slice has the most overlaying voxels. We then overlay the
tumor mask on the image using matplotlib. We adjust the transparency and color
of the tumor mask to highlight the tumor and its boundaries better, as shown in
Figure 3.12.

Figure 3.12: Slices with Mask

3.4 Data Preprocessing and Data Transformation

The preprocessing of data plays a crucial role in the training of GANs. The specific
steps used to preprocess the data vary across different GAN architectures and
even within the same architecture, as different experiments may employ distinct
preprocessing approaches. This subchapter describe the preprocessing steps for
our utilized GAN methods, namely Vanilla GAN, WGAN, FastGAN, StyleGAN2
and HA-GAN.

71

3.4.1 Vanilla GAN and WGAN

Images are resampled to be smaller with a resampling technique that involves
changing the resolution and voxel size of the given 3D image. The resampling is
done using the Python library SciPy (Virtanen et al., 2020) with the ”zoom”
function, which takes an input array image to be resampled and a zoom factor.
The zoom factor determines the relative magnification of the output array with
respect to the input array. An example of resampling is shown in Figure 3.13.

Figure 3.13: Image Resampling

In the case of Naive and Wasserstein GAN, multiple zoom factors, such as 50%,
80%, and 97%, are employed. For instance, a 50% decrease implies that a
512× 512× 512 image is resized to 261× 261× 261.

Because images from data sources in the dataset have different sizes, we assess
all resampled images and locate the largest one. We then use the size of the
largest image to augment the size of all other images to match the largest shape.
This is done by iterating through all the images and determining the amount of
padding necessary for each specified dimension utilizing Python and NumPy. The
NumPy ”pad” function is subsequently employed to pad the input image with
zeros. The padding may be used for the X, Y, and Z-axis. Figure 3.14 illustrates
how a 3D image may be padded along each dimension.

72

Figure 3.14: Padding a 3D image

Then the image and mask are concatenated together along the Z-axis, combining
them into a single image. The concatenation is shown in Figure 3.15.

Figure 3.15: Image and Mask Concatenation along Z-axis

Some image/mask pairs have differences in size in various dimensions, making

73

further processing necessary before concatenation. For instance, in some pairs,
the image has a size of 512× 512× 91, while the corresponding mask has a size of
512× 513× 91. We remove the last element along the faulty dimension in these
cases before concatenating the pair.

An alternative method of image preprocessing involves resampling both the image
and the mask, followed by selecting an arbitrary number of center slices that are
subsequently cut out. Finally, the central portions of the image and the mask are
concatenated together. The process is shown in Figure 3.16.

Figure 3.16: Resampling, Chopping, and Concatenating Image and Mask

3.4.2 FastGAN and StyleGAN2

FastGAN and StyleGAN2 are GANs designed to operate on 2D images.
Consequently, the 3D images from the dataset need to be converted to 2D. This is
accomplished by first resampling the images by 50%. Then, we use Python to
iterate over the last dimension of the image and append each image slice onto a
2D plane with the aid of matplotlib, as shown in Figure 3.17.

Figure 3.17: Transforming a 3D Image to 2D

74

Once the 2D planes have been generated, we apply padding or chopping to each
image to ensure they are the same size. We evaluate each image to determine if
its size surpasses or falls below a pre-defined threshold. Based on the outcome,
we either pad (Figure 3.18a or chop (Figure 3.18) the image as necessary.

(a) 2D Padding (b) 2D Chopping

Figure 3.18: Padding and Chopping 2D Image

Finally, we stack the images to form multiple rows and columns in the final image,
which is saved as a PNG image. An example image is shown in Figure 3.19.

Figure 3.19: Stacked 2D Image

75

3.4.3 Hierarchical Amortized GAN

We resample the voxels of the images and masks to 1.5× 1.5× 1.5mm isotropic
resolution (see Chapter 3.5.1 for more details on voxel resampling). We use the
NumPy ”interp” function to interpolate the HU of the images. The interpolation
function remaps the voxel values of the input image from the original range to the
new range using linear interpolation. Linear interpolation calculates the new value
of a point within the target range based on its relative position between the
minimum and maximum values of the original range, expressed in Equation 12.

yi =
(xi − xmin)(ymax − ymin)

(xmax − xmin)
+ ymin (12)

Where xi is the original voxel value in the input image, xmin and xmax is the
minimum and maximum value of the input image, which is set to [−1024, 600]. ymin

and ymax are the minimum and maximum values of the target range, which is
[−1, 1]. yi is the new voxel value in the output image after interpolation. Figure
3.20 show a visual example of the interpolation.

Figure 3.20: Interpolation of 3D Image

Based on the preliminary data analysis, we recognize that the minimum and
maximum values are outside the range of [−1024, 600]. However, we originally
choose to use the range as it is introduced by (Sun et al., 2022). In later
experiments, we use different input interpolation ranges.

The mask is originally interpolated with the same input interpolation range as the

76

image. However, in later experiments, we use the range [0, 2]. The reason for the
different threshold ranges is that the values in the mask can be either 0 for no
value, 1 for Tumour, and 2 for Lymph node. Mask interpolation is shown in Figure
3.21.

Figure 3.21: Interpolation of 3D Mask

While some images depict the entire body, others only show the head and neck
region. The images are sorted according to their data sources to determine the
region of interest and carefully examined manually. A boundary is heuristically
established for cropping purposes, which differs for each data source. We iterate
over all images and their calculated cropping boundary and crop them with their
corresponding masks. Figure 3.22 shows example images before and after the
cropping operation.

77

Figure 3.22: Images Before and After Cropping

The cropped images are concatenated for use by HA-GAN in two different ways.
The first is the conventional Z-axis concatenation, like in the Vanilla and WGAN
shown in Chapter 3.4.1. An alternative approach is slicing the image and mask,
and concatenating the pair slice by slice, as shown in Figure 3.23.

Figure 3.23: Slice-by-slice Concatenation

78

The Images are then resized to 128× 128× 128 or 256× 256× 256 with the ”resize”
function from Scikit-Image (Van der Walt et al., 2014). The function uses an
interpolation-based method to resize the image. It uses a polynomial function to
interpolate the voxel values at the new image size. This function is similar to a
bicubic interpolation, which results in smooth image rescaling with fewer artifacts
than other interpolation methods, such as the zoom function introduced in Chapter
3.4.1. The resized images are then saved as a NumPy file, which is what the
HA-GAN network requires for training.

3.5 Data Augmentation

To improve the performance and generalization of the GAN models, we developed
a data augmentation framework that applies various transformations to the input
images or masks. The framework takes as input either all images or all masks, or
both and applies a set of predefined data augmentation techniques to create new
variations of the input data.

The data augmentation techniques are defined in a configuration file, specifying
each transformation’s parameters. The configuration file includes a set of
predefined transformations. The framework iterates over the input data and
applies each transformation to create new variations of the data. The
augmentation framework is implemented with Python. The image augmentation
methods are implemented with the MONAI framework (Cardoso et al., 2022).

3.5.1 Voxel Resampling

Resampling is done to resample the input images to a consistent voxel size. The
voxel size (in mm) in a 3D NIFTI image refers to the physical size of each voxel in
the three dimensions: x, y, and z. It represents the distance between the centers
of adjacent voxels in each dimension. The transformation will resample the input
volume to have a given millimeter voxel size, such as 1.5× 1.5× 1.5mm.

The resampling function has an interpolation mode, which refers to the method
used to estimate the values of voxels in the image at locations that are not part of

79

the original image grid. In other words, interpolation is a process used to estimate
the value based on the values of surrounding pixels.

When an image is resampled, the size and spacing of the pixels change, which
can result in gaps or overlaps in the image grid. Interpolation is used to fill in these
gaps or smooth out the overlaps, resulting in a continuous image. When
resampling the voxels, we apply different interpolation modes for the image and
mask. The image is interpolated with Bilinear mode, which means voxel values are
calculated using linear interpolation between the four closest neighboring voxels.
The mask is interpolated with the Nearest Neighbour mode, which means the
voxel value is calculated using the closest voxel value.

3.5.2 Affine Transformation

The Affine Transformation randomly applies translation, rotation and scaling along
all axes on the image. Figure 3.25 show an example image before and after the
transformation.

Figure 3.24: Affine Transformation (Cardoso et al., 2022)

Each transformation degree is selected from a given range. Table 3.7 shows the

80

transformation and their respective ranges of values.

Table 3.7: Transformation Ranges for Affine Transformation

Transformation Range
Translation (x-axis) (-40, 40)
Translation (y-axis) (-40, 40)
Translation (z-axis) (-2, 2)
Rotation (x-axis) (-5, 5) degrees
Rotation (y-axis) (-5, 5) degrees
Rotation (z-axis) (-45, 45) degrees
Scaling (x-axis) (0.85, 1.15)
Scaling (y-axis) (0.85, 1.15)
Scaling (z-axis) (0.85, 1.15)

3.5.3 Elastic Deformation

The Elastic Deformation augmentation combines affine transformations and
elastic deformations to generate new images. Figure 3.25 illustrates an example
image before and after the augmentation has been applied.

Figure 3.25: Elastic Deformation (Cardoso et al., 2022)

The smoothness of the deformation is controlled by the sigma parameter, while

81

the magnitude of the deformation is determined by a magnitude hyperparameter.
Table 3.8 shows the transformation and their respective ranges of values.

Table 3.8: Transformation Ranges for Elastic Deformation

Transformation Range
Sigma (5, 8)

Magnitude (100, 200)
Translation (x-axis) (-50, 50)
Translation (y-axis) (-50, 50)
Translation (z-axis) (-2, 2)
Rotation (x-axis) (-5.0, 5.0) degrees
Rotation (y-axis) (-5.0, 5.0) degrees
Rotation (z-axis) (-180, 180) degrees
Scaling (x-axis) (0.85, 1.15)
Scaling (y-axis) (0.85, 1.15)
Scaling (z-axis) (0.85, 1.15)

3.6 Implemented GAN Architectures

The following chapter provides a overview of the GAN architectures utilized in the
thesis. It begins with a detailed examination of the network architecture,
highlighting the key features of each GAN model employed in the study.
Additionally, it covers the training procedure adopted for each GAN architecture.

3.6.1 Vanilla GAN

The Vanilla GAN architecture is a simple implementation inspired by (Goodfellow
et al., 2020), with modifications such as a U-net generator. It is developed using
Python and Tensorflow 2 (Abadi et al., 2015) and Keras (Chollet et al., 2015).
Through experimentation, the architecture was modified. As such, the Vanilla GAN
architectures are numbered Vanilla GAN 1 and 2. Vanilla GAN 1 features a U-net
architecture, complete with skip connections, comprised of seven encoder and
seven decoder blocks, illustrated in Figure 3.26.

82

Figure 3.26: Vanilla GAN 1 Generator Architecture

The first layer of the generator is the input layer, which receives a random noise

83

vector with the same dimensions as the input images. This input layer is
connected to the initial encoder block, composed of a 3-dimensional convolutional
layer. All subsequent encoder blocks are identical, except a batch normalization
layer added after the convolutional layer.

The encoder blocks connect to the decoder blocks through skip connections, with
a bottleneck following the encoder blocks. The decoder comprises of seven
blocks, each including a 3-dimensional convolutional transpose layer, followed by a
corresponding dropout layer. Both the generator and discriminator employ the
ADAM optimizer. The loss function for the generator and discriminator is binary
cross-entropy, as described in the original GAN paper (Goodfellow et al., 2020).

However, the initial architecture’s complexity caused memory errors during
experimentation, leading to the development of Vanilla GAN 2. This architecture
features only four encoders and decoders, significantly reducing the number of
neurons. The network architecture is shown in Figure 3.27.

84

Figure 3.27: Vanilla GAN 2 Generator Architecture

The Vanilla GANs are trained like a conventional GAN. During each epoch, a
random noise vector is created and provided as input to the generator, which
generates a corresponding image vector. The discriminator receives both the
generated image and a random real image and predicts which one is real and
which one is fake. Based on the discriminator’s predictions, the generator and
discriminator are updated. The network gradients are retrieved and applied to the
networks, optimized using the network optimizers.

3.6.2 Wasserstein GAN

The second GAN architecture is derived from the Wasserstein GAN, as detailed in
the original paper by (Arjovsky et al., 2017). Like the Vanilla GANs, this

85

architecture is implemented in Python and Tensorflow 2. The generator and
discriminator architectures remain unchanged from the Vanilla GAN. However,
instead of the Adam optimizer, the Wasserstein GAN utilizes the RMSprop
optimizer (Huk, 2020) for both networks.

As discussed in the Chapter 2.6.1 the WGAN can employ weight clipping or
gradient penalty regularization. Two versions of the Wasserstein GAN is
implemented, one with weight clipping (WGAN-WC) and one with gradient penalty
regularization (WGAN-GP).

Similar to the Vanilla GAN, the training of WGAN-WC begins by passing the
generator a random noise vector, which is used to generate a new image. In
WGAN-WC, the generated image is given to the discriminator, which makes a
prediction, along with a prediction on a real image. Both predictions are used to
calculate the Wasserstein loss. The gradients are extracted and applied with the
discriminator optimizer. After the gradients are applied, the weights of the
discriminator are clipped based on the clip weight hyperparameter. Then the
generator generates a new image based on the noise, and the Wasserstein loss is
calculated based on the generated image. Finally, the gradients are extracted and
applied to the generator optimizer.

The WGAN-GP is trained in a similar fashion like the WGAN-WC. After the loss is
calculated for the discriminator, a gradient penalty is calculated with respect to the
real and generated images. The gradient penalty is then multiplied by the
discriminator loss. The generator is trained like in the WGAN-WC.

3.6.3 FastGAN

The FastGAN model is implemented with Python and Tensorflow 2.

At each training step, random noise is created with the shape of the batch size and
latent dimension. First, the discriminator is trained separately a defined number of
times. The generator creates an output based on the noise. Differential
augmentation is added to both the real images in the batch and the generated
images. The augmented images are then fed to the discriminator, and the

86

discriminator loss is calculated. Then the recreation loss is calculated by passing
the real images and the discriminator prediction on the real images multiplied by a
recreation weight. The recreation weight attribute is a hyperparameter that
controls the relative weight of the reconstruction loss in the overall loss function of
the model. The total discriminator loss is calculated by adding the discriminator
loss together with a gradient penalty and the reconstruction loss. Finally, the
gradients are extracted and applied to the discriminator network.

A random noise vector is again created and fed to the generator, which creates an
output. Differentiable augmentation is added to the output, and fed to the
discriminator. Then the generator loss is calculated. The gradients are extracted
and applied to the generator network.

3.6.4 StyleGAN2

StyleGan2 is implemented with Python and the Tensorflow library Keras (Chollet
et al., 2015).

To train the StyleGAN2 network, each training step is started by generating a
noise vector and two random styles for the images we want to generate. Then we
transform the noise input style into a latent space representation that the model
can use. We stack the styles together and generate a seed based on the stacked
representation. Finally, we feed the seed, stacked images, and noise vector to the
generator. Optionally, a gradient penalty can be applied to the discriminator
training. The generated images are then fed to the discriminator, and the
discriminator loss is calculated. Finally, the generator and discriminator average
loss is calculated, and the gradients are applied to the networks.

3.6.5 Hierarchical Amortized GAN

HA-GAN is implemented with Python and PyTorch (Paszke et al., 2019). The
HA-GAN consists of two network implementations, one for generating
128× 128× 128 images and the other for generating 256× 256× 256 images. The
overall architecture, which is similiar for both versions of the network, is illustrated
in Figure 3.28.

87

Figure 3.28: HA-GAN Architecture

Unlike previous architectures, the model training is measured in steps rather than
epochs. Each training step, the real images are interpolated with a scale factor of
0.25 to create a low-resolution volume of the images. Then a high-resolution
sub-volume of the image is selected randomly. The low-resolution volume and the
high-resolution sub-volume are then fed to the discriminator, which makes a
prediction. Based on the prediction, the discriminator loss is calculated with binary
cross-entropy.

With the batch size and latent dimension, random noise is created and fed to the
generator, along with the position of the high-resolution sub-volume from the real
images. The generator then creates a high-resolution sub-volume and a
low-resolution volume. The output of the generator is fed to the discriminator along
with the position of the high-resolution sub-volume. The fake loss is calculated
with the binary cross-entropy between the fake labels and the generator output.
Then the discriminator loss is calculated by adding the discriminator real loss with
the discriminator fake loss. The discriminator optimizer is then used to optimize
the network weights based on the calculated loss.

A random noise vector is created and fed to the generator, which generates a

88

high-resolution sub-volume and a low-resolution full volume. The generated
volumes are passed to the discriminator, which makes a prediction based on the
volumes and the real images. Finally, the loss is calculated with binary cross
entropy. The generator optimizer is then used to update the weights. The training
of the generator is repeated a number of times, defined as a hyperparameter.

