
ACIT5900

MASTERS THESIS
in

Applied Computer and Information Technology (ACIT)

May 2023
Robotics & Control

Target Tracking Control for an
Unmanned Surface Vessel:

Optimal Control
vs

Reinforcement Learning

Aksel Johan Frafjord

Department of Mechanical, Electrical & Chemical
Engineering

Faculty of Technology, Art & Design

Preface

This master thesis (30 credits) was written during the spring of 2023 as the finishing
contribution to the Master of Science in Applied Computer and Information Tech-
nology (ACIT) at OsloMet. This paper presents the methods and implementation
of two control strategies for tracking submerged targets using nonlinear model pre-
dictive control (NMPC) and reinforcement learning (RL).

This thesis was inspired by recent advances in RL that have shown feasibility in
learning to play arcade games and other toy control problems. Some work on using
RL for real control problems has been undertaken. However, further development is
needed for RL to be a reliable asset in controller development. In contrast, classical
optimal control techniques, such as NMPC has a solid reputation and have proven
a reliable controller within academia and the industry for decades. This thesis seeks
to contribute to reducing the gap between the RL domain and the classical control
theory domain, and by doing so, contribute to the progress of RL in the field of
control.

The affiliated chapters will present the theory needed to understand the content
in each chapter respectively. However, familiarity with control theory, artificial
intelligence and nonlinear modelling of marine crafts is beneficial.

1

Acknowledgement

I want to express my sincere gratitude to my advisor, Ivar Bjørgo Saksvik, for his
invaluable guidance and support throughout the implementation and writing of this
thesis. Your expertise and insightful knowledge have been particularly crucial in
my understanding of marine craft modelling. Thank you for your dedication and
encouragement throughout this project.

I also want to thank Jan-Philip Radicke, Pierre Odin Boniface and Alexander
Halseth for creating a meaningful community during our master’s. Your witticisms,
support and constructive criticism are very much appreciated.

Dear Julie. Thank you for standing by me through stressful times involving
frustration and long working hours. Your support and unbound optimism have
enabled me to keep my head straight throughout this semester’s endeavours.

Aksel Johan Frafjord

Oslo, May 15th 2023

2

Abstract

This thesis studies the development and performance of Nonlinear Model Predictive
Control (NMPC) and Reinforcement Learning (RL) for a target-tracking problem.
The methodology involves developing the NMPC and RL approach and comparing
their performance through simulated experiments. In the simulations, the controllers
steer the Otter unmanned surface vessel (USV) to track a virtual target.

The resulting NMPC controller performed with a stable error of approximately
0.7m with a refresh rate of 1.6 Hz. Whereas the best-performing RL Agent demon-
strated a twofold performance. In the first part, the Agents managed an error
between 0 and approximately 2m. However, when surpassing the experienced ob-
servation space from the training session, the Agent generated unfeasible controller
signals, resulting in the Otter circling the target while tracking it. The Agent
achieved a 1kHz refresh rate.

In conclusion, the NMPC may need to be faster for practical implementations,
and RL Agents require further development to be reliable. Therefore, for future
work, it is suggested to use NMPC as an expert and apply imitation learning when
training the Agents to achieve the best of both methods.

Keywords: Target-tracking, nonlinear manoeuvring modelling, USV, nonlinear
model predictive controller, NMPC, MPC, Reinforcement Learning, RL

3

Contents

Abstract 3

1 Introduction 2
1.1 Thesis Scope . 3
1.2 Thesis Layout . 4

2 Background 5
2.1 Guidance, Navigation and Control . 5

2.1.1 Guidance Systems . 5
2.1.2 Control Systems . 6
2.1.3 Navigation Systems . 6

2.2 Previous Work . 6
2.2.1 Model Predictive Controllers 7
2.2.2 Deep Reinforcement Learning 8

3 Modelling 10
3.1 Kinematics . 11
3.2 Rigid Body Kinetics . 13
3.3 Hydrodynamic Forces . 13

3.3.1 Hydrodynamic Mass-Damper 14
3.3.2 Dissipiative Forces . 14

3.4 Restoring Forces (hydrostatics) . 15
3.5 Manoeuvring Model . 16
3.6 Control Allocations . 17

4 Model Predictive Controller approach 18
4.1 Theory of Model Predictive Controller 18

4.1.1 Discretization Methods . 19
4.1.2 Optimisation and Nonlinear Programming 19
4.1.3 Casadi . 20

4.2 NMPC Implementation . 20
4.2.1 3 DOF Manouvering Model in Casadi 20
4.2.2 Model Discretization . 21
4.2.3 Solving the Optimal Control Problem 21

4.3 Simulation . 22
4.4 NMPC Simulated Performance Test 23

4.4.1 Setup . 23
4.4.2 Results Case 1 . 23
4.4.3 Results Case 2 . 27

4

4.5 Discussion . 28
4.5.1 Error from Target . 28
4.5.2 Controller Tuning . 29
4.5.3 Computation Time . 29

4.6 Summary . 30

5 Reinforcement Learning Approach 31
5.1 Artificial Intelligence Theory . 31

5.1.1 Artificial Neurons . 31
5.1.2 Artificial Neural Networks . 33
5.1.3 Optimisations - Gradient Decent 34
5.1.4 Reinforcement Learning . 34
5.1.5 Proximal Policy Optimisation 38

5.2 Reinforcement Learning Controller implementation 38
5.2.1 Training Environment . 38
5.2.2 Agent and Hyperparamaters 41
5.2.3 Reward Function . 41
5.2.4 Observations . 46

5.3 Reinforcement Learning Training . 47
5.3.1 Training Procedure . 47
5.3.2 Agent Training . 48

5.4 Simulated Performance Test . 50
5.4.1 Setup . 51
5.4.2 Results Case 1 . 51
5.4.3 Results Case 2 . 58

5.5 Discussion . 61
5.5.1 Training . 61
5.5.2 Controller Performance . 63

5.6 Summary . 64

6 Discussion and Future Work 65
6.1 Discussion . 65

6.1.1 Modelling . 65
6.1.2 Development . 65
6.1.3 Performance . 66

6.2 Future work . 67

7 Conclusion 68

Appendices 73

A Materials 74

B Otter Model Parameters 75

C Code 76

5

List of Figures

1.1 OASYS glider . 2
1.2 USV relay communications from AUG 3
1.3 Controller objective . 4

3.1 Figure of notation used in the Otter model 10
3.2 Body fixed reference point [13] . 11

4.1 The Model Predictive Controller . 20
4.2 NMPC simulation workflow . 22
4.3 NMPC performance in NED . 24
4.4 NMPC performance error . 25
4.5 Controller responces . 25
4.6 Velocities . 26
4.7 Compute time to find optimal control action 27
4.8 Case 2 NMPC performance in NED 28
4.9 Case 2 NMPC performance error . 28

5.1 Biological (a) and artificial(b) neuron, 32
5.2 Artificial neuron . 33
5.3 Artificial Neural Network . 34
5.4 Markov Decistion Process . 35
5.5 Reinforcement algorithms . 37
5.6 Schematic overview of the implementation 38
5.7 Training process workflow . 40
5.8 Example of a reward function constellation 42
5.9 Example of speed towards target reward 44
5.10 Example on heading reward . 45
5.11 Example from the work when deriving the size of Critic and Actor NN 48
5.12 Agent policy convergence during training 50
5.13 Agent 1 performance in NED . 51
5.14 Agent 2 performance in NED . 52
5.15 Agent 3 performance in NED . 52
5.16 Agent 1 performance error . 53
5.17 Agent 2 performance error . 53
5.18 Agent 3 performance error . 54
5.19 Agent 1 Controls . 54
5.20 Agent 2 controls . 55
5.21 Agent 3 controls . 55
5.22 Agent 1 velocities . 56
5.23 Agent 2 velocities . 56

6

5.24 Agent 3 velocities . 57
5.25 Case 1 computation time . 58
5.26 Case 2 movement plots in NED . 59
5.27 Case 2 error . 59
5.28 Case 2 controls . 60
5.29 Case 2 velocities . 61

7

List of Tables

3.1 Table of the SNAME convention . 12

4.1 NMPC and simulation parameters for the test case 23

5.1 PPO Agent network architecture and hyperparameters 41
5.2 Observations for the Agent . 46
5.3 Environment parameters used during training 49
5.4 Reward function configuration and Agent hyperparamaters 49

A.1 Software list . 74
A.2 Hardware list . 74

B.1 Physhical parameters of Otter USV [5] 75

1

Chapter 1

Introduction

Climate change and direct human impact have increasingly affected the Earth’s
oceans and marine life. To equalise the consequence and make the marine environ-
ment sustainable, we must make rational choices when determining mitigation to
counteract the human impact on the ocean. Hence, the collection of data about
the ocean’s conditions is crucial. However, this task is often expensive and requires
specialised equipment and operations conducted in high-risk environments, such as
offshore maritime areas with a risk of waterline exposure.

The project Ocean-Air synoptic operations using coordinated autonomous SYS-
tems and micro underwater gliders (OASYS) were initiated to create an affordable
data collection system [33]. The OASYS project involves the use of unmanned sur-
face vehicles (USVs), autonomous underwater gliders (AUGs), and unmanned aerial
vehicles (UAVs) to complete various missions and collect data about a sea area.

One of the notable contributions from the OASYS project is the OASYS glider,
as shown in figure 1.1. This vehicle uses a unique variable buoyancy system (VBS)
to move up and down in the water column. The VBS consists of an external bladder
and an internal oil reservoir that can be adjusted using a miniaturized pump to
displace the net volume of the vehicle and cause it to sink or rise in the water
column. The glider’s speed typically ranges from 0.1-0.3 m/s and depends on the
vehicle’s pitching angle. Instead of relying on conventional control surfaces like
rudders and dive planes, the glider uses internal moving mass actuators to control
its pitch and heading angles [34] [12].

Figure 1.1: OASYS glider

2

To ensure that the vehicles can operate autonomously and make decentralised
decisions, it is crucial to have seamless communication between all units involved
in the mission. Communication over the sea is well established and has the sturdy
infrastructure the units above water can use to provide cohesive communication. On
the other hand, the availability of low-cost and satisfactory communication infras-
tructure equipment is not well-established for underwater communications. OASYS
seeks to mitigate this challenge by developing communications between the units
using optical relays to transmit data between vehicles under the water surface. Un-
fortunately, there seems to be no way to communicate effectively through water and
air. However, there is a potential solution by using a topside USV with access to
both an underwater optical transceiver and aerial radio communications, effectively
creating a communication relay between the two media.

One challenge with optical communications is that the line of sight between the
sender and receiver must be within the limits of the system’s configurations. To
communicate, the line of sight between the topside vessel receiver and the glider
transmitter must be constant to transmit data successfully. This thesis aims to
contribute to the communication system by studying the motion controls of the
topside USV as it tracks the glider and stays within the threshold of the transceiver.
We assume that the Otter is equipped with a short baseline acoustic positioning
system (SBL) so that the target position is always known, as shown in figure 1.2.

LTE or satellite
comunication

Optical
communication

Acoustic
transmitter

SBL reciver

Figure 1.2: USV relay communications from AUG

1.1 Thesis Scope

For the controller to be a viable asset in the data-transfer operations, we assume
it must keep the Otter USV within a radius of less than 10 meters of a moving
target. As the controller only will have access to the target position, we define this
as a target tracking problem, where the submerged vehicle’s future motions are un-
known. The topside vessel only receives information about the instant position of

3

the underwater glider through acoustic localisation.

This thesis will study two advanced controller techniques in a moving-target-
tracking use case as shown in figure 1.3. Approach (i) is a non-linear Model predictive
controller (NMPC). Approach (ii) is to use an Artificial Neural Network (NN), i.e.
a policy trained using deep reinforcement learning (RL). The study will investigate
the development, performance and practical feasibility of using the controller in the
aforementioned optical communication relay objective.

Otter

y- East

x- North

Virtual trajectory
of AUG

Region around
target

Figure 1.3: Controller objective

In figure 1.3, the Otter USV and the target are illustrated. The target will be a
virtual target simulating the movement of the OASYS AUG, and the goal is for the
Otter USV to stay within the region surrounding the moving target.

1.2 Thesis Layout

Chapter 2 provides a background of guidance, navigation and controls before a liter-
ature review is given. The literature review presents relevant previous work related
to advanced controller methods involving NMPC and RL approaches. Chapter 3 de-
scribes the theory and the implementation of the dynamic model of the Otter USV
that is used in the two approaches. Chapter 4 Model Predictive Controller and
chapter 5 Reinforcement Learning approach, describes the theory, implementation
and results of each approach, respectively. Then, in 6 there is a common discus-
sion, presenting the differences in the approach followed by future work. Lastly, a
conclusion is presented.

4

Chapter 2

Background

This chapter is twofold. First, some required knowledge is presented regarding the
fundamental aspects of motion control of marine vessels. Second, there is a literature
review of previous work regarding motion control using MPC and RL.

2.1 Guidance, Navigation and Control

This section will define Guidance, navigation and control and their respective tasks
in controlling to achieve a control objective. In marine vessel motion control, it is
common to use a cascade system architecture to achieve a motion objective. The
guidance system provides the details of path-planning, situational awareness and
other mission-planning objectives. Additionally, it provides a human interface for
personnel interaction. The output from the guidance system defines the mission
objective. The control system is responsible for translating the mission objective
into thruster commands for the vessel to conduct the control objective. Lastly, the
navigation system is responsible for determining the vessel’s position [13].

2.1.1 Guidance Systems

One may define guidance systems as ”The process of guiding the path of an objec-
tive towards a given point, which in general may be moving” [32]. Hence, guidance
systems are used to compute the desired position, velocity and attitude of the craft.
Then, as explained previously, the information is used in the motion control system
to allocate controller signals for the crafts actuators to solve the control objective.
The guidance system takes data from various sources as sensor data, weather data or
user inputs. The data is then processed to compute the desired controller objectives
represented as desired velocity and position. The guidance system may use various
methods, from ad-hock techniques to advanced dynamic optimisation, depending
on the complexity of the control objective and the amount considered optimisation
parameters [13].

