
ACIT5900

Master Thesis
in

Applied Computer and Information

Technology (ACIT)
May 2023

Cloud-Based Services and Operations

Towards Green Container Management:

A novel approach for container resource
allocation through statistical modeling

Håkon Borgersen Ay

Department of Computer Science

Faculty of Technology, Art and Design

i

© 2023 Håkon Borgersen Ay - s360599

Towards Green Container Management: A novel approach for container re-

source allocation through statistical modeling

Supervisor: Kyrre Begnum

https://www.oslomet.no

Printed: Oslo Metropolitan University

https://www.oslomet.no

Abstract

In this exploratory study, a comprehensive framework is presented that leverages

ARIMA and Facebook’s Prophet time series forecasting models for predicting con-

tainer resource usage in a Kubernetes environment. The framework includes data

collection and processing, as well as the development of an algorithm for suggest-

ing resource allocation, which is combined with the Prophet model. Multiple KPIs

were devised to evaluate the performance of the resource allocation algorithm,

the statistical models, and a combined method. The proposed framework offers

a successful solution for suggesting resource requests and limits. When applied

to a sample Kubernetes node, the framework resulted in a 39.3% reduction in al-

located resources and a 60% increase in memory usage coverage. This approach

significantly benefits Kubernetes environments, promoting greener resource man-

agement and reduced electricity costs.

ii

Preface

It all began when Intility presented a thesis proposal titled "Kubernetes for Sustain-

ability" to Oslomet. After conducting my own research and discussing the thesis

with Intility and my supervisor, I decided to focus on resource usage in Kubernetes

projects. My team at Intility, who possess extensive experience with Kubernetes,

assured me from the outset that the project was relevant and would provide valu-

able insights and benefits for them. At the same time, my supervisor Kyrre and I

ensured that the thesis could stand independently.

During the literature review phase in early December 2022, having agreed

upon and signed off on the project but not yet officially commenced, I quickly

realized that I needed to deepen my understanding of Kubernetes. To facilitate

better analysis and modeling of resource usage, I took a course on Kubernetes ad-

ministration. By February, I had obtained the Certified Kubernetes Administration

(CKA) certificate from the Linux Foundation.

A brief introduction to Intility: Intility is a comprehensive platform service for

multi-cloud IT environments. As a fully managed platform service, it is currently

utilized by over 600 companies across 2000 locations worldwide. In addition to

providing the platform service, Intility places great emphasis on sustainability,

considering it a prerequisite rather than an alternative mindset. Through numer-

ous initiatives over the years, they have demonstrated their commitment to this

field.

To maintain anonymity, all endpoints, node names, pod names, and container

names have been anonymized.

iii

Acknowledgments

I would like to express my gratitude to Oslo Metropolitan University for two amaz-

ing years. The courses provided were highly relevant to my chosen career path.

My deepest appreciation goes to my tutor and supervisor, Kyrre Begnum, for his

outstanding lectures and guidance throughout the thesis. Thank you for diligently

reviewing my work numerous times and offering valuable feedback. I hope our

collaboration was as rewarding for you as it was for me. Thank you for volunteer-

ing to be my mentor; I would gladly repeat this experience.

I am grateful to my employer, Intility, for providing this opportunity and to the

senior engineers who assisted me in navigating multiple platforms (Dynatrace,

OpenShift, and Kubernetes), as well as for setting up a dedicated Prometheus

server. Special thanks to Dani Wold Kristiansen for his encouragement and trust

in the project’s scope. Thank you for granting me the opportunity to enroll in the

CKA and for covering the associated costs. I look forward to spending more time

with you all.

Finally, I want to thank my friends for ensuring that I maintained a balanced

life by engaging me in social activities. I am grateful for my family’s pride and

encouragement throughout this journey, and to my partner for motivating me to

persevere and continue writing, even on the most challenging days.

