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Abstract: Assisted reproductive technology is used for treating infertility, and its success relies on the
quality and viability of embryos chosen for uterine transfer. Currently, embryologists manually assess
embryo development, including the time duration between the cell cleavages. This paper introduces
a machine learning methodology for automating the computations for the start of cell cleavage stages,
in hours post insemination, in time-lapse videos. The methodology detects embryo cells in video
frames and predicts the frame with the onset of the cell cleavage stage. Next, the methodology reads
hours post insemination from the frame using optical character recognition. Unlike traditional embryo
cell detection techniques, our suggested approach eliminates the need for extra image processing
tasks such as locating embryos or removing extracellular material (fragmentation). The methodology
accurately predicts cell cleavage stages up to five cells. The methodology was also able to detect the
morphological structures of later cell cleavage stages, such as morula and blastocyst. It takes about
one minute for the methodology to annotate the times of all the cell cleavages in a time-lapse video.

Keywords: human embryo cell counting; cell cleavage stage prediction; cell cleavage time computation;
object detection; optical character recognition (OCR)

1. Introduction

Assisted reproductive technology (ART) is a treatment for individuals or couples,
who are unable to conceive a child. ART techniques such as in vitro fertilization (IVF) or
intracytoplasmic sperm injection (ICSI) involve fertilization of the egg outside the female
body. Several oocytes (unfertilized eggs) are surgically removed from the ovary of the
woman and fertilized with sperm in a laboratory, resulting in embryos. The embryos are
cultured in an incubator with optimal conditions for a maximum of five days. The cultured
embryos can be transferred into the uterus, cryopreserved for subsequent transfers, or
discarded. Typically, the embryo with the highest quality is transferred back to the woman’s
uterus. The process of estimating the quality of each embryo and ranking the available
embryos within a cohort is called embryo evaluation [1,2]. The embryo evaluation is carried
out manually by embryologists. The embryologists rank each embryo based on various
criteria proven to be correlated with successful implantation or childbirth [3,4]. One such
criterion involves analyzing the dynamics of the cell cleavage stages, also referred to as
the morphokinetic parameters related to embryo development. A cell cleavage stage is
characterized by the number of embryonic cells and their subsequent cell division. An
example of a human embryo monitored for development from the two-cell stage, three-cell
stage, and four-cell stage to later stages such as the morula and blastocyst stage are shown
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in Figure 1. The morula and blastocyst stages have a distinct morphology as compared to
the early cell cleavage stages of embryo development. The morula stage is a compacted
structure made of small-sized cells followed by a blastocyst, which is composed of hundreds
of cells characterized into distinct features.

Figure 1. Cell cleavage stages of human embryo development. Scale bar: 100 µm.

Evaluating the morphological development of cell cleavages is a relevant step in select-
ing embryos with high quality and viability [5,6]. The embryologists assess morphokinetic
parameters such as changes in the cell morphology and the transitions during cell division
to identify embryos with a higher potential to implant [7,8]. The information on cell cleav-
age duration is important for embryo evaluation [9]. The time between subsequent embryo
cell divisions, including both absolute and relative timings is relevant [10]. Research has
shown that in the embryos with a higher potential to implant, the cleavage from two cells to
eight cells occurred comparatively earlier [11] than in embryos that were unable to implant.
A study concluded that evaluating the exact timing of embryo division in the early cleavage
stages has a high potential to predict embryo quality [12]. Another study revealed that
the time taken to divide to five cells and the time between the division from three cells
to four cells can effectively determine the embryo quality [13]. Indeed, the evaluation of
the exact timing of early events in embryo development is a promising tool for predicting
embryo quality [12], and progression from one cleavage to the next cleavage represents a
noninvasive marker of embryo development potential [14,15]. Therefore, detecting the cell
cleavage stages and the timings of successive cleavage during the preimplantation phase
can provide valuable insights into embryo viability.

Usually, embryologists manually examine the cell cleavage stages and the length of
the cleavage cycles [16], and it should take less than 2 min to annotate a single embryo, but
often a single patient has multiple embryos (5–10 embryos), so it can take up to 20 min [17].
However, this task can be tedious and prone to subjectivity. The process can be automated
using artificial intelligence (AI) or, specifically, object detection algorithms and optical char-
acter recognition (OCR). In fact, in recent times, several AI algorithms have been applied
to automate embryo evaluation [2,18–20]. The application of object detection algorithms
for medical image processing is common [21]. The medical domain images usually have
the object of interest as a small surface area and blurred boundary [22]. However, the
algorithms effectively detect the object in both images [23] and video stream [24]. A similar
characteristic was observed for embryo cells with the application of time-lapse imaging.
The time-lapse technology (TLT) enables the continuous monitoring of embryo develop-
ment [25,26] and provides comprehensive information regarding the morphokinetics of
embryo development including observations for events such as cell division or the transi-
tion between different cell cleavage stages [27]. With the application of an object detection
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algorithm, we can detect cells inside an embryo and determine the associated cell cleavage
stage. The time-lapse imaging also captures the elapsed time since the start of fertilization.
Depending upon the time-lapse system software, usually, the hours post insemination (hpi)
is appended to each frame of video and can be read by the application of optical character
recognition (OCR). Thus, using object detection and OCR we can automate the process of
finding the start of an observed cell cleavage stage and recognizing the associated time in
hpi (absolute or relative) for the stage. The automation will benefit embryologists in their
daily tasks and can be used as a decision support system.

The software iDAScore from Vitrolife automatically estimates cell division events in
time lapse. The feature is referred to as Guided Annotation [28]. The software requires a
license and also the presence of Vitrolife EmbryoScope, EmbryoViewer software, which
makes it cost intensive. Moreover, the quality of the TLT video is important for Guided
Annotation’s efficient performance. For example, during the entire period, the embryo
should be centered and in focus with entire embryo region being visible. There are alterna-
tive noninvasive approaches to count the number of cells and their location in time-lapse
images of embryo development [29–31]. Their algorithms are based on computer vision
and machine learning and predict only the cell count but no time annotations for the cell
cleavage stages. Moreover, the algorithms require additional preprocessing steps such as
image processing, detecting the embryo location, or extra filters to grasp the morphology
progression along the temporal domain. This makes the approaches resource-demanding.
Furthermore, the approaches only detect the early stages of embryo development and do
not apply to later stages such as morula and blastocyst.