5

2.1.2 Control Systems

Whilst the guidance system’s responsibility is to provide a desired attitude and
velocity, the control system is responsible for providing the control signals to the
crafts actuators. The actuators again affect the vessel’s effector, i.e. the rudder or
propellers, that generates control forces. The effectors on marine craft are mostly
propeller devices for industrial applications, but they can also be water jets, fans,
sails or buoyancy propulsion. The control system has two tasks.
(i) Based on some control law, the motion control system uses some method to
compute the desired forces to conduct the controller objective. Such state-of-the-art
methods are based on the principles of modelling a craft as a spring-damped sys-
tem. Then, adding a stability analysis, we have the fundamental parts that lay the
bedrock for the different algorithms. The simplest is the autopilot using Successive
Loop Closure, which uses simple linearised transfer functions and successively com-
putes system parts to make it stable. The PID pole-placing algorithms use Lyapunov
stability analyses to optimise the craft’s kinetic and potential energy to achieve op-
timal pole placement. PID controllers are widespread in industrial applications such
as dynamic positioning, autopilots and path-following [13].
(ii)The second responsibility of the control system is, through controller allocation,
to decode the desired forces to controller signals for the actuators [13].

2.1.3 Navigation Systems

The function of navigation system is responsible for determining the craft’s po-
sition, velocity and attitude through a state estimator. Most modern crafts use
global navigational satellite systems (GNSS) that determine the global position at
sea. However, more than the GNSS is required to estimate the full state represen-
tation of the craft. Following Fossen, there are two domains within the navigation
system. First, model-based Navigation Systems (MBNS), use a craft model supple-
mented with various techniques, such as a Kalman filter, as the state estimator. In
contrast, Inertial Navigation Systems (INS) use accelerometers and attitude sensors
(IMU) to determine the state of the craft without the need for a numerical model
of the craft [13].

2.2 Previous Work

This section presents a short literature review on existing control methodologies
in marine vehicles. The details about motion control are mainly discovered in the
”Handbook of Marine Craft Hydrodynamics and Motion Control” [13], and refer-
ences therein. The review unfolds in two parts: (i) a survey on non-linear model
predictive control (NMPC), and (ii) deep learning approaches,i.e., reinforcement
learning (RL). Since this thesis considers both the implementation and the per-
formance of the two approaches, literature that provides detailed insights into well-
documented implementations is prioritised. Furthermore, there is rapid development
within the domain of RL. Therefore, the literature search has focused on articles
and theses published after 2018 within the RL- domain. Besides the mentioned

6

approaches above, the documentation for the Casadi framework has been used to
gain knowledge and practical insights into the domain of optimisation and its regard
to MPC. To limit the scope, the following keywords have been used: Model Pre-
dictive Control, MPC, efficiency, Target tracking, Autonomous Docking, Artificial
Intelligence, and Path following, MPC efficiency. Non-linear MPC, Linear MPC.

2.2.1 Model Predictive Controllers

We will now investigate the Model predictive controller (MPC) and previous works
using MPC to solve control objectives. MPC is an advanced control technique that
control simple, single-input/output, multi-input, and multi-output problems. The
MPC utilises a mathematical model of the system as a constraint in an optimisation
problem and predicts the best controller trajectory within the prediction horizon
for the controller. An MPC using a linear model is abbreviated as LMPC, whereas
a non-linear MPC is abbreviated to NMPC. An in-depth explanation of the MPC
and its components will be presented in chapter 4. During controller development,
using the physical or real system to observe the response is not practical nor safe.
Therefore, we use a model to simulate the controller development and tuning re-
sponse. However, during operations, the controllers use the model of the system to
solve an optimisation problem to gain the optimal controller gain for the actuators
in the system [30].

MPC has shown merit in control problems such as trajectory tracking, path fol-
lowing, and docking/dynamic positioning. In [18], the feasibility of using an NMPC
in autonomous docking is essayed. The study involves three strategies to achieve
the autonomous docking task, where the goal was to dock the under-actuated Pi-
raya vessel autonomously. The control objective was formulated as a numerical
expression within the cost function in the optimisation problem. In the most ad-
vanced scenario, obstacles were defined as constraints in the optimisation problem,
enabling the controller to evade identified obstacles simultaneously while solving
the controller objective. Thus, the controller embeds the entire problem, including
obstacle avoidance and objectives, into one controller. The strategy relevant to this
paper is where a single point is placed beside the doc. Additionally, the vessel’s
orientation was constrained with a yaw angle, restraining the docked vessel’s ori-
entation to be parallel to the dock while oriented in a predefined direction in the
local frame. All controller approaches were successful and performed accurately in
simulations and physical tests. The test showed that the MPC used between 0.1
and 0.9 seconds to compute controller signals.

Other papers also describe scenarios where the NMPC handles obstacle avoidance
with the controller objective. As in [21], which develops an NMPC for autonomous
docking that embeds an operating region for the vessel. The region is defined as a
polyhedron shape in the plane. It surrounds the waters in the harbour so that the
vessel can operate without intersecting with obstacles or land during the docking
manoeuvres.

The NMPC has also shown merits in open-water path following, where the ves-
sel follows a defined path [38], [18]. The path is then defined as a series of targets.

7

When the vessel has reached the target, the new target is algorithmically fed to the
controller continuously as the vessel progresses. Target tracking is often seen as a
sub-problem of the path-following problem.

As mentioned previously, an MPC, as the name implies, relies on a model to
predict a controller gain. The model used is often a linear representation between
the model inputs and outputs. However, for most systems, the relationships are
non-linear. Therefore, they are simplified to a linear system that can be solved with
a linear cost function with reduced computational effort than non-linear systems.
In [38], they created a linear (LMPC) and non-nonlinear MPC controller (NMPC) on
the non-linear optimisation problem of trajectory tracking. The non-linear problem
was solved by implementing a linearisation around the state- of the system in the
first time step in the prediction horizon. The linear model was then optimised using
linear methods and giving the optimal output for the next timestep based on the
linearised model. The other part they tested was the non-linear method, which used
a non-linear optimisation solver to solve the non-linear problem. In a comparable
test scenario, where the measured variable was the mean distance from the trajectory
and the vessel’s position, the NMPC had a mean of 0.0(m), and the LMPC had a
mean of 2.3 (m). However, the NMPC used in comparable time 828 (s) whereas the
LMPC used 29 (s) [38].

2.2.2 Deep Reinforcement Learning

The RL-based controller approach uses deep machine learning (ML) to derive a
model that computes controller outputs. According to the Oxford Dictionary, Ma-
chine Learning (ML) is a ”(..)system that becomes smarter as it encounters addi-
tional data”.

In [22], the concept of Deep Reinforcement Learning is utilised to derive a path-
following controller. The utilised algorithm was Deep Deterministic Policy Gradients
(DDPG) because it enables the model to learn the value of both a state (provided by
an actor-only architecture) and an action (provided by a critic-only architecture).
Thus leading to potential benefits of learning the value of an action in combination
with the value of a state.

Another paper has used the PPO algorithm to train marine AI controllers for
target tracking, path following and auto-docking [37], [8]. Another RL algorithm
that has shown promising results is the Twin Delayed deterministic policy (TD3).
In the paper [25], they evaluated the performance between proximal policy optimi-
sation (PPO), TD3 and soft-actor-critic (SAC) algorithms where the TD3 algorithm
gained better rewards than the PPO or the SAC.

When training an RL model, the model is only bound by the implemented re-
strictions of the dynamic model. Models are always prone to errors from reality, and
this is called the sim-to-reality gap. The models trained on a dynamic model that
tries to replicate a system’s realistic dynamics tend to create unrealistic manoeu-
vres that might not be possible in real-world scenarios. In the case of marine craft
controllers, these mistakes might be rapid changes in thruster commands, leading
to inappropriate controller actions resulting in attrition on the mechanics of the ef-

8

fectors on the craft. In [5], aggressive changes in controller signals were experienced
when the feasibility of two machine learning algorithms in an auto-docking scenario
was studied. The PPO algorithm exploited a possible deficiency in the model, in its
greed for reward during training, resulting in unfavourable thruster commands for
the craft. However, the PPO was chosen for further implementation by the reason-
ing that the learning speed was better for the PPO [5].

9

Chapter 3

Modelling

In this section, the modelling of the Otter USV is presented. The Otter USV is for
scientific and industrial applications and is manufactured by Maritime Robotics. It
weighs 55 kg without payload and has a catamaran hull type. For propulsion, it uses
fixed-pitched differential propellers at the rear of each pontoon. For steering, the
propeller rotation speed is unevenly set between the two fixed propellers, inducing
momentum on the Otter’s body.

w (heave)

Figure 3.1: Figure of notation used in the Otter model

The following assumptions were made when modelling the Otter:

Assumption 1. The motion in Heave, Pitch and Roll are neglected, resulting in a
3-degree-of-freedom (DOF) model.

Assumption 2. Environmental forces such as wind, and wave loads acting on the
vessel are neglected.

Assumption 3. Ocean currents are neglected.

Assumption 4. The SBL receiver mass and drag are neglected.

10

3.1 Kinematics

Kinematics is the study of the geometrical concern of an object and explains how an
object changes its position through time. While working with marine vessel models
in 3 or 6 degrees of freedom (DOF) it is convenient to represent the motion and
orientation in an Earth-centred coordinate frame. In this thesis, we will use the
Geographical reference frame, also known as tangent planes. The reference frame is
noted as a Nort-East-Down frame (NED) and will be denoted as {n} = {xn, yn, zn},
where the xn points to true north, yn is pointed towards east, and zn point down-
wards normal to the earth surface. The origin of NED is defined as relative to
the earth’s ellipsoid. NED represents a tangent plane that we can use for local
navigation, and the vessel’s position and orientation will be described in the NED
frame [13].

The body-fixed reference frame is fixed to the vessel and, in this thesis, is a mov-
ing coordinate frame relative to the NED frame. The origin of the frame ob (CO)
places midships on the waterline enabling port-starboard symmetry. The centre of
gravity (CG), centre of buoyancy (CB) and centre of flotation (CF) are all located
relative to the CO.

Figure 3.2: Body fixed reference point [13]

The naming convention in the thesis is in compliance with The Society of Naval
Architecture and Marine Engineers(SNAME) convention and is described in the
following table:

11

BODY NED
DOF Description Forces and

moments
Velocities Position and

orientation

1 Surge X u xn

2 Sway Y ν yn

3 Heave Z w zn

4 Roll K p ϕ
5 Pitch M q θ
6 Yaw N r ψ

Table 3.1: Table of the SNAME convention

In table 3.1 we can see the generalised coordinate for NED and BODY listed.
We define a common notation for the generalised position and orientation in NED:

η =
[
xn yn zn ϕ θ ψ

]T
(3.1)

Further, we denote a common vector for the velocities (time derivative for the
generalised coordinates in NED):

η̇ =
[
ẋn ẏn żn ϕ̇ θ̇ ψ̇

]T
(3.2)

Additionally, we denote the velocities in the BODY frame, due to its convenience
when deriving the rigid body kinetics and equations of motion.

ν =
[
u v w p q r

]T
(3.3)

In calm waters, the changes in heave, roll, and pitch are small. Therefore, we
can neglect these coefficients and simplify the representation to a 3 DOF model that
considers changes in surge, sway, and yaw. We redefining definitions 3.1,3.2 and 3.3
to the following.

η =
[
xn yn ψ

]T
(3.4)

η̇ =
[
ẋ ẏ ψ̇

]T
(3.5)

ν =
[
u v r

]T
(3.6)

In the next section we will define the rigid body kinetics in the convenient BODY
frame. To transform the motion into NED- frame we need to define a rotation matrix
that transform the velocity vector from BODY to NED for a 3 DOF model [13].

η̇ = R(ψ)ν (3.7)

where:

R(ψ) =

 cosψ − sinψ 0
− sinψ cosψ 0

0 0 1

 (3.8)

12

3.2 Rigid Body Kinetics

Kinetics is the study of forces causing a movement of an object. In this thesis we
will model the vessel according to the marine vessel dynamics presented in [13].
The latter is fundamentally based on Newton’s second law, which defines force as
a product of mass and acceleration. Representing this in the previously mentioned
{n} frame, the convenience of the transformation 3.8 is evident, transforming the
motion from BODY to NED.

mvng = fg (3.9)

Euler’s first and second axiom expresses Newton’s second law in terms of the
conservation of energy, more specifically in terms of linear momentum and angular
momentum. The Euler’s representation makes it possible to represent the forces,
moments and velocities in expressed in the BODY frame. Based on these funda-
mental principals, Fossen derived the robotic-inspired matrix-vector representation
of the equation of motion [15]. The 3 DOF representation is defined as follows:

MRB ν̇ +CRB (ν)ν = τRB (3.10)

where ν = [u, v, r]T , expressed in {b}, τRB =
[
X Y N

]T
, is the generalised

forces and moments acting on the vessel. MRB is the rigid body system inertia
matrix, representing the transnational forces acting on the vessel, and is defined as:

MRB =

m 0 0
0 m mxg
0 mxg Iz

 (3.11)

The CRB(ν) is the rigid body Coriolis and centripetal matrix, representing the
rotational forces on the vessel and is defined as:

CRB(ν) =

 0 −mr −mxgr
mr 0 0
mxgr 0 0

 (3.12)

The equation is usually defined as 6, 4, or 3 DOF [13]. In this thesis, we make
use of both the 6 and 3 DOF variants. However, only the 3 DOF variants will be
written out in this Theory section.

Remark. 3 DOF is used for the constraint in the optimisation problem for the
NMPC, while the 6 DOF variant is used by the RL approach, and in the simulated
performance test.

3.3 Hydrodynamic Forces

A multitude of hydrodynamic forces exerts an influence on the motion of a surface
vessel navigating within a marine environment. These forces arise due to the inter-
action between the vessel and the surrounding fluid medium, and their effects can
have significant implications for the vessel’s attitude and movement. In this section,
we will build an understanding of the characteristics of these forces in order to take
them into consideration when deriving the Manoeuvring Models for the Otter.