The randomly selected high-resolution sub-volume from before is passed to the
encoder, which creates a latent representation. The latent representation is the
generator seed, stacked images, and noise vector. The encoder loss is calculated
with MSE between the generated full-volume image of the latent representation
and the randomly selected high-resolution sub-volume. The encoder loss is then
backpropagated through the encoder network, and the encoder weights are
updated using the optimizer.

After the encoder, the sub-encoder will be trained. The latent representation of
each sub-volume of the full image is then obtained by iterating over all
sub-volumes of the real images. The sub-volumes are concatenated and passed
to the sub-encoder, which creates a further compressed representation that is
passed to the generator. The generator then generates a high-resolution
sub-volume and low-resolution full volume of the latent representation. Then the
sub-encoder loss is calculated with MSE between the generated high-resolution
sub-volume and the real sub-volume, and MSE between the low-resolution
generated full volume and the real low-resolution image. Finally, the sub-encoder
weights are updated with the encoder optimizer.

3.7 Hyperparameter Optimization

Python is used to execute HPO through a grid search method. The
hyperparameters are specified in a configuration file, and the HPO generates a
grid containing all feasible combinations of these hyperparameters. Although there
are no implemented HPO methods for FastGAN and StyleGAN2 architectures, the
Vanilla, WGAN, and HA-GAN architectures have them.

Table 4.9 presents the hyperparameters for HPO, which vary based on the

89

architecture used. The Vanilla and Wasserstein architectures utilize the
hyperparameters listed in Table 4.9.

Table 3.9: Vanilla/WGAN Hyperparameters

Hyperparameter Description
img per epoch Number of images per epoch
architecture Generator architecture

Not be confused with batch size, images per epoch is simply how many images
will be shown to the generator each epoch. Architecture is the generator
architecture to be used, which can be Vanilla (2) or WGAN.

The hyperparameters for the HA-GAN architecture are shown in Table 3.10.

Table 3.10: HA-GAN Hyperparameters

Hyperparameter Description
g lr Generator learning rate
d lr Discriminator learning rate
e lr Encoder, Sub-encoder learning rate
latent dim Latent dimension for generator

3.8 Inference and data Postprocessing

Inference refers to the process of generating new samples from a trained model.
Once a model has been trained on a particular dataset, it can be used to generate
new, synthetic samples that resemble the training data. The steps explained in this
chapter is related to the inference and data postprocessing of the data generated
by the HA-GAN model, described in Chapter 3.6.5.

3.8.1 Generating Images

To perform inference, we first load a specific model that has been saved after
training. We load only the generator, encoder, and sub-encoder, as we do not
need the discriminator for inference. We input a random noise vector with the size

90

of the latent dimension that the network was trained on. The vector is fed to the
generator network of the trained GAN. The generator network generates a new
sample based on the input noise vector. This process can be repeated multiple
times to generate a set of new image/mask pairs.

3.8.2 Postprocessing

The postprocessing procedures outlined in this subsection are not universally
implemented across all experiments but rather selectively employed in some
cases.

After the image/mask pair has been generated, the HU intensity may be rescaled,
as expressed by Equation 13.

image = 0.5× image+ 0.5 (13)

Where image is the output of the GAN. The operation is done to map the output
values to a more meaningful and interpretable range. Following this, the pair is
rescaled to the low-high threshold that the images were originally interpolated to
before training, expressed in Equation 14.

image = image × (high threshold − low threshold) + low threshold (14)

Finally, the pair is converted from a NumPy array to a NIFTI image. Then the pair
is separated into an image and mask by cutting the image on the z-dimension in
two equal parts with NumPy. Generated pairs with image size 128× 128× 128 and
256× 256× 256 will yield separate images and masks with 128× 128× 64 and
256× 256× 128, respectively. The process is shown in Figure 3.29.

Figure 3.29: Image/mask Separation

91

The mask may be further post-processed by converting the voxel values to binary.
All values above 0 are set to 1, while all values below are set to 0.

An alternative to binary mask preprocessing is Connected Component Analysis
(CCA) (Dillencourt et al., 1992), a technique used to identify and analyze groups of
pixels in an image that are connected to each other. CCA is expressed in Equation
15.

Ci = p ∈ P : p is connected to qi, (15)

where P is the set of all voxels in the image, qi is a pixel with a specified property
(such as being above a threshold), and Ci is the set of all voxels in P that are
connected to qi. The basic idea behind CCA is to identify groups of voxels that are
connected to each other. The set Ci includes all voxels that are connected to a
specific pixel qi that meets certain criteria. By analyzing the sets Ci for multiple qi

values, we can identify and isolate different voxel groups in the image.

3.9 GAN Evaluation

The evaluation of GANs is a critical step in assessing their performance and
determining their effectiveness in generating high-quality synthetic data.

3.9.1 Loss Diagrams

One simple approach to evaluating the performance of Generative Adversarial
Network (GAN) models is to examine the loss diagrams. An example loss diagram
from a GAN training session is shown in Figure 3.30.

92

Figure 3.30: Example GAN Loss Diagram

The loss diagrams provide a quantitative measure of how well the GAN model is
performing during the training process. The generator loss measures how well the
generated images match the real images, while the discriminator loss measures
how well the discriminator can distinguish between the real and generated images.

By analyzing the loss diagrams, we can identify patterns and trends in the training
process. For example, if the generator loss is decreasing while the discriminator
loss is increasing, it could indicate that the generator is producing better images,
but the discriminator is becoming better at distinguishing between real and
generated images.

To make the interpretation of the diagrams easier, we apply Exponential Moving
Average (EMA) (Klinker, 2011), a method used to smooth out the noise in a time
series by giving more weight to recent values and less weight to past values. EMA
calculates the moving average of the loss function by giving more weight to recent
loss values and less weight to past values and is expressed in Equation 16.

EMA[t] = α · loss[t] + (1− α) · EMA[t− 1] (16)

Where α is a smoothing factor between 0 and 1, and EMA[t− 1] is the EMA value

93

from the previous iteration. As α approaches 1, more weight is given to recent loss
values, making the EMA more responsive to changes in the loss. As alpha
approaches 0, less weight is given to recent loss values, making the EMA
smoother. We apply α 0.001 to our diagrams. Figure 3.31 shows an example
diagram with the original loss and EMA loss.

Figure 3.31: Original Loss (blue), EMA Loss (orange)

However, it is essential to note that the loss diagrams only provide a quantitative
measure of the GAN model’s performance. Therefore, while examining the loss
diagrams is a useful evaluation tool, it should be combined with qualitative metrics
to ensure the GAN model is producing high-quality images that accurately
represent the training data.

3.9.2 Inception Score

We implement a ResNet-50 (Koonce and Koonce, 2021) in PyTorch, customized
for 3D image input. We obtain pre-trained weights for the ResNet model. We
prepare a Pytorch data loader for loading the GAN-generated images, so they can
be used for the calculation. We load the pre-trained weights into the model and
use it to predict on the generated images loaded by the data-loader. By predicting
on the images, we extract the feature activations for the images. We use the

94

activations to calculate the KL divergence for each image, expressed in Equation
17.

KL divergence = p(y|x) · (log(p(y|x))− log(p(y))) (17)

The KL divergence is summed, and the average across all images are calculated.
The average is then exponentiated to get the final IS metric. The overall process is
illustrated in Figure 3.32.

Figure 3.32: Process of Attaining IS Score

The process is done for both the generated images and masks separately.

3.9.3 Fréchet Inception Distance

We prepare two PyTorch data loaders, one for the real images and one for the
generated images, ensuring that the images are of the same size and format. We
use the same pre-trained 3D ResNet-50 as the IS calculation. We predict on the
real and generated images to extract the feature activations for both sets of
images. The activations are then used to calculate the FID score. The overall
process is outlined in Figure 3.33.

95

Figure 3.33: Process of Attaining FID Score

To calculate the FID score, we start by calculating the mean and covariance of the
feature activations. Using the mean values, we calculate the sum squared
difference between them. We calculate the matrix square root of the product of the
two covariance matrices. This quantity measures the distance between the two
datasets in terms of their covariance structures. Finally, we add the calculations
together to get the final FID score. FID is expressed with Equation 18.

FID(act1, act2) = ||µ1 − µ2||2 + Tr(Σ1 + Σ2 − 2(Σ1Σ2)
1
2) (18)

where µ1 and µ2 are the mean activation vectors of real image activations (act1)
and the generated image activations (act2), respectively. Σ1 and Σ2 are the
covariance matrices of act1 and act2, respectively. Tr denotes the trace operator,
which computes the sum of the diagonal elements of a matrix. (Σ1Σ2)

1
2 denotes

the matrix square root of the product of Σ1 and Σ2, computed using the ”sqrtm”
function from NumPy. ||µ1 − µ2||22 is the squared Euclidean distance between µ1

and µ2.

The process involves computing the FID score for the generated image/mask pairs
against the real ones. Subsequently, we split the pairs into image and mask
components, then evaluate the FID score between the real and generated images.

96

Finally, we compute the FID score between the real masks and the generated
masks.

3.9.4 t-Distributed Stochastic Neighbor Embedding

We prepare two PyTorch data loaders, one for the real images and one for the
generated images, ensuring that the images are of the same size and format. We
use the same pre-trained 3D ResNet-50 as the IS and FID calculation. We use the
ResNet-50 to extract feature representations for both sets of images.

We concatenate the sets of images into a single dataset. We apply t-SNE to the
dataset, transforming the data into a 2D space. We set the perplexity to 10 and the
learning rate to 200. We fit the dataset and plot the final results in a matplotlib
scatterplot.

We apply t-SNE to a combination of real and generated data by different GAN
models.

3.10 Segmentation

To perform the segmentation of 3D images, we implement the Auto3DSeg
segmentation pipeline from the MONAI framework, which is the same method
used by the winning team (Myronenko et al., 2023) in the HECKTOR 2022
challenge (Andrearczyk et al., 2023).

3.10.1 Preprocessing

Preprocessing of the input data is different for real images and generated images.
For real images, we first binarize the mask data to contain only 0 and 1. We resize
the image with linear interpolation and resize the mask with nearest-neighbor
interpolation. We save the images as NIFTI images.

The generated image/mask pairs are split into separate images and masks. We
binarize the mask. We experiment with various post-processing steps for
generated images, outlined in Chapter 3.8.2.

97

3.10.2 Model

The model used for the Auto3Dseg is the SegResNet, the only available algorithm
for multi-resolution images such as PET and CT images.

We use the DiceCELoss loss function for the network, which is a combination of
dice and Cross-Entropy. The network is optimized with ADAMW, a variant of the
ADAM optimizer that uses weight decay in a different manner than that of ADAM.
Weight decay is a regularization technique that prevents overfitting by adding a
small penalty to the loss function. This penalty discourages learning a more
complex or flexible model, hence reducing the risk of overfitting. ADAMW applies
weight decay after the adaptive learning rates have been calculated, in contrast to
ADAM which applies the decay to the gradients before computing adaptive
learning rates. With ADAMW, the effect of weight decay is the same regardless of
how the learning rate is set, making it easier to choose a good learning rate.

3.10.3 Training

We create multiple datasets consisting of real-only, real, and generated and
generated-only image/mask pairs. The datasets are split into 5 folds. We train the
segmentation network with K-Fold Cross-Validation (CV) and single-fold training.
K-Fold Cross-Validation splits the training data into K groups, which decides what
data will be used for training and validation. 5-Fold CV is shown in Figure 3.34.

98

Figure 3.34: 5-Fold Cross-Validation

3.10.4 Evalation and Inference

The Auto3DSeg pipeline automatically stores loss and DSC per epoch.
Additionally, the best average DSC is saved for epochs reaching a new top DSC
score.

When training the network and testing the network with separate data, we first
train the network and run inference on the test data. This means that the network
will generate prediction masks for the input test data. We use the prediction masks
to compare with the real images. We calculate DSC across the predictions to get
the final evaluation score.

99

4 Experiments

4.1 Experimental Setup

The experimental setup for generating 3D CT image mask pairs with GANs
involves the use of specific hardware and software tools to facilitate the training
and evaluation of the GAN model. In this case, three primary hardware setups
were used for the experiments, two local computers and the Ex3 Cluster (Simula,
2023) with multiple nodes.

The locally hosted computers used for the experiments was equipped with an RTX
3070 and RTX 4090 graphics cards. The Ex3 Cluster was also used for the
experiments. The Ex3 Cluster is a high-performance computing system that
comprises multiple nodes, each equipped with a powerful GPU. Specifically, the
nodes in the Ex3 Cluster are equipped with either Nvidia A100 or V100 GPUs.
These GPUs are high-end models that are specifically designed for DL
applications and are capable of delivering exceptional performance for training and
inference tasks.

The hardware used is shown in Table 4.1.

Table 4.1: Hardware

Setup Name Memory
Local Machine 1 NVIDIA RTX 3070 6GB
Local Machine 2 NVIDIA RTX 4090 21GB
Ex3 Cluster Node 1 NVIDIA A100 80GB
Ex3 Cluster Node 1 NVIDIA V100 32GB

For the experiments in which Vanilla GAN, Wasserstein GAN, and StyleGAN2
were used, TensorFlow Keras was used as the DL framework. The HA-GAN
model and FastGAN, on the other hand, were implemented using PyTorch.

The software used is shown in Table 4.2.

100

Table 4.2: Software

Name Reference
Tensorflow 2 (Abadi et al., 2015)
Keras (Chollet et al., 2015)
PyTorch (Van Rossum and Drake, 2009)
PyCharm (JetBrains, 2023)

Figure 4.1 outlines the overall experimentation process with the different GAN
models.

Figure 4.1: Overview of Experiments

4.2 Vanilla GAN

In this experiment, we utilized the original image/mask pairs from the HECKTOR
dataset described in Chapter 3.1. However, due to the high computational load
associated with processing the high-resolution images, we encountered memory
issues that prevented the model from starting training. To address this problem,
we created three new datasets by resampling the images and then cropping and
padding them as described in Chapter 3.4.1. After preprocessing, we obtained
three new datasets with image dimension:

101

• 128× 128× 256

• 100× 100× 200

• 104× 104× 148

Unfortunately, we still encountered memory problems with all three resolutions. To
overcome this issue, we created a smaller dataset by resampling the images to a
resolution of 16× 16× 16. We concatenate the image/mask pairs along the z-axis
as described in Chapter 3.4.1 and trained the model for 200 epochs with a batch
size and images per epoch set to 1. We used the ADAM optimizer for both the
generator and discriminator with a learning rate of 0.0001.

Table 4.3 presents the details of the experimental setup for the Vanilla GAN.

Table 4.3: Experimental Setup for Vanilla GAN

Property Values
Image Preprocessing Resampling, Cropping, Padding
Mask Preprocessing Resampling, Cropping, Padding
Model Architecture Vanilla GAN
Image Size 16× 16× 16

Table 4.4 presents the hyperparameters used for training the Vanilla GAN.

Table 4.4: Hyperparameters for Vanilla GAN

Hyperparameter Values
Generator Learning Rate 0.0001
Discriminator Learning Rate 0.0001
Optimizer ADAM
Epochs 200
Latent Dimension Size 16
Batch Size 1
Images Per Epoch 1

102

4.3 Improved Architectures

4.3.1 Vanilla GAN 2

In the previous experiment, we trained a Vanilla GAN successfully, but needed to
increase the image size. To avoid the memory issues faced earlier, we made some
changes. Specifically, we reduced the size of the network in the generator to four
encoders and decoders and decreased the number of neurons in both the
generator and discriminator.

Unfortunately, we still experienced memory problems when working with images of
resolutions 128× 128× 256, 100× 100× 200, and 104× 104× 148. To overcome
this, we resampled the images to approximately 30% of their original size and then
center-chopped 27 slices from both the image and mask. After that, we
concatenated the image and mask along the Z dimension, resulting in a
154× 154× 54 image.

For this experiment, we used the same setup as before but with a modified
generator learning rate inspired by (Bu et al., 2021). The details of the
experimental setup are shown in Table 4.5.

Table 4.5: Experimental Setup for Vanilla GAN 2

Property Values
Image Preprocessing Resample, Crop, Pad
Mask Preprocessing Resample, Crop, Pad
Model Architecture Vanilla GAN 2
Image Size 154× 154× 54

Table 4.6 shows the hyperparameter used in the experiment.

103

Table 4.6: Hyperparameters for Vanilla GAN 2

Hyperparameter Values
Generator Learning Rate 0.0002
Discriminator Learning Rate 0.0001
Optimizer ADAM
Epochs 200
Latent Dimension Size 154
Batch Size 1
Images Per Epoch 1

4.3.2 Wasserstein GAN

In the Wasserstein GAN experiment, we used the same 154× 154× 54 images
from the previous experiment. We trained both variants of the WGAN separately,
with weight clipping and gradient penalty. The weight clipping value was set to
0.01, and the gradient penalty weight was set to 10. We used the same learning
rates and epochs as in the previous experiment.

Table 4.7 presents the details of the experimental setup.