To address the lack of time annotation in previous research, in this article, we suggest
a novel methodology for identifying the start and duration of cell cleavage stages in TLT
videos. The methodology uses object detection algorithms to analyze each frame in the
video and identify instances of cells, as well as the presence of the morula and blastocyst
stages. The frames that belong to a cell cleavage stage are grouped together based on the
number of cells or the presence of the morula and blastocyst. The first frame in each group
is annotated as the start of the cleavage stage, and the hpi present on that frame is read
using OCR. If the hpi value is missing, the methodology derives it using the video frame
rate and time-lapse system configuration. We evaluated two object detection algorithms
(YOLO v5 and DETR, explained in Section 3.1) and three OCR techniques (pytesseract,
EasyOCR, and Keras-OCR, explained in Section 3.2) with our methodology. In Figure 2, we
outline the methodology’s workflow.

The suggested methodology is capable of not only locating the cells but also predicting
the start of all cell cleavage stages observed in a TLT video. Furthermore, we found that the
presence of artifacts or fragmentation in the datasets did not affect the performance, since
our methodology was able to differentiate them from the cells. The methodology operates
directly on TLT video frames without any additional preprocessing steps or software
license installation, making it both cost- and time-effective. For patients with the number of
embryos in the range of 5–10, the methodology used, on average, around 3 min to compute
the annotations of all the TLT videos. To best of our knowledge, besides iDAScore, there
exists no other software tool that computes automated cell cleavage annotations. Thus,
the combination of object detection with OCR in the field of ART and for the automated
annotating of morphokinetics parameters is novel.

The main contributions in the article are as follows:

• We have developed a fully automated framework for tracking cell divisions and
counting cells in embryos.

• Our methodology predicts and annotates the start time of cell cleavages without the
need for any manual intervention by embryologists.

• Our methodology effectively detects the starting frame of cell cleavage stages from one
cell to five cells, and achieved an F1-score of 0.63 and an accuracy of 0.69. For detecting
the starting frames for stages with cell counts greater than five, our methodology was
delayed by 30–32 frames on average, considering videos with a frame rate of eight
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frames per hour. The time annotations for the two-cell to five-cell stages were delayed
by 2–3 hpi on average.

• Our methodology’s versatility allows it to accurately detect not only the number of
cells in an embryo but also the distinct morphological structures of later cell cleavage
stages, such as the morula and blastocyst.

• We examined the relation between the level of fragmentation within an embryo and
the performance of our proposed methodology. Embryologists’ validation confirmed
that our approach did not confuse cells with small-sized fragments.

• Our methodology computes start-time annotations (in hpi) for videos in real time,
making it suitable for clinical applications. The shortest video was annotated in 26 s,
while the longest video took approximately one minute.

The rest of the paper is organized as follows: Section 2 provides an overview of the
existing methodologies automating the detection of the cell cleavage stages, and Section 3
provides an overview of the state-of-the-art object detection algorithms and OCR libraries.
Section 3 also describes the principle theory behind time-lapse systems. Section 4 describes
the data used for training and evaluation of the methodology, and Section 5 provides an
overview and discusses various components of the methodology. Sections 6 and 7 discuss
the results and their limitations along with suggestions for future research. Finally, Section 8
concludes the paper and highlights the main findings.

Figure 2. An overview of the methodology’s pipeline predicting the start time of the cell cleavage
stages observed in time-lapse videos. Subfigure (A) shows a block diagram of the methodology’s
workflow starting with the input of a video through to the methodology predicting time annotations
in hpi for the observed cell cleavage stages in the video. Subfigure (B) shows a video frame with time
appended in the bottom right corner. The time is read out by OCR, and the suggested methodology
provides the annotation pairing cleavage stage and the detected time.

2. Related Work

In this section, we review previous research work for detecting cell cleavage stages
in TLT videos of human embryo development. In Section 2.1 we present some research
studies employing different techniques to predict cell count and eventually the associated
cell cleavage stage.

2.1. Predicting Cell Cleavage Stages

Various research studies have explored detecting embryo cells and predicting cell
cleavage stages of human embryos in time-lapse images. A few methods have used a
particle filter for tracking cell divisions [9] or developed conditional random field (CRF)
framework for counting cells and predicting cell division [30,32]. Another approach used
the Markov chain model to infer the most likely number and location of cells in a human
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embryo [33]. However, the application of these approaches is challenged by the exponen-
tially growing search space. The search space is constituted with tracking multiple cell
divisions. Thus, the approaches are limited to only detecting the early cell cleavage stages
of embryo development. Moreover, these approaches relied on handcrafted feature sets
and detailed annotations. Detailed annotations were also a prerequisite for an approach
to detecting cells by predicting the density of cells instead of their precise location [34].
Since the annotations estimated the cells’ local density, the task of generating annotations
alone was time-consuming and challenging. Deep-learning-based approaches have also
been applied for detecting human embryo cell cleavage stages. In another study, AlexNet
and VGG16 were used to classify the embryo cell cleavage stages after determining the
rough location of the embryo using a Haar feature-based cascade classifier and marking
the embryo boundary using the gradient vector for image pixels [17]. Another approach
employed a convolutional neural network (CNN) to count cells and used CRF to include
temporal information when predicting the cell cleavage stage [31]. The framework required
preprocessing of the input images such as removing the petri dish, cropping the embryo,
putting the cells into focus, and filtering to remove fragmentation.

However, these approaches are limited to detecting only early cell cleavage stages and
often require preprocessing of images or detailed annotations. In contrast, our method-
ology directly uses state-of-the-art object detection algorithms to detect the cells, morula,
and blastocyst stages in raw TLT video frames without any preprocessing requirements.
This makes it suitable for real-time processing in clinical settings, and unlike proprietary
software such as iDAScore, our methodology was developed using open-source libraries
and is not dependent on any specific time-lapse system.