Oslo, January-May 2023

Håkon Borgersen Ay

iv

Contents

Abstract . ii

Preface . iii

Acknowledgments . iv

Contents . v

Tables . viii

Figures . x

Code Listings . xiv

Abbreviations . xvi

1 Introduction . 1

1.1 Research Questions . 3

1.2 Objectives of The Paper . 3

1.2.1 Results & Outline . 4

2 Background . 5

2.1 Motivation . 5

2.2 Cloud Computing . 8

2.2.1 Vendor Lock-In . 9

2.2.2 Skepticism and Concerns Surrounding Cloud Computing . . 11

2.3 Cloud Trends and Challenges . 12

2.3.1 The Wasteful Consequences of Idle Resources 14

2.4 Container Orchestration . 16

2.5 Kubernetes . 18

2.5.1 Kubernetes Pods Resources: Requests 19

2.5.2 Kubernetes Pods Resources: Limits 19

2.5.3 Specifying Resources for a Container 20

2.5.4 CPU Throttling . 21

2.6 Green Computing . 24

2.6.1 Energy Consumption vs. PUE 27

2.7 Statistical Modeling for Resource Usage 28

v

Contents vi

2.7.1 Cross-Industry Data Forecasting 31

3 Approach . 32

3.1 Phase I: Data Collection, Processing, and Modelling 34

3.1.1 Processing a Single Container 34

3.1.2 Data pre-processing . 35

3.1.3 Statistical Modeling . 36

3.2 Phase II: Evaluating Efficiency of Models Across Multiple Containers 38

3.3 Scope and Limits . 40

4 Results - Phase I:

Data Collection, Processing, and Modelling 41

4.1 Data Collection . 42

4.2 Data Processing (PI-2a-c) . 46

4.2.1 Analyzing Memory Usage . 48

4.2.2 Analyzing CPU Usage . 54

4.3 The Statistical Models . 57

4.3.1 Exploring Strategies for Resource Optimization 58

4.4 Linear Programming . 60

4.4.1 Evaluation of the Linear Programming Model 63

4.5 Auto Regressive Integrated Moving Average (ARIMA) 66

4.5.1 Determining the Differencing (d) 67

4.5.2 Determining the Autoregressive (p) and Moving Average (q) 68

4.5.3 Fitting the ARIMA model . 69

4.5.4 Evaluation of the ARIMA Model 72

4.6 Facebook’s Prophet Model . 74

4.7 Summary: Evaluation of Models (PI-4c) 78

5 Results - Phase II:

Evaluating Efficiency of Models Across Multiple Containers 81

5.1 Model Performance Evaluation for Predictive Models 82

5.2 Prophet + Tuned LP Model (PI-7ab) . 87

5.2.1 Introducing a Performance Score 91

5.3 Summary: Addressing Research Question 2 97

6 Discussion . 99

6.1 Evaluating The Predictive Models . 100

6.1.1 Moving Forward with the KPIs 102

6.2 The Impact and Limitation of the Datasets 103

6.2.1 Training/Prediction of Datasets 104

Contents vii

6.3 The Challenges of Predicting Containers 105

6.4 Suggested Workflow for the Framework 106

6.4.1 The Lack of Incentives for Reducing Resources 107

7 Conclusion . 109

7.1 Future Work . 110

Bibliography . 112

A Survey Sent to Developers at Intility . 118

B Python Code . 124

B.1 Pre-processing Code . 124

B.1.1 Reading and pre-processing .csv files 124

B.1.2 Converting memory to float . 125

B.1.3 Calculating skewness . 126

B.1.4 Script for showing daily memory usage during a 2 week period127

B.2 Linear programming . 128

B.2.1 Calculating The MREI . 130

B.3 ARIMA . 130

B.3.1 ACF and PACF . 131

B.3.2 Fitting the ARIMA model . 131

B.3.3 Test Data Underprediction Rate (TDUR) 132

B.3.4 MAE, MAPE and RMSE . 133

B.4 Facebook’s Prophet Model . 133

B.5 P+LP . 134

B.6 Performance Score . 136

Tables

3.1 Implementation steps and activities during Phases I and II. The

same abbreviations will be used as check markers throughout the

results chapters . 39

4.1 Comparison of initial and updated request/limit for c1-c3 mem-

ory usage (values in MB). The emphasized values demonstrate a

significant increase in MREI for c2 and c3, while c1 experiences a

slight decrease but also exhibits a substantial reduction in resource

allocation. All percentages are rounded to the nearest whole number 65

4.2 Evaluation of ARIMA model performance for c1-c3 using MAE, MAPE,

RMSE, and TDUR . 73

4.3 Evaluation of Facebook’s Prophet model performance for c1-c3 us-

ing MAE, MAPE, RMSE, and TDUR . 78

5.1 Comparison of ARIMA and Prophet model performance in terms

of TDUR and MAPE. Percentages are rounded to the nearest whole

percentage. On each row, the best result for each evaluation method

out of the two models is followed by an arrow pointing upwards.