Table 4.7: Experimental Setup for WGAN

Property Values
Image Preprocessing Resample, Crop, Pad
Mask Preprocessing Resample, Crop, Pad
Model Architecture Wasserstein GAN
Image Size 154× 154× 54

Table 4.8 show the hyperparameters used in the WGAN experiment.

104

Table 4.8: Hyperparameters for WGAN

Hyperparameter Values
Generator Learning Rate 0.0002
Discriminator Learning Rate 0.0001
Optimizer RMSProp
Weight Clip Value 0.01
Gradient Penalty Value 10
Epochs 200
Latent Dimension Size 154
Batch Size 1
Images Per Epoch 1

4.3.3 Hyperparameter Optimization

To enhance the results of both the Vanilla GAN and WGAN, we conducted HPO
experiments. We started by selecting a set of hyperparameters for both models,
including the learning rate for the generator and discriminator, as well as images
per epoch.

Next, we defined a range of possible values for each hyperparameter and used a
grid search approach to test all possible combinations of these values.
Specifically, we trained and evaluated each GAN model with every possible
combination of hyperparameters using the same dataset. We tested all
configurations on both Vanilla 2 and Wasserstein GANs.

The grid search approach resulted in a total of 18 experiments, with each
experiment representing a unique combination of hyperparameters. During each
experiment, we saved the performance metrics for both the generator and
discriminator loss. We used these metrics to compare and evaluate the
performance of each model.

Table 4.9 presents the hyperparameters and their respective possible values.

105

Table 4.9: Hyperparameters and descriptions

Hyperparameter Values
Images per epoch 16, 32, 64, 128, 256, 512
Generator learning rate 0.0001, 0.0002, 0.0003, 0.0004
Discriminator learning rate 0.0001, 0.0002, 0.0003, 0.0004

For this experiment, we reduced the image size to 38× 38× 38 to decrease the
required computational time. Each model was trained for 200 epochs.

4.4 2-dimensional GANs

4.4.1 Wasserstein GAN

To address the issue of poor results obtained from training GAN models on 3D
images, we decided to try a 2D approach. We started by resampling the 3D
images with a resampling factor of 50%, resulting in an average image size of
256× 256× 100. Next, we preprocessed the images from 3D to 2D, as described in
Chapter 3.4.2. Finally, we padded and chopped the images, resulting in images of
size 1024× 3680.

We modified the Wasserstein generator and discriminator to handle 2D images
instead of 3D images and ran training for 200 epochs.

The experimental setup is shown in Table 4.10.

Table 4.10: Experimental Setup for WGAN 2D

Property Values
Image Preprocessing Resample, Chop, Pad, 3Dto2D
Model Architecture Wasserstein GAN
Image Size 1024 x 3680

Table 4.11 shows the hyperparameters used in the 2D WGAN experiments.

106

Table 4.11: Hyperparameters for WGAN 2D

Hyperparameter Values
Generator Learning Rate 0.0002
Discriminator Learning Rate 0.0001
Optimizer RMSProp
Weight Clip Value 0.01
Gradient Penalty Value 10
Latent Dimension Size 154
Epochs 200
Batch Size 1
Images Per Epoch 1

4.4.2 FastGAN

We use the same 2D images as in the previous experiment. We train the FastGAN
network on the images for 500 epochs in multiple experiments. We experiment
with multiple latent dimensions, 256, 512, and 1024. We set the learning rate to
0.0002 for the generator and discriminator. We set the batch size to 8.

The experimental setup is shown in Table 4.12.

Table 4.12: Experimental Setup for FastGAN

Hyperparameter Values
Image Preprocessing Resample, Chop, Pad, 3Dto2D
Model Architecture FastGAN
Image Size 1024× 3680

Table 4.13 shows the hyperparameters.

107

Table 4.13: Hyperparameters for FastGAN

Hyperparameter Values
Generator Learning Rate 0.0002
Discriminator Learning Rate 0.0002
Optimizer ADAM
Optimizer β1 0.5
Optimizer β2 0.99
Latent Dimension Size 256, 512, 1024
Epochs 500
Batch Size 8

4.4.3 StyleGAN2

In this experiment, we used the same images as in the previous experiment, which
were resampled 3D images that were converted to 2D and then padded and
chopped to a size of 1024× 3680.

We trained the StyleGAN2 model on 2D images for 500 epochs and experimented
with different hyperparameters to identify the optimal set of parameters for the
model. Specifically, we tested the model with latent dimensions of both 128 and
256.

Table 4.14 presents the details of the experimental setup.

Table 4.14: Experimental Setup for StyleGAN2

Property Values
Image Preprocessing Resample, Chop, Pad, 3Dto2D
Model Architecture StyleGAN2
Image Size 1024× 3680

Table 4.15 shows the hyperparameters.

108

Table 4.15: Hyperparameters for StyleGAN2

Hyperparameter Values
Generator Learning Rate 0.0001
Discriminator Learning Rate 0.0001
Optimizer ADAM
Optimizer β1 0
Optimizer β2 0.99
Latent Dimension 128, 256
Channels 32
Epochs 500
Batch Size 8

4.5 Generating Images only with HA-GAN

To simplify the challenge of generating CT images, we decided to focus solely on
generating images during our initial trials without including the corresponding
masks. To generate the images, we utilized the original CT images and applied
interpolation (interp) of the intensity values, as described in Chapter 3.6.5.

For this experiment, we implemented the HA-GAN architecture with a
128× 128× 128 configuration and trained the model for 80000 steps. The latent
dimension was kept at the default value of 1024, and the batch size was set to 4.
To train the generator, discriminator, and encoder networks, we used learning
rates of 0.0001, 0.0004, and 0.0001, respectively, as defined in the original
approach proposed by (Sun et al., 2022).

The experiment was conducted twice with distinct training data configurations. In
the first configuration, we feed the data in its original order to the model, while in
the second, we shuffle the data and feed it in a random order to the model,

The specific details of the experimental setup are summarized in Table 4.16.

109

Table 4.16: Experimental Setup for Generating Images with HA-GAN

Property Values
Model Architecture HA-GAN 128× 128× 128
Data Original CT images
Image Size 128× 128× 128
Image Preprocessing Resize, Interp. [−1024, 600], [−1, 1]

Table 4.17 shows the hyperparameters.

Table 4.17: Hyperparameters for Generating Images with HA-GAN

Hyperparameter Values
Training Steps 80000
Latent Dimension 1024
Batch Size 4
Generator Learning Rate 0.0001
Discriminator Learning Rate 0.0004
Encoder Learning Rate 0.0001
Optimizer ADAM
Optimizer β1 0
Optimizer β2 0.99
Optimizer ϵ 0.00000001

In order to improve the outcomes of our previous experiment, we enriched the
dataset by generating a greater number of augmented images. We have created
several datasets, each with different augmentation configurations, to assess the
performance of voxel resampling. Specifically, we have generated datasets that
are resampled to the following voxel dimensions: 1× 1× 1mm, 1.5× 1.5× 1.5mm,
2× 2× 2mm, and 3× 3× 3mm.

Additionally, we created another dataset that includes resampled images with
voxel dimensions of 1.5× 1.5× 1.5mm. We have augmented these resampled
images even further by applying affine transformations and elastic deformations.
The final dataset contains a total of 1500 images, with 500 images being the
original resampled images and an additional 500 images per augmentation.

110

4.6 Generating Image/mask Pairs with HA-GAN

We use the cropped image/mask pairs detailed in Chapter 3.4.3. The image and
mask are resized individually to size 128× 128× 64. The reason for the Z
dimension size of 64 is that the HA-GAN model requires the input to be of size
128, which is the size of the concatenated image and mask. The image and mask
are interpolated with the same range as the previous experiment. After
interpolation, the image and mask are concatenated along the z-axis.

The specific details of the experimental setup are summarized in Table 4.18.

Table 4.18: Experimental Setup for Generating Image/mask with HA-GAN

Property Values
Model Architecture HA-GAN 128× 128× 128
Data Cropped CT image/mask pairs
Image Size 128× 128× 128
Image Preprocessing Resize, Interp. [−1024/600], [−1/1]
Mask Preprocessing Resize, Interp. [−1024/600], [−1/1]
Concatenated Image Preprocessing None
Concatenation Method Z-axis

Table 4.19 shows the hyperparameters for the experiment.

Table 4.19: Hyperparameters for generating Image/mask with HA-GAN

Hyperparameter Values
Training Steps 80000
Latent Dimension Size 1024
Batch Size 4
Generator Learning Rate 0.0001
Discriminator Learning Rate 0.0004
Encoder Learning Rate 0.0001
Optimizer ADAM
Optimizer β1 0
Optimizer β2 0.99
Optimizer ϵ 0.00000001

111

4.6.1 Mask Interpolation

We use the cropped images with the same interpolation for the image as in the
previous experiment. However, for this experiment, we apply a different
interpolation for the mask. We interpolate the mask from the range [0, 2] to the
range [−1, 1]. We apply no individual resizing and concatenate the image and
mask along the z-axis. We resize the concatenated image to size 128× 128× 128.

The specific details of the experimental setup are summarized in Table 4.20.

Table 4.20: Experimental setup for Generating image/mask with HA-GAN - Mask
Interpolation

Hyperparameter Values
Model Architecture HA-GAN 128× 128× 128
Data Cropped CT image/mask pairs
Image Size 128× 128× 128
Image Preprocessing Interp. [−1024/600], [−1/1]
Mask Preprocessing Interp. [0/2], [−1/1]
Concatenated Image Preprocessing Resize
Concatenation Method Z-axis

Table 4.21 shows the hyperparameters for the experiment.

Table 4.21: Hyperparameters for Generating Image/mask with HA-GAN - Mask
Interpolation

Hyperparameter Values
Latent Dimension Size 1024
Batch Size 4
Generator Learning Rate 0.0001
Discriminator Learning Rate 0.0004
Encoder Learning Rate 0.0001
Optimizer ADAM
Optimizer β1 0
Optimizer β2 0.99
Optimizer ϵ 0.00000001

112

4.6.2 Slice-by-Slice Concatenation

We use the cropped images with the same interpolation for the image and mask
as in the previous experiment. The image and mask are resized separately to
128× 128× 64. Then the image and mask are concatenated slice by slice, as
detailed in Chapter 3.4.3.

The specific details of the experimental setup are summarized in Table 4.22.

Table 4.22: Experimental Setup for Generating Image/mask with HA-GAN - Slice-
By-Slice Concatenation

Hyperparameter Values
Model Architecture HA-GAN 128× 128× 128
Data Cropped CT image/mask pairs
Image Size 128× 128× 128
Image Preprocessing Resize, Interp. [−1024/600], [−1/1]
Mask Preprocessing Resize, Interp. [0/2], [−1/1]
Concatenated Image Preprocessing None
Concatenation Method Slice By Slice

Table 4.23 shows the hyperparameters for the experiment.

Table 4.23: Hyperparameters for Generating Image/mask with HA-GAN - Slice-By-
Slice Concatenation

Hyperparameter Values
Training Steps 80000
Latent Dimension Size 1024
Batch Size 4
Generator Learning Rate 0.0001
Discriminator Learning Rate 0.0004
Encoder Learning Rate 0.0001
Optimizer ADAM
Optimizer β1 0
Optimizer β2 0.99
Optimizer ϵ 0.00000001

113

4.6.3 Modified Hounsfield Unit Interpolation Range

The cropped images are interpolated to [−1, 1] from a different input low-high
threshold range. We experiment first with the most common minimum and
maximum values discovered in Table 3.4 & 3.3 in Chapter 3.2.

The specific details of the experimental setup are summarized in Table 4.24.

Table 4.24: Experimental Setup for Generating Image/mask with HA-GAN - Modi-
fied HU

Property Values
Model Architecture HA-GAN 128× 128× 128
Data Cropped CT image/mask pairs
Image Size 128× 128× 128
Image Preprocessing Int. [−2048, 3071], [−1, 1]
Mask Preprocessing Int. [0, 2], [−1, 1]
Concatenated Image Preprocessing None
Concatenation Method Slice By Slice

Table 4.25 shows the hyperparameters.

Table 4.25: Hyperparameters for Generating Image/mask with HA-GAN - Modified
HU

Property Values
Training Steps 80000
Latent Dimension Size 1024
Batch Size 4
Generator Learning Rate 0.0001
Discriminator Learning Rate 0.0004
Encoder Learning Rate 0.0001
Optimizer ADAM
Optimizer β1 0
Optimizer β2 0.99
Optimizer ϵ 0.00000001

114

4.6.4 Hyperparameter Optimization

We use the cropped images. We run a grid search on 27 different configurations of
learning rates for the optimizers in the generator, discriminator, and encoder. Table
4.26 shows the hyperparameters and their possible values.

Table 4.26: Hyperparameters and Possible Values

Hyperparameter Values
Generator learning rate 0.0001, 0.0002, 0.0003
Discriminator learning rate 0.0002, 0.0003, 0.0004
Encoder learning rate 0.0001, 0.0002, 0.0003

We use the best-performing model from the learning rate exploration to explore
more latent dimension sizes. We explore increasing the latent dimension with
25%, 50%, and 75%, resulting in 1280, 1536, and 1792 respectively.

4.6.5 Data Augmentation

We use the best-performing model from the hyperparameter exploration in the
previous experiment. We resample the voxel size of the images and masks to
1.5× 1.5× 1.5mm. After the resampling, the image and masks are interpolated
and concatenated along the Z-axis. The concatenated image is resized to
128× 128× 128.

The experimental setup is summarized in Table 4.27.

Table 4.27: Experimental Setup for Generating Image/mask with HA-GAN - Aug-
mented Data

Property Values
Model Architecture HA-GAN 128× 128× 128
Data Cropped CT image/mask pairs
Image Size 128× 128× 128
Image Preprocessing Int. [−2048, 3071], [−1, 1]
Mask Preprocessing Int. [0, 2], [−1, 1]
Concatenated Image Preprocessing Resize
Concatenation Method Slice By Slice

115

Table 4.28 shows the hyperparameters.

Table 4.28: Hyperparameters for Generating Image/mask with HA-GAN - Aug-
mented Data

Property Values
Training Steps 80000
Latent Dimension Size 1024
Batch Size 4
Generator Learning Rate 0.0001
Discriminator Learning Rate 0.0004
Encoder Learning Rate 0.0001
Optimizer ADAM
Optimizer β1 0
Optimizer β2 0.99
Optimizer ϵ 0.00000001

We create more training images by applying affine transformations and elastic
deformations to the voxel-resampled data and train the HA-GAN for 80000 steps.
The experimental setup and hyperparameters are the same as the previous
experiment.

4.6.6 Binarization of Mask Values

To further optimize the results of the best-performing HPO model, we experiment
with the preprocessing of the mask before feeding the images to the GAN. We
preprocess the mask by binarizing the mask values. The voxels representing
empty space with the value 0 are converted to -1 to match that of the image. We
perform one more experiment with the binary mask. In the second experiment, we
interpolate the binary mask with the input range of [0, 2], like in Chapter 4.6.1.

Table 4.29 summarizes the experimental setup for the experiment.

116

Table 4.29: Experimental Setup for Generating Image/mask with HA-GAN - Bina-
rization of Mask

Property Values
Model Architecture HA-GAN 128× 128× 128
Data Cropped CT image/mask pairs
Image Size 128× 128× 128
Image Preprocessing Interp. [−1024, 600]
Mask Preprocessing Binarize, Interp. [0, 2]
Concatenated Image Preprocessing Resize
Concatenation Method Z-Axis

Table 4.30 shows the hyperparameters used in the experiment.

Table 4.30: Hyperparameters for Generating Image/mask with HA-GAN - Binariza-
tion of Mask

Hyperparameter Values
Training Steps 80000
Latent Dimension Size 1024
Batch Size 4
Generator Learning Rate 0.0002
Discriminator Learning Rate 0.0004
Encoder Learning Rate 0.0002
Optimizer ADAM
Optimizer β1 0
Optimizer β2 0.99
Optimizer ϵ 0.00000001

4.6.7 High-Resolution Images

We use the best-performing HPO model (HPO17) to generate images of size
256× 256× 256. We run experiments with and without the binarization of masks.
We apply z-axis concatenation for all experiments.

Table 4.31 details the experimental setup.

117

Table 4.31: Experimental Setup for Generating High-Resolution Image/mask with
HA-GAN

Property Values
Model Architecture HA-GAN 256× 256× 256
Data Cropped CT image/mask pairs
Image Size 256× 256× 256
Image Preprocessing Interp. [−1024, 600]
Mask Preprocessing Binarize, Interp. [0, 2]
Concatenated Image Preprocessing Resize
Concatenation Method Z-Axis

Table 4.32 shows the hyperparameters used in the experiment.