3. Background Theory

This section explain the concepts such as the state-of-the-art AI techniques and TLT.
Section 3.1 focuses on the object detection algorithms used in our methodology for identify-
ing cells, morula, and blastocyst in TLT videos. Section 3.2 discusses the optical character
recognition (OCR) libraries used for computing time annotations in hpi, while Section 3.3
provides a brief overview of the TLT used for monitoring embryo development.

3.1. Object Detection Algorithms

Object detection in an image or a video is defined as proposing the region of interest
to find what the region represents (classification) and where it is located (localization) and
then creating bounding boxes for the detected objects [35,36]. These objects are instances of
predefined classes. The knowledge about the location of an object will help in object tracking
and gathering information about the object’s speed and evolution in shape, position, and
structure. The rapid progress in deep learning has provided great momentum to object
detection technology, and currently there exist several object detection algorithms such as
YOLO (You Only Look Once), SSD (Single Shot Multibox detector), region proposals (R-
CNN, Fast-RCNN, Faster RCNN, Cascade R-CNN), RetinaNet, and DEtection TRansformer
(DETR) to name a few.

In ART, the embryo morphology is analyzed in real time; hence, a fast object detection
technology is required. YOLO [37] is a much faster algorithm than its counterparts such as
Region proposals [36]. The object detection algorithms such as YOLO, Mask R-CNN, Faster
R-CNN, etc., perform auxiliary tasks such as non-maximum suppression (NMS) when
detecting objects. DETR is different because it does not conduct auxiliary tasks and uses a
set-based global loss for uniquely predicting object locations [38]. Thus, our methodology
evaluated two object detection algorithms: YOLO and DETR to detect instances of cell,
morula, and blastocyst.

YOLO v5 is a single-shot detector that processes the entire image at once, performing
both detection and classification simultaneously. The image is divided into N grids of
equal size, and for each grid, the algorithm predicts the probability of an object being
present within the grid. These grids’ regions, called anchor boxes, are tunable parameters.
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During training, the anchor boxes inform the algorithm about the image regions it should
process regularly for successful detection and classification in a single forward pass. YOLO
v5 draws bounding boxes around objects, weighs them with an expected probability of
locating the object against its class label, and uses the mean average precision (mAP) metric
to quantify performance while predicting bounding boxes for different object classes. The
mAP is the mean of the average precision (AP) for all the object classes and AP summarizes
the precision-sensitivity curve for YOLO v5 when predicting the bounding box per object
class into a single value. The single value provides an average of all the precision values.
The algorithm can identify several bounding boxes for a single object. However, to choose
the best box and remove the others, the non-maximum suppression (NMS) technique
is applied. NMS starts by selecting the box (BC) with the highest confidence level and
then calculates the intersection between the BC and the other candidate boxes. Next, the
intersection is divided by the union between the BC and the other boxes to obtain the
Intersection over Union (IoU) value, see Figure 3. If the IoU value exceeds a predetermined
threshold, the other box is filtered out. The selection of the best bounding box and the
filtering of other box candidates is shown in Figure 4.

IoU    =
Intersection over 
union

Intersection

Union

BA

IoU = 0.83

IoU = 0.43

IoU = 0.0

Figure 3. Intersection over union (IoU) for bounding boxes. (A) The IoU is calculated by dividing the
intersection of the two boxes by the union of the boxes. The intersection region is shaded with blue
lines; (B) examples for different values of IoU. Image inspired from the original image in [39].

Figure 4. YOLO v5 detects three bounding boxes for the morula stage. The bounding boxes localizing
morula are marked in red color. With the use of NMS, YOLO v5 selects the best candidate for the
bounding box for the morula object after eliminating the other two boxes. Scale bar: 100 µm.

DETR is a new approach to object detection that eliminates auxiliary heuristics such
as NMS and trains end-to-end for object detection. It works by using a CNN to extract
features from an image and a transformer to detect objects related to those features using
the loss function called bipartite matching. The bipartite matching loss is shown in Figure 5.
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Set of box predictions
Bipartite matching loss

no object no object

Figure 5. DETR: bipartite matching loss to find the best match between the ground truth and the
predicted set of box coordinates and object class predictions. Each detected object is marked with
different and unique colored bounding box in square shape. Image inspired from the original
paper [38].

The architecture of the DETR is divided into blocks: backbone, encoder, decoder,
and prediction heads. The schematic diagram explaining the DETR architecture and the
workflow of image processing is shown in Figure 6. An image is passed through the CNN
to downscale the spatial extent and obtain feature maps. The flattened feature maps are
passed as a token across the transformer consisting of the both encoder and decoder. Along
with the feature maps, an additional element called positional encoding is also passed to
the transformer. The positional encoding indicates to the transformer which position in
the original image the elements in the feature maps correspond to, and this information is
added to each layer of the transformer. The transformer has an attention mechanism and
processes these tokens. In the encoder part, every token is mapped to a query, key, and
value. The value vectors are summed, resulting in every token attending to other tokens
and giving global attention. The value vectors are propagated through encoder layers and
the generated representations to the decoder. The decoder also receives fixed N sized object
queries. The N is fixed to 100 in the DETR architecture.

Figure 6. For an input image, the DETR uses a CNN backbone to obtain the feature maps, which are
flattened and supplemented with positional encoding. The input is then fed to a transformer encoder
network with multihead attention. The output from the encoder is passed to the transformer decoder
and is processed further with the application of learned positional encoding called object queries.
The output embedding from the decoder is passed in parallel to the shared feed forward network
(FFN) to obtain bounding boxes and classes for the detected objects. Each detected object such as
instances of cell class or no-object class are marked with different and unique colored bounding box
in square shape. Image inspired from the original paper [38].

The queries initially start as random vectors and are responsible for locating objects
within an image. The queries are trained to detect objects in a specific location in or part of
an image. These queries act as positional encoding for the decoders, and the N output is
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passed on to a feed forward network (FFN) in parallel. The FFN then outputs a combination
of bounding boxes and classes for each of the N detected objects. This output is placed
in a set called the predicted set. The length of the predicted set is 100 and differs from
that of the ground truth set. To account for this, the ground truth set is padded with ‘no
object class’ and ‘empty bounding box coordinates’. Moreover, the predicted set may have
several entries with ‘no object class’ and ‘empty bounding box coordinates’. The DETR uses
bipartite matching loss to match entries in the predicted set to those in the ground truth set
with the goal of finding the permutation of the predicted set closest to the ground truth
set. The bipartite matching results in minimum loss, which is calculated using the IoU loss
and the L1 loss (when bounding box coordinates are at an offset from their corresponding
entry in the ground truth) combined with cross entropy loss (when a wrong class label
is predicted). To perform an effective bipartite matching, the DETR uses the Hungarian
optimization algorithm. According to the illustrated figure, the best permutation of the
predicted set (in terms of color) incurring minimum loss will be pink to be on top, followed
by yellow and then the ‘no object class’.