The table shows that the results are varying between the two mod-

els and that there is no correlation between the best result for TDUR

and MAPE . 83

5.2 Comparison of Original and New MREI for LP and P+LP. Each line

represents the results of the models being run on the correspond-

ing container. The table shows that P+LP is the model with the

best MREI value while the LP algorithm has the highest reduction

of memory request and limit. The upwards arrow display the best

value for MREI and resource request between the LP and the P+LP 90

viii

Tables ix

5.3 Comparison of performance scores across containers using original

MREI values, LP method, and combined P+LP method. This table il-

lustrates the improvement in performance scores after applying the

LP and P+LP methods, demonstrating their effectiveness in creat-

ing a more sustainable Kubernetes environment by addressing both

overallocated and underallocated containers 93

Figures

2.1 Survey Sent to Developers at Intility: A depiction of the responses

to a question about Kubernetes resource allocation methods 7

2.2 The relationship between power consumption and CPU load per-

centage, ranging from 0% to 100% . 14

2.3 Traditional deployment, virtualized deployment, and container de-

ployment . 17

2.4 Simplified Kubernetes Architecture . 19

2.5 A depiction of a single-threaded application requiring 200ms of

processing time to complete a request without any imposed lim-

its . 22

2.6 An illustration of a single-threaded application with a CPU limit of

0.4 . 23

2.7 Data center average annual power effectiveness (PUE) worldwide

(2007-2022) . 27

4.1 Visualization of memory request variations for 38 operational con-

tainers on Node01, with 14 distinct memory request lines displayed.