13

3.3.1 Hydrodynamic Mass-Damper

τhyd = −MAν̇r −CA(νr)νr︸ ︷︷ ︸
Added mass

− Dpνr︸ ︷︷ ︸
potential damping

+τvisc (3.13)

Where the added mass matrix MA is due to the fluids surrounding the vessel

Lifting Forces Lifting forces occurs from two physical mechanisms. Linear Cir-
culation around the linear circulation of water around the hull. The second is the
crossflow drag.

Added mass definition: ”Hydrodynamic added mass can be seen as a virtual
mass added to a system because an accelerating or decelerating body must move some
volume of the surrounding fluid as it moves through it. Moreover, the object and fluid
cannot occupy the same physical space simultaneously” [13].

This means that the motion of a moving vessel will induce a force on the fluid
surrounding it, making the fluid motion to the side and then close back behind
when the vessel has surpassed the fluid. By considering that the fluid then possesses
kinetic energy [19] we can follow Fossen and write the added mass matrix for a
surface vessel in 3 DOF that includes system inertia MA and Coriolis- Centripetal
CA(ν) for added mass:

MA =MA
T = −

Xu̇ 0 0
0 Yυ̇ Yṙ
0 Yṙ Nṙ

 (Nυ̇ = Yṙ) (3.14)

CA(νr) = −CA
T (νr) = −

 0 0 Yυ̇υr + Yṙr
0 0 −Xu̇ur

−Yυ̇υr − Yṙr Xu̇ur 0

 (3.15)

where the following assumption where made for the Otter model (presumably best
practise [14]):

Xu̇ = −1.0 ∗m (3.16a)

Yυ̇ = −1.5 ∗m (3.16b)

Nυ̇ = −1.7 ∗R66 (3.16c)

3.3.2 Dissipiative Forces

Dissipative forces exert force on the vehicle in a multitude of ways. In this thesis, we
will consider the linear damping, non-linear surge-damping, and cross-flow as these
are the component used in the Otter maneuvering model.

14

Linear damping
The linear damping matrix takes into consideration the frictional forces and the
potential damping that exert the vessel.

D = −

Xu 0 0
0 Yυ Yr
0 Yr Nr

 (3.17)

where:

−Xu = B11v =
M11

Tsurge
(3.18)

−Yυ = B22v = 0 (3.19)

−Nr = B66v =
M66

Tyaw
(3.20)

Remark. In [14] Xu =
−24.4g
Umax

Nonlinear sway and yaw damping by crossflow
In the Otter model, there is used linear surge, resistance, and linear yaw damping.
However, the sway damping term in the D matrix is, Yν is zero [14]. The damping
in sway relies fully on the cross-flow drag. Following Fossen, we define the Nonlinear
cross-flow damping terms to model the damping forces exerted on the vessel due to
the flow of fluids normal to the hull.

Y = −1

2
ρ

∫ Lpp
2

−Lpp
2

T (x)C2D
d (x)|υr + xr|(υr + xr)dx (3.21)

N = −1

2
ρ

∫ Lpp
2

−Lpp
2

T (x)C2D
d (x)x|υr + xr|(υr + xr)dx (3.22)

3.4 Restoring Forces (hydrostatics)

To consider the restoring forces due to Archimedes (weight and buoyancy) we use
the expression:

τhs = −g(η)− g0 (3.23)

where g(η) is a vector of generalised gravitational and buoyancy forces and g0
is static restoring forces and moments due to the ballast system and water tanks.
These forces are only present in heave, roll, and pitch, therefore in the 3 DOF-
equation, the equations have no implications on the resulting forces. For details
concerning the restoring forces please refer to [13, Ch. 4]. Additionally, we consider
the waters to be calm, therefore the motion in heave, roll, and pitch will be neglected
during the training of the controller, and when deriving the optimal controls.

15

3.5 Manoeuvring Model

In the previous sections, we defined the kinetics and kinematics of a marine surface
vessel which explains how the exerted forces on the vessel change the acceleration
and position and velocity of the vessel. The dynamics of the vessel are given by the
vessel’s kinematics and kinetics and give us a concatenated way of understanding
how the vessel’s velocity and acceleration change over time.

The dynamics of the Otter, used in the thesis, are defined by the following terms.
The terms are derived from the code in [14], and the book [13].

MRBν̇ +CRB(ν)ν︸ ︷︷ ︸
Rigid body forces

+ MAν̇ +CRB(ν)ν +Dνr +Dn(νr)︸ ︷︷ ︸
Hydrodynamic forces (added mass, crossflow and damping)

= τRB+τwind+τwave

(3.24)
where:

νr = ν − νc(is the relative velocity vector) (3.25)

νc = [uc, υc, 0]
T (3.26)

where the ocean current is of constant speed Vc and direction βVc , the heading is
defined as ψ

uc = Vccos(βVc − ψ) (3.27)

υc = Vcsin(βVc − ψ) (3.28)

Time derivatives give according to to Fossen [13, p.157]

u̇c = rυc (3.29)

υ̇c = −ruc (3.30)

Equation 3.24 defines the dynamics of the vessel. On the left-hand side, we see
rigid body forces together with the hydrodynamic forces. The left-hand side must
be equal to the forces applied by the effectors (propellers) on the vessel, in addition
to wind and wave forces.

From a controller perspective, it is advantageous to represent equations in a
state-space format, as it provides a means to comprehend the dynamic system’s
state. In order to ascertain the subsequent time step for the Otter, or any other ves-
sel, it is imperative to define its acceleration and velocity. Subsequently, by utilizing
integration techniques along with an initial position in NED, the vessel’s position
and velocity at the next time step can be calculated in a convenient way provided
by the state space.

Since the Otter model is defined with relative ocean currents, we follow Fossen
on [13, p. 157] and define the generalized position and relative velocity in a state-
space manoeuvring model.

16

η̇ = R(ψ)(νr + [uc, υc, 0]
T) (3.31a)

ν̇r = (MA +MRB)
−1(τ −CA(νr)−CRB(νr)−Dνr −Dn(νr)νr) (3.31b)

Where τ is the thrust vector defining the forces and moments provided by the
propellers in surge (X), sway(Y) and yaw (N) τ = [X, Y,N]⊺. Since the Otter is a
catamaran with a fixed propeller at each pontoon and on propellers in sway, the Y
= 0 at all times.

3.6 Control Allocations

The control allocation problem seeks to distribute the generalised control forces τ ,
into controller inputs u. We follow [13] and [5] and define:

τ = Bu (3.32)

B = TK (3.33)

Where n1,2 are the left and right thruster rpm respectively. K is the diagonal force
coefficient vector. T is the thrust configuration matrix and u is control input in
rpm for each thruster respectively.

We solve for u:

u =

[
k1 0
0 k2

]−1

︸ ︷︷ ︸
K−1

[
1 1
−l1 −l2

]−1

︸ ︷︷ ︸
T−1

[
τ1
τ3

]
(3.34)

where

l1 = −l2 = −Ypont (3.35)

ki =

{
kpos if ni > 0

kneg otherwise
(3.36)

17

Chapter 4

Model Predictive Controller
approach

This chapter is presenting the theory, implementation, and results of the MPC.

4.1 Theory of Model Predictive Controller

Model Predictive Controller (MPC) is an optimal control approach that computes
optimal control signals for complex multi-variate control problems. In order to
effectively control a system, an MPC relies on a numeric dynamic model and an op-
timisation algorithm. It is crucial that the dynamic model accurately represents the
input-response of the system. Furthermore, the MPC uses optimisation techniques
to determine the optimal control inputs that will lead to reaching the setpoint while
staying within the system’s boundaries. MPC has proven viable for driving the out-
put constraints to their optimal set points while maintaining the boundaries in the
optimisation problem, without excessive movement of the input variables [30], [26].

NMPC algorithms are implemented to solve the optimal control problem and
compute an optimal control trajectory in prediction horizon N . At each time step
T , the algorithm solves the optimal controls u for the time horizon N with the sam-
pling time k.

We generalise the NMPC problem as follows:

minimize
x, u

J(x, u, xref) =
N+1∑
k=1

∥xi − xref,i∥2Q +
N∑
k=1

∥∆ui∥2R (4.1a)

subject to xi+1 = f(xi, u)∀i ∈ 0..., N, (4.1b)

x0 = xinitial, (4.1c)

xi ∈ X , (4.1d)

ui ∈ U (4.1e)

The objective is to minimise the cost function J(x, u, xref). J is the summed
costs over the prediction horizon N , representing a function one wants to minimise.
x is the state of the system, u is the control inputs, and xref is the set point or

18

the wanted state for the system. The objective function has two elements; the state
part x multiplied with a weighting matrix Q. The weight matrix prioritises parts
of the state to which we want the controller to pay attention. The same applies to
the second element u and the R matrix, whereas this is to keep the controller input
from oscillating [7] [30].

NMPC has numerous parameters for tuning. Firstly the prediction horizon N
and the sampling time ∆t should be set so that N∆t = ts where ts is the settling
time for the system. Typical ranges of N is 30 ≥ N ≤ 120 [30, Chp. 20]. Secondly,
if the objective function includes values of different ranges and units, it may be
advantageous to make these dimensionless [30].

4.1.1 Discretization Methods

NMPC problems are discrete, but the models used to derive system dynamics are
mostly continuous state space functions. Thus, we must discretise the models to
create a trajectory of the system response based on the control inputs. Various
techniques exist, such as Eulers Method and Runge-Kutta Fourth-order Method [13].
Runge-Kutta Fourth-order Method is defined as follows:

k1 = hf(x[k], u[k], tk) (4.2a)

k2 = hf(x[k], k1/2, u[k], tk + h/2) (4.2b)

k3 = hf(x[k], k2/2, u[k], tk + h/2) (4.2c)

k4 = hf(x[k], k3/2, u[k], tk + h) (4.2d)

x[k + 1] = x[k] +
1

6
(k1 + 2k2 + 2k3 + k4) (4.2e)

4.1.2 Optimisation and Nonlinear Programming

Nonlinear optimisation is a mathematical technique to find the optimal solution to a
problem when the objective function and constraints involve nonlinear expressions.
Nonlinear Programming Problems (NLPP) is a branch of nonlinear optimisation
that optimises objective functions subject to nonlinear constraints [30].

IPOPT is an algorithm that solves NLP using an interior-point line-search filter
method. The method involves iteratively solving a sequence of barrier problems,
which are a series of problems that penalise points that violate the constraints.
IPOPT computes a search direction at each iteration by solving a linearised version
of the barrier problem. It then updates the current solution by moving toward the
search direction while ensuring the new point satisfies the constraints. IPOPT also
utilises a line search algorithm to determine the step size at each iteration, which
helps ensure that the algorithm converges to a global minimum of the objective
function [30], [36].

19

4.1.3 Casadi

The Casadi framework is an open-source optimisation framework for scientific and
industrial applications. It is written in the programming language C which is com-
monly known for its high computational efficiency. The Casadi framework is used
in [18], [38] and is also used in several other high level control-application within
NMPC developent.

4.2 NMPC Implementation

The NMPC was implemented using the Casadi symbolic framework in Python. As
shown in figure 4.1 the NMPC implementation consists of a 3 DOF model imple-
mented in the symbolic framework of Casadi together with an integrator that con-
ducts the discretization process of the continuous state space. Lastly, the NMPC
contains an optimiser that computes the nonlinear optimisation problem to compute
the optimal control forces for the vessel.

Model Predictive Controller

Integrator
(Runge Kutta)

3DOF
Casadi model

Optimizer
(Ipopt- interior-point)

Figure 4.1: The Model Predictive Controller

4.2.1 3 DOF Manouvering Model in Casadi

The state-space model implemented in Casadi is a maneuvering model following
the theory section 3.5. We define the ordinary differential equations (ODE) as a
state-space with the state vector ẋ = [η̇, ν̇]⊺ where η̇ = [ẋ, ẏ, ψ̇]⊺ and ν = [u̇, v̇, ṙ]⊺.
We define:

ẋ =

[
η̇
ν̇r

]
=

[
R(ψ)(νr + [uc, υc, 0]

⊺)
(MA +MRB)

−1(τ − CA(νr)− CRB(νr)−Dνr −Dn(νr)νr)

]
(4.3)

20

τ = [X, 0, N]⊺ where X is the force in surge and N is the moment among yaw, see
table 3.1. MA,MRB, CA, CRB, D and Dn is explained in the theory section 3.5.

Remark. The ocean currents are 0 and the Otter has no thrust in sway. Therefore,
Y is constrained to 0 in the NMPC.

4.2.2 Model Discretization

The state space model used in this paper is constructed so that both x, y, ψ together
with u ν and r in one column vector. The first part in the column vector is the
NED- frame as is considering the kinematics, hence the vessel’s movement in the
NED frame. The last three elements concern the velocities of the vessel in the BODY
frame, aka CO. As seen from the ode equation 4.3, the state space is represented by
the acceleration and the velocity. The state-space ode must be integrated over time
to obtain the velocities and position.

We define the discrete map of the state space denoted fd, and we redefine the
τ = u for consistency with standard notations for controller inputs. Then we define:

x̂ = x(k + 1) = fd(ẋ, u) (4.4)

Where x(k + 1) is the state of the system given the controller inputs one step into
the future. The discrete map is solved using the integration technique Runge Kutta
method showed in equation 4.2, which was implemented as a function by Casadi.

The next step is to implement the optimisation problem. The Casadi framework
provides a simple class called ”Opti”, where we define the ODE, integrator and
solver in one class. The optimisation problem is as follows:

minimize
x, u

J(x, u, xref) =
N∑
k=1

(∥x̂x,y − xref∥2Q + ∥(u(k)∥2R (4.5a)

subject to xi+1 = f(xi, u)∀i ∈ 0..., N, (4.5b)

x0 = xinitial, (4.5c)

xi ∈ X , (4.5d)

ui ∈ U , (4.5e)

umin < ui < umax (4.5f)

Where x̂x,y is the position of the vehicle in NED. xref =
[
xref yref

]
is the target in

NED. R is the weighting matrix for the controller change. Q is the weighting matrix
for the state vector. umin is the [Xmin, Nmin], umax is the [Xmax, Nmax].