3.2. Optical Character Recognition Libraries

The output of the suggested methodology after processing a TLT video is the com-
putation of time annotations in hpi for the start of the cell cleavage stages present in the
video. One of the mechanisms used by the methodology to detect the hpi is the application
of OCR to read out the appended hours on video frames (for reference, see Figure 2).
OCR is the process of detecting text in an image and then converting the content into a
machine-readable text format for analysis. We evaluated three open-source OCR libraries
Python-tesseract (pytesseract) [40], EasyOCR [41], and Keras-OCR [42]. Pytesseract is
a python wrapper for Google’s Tesseract-OCR engine. Tesseract is available under the
Apache 2.0 license as an open-source engine. It can be used directly or with an API. To
recognize a single character, the engine uses CNN, and for processing the sequence of
characters, long short-term memory (LSTM) is employed. Pytesserect can read all types of
images including jpeg, png, and gif to extract text from the images. To use pytesseract for
OCR, our suggested methodology had to preprocess each frame. The frame was grayed
out for regions other than the region containing the text. The library Keras-OCR is a pack-
acked version of the Keras Convolutional Recurrent Neural Network (CRNN) [43] and the
Character-Region Awareness For Text detection (CRAFT) [44] model and provides API for
training text detection and OCR. Keras’s implementation of CRNN for text recognition
utilizes the implementation of two models. The first one is based on the original CRNN
model, and the second one includes a spatial transformer network layer to rectify the
text [43]. The CRAFT text detector detects the text area by exploring each character region
and affinity between the characters. The bounding box on the text is obtained by finding the
minimum bounding rectangles after thresholding character regions with affinity scores [44].

3.3. Time-Lapse Technology

Embryo development is a dynamic event observed in both spatial and temporal
domains. For culturing embryos outside the body, an optimal incubation environment in
terms of temperature, pH, and oxygen levels is a basic requirement [45]. The TLT offers a
stable optimal incubation environment for culturing embryos without removing them from
the incubator. TLT also provides for the continuous monitoring of the dynamics of cell
divisions for the embryo through multiple image acquisitions at frequent intervals [25]. The
embryos are kept inside the TLT system culture media in a specially designed culturing dish.
A TLT system has a standalone incubator primarily containing three components: (1) a light
source to illuminate an embryo, (2) a digital inverted microscope to magnify the cells inside
the embryo while the images are being captured, and (3) a digital camera to capture the
images of an embryo (with the use of software, a TLT video can be made from the images
depicting embryo development). Hence, TLT monitoring allows for the collection of a lot
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of information on the timings of the cell cleavages and other morphological changes [46].
Figure 7 shows a schematic design of a time-lapse incubator system.

Light source

Mirror

Culturing
media

Embryo

Objective

Camera

Data storage

Figure 7. The schematic design of a time-lapse incubator system. The image draws inspiration from
the original image in [17].

In this study, we used a TLT system called EmbryoscopeTM (Vitrolife). EmbryoscopeTM

is an incubator with an integrated time-lapse system, where the embryos are cultured
individually in microwells and are moved one by one into the field of view of the inbuilt
microscope at each instance of the image acquisitions captured by the inbuilt camera. In the
EmbryoscopeTM system, embryos are cultured in culture dishes called Embryoslides [46].
The specification of the system comes with a camera under a 635 nm LED light source
passing through Hoffman’s contrast modulation optics. For each embryo placed inside the
incubator, the system takes 8-bit images with a resolution of 500 × 500 pixels at several
focal planes (number varying between 3 and 5) every 15 min. The images are processed
to be displayed on a computer screen. Whenever the TLT system captures an image, it
has the provision to encode the time (in hours) on the bottom right corner of the image.
The time is calculated from the starting time of insemination for each oocyte individually.
The captured images can then be connected to form a video that can rewind and fast
forward for detailed analyses by embryologists. To analyze the progression of the embryo
over time, the embryologist, for instance, can go through the video and identify the start
of each observed cell cleavage stage. However, the annotating process requires manual
intervention by the embryologists.

4. Data

The dataset consisted of TLT videos collected retrospectively by embryologists work-
ing at the Fertilitetssenteret. The Fertilitetssenteret is a fertility clinic in Oslo, Norway. The
embryos were cultured inside an EmbryoscopeTM with similar time-lapse imaging specifi-
cations as described in Section 3.3. The dataset contained two types of videos: embryos that
had been transferred to females and embryos that had been frozen or cryopreserved for
later use. We used two separate categories to potentially improve the generalizability of the
suggested methodology. For example, the frozen videos had a higher rate of fragmentation
compared to the transferred videos. We used the transferred videos to train and validate
the object detection algorithms, which we explain in Section 5.1. The dataset consisted of
250 videos and is referred to as the ‘TransferV’ dataset in the rest of the paper. Furthermore,
the TransferV was further divided into a training set and an evaluation set consisting of
200 and 50 videos, respectively. The training set was used for training the object detection
algorithms to locate instances of cells, morula, or blastocyst, while the evaluation set was
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used for evaluating the object detection algorithms and tuning the hyperparameters for
efficient detection of the cell cleavage stages.

While TransferV was used to train and evaluate the object detection algorithms, the
frozen embryo videos were used to evaluate the performance of our methodology to predict
the start of the cell cleavage stages. The dataset consisted of 29 videos and is referred to as
‘FrozenV’ in the rest of the paper. Table 1 summarizes the different datasets that were used in
this study.