All the lines demonstrate a constant memory request 44

4.2 Memory usage over time for c1, showcasing periods with missing

data that account for small percentages (1-2%) 48

4.3 Memory usage plot for c1, displaying the data after incorporating

mean values for missing data points . 50

4.4 Comparison of c1’s actual memory usage and the set resource re-

quest/limit, the distance between the solid red line and the solid

blue line highlights the significant overallocation of resources 51

4.5 Memory usage distribution for c1, revealing slightly positive skew-

ness and the decision against using standard deviation for evalua-

tion PI-3d . 52

x

Figures xi

4.6 Overlapping 24-hour memory usage segments for container01, the

variations in each line illustrate the absence of clear hourly or daily

patterns in resource consumption . 54

4.7 CPU usage plot for c1, displaying the data after incorporating mean

values for missing data points . 54

4.8 CPU usage for c1 with set CPU resource request indicated by the

dotted red line. The figure showcases overallocation since the re-

quested resources are high compared to the actual CPU usage. The

plot in the top right corner zooms in on the orange area and shows

the erratic behavior of the c1’s CPU usage 55

4.9 The graphic displays the potential increase in container capacity on

node01 after optimizing the memory request for c1 from 736MB to

180MB. The diagram indicates that by applying a similar reduction

to multiple containers like c1, the capacity for accommodating con-

tainers on the same node could potentially quadruple, expanding

from 65 containers to 266 . 59

4.10 Visualization of c1’s original and new memory request and limit.

The zoomed-in plot shows that at one point the resource usage

goes over the requested memory, but still stays comfortably under

the limit . 60

4.11 Visualization of c2’s original and new memory request and limit.

Notice the jagged memory usage and exceedingly low original mem-

ory request . 62

4.12 Display of c3’s original and new memory request and limit. In terms

of fluctuations, c3 is more erratic than c1, but less than c2. Pay

attention to the heavy overallocation on the original limit as well

as the underallocation of the original request in the zoomed-in plot,

much like c2 . 63

4.13 Order of differencing determination using autocorrelation plots and

ADF test. Each column features the original data after differencing

(top) and its corresponding autocorrelation (bottom). The font of

the axes are small but the most important point is the display of

the patterns . 68

4.14 ACF and PACF plots for c1’s memory usage 69

Figures xii

4.15 ARIMA plot for c1 illustrating the challenges faced due to an unfa-

vorable train/test split and the model’s struggle with upward trend-

ing memory usage and peaks . 70

4.16 ARIMA plot for C2 highlighting the model’s significant deviation

from actual values, difficulty in capturing trends, and inability to

predict the final peak, resulting in poorer performance compared

to C1 . 71

4.17 ARIMA plot for C3 showing a decrease in low points frequency in

the training set, leading to higher usage predictions 72

4.18 Prophet model’s forecast for c1. The solid blue line indicates Prophet’s

forecast, black dots represent observations, and purple denotes test

data. Prophets uncertainty is observed as the light blue shade. The

prediction has a slight downward trend in contrast with the up-

wards trend of the test data. However, the uncertainty interval

nearly captures the highest observations of test data 75

4.19 Prophet model’s forecast for c2. The plot shows a cautious predic-

tion line amidst split observations . 76

4.20 Prophet model’s forecast for c3. A dense appearance is observed

due to outliers from start-up phase, with average fluctuation of

around 5MB (between 60MB and 65MB) amidst erratic observa-

tions . 77

5.1 Accurate ARIMA model prediction for c3’s usage, demonstrating

rare yet effective pattern recognition and resource allocation. TDUR

of 66.4% and MAPE of 0.4% indicate satisfactory performance, de-

spite minor deviations from the 95% target of TDUR 84

5.2 Significant deviation of ARIMA model prediction from test data due

to a 25% drop, resulting in exceptionally poor performance (TDUR:

0%, MAPE: 4.2%). Illustrates the challenge in predicting and ac-

commodating such usage patterns . 85

5.3 Prophet model’s accurate prediction for container c1, closely track-

ing memory usage with a TDUR of 59.5% and MAPE of 0.6%. Un-

certainty interval captures most peak deviations, highlighting the

model’s effectiveness in predicting c1’s usage 85

Figures xiii

5.4 Sudden spike in training data contrasted with Figure 5.2, showcas-

ing Prophet model’s response through larger forecast fluctuations

and expanded uncertainty intervals. Emphasizes the importance of

considering such patterns when fine-tuning models, with TDUR at

100% and MAPE at 15.9% . 86

5.5 A comparison of suggested resource allocation between the LP and

P+LP models for container c8. The P+LP model effectively addresses

the underallocation issue by setting a higher resource request based

on Prophet’s upward trend prediction. LP’s request line is below all

of the test data (solid red line), while P+LP’s request is comfortably

over c8’s memory usage (solid green line) 89

5.6 Visual representation of Prophet’s downward prediction of mem-

ory usage versus the upward trend of actual data for c18, and the

successful adaptation of the LP and P+LP request limit to handle

increased memory usage despite initial performance score discrep-

ancies for P+LP . 94

A.1 Survey Sent to Developers at Intility: Question 1 119

A.2 Survey Sent to Developers at Intility: Question 2 119

A.3 Survey Sent to Developers at Intility: Question 3 120

A.4 Survey Sent to Developers at Intility: Question 4 120

A.5 Survey Sent to Developers at Intility: Question 5 121

A.6 Survey Sent to Developers at Intility: Question 6 121

A.7 Survey Sent to Developers at Intility: Question 7 122

A.8 Survey Sent to Developers at Intility: Question 8 122

A.9 Survey Sent to Developers at Intility: Question 9 123

A.10 Survey Sent to Developers at Intility: Question 10 123

Code Listings

2.1 An example of a basic .yaml file for initiating an Nginx container

in a Kubernetes environment, with specified resource requests and

limits. The container requests 64 MiB of memory and 250 millicores

of CPU, while the limits are set at 128 MiB and 500 millicores . . . 21

4.1 Prometheus setup for resource data retrieval with an example query

for a single container on node01 . 44

4.2 Base plot for container resource data visualization with customiz-

able elements . 49

4.3 Code snippet illustrating the ’plot_24_hour_segments’ function, used

to split and plot 24-hour segments for memory usage data 53

4.4 Code snippet illustrating the addition of an inset zoomed-in view

(orange square) to the CPU usage plot 56

4.5 Implementation of linear programming to optimize memory re-

quest and limit values . 61

4.6 Code snippet for running the ARIMA model 69

4.7 Request to Prometheus server . 74

5.1 Function that calculates the performance score Using the MREI

value, resource request difference, and set ideal target, buffer and

weights . 97

B.1 Reading and appending .csv files . 124

B.2 Converting memory to float . 125

B.3 Calculating skewness in container . 126

B.4 Script showing daily memory usage for a 2 week period 127

B.5 The Linear Programming Model . 128

B.6 Calculating the MREI . 130

B.7 Determining differencing for the ARIMA model 130

B.8 Calculating ACF and PACF for ARIMA 131

B.9 Fitting the Arima model . 131

xiv

Figures xv

B.10 Calculating TDUR . 132

B.11 Calculating MAE, MAPE, and RMSE . 133

B.12 Facebook’s Prophet Model . 133

B.13 Finalized P+LP model, included plotting 134

B.14 Calculating Performance Score . 136

Abbreviations

ACF Autocorrelation Function

ARIMA Autoregressive Integrated Moving Average

BH Black Hole

COVID-19 Coronavirus Disease of 2019

CSP Cloud Solution Provider

CPU Central Processing Unit

ELM Extreme Machine Learning

ESG Environmental, social, and governance

GCP Google Cloud Provider

KPI Key Performance Indicator

LSTM Long Short-Term Memory

MAPE Mean Absolute Percent Error

mCores Millicores

ms Milliseconds

MSE Mean Squared Error

MREI Memory Request Efficiency Index

OOM Out of Memory

OOME Out of Memory Exception

xvi

Abbreviations xvii

PACF Partial Autocorrelation Function

PUE Power Usage Effectiveness

P+LP Prophet Linear Programming

RMSE Root Mean Squared Error

SARIMA-KF Seasonal ARIMA with Kalman Filter

SDWF Self-Directed Workload Forecasting

SVR Support Vector Regression

TDNN Time Delay Neural Network

TDUR Test Data Underprediction Rate

VM Virtual Machine

Chapter 1

Introduction

We are progressively accepting that rapid changes in technology, industries, soci-

etal patterns, and new processes have come to stay in our society while expecting

even more changes to come. As a result, it is crucial for individuals and organiza-

tions to adapt to these changes in order to stay relevant and competitive in today’s

ever-evolving landscape. Thanks to fast-moving technological concepts we were

able to keep millions of people at work during the pandemic, deliver technology,

and give access to the internet to people all over the world, thus making knowl-

edge and worldwide communication even more accessible.

One key aspect of our society’s digital transformation is the growing use of

cloud computing. Cloud computing refers to delivering computing services such

as storage, processing, and software over the internet (from data centers) rather

than through local servers or personal computers. It allows users to access and

utilize these services on demand, with the added benefits of scalability and flex-

ibility, however, the ease of access leaves room for more responsibility in terms

of handling and managing the resources given, and especially the requesting of

resources.

Before cloud computing, organizations typically relied on in-house IT infras-

tructure, such as physical servers and storage devices to run their applications and

store their data. This was known as the traditional or on-premise model. The ma-

jor challenge with this model was the static investments of hardware combined

with the over-allocation of resources to ensure that their systems could handle

sudden spikes in demand. This often meant substantial upfront investments in

hardware and infrastructure, and carefully calculated resource estimation.

1

Chapter 1: Introduction 2

Although cloud computing created a gold rush and largely solved these prob-

lems by allowing organizations to rent and use only the resources they need, when

they need them, we are experiencing a lack of ownership of the resources at play.

Now organizations can afford to over-allocate since they can scale down at any

time without any consequences other than paying an increased price, which is

low-effort to deal with compared with getting rid of on-premise resources. The

increased resource usage is clearly noticeable when we examine the resource us-

age of data centers, which comes as a result of the swift cloud adoption of many

organizations.

Today it is common knowledge that data centers consume a substantial amount

of electrical energy. Data centers in the EU are using roughly 3% [1] of all elec-

tricity currently in demand. In other words, smarter and greener use of digital

technologies will play a key part in limiting the carbon footprint of data centers.