Table 4.32: Hyperparameters for Generating High-Resolution Image/mask with HA-
GAN

Hyperparameter Values
Training Steps 80000
Latent Dimension Size 1024
Batch Size 4
Generator Learning Rate 0.0002
Discriminator Learning Rate 0.0004
Encoder Learning Rate 0.0002
Optimizer ADAM
Optimizer β1 0
Optimizer β2 0.99
Optimizer ϵ 0.00000001

We also run an experiment with the model with the original learning rates. The
experiment uses the same setup as shown in Table 4.31. The hyperparameters
used for the experiment are shown in Figure 4.33

118

Table 4.33: Hyperparameters for Generating Image/mask with HA-GAN - Original
LR

Hyperparameter Values
Training Steps 80000
Latent Dimension Size 1024
Batch Size 4
Generator Learning Rate 0.0001
Discriminator Learning Rate 0.0004
Encoder Learning Rate 0.0001
Optimizer ADAM
Optimizer β1 0
Optimizer β2 0.99
Optimizer ϵ 0.00000001

Finally, we run one experiment with input data voxel resampled to
1.5× 1.5× 1.5mm. The experimental setup is the same as Table 4.31, and the
hyperparameters are the same as Table 4.32.

4.7 Visual Turing Test

The objective of this experiment was to evaluate the ability of healthcare
professionals to distinguish between real and generated images.

The participants consisted of three healthcare professionals, a radiologist with
three years of experience, and two medical doctors with 10 and 15 years of
experience, respectively.

The HA-GAN, trained on binary masks, was used to generate five images of size
256× 256× 128. We selected five real images from various data sources, ensuring
diversity in the images used.

For the purposes of the test, each image, both real and generated, was divided
into three equal parts, with one part from each image used in the experiment. This
process was undertaken to ensure that only a 30% of each image was presented
to the participants, thus making the images larger and more visually easier to
interpret for the participants.

119

The images were randomly ordered and presented to the participants in an online
form. Each image was accompanied by a corresponding tumor mask. The
participants were not informed about the origin of the images, and their task was
to rate each image/mask pair on a scale from 0 to 10. A score of 0 indicated a
belief that the image was completely real, while a score of 10 signified a belief that
the image was entirely artificially generated. An example is shown in Figure 4.2.

Figure 4.2: Visual Turing Test

Table 4.34 presents the labels of the images used in the experiment.

120

Table 4.34: Images used in VTT

Number Label
1 Generated
2 Generated
3 Real
4 Real
5 Generated
6 Real
7 Real
8 Real
9 Generated
10 Generated

This experiment allowed us to evaluate the ability of healthcare professionals to
distinguish between real and generated images, thereby effectively serving as a
Visual Turing Test for the HA-GAN model.

4.8 Segmentation

4.8.1 Segmentation Baseline

To establish a baseline for segmentation performance, we use only the real CT
image/mask pairs as training data for the segmentation network. We use the
Auto3Dseg framework from MONAI (Cardoso et al., 2022) with the
SegResNet (Myronenko, 2019) segmentation model.

We use the cropped image/mask pairs described in Chapter 3.4.3. The images
are resampled to a 1.5× 1.5× 1.5mm isotropic resolution, following a similar
approach to that of (Myronenko et al., 2023). The voxel values in the masks are
binarized. The images and masks are resized to size 128× 128× 64 to match the
format of the generated images to be segmented in later experiments.

We set aside 80% (419) of the training samples to be used for testing later. Using
5-Fold Cross-Validation as described in Chapter 3.10.3, we split the 419 training
samples into five configurations of 332 samples for training and 87 for validation.

121

We begin by training the SegResNet on a single CV fold of training data for 300
epochs. Then we train five models on five different folds of training and validation
data for 300 epochs. The details of both experiments are summarized in Table
4.35.

Table 4.35: Experimental Setup for Baseline Segmentation

Property Values
Model Architecture SegResNet
Data Real, cropped images
Image Size 128× 128× 64
Image Preprocessing Resample 1.5× 1.5× 1.5mm
Mask Preprocessing Binarize, Resample 1.5× 1.5× 1.5mm
Training Images 419
Validation Images 105

The hyperparameters used for the experiment are shown in Figure 4.36.

Table 4.36: Hyperparameters for Saseline Segmentation

Hyperparameter Values
Epochs 300
Number of Cross-Validation Folds 1 and 5
Optimizer ADAMW
Optimizer learning rate 0.0002
Optimizer weight decay 0.000010

By running these experiments, we establish a baseline validation score for the
SegResNet model on real images. After establishing a training baseline, we
continue to find the baseline for the test performance of the model after training.
After the training is complete, we run inference on the trained model. We feed the
model with the 105 testing images that were set aside earlier. The output of the
network running in inference mode is predicted masks on all testing images. We
use the predicted masks to compare them with the real images. We calculate Dice
Score Coefficient as described in Chapter 2.3.3.

One limitation of this experiment is the lack of a baseline established for image

122

size 256× 256× 128, as we focused solely on the image size 128× 128× 64. The
reason for this omission is the significant computational time required for larger
image sizes, which, unfortunately, we were unable to accommodate within the
timeframe of the experiment.

4.8.2 Training on Real and Generated Images with 5-Fold Cross-Validation

We use all real images from the previous experiment, including the test data, as a
single dataset of 524 real images. We split the 524 real images into five folds, as
described in Chapter 3.10.3. The resulting dataset is five configurations of
different training samples (419) and validation samples (105).

We use the best-performing HA-GAN model to generate 524 synthetic images.
We post-process the generated images, as described in Chapter 3.8.2. Like the
real dataset, we split the generated images into five folds with the same amount of
training and validation samples.

We then create a combined dataset consisting of 50% generated and 50% real
images. The final dataset size is 1048 image/mask pairs, with 524 real and 524
generated images. Of the 1048 images, 838 are used for training, and 210 are
used for validation. The real and generated images are evenly spread out in each
fold.

In summary, we prepare three datasets for training the SegResNet model:

1. Dataset 1: 524 real images

2. Dataset 2: 524 generated images

3. Dataset 3: 524 real and 524 generated images

We use the SegResNet in three experiments to train on each dataset, using 5-Fold
CV, resulting in 15 models to train. We train each model for 300 epochs. We
repeat the experiments for both images sizes 128× 128× 64 and 256× 256× 128,
resulting in a total of 30 models. Because we are not using testing data, we are
using the validation scores as an indicative performance metric.

123

The details of the experimental setup are summarized in Table 4.37.

Table 4.37: Experimental Setup for Segmentation on Real and Generated Images

Property Values
Model Architecture SegResNet
Data Real & generated images
Generated Image Source HPO17 HA-GAN
Image Size 128× 128× 64 and 256× 256× 128
Image Preprocessing None
Mask Preprocessing Binarize
Training Images 419 and 838
Validation Images 105 and 210

The hyperparameters used for the experiments are shown in Figure 4.38.

Table 4.38: Hyperparameters for Segmentation on Real and Generated Images

Hyperparameter Values
Epochs 300
Number of Cross-Validation Folds 5
Optimizer ADAMW
Optimizer learning rate 0.0002
Optimizer weight decay 0.000010

4.8.3 Training on Generated Images, Testing on Real Images

Instead of training the segmentation model with 5-Fold CV, we run multiple
experiments to train the SegResNet model once on a single CV fold of the
generated images. After training, we run the network in inference mode and create
prediction masks on the real images.

We run three experiments where we train the segmentation model on 524, 1024,
and 2048 fake images. After each training, we test the model on all 524 real
images. We repeat the experiment for both image size 128× 128× 64 and
256× 256× 128, resulting in six models to train.

The details of the experimental setup are summarized in Table 4.39.

124

Table 4.39: Experimental setup for segmentation of generated images

Property Values
Model Architecture SegResNet
Data Generated Images
Generated Image Source HPO17 HA-GAN
Image Size 128× 128× 64, 256× 256× 128
Image Preprocessing Resample 1, 5, 1.5, 1.5mm
Mask Preprocessing Binarize, Resample 1, 5, 1.5, 1.5mm
Training Images 419, 819, 1638
Validation Images 105, 204, 409
Testing Images 524

The hyperparameters used for the experiments are shown in Figure 4.40.

Table 4.40: Hyperparameters for segmentation of generated images

Hyperparameter Values
Epochs 300
Number of Cross-Validation Folds 5
Optimizer ADAMW
Optimizer learning rate 0.0002
Optimizer weight decay 0.000010

4.8.4 Training on Real and Generated Images, Testing on Real Images

We split the 524 real images into two parts of 419 samples for training and 105 for
testing, like in Chapter 4.8.1. We generate 524 samples with the HPO17 HA-GAN
model. We create a combined dataset consisting of the generated and real
images. The final dataset size is 943 samples, with 419 real and 524 generated
images. 752 samples are used for training, and 191 samples are used for
validation.

We run two experiments, one with a single CV fold and one with five folds.

The details of the experimental setup are summarized in Table 4.41.

125

Table 4.41: Experimental setup for segmentation on real and generated images
with testing on real images

Hyperparameter Values
Model Architecture SegResNet
Data Real & Generated Images
Generated Image Source HPO17 HA-GAN
Image Size 128× 128× 64
Image Preprocessing Resample 1.5× 1.5× 1.5mm
Mask Preprocessing Binarize, Resample 1.5× 1.5× 1.5mm
Training Images 752
Validation Images 191
Testing Images 105

The hyperparameters used for the experiments are shown in Table ??

Table 4.42: Hyperparameters for segmentation on real and generated images with
testing on real images

Hyperparameter Values
Epochs 300
Number of Cross-Validation Folds 1 and 5
Optimizer ADAMW
Optimizer learning rate 0.0002
Optimizer weight decay 0.000010

After the training is complete, we run inference on the model with the 105 real
images, like in earlier experiments.

We perform another experiment using a different HA-GAN trained model. We use
the model trained on binary masks to generate 524 images. We post-process the
images with thresholding rescaling. We combine the generated images with 419
real images, putting the remaining 105 real images aside for testing. The training
dataset consists of 943 images, where 752 are for training, and 191 are for
validation. We train the SegResNet model for 300 epochs using single-fold CV
training. Then we perform a final experiment with the same setup, with five folds.

The details of the experimental setup are summarized in Table 4.43.

126

Table 4.43: Experimental setup for segmentation on real and generated images
with testing on real images

Hyperparameter Values
Model Architecture SegResNet
Data Real & Generated Images
Generated Image Source Binary Trained HA-GAN
Image Size 128× 128× 64
Image Preprocessing Resample 1.5× 1.5× 1.5mm
Mask Preprocessing Binarization, Resample 1.5 × 1.5 ×

1.5mm
Training Images 752
Validation Images 191
Testing Images 105

The hyperparameters used for the experiments are shown in Table 4.44

Table 4.44: Hyperparameters for segmentation on real and generated images with
testing on real images

Hyperparameter Values
Epochs 300
Number of Folds 1, 5
Optimizer ADAMW
Optimizer learning rate 0.0002
Optimizer weight decay 0.000010

127

5 Results and Discussion

5.1 Vanilla GAN

After encountering memory issues with high-resolution images, we successfully
make the Vanilla GAN 1 model train on 16× 16× 3 images for 200 epochs. Figure
5.1 shows the generator and discriminator loss during training.

(a) Discriminator (b) Generator

Figure 5.1: Vanilla GAN 1 Generator and Discriminator loss (blue), EMA loss (or-
ange)

Table 5.1 shows the overall loss statistic for Vanilla GAN 1.

Table 5.1: Vanilla GAN 1 Minimum, maximum, and average loss for generator and
discriminator

Loss Minimum Maximum Average
Generator 8.5851 2596.0562 575.9452
Discriminator 0.0005 26.0948 0.2705

Based on the data presented in Figure 5.1, it can be observed that the
discriminator experiences a plateau phase after epoch 20, followed by a gradual
decline in its loss until it reaches a low level, suggesting that is is capable of
successfully classifying images. On the other hand, the generator loss stabilizes

128

after epoch 25 and exhibits a decreasing trend, but it is noteworthy that the loss
remains considerably high compared to the discriminator. The high loss would
suggest that the generator is not able to generate images that are of quality. The
data in Table 5.1 indicates that the generator’s average loss is higher than 500,
which suggests that the neural network is struggling to create synthetic images
that are not discernible by the discriminator.

Example images generated by the Vanilla GAN from epoch 300 are shown in
Figure 5.2.

Figure 5.2: Vanilla GAN 1 Generated Images

It is evident from the observed results in Figure 5.2 that the generated images lack
coherence and appear to be random noise, suggesting that the generator has not
effectively learned the underlying data distribution. Furthermore, all the generated
images are identical, indicating that the generator suffers from mode collapse.

This could potentially be attributed to the limited complexity of the Vanilla GAN
architecture, which may not be adequate to model the intricacies of the data
distribution at low image resolutions. It is plausible that the resampling of the
images at such low resolutions may also be causing distortions that hinder the
ability of the model to effectively capture the underlying patterns in the data.

Vanilla GAN 2 is a modified Vanilla GAN 1 model with a smaller, less complex
network. Additionally, the images used for training were preprocessed to be of size
154× 154× 27. The loss diagrams of Vanilla GAN 2 are shown in Figure 5.3.

129

(a) Discriminator (b) Generator

Figure 5.3: Vanilla GAN 2 Generator and Discriminator loss (blue), EMA loss (or-
ange)

Table 5.2 shows the overall loss statistics for Vanilla GAN 1 & 2.

Table 5.2: Vanilla GAN 1 & 2 Minimum, maximum and average loss for generator
and discriminator

Loss Minimum Maximum Average
Vanilla 1 Generator 8.5851 2596.0562 575.9452
Vanilla 2 Generator 5.0499 49.4817 16.1331
Vanilla 1 Discriminator 0.0005 26.0948 0.2705
Vanilla 2 Discriminator 0.0000 2.1432 0.0020

According to Table 5.2, the Vanilla GAN 2 model outperforms its predecessor
significantly. While the minimum loss is relatively the same, both the maximum and
average losses exhibit significant improvement. The discriminator in Vanilla GAN 2
also performs much better, achieving a plateau more quickly and showing an
overall lower average loss. However, as seen in Figure 5.3b, the generator loss is
increasing over time, showing that it is not effectively learning the data distribution.
Even so, the overall loss is improved over the Vanilla 1 GAN generator. The
discriminator loss seen in Figure 5.3a, is showing an overall lower loss over time,
with the EMA loss never going over 0.5, a big improvement over Vanilla GAN 1.

130

Despite these improvements, the generated images from Vanilla GAN 2 still
contain noise, and the generator eventually experiences a mode collapse. Upon
reflection, it appears that the Vanilla GAN model with a U-Net architecture may not
be sufficiently complex to capture the characteristics of CT images, even at a low
resolution of 154× 154× 27. However, this model was a good initial approach that
needed to be tested.

5.2 Wasserstein GAN

Unfortunately, WGAN-GP encountered memory problems, and we decided not to
experiment with it further. We trained the WGAN with weight clipping for 300
epochs. Figure 5.4 shows the generator and discriminator loss for WGAN-WC
during training.

(a) Discriminator (b) Generator

Figure 5.4: WGAN-WC Generator and Discriminator loss (blue), EMA loss (orange)

Table 5.3 show the overall minimum, maximum and average of the generator and
discriminator loss for the WGAN-WC.

131

Table 5.3: WGAN-WC Minimum, maximum and average loss for generator and
discriminator

Loss Minimum Maximum Average
Generator 10.5033 83.4498 16.2467
Discriminator 0.0002 9.4511 0.0359

The results show that the Wasserstein-WC has slightly worse results than the
Vanilla GAN 2 with the same architecture, suggesting that weight clipping does not
improves the model’s performance. Moreover, the WGAN-WC appears to have
more stable training with fewer outliers in the results. It is worth noting that the
discriminator performs well early on in the training process, but the generator is
not complex enough to effectively learn features from the latent space. Although a
more complex generator could potentially improve performance, this may not be
feasible due to memory limitations.

The generator eventually suffers from mode collapse, leading to the production of
similar and low-quality images, similar to the Vanilla GAN. Despite the use of
hyperparameter optimization, all 18 configurations eventually reach mode
collapse, indicating that the underlying data distribution is not being effectively
learned by the model.

Overall, these findings highlight the need for a different approach to effectively
model the underlying data distribution and generate high-quality images.

5.3 FastGAN and StyleGAN2

We trained the FastGAN model on 2D images for 500 epochs. Figure 5.5 shows
the generator and discriminator loss for the training of FastGAN.

132

(a) Discriminator (b) Generator

Figure 5.5: FastGAN Generator and Discriminator loss (blue), EMA loss (orange)

Table 5.4 shows the overall loss statistics for the FastGAN training.

Table 5.4: Minimum, maximum, and average loss for FastGAN generator and dis-
criminator

Loss Minimum Maximum Average
Generator 1.5395 2.9068 2.3001
Discriminator 0.4177 7.0231 0.6239

The FastGAN generator appears to show an overall better performance, according
to the table. The average generator loss is only 2.3, a large improvement over the
Vanilla 2 GAN generator loss of 16.1.