For each video in the TransferV dataset, the embryologists at the Fertilitetssenteret
reviewed all the video frames and manually annotated the start (hpi and frame number)
of the observed cell cleavage stage. We used the annotations to extract the representative
frame by marking the start of the cell cleavage stages in the videos. The training set
consisted of frames only belonging to the two-cell, four-cell, five-cell, eight-cell, nine+-cell,
morula, and blastocyst cleavage stages, while the evaluation set consisted of representative
frames for all the cell cleavage stages from the one-cell to the blastocyst stage. The frames
in training set were annotated with class labels as cells, morula, or blastocyst using the
applications Labelbox [47] and Roboflow [48]. Figure 8 shows some labels created with
LabelBox. We further applied augmentation techniques, such as horizontal and vertical
flip and rotation between −30◦ amd 30◦, to increase the number of class labels. In total,
we created 3868 class labels, 3490 for cells, 188 for morula, and 190 for blastocysts. The
accurateness of the created class labels using LabelBox and Roboflow were approved by
the embryologists.

Three embryologists independently reviewed the FrozenV dataset videos frame by
frame and annotated the start of the cell cleavage stages (time and frame number). These
embryologists are referred to as E1, E2, and E3 in the rest of the paper. The annotations
from all three embryologists were used to evaluate the methodology’s performance in
predicting the start of cell cleavage stages. However, 0.5 percent of the manual annotations
were incorrect. To rectify this, we replaced the incorrect annotations with the average value
calculated from the annotations of the two other embryologists.

Figure 8. The top row shows actual images of cleavage stages. The bottom row from left to right
shows Labelbox annotations for cells in the two-cell, four-cell, eight-cell, morula, and blastocyst
cleavage stages. The bounding boxes annotation for class cell is marked in blue, class morula in red
and class blastocyst in purple. Scale bar: 100 µm.

The number of frames in the videos for each cell cleavage stage in the TransferV and
FrozenV datasets is shown in Figure 9. The cell cleavage stages are characterized by the
presence of a specific number of cells, morula, or blastocyst. Thus, we also present the
distribution of instances for cells, morula, and blastocysts for both datasets in Table 2.
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Figure 9. Total number of frames in the videos belonging to the different cell cleavage states. The top
panel shows the TransferV dataset with the left (a) showing the training set and the right (b) showing
the evaluation set. The bottom panel (c) shows the FrozenV dataset.

Table 1. Summary of the datasets used in this study. Each row provides the name of the dataset, the
number and type of videos, whether the dataset was divided into subgroups, and a description of
how the datasets were used.

Dataset
Name Videos Type of

TLT Videos Use Sub-Division

TransferV 250 Uterine Transfer

1. Train and evaluate
object detection algorithms
2. Tune hyperparameters
of the methodology

Training set
Evaluation set

Training
set 200 Uterine transfer

Train object detection
algorithms to detect cells,
morula, and blastocysts in
TLT frames

Evaluation
set 50 Uterine transfer

1. Evaluate trained object
detection algorithms
2. Tune hyperparameters
of the methodology

FrozenV 29 Cryopreserved
Evaluate the performance
in predicting the start of
cell cleavage stages
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Table 2. The class objects (cells, morula, and blastocyst) count in datasets. The datasets are used in
the training and evaluation of the methodology.

Dataset Cell Morula Blastocyst

TransferV dataset 111,954 6975 3357

FrozenV dataset 87,073 3928 4064

As mentioned before, E1, E2, and E3 independently annotated the FrozenV dataset.
Thus, we combined the three independent set of annotations using majority vote and
represented our best estimate for the ground truth. Table 3 shows the portion of frames
where the different embryologists agreed with the majority vote, for the different cleavage
stages. We see that for the two-cell to four-cell stages, the agreement was quite high, but
from the five-cell stage the level of disagreement increased.

Table 3. Portion of agreement (reported in percentage) between embryologists and the majority vote
for different cell cleavage stages.

Cleavage Stage E1 E2 E3

2-cell 0.995 0.983 0.997

3-cell 0.969 0.884 0.972

4-cell 0.994 0.945 0.998

5-cell 0.857 0.904 0.994

6-cell 0.803 0.624 0.872

7-cell 0.867 0.500 0.466

8-cell 0.867 0.848 0.919

5. Cell Cleavage Detection

In this section, we describe the suggested methodology to effectively detect the start of
the cell cleavage stages. The methodology involved identifying objects such as cells, morula,
and blastocysts in a frame and counting the number of detected objects. The object detection
was further used to assign each frame to the corresponding cell cleavage stage and annotate
the time in hpi for the start of these cleavage stages. In Section 5.1, the training of the object
detection algorithms locating cells, morula, and blastocyst in embryo images is explained.
In Section 5.2, the methodology to detect the cell cleavage stages based on the output from
the trained object detection algorithms is explained. Finally, in Section 5.3, the methodology
to annotate the start time of the cleavage stages in the hpi is explained. In Section 5.2, we
explain the tuning of the methodology’s hyperparameters, the central part of the suggested
approach in predicting the start of the cell cleavage stages. Both Sections 5.1 and 5.3 build
on Section 5.2, which represents the main idea of the methodology.

5.1. Object Detection

The methodology uses object detection algorithms to detect and segment instances
of objects: cells, morula, and blastocysts. Thus, in this Section we describe the training
of YOLO v5 and DETR to detect the objects. Both the object detection algorithms were
trained on the class labels created from the training set of the TransferV dataset (explained
in Section 5.1) The training set was divided into a 4:1 ratio for training and validation.

The image size used for training YOLO v5 was 416 × 416, and the value for the
hyperparameter determining the minimum bounding box confidence score was 0.30. YOLO
v5 reported the mAP for the cell, morula, and blastocyst equal to 0.65, 0.78, and 0.80,
respectively. An example of the YOLO predictions for the eight-cell, four-cell, two-cell,
morula, and blastocyst stages is explained in Figures 10 and 11. The figures replicate the
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input image and draw each bounding box separately along with the class probability of
the detection.

Figure 10. Eight-cell cleavage stage processed by YOLO v5. The first image contains the bounding
boxes along with the probabilities of the detected cells. The following images mark the location of
each detected cell individually. Scale bar: 100 µm.