4.2.3 Solving the Optimal Control Problem

For each solution provided, the NMPC solves the optimal control trajectory within
the prediction horizon N . If the target is within reach of the vessel in the prediction
horizon, the solver will find the ending solution. Despite that the optimal controls

21

are computed for the whole prediction horizon, only the first control element in the
trajectory is sent to the controller allocation. Then for the next time step, an entire
optimal trajectory is computed. The reason for this is to encounter the difference
in real system response vs the model-based response from which the controller gain
is calculated. The initial guess is set equal to the last prediction control and state
trajectory. This means that the u-vector trajectory is set to be the last solution.
The solver used in this thesis is the IPOPT algorithm as explained previously.

4.3 Simulation

The simulation of the controller test uses the edited version of the Fossen Vehicle
simulator for calculating the dynamic response and the NMPC developed by the
author to compute actions. The workflow of the simulation is illustrated in figure
4.2.

Fossen Vehicle
Simulator

MPC controller

Control allocations

Se initial values

Update target position

Sim done?

Generate plots and
csv

Figure 4.2: NMPC simulation workflow

22

The NMPC has a variety of parameters that can be adjusted to tune performance
and computation speed. In table 4.1 the parameters for the NMPC performance test
is listed.

Parameter Value

Simulation sample time 0.1
umin X = -116 N , N = -73 Nm
umax X = 150 N , N = 73 Nm
NNMPC 10
NMPC sample time 0.2
R [0.5,0 ,0.5]
Q [10000, 10000]
Solver IPOPT
Max iterations 1000

Table 4.1: NMPC and simulation parameters for the test case

The simulation sample time is the time at which the simulation is computing the
dynamic response between each controller action denoted as η(k + 1)and ν(k + 1)
in figure 4.2. The forces control limits are umin and umax with the surge element
N with unit Newton and yaw element N with unit Nm, and defines the upper and
lower force limits that the thrusters can exert on the Otter. The NNMPC element
in table 4.1 (not to be confused with yaw) is the prediction horizon and defines how
many time steps ahead the NMPC should compute controller signals for. NMPC
sample time is the sample time for the internal Casadi 3DOF model. R and Q are
the weighting matrix and are defined through trial and error and guidance from [30].
The Solver is the nonlinear programming solver that is used to solve the optimal
control problem, and it has a maximum of 1000 iterations to find a solution to the
problem. If no solution is found, the simulations is aborted.

4.4 NMPC Simulated Performance Test

This section presents how the NMPC test was conducted in the simulations and the
results of the model predictive controller approach.

4.4.1 Setup

In the test scenario, the Otter is placed in the position ηx,y,ψ = [0, 0, 0]. The target is
a virtual target simulating AUGs movement in x and y. The AUGs starting position
is set to xref = [5, 5], and the target is moving in a circular pattern of a radius of
200m with a velocity of 0.25 m/s. The simulation length is 8000 steps and with a
sampling time of 0.1 this results in an 800-second simulation period.

4.4.2 Results Case 1

In this section, the results of the simulated NMPC test are presented. First, a plot
showing the trajectory of the Otter and the Target in NED, and then some consider-

23

ations of the error between the two are presented. Next, we move over to controller
output before looking into the computation time of the optimal control problem.

The spatial plot, figure 4.3, shows a target starts with an offset from the Otter.
The Otter is quickly changing the heading towards the target and with a minor
oscillation overshoot from the target trajectory, the Otter settles on the tail of the
target and adequately tracks the target, as indicated by the arrows.

0 25 50 75 100 125 150 175
East

80

60

40

20

0

N
or

th

x, y

xref

Figure 4.3: NMPC performance in NED

Figure 4.4 shows the absolute distance error between the Otter and the target
in units m. There is a rapid change in the error that settles around 0.7m. The error
plot might indicate room for improved controller tuning to reduce the error further.
The same oscillating behaviour as in the NED plot can be observed at the start,
before the line flattens out, where the Otter settles at the same speed as the target
velocity.

24

0 100 200 300 400 500 600 700 800
Time (s)

0

1

2

3

4

5

6

7
E

rr
or

 (m
)

|| x, y xref||

Figure 4.4: NMPC performance error

The control forces computed from the NMPC controller are shown in figure 4.5a
and are the inputs to the control allocations. Further, in figure 4.5b, the resulting
control allocation outputs, in the form of rpm, for the left and right propeller is
shown together with the actual rpm. The actual rpm is a simulation of the thruster
dynamics and includes a time lag in ramping the thruster revolutions. The NMPC
and control allocations do not have access to the thruster dynamics. As we observe
from the figure, the same oscillating start can be observed in the computed optimal
forces and the responding rpms.

0 200 400 600 800
Time (s)

0

20

40

60

80

100

120

140

Surge (X)

0 200 400 600 800
Time (s)

0

20

40

60

80

Yaw (Nm)

(a) Control Forces (Surge (N), Yaw (Nm)

0 200 400 600 800
Time (s)

0

20

40

60

80

100

120

Left

Signal (rad/s)
Actual (rad/s)

0 200 400 600 800
Time (s)

40

20

0

20

40

Right

(b) Thruster RPM

Figure 4.5: Controller responces

The responding velocities of the Otter during the performance test are depicted
in figure 4.6. We can see that the velocities follow the same pattern as the controller
signals by oscillating at the start before stabilising and aligning with the target.

25

0 100 200 300 400 500 600 700 800

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u (m/s)
v (m/s)
r (rad/s)

Figure 4.6: Velocities

In figure 4.7, the logged time it takes to solve the nonlinear programming problem
and return the optimal control. As shown, it takes approximately from 0.5 to 0.6
seconds to compute the optimal controls for the Otter.

26

0 100 200 300 400 500 600 700 800
Time (s)

0.3

0.4

0.5

0.6

0.7
Se

co
nd

s

Figure 4.7: Compute time to find optimal control action

4.4.3 Results Case 2

Case 2 is identical to Case 1, except the target is moved to the initial starting
position [20,20]. Figure 4.8 and 4.9 show the response of the Otter while tracking
the target. The distance to the target is rapidly reduced before adequately following
the target. The same oscillating behaviour is present at the start and is settled after
about 200 seconds.

27

0 25 50 75 100 125 150 175 200
East

80

60

40

20

0

20
N

or
th

x, y

xref

Figure 4.8: Case 2 NMPC performance in NED

0 100 200 300 400 500 600 700 800
Time (s)

0

5

10

15

20

25

E
rr

or
 (m

)

|| x, y xref||

Figure 4.9: Case 2 NMPC performance error

4.5 Discussion

4.5.1 Error from Target

The error settles on 0.7 m. In the simulated environment that is not prone to
signal disturbance GPS and position, it is reasonable to presume that the controller
should be able to close this gap even further. Conversely, the error is likely because
the NMPC observes the Otter intercepting the target within the prediction horizon
when deriving the optimal controls. Only the first controller action in the optimal
controller trajectory is conducted. Therefore, the Otter never conducts the finishing
control action for the trajectory that would reduce the error to zero. Then, at the

28

next step, the target has moved, and the same situation occurs, resulting in a loop
where there is a constant difference between the Otter and the target. There might
be several mitigation methods for this, but 0.7 meters is an acceptable accuracy for
practical applications for open water target tracking applications. In addition, the
NMPC is implemented to use the η that would be measured with a civilian GPS
with an accuracy of 3 meters in the horizontal positioning [24]. Thus, the GPS error
is over four times larger than the constant error in the simulation. Because the SBL
is mounted on the Otter and gives the readings relative to the Otter, the NMPC
would calculate its controller actions on a position that is ±3m. A 3m accuracy
might not be enough for the optical communication to work correctly. Furthermore,
disturbances such as wind, waves and currents would cause the system to experience
even more errors. In such a scenario, where the GPS provides insufficient accuracy
for the optical communication operation, the NMPC would need re-implementation
and other techniques to measure the position.

4.5.2 Controller Tuning

The range of the values in the Casadi model is not normalised. This means that
the range of x and xref is larger than that of u. Therefore the weighting matrix of
the two elements in the objective function is of different scales. However, this is not
crucial for functionality, and as shown in figure 4.3, the NMPC is robust enough to
tackle the scaling difference. In future work, making the two variables’ ranges the
same might be beneficial so that the control element and the spacial error between
the Otter and the target are somewhat the same scales.

Referring to figure 4.5, the controls have a smooth transition between the sam-
pling time, despite the oscillating pattern at the start. In the initial controller steps,
the controller creates significant controller inputs but settles fast.

4.5.3 Computation Time

In figure 4.7, you can see the time it takes for the NMPC to calculate a control
action. The computation time is around 0.6 seconds (1.6Hz), in the same range
as in previous works (see section 2.2.1). However, the computation time might be
too long for tight control sampling. Nevertheless, since the Otter thruster dynamics
settle slowly, taking about 5-10 seconds, a new controller action every 0.6 seconds
may be effective in practical applications and on calm waters. On the other hand,
the Otter is a relatively small craft with a weight of 55 kg and a full speed of about
1,5 m/s; the Otter will move almost one meter between each controller signal with
a sampling time of 0.6 seconds. Additionally, with external environmental forces
inducing additional acceleration of the Otter, a change in thruster signals every 0.6
seconds will likely result in oscillating behaviour. The literature review outlined an
effective strategy to reduce the control’s computation time. The method involves
linearizing the model and solving the linear optimal control problem, which can
significantly reduce computation time. However, it may slightly impact the accuracy
of the controller.

29

4.6 Summary

In this chapter, the NMPC approach as a whole has been presented. The model used
for the NMPC is nonlinear, resulting in a nonlinear model predictive controller. For
the implementation, the Casadi framework was used in modelling and discretisation,
and the optimisation solver was IPOPT. The simulation and the results show that
the NMPC works satisfactorily and reduces the distance between the Otter and
the target to ≈ 0.7m. However, the controller has a long computation time of 0.6
seconds which may make the controller unfeasible in environments that exerts the
Otter for forces requiring faster responses than this NMPC will manage.

30

Chapter 5

Reinforcement Learning Approach

5.1 Artificial Intelligence Theory

As early as 1952, IBM’er Arthur Samuel coined the word Machine Learning (ML),
and a few years later, in 1956, the cognitive scientist Marvin Minsky used the term
Artificial Intelligence (AI). Today these terms are commonly known among scientists
and the population in general. Broadly, AI systems are considered any system that
may conduct intelligent behaviour and according to the Oxford Dictionary, ML is a
”(..) system that becomes smarter as it encounters additional data”. Furthermore,
ML is usually categorised into three main approaches: supervised, unsupervised,
and reinforcement learning. This thesis will focus on the reinforcement learning cat-
egory. As shown later in the thesis, Deep Reinforcement Learning is used to train an
Agent to perform the controller tasks of target tracking. In the following sections,
the fundamental parts of machine learning will be presented as it lays the founda-
tion for the reinforcement learning used in this thesis, following the work of [35] and
Khan [17].

5.1.1 Artificial Neurons

Artificial Neural Networks(NN) is a type of mathematical function modelling that
draws inspiration from the biological neural networks found in humans and ani-
mals in nature. A biological neural consists of an axiom, dendrites, a nucleus and
synapses, but the two significant parts replicated in an NN are the nucleus and the
synapsis. The ”calculation” is conducted in the nucleus, and the synopsis connects
each neuron. Please refer to figure 5.1. In short, a neuron will receive an input stim-
ulus, and if the chemical threshold is reached, the neuron will spike and output a
signal to the connected neurons, possibly creating a chain of spiking neurons [20, Ch.
7], [3].

31

Figure 5.1: Biological (a) and artificial(b) neuron,

In 1943 McCulloch and Pitts created a model that took in unweighted inputs
with an activation function that gave a binary output [23]. In 1958, presumably in-
spired by McCulloc-Pitts in addition to the Hebbian Placisity [11], Frank Rosenblatt
developed his Perceptron Machine, enabling weighted inputs and various activation
functions to produce a binary output classifier machine [27]. The McCulloch - Pitts
neuron and Rosebratts Perceptron Machine are the first commonly known and es-
tablished models that replicate the functionality of a biological neuron that lays
the foundation for the modern artificial neuron. The perceptron machine may be
defined as follows: given an input vector x, a weight matrix ω and bias b, the output
of the perceptron is given by:

f(x) =

{
1 if ω⊺x+ b > 0

0 otherwise
(5.1)

Modern artificial neurons consist of three major parts: weights and biases, col-
lectively called parameters, and an activation function. The weights are the Hebbian
plasticity that makes the neuron learn. For example, if a feature is highly related
to a class in a dataset, then a high-weight value is beneficial. In figure 5.2, we can
observe the input vector x multiplied by the weights ω. Further, we see a summing
function that multiplies all the weights (and biases if present) before passing it to
an activation function S [3].

32

Figure 5.2: Artificial neuron

The activation function is a crucial component in emulating the behaviour of
biological neurons. Although a biological neuron will only fire when a specific stim-
ulus threshold is reached, the output is not equivalent to the added inputs. On the
contrary, the output may differ greatly from the input stimulus. To emulate this
behaviour, we use activation functions that give an output in a scale defined by the
function, not by the inputs.

There is a variety of activation functions. However, due to the proficient ability
to handle vanishing gradients, the rectified linear (ReLU) is a typical activation
function in the hidden layers, showed in eq. 5.2. In contrast, the output layers often
have a linear or nonlinear activation function [31]. Nonlinear activation functions
may be Sigmoid as shown in eq.5.3.

f(z) =

{
z if z > 0

0 otherwise
(5.2)

ϕ(z) = − 1

1 + e−z
(5.3)

The characteristics of the activation function are, in general, that they must be
continuous if we want to use gradient descent algorithms to optimise the parameters
of the neural network.