As observed in Figure 5.5, the generator loss is steadily increasing over time. It is
worth noting that the loss is relatively low, suggesting that the generator is able to
learn more effectively than the Vanilla and WGAN approaches. As seen in Figure
5.7a, the discriminator loss is steadily decreasing over time, never plateuing,
suggesting that the performance would increase given more training time.
Because the generator loss is increasing, it can be argued that given more time,
the loss would increase, further dampening the performance.

Example images generated with FastGAN are shown in Figure 5.6.

133

Figure 5.6: Images generated with FastGAN

While the generated images are somewhat visually similar to the input images,
they are of low resolution and overall poor quality. Additionally, many randomly
generated images appear visually similiar, showing that the generator is
experiencing a partly mode collapse. Given more time, it can be argued that the
generator would encounter a full mode collapse, seeing as the loss is increasing
over time as seen in Figure 5.7b.

Figure 5.7 shows the generator and discriminator loss for the training of
StyleGAN2.

(a) Discriminator (b) Generator

Figure 5.7: StyleGAN2 Generator and Discriminator loss (blue), EMA loss (orange)

134

The figure illustrates that the discriminator loss consistently decreases during
training, converging to a relatively low value, with only a few outliers observed.
This indicates a stable training process for the discriminator. On the other hand,
the generator exhibits an even more stable training, with fewer outliers overall,
except for a single significant outlier.

Table 5.5 shows the overall loss statistics for the StyleGAN2 training.

Table 5.5: Minimum, maximum and average loss for StyleGAN 2 generator and
discriminator

Loss Minimum Maximum Average
Generator 0.0 39.5479 1.5886
Discriminator 0.0 7.0043 0.1734

The most noticeable aspect in Figure 5.7 is the maximum loss reached by the
generator, which stands out with a value of 39, representing the observed outlier.
However, disregarding the outliers, the average generator loss is even lower than
that of FastGAN, with an average of only 1.5 compared to FastGAN’s average of
2.3. Similarly, the discriminator also exhibits a higher maximum loss compared to
FastGAN, but the average loss is significantly lower.

Example images generated with StyleGAN2 are shown in Figure 5.8.

Figure 5.8: Images generated with StyleGAN2

It can be observed that the StyleGAN2 model is capable of capturing some of the
underlying features of the data distribution, even at a relatively low image size of

135

128, a latent size of 512, and 32 channels. However, like the Vanilla GAN and
WGAN models, the generator eventually suffers from mode collapse, once again
proving that the average loss is not enough to quantify actual performance.

The potential for improved results may be achieved through experimentation
involving varying image sizes, increased channels, alternative latent dimensions,
and hyperparameter optimization. These modifications could potentially mitigate
mode collapse. However, due to time constraints, further exploration of these
possibilities was not feasible.

Additionally, a considerable challenge lies in post-processing the generated 2D
images back into 3D representations. This conversion introduces an additional
layer of complexity to the problem, making it more challenging to achieve
satisfactory results. The exploration of different image sizes, channels, latent
dimensions, and HPO may yield improved results of StyleGAN2 and prevent mode
collapse. However, the decision to prioritize a more efficient 3D approach was
deemed as most advantageous given the time constraints.

5.4 HA-GAN Image Generation

We train the HA-GAN 128× 128× 128 model multiple times for 80000 steps on
training images without data shuffling. The generator and discriminator loss for
one training session are shown in Figure 5.9.

136

(a) Discriminator (b) Generator

Figure 5.9: HA-GAN (without data shuffling) Generator and Discriminator loss
(blue), EMA loss (orange)

As seen in Figure 5.11b the generator loss steadily increases over time as the
generator cannot effectively learn the data and generate images that can fool the
discriminator. It can be argued that not shuffling the data during training leads to
mode collapse. This is because the data in the dataset is ordered by data source.
The discriminator becomes exposed to a repetitive set of similar images from the
same data source, becoming too effective at distinguishing them from the
generator’s output. Considering that the training images are obtained from 7
different data sources, each with its own unique characteristics, it can be argued
that presenting them in order could result in an imbalanced training set. The
generator may be effective early on at generating a certain set of images and
ultimately fail later on when different data is introduced. This could result in the
generator struggling to produce diverse images that can fool the discriminator,
ultimately leading to mode collapse.

Figure 5.10 shows five randomly generated images. We plot the center slice along
the z-axis for each image.

137

Figure 5.10: Images Generated with HA-GAN

As seen in the Figure, the mode collapse is apparent with the generator only
generating a set of distinct images which are identical.

We enable shuffling of the training data and observe that the HA-GAN is able to
generate CT images of size 128× 128× 128. The generator and discriminator loss
are shown in Figure 5.11.

(a) Discriminator (b) Generator

Figure 5.11: HA-GAN (with data shuffling) Generator and Discriminator loss (blue),
EMA loss (orange)

We observe improved results with the shuffling of the training data. The generator
loss is gradually decreasing and converging around 2.1 in the final stages of

138

training. We argue that the observed improvement is due to shuffling the training
data, which can help ensure that the generator is exposed to a diverse set of
images from all data sources throughout the training, helping to prevent mode
collapse and improving the quality of the generated images.

We calculate FID and IS scores for the generated CT images. Table 5.6 presents
the scores, as well as the scores for the models trained on images that were
voxel-resampled.

Table 5.6: Comparison of FID and IS scores

Experiment FID IS
Original Images 0.35605 1.05953
Resampled 1.0× 1.0× 1.0mm 0.36545 1.04831
Resampled 1.5× 1.5× 1.5mm 0.34856 1.04794
Resampled 2.0× 2.0× 2.0mm 0.40140 1.04308
Resampled 2.5× 2.5× 2.5mm 0.36616 1.05351
Resampled 3.0× 3.0× 3.0mm 0.35480 1.06072

Notably, the best IS score was achieved on data voxel-resampled with a
3.0× 3.0× 3.0mm resolution, while the best KID score was obtained with data
resampled with 1.5× 1.5× 1.5mm, as seen in Table 5.6.

Overall, it is evident from the results that the KID and IS scores obtained in our
experiments are of less quality than those reported in the original HA-GAN paper
by (Sun et al., 2022). This could potentially be attributed to the fact that we trained
our model on a smaller dataset of 524 images, whereas the original paper utilized
a CT dataset of 9,276 images.

Figure 5.13 shows five slices from a single CT image generated by the HA-GAN
model trained on the original images.

139

Figure 5.12: Slices from a image generated with HA-GAN

Figure 5.13 shows a full example of a CT image generated by the HA-GAN model
trained on the original images.

Figure 5.13: Full generated image with HA-GAN

140

5.5 HA-GAN Image/Mask Pair Generation

5.5.1 Baseline

We successfully generate 128× 128× 128 image/mask pairs with HA-GAN. After
separating the images and masks, they are of size 128× 128× 64. Figure 5.14
shows the generator and discriminator loss during training.

(a) Discriminator (b) Generator

Figure 5.14: HA-GAN Generator and Discriminator loss (blue), EMA loss (orange)

The loss trend observed in Figure 5.14a for the discriminator is similar to that of
the image-only generation. The initial loss is approximately 0.6, which
subsequently increases before converging at around 0.2 after 10000 steps for the
image-only experiment. In contrast, as depicted in Figure 5.11a, the discriminator
requires more time to converge, and its loss continually decreases throughout the
80000-step training period without plateauing. Although the loss trend indicates
that the loss would likely continue to decrease after 80000 steps, we elected to
conclude training at the maximum step to facilitate other experiments due to the
time-consuming nature of training the model. Thus, one could argue that further
training might result in improved performance.

141

Table 5.7: Baseline Image/Mask Pair Performance

Data FID IS
Images 0.14432 1.03026
Masks 0.00024 1.00012

Interpolating masks with a low-high threshold range of [−1024, 600] yielded poor
results, even causing mode collapse. Interpolation with the low-high threshold
[0, 2] was the deciding factor in avoiding mode collapse and successfully
generating masks along with the images. Looking back, it is clear that interpolating
the masks with the same threshold range as the images was not a good approach.
This is because the masks consist of voxel values of 0, 1, or 2, which means that
using an interpolation range of [−1024, 600] would lead to suboptimal results.

As seen in Table 5.7, the model trained on the cropped images performs better
than the model trained on the original images, even when generating both image
and mask simultaneously.

Figure 5.15 shows a generated image/mask pair.

142

Figure 5.15: Image/mask pair generated with HA-GAN

Visually the pair looks realistic, like the original data. The generated CT image
does have characteristics of the training data and does validate what the low FID
score implies for the images.

We apply t-SNE analysis to the real images and the images generated by the
HA-GAN. Figure 5.16 show the results.

143

Figure 5.16: t-SNE comparison between real and generated images

Looking at Figure 5.16, clear indications emerge that the HA-GAN model has
successfully learned the fundamental attributes present in the real images.
However, it is apparent that the model has not comprehensively grasped the entire
distribution but has primarily focused on two regions within the latent dimension
space. While the left cluster predominately represents the real latent space, the
rightmost cluster does not. Notably, two outliers can be observed in the upper
middle section, although their influence is limited to a small portion of the latent
space. In general, the latent space appears unexplored, and the model has not
fully captured the inherent features of the dataset. We compare the original t-SNE
analysis of the grouped real data with the t-SNE analysis of the generated images,
shown in Figure 5.17

144

(a) Real data (b) Real and generated data

Figure 5.17: HA-GAN Generator and Discriminator loss (blue), EMA loss (orange)

The shortcomings of the HA-GAN model in learning the data originating from the
CHUV, CHUP, and CHUM data sources become more apparent when examining
Figure 5.17. It is evident that the model has not successfully acquired a
comprehensive understanding of the latent features present in these specific
datasets. This suggests that the HA-GAN model requires further improvement to
better learn and represent the data from these particular data sources.

5.5.2 Slice by Slice Concatenation

We generate image/mask pairs with the slice-by-slice concatenation method. The
FID and IS results are shown in Table 5.8.

Table 5.8: SBS Image/Mask Pair Performance

Data FID IS
Images 50.16954 1.0
Masks 51.87453 1.0

As the IS scores of 1.0 suggest, the generator has fallen into mode collapse,
producing only a single identical image every time it is run in inference. The FID

145

score is fifty times that of the baseline, confirming that the model is not producing
good results. Figure 5.18 shows ten slices from a generated mask by the model.

Figure 5.18: Example slices from generated mask

As seen in the figure, the mask does not visually look like the training data. There
are a lot of artifacts on the image, which manifest as noise and do appear like the
CT image and not the mask.

An argument can be made that HA-GAN may not be appropriate for generating
concatenated pairs that are constructed slice by slice, as the model generates
sub-volumes during its training. While selecting sub-volumes, the model may
choose sub-volumes that contain both the image and mask, leading to confusion.
Furthermore, the authors of X have reported improved performance by eliminating
blank slices from the images before training. In the case of masks, the slices
without tumor values are considered blank, and the model may struggle to learn
this during training.

The results confirm this as the model is going into a full mode collapse, generating
only one single image.

146

5.5.3 Hyperparameter Optimization

We ran 27 configurations of different learning rates for the generator, discriminator
and encoder networks in the HA-GAN model. Table 5.9 show the results for all
runs.

Table 5.9: Image and mask quality metrics for each HPO

Name Image FID Mask FID Image IS Mask IS
2D 1E 1G 0.00498 0.00004 1.01617 1.00018
2D 2E 1G 0.00369 0.00002 1.02246 1.00006
2D 3E 1G 0.00344 0.00036 1.03194 1.00058
3D 1E 1G 0.00977 0.00004 1.01457 1.00014
3D 2E 1G 0.00554 0.00002 1.01524 1.00016
3D 3E 1G 0.00360 0.00001 1.02313 1.00005
4D 1E 1G 0.03305 0.00002 1.01179 1.00005
4D 2E 1G 0.00472 0.00002 1.01395 1.00015
4D 3E 1G 0.04294 0.00006 1.01172 1.00003
2D 1E 2G 0.00699 0.00004 1.01252 1.00007
2D 2E 2G 0.00501 0.00002 1.01543 1.00004
2D 3E 2G 0.00466 0.00003 1.01301 1.00009
3D 1E 2G 0.00314 0.00002 1.01651 1.00010
3D 2E 2G 0.00975 0.00002 1.01494 1.00004
3D 3E 2G 0.00341 0.00002 1.01921 1.00011
4D 1E 2G 0.00391 0.00002 1.01411 1.00008
4D 2E 2G 0.00282 0.00001 1.01891 1.00010
4D 3E 2G 0.00552 0.00003 1.01397 1.00005
2D 1E 3G 0.00486 0.00002 1.01641 1.00007
2D 2E 3G 0.00571 0.00002 1.01426 1.00011
2D 3E 3G 0.00425 0.00030 1.01753 1.00012
3D 1E 3G 0.00582 0.00003 1.01572 1.00008
3D 2E 3G 0.00441 0.00002 1.01901 1.00013
3D 3E 3G 0.00496 0.00002 1.01708 1.00010
4D 1E 3G 0.00516 0.00003 1.01587 1.00009
4D 2E 3G 0.00478 0.00002 1.01602 1.00012
4D 3E 3G 0.00506 0.00002 1.01745 1.00011

Using FID as the determining metric, HPO model 17 is the top performer with
discriminator, generator and encoder leaning rates set to 0.00004, 0.0000.2 and

147

0.00002, respectively. We apply t-SNE analysis on the generated images by the
HPO 17 model, shown in Figure 5.19.

Figure 5.19: t-SNE comparison between real and generated images

Figure 5.19 demonstrates that the model has successfully captured the features of
the data, showcasing a superior understanding of the dataset compared to the
baseline model (Figure 5.16). The t-SNE plot reveals that the model has better
learned the latent dimension space of the real data, resulting in a more accurate
representation of the underlying features. While there are some outliers, notably
the cluster in the top center, the overall performance of the model in capturing the
data’s latent characteristics is improved.

We use HPO model 17 to experiment with more latent dimensions. Table 5.10
shows the results.

148

Table 5.10: Results from latent dimension HPO

Name Image FID Mask FID Image IS Mask IS
1024 (Baseline) 0.00282 0.00001 1.01891 1.00010
1280 0.01637 0.000004 1.00764 1.00005
1536 0.00447 0.00003 1.01374 1.00022
1792 0.00514 0.00001 1.01368 1.00010

As depicted in Figure 5.10, the HPO 17 model exhibits superior performance in
terms of Image FID compared to other models with varying latent dimensions.
Notably, the model with a latent dimension of 1280 achieves a better FID score
than the baseline model in the context of mask generation. However, this same
model yields unsatisfactory outcomes when it comes to generating images.

5.5.4 Modified HU Interpolation Range

We perform two experiments with different HU low-high thresholds, which are used
to interpolate the image values. We perform the experiments on HPO model 17.
Table 5.11 shows the results.

Table 5.11: Results from modified HU interpolation range

HU range Image FID Mask FID Image IS Mask IS
-1024, 600 (Baseline) 0.00282 0.00001 1.01891 1.00010
-2048, 3071 0.3016 0.0001 1.00397 1.00014
-2048, 1200 0.61453 0.00011 1.00975 1.00013

As shown in Table 5.11, the baseline model exhibits significantly better
performance compared to the other experiments. Both experiments are able to
create images that are visually reminiscent of the original images. However, both
models produce large amounts of noise and artifacts in the images.

149

Figure 5.20: Example of a generated image

The figure clearly depicts a section of the image that is heavily affected by noise,
noticeable through its gray color. It is apparent that employing the frequently used
HU values for interpolation yields visually inadequate outcomes, which is further
confirmed by the low KID score.

5.5.5 Data Augmentation

As we saw an increase in performance on image-only generation with voxel
resampling, we performed the same experiment with image/mask pairs
generation. Figure 5.21 shows the loss diagrams.

150

(a) Discriminator (b) Generator

Figure 5.21: HA-GAN Generator and Discriminator loss (blue), EMA loss (orange)

The figure demonstrates that the discriminator rapidly converges to approximately
0.4 and maintains relative stability throughout the training period. It is important to
mention that this convergence point is higher than the EMA of 0.2 observed in the
baseline image/mask pair discriminator discussed in Chapter 5.5.1. On the other
hand, the generator loss levels off at around 1.5, which is a significant
improvement compared to the generator baseline, representing a reduction by half
in terms of loss.

Table 5.12 shows the KID and IS scores.

Table 5.12: Results from Model Trained on Voxel-Resampled Images

Model Image FID Mask FID Image IS Mask IS
Baseline - HPO 17 0.00282 0.00001 1.01891 1.00010
Resampled 0.00258 0.00001 1.01845 1.00006

According to the table, voxel resampling the images to a size of 1.5× 1.5× 1.5 mm
yields better results, surpassing the performance of the baseline HPO 17 model.
Additionally, when considering the halved loss observed in Figure 5.21b, it
becomes evident that voxel resampling contributes to the improvement in model
performance.

We created an augmented dataset with the voxel-resampled images and

151

transformations affine transformation and elastic deformation. Table 5.13 show the
results.