Figure 11. Cleavage stages: four-cell, two-cell, morula, and blastocyst as processed by YOLO v5.
The leftmost image on the top row shows the bounding boxes along with the probabilities of the
detected cells for the four-cell stage. The following images mark the location of each detected cell
individually. The leftmost image on the bottom row shows the bounding boxes along with the
detected cell probabilities for the two-cell stage, followed by images marking the location of the
detected cells individually. The last two images correspond to the detection results for the morula
and blastocyst. Scale bar: 100 µm.

To train the DETR model, we followed a multistep process. Initially, we set the image
size to 416 × 416 and the batch size to eight. During training, we updated the gradients
after every four batches, which was equivalent to 32 images. We replaced the last layer of
the model (FFN) with a custom layer that predicted the bounding boxes and class labels for
the cells, morula, and blastocysts. In the first ten epochs of training, we froze the backbone
(ResNet-50) and the transformer (encoder, decoder) while only training the last layer with
a learning rate of 1 × 10−3.In the subsequent 50 epochs, we unfroze the transformer and
the last layer and only froze the backbone. We continued to train the last layer with the
transformer, with learning rates of 1 × 10−3 and 1 × 10−4, respectively. After 60 epochs
of training, we achieved an IoU validation loss equal to 0.22, an L1 loss equal to 0.05,
and a cross-entropy loss equal to 0.16. For the next 170 epochs, we unfroze all the blocks,
including the backbone, transformer, and last layer. We trained the model with learning
rates of 1 × 10−5, 1 × 10−4, and 1 × 10−3 for the backbone, transformer, and last layer,
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respectively. Finally, after the full training process, we achieved a final IoU validation loss
equal to 0.16, an L1 loss equal to 0.04, and a cross-entropy loss equal to 0.14. Figure 12
shows a few results of the DETR detecting cells, morula, and blastocysts.

Figure 12. Cleavage stages: two-cell, three-cell, four-cell, eight-cell, morula, and blastocyst as
processed by the DETR. The detected cells are marked in a dark green color for the two-cell, three-cell,
four-cell and eight-cell images. The morula and blastocyst stages are marked with the colors magenta
and light green, respectively. Scale bar: 100 µm.

5.2. Detecting the Start of Cleavage Stages

In this section, we focus on identifying the cell cleavage stages associated with the
objects detected (cells, morula, or blastocyst) in the previous section. The trained object
detection algorithms localize the objects in a frame and provide class probabilities for each
detected object. The suggested methodology counts the number of detected objects in a
frame and maps the frame to the corresponding cell cleavage stage if the class probability
of each detected object is above a specified threshold value. The cell count and threshold
values are parameters used for predicting the start of the cell cleavage stage. For example,
if two cells were detected with each cell class probability above the specified threshold for
the two-cell stage, the frame was classified as a two-cell stage.

The threshold values were determined empirically by evaluating the object detection
algorithm on the evaluation set of the TransferV dataset. For each frame in the evaluation
set, the embryologists evaluated the methodology’s performance and set the threshold
values for each cell cleavage stage based on their analysis. The threshold values for the cell
cleavage stages were: 0.80 for the two-cell, 0.70 for the three-cell, 0.65 for the four-cell, 0.60
for the five-cell, and 0.50 for the six-cell up to 9+-cell. The threshold value for the morula
and blastocyst stages was set to 0.90.

In a video, there can be several frames associated with a cell cleavage stage. Therefore,
the methodology organized the frames for each cell cleavage stage, and the first frame
from the series was annotated as the start of the cell cleavage stage. The frames put in a
series should have matching values for the parameters cell count and threshold. Whether
the methodology used YOLO v5 or DETR for the object detection, the same annotation
scheme was used. To potentially reduce the noise in the computed probabilities, we also
explored using the moving average of the probabilities for three and five subsequent frames,
and compared these with the threshold value. However, using the probabilities without
averaging turned out to perform better.

5.3. Computing Annotations for the Cleavage Stages Starting Time in hpi

In the previous section, we explained how to find the frame associated with the start
of a cleavage stage. In this section, we explain how to find the corresponding time in the
hpi. The time corresponds to the occurrence of the captured embryo development in the
video recorded in hours (post insemination) by the TLT system. There were two categories
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of TLT videos: the first one, where the hours were appended to the video frame (as shown
in Figure 2) and the second one, where the time entry was missing from the frames. The
suggested methodology used the OCR libraries to detect the encoded time when the hpi
value was present in the video frames. We evaluated the OCR libraries: Pytesseract,
EasyOCR, and Keras-OCR. Recall the introduction to the libraries in Section 3.2. However,
for the TLT videos where the frames were not annotated with hpi, the methodology
calculated the hours using the duration of the video, the start time of fertilization, the
number of frames, and the frame rate of the TLT system.

6. Results

In this Section, we evaluate the performance of the suggested methodology for anno-
tating the start of the cell cleavage stages, both in terms of the frame number and hours. We
summarize the performance of the methodology in predicting the start of the cell cleavage
stage in Section 6.1 and evaluate the performance in annotating the start time measured in
hpi for the observed cell cleavage stages in Section 6.2.

The cell cleavage stages of the morula and blastocyst have unique substages in terms of
morphology. As the object detection component of our method was only trained to detect
the first substage, we did not evaluate the morula and blastocyst with the other cell cleavage
stages. Nevertheless, our method effectively detected the first substages of the morula and
blastocyst, and this was independently verified by three embryologists. In the rest of the paper,
DetectY and DetectD refer to the suggested methodology to detect the start of a cleavage stage,
when YOLO v5 and DETR were used for the object detection, respectively.

6.1. Detecting Cell Cleavage Stages

In this Section, we present the evaluation results for the methodology in predicting the
starting frame of the cell cleavage stages. The predictions were evaluated on the FrozenV
dataset. The performance of the suggested method was compared with the majority vote
of the three embryologists, described in Section 4. Figure 13 shows the confusion matrices
for DetectY and DetectD for predicting the starting frame of a cleavage stage.

Figure 13. The left and the right panels show the confusion matrices between the embryologists
majority votes and DetectY and DetectD, respectively.