5.1.2 Artificial Neural Networks

An artificial neural network consists of several artificial neurons, often connected in a
2D structured grid with rows and layers, as illustrated in figure 5.3. The structure is
defined using graph theory, and one can define the topology connecting the artificial
neurons. Graph theory provides a variety of structure that follows rules which
defines the behaviour of the graph. For example, a classical deep neural network
(DNN) uses acyclic graphs. An acyclic graph means that the data can only go in one
direction in the graph. Other typologies may involve data reoccurring in a layer or
a node within a network and therefore use bidirectional graphs. The latter is called
a Recurrent Neural Network (RNN) and is frequently used in temporal models and
environments. However, an alternative to RNN is stacking several observations and
processing them contemporary through the dense network instead [28], [6].

33

Figure 5.3: Artificial Neural Network

5.1.3 Optimisations - Gradient Decent

As the aforementioned section on NNs describes, designated synaptic weights exist
between each neuron in an artificial neural network. These weights are essential
for adjusting the trails within the network, thereby training it to produce the de-
sired output. Unfortunately, the numerical value of these weights for each neuron
is usually unknown at the outset, and analytical determination is only occasionally
possible. Thus, iterative optimisation techniques are necessary to obtain the op-
timal weights in a neural network [17]. Gradient descent is an iterative technique
that uses the gradient in the NN. The gradient is the vector with partial derivatives
of the objective function about a synaptic weight within the NN. Accordingly, the
gradient explains how we adjust the weights to reduce the error, and the adjustment
scale is decided by the learning factor η [17].

∇ωE = [
∂E

∂ω1

,
∂E

∂ω2

, ...,
∂E

∂ωd
]T (5.4)

∆ωi = −η ∂E
∂ωi

,∀i (5.5)

ωi = ωi +∆ωi (5.6)

where E is the objective function, η is the learning rate and ω are the synaptic

weights. To determine the error, we compare the predicted NN output to a ground
truth value. The squared error function is frequently used due to its ease of calcu-
lation and analytical tractability [16].

ϵ(x) = (xt − xp)
2 (5.7)

Where xt is the ground truth and xp is the output from the NN.

5.1.4 Reinforcement Learning

This section presents the background and the theory for reinforcement learning (RL).
The history of RL is rooted in educational psychology, which studies how animals

34

use the game of trial and error to learn, and optimal controls concerning vale func-
tions and dynamic programming. Optimal controls occurred in 1950 when Richard
Bellman introduced the ”optimal return function”, now known as the Bellman equa-
tion. The groups of methods to solve this equation came to be known as dynamic
programming and the Markov decision process (MDP) [4]. RL is a training method
where we train an Agent to conduct a task using reinforcement techniques.

Markov Decision Process

The foundation for RL is the Markov Decision Process (MDP). MDP is a math-
ematical discrete-time stochastic process control and provides the bedrock for all
RL methods [35]. MDP is categorised into discrete or stochastic processes. In the
discrete case, the translation between two states is a function with a deterministic
value x′ = f(x, u). Conversely, for the stochastic case, the state translation is the
probability distribution P (x′|x, u), resulting in a random new state in different sce-
narios. MPD may be described by a tuple (X ,U ,R, T) where the X is the states,
U are the available actions. The available actions will be dependent on the state of
the environment. We denote the state-action mapping as U(x) ∈ X . The reward R
is the state dependant action denoted R(x, u), where x ∈ X , u ∈ U

In the case of using an MDP in an RL we may refer to figure 5.4, which illustrates
this process and say that we have an Agent in an environment that acts upon a policy
denoted as πt. At each time step t, the RL-Agent will get information about its state
st, where st ∈ S, and choose an action At, among the available action denoted as
A(St) based on that state information. After selecting and carrying out the action,
the Agent is given information about its new state, St+1, as well as a numerical
reward, Rt+1.

Figure 5.4: Markov Decistion Process

During training, the Agent develops a mapping from states to actions. This
mapping is the resulting Agent’s policy πt. Then, a decision is made based on a
distribution termed At(s, a) = P (a|s), where P (a|s) is the probability that At = a if
St = s. Thus, the policy is probabilistic. The goal for the MDP is to find an optimal
policy of acting within the state-space to gain the highest accumulated rewards under
the policy π(s) quantified by the discounted sums of estimated rewards. However,
the process can be infinite; therefore, the accumulated rewards must be defined as
infinite diverging series. Due to the properties of an infinite diverging series, we can
express the accumulated rewards Gt as follows:

Gt = Rt+1 + γGt+1 (5.8)

35

To define the value of being in a state we can use the state-value function, which
determines the value of being in a certain state within the state-space. We can write
this as the following equation:

vπ(s) = E[Gt|St = S] (5.9)

The other metric is the mapping between the action and the value, hence the
value of conducting an action regarding expected rewards. The function measures
the estimated accumulated rewards from the current state and forwards, using the
expression of accumulated rewards Gt as mentioned above, and define :

qπ(s, a) = Eπ[Gt|St = S,At = a] (5.10)

Architectures

RL algorithms are often categorised into model-free and model-based. We may
think of model-free policies as a fast-thinking system, learning reflexes through en-
vironmental experience. In contrast, model-based methods are like a slow-thinking
systems, using analysis and planning for the future based on a learned model of
the environment. Within the model-free category, we find value-based methods
and policy approximations, as shown in figure 5.5. Value-based methods learn the
value of actions and use this information to decide the best action in a particu-
lar state. For example, the Q-learning algorithm is a well-established value-based
method that relies entirely on the quality of the action in determining the optimal
policy. However, value-based policies can be prone to exploiting known valuable
states [35]. In contrast, policy approximation methods, i.e. policy-based or policy
gradient algorithms, learn a policy that selects actions without consulting a value
function. Although a value function may still be used in training the policy, policy
approximations are not directly dependent on the value of actions in a particular
state. When model-free methods do not have any value estimate of either action
or state, they are called agent-only methods, relying entirely on the agent’s expe-
rience of being in a state. By implementing a critical function that estimates the
value of a state, the actor-critic method can assess the value function during train-
ing to determine the best actions. In the actor-critic method, a critic NN learns to
predict the values of actions, while the actor NN learns to compute the best actions.

36

RL algorithms

Model-basedModel-free

Policy based Value based

Q-learningPPO

Figure 5.5: Reinforcement algorithms

Policy Optimisation

We use the same definition as previously and say that a policy is a NN with weights
as parameters. We follow [35] and denote the parameters as θ ∈ R: (a|s, θ) =
Pr{At = a|St = s, θt = θ} for the probability that action a is taken at time t given
that the environment is in state s at time t with parameter θ. These methods use a
performance measure J(θ) that measures the performance of the policy with respect
to the policy parameters. Also, the methods seek to maximise the performance and,
therefore, update their weight based on the gradient ascent in J(θ) and denote the
following equation [35, chap 13]:

θt+1 = θt + ̂α∇J(θt) (5.11)

Where ̂α∇J(θt) is an estimate and indicates the direction to adjust the weights θ
in order to maximise performance. The term α is the rate and scales the adjustment
and is often a hyperparamater for the optimiser used in the algorithms. The above
is a general method that is used for policy gradient methods.

Common Hyperaparamaters

Opposed to parameters that are changed during training, hyperparameters are set
before the training starts. The value of the hyperparamaters are coefficients which
may elevate training speed and the end performance of the trained policy, i.e the
parameters in the NN.

The learning rate can be scheduled or fixed throughout the training period.
Learning rates for the Adaptive Moment Estimation (Adam), which is used in this
thesis, will affect how much of the change in the adjustment should be considered
when adjusting the weights in the network.

The architecture of the NN is of great importance and can significantly impact
performance and training time. Often the NN is a 2D grid with layers and units.
The layer defines how many columns the NN has, whereas units are the number of
rows in each layer.

Batch sizes are how many samples are placed in the trajectory before conducting
gradient a/de-scend.

37

5.1.5 Proximal Policy Optimisation

The Proximal Policy Optimization (PPO) is a model-free on-policy gradient method
that learns to take action based on experienced states during training. By imple-
menting two policies where πθ(at|st) is the current policy and a second one that we
use to collect samples πθk(at|st), we can evaluate which of these is performing best,
also known as the surrogate objective [29].

rt(θ) =
πθ(at|st)
πθk(at|st)

(5.12)

The PPO objective function is defined as follows [29]:

LCLIPP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)] (5.13)

Where ϵ is the clipping factor, Ât = J(θ)−V (s), V (s) is the estimate of the future
discounted rewards provided by the critic network, and Et[...] implies the empirical
average over a finite batch of samples, which means that the policy parameters
are updated based on a stochastic gradient ascend over a trajectory of action and
rewards.

5.2 Reinforcement Learning Controller implemen-

tation

In this section, all the aspects regarding the RL implementation are documented.
First, a general overview of the system architecture is presented before explaining
some essential aspects regarding the rewards function and observation space. The
system is semi-object-oriented, meaning that several files with Classes hold the func-
tionality for training, training environment and testing.

Observations,
Reward

PPO agent
Critic Actor

Environment
Dynamics

Control
allocation

Figure 5.6: Schematic overview of the implementation

5.2.1 Training Environment

The environment is one of the critical elements for successful training and deriving a
working policy. As illustrated in figure 5.6, the environment provides the necessary

38

observations for the Agent to compute the control inputs to achieve the controller
objective. In this thesis, there is implemented a Gymnasium Farma environment [10]
in the Stable Baseline 3 framework. Following a standardised structure implement-
ing the methods step, reset, render, info that interface with the Gym class, one gets
a solid simulation framework that can train various RL algorithms.The finalised
training workflow is illustrated in 5.7.

Step(action)
The step method is executed at each time step and receives the action from the Agent
as input. The Agent provides a normalised value between -1 and 1 to the method.
Then the predictions from the Agent are scaled relative to the force boundaries in
surge X and yaw N before being converted to propeller rpm through the control
allocation method. Then, the new state of the position η and the velocities ν are
calculated using the Otter model, described in section 3.5 before the termination
evaluation is done. The algorithm should terminate the episode if the Otter has
been within the threshold region surrounding the target for 60 seconds or if the
episode time limit is reached. Lastly, the rewards and penalties are calculated based
on the new state of the vessel and the termination state. The method returns the
observation, rewards, and a boolean done signal.

Reset()
The reset methods implementation is used to initialise and reset the environment.
The initialisation is done when the training starts, and the reset is used between
episodes. The starting position of the vessel is always standing still in origo, while
the position of the target can randomly appear within a defined radius of the vessel.
If the target is moving, the target’s speed is defined randomly within a specified
range defined in the config file.

39

Get
hyperaparamaters
and constants from

config file

Initial state

Start training loop

Config

Get observations

Get reward

Agent

Updated weight and biases

Calculate system
response

Save agent

Calculate new
weights and biases

Yes

Observations

Training
done?

No

Update
weights and

biases

Target Tracking
controller trainer

Target tracking
environment

Actions

Figure 5.7: Training process workflow
40

5.2.2 Agent and Hyperparamaters

The Agent holds the policy that makes the regression prediction on which controller
action that is optimal. The Agent consists of two neural networks and actor and a
critic. In this implementation, both networks are of the same architecture and have
the same number of layers and units. In table 5.1 the architecture and hyperpara-
maters are listed.

Description Values

Actor and Critic NN

Layers [2, 3]
Nodes in layer [32, 64, 128, 256, 512]
Activation function hidden layers ReLu
Regression layer Linear

Hyperparameters

Rollout buffer size 2048
Batch Size 64
Discount factor γ 0.99
Clip range ϵ 0.2
Optimiser Adam
Num epochs during optimisation 10
Initial learning rate α0 [0.003 - 0.00003]

Table 5.1: PPO Agent network architecture and hyperparameters

The learning rate is the scale of each gradient descent update step and corre-
sponds to the distance of movement, the adjustment of the weights, and the bi-
ases taken during the network parameter optimisation. This implementation uses a
scheduled learning rate defined by the function 5.14.

fLR(α0, p) = α0 ∗ exp(−(1− p)) (5.14)

where α0 is the initial learning rate value, and p is the progress indicated with a
number between 0-1.

5.2.3 Reward Function

One of the more challenging parts of the RL paradigm is to implement a reward
function that allows for both exploration and rewards sufficiently for the wanted
behaviour from the Agent. The training might never converge to an optimum if the
reward is too sparse in a stochastic environment. On the other hand, if the reward
function is too specific, it can lead to exploiting and converging to a sub-optimal
behaviour with the perception that it is reaching the intended objective.

During the training process, various reward functions were implemented to get
the intended behaviour during training. The reward function was mostly imple-
mented as a continuous reward or penalty element. Then, each reward function
element was multiplied by a tuning coefficient and summed to give the total reward
per episode. The tuning coefficient was represented as c1,...c7 in the config.yaml file
for easy tuning and to study the effect of each cost function element on training
speed and general performance. Figures 5.8 shows an example of a reward function

41

constellation where the Otter is moving directly through the target, as can be seen
in the eucledian distance, Action, and Velocity. The reward function in the example
has coefficients c1, ...c7 = 1.

0 50 100 150 200 250 300 350
2

0

2

Ve
l.

to
w

ar
ds

 ta
rg

et vxref

0 50 100 150 200 250 300 350
0

10

20

30

E
uc

lid
ea

n
di

st
.

d

0 50 100 150 200 250 300 350
0

1

2

Ve
lo

ci
tie

s

u
v
r

0 50 100 150 200 250 300 350
0.0

0.5

1.0

Ac
tio

ns

uX

uN

(a) State of the Otter

0 50 100 150 200 250 300 350

4

3

2

1

0

1

2

3

Reward function

Euclidean distance reward
Target reached reward
Controller penalty
Intermediate time penalty

Time out penalty
Speed towards target
Heading reward
Total rewards

(b) Reward function

Figure 5.8: Example of a reward function constellation

42

Euclidean Distance Reward

The first reward function element is the euclidean distance between the target and
the vessel as defined in equation 5.15. The distance is mapped to a Gaussian bell
curve function that gives a continuous reward function which steadily increases as
the distance between the vessel and the target is reduced. As illustrated in figure
5.8 the black dashed line is showing the reward contribution as a function of the
distance between the target and the vessel. We define the euclidean distance as
shown in equation 5.15.

d(η, xref) = ∥ηx,y − xref∥ (5.15)

Where the ηx,y is the x and y position of the vessel, and xref is the position of the
target at time t.
Then we define the reward function element r1 showed in equation 5.16

r1(d) = a exp−(
d− b)2

σ2
) (5.16)

where a is the height of the amplitude of the bell curve. The standard deviation σ
is the with of the bell curve, and in this implementation, it is set to be half of the
target spawn region.