Table 5.13: Results from Model Trained on Augmented Images

Model Image FID Mask FID Image IS Mask IS
Baseline - HPO 17 0.00282 0.00001 1.01891 1.00010
Augmented 1.18555 0.00002 2.30551 1.00011

Interestingly, the model exhibits relatively poor performance in terms of FID when
compared to the original baseline and the HPO 17 model. Although the IS shows
improvement, the KID score is significantly worse, indicating that the generated
images do not align well with the original data. It can be argued that further
post-processing of the generated images, specifically tailored to align them more
closely with the original data, might be necessary. However, due to the scope of
this thesis and time constraints, such post-processing steps were not pursued.

5.5.6 Binary Mask

We perform two experiments with the HA-GAN HPO17 model trained on binary
masks. Table 5.16 shows the results.

Table 5.14: Results from Models Trained on Binary Masks

Model Image FID Mask FID Image IS Mask IS
Baseline 0.00282 0.00001 1.01891 1.00010
Binary with interpolation 1.82901 3.19133 1.00017 0.99998
Binary 0.00207 0.00006 1.01973 1.00003

Interestingly, the baseline HPO 17 model still has the best FID score for masks,
even better than the model trained on binary masks. However, it looks like the
binary model is better at creating images since it has the lowest FID and the
highest IS, making it the best model for generating images.

On the other hand, the binary model with interpolated mask values doesn’t
perform as well. It seems that including interpolated mask values might be causing
some issues in the generated images, affecting their quality.

152

The binary-trained model emerges as the superior performer in image generation
overall. To evaluate the quality and distribution of the generated images, we
conduct a t-SNE analysis of the model’s output. The results of this analysis are
illustrated in Figure 5.22.

Figure 5.22: t-SNE comparison between real and generated images

Figure 5.22 reveals that the quality and distribution of the generated images by the
binary-trained model surpass those of the baseline model (Figure 5.16) and the
HPO 17 model (Figure 5.19), further validating the improved FID scores. The
t-SNE plot illustrates that the generated images exhibit improved overall quality
and better capture the underlying features present in the dataset, including most of
the data sources. Although some outliers are visible in the plot, the binary-trained
model demonstrates a more comprehensive understanding of the dataset and its

153

underlying characteristics.

5.5.7 Post-Processing

We apply intensity rescaling and HU thresholding to images generated by the
HPO 17 model. We also apply binarization and CCA post-processing to the
generated mask by the same model.

Table 5.15: Comparison of postprocessing

Model Image
FID

Mask
FID

Image IS Mask IS

Baseline 0.00207 0.00006 1.01973 1.00003
Rescaled Image 1.71301 1.00373 1.00017 1.00011
Binary Mask Postprocessing 0.00201 0.00001 1.00017 1.00012
CCA Mask Postprocessing 0.00245 0.00002 1.00014 1.00014

According to the table, the utilization of binarization for postprocessing the
generated mask produced the most favorable outcomes. While the CCA
postprocessing method did not surpass the straightforward binarization approach,
it did exhibit superior image FID results compared to the baseline HPO 17 model.
This demonstrates the practical value of CCA postprocessing.

5.5.8 High-Resolution Images

We generate images of size 256× 256× 256. We use the HPO 17 model trained on
binary masks, with and without voxel resampling. We also generate images with
the native model with the original non-HPO learning rates.

Table 5.16: Comparison of high-resolution models

Model Image FID Mask FID Image IS Mask IS
HPO17 0.05704 0.00020 1.05287 1.00049
HPO17 Resampled 0.01429 0.00007 1.08498 1.00040
Original LR 0.04877 0.00007 1.13935 1.00014

154

Based on the IS, the model trained with the original learning rates is noted for
generating the most diverse images. However, the HPO 17 resampled model
surpasses its performance, supporting the earlier conclusion that resampling
enhances results, even with higher-resolution images. Additionally, the model
trained on resampled data exhibits superior performance in terms of FID, scoring
0.0427 better.

5.6 Visual Turing Test

We conducted a Visual Turing Test involving three healthcare professionals. This
included two medical doctors, one with a decade of professional experience (MD
1) and another with 15 years of practice (MD 2), as well as a radiologist who has
been practicing for three years.

We presented 10 images, five of which were fake in random ordering. The
participants were asked to rate each image on a scale from 0 to 10, with 0
signifying a belief that the image was completely real and 10 indicating a belief
that the image was entirely fake.

Table 5.17 presents the scores assigned by each healthcare professional to the
real images.

Table 5.17: Scores Assigned by Healthcare Professionals

Number MD 1 Radiologist MD 2
3 (Real) 2 4 7
4 (Real) 4 5 4
6 (Real) 3 5 7
7 (Real) 4 3 4
8 (Real) 5 4 5

The results, as summarized in Table 5.17, revealed noteworthy variations in the
perception of these professionals.

MD 1 consistently rated the images lower than the other two professionals, with an
average score of 3.6 out of 10. This suggests that MD 1 was more likely to believe

155

that the images were authentic, indicating the effectiveness of the real images in
convincing this professional.

The radiologist, with an average score of 4.2 out of 10, demonstrated a slightly
higher degree of suspicion about the authenticity of the images compared to MD 1.
However, this score still leans more towards the images being real rather than fake.

MD 2, with an average score of 5.4 out of 10, was the most skeptical of the three
professionals about the authenticity of the images.

Table 5.18 presents the scores assigned by each healthcare professional to the
generated images.

Table 5.18: Scores Assigned by Healthcare Professionals

Number MD 1 Radiologist MD 2
1 (Fake) 3 5 8
2 (Fake) 5 6 6
5 (Fake) 2 3 2
9 (Fake) 3 6 7
10 (Fake) 4 4 8

The average score for MD 1 for the fake images was 3.4 out of 10, comparable to
their average score for the real images (3.6). This suggests that the generated
images were almost as effective as the real ones in convincing MD 1 of their
authenticity.

The radiologist’s average score was 4.8 for the fake images, slightly higher than
their average score for real images (4.2). This indicates that the radiologist was
more skeptical of the fake images, but the difference is relatively small, suggesting
that the generated images were fairly convincing.

MD 2, with an average score of 6.2 for the fake images, was still the most skeptical
among the three professionals. However, the difference is not dramatically
significant compared to their average score for real images (5.4). This implies that,
despite their skepticism, the generated images were still somewhat believable to
MD 2.

156

Upon analyzing the scores, it is evident that there is some variation in the ability to
differentiate between real and HA-GAN-generated images among the participants.
These results demonstrate that the generated images have a considerable degree
of realism. In particular, the images were very effective in convincing MD 1 and
reasonably effective for the radiologist and MD 2. This result underscores the
quality of the HA-GAN-generated images and their potential to convincingly mimic
real images.

5.7 Segmentation

5.7.1 Baseline

To establish a baseline for performance, we trained the SegResNet model on a
single fold of 419 training images, of which 335 were used for training and 83 for
validation during training. The input images were of size 128× 128 × 64.
Additionally, we trained the SegResNet model on five folds using Cross-Validation,
all of which had the same amount of training and validation data. Figure 5.23
shows the results of training the single-fold and 5-Fold. Both experiments ran 300
epochs.

(a) 1-Fold training (b) 5-Fold Cross-Validation

Figure 5.23: Baseline validation results

Figure 5.23a displays the validation DSC during training for the 1-Fold training

157

session. The maximum score achieved by the model was 0.4472.

Interestingly, the model quickly reaches the 0.4 threshold after just 50 epochs. The
validation DSC becomes relatively stable after 50 epochs, but the EMA trend
shows that the performance keeps improving over time without reaching a plateau
even after 300 epochs. One limitation of this experiment is that we stop training
after 300 epochs due to time constraints, so the performance could possibly be
better if we continued training.

Figure 5.23b displays the average validation results from the 5-Fold
Cross-Validation. The overall average converges more slowly compared to the
1-Fold training but ultimately achieves the same maximum value. Table 5.19
presents the Cross-Validation scores for each individual fold.

Table 5.19: Aggregated dice metric using 5-fold cross-validation

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
0.4414 0.4298 0.4618 0.4120 0.4445 0.4379

As inferred in Table 5.19, the maximum of the 1-Fold model is better than the
average of the 5-Fold models. After training, we evaluated the models on 105 real
images not seen by the models during training. The 1-Fold model achieved a DSC
of 0.43916, while the ensemble 5-Fold model achieved a DSC of 0.48693,
suggesting that 5-Fold CV assists in choosing the best folds for training and
validation to increase performance.

In summary, the baseline is established with the best-performing model during
training for validation (fold 3) and the best-performing model (5-Fold CV ensemble)
when evaluated on unseen images, shown in Table 5.20.

Table 5.20: Baselines for segmentation performance

Validation Score Testing Score
0.4618 0.48693

It is crucial to acknowledge that the scores achieved by the models discussed are
not as impressive as the winning solution of the HECKTOR 2022

158

challenge (Myronenko et al., 2023). However, it is important to recognize that the
winning solution utilized more advanced preprocessing techniques and employed
a combination of PET and CT images, whereas our approach only utilized CT
images. Consequently, the results obtained from these models are not directly
comparable due to the differences in methodology and data inputs.

5.7.2 Training on Real and Generated Images

The Auto3Dseg framework was employed with a SegResNet model to train on
real, generated, and a combination of real and generated images. The input
images were of size 128× 128 × 64.

All experiments were conducted using 5-Fold CV and trained for 300 epochs. To
visualize each experiment, we combined the fold score of each experiment and
computed the mean validation DSC over all five folds. The total number of training
runs is 15. Figure 5.25 illustrates the mean validation DSC for the three 5-Fold CV
experiments, calculated with EMA. We leave out the original data from the plot for
visibility.

159

Figure 5.24: Average 5-Fold Validation DSC for real, generated, and real & gener-
ated images

Figure 5.25 demonstrates that initially, models trained on real images surpass
those trained on generated ones. However, in the end, models trained on
generated images outperform, reaching an average score of 0.40 on the EMA
calculated line for all models. In comparison, models trained solely on real images
display similar performance. The weakest performance is seen in models trained
on both real and generated images, attaining an average of 0.34 on the EMA line.

Nonetheless, it’s crucial to acknowledge that all three experiments display a sharp
upward trend in their EMA lines, indicating an ongoing improvement in
performance. We argue that this upward trajectory would continue if the training
period extended beyond 300 epochs.

Table 5.21 shows the validation DSC for each fold, including the average for each
experiment.

160

Table 5.21: Aggregated dice metric using 5-fold cross-validation

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
Baseline 0.4414 0.4298 0.4618 0.4120 0.4445 0.4379
Real 0.4519 0.4057 0.4533 0.4431 0.4713 0.4314
Generated 0.4322 0.4692 0.4610 0.4497 0.4016 0.4365
Real and Generated 0.3819 0.4157 0.3897 0.3862 0.3877 0.3922

As observed in Table 5.21, the real-only images yield an average score nearly
identical to the baseline, which is anticipated since it involves the same data.
However, it is beneficial to reaffirm the results through this additional validation.

The baseline maintains the highest average score, while the model trained solely
on generated images exhibits a strikingly close performance, with a mere 0.0014
difference. It is interesting to note that the model trained on generated images
achieved a slightly better average across all five folds than the model trained on
real images. This suggests that the generated images are on par with the real
images, showcasing their potential ability to be used as training data for
segmentation.

The model trained on a mix of real and generated images performs the worst,
scoring 0.0457 below the baseline. The performance of the models trained only on
generated images implies that a mixed model should exhibit improved results.
However, the mixed model demonstrates the lowest performance, indicating
potential errors in the segmentation process. This discrepancy may be attributed
to a potentially flawed preprocessing process of both generated and real images
when combined. A limitation with this experiment is the unexplored preprocessing
steps taken, which could potentially increase the performance of the mixed model.

The same experiments were run with input images of size 256× 256 × 128. The
results are shown in Figure 5.25.

161

Figure 5.25: Average 5-Fold Validation DSC for real, generated, and real generated
images

As observed in Figure 5.25, the real-only model exhibits better overall
performance and reaches high levels more rapidly. The generated-only model
initially lags behind the mixed model, overtakes it, but eventually falls short in the
end. A commonality among all three experiments is the persistent upward trend in
performance, similar to previous experiments. It is likely that these experiments
would also show enhanced performance if given additional training time.

Table 5.22 shows the highest score for each fold.

Table 5.22: Aggregated dice metric using 5-fold cross-validation

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
Real 0.5164 0.4923 0.5620 0.5179 0.5414 0.5260
Generated 0.3981 0.3771 0.3965 0.4322 0.4187 0.4045
Real and Generated 0.3387 0.3801 0.4110 0.4031 0.4310 0.3927

As indicated by Table 5.22 and Figure 5.25, the real-only model for the image size

162

256× 256× 128 demonstrates the highest average performance. Similar to the
smaller image sizes, the mixed model performs the worst, although its average
score is only slightly lower than that of the generated-only model. Nevertheless,
the close scores suggest that the generated images can effectively compete with
real images when utilized as training data.

5.7.3 Training on Generated Images - Testing on Real Images

We generated three synthetic datasets of 512, 1024, and 2048 images. We
trained the SegResNet on only generated images with only 1 fold. After training,
we run the network in inference mode and predict labels on unseen test data. We
manually calculate DSC by calculating the dice score for each predicted label and
taking the average of the scores. We repeated the process for image sizes
128× 128× 64 and 256× 256× 128. The validation DSC (EMA) for all six
experiments is shown in Figure 5.26.

(a) 128× 128× 64 (b) 256× 256× 128

Figure 5.26: Average validation DSC for models trained on generated images

The most visible observation is the significant downturn in the model’s
performance when trained on 2048 generated images. Around the 100th epoch,
the EMA line shows a swift drop in the validation score. Upon examining the
original data, it’s seen that both the score and loss plummet to zero in every

163

subsequent epoch after a specific point in time. This unusual occurrence suggests
that there could have been some error during the training phase, resulting from
various possible issues.

One such issue could be an excessively high learning rate, which would result in
abrupt updates to the weights and possibly give rise to anomalies like this one.
However, considering that the same learning rates are applied across all other
segmentation experiments, this is unlikely to be the cause.

A more plausible explanation could be errors in the post-processing of the
generated images or pre-processing before inputting the images into the
SegResNet model. Any significant bugs or mistakes in this procedure could result
in labeling problems, such as duplicate images and/or labels. This, in turn, could
potentially cause the loss to drop to zero.

The best average validation DSC during training is shown in Table 5.23.

Table 5.23: Validation scores for models trained on generated Images

Image Size Generated Images Validation DSC
128× 128× 64 None (Baseline) 0.4618
128× 128× 64 524 0.4347
128× 128× 64 1024 0.4710
128× 128× 64 2048 0.4622
256× 256× 128 524 0.4467
256× 256× 128 1024 0.4786
256× 256× 128 2048 0.4739

As depicted in Table 5.23, the models with dimensions 128× 128× 64 display
similar validation performance. Notably, the model with 2048 demonstrated a
validation score surpassing the baseline, although it eventually fell to 0 at a later
stage, as illustrated in Figure 5.26a.

The model with 1024 managed to outperform the baseline, securing a score of
0.0092 above it.

Two of the models with dimensions 256× 256× 128 exceeded the score of the

164

baseline. However, a direct comparison isn’t possible as they were trained on a
different image size than that of the baseline. This presents a constraint in the
segmentation experiments, as we couldn’t establish a baseline for 256× 256× 128

due to time limitations.

After training the models, we evaluated the models on the 105 real testing images.
Figure 5.27 showcases an illustrative prediction mask as an example. The
obtained dice score for this specific example is merely 0.22. For clarity, blank
slices have been eliminated. The ground truth mask values are depicted in white,
the overlapping region between the ground truth and the prediction is presented in
green, and the non-overlapping portion of the prediction mask is shown in red.

Figure 5.27: Ground truth and prediction mask with 0.22 score

Results are presented in Table 5.24.

Table 5.24: Testing scores for models trained on generated images

Image Size Number of Fake Images Testing DSC
128× 128× 64 None (Baseline) 0.4869
128× 128× 64 524 0.2529
128× 128× 64 1024 0.2918
128× 128× 64 2048 0.1944
256× 256× 128 524 0.3152
256× 256× 128 1024 0.3388
256× 256× 128 2048 0.3168

165

As illustrated in Table 5.24, all models trained on generated images underperform
compared to the baseline. The 2048 model particularly lags behind, with a DSC of
0.1944, which is expected given that the score plummeted to 0 during training.
The 1024 model stands out as the best performer among the 128× 128× 64

models, further validating its superior performance demonstrated in the validation
data (Table 5.23).

The models with dimensions 256× 256× 128 generally show superior performance,
outdoing all the 128× 128× 64 models. However, even the top performer, the
256× 256× 128 model trained on 1024 generated images, reaches only a score of
0.3388, which is 0.1481 below the baseline. While the direct comparison is not
feasible for models trained on different image sizes, the outcomes are suggestive.