In general, the performances of DetectY and DetectD were similar. When the method-
ology made a wrong prediction, it was mainly with the adjacent cell cleavage stage. Addi-
tionally, in most cases when the methodology predicted incorrectly, it predicted too few
cells. In the confusion matrix for DetectY, there were more misclassifications between
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the eight-cell stage and the adjacent stages of seven cells and nine+ cells compared to
the previous cleavage stages. A similar pattern of misclassification was also observed
in DetectD.

The methodology was further evaluated using the six performance metrics of precision,
recall, specificity, accuracy, F1-score, and the Matthews correlation coefficient (MCC). Each
metric evaluates the methodology’s performance on different parameters, providing a
reliable and thorough analysis of its predictive capability [49]. Precision quantifies the
proportion of the correctly identified starts of the cleavage stages out of all the predicted
starts of cleavage stages. Recall computes the ratio of the correctly predicted starts of a
cleavage stage to all the predicted start frames indicated by the methodology. The F1-score
is the weighted average of the precision and recall. For a cell cleavage stage, the specificity
measures the proportion of predictions that were not mislabeled by the methodology as
the start of another cell cleavage stage. The MCC metric provides an overall evaluation of
the methodology’s accuracy in predicting the start of the cell cleavage stages and avoiding
misclassifications with the start of the other cell cleavage stages. The MCC value ranges
from −1 to 1, where a negative value indicates disagreement, a positive value indicates
agreement, and a zero value indicates no agreement.

Table 4 shows the prediction performance of DetectY v5 and DetectD evaluated per
cleavage stage.

Table 4. Performance in predicting the cell cleavage stage on the FrozenV dataset for DetectY (upper
table) and DetectD (lower table).

Cell Cleavage Stage
DetectY

Precision Recall Specificity Accuracy F1-Score MCC

1-cell 0.91 1.00 0.98 0.99 0.95

0.58

2-cell 0.91 0.85 0.99 0.85 0.88

3-cell 0.22 0.57 0.96 0.57 0.32

4-cell 0.82 0.55 0.98 0.55 0.66

5-cell 0.28 0.51 0.95 0.51 0.36

6-cell 0.11 0.39 0.94 0.39 0.17

7-cell 0.16 0.31 0.92 0.31 0.21

8-cell 0.43 0.47 0.89 0.47 0.45

9+-cell 0.93 0.54 0.98 0.54 0.68

Cell Cleavage Stage
DetectD

Precision Recall Specificity Accuracy F1-Score MCC

1-cell 0.94 1.00 0.99 1.00 0.97

0.53

2-cell 0.91 0.86 0.99 0.86 0.88

3-cell 0.15 0.66 0.92 0.66 0.24

4-cell 0.68 0.46 0.97 0.46 0.55

5-cell 0.25 0.50 0.95 0.50 0.34

6-cell 0.05 0.21 0.92 0.21 0.08

7-cell 0.07 0.17 0.89 0.17 0.10

8-cell 0.34 0.16 0.95 0.16 0.21

9+-cell 0.98 0.60 0.99 0.60 0.75

The methodology performed the best for the one-cell and two-cell stages with consis-
tent and high prediction rates. Specifically, the F1-score for the methodology using DetectY
was 0.95 and using DetectD was 0.97 for the one-cell stage, and the F1-score value was 0.88
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for the methodology using both DetectY and DetectD for the two-cell stage. Further, both
the recall and precision values were high. The methodology demonstrated good predic-
tion performance for the four-cell stage, with an F1-score of 0.66 using DetectY and 0.55
using DetectD. However, for the three-cell and five-cell stages, the methodology had lower
discriminative ability and reported average recall and low precision values. These stages
were also underrepresented compared to the other stages (FrozenV dataset in Figure 9),
which might have affected the performance. The methodology’s prediction performance
dropped considerably for the six-cell stage and onward, with both recall and precision
values decreasing. However, the methodology had high specificity values for all cell stages,
indicating lower misclassification rates between different cell cleavage stages.

We conducted a performance analysis comparing the two object detection algorithms
used in the methodology. DetectY had a higher MCC value of 0.58 compared to 0.53 for
DetectD. Additionally, the accuracy rate was lower for DetectD compared to DetectY from
the one-cell stages to the eight-cell stages. Thus, the methodology performed better using
DetectY than using DetectD. Additionally, we evaluated the methodology using two other
versions of YOLO: YOLO v5 with soft NMS and YOLO v7. However, these tests did not
result in any improvement. In fact, the performance metrics reported by the methodology
were lower than those obtained using DetectY from the five-cell stage onward.

Recall that Table 3 shows the agreement rate between E1, E2, and E3 on the starting
frame for cell cleavage stages. The overall agreement rate was much higher in comparison
to the suggested methodology for predicting the starting frame. The average value for
E1 was 0.90, E2 was 0.81, and E3 was 0.88. In comparison, the average accuracy rate for
DetectY was 0.57, and for DetectD, it was 0.51. As mentioned in Section 4, the observed
fragmentation in the FrozenV dataset was higher than that of the TransferV dataset, but the
change in the fragmentation rate had no consequence on the performance of DetectY and
DetectD. The embryologists validated that the methodology did not mistakenly identify
small-sized fragments as cells, even wjen the fragments had overlapping boundaries with
the cells.

6.2. Annotating Hours Post Insemination for the Cell Cleavage Stages

In this section, we address the problem of predicting the time in hpi for the start of a
cell cleavage stage. We used OCR to extract the timing information available in the video
frames. In the previous section, we observed that DetectY performed better than DetectD
and that DetectY could efficiently detect the frame marking the start of the cell cleavage
stages up to five cells. Therefore, we evaluated the performance of DetectY in predicting
the time in hpi up to five cells. We evaluated the OCR libraries pytesseract, EasyOCR, and
Keras-OCR. We tested the OCR libraries such as pytesseract, EasyOCR, and Keras-OCR for
digit recognition (time encoded in frames) and compared their performance against the
time annotations obtained through majority voting. In recognizing the time digits present
in the frames, pytesseract performed the best. The pytesseract library only confused the
digits ‘4’ and ‘1’ in 0.2% of the tests. Both EasyOCR and Keras-OCR wrongly recognized
digits as alphabets and with much higher percentages (EasyOCR: 4.8%, Keras-OCR: 3.6%).
We also computed the time needed by the different OCR libraries as part of DetectY to
annotate the whole FrozenV dataset. The annotation task was finished in 8.21 min with
pytesseract, 9.09 min with EasyOCR, and 9.22 min with Keras-OCR.