Target Reached Reward

Target reached reward is an extra reward given to the Agent for being within a
region R of the target.

r2(d) =

{
1 if d < R

0 otherwise
(5.17)

Speed Towards Target Reward

Another way of rewarding a favourable state of the vessel is to use the speed to-
wards the target. The function is designed to quickly increase the reward for a small
amount of speed towards the target. This function element intends to reward the
speed in reaching the target quickly, but it may also provide enough information to
derive a working policy on its own. The function is capped on a velocity of ±1 to
ensure a responsible speed of the vessel.

r3(ḋ) = tanh (3ḋ) (5.18)

where ḋ is the speed towards the target in the NED frame.

43

3 2 1 0 1 2 3
Speed towards target [m/s]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
R

ew
ar

d

Figure 5.9: Example of speed towards target reward

Heading Reward

None of the previous reward function elements is explicitly considering the orienta-
tion of the vessel whilst it is pursuing the target. Thus, by implementing a heading
reward expression, we can reward the Agent for controlling the Otter in the de-
sired heading angle. To deduce the angle between the desired angle and the current
heading, the smallest signed angle is used to map the angle between 0 and 2π

ψ̃(ϕ) = modulo(ϕ+ π, 2π)− π (5.19)

where ϕ = ψd − ψ, ψd is the desired heading and ψ is the actual heading of the
vessel.

Then we use the smallest signed angle in the heading reward function as shown
in equation 5.20.

r4(ϕ) = −1 + 2 exp(
ψ̃(ϕ)

22
) (5.20)

44

3 2 1 0 1 2 3
Heading error

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
R

ew
ar

d

Figure 5.10: Example on heading reward

Controller Signal Penalty

Without consideration, a control signal is regarded as a variable that can be altered
promptly. However, actuators exhibit dynamic behaviour in practice, which may
result in a temporal lag between the input control signal and the corresponding
output response. Moreover, the mechanical components of the effectors, e.g. pro-
pellers, are often unable to withstand rapid changes in acceleration over extended
periods. Consequently, imposing a penalty during training becomes necessary to
prevent oscillatory behaviour and obtain system stability. In this implementation,
it is the absolute value of the changes from one time step to the next for the entire
control vector that is considered, as described in equation 5.21.

p1 = −∥τt − τt−1∥ (5.21)

where τ = [X,N]⊺.

Intermediate Time Penalty

The intention of this penalty is to incentives the Agent to reach a favourable state
and gain higher rewards quickly. Oppose a situation with no intermediate time
penalty; fast actions make no difference.

p2 = −1 (5.22)

This makes the tuning parameter c6 that defines the scale of the penalty and for
most of this implementation, c6 is set to 1 or 0.1 during training.

45

Time Out Penalty

The time-out penalty is a penalty that is given if the vessel is not within the target
threshold region surrounding the target.

p3 =

{
−1 if t ≥ T

0 otherwise
(5.23)

Total Episode Reward

After each reward and penalty is computed, the reward function is multiplied by
the coefficient from the configuration file and summed together:

rtotal =
T∑
i=1

c1r1 + c2r2 + c3r3 + c4r4 + c5p1 + c6p2 + c7p3 (5.24)

5.2.4 Observations

Observations are the input to the Agent during training and inference, and they
must contain sufficient data for the Agent to deduce the following controller action.
The observation space is a single column 18x1 vector including the elements provided
in table 5.2.

Term Description

η [x, y, ψ]⊺ position of the vessel
ν [u, v, r]⊺ The relative velocities of the vessel
xref [x, y]⊺ The target position
∆η [∆x,∆y]⊺ Is the delta in x and y
d The euclidean distance between the vessel and the target
∆τ ∥τk − τk+1∥ ⊺ Is the change in controller action
τ The actions in [X,N]⊺

vxref Is the velocity towards the target

ψ̃ Smallest signed angle between the desired heading ψd and ψ
tr t/T is the ratio between proceeded time t and the episode time T
R Radius surrounding the target, i.e. threshold if the optical relay

Table 5.2: Observations for the Agent

The observations are stacked in a set of eight, which means the Agent gets the
latest eight observations to conduct its controller actions on. This might be redun-
dant since the observations include temporal observations, e.g. velocity, giving the
Agent direct access to that data. This means that the Agent does not have to derive
the relationship between the time and the position to derive that data specifically,
reducing the computational demand. However, as mentioned in section 5.1, there
is an example where the Agents are getting several time steps of observations that
increases the performance of the Agent’s prediction of actions. Lastly, the environ-
ment was implemented with a normalisation with a moving average which adjusted
the normalisation metrics as the Agent explores new parts of the observation space.

46

5.3 Reinforcement Learning Training

This section explains the training process and the intermediate adjustment through-
out the process.

5.3.1 Training Procedure

The goal for the Agent is to have the same behaviour as the MPC. That is, reducing
the distance between the vessel and a target, regardless if the target is far away or
very close or if the target is moving or standing still. Furthermore, the Agent must
be able to derive feasible controller actions in a generalised manner with any scalar
values of the distance or other observations. In other words, the Agent must be able
to conduct feasible controller actions for observations that are both small and large.

An extensive range of hyperparameter configurations, observations, and reward
functions have been exhaustively examined in pursuing a policy that satisfies the
aforementioned criteria. The meticulous process of trial and error is a consequence
of the stochastic architecture of the environment. There are several hyperparameters
to decide for the RL algorithm to derive a well-working policy. A hyper-parameter
benchmarking case was created to work more effectively in the hyper-parameter
elaboration. The benchmark case was an environment where all episodes in the
training session had a fixed target, making it easier for the Agent to derive a feasi-
ble policy quickly. Several training sessions were started simultaneously, and after
the sessions were finished, the result was evaluated by looking at which of the poli-
cies had converged. After that, the changes were made to the hyperparameters and
a new session with many policies was run on different hyperparameter configura-
tions was conducted. The same benchmark approach was used for the tuning of the
reward function. In figure 5.11, we see a benchmark case where the different NN
sizes were investigated. The conclusion was to proceed with a NN with two layers
and 128 units each due to the fast convergence and high reward after 800 episodes.

47

0 1 2 3 4 5 6 7 8
Step 1e6

1500

1250

1000

750

500

250

0

250

500
M

ea
n

ep
is

od
e

re
w

ar
d

64
128
256
512

Figure 5.11: Example from the work when deriving the size of Critic and Actor NN

5.3.2 Agent Training

This section describes the training that was conducted to derive the policies for the
three Agents used in the performance test in section 5.4.
Several different policies for the controller Agent were trained with different reward
functions and environment configurations. To illustrate how hyperparameters and
reward functions affect training convergence, results from three policies will be pre-
sented.

Training Setup

The environment parameters were the same for all policies and are presented in
table 5.3.

48

Paramater Value

Simulation sample time 0.1
umin X = -116 N , N = -73 Nm
umax X = 150 N , N = 73 Nm
RL control sampling 0.1
Episode length 1000
Target spawn region 50m
Target cycle 100
Target confident region 1
Target velocity [0-0.8]m/s
Number of environments 10
Number of stacked observations 8

Table 5.3: Environment parameters used during training

Simulation sample time is used when computing the dynamics. The umin and
umax are the boundaries for the thrust forces for the Otter, since the Agent is
providing a number between -1 and 1, the boundaries are used to denormalize the
actions before sending them to the control allocations. RL controller sampling is
how often the controller computes new controller actions. The Episode length is the
length of each episode during training. The target spawn region is a radius around
the Otter that indicates the area in which the target may spawn. The target cycle
is how many episodes the target spawns at the same spot. Target confident region
indicates that the Agent is sufficiently close to the target and gains the same reward
as long as it is within this region.Target velocity defines the range of the target
velocity. Number of environments is the number of parallel environments the Agent
is acting. Number of stacked observations is how many previous observations the
Agent has access to.

Parameter Agent 1 Agent 2 Agent 3

Reward function

c1 (distance to target) 0 0 1
c2 (target reached) 1 1 0
c3 (controller penalty) 0.01 0.1 0.01
c4 (intermediate time penalty) 0.1 0.1 0.1
c5 (time out penalty) 0 0 0
c6 (vel. towards target) 1 1 0
c7 (heading) 1 1 1

Agent hyperparamaters

Actor and Critic Architecture [128,128] [128,128] [128,128]
Initial learning rate 0.00003 0.000003 0.0003
Total training steps 80M 30M 80M

Table 5.4: Reward function configuration and Agent hyperparamaters

49

Training Results

In figure 5.12 evolution of the accumulated rewards pr. episode, throughout the
training time, is presented. As shown in the figure, the mean reward is rapidly
increasing at the start of the training for all Agents. Then Agent 1 and 2 starts
converging to a maximum level. Agent 3 shows a decrease in rewards after the initial
spike but nearly manages to pick up the lag towards the end without converging
fully. Agent 1 and Agent 2 are trained for 80M steps, and Agent 2 is trained for
30M steps.

0 1 2 3 4 5 6 7 8
Step 1e7

0

500

1000

1500

2000

M
ea

n
ep

is
od

e
re

w
ar

d

Agent 1
Agent 2
Agent 3

Figure 5.12: Agent policy convergence during training

5.4 Simulated Performance Test

This section presents the simulated controller performance test of the RL controllers.
In this context, the RL-controller will be the Agent that predicts the controls based
on a trained NN, called the actor policy. The input to the NN is a vector that has
the aforementioned observations for the last eight timesteps. The output is two float
values between -1 and 1, representing the normalized desired force in Surge and Yaw.

50

5.4.1 Setup

The simulation workflow is shown in figure 4.2, except that the controller is RL-
controller. The simulations are conducted by utilising the environment used in train-
ing, and only the dynamic calculations from Fossen Vehicle Simulator are utilised.
Two test cases will be presented for each Agent to illustrate key features.

Case 1) is the same as the MPC test case explained in section 4.4.1, with a
moving target starting with an offset ([20,20]) from the Otter.

Case 2) is similar to case 1, but the simulation time is set to be 1000 steps,
hence the same as the episode length in the training sessions.

5.4.2 Results Case 1

In this section, the results from case 1 are presented. For each Agent, there are
plots of the Otter and target movement, the error between the Otter and the target,
controller signals computed by the Agent, velocities and a plot of the computation
time to predict each action.

In figure 5.13, 5.14, and 5.15 spatial plots of the movement of the Otter and the
target is plotted for Agent 1,2 and 3 respectively. All Agents are quickly control-
ling the Otter towards the target relatively efficiently and intercepting the target’s
trajectory. As the target is intercepted, the three Agents starts to deviate from
each other’s controller patterns and have individual manoeuvres to bound the dis-
tance towards the target. After closing the distance to the target, Agents 1 and
2 are tracking the target and show a movement that crosses the target trajectory
several times. After travelling approximately 100m in the East, Agents 1 and 2
starts circling the target while following the target trajectory. Agent 3 is showing a
different pattern and is circling the target from target interception to around 125m
East direction, then it closes the distance and follows a smooth path on the target’s
tail.

0 25 50 75 100 125 150 175 200
East

60

40

20

0

20

N
or

th

x, y

xref

Figure 5.13: Agent 1 performance in NED

51

0 25 50 75 100 125 150 175
East

60

40

20

0

20
N

or
th

x, y

xref

Figure 5.14: Agent 2 performance in NED

0 25 50 75 100 125 150 175
East

60

40

20

0

20

N
or

th

x, y

xref

Figure 5.15: Agent 3 performance in NED

Error

In figure 5.16, 5.17 and 5.18 the absolute euclidian error between the target and
the Otter is shown. All three Agents quickly reduce the error to a minimum before
going unstable, resulting in a fluctuating error throughout the simulation.

52

0 100 200 300 400 500 600 700 800
Time (s)

0

5

10

15

20

25

E
rr

or
 (m

)
|| x, y xref||

Figure 5.16: Agent 1 performance error

0 100 200 300 400 500 600 700 800
Time (s)

0

5

10

15

20

25

E
rr

or
 (m

)

|| x, y xref||

Figure 5.17: Agent 2 performance error

53

0 100 200 300 400 500 600 700 800
Time (s)

0

5

10

15

20

25

E
rr

or
 (m

)
|| x, y xref||

Figure 5.18: Agent 3 performance error

Control Signals

In figure 5.19, 5.20, and 5.21 the Agent control predictions are presented. The con-
trols are normalised between -1 and 1. The controller signals from all three Agents
fluctuate highly and move rapidly between -1 and 1 throughout the simulations.

0 200 400 600 800
Time (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Surge (X)

0 200 400 600 800
Time (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Yaw (Nm)

Figure 5.19: Agent 1 Controls

54

0 200 400 600 800
Time (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Surge (X)

0 200 400 600 800
Time (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Yaw (Nm)

Figure 5.20: Agent 2 controls

0 200 400 600 800
Time (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Surge (X)

0 200 400 600 800
Time (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Yaw (Nm)

Figure 5.21: Agent 3 controls

Remark. The figures 5.19,5.20 and 5.21 show normalised forces.

Velocities

In figure 5.22, 5.23, and 5.24 the velocities for the Otter controlled by the there
Agents are shown. As the controls in the previous section indicated, the velocities
also fluctuate throughout the simulation. Agent 3 shows somewhat lesser variations
in the velocities than Agent 1 and Agent 2.