These results clearly indicate that models trained on generated images are
overfitting. In other words, these models are not adequately learning the
underlying features of the data, thereby struggling to make predictions on test
data. Consequently, the generalizability of these models is lacking. This leads to
the conclusion that, while useful, generated images alone are not as effective as
real images and cannot solely serve as training data.

5.7.4 Training on Real and Generated Images - Testing on Real Images

We generated 524 images with the HPO17 model without applying threshold
rescaling. We split the real data into 419 training images and 105 testing images.
We combined the 524 generated images with the 419 real images, resulting in a
training dataset of 943 images. We trained the SegResNet model for 300 epochs
using a single fold. We used the model to run inference on the 105 real testing
images. Additionally, We trained the SegResNet model for 300 epochs on the
same data, using 5-Fold CV, choosing the best model to run inference on the 105
real testing images.

We generated 524 images with the GAN model trained on binary masks and
applied thresholding rescaling to the images. We combined the generated images
with the same 419 real training images as before. We trained the SegResNet on a
single fold and ran inference after training.

166

Table 5.25 shows the results of the three experiments.

Table 5.25: Testing scores for models trained on real and generated images

Model Testing Score
Baseline 0.48693
Binary Trained 1-Fold 0.46834
HPO 17 1-Fold 0.49380
HPO 17 5-Fold 0.52193

According to the findings presented in Table 5.25, the performance of the
SegResNet model, which was trained on a combination of 419 real images and
524 generated images produced by the binary-trained HA-GAN, did not surpass
the baseline.

It was observed that the SegResNet model, trained on 524 generated images
generated by the HPO 17 HA-GAN and 419 real images, achieved a Dice
Similarity Coefficient (DSC) of 0.4938 on the 105 testing images. This result
indicates a slight improvement of 0.00687 compared to the baseline.

Furthermore, employing the same ensemble model with a 5-fold Cross-Validation
technique resulted in even better outcomes. The improved model achieved a DSC
of 0.52193 on the same set of testing images, which is a considerable
improvement.

Figure 5.28 show an example prediction mask with a dice score of 0.87.

Figure 5.28: Ground truth and prediction mask with 0.87 score

167

6 Limitations

One notable drawback of the GAN model is its limited number of training images,
which amounted to a mere 524. In contrast, the authors of the HA-GAN
paper (Sun et al., 2022) employed a more extensive dataset of 9276 images for
training. Furthermore, it is worth mentioning that HAGAN, a variant of GAN,
provides support for conditional training. Moreover, the dataset used in this study
comprises both PET and CT images, rendering them suitable for various
applications.

With regard to the segmentation results, there is one limitation that must be taken
into consideration when looking at the results. The fact that the HA-GAN model
has seen all the images, including the test images, could potentially play a factor in
the segmentation performance and introduce data leakage, referring to the
situation where information from the test set (unseen data) unintentionally leaks
into the training process, leading to overly optimistic performance results.

When the GAN model generates images, including those that resemble the test
images, the SegResNet model trained on the combined dataset of real and
generated images may inadvertently learn to recognize specific patterns or
characteristics present in the test set. As a result, during inference on the test set,
the model might perform better than expected due to its familiarity with the leaked
information.

Data leakage can lead to an overestimation of the performance and compromise
its ability to generalize to new, unseen data. One could make a case for training
the GAN solely on the 419 real training images, excluding the 105 testing images,
to avoid potential data leakage. However, it should be noted that the training
dataset of 419 images is relatively small, which may not provide sufficient
information for the GAN to effectively learn the underlying data distribution. This
issue highlights the ongoing challenge of insufficient medical data within the realm
of machine learning and deep learning.

Furthermore, it should be noted that we did not establish a baseline for image size
256× 256× 128, which means that the results obtained cannot be directly

168

compared to that particular configuration. Additionally, the final models that
outperformed the baseline in terms of testing DSC were only trained on smaller
image sizes of 128× 128× 64. Unfortunately, due to time constraints, we were
unable to explore the performance of larger image sizes.

Another aspect to consider is that we did not utilize resampled GAN images for
training the models, despite the fact that our results showed improved FID scores
with this approach.

Another limitation was that we did not conduct experiments involving training on
generated data and subsequent fine-tuning using real data, despite previous
research suggesting that such an approach could lead to increased performance,
shown in Chapter 2.9.1.

169

7 Conclusion and Future Work

The significance of early and precise cancer detection cannot be understated,
primarily when considered in the context of improving patient outcomes and
survival rates. This research was initiated with two primary questions: Can
Generative Adversarial Networks (GANs) generate realistic high-resolution 3D CT
image/mask pairs? And to what extent do synthetic CT images generated by
GANs impact the accuracy of a state-of-the-art cancer segmentation model? The
answers to these questions have been explored throughout this thesis by
addressing the issue of insufficient medical data using Generative Adversarial
Networks to generate synthetic data, augmenting the limited real-world datasets.

This thesis implemented and evaluated several GAN models, including a custom
Vanilla GAN, Wasserstein GAN, StyleGAN2, FastGAN, and Hierarchical
Amortized GAN, using the HECKTOR 2022 Dataset with 524 CT images with
masks as the primary training dataset. The evaluation was conducted using a
variety of metrics, including the Inception score, Frechet Inception Distance,
t-distributed Stochastic Neighbor Embedding, and a Visual Turing Test, with the
latter administered to healthcare professionals.

Initial findings indicated that the Vanilla GAN model needed more complexity to
generate high-resolution images, limiting its utility in this context. Similarly,
StyleGAN2 and FastGAN could generate 2D images but were restricted in
resolution. While these models could potentially generate higher-dimensional
images with additional work, the direction of the study shifted towards a more
promising 3D approach.

The decision to crop images proved to be a critical factor in achieving high-quality
results, primarily due to the variability in image sizes stemming from the dataset’s
diverse origins, which included seven different center sources of CT images. In
contrast, HA-GAN demonstrated the capability to generate high-resolution images,
including image/mask pairs with favorable FID scores. This made HA-GAN the
most suitable candidate for the thesis, which was further optimized using
hyperparameter optimization.

170

The real and generated data were subsequently used as training data for the
SegResNet model, part of MONAI’s Auto3Dseg framework, for segmentation. The
model was trained using real and synthetic data via 5-Fold Cross-Validation and
tested on 105 real images. The results indicated that the inclusion of synthetic
images in the training set improved the baseline Dice Similarity Coefficient by 5%,
thereby validating the effectiveness of the approach. Furthermore, a visual Turing
test conducted with healthcare professionals showed that the synthetic images
were realistic enough to fool them, further reinforcing the quality of the generated
data.

In conclusion, this thesis has demonstrated that using GANs, particularly the
HA-GAN model, can effectively address the challenge of limited training data for
machine learning segmentation models in cancer detection. By generating
high-quality, high-resolution synthetic images, these models can provide a
valuable augmentation to real-world datasets, enhancing the accuracy and
effectiveness of segmentation models. This work thus provides a robust response
to the posed research questions, proving the viability of using GANs for the
generation of synthetic CT images and demonstrating their positive impact on the
accuracy of cancer segmentation models.

7.1 Future Work

Looking forward, several avenues of research could potentially enhance the
effectiveness of the machine learning models used for cancer detection. One such
area involves further experimentation with the input threshold range used to
interpolate the CT images. Our preliminary analysis in Chapter 3.2 indicated
variability in these ranges. Although our experiments produced inferior results with
other ranges than the original [−1024, 600], future research should explore a wider
variety of ranges.

Moreover, although our data augmentation experiments did not outperform the
baseline results, there remains significant potential for improving the limited
training data size by augmenting more images.

171

It is crucial to acknowledge the significance of data leakage as a notable
constraint. To address this concern, future endeavors should contemplate training
the GAN using a subset of the data while reserving the remaining portion
exclusively for testing the segmentation model.

Additionally, future work should involve more experiments with the segmentation,
specifically focusing on larger image sizes, such as 256× 256× 256. As the
resolution and complexity of images increase, the segmentation process becomes
more challenging. However, with more research and experimentation, it’s plausible
that this could lead to better model performance and, consequently, more accurate
cancer segmentation.

172

References

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L.,
Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg,
M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available from tensorflow.org.

[Aggarwal et al., 2021] Aggarwal, A., Mittal, M., and Battineni, G. (2021).
Generative adversarial network: An overview of theory and applications.
International Journal of Information Management Data Insights, 1(1):100004.

[Alakwaa et al., 2017] Alakwaa, W., Nassef, M., and Badr, A. (2017). Lung cancer
detection and classification with 3d convolutional neural network (3d-cnn).
International Journal of Advanced Computer Science and Applications, 8(8).

[Andrearczyk et al., 2023] Andrearczyk, V., Oreiller, V., Abobakr, M., Akhavanallaf,
A., Balermpas, P., Boughdad, S., Capriotti, L., Castelli, J., Cheze Le Rest, C.,
Decazes, P., et al. (2023). Overview of the hecktor challenge at miccai 2022:
automatic head and neck tumor segmentation and outcome prediction in pet/ct.
In Head and Neck Tumor Segmentation and Outcome Prediction: Third
Challenge, HECKTOR 2022, Held in Conjunction with MICCAI 2022, Singapore,
September 22, 2022, Proceedings, pages 1–30. Springer.

[Arjovsky et al., 2017] Arjovsky, M., Chintala, S., and Bottou, L. (2017).
Wasserstein generative adversarial networks. In International conference on
machine learning, pages 214–223. PMLR.

[Arora and Arora, 2022] Arora, A. and Arora, A. (2022). Generative adversarial
networks and synthetic patient data: current challenges and future perspectives.
Future Healthcare Journal, 9(2):190.

173

[Bengio et al., 1994] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning
long-term dependencies with gradient descent is difficult. IEEE transactions on
neural networks, 5(2):157–166.

[Benhammou et al., 2018] Benhammou, Y., Tabik, S., Achchab, B., and Herrera, F.
(2018). A first study exploring the performance of the state-of-the art cnn model
in the problem of breast cancer. In proceedings of the international conference
on learning and optimization algorithms: theory and applications, pages 1–6.

[Bertels et al., 2019] Bertels, J., Eelbode, T., Berman, M., Vandermeulen, D.,
Maes, F., Bisschops, R., and Blaschko, M. B. (2019). Optimizing the dice score
and jaccard index for medical image segmentation: Theory and practice. In
Medical Image Computing and Computer Assisted Intervention–MICCAI 2019:
22nd International Conference, Shenzhen, China, October 13–17, 2019,
Proceedings, Part II 22, pages 92–100. Springer.

[Bishop, 1994] Bishop, C. M. (1994). Neural networks and their applications.
Review of scientific instruments, 65(6):1803–1832.

[Bray et al., 2021] Bray, F., Laversanne, M., Weiderpass, E., and Soerjomataram,
I. (2021). The ever-increasing importance of cancer as a leading cause of
premature death worldwide. Cancer, 127(16):3029–3030.

[Brett et al., 2023] Brett, M., Markiewicz, C. J., Hanke, M., Côté, M.-A., Cipollini,
B., McCarthy, P., Jarecka, D., Cheng, C. P., Halchenko, Y. O., Cottaar, M.,
Larson, E., Ghosh, S., Wassermann, D., Gerhard, S., Lee, G. R., Wang, H.-T.,
Kastman, E., Kaczmarzyk, J., Guidotti, R., Daniel, J., Duek, O., Rokem, A.,
Madison, C., Papadopoulos Orfanos, D., Sólon, A., Moloney, B., Morency, F. C.,
Goncalves, M., Baratz, Z., Markello, R., Riddell, C., Burns, C., Millman, J.,
Gramfort, A., Leppäkangas, J., van den Bosch, J. J., Vincent, R. D., Braun, H.,
Subramaniam, K., Van, A., Gorgolewski, K. J., Raamana, P. R., Klug, J.,
Nichols, B. N., Baker, E. M., Hayashi, S., Pinsard, B., Haselgrove, C., Hymers,
M., Esteban, O., Koudoro, S., Pérez-Garcı́a, F., Dockès, J., Oosterhof, N. N.,
Amirbekian, B., Nimmo-Smith, I., Nguyen, L., Reddigari, S., St-Jean, S.,
Panfilov, E., Garyfallidis, E., Varoquaux, G., Legarreta, J. H., Hahn, K. S.,

174

Waller, L., Hinds, O. P., Fauber, B., Roberts, J., Poline, J.-B., Stutters, J., Jordan,
K., Cieslak, M., Moreno, M. E., Hrnčiar, T., Haenel, V., Schwartz, Y., Darwin,
B. C., Thirion, B., Gauthier, C., Solovey, I., Gonzalez, I., Palasubramaniam, J.,
Lecher, J., Leinweber, K., Raktivan, K., Calábková, M., Fischer, P., Gervais, P.,
Gadde, S., Ballinger, T., Roos, T., Reddam, V. R., and freec84 (2023).
nipy/nibabel: 5.0.1.

[Bu et al., 2021] Bu, T., Yang, Z., Jiang, S., Zhang, G., Zhang, H., and Wei, L.
(2021). 3d conditional generative adversarial network-based synthetic medical
image augmentation for lung nodule detection. International Journal of Imaging
Systems and Technology, 31(2):670–681.

[Buzug, 2011] Buzug, T. M. (2011). Computed tomography. Springer.

[Cardoso et al., 2022] Cardoso, M. J., Li, W., Brown, R., Ma, N., Kerfoot, E.,
Wang, Y., Murrey, B., Myronenko, A., Zhao, C., Yang, D., et al. (2022). Monai:
An open-source framework for deep learning in healthcare. arXiv preprint
arXiv:2211.02701.

[Chen et al., 2021] Chen, R. J., Lu, M. Y., Chen, T. Y., Williamson, D. F., and
Mahmood, F. (2021). Synthetic data in machine learning for medicine and
healthcare. Nature Biomedical Engineering, 5(6):493–497.

[Chollet et al., 2015] Chollet, F. et al. (2015). Keras. https://keras.io.

[Chuquicusma et al., 2018] Chuquicusma, M. J., Hussein, S., Burt, J., and Bagci,
U. (2018). How to fool radiologists with generative adversarial networks? a
visual turing test for lung cancer diagnosis. In 2018 IEEE 15th international
symposium on biomedical imaging (ISBI 2018), pages 240–244. IEEE.

[Cirillo et al., 2021] Cirillo, M. D., Abramian, D., and Eklund, A. (2021). Vox2vox:
3d-gan for brain tumour segmentation. In Brainlesion: Glioma, Multiple
Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop,
BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4,
2020, Revised Selected Papers, Part I 6, pages 274–284. Springer.

175

https://keras.io

[Croitoru et al., 2023] Croitoru, F.-A., Hondru, V., Ionescu, R. T., and Shah, M.
(2023). Diffusion models in vision: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

[Dexter et al., 2020] Dexter, G. P., Grannis, S. J., Dixon, B. E., and Kasthurirathne,
S. N. (2020). Generalization of machine learning approaches to identify
notifiable conditions from a statewide health information exchange. AMIA
Summits on Translational Science Proceedings, 2020:152.

[Dillencourt et al., 1992] Dillencourt, M. B., Samet, H., and Tamminen, M. (1992).
A general approach to connected-component labeling for arbitrary image
representations. Journal of the ACM (JACM), 39(2):253–280.

[Durall et al., 2020] Durall, R., Chatzimichailidis, A., Labus, P., and Keuper, J.
(2020). Combating mode collapse in gan training: An empirical analysis using
hessian eigenvalues. arXiv preprint arXiv:2012.09673.

[Forsyth et al., 1999] Forsyth, D. A., Mundy, J. L., di Gesú, V., Cipolla, R., LeCun,
Y., Haffner, P., Bottou, L., and Bengio, Y. (1999). Object recognition with
gradient-based learning. Shape, contour and grouping in computer vision,
pages 319–345.

[Frid-Adar et al., 2018] Frid-Adar, M., Diamant, I., Klang, E., Amitai, M.,
Goldberger, J., and Greenspan, H. (2018). Gan-based synthetic medical image
augmentation for increased cnn performance in liver lesion classification.
Neurocomputing, 321:321–331.

[Giger and Suzuki, 2008] Giger, M. L. and Suzuki, K. (2008). Computer-aided
diagnosis. In Biomedical information technology, pages 359–XXII. Elsevier.

[Goodfellow et al., 2020] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2020). Generative
adversarial networks. Communications of the ACM, 63(11):139–144.

[Gulrajani et al., 2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. (2017). Improved training of wasserstein gans. Advances in
neural information processing systems, 30.

176

[Hager, 1979] Hager, W. W. (1979). Lipschitz continuity for constrained processes.
SIAM Journal on Control and Optimization, 17(3):321–338.

[Halicek et al., 2017] Halicek, M., Lu, G., Little, J. V., Wang, X., Patel, M., Griffith,
C. C., El-Deiry, M. W., Chen, A. Y., and Fei, B. (2017). Deep convolutional
neural networks for classifying head and neck cancer using hyperspectral
imaging. Journal of biomedical optics, 22(6):060503–060503.