Using DetectY with pytesseract, a time delay was observed in predicting the start
of the cell cleavage stages compared to the embryologists’ majority votes. The average
time delay for the one-cell stage was minimal, 1.24 hpi for the two-cell stage, 0.63 hpi
for the three-cell stage, 2.93 hpi for the four-cell stage, and 3.04 hpi for the five-cell stage,
showing an increasing trend in the time delay with an increasing number of cells. However,
the methodology also detected the starting time in hpi before the embryologists for a
few instances of the cell cleavage stages. The embryologists (E1, E2, and E3) manually
inspected these cases and found that the most of these instances were in the transition phase
or capturing active cell division. The embryologists concluded that the methodology’s
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prediction was correct around the transition phase, which is also subjective and challenging
to annotate. The embryologists further pointed out that the primary reason that the
methodology reported time delays was the presence of excessive overlapping between cell
membranes in the video. Naturally, the overlapping becomes increasingly challenging with
the increasing number of cells in the embryo.

7. Discussion

This study aimed to propose a methodology that could help embryologists in clinical
settings to annotate the start time of human embryo cell cleavage stages post insemina-
tion. Evaluating the quality of embryos involves analyzing the time duration of different
cleavage stages, and automating the process of time computation would be useful. Our
presented methodology can detect the starting time for cell cleavage stages up to five cells
with a delay of 2–3 h post insemination (hpi). When the cell count during cleavage stages
was higher than five, the methodology experienced a significant time delay compared to the
majority of votes from embryologists. This was because there was excessive overlapping
between cell boundaries, which became more noticeable as the number of cells increased.
This overlapping led to a lower performance of the methodology, and the embryologists
confirmed that cell counting becomes difficult when there is excessive overlapping, re-
sulting in higher disagreement amongst themselves. To address the cell counting issue
amidst overlapping, a direction for future work is to train the object detection algorithms
specifically on frames of cleavage stages with high overlapping between cells. Among the
object detection algorithms tested, YOLO v5 outperformed DETR. YOLO employs non-
maximum suppression (NMS) to suppress the bounding boxes with high overlapping areas,
which could potentially explain its difficulty in detecting distinct cells with overlapping
boundaries. The strategy to redesign NMS with soft-NMS also proved to be ineffective. In
future studies, we plan to investigate the methodology using YOLO v5 with adaptive NMS
or using Confluence [50] as an alternative to NMS to detect the start of the cell cleavage
stages with cell counts greater than five.

The methodology using DETR performed the best when each of the DETR’s archi-
tectural blocks were separately finetuned during training. When it comes to detecting
cells, the performance of the DETR was only slightly less accurate than that of the YOLO.
However, the results might improve further if we trained on more data. Additionally, our
methodology used a parameter called “threshold” in predicting the start of a cell cleavage
stage and its value was determined empirically after evaluating a small dataset. Therefore,
having access to more data could help in providing a more accurate estimate of the true
value of this parameter. During the division of an embryo cell, some of the cell’s cytoplasm
content is not captured by the daughter cells and instead becomes extracellular material or
fragments. The rate of fragmentation can affect the performance of our methodology be-
cause these fragments can be mistaken for cells. Our suggested methodology analyzed raw
TLT video frames without any image processing to remove fragments, so we evaluated its
performance against the fragmentation present in the datasets. This evaluation is relevant
for clinical settings as well. We found that the methodology correctly identified cells and
did not confuse them with fragments, despite the fact that both datasets (TransferV and
FrozenV) contained TLT videos with a range of low to high fragmentation rates. However,
the sizes of the fragments in these datasets was small to medium. To fully validate the
methodology for clinical use, there is a need to evaluate the methodology’s performance
also for larger-sized fragments. The methodology accurately detected the structure of
the morula and blastocyst cell cleavage states. This is also relevant for clinical use. As a
future research direction, we recommend to train the methodology to detect the start of
substages for morula (start of compaction) and blastocyst (start, full blastocyst, expansion,
and hatching).

The TLT video frames capturing the embryo development only provide two-dimensional
images. This imaging limitation results in a loss of depth information regarding the three-
dimensional embryo cell structure, making it difficult to identify overlapping cells. To over-
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come this challenge, we suggest exploring other imaging modalities instead of using time-
lapse systems. Currently, the methodology can only predict the start time (in hours post
insemination (hpi)) of cell cleavage stages and only for TLT videos. Whether the methodology
calculates the hpi or reads it from the video frames, the computation of time is dependent on
the time-lapse system. Therefore, switching to a different imaging modality would require
updating the methodology to ensure that the time computation for hpi remains accurate.

8. Conclusions

The timing between successive cell cleavages serves as a reliable and noninvasive
marker for predicting human embryo viability. Automating the tracking of cell divisions can
provide embryologists with valuable insights into embryo development and implantation
potential. Our proposed methodology efficiently detected the start of consecutive cell
cleavage stages in TLT videos up to the five-cell stage, with an average time delay of 2–3 hpi.
Excessive overlapping of cell boundaries led to delays and decreased the performance in
detecting the start of later cell cleavage stages (cell count greater than five). However, our
methodology accurately detected the distinct structures of cell cleavage stages, such as the
morula and blastocyst.

Our approach successfully distinguished between cells and small-sized fragments
with overlapping boundaries, preventing the misclassification of fragments as cells. The
methodology’s pipeline performed best when YOLO v5 was used for detecting cells,
morula, and blastocysts in the TLT video frames and with Pytesseract as the OCR library
for reading out time digits. The methodology computed annotations for TLT videos in
real time, with the overall computation time for annotating a video being approximately
one minute.

For future work, we suggest investigating the latest developments in deep-neural-
network-based image analysis to improve the cell detection in overlapping regions. This
could involve training object detection algorithms on frames with a high degree of cell
overlap, exploring alternative imaging modalities for capturing three-dimensional embryo
cell structures, and employing advanced deep learning techniques, such as transformers
and capsule networks, to enhance the performance of our methodology in detecting the
start of cell cleavage stages with cell counts greater than five.
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