55

0 100 200 300 400 500 600 700 800
0.5

0.0

0.5

1.0

1.5

u (m/s)
v (m/s)
r (rad/s)

Figure 5.22: Agent 1 velocities

0 100 200 300 400 500 600 700 800
0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

u (m/s)
v (m/s)
r (rad/s)

Figure 5.23: Agent 2 velocities

56

0 100 200 300 400 500 600 700 800

0.0

0.5

1.0

1.5

2.0 u (m/s)
v (m/s)
r (rad/s)

Figure 5.24: Agent 3 velocities

Computation Time

In regards to computation time, figure 5.25a, 5.25b, and 5.25c shows that all there
Agents has somewhat the same patters with higher computation time that settles
around 0.001 seconds (1kHz). Some spikes to up to 0.005 seconds are also present.

57

0 100 200 300 400 500 600 700 800
Time (s)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Se
co

nd
s

(a) Agent 1

0 20 40 60 80
Time (s)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

Se
co

nd
s

(b) Agent 2

0 20 40 60 80 100
Time (s)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

Se
co

nd
s

(c) Agent 3

Figure 5.25: Case 1 computation time

5.4.3 Results Case 2

In this section, a simplified results representation is presented. This section intends
to show how the Agents perform when the test simulation length is the same as the
episode length. As shown in the following figures, all three Agents efficiently close
the distance to the target.

58

0 10 20 30 40
East

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
N

or
th

x, y

xref

(a) Agent 1

0 10 20 30 40
East

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
or

th

x, y

xref

(b) Agent 2

0 10 20 30 40
East

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
or

th

x, y

xref

(c) Agent 3

Figure 5.26: Case 2 movement plots in NED

0 20 40 60 80 100
Time (s)

0

5

10

15

20

25

E
rr

or
 (m

)

|| x, y xref||

(a) Agent 1

0 20 40 60 80
Time (s)

0

5

10

15

20

25

E
rr

or
 (m

)

|| x, y xref||

(b) Agent 2

0 20 40 60 80 100
Time (s)

0

5

10

15

20

25

E
rr

or
 (m

)

|| x, y xref||

(c) Agent 3

Figure 5.27: Case 2 error

59

0 20 40 60 80 100
Time (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Surge (X)

0 20 40 60 80 100
Time (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Yaw (Nm)

(a) Agent 1

0 20 40 60 80
Time (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Surge (X)

0 20 40 60 80
Time (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Yaw (Nm)

(b) Agent 2

0 20 40 60 80 100
Time (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Surge (X)

0 20 40 60 80 100
Time (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Yaw (Nm)

(c) Agent 3

Figure 5.28: Case 2 controls

60

0 20 40 60 80 100

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
u (m/s)
v (m/s)
r (rad/s)

(a) Agent 1

0 20 40 60 80

0.25

0.00

0.25

0.50

0.75

1.00

1.25

u (m/s)
v (m/s)
r (rad/s)

(b) Agent 2

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0 u (m/s)
v (m/s)
r (rad/s)

(c) Agent 3

Figure 5.29: Case 2 velocities

5.5 Discussion

RL has numerous parameters that will affect the performance of the resulting Agents.
This section will discuss the training of the Agents and their tested performance in
simulations. As the Agents NN are black boxes, meaning they are not analytically
explainable, the three Agents’ results are presented to derive the differences between
their behaviours.

5.5.1 Training

Initially, the training approach taken was relatively naive. The idea was for the
Agent to find a feasible policy to close the euclidean distance between itself and the
target. Since the distance between the target and the vehicle is fixed at each time
step when an Agent calculates its controller action, the idea was that this approach
would work for a moving target as it does for a fixed target. The approach was
to place the Agent in an environment where the target spawned randomly within
a set radius for each episode. Through trial and error, the naive strategy resulted
in poorly working policies, giving the Agent undesirable behaviour under a sub-

61

optimal policy, e.g. going in circles towards the target. Additionally, due to the
long convergence time, the training strategy could have been more efficient in de-
riving the hyperparameters for viable hyperparameters for successful policy training.

After using the hyperparameter benchmarking and when a feasible set was found,
the Agent was trained by utilising the naive approach described in the first para-
graph. In the simulation, the Otter spawned in origo with a fixed orientation,
whereas the target randomly spawned within a limited region from the vessel. The
region was fixed throughout the training session. However, this proved unfit when
testing the Agent on a moving target. Therefore, a moving target was implemented
to train a policy for tracking a moving target.

Regarding the training environment, this has been changed throughout the im-
plementation to adapt to the action taken to improve the training. In this im-
plementation, two approaches were tested regarding preprocessing of observations
before the Agent computed the controller action. (i) The first approach had no
manipulations of the observations before sending them to the Agent. This approach
might be sufficient for a limited observation space, where the observations are within
a finite scale. Since the observations are not normalised, the scale can, in theory,
be from [−∞,∞], an observation space impossible for the Agent to explore fully.
(ii) In the second approach, the observations were normalised. The implemented
normalisation was a moving average that adjusts its clipping range as the Agent
observes new areas in the observation space. This means the Agent is normalising
the values, making it more general.

The training is implemented as an episodic task, which means that the episode
ends when the target is reached for 60 seconds, but the control task is, in reality,
continuous. Thus, the Otter and the target should not necessarily return to their
initial state when ending an episode. Alternatively, episodes could be truncated, not
terminated, if the time limit was reached. In future work, a similar method should
be implemented, but one with a continuous control task fashion. For example, the
Agent starts with the health/energy consumed during the task (equivalent to the
controller actions). This means the task can continue in infinity, and the Agents
know their energy, rather than the episode’s time.

Figure 5.12 plots the mean episode reward during training. The figure shows
that the three Agents rapidly increased their accumulated rewards at the start of
the training. Agent 1, with a learning rate of 3e-5, is beginning to converge around
600k steps. Agent 2, with a learning rate of 3e-6, is beginning to converge around
2.5M steps. Agent 3, with a learning rate of 3e-4, shows a sudden dip in performance
after the initial increase before slowly climbing towards the end, never converging
fully. Agent 3 has the largest learning rate, and as explained in section 5.1.4, the
learning rate defines how large steps are taken in the direction of the gradient during
optimisation. Agent 3 might suffer from a too-large learning rate because it oscillates
heavily during training and takes a long time to converge. Even after 80M steps, it
has not had the solid pattern of convergence as the two other Agents. Since there
are several variable changes between the Agents, it is problematic to derive any hard
conclusion. However, it is conspicuous that the Agent’s training follows a pattern

62

that is coherent with the descriptions of learning rates that affect the training.

5.5.2 Controller Performance

The results section included plots from two simulation cases, demonstrating that
the RL training strategy was fairly effective in training Agents to control the Otter
and track a target within the limits of 10 meters. Agent 1 and Agent 2 manage to
track the target adequately at the start of the simulations in Case 1). On the other
hand, both Agents had rapid controller signals oscillating between maximum and
minimum throughout the simulation, creating aggressive accelerations of the Otter.

As explained in the implementation section 5.2, numerous parameter is used
in the environment to describe how the environment is set up and how the Agent
precepts the environment. In the result section 5.4.2, Agents 1 and 2 show the
same pattern and have relatively stable controls initially. However, when reaching
around 100m in the East direction, they start computing unstable controller signals
resulting in the Otter moving in circles. Despite the circular movement, the Otter
still follows the target trajectory. As mentioned in section 5.2, normalisation was
implemented to reduce the effect of different ranges in the observations. Take Agent
1, for example, trained with an episode length of 1000 steps. In figure 5.13, a simu-
lation run for 8000 steps, we can observe that the predicted actions are unsatisfying
towards the second half of the simulation, indicating that the Agent is not making
sense of the observations in this part. On the other hand, if we look at Case 2,
where the simulation is 1000 steps, for Agent 1 in figure 5.26a, the Agent manages
to control the Otter closer to the target. To clarify, the only difference in the two
cases is that the simulation has gone from 8000 steps to 1000 steps and, as explained
in 5.2, the Agent knows the total time steps. This behaviour indicates that Agent
1 is sensitive to observations surpassing the experienced values during training. A
reason for this may be the scales of the values in the observations. During training,
the Agent always started in origo. With its limited speed, it has never experienced
any observation values greater than the distance the Agent has been moving away
from its starting point, which leads to a limited experience of the whole observation
space. As mentioned, moving average normalisation was implemented to mitigate
this issue. However, all values surpassing the experienced values will be reduced to
the clipping range, and the ratio between them is not necessarily obeyed. To solve
this, we could implement a new clipping normalisation that truncates the obser-
vation values between -1 and 1, where the boundary is the limitation in the NED
frame. Another mitigation may be feature engineering which only includes features
that do not vary in orders of magnitude. Such features, in this case, are the veloci-
ties, velocity towards the target and smallest signed angle. The Ottes thrust force
limits the velocity, and an AUGs will have limited speed. Lastly, the brute force
method would be to randomise the initial position of the Otter and the target so
that the Agent could experience a large part of the observation space.

As for Agent 3, we see another pattern. Please refer to Case 1, figure 5.15,
and Case 2, figure 5.28c. We can observe that Agent 3 is not making sense of the
observations in Case 1, but in Case 2, it performs closer to the level of the other

63

two Agents. This finding indicates that Agent 3 is highly time-aware. Remember,
the reward function for Agent 3 has a distance to the target and heading as the
leading indicator of achievement. In figure 5.27b, we can observe that Agent 3 is
reducing the distance to the target quicker than Agents 1 and 2. This may be a
reason for the time awareness because Agent 3 has mapped the relationship between
distance and time left of the episode to the accumulated rewards. There may be
better implementation to make the Agent less time-aware. Future implementation
should investigate how to implement an environment that can work in a continuous
(non-episodic) fashion rather than episodic as this implementation is, and remove
the time-awareness of the Agent.

The spatial plots show somewhat successful training of the Agents. However,
the control signals show rapid changes and unstable behaviour in figures 5.19, 5.20
and 5.21, it is shown that three Agents predicts controller actions that oscillate
heavily. As explained in the 5.2, the reward shaping was designed to prevent this.
However, a value from 0.1 to 0.01 is evidently not enough penalty to avoid oscillating
controller signals. Another element in this consideration is the controller penalty
function composition, which is taking the absolute delta between two-time steps for
the whole controller vector, consequently giving the Agent the opportunity to cheat
by switching the controller input for Surge, and Yaw at the same time step, thereby
not imposing any penalty. Future implementation should avoid this mistake and
penalise each controller signal independently.

5.6 Summary

In this chapter, the theory of Neural Networks, the Markov Decision Process and the
Reinforcement learning algorithms is explained, leading up to the state-of-the-art
model-free Proximal Policy Optimisation algorithm.
The section 5.2 explains how the implementation uses Stable Baseline as a frame-
work to create an environment for RL that can make use of a pre-implemented
algorithm to train Agents.
The training of the Agents went through extensive trial and error on the way to-
wards the final training procedure. As the result shows, the Agents are predicting
somewhat feasible controller actions. However, the controls oscillate aggressively,
making them unfit for practical implementations. Additionally, the Agents are too
time-aware and sensitive to large variations in the observation space, making them
impractical in general target-tracking controls of the Otter.

64

Chapter 6

Discussion and Future Work

In this chapter, a comparative analysis of the two approaches is presented. The the-
sis aims to investigate the feasibility of a nonlinear model predictive controller and a
reinforcement learning controller. Previous work has looked at the two approaches
individually, making it challenging to compare them. In this thesis, both approaches
are presented in the same dissertation, enabling a viable comparison of the methods
and their performance. An in-depth discussion about the individual implementation
and the resulting performance is placed in the Discussion in chapter 4 for NMPC
and chapter 5 for the RL.

6.1 Discussion

6.1.1 Modelling

Two different approaches are implemented when modelling the Otter Dynamics, one
in the Casadi Framework and one using the Fossen Vehicle Simulator (FVS). Casadi
uses Runge Kutta 4t(RK4) method of integration, whilst the FVS uses Euler’s
method for discretization. RK4 is generally a more precise method than Euler’s
integration method. On the other hand, the RK4 is computationally more expensive
than the Euler Method.

In contrast to the NMPC, the RL environment uses the FVS directly [14] instead
of the simpler 3 DOF Casadi model. The FVS considers the propeller dynamics,
which reduces the reality gap and should lead to better controller performance when
using the controller in reality. Thus the RL Agents have a richer insight into the
real dynamics than the NMPC. Despite this, the Agents could not surpass the
performance of the NMPC.

6.1.2 Development

The NMPC is well-tested and has solid foundations in mathematics and optimi-
sation. Thus, it is a relatively straightforward task to implement. Moreover, a
significant advantage in developing and fine-tuning the NMPC is its interpretabil-
ity, which enables direct analysis of its behaviour from the implemented mathe-
matical expression. This feature allows for a better understanding of the system’s

65

decision-making process and facilitates the identification of potential irregularities.
In contrast, understanding the results produced by the Agents proved difficult. The
Agents Actor NN is a black box, making it difficult to analyse what features af-
fect the Agents’ behaviour. However, with the meticulous investigation proposed
in the thesis, it’s possible to understand the Agents’ behaviour better. Comparing
the implementation effort put into the different methods, the RL lifts the heaviest
burden, much because it is not explainable. Consequently, all adjustments during
development must be analysed after the time-consuming training, which is hours or
days. Furthermore, there is no simple way of tuning the controller after the training.
Therefore, in need of further tuning that includes changes in Agent behaviour, it is
necessary to conduct new training sessions, often from scratch.

6.1.3 Performance

In section 4.4 and 5.4, we saw that both methods were moderately able to control
the Otter to track a moving target. The NMPC and the trained Agents rapidly
closed the distance to the target at the simulations’ start. The NMPC settled on a
stable error of ≈ 0.7m. At the same time, the superior Agent 1 in the RL approach
oscillated between 0 and ≈ 2m at the start of the simulation before increasing the
error to oscillating between 0 and ≈ 11m in the second half of the test. As we can see
from the results, the NMPC has a more robust and consequent performance. How-
ever, the Agents is occasionally bounding the Otter and the target. What causes
this behaviour is difficult to say, but the Agents are not predicting the controller
trajectory as the NMPC is. Therefore, as discussed in sec 4.5, the NMPC is likely
predicting to intercept the target at an occurrence within the computed controller
trajectory. On the other hand, the Agents see the eight previous observations and
may estimate the next position of the target and calculate the next controller actions
accordingly. Thus, while the NMPC is confided in intercepting the target in the fu-
ture as it considers it stationary, the Agent can predict where to intercept it. On the
other hand, the unpredictable behaviour of the Agent is not very convincing and it
may be more likely that the Agent is lucky with its oscillating controller signals and
therefore intercepts the target. Regardless, the Agent occasionally performs better
than the NMPC when solely considering the distance from the target.