[Harris et al., 2020] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R.,
Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern,
R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Rı́o,
J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T.,
Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020). Array
programming with NumPy. Nature, 585(7825):357–362.

[Heusel et al., 2017] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. (2017). Gans trained by a two time-scale update rule converge to
a local nash equilibrium. Advances in neural information processing systems,
30.

[Houssein et al., 2021] Houssein, E. H., Emam, M. M., Ali, A. A., and Suganthan,
P. N. (2021). Deep and machine learning techniques for medical imaging-based
breast cancer: A comprehensive review. Expert Systems with Applications,
167:114161.

[Huk, 2020] Huk, M. (2020). Stochastic optimization of contextual neural networks
with rmsprop. In Intelligent Information and Database Systems: 12th Asian
Conference, ACIIDS 2020, Phuket, Thailand, March 23–26, 2020, Proceedings,
Part II 12, pages 343–352. Springer.

[Hunter, 2007] Hunter, J. D. (2007). Matplotlib: A 2d graphics environment.
Computing in Science & Engineering, 9(3):90–95.

[Hussain et al., 2022] Hussain, B. Z., Andleeb, I., Ansari, M. S., Joshi, A. M., and
Kanwal, N. (2022). Wasserstein gan based chest x-ray dataset augmentation
for deep learning models: Covid-19 detection use-case. In 2022 44th Annual

177

International Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), pages 2058–2061. IEEE.

[Iantsen et al., 2021] Iantsen, A., Visvikis, D., and Hatt, M. (2021).
Squeeze-and-excitation normalization for automated delineation of head and
neck primary tumors in combined pet and ct images. In Head and Neck Tumor
Segmentation: First Challenge, HECKTOR 2020, Held in Conjunction with
MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings 1, pages 37–43.
Springer.

[Jain et al., 2020] Jain, A., Patel, H., Nagalapatti, L., Gupta, N., Mehta, S., Guttula,
S., Mujumdar, S., Afzal, S., Sharma Mittal, R., and Munigala, V. (2020).
Overview and importance of data quality for machine learning tasks. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 3561–3562.

[JetBrains, 2023] JetBrains (2023). Pycharm: The python ide for professional
developers by jetbrains. Accessed: May 13, 2023.

[Jnawali et al., 2018] Jnawali, K., Arbabshirani, M. R., Rao, N., and Patel, A. A.
(2018). Deep 3d convolution neural network for ct brain hemorrhage
classification. In Medical Imaging 2018: Computer-Aided Diagnosis, volume
10575, pages 307–313. SPIE.

[Joyce, 2011] Joyce, J. M. (2011). Kullback-leibler divergence. In International
encyclopedia of statistical science, pages 720–722. Springer.

[Kamath et al., 2019] Kamath, U., Liu, J., and Whitaker, J. (2019). Deep learning
for NLP and speech recognition, volume 84. Springer.

[Kao and Yang, 2022] Kao, Y.-S. and Yang, J. (2022). Deep learning-based
auto-segmentation of lung tumor pet/ct scans: a systematic review. Clinical and
Translational Imaging, 10(2):217–223.

[Karras et al., 2019] Karras, T., Laine, S., and Aila, T. (2019). A style-based
generator architecture for generative adversarial networks. In Proceedings of

178

the IEEE/CVF conference on computer vision and pattern recognition, pages
4401–4410.

[Karras et al., 2020] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and
Aila, T. (2020). Analyzing and improving the image quality of stylegan. In
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 8110–8119.

[Kavitha et al., 2023] Kavitha, R., Jothi, D. K., Saravanan, K., Swain, M. P.,
Gonzáles, J. L. A., Bhardwaj, R. J., Adomako, E., et al. (2023). Ant colony
optimization-enabled cnn deep learning technique for accurate detection of
cervical cancer. BioMed Research International, 2023.

[Kelley, 1960] Kelley, H. J. (1960). Gradient theory of optimal flight paths. Ars
Journal, 30(10):947–954.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

[Kingma and Welling, 2013] Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114.

[Klinker, 2011] Klinker, F. (2011). Exponential moving average versus moving
exponential average. Mathematische Semesterberichte, 58:97–107.

[Koonce and Koonce, 2021] Koonce, B. and Koonce, B. (2021). Resnet 50.
Convolutional Neural Networks with Swift for Tensorflow: Image Recognition
and Dataset Categorization, pages 63–72.

[Li et al., 2018] Li, J., Madry, A., Peebles, J., and Schmidt, L. (2018). On the
limitations of first-order approximation in gan dynamics. In International
Conference on Machine Learning, pages 3005–3013. PMLR.

[Liashchynskyi and Liashchynskyi, 2019] Liashchynskyi, P. and Liashchynskyi, P.
(2019). Grid search, random search, genetic algorithm: a big comparison for
nas. arXiv preprint arXiv:1912.06059.

179

[Liu et al., 2021] Liu, B., Zhu, Y., Song, K., and Elgammal, A. (2021). Towards
faster and stabilized gan training for high-fidelity few-shot image synthesis. In
International Conference on Learning Representations.

[McKinney et al., 2010] McKinney, W. et al. (2010). Data structures for statistical
computing in python. In Proceedings of the 9th Python in Science Conference,
volume 445, pages 51–56. Austin, TX.

[Muehllehner and Karp, 2006] Muehllehner, G. and Karp, J. S. (2006). Positron
emission tomography. Physics in Medicine & Biology, 51(13):R117.

[Myronenko, 2019] Myronenko, A. (2019). 3d mri brain tumor segmentation using
autoencoder regularization. In Brainlesion: Glioma, Multiple Sclerosis, Stroke
and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held
in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018,
Revised Selected Papers, Part II 4, pages 311–320. Springer.

[Myronenko et al., 2023] Myronenko, A., Siddiquee, M. M. R., Yang, D., He, Y.,
and Xu, D. (2023). Automated head and neck tumor segmentation from 3d
pet/ct hecktor 2022 challenge report. In Head and Neck Tumor Segmentation
and Outcome Prediction: Third Challenge, HECKTOR 2022, Held in
Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings,
pages 31–37. Springer.

[NITRC, 2022] NITRC (2022). Mricrogl.
https://www.nitrc.org/projects/mricrogl. Accessed: May 13, 2023.

[Oreiller et al., 2022] Oreiller, V., Andrearczyk, V., Jreige, M., Boughdad, S.,
Elhalawani, H., Castelli, J., Vallieres, M., Zhu, S., Xie, J., Peng, Y., et al. (2022).
Head and neck tumor segmentation in pet/ct: the hecktor challenge. Medical
image analysis, 77:102336.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf,
A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B.,
Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style,

180

https://www.nitrc.org/projects/mricrogl

high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

[Pesaranghader et al., 2021] Pesaranghader, A., Wang, Y., and Havaei, M. (2021).
Ct-sgan: computed tomography synthesis gan. In Deep Generative Models, and
Data Augmentation, Labelling, and Imperfections: First Workshop,
DGM4MICCAI 2021, and First Workshop, DALI 2021, Held in Conjunction with
MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings 1, pages
67–79. Springer.

[Rezaei, 2021] Rezaei, Z. (2021). A review on image-based approaches for
breast cancer detection, segmentation, and classification. Expert Systems with
Applications, 182:115204.

[Ronneberger et al., 2015] Ronneberger, O., Fischer, P., and Brox, T. (2015).
U-net: Convolutional networks for biomedical image segmentation. In Medical
Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October 5-9, 2015, Proceedings,
Part III 18, pages 234–241. Springer.

[Ruder, 2016] Ruder, S. (2016). An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747.

[Russ et al., 2019] Russ, T., Goerttler, S., Schnurr, A.-K., Bauer, D. F., Hatamikia,
S., Schad, L. R., Zöllner, F. G., and Chung, K. (2019). Synthesis of ct images
from digital body phantoms using cyclegan. International journal of computer
assisted radiology and surgery, 14:1741–1750.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J.,
Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.
(2015). Imagenet large scale visual recognition challenge. International journal
of computer vision, 115:211–252.

[Salimans et al., 2016] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. (2016). Improved techniques for training gans.
Advances in neural information processing systems, 29.

181

[Shorten and Khoshgoftaar, 2019] Shorten, C. and Khoshgoftaar, T. M. (2019). A
survey on image data augmentation for deep learning. Journal of big data,
6(1):1–48.

[Siddique et al., 2022] Siddique, M. M. R., Yang, D., He, Y., Xu, D., and
Myronenko, A. (2022). Automated ischemic stroke lesion segmentation from 3d
mri. arXiv preprint arXiv:2209.09546.

[Sidey-Gibbons and Sidey-Gibbons, 2019] Sidey-Gibbons, J. A. and
Sidey-Gibbons, C. J. (2019). Machine learning in medicine: a practical
introduction. BMC medical research methodology, 19:1–18.

[Simula, 2023] Simula (2023). Simula ex3. Accessed: May 13, 2023.

[Sorin et al., 2020] Sorin, V., Barash, Y., Konen, E., and Klang, E. (2020). Creating
artificial images for radiology applications using generative adversarial networks
(gans)–a systematic review. Academic radiology, 27(8):1175–1185.

[Sun et al., 2022] Sun, L., Chen, J., Xu, Y., Gong, M., Yu, K., and Batmanghelich,
K. (2022). Hierarchical amortized gan for 3d high resolution medical image
synthesis. IEEE journal of biomedical and health informatics, 26(8):3966–3975.

[Szegedy et al., 2015] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going
deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.

[Thambawita et al., 2022] Thambawita, V., Salehi, P., Sheshkal, S. A., Hicks, S. A.,
Hammer, H. L., Parasa, S., Lange, T. d., Halvorsen, P., and Riegler, M. A.
(2022). Singan-seg: Synthetic training data generation for medical image
segmentation. PloS one, 17(5):e0267976.

[Ugai et al., 2022] Ugai, T., Sasamoto, N., Lee, H.-Y., Ando, M., Song, M., Tamimi,
R. M., Kawachi, I., Campbell, P. T., Giovannucci, E. L., Weiderpass, E., et al.
(2022). Is early-onset cancer an emerging global epidemic? current evidence
and future implications. Nature Reviews Clinical Oncology, 19(10):656–673.

182

[Vallender, 1974] Vallender, S. (1974). Calculation of the wasserstein distance
between probability distributions on the line. Theory of Probability & Its
Applications, 18(4):784–786.

[Van der Maaten and Hinton, 2008] Van der Maaten, L. and Hinton, G. (2008).
Visualizing data using t-sne. Journal of machine learning research, 9(11).

[Van der Walt et al., 2014] Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J.,
Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., and Yu, T. (2014).
scikit-image: image processing in python. PeerJ, 2:e453.

[Van Rossum and Drake, 2009] Van Rossum, G. and Drake, F. L. (2009). Python
3 Reference Manual. CreateSpace, Scotts Valley, CA.

[Virtanen et al., 2020] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A.
R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore,
E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I.,
Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van
Mulbregt, P., and SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272.

[Vlaardingerbroek and Boer, 2013] Vlaardingerbroek, M. T. and Boer, J. A. (2013).
Magnetic resonance imaging: theory and practice. Springer Science &
Business Media.

[Voulodimos et al., 2018] Voulodimos, A., Doulamis, N., Doulamis, A.,
Protopapadakis, E., et al. (2018). Deep learning for computer vision: A brief
review. Computational intelligence and neuroscience, 2018.

[Wang et al., 2019] Wang, F., Casalino, L. P., and Khullar, D. (2019). Deep
learning in medicine—promise, progress, and challenges. JAMA internal
medicine, 179(3):293–294.

[Woodland et al., 2022] Woodland, M., Wood, J., Anderson, B. M., Kundu, S., Lin,
E., Koay, E., Odisio, B., Chung, C., Kang, H. C., Venkatesan, A. M., et al. (2022).

183

Evaluating the performance of stylegan2-ada on medical images. In Simulation
and Synthesis in Medical Imaging: 7th International Workshop, SASHIMI 2022,
Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022,
Proceedings, pages 142–153. Springer.

[Yang et al., 2021] Yang, H., Lu, X., Wang, S.-H., Lu, Z., Yao, J., Jiang, Y., and
Qian, P. (2021). Synthesizing multi-contrast mr images via novel 3d conditional
variational auto-encoding gan. Mobile Networks and Applications,
26(1):415–424.

[Yang and Shami, 2020] Yang, L. and Shami, A. (2020). On hyperparameter
optimization of machine learning algorithms: Theory and practice.
Neurocomputing, 415:295–316.

[Yazici et al., 2020] Yazici, Y., Foo, C.-S., Winkler, S., Yap, K.-H., and
Chandrasekhar, V. (2020). Empirical analysis of overfitting and mode drop in
gan training. In 2020 IEEE International Conference on Image Processing
(ICIP), pages 1651–1655. IEEE.

[Yi et al., 2019] Yi, X., Walia, E., and Babyn, P. (2019). Generative adversarial
network in medical imaging: A review. Medical image analysis, 58:101552.

[Yu et al., 2018] Yu, B., Zhou, L., Wang, L., Fripp, J., and Bourgeat, P. (2018). 3d
cgan based cross-modality mr image synthesis for brain tumor segmentation. In
2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018),
pages 626–630. IEEE.

[Zhou, 2021] Zhou, Z.-H. (2021). Machine learning. Springer Nature.

Appendices

• Code available on Github: Link

• Synthetic datasets available on Google Drive: Link

184

https://github.com/Guttulsrud/generating-3d-ct-images-with-gans
https://drive.google.com/drive/folders/1Nv7ua542ld_AwY_M6zajV47mA0JwAqkf?usp=sharings

	Introduction
	The Importance of Medical Imaging in Cancer Detection
	Leveraging Machine Learning to Improve Cancer Detection
	The Problem of Insufficient Training Data for Machine Learning in Medicine
	Research Questions
	Main Contributions
	Ethical Considerations
	Outline

	Background
	Artificial Neural Networks
	Training
	Optimization

	Deep Learning and Convolutional Neural Networks
	Cancer Segmentation with Deep Learning
	Deep Learning in Medicine
	Cancer Segmentation
	Evaluating Segmentation Models
	Current State of Cancer Segmentation with Deep Learning

	Generative Models for Synthetic Data Generation
	Generative Adversarial Networks
	Limitations

	Beyond GAN: Improved Architectures
	Wasserstein GAN
	StyleGAN2 and FastGAN
	Hierarchical Amortized GAN

	Evaluating Generative Adversarial Networks
	Inception Score
	Fréchet Inception Distance
	t-Distributed Stochastic Neighbor Embedding
	Visual Turing Test

	Hyperparameter Optimization
	Related Work
	Synthetic 2D Medical Data Generation with GANs
	Synthetic 3D Medical Data Generation with GANs
	Segmentation of 3D images
	Related Work Summary

	Methodology
	Dataset
	Preliminary Data Analysis
	Data Visualization
	Data Preprocessing and Data Transformation
	Vanilla GAN and WGAN
	FastGAN and StyleGAN2
	Hierarchical Amortized GAN

	Data Augmentation
	Voxel Resampling
	Affine Transformation
	Elastic Deformation

	Implemented GAN Architectures
	Vanilla GAN
	Wasserstein GAN
	FastGAN
	StyleGAN2
	Hierarchical Amortized GAN

	Hyperparameter Optimization
	Inference and data Postprocessing
	Generating Images
	Postprocessing

	GAN Evaluation
	Loss Diagrams
	Inception Score
	Fréchet Inception Distance
	t-Distributed Stochastic Neighbor Embedding

	Segmentation
	Preprocessing
	Model
	Training
	Evalation and Inference

	Experiments
	Experimental Setup
	Vanilla GAN
	Improved Architectures
	Vanilla GAN 2
	Wasserstein GAN
	Hyperparameter Optimization

	2-dimensional GANs
	Wasserstein GAN
	FastGAN
	StyleGAN2

	Generating Images only with HA-GAN
	Generating Image/mask Pairs with HA-GAN
	Mask Interpolation
	Slice-by-Slice Concatenation
	Modified Hounsfield Unit Interpolation Range
	Hyperparameter Optimization
	Data Augmentation
	Binarization of Mask Values
	High-Resolution Images

	Visual Turing Test
	Segmentation
	Segmentation Baseline
	Training on Real and Generated Images with 5-Fold Cross-Validation
	Training on Generated Images, Testing on Real Images
	Training on Real and Generated Images, Testing on Real Images

	Results and Discussion
	Vanilla GAN
	Wasserstein GAN
	FastGAN and StyleGAN2
	HA-GAN Image Generation
	HA-GAN Image/Mask Pair Generation
	Baseline
	Slice by Slice Concatenation
	Hyperparameter Optimization
	Modified HU Interpolation Range
	Data Augmentation
	Binary Mask
	Post-Processing
	High-Resolution Images

	Visual Turing Test
	Segmentation
	Baseline
	Training on Real and Generated Images
	Training on Generated Images - Testing on Real Images
	Training on Real and Generated Images - Testing on Real Images

	Limitations
	Conclusion and Future Work
	Future Work

	Appendices