As for the controller actions, the NMPC show smooth transitions and gives con-
troller inputs largely achievable by the Otter dynamics. In contrast, Agnet 1 gave
aggressive oscillating controller action that would result in heavy wear on the Otter’s
effectors. In physical usage, the controller signals must be achievable by preserving
the thruster dynamics.

As previously explained in section 4.5, the NMPC could provide a sampling of
1.6 Hz. The low sampling would likely be ineffective in demanding conditions with
noisy signals affected by environmental forces. On the other hand, the RL did not
suffer from a large computation time and could provide up to 1000Hz sampling and,
if trained on a large enough observation space, provide a highly responsive controller.

66

6.2 Future work

Future work should look into acquiring the best of best of both methods. A downside
with the RL method is the training time, it is both energy demanding and takes
a long time and is not explainable. On the other hand, the Agent’s actor NN is
fast and can compute controller signals in a rapid phase. Combining the insightful
NMPC that has access to the dynamics of the Otter, and the RL training, would
likely result in fast controllers with high accuracy. Additionally, the training time
would likely be reduced dramatically, saving time and energy. A technique within
RL is Imitation Learning (IL) and uses an expert to provide valuable insights for
the Agent’s mapping of observations and predictions. Others have tried this for
autonomous cars [2] and have benchmarked the different IL methods [9]. Stable
baseline provides frameworks for IL [1]. Further into the future, one could look into
using NMPC as an online expert to evaluate new areas in the observation space and
train the RL when needed.

67

Chapter 7

Conclusion

This thesis has shown the development and comparison of NMPC and RL as target
tracking controllers for an Otter USV. The purpose was to study the difference be-
tween the approaches’ development endeavours and their performance in a simulated
experiment. By doing so, this thesis intends to contribute to the general progress
of advanced controllers for marine vessels. Furthermore, these contributions desire
to facilitate the optical communication system under development in the OASYS
project.

The difference in implementation efforts of the two techniques is significant. The
MPC is vastly explainable, enabling straightforward tuning to adjust the controller’s
performance. In contrast, the RL Agents are black boxes requiring an entirely dif-
ferent approach in tuning the controller’s behaviour to increase performance.
This thesis has also presented a methodology to analyse the effect the hyperparam-
eters and reward function have on the Agent’s behaviour and performance. The
results show that the learning rate particularly impacts how fast the RL algorithm
can derive feasible parameters for the policy. It is also shown that different config-
urations of the reward function give different behaviour of the Agents. Lastly, it is
highlighted that the implementation of the observation in the training environment
will significantly impact the controller performance of the Agents.

The experiment was a simulation where the controllers were tracking the OASYS
AUG. The virtual target was emulating the movement of the AUGs position in the
NED frame. The controller’s objective was to track the target within a 10m radius.
During the simulated performance test, the NMPC method showed a feasible per-
formance and generalisation by controlling the Otter in smooth movements before
converging to an error of ≈ 0.7m from the target. However, the NMPC had a slow
sampling of 1.6 Hz. Conversely, the RL method struggled to train Agents that
performed on the same level as the NMPC. The Agents performed satisfactorily
when the observations were similar to the training environment. However, when
the observations surpassed the ones experienced during training, the Agents created
unsatisfactory controller signals, consequently making the Agents unfit for general
purposes. The sampling for the RL was 1000Hz, which is a major benefit compared
to the NMPC.

In conclusion, the procedures and simulated performance tests proposed in this

68

thesis have provided insight into the benefits and challenges of the two approaches.
NMPC is a robust and explainable approach providing a sturdy result. However, it
might need to be faster for practical implementations. The RL Agents are difficult
to analyse, making it challenging to derive robust controllers. Therefore, the RL
approach requires further development to be reliable.

Future work should consider a complementary method by combining the NMPC
and RL using Imitation Learning (IL). The NMPC would, in an IL case, act as an
expert providing insights to the Agent during training.

69

Bibliography

[1] Stable Baseline 3. Imitation learning. https://stable-
baselines3.readthedocs.io/en/master/guide/imitation.html.
[Online; accessed 20-03-2023].

[2] Flavia Sofia Acerbo, Jan Swevers, Tinne Tuytelaars, and Tong Duy Son. Mpc-
based imitation learning for safe and human-like autonomous driving, 2022.

[3] Instructor at Stanford. Lecture notes, cs231n: Deep learning for computer
vision, stanford.
https://cs231n.github.io/neural-networks-1/.
[Online; accessed 20-03-2023].

[4] RICHARD Bellman. Dynamic programming, princeton univ. Press Princeton,
New Jersey, 1957.

[5] Henrik Bjering Strand. Autonomous docking control system for the otter usv:
A machine learning approach. Master’s thesis, NTNU, 2020.

[6] Diana Borsa, Bilal Piot, Rémi Munos, and Olivier Pietquin. Observational
learning by reinforcement learning, 2017.

[7] casadi. Optimal control problems in a nutshell.
https://web.casadi.org/blog/ocp/.
[Online; accessed 20-02-2023].

[8] Leif Christensen, José de Gea Fernández, Marc Hildebrandt, Christian
Ernst Siegfried Koch, and Bilal Wehbe. Recent advances in ai for navigation
and control of underwater robots. Current Robotics Reports, pages 1–11, 2022.

[9] Kamil Ciosek. Imitation learning by reinforcement learning, 2022.

[10] Community effort. Gymnasium farama.
https://gymnasium.farama.org/y.
[Online; accessed 21-03-2023].

[11] Community effort. Hebbian theory.
https://en.wikipedia.org/wiki/Hebbian theory.
[Online; accessed 21-03-2023].

[12] Moustafa Elkolali, Ahmed Al-Tawil, and Alex Alcocer. Design and testing of
a miniature variable buoyancy system for underwater vehicles. IEEE Access,
10:42297–42308, 2022.

70

[13] Thor I Fossen. Handbook of marine craft hydrodynamics and motion control,
Second Edition. John Wiley & Sons, 2021.

[14] Thor Inge Fossen. Python vehicle simulator.
https://github.com/cybergalactic/PythonVehicleSimulator.
[Online; accessed 24-10-2022].

[15] Thor Inge Fossen. Nonlinear modelling and control of underwater vehicles.
Norwegian University of Science and Technology, Trondheim, Norway, 1991.

[16] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman.
The elements of statistical learning: data mining, inference, and prediction,
volume 2. Springer, 2009.

[17] Shahzad Khan. Ethem Alpaydin. Introduction to Machine Learning (Adaptive
Computation and Machine Learning Series). The MIT Press, 2004. ISBN: 0
262 01211, volume 14. Cambridge University Press, 2008.

[18] Sofia Kockum. Autonomous docking of an unmanned surface vehicle using
model predictive control, 2022.

[19] H Lamb. Hydrodynamics. Cambridge University Press, London, 1932.

[20] Brett Lantz. Machine learning with R. Packt publishing ltd, 2013.

[21] Andreas B Martinsen, Anastasios M Lekkas, and Sebastien Gros. Autonomous
docking using direct optimal control. IFAC-PapersOnLine, 52(21):97–102, 2019.

[22] Andreas Bell Martinsen. End-to-end training for path following and control of
marine vehicles. Master’s thesis, NTNU, 2018.

[23] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5:115–133, 1943.

[24] USA Department of Defence. https://www.gps.gov/technical/ps/2020-sps-
performance-standard.pdf.
https://www.gps.gov/technical/ps/2020-SPS-performance-standard.pdf.
[Online; accessed 30-04-2023].

[25] Mihir Patil, Bilal Wehbe, and Matias Valdenegro-Toro. Deep reinforcement
learning for continuous docking control of autonomous underwater vehicles: a
benchmarking study. In OCEANS 2021: San Diego–Porto, pages 1–7. IEEE,
2021.

[26] S Joe Qin and Thomas A Badgwell. A survey of industrial model predictive
control technology. Control engineering practice, 11(7):733–764, 2003.

[27] Frank Rosenblatt. The perceptron: a probabilistic model for information stor-
age and organization in the brain. Psychological review, 65(6):386, 1958.

[28] Stefan Schneider. Dealing with partial observability in reinforcement learning.
https://stefanbschneider.github.io/blog/rl-partial-observability .
[Online; accessed 21-03-2023].

71

[29] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[30] D.E. Seborg, T.F. Edgar, D.A. Mellichamp, and F.J. Doyle. Process Dynamics
and Control. Wiley, 2017.

[31] SAGAR SHARMA. Activation functions in neural networks.
https://towardsdatascience.com/activation-functions-neural-networks-
1cbd9f8d91d6, September 2017.
[Online; accessed 29-April-2022].

[32] Neryahu A Shneydor. Missile guidance and pursuit: kinematics, dynamics and
control. Elsevier, 1998.

[33] Erik Sollesnes, Ole Martin Brokstad, Rolf Klæ boe, Bendik V̊agen, Alfredo
Carella, Alex Alcocer, Artur Piotr Zolich, and Tor Arne Johansen. Towards
autonomous ocean observing systems using miniature underwater gliders with
uav deployment and recovery capabilities. In 2018 IEEE/OES Autonomous
Underwater Vehicle Workshop (AUV), pages 1–5, 2018.

[34] Erik Sollesnes, Ole Martin Brokstad, Bendik V̊agen, Alfredo Carella, Alex Al-
cocer, Artur Piotr Zolich, Tor Arne Johansen, et al. Towards autonomous
ocean observing systems using miniature underwater gliders with uav deploy-
ment and recovery capabilities. In 2018 IEEE/OES Autonomous Underwater
Vehicle Workshop (AUV), pages 1–5. IEEE, 2018.

[35] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018, 2020.

[36] Andreas Wächter. Short tutorial: Getting started with ipopt in 90 minutes.
In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2009.

[37] Luman Zhao, Myung-Il Roh, and Sung-Jun Lee. Control method for path fol-
lowing and collision avoidance of autonomous ship based on deep reinforcement
learning. Journal of Marine Science and Technology, 27(4):1, 2019.

[38] Huarong Zheng, Rudy R Negenborn, and Gabriel Lodewijks. Trajectory track-
ing of autonomous vessels using model predictive control. IFAC Proceedings
Volumes, 47(3):8812–8818, 2014.

72

Appendices

73

Appendix A

Materials

The primary software used is listed below.

Software Version

Windows 11
Python 3.10.6
Casadi 3.5.6
StableBaselines3 1.7.0
PyTorch 1.13.1+cpu

Table A.1: Software list

All training and testing runs have been performed on a DELL XPS 17 9720
laptop containing the following hardware components:

Hardware Type

CPU 12th Gen Intel(R) Core(TM) i9-
12900HK 2.50 GHz

GPU RTX 3060 Laptop
RAM 64 GB

Table A.2: Hardware list

74

Appendix B

Otter Model Parameters

This is a listing of the physical parameters and matrix coefficients that are used in
the Fossen Vehicle Simulator.

Parameter Description Value Unit

L Length 2.0 [m]
B Beam 1.08 [m]
m Mass 55.0 [kg]
rg Center of gravity

[
0.2 0 −0.2

]
[m]

R44 Radii 0.4B [m]
R55 Radii 0.25L [m]
R66 Radii 0.25L [m]
Bpont Beam of one pontoon 0.25 [m]
Ypont Distance from center line to waterline 0.395 [m]
Cw, pont Waterline area coefficient 0.75 -
Cb, pont Block coefficient 0.4 -
kpos Positive Bollard, one propeller 0.01108 -
kneg Negative Bollard, one propeller 0.006445 -
Tyaw Time constant yaw 1 [s]
Umax Maximum speed of craft 6 * 0.5144 [m/s]

Table B.1: Physhical parameters of Otter USV [5]

75

Appendix C

Code

The code base used in this project may be found in the GitHub repo:
https://github.com/akseljohan/Otter-USV-Target-Tracking-Controllers.git

76

https://github.com/akseljohan/Otter-USV-Target-Tracking-Controllers.git

	Abstract
	Introduction
	Thesis Scope
	Thesis Layout

	Background
	Guidance, Navigation and Control
	Guidance Systems
	Control Systems
	Navigation Systems

	Previous Work
	Model Predictive Controllers
	Deep Reinforcement Learning

	Modelling
	Kinematics
	Rigid Body Kinetics
	Hydrodynamic Forces
	Hydrodynamic Mass-Damper
	Dissipiative Forces

	Restoring Forces (hydrostatics)
	Manoeuvring Model
	Control Allocations

	Model Predictive Controller approach
	Theory of Model Predictive Controller
	Discretization Methods
	Optimisation and Nonlinear Programming
	Casadi

	NMPC Implementation
	3 DOF Manouvering Model in Casadi
	Model Discretization
	Solving the Optimal Control Problem

	Simulation
	NMPC Simulated Performance Test
	Setup
	Results Case 1
	Results Case 2

	Discussion
	Error from Target
	Controller Tuning
	Computation Time

	Summary

	Reinforcement Learning Approach
	Artificial Intelligence Theory
	Artificial Neurons
	Artificial Neural Networks
	Optimisations - Gradient Decent
	Reinforcement Learning
	Proximal Policy Optimisation

	Reinforcement Learning Controller implementation
	Training Environment
	Agent and Hyperparamaters
	Reward Function
	Observations

	Reinforcement Learning Training
	Training Procedure
	Agent Training

	Simulated Performance Test
	Setup
	Results Case 1
	Results Case 2

	Discussion
	Training
	Controller Performance

	Summary

	Discussion and Future Work
	Discussion
	Modelling
	Development
	Performance

	Future work

	Conclusion
	Appendices
	Materials
	Otter Model Parameters
	Code