The increasing demand for computing resources due to the digitalization of

our society and the corresponding energy consumption of data centers has led

to a growing interest in green computing. On one hand, we need to make use

of technology that assists in deploying and managing more resources to keep up

with advancements on the digital front. On the other hand, we need to reduce the

environmental impact the data centers bring by proposing solutions and strategies

that effectively utilize the resources in play. Among the many ways of reducing the

energy consumption of data centers, one of them is to better estimate resource us-

age and be more precise with resource allocation, which will be how we approach

this problem further in this paper.

So far, computing resources are talked about in terms of virtual machines

(VMs), but we will investigate the resource usage of containers running on top

of these virtual machines. The standard way of delivering software is through

containers since it makes deploying and running applications more convenient.

Containers request resources from the underlying VM, in other words, the VM acts

as the subservient and the containers dictate the resource usage of the VM. Even

though developers create and deliver the containers, thus specifying the resource

requests, it still stands as a matter for the underlying infrastructure, which will

normally be handled by the infrastructure developers. To manage the infrastruc-

ture consisting of multiple containers running on multiple nodes we are making

use of container orchestration management tools such as Apache Mesos, Docker

Chapter 1: Introduction 3

Swarm, and Kubernetes. These tools play a crucial role in modern software devel-

opment, making it possible to deploy, scale, and manage large-scale applications

and services with ease.

1.1 Research Questions

By using historical data and machine learning we can anticipate the resources

a deployment will be needed, thus hitting the nail on the head when allocating

resources to workloads. From this, two problem statements emerge:

Research Question 1 How can time series forecasting models be applied to predict

resource usage for individual containers in Kubernetes environments, and what are

the challenges and benefits associated with using these models to ensure prediction

accuracy across various container usage patterns?

Research Question 2 How can we effectively evaluate the impact of predictive mod-

els on resource allocation strategies in Kubernetes environments?

Time series forecasting models refer to well-established statistical approaches

that will be explored in the background chapter. Determining how these models

can be applied to data gathered from containers within a Kubernetes environment

remains to be seen. It is anticipated that predicting container behavior may present

challenges, and analyzing the advantages and drawbacks of various models will be

intriguing to investigate. Further fine-tuning of these models to ensure improved

predictions will be a subsequent step.

Evaluation will constitute a significant portion of the thesis, requiring a thor-

ough assessment of the forecasting models. As part of this process, appropriate

evaluation strategies must be deliberated. Besides evaluating the models them-

selves, it will be crucial to assess the implications of implementing the proposed

strategies within a Kubernetes environment.

1.2 Objectives of The Paper

Investigating and optimizing resource usage in Kubernetes environments is essen-

tial for improving the sustainability and efficiency of cloud computing infrastruc-

ture. The problem this thesis aims to address is the development of a systematic

approach to analyze, model, and predict resource usage in Kubernetes projects,

Chapter 1: Introduction 4

with a focus on CPU and memory utilization. This will involve acquiring and pre-

processing relevant data, identifying patterns and anomalies, and implementing

statistical models to predict resource usage accurately. The ultimate goal is to en-

hance resource allocation policies and reduce over-provisioning, resulting in more

sustainable and efficient Kubernetes environments.

1.2.1 Results & Outline

In this study, we conduct a comprehensive analysis of real data collected from

containers operating in a real-world production environment. We utilize well-

established algorithms to examine and forecast resource usage and present an ex-

perimental design accompanied by evaluation strategies to assess the effectiveness

of our approach. Although predicting memory usage proves challenging, our find-

ings demonstrate the merit of combining predictive model outcomes with other

algorithms to recommend resource allocation for containers.

Chapter 2

Background

The field of computing has undergone significant transformations in recent years,

with the advent of new technologies and trends shaping the industry and academia.

The purpose of this background chapter is to provide a comprehensive overview of

the relevant concepts and technologies that form the foundation of our research.

We will discuss the motivation behind this study, the basics of cloud computing, the

significance of green computing, the latest trends in the industry, the importance

of container orchestration, the key features of the popular container orchestration

system, Kubernetes, and the role of statistical modeling.

This chapter serves as a primer for the reader, providing a broad understanding

of the context and relevant technologies that will be discussed throughout the rest

of the report. By clearly understanding the background information, the reader

will be able to appreciate the significance and impact of the research.

2.1 Motivation

Before beginning the literature review and detailed descriptions of concepts, tools,

and technologies used in the project, it is appropriate to give a brief glimpse of

the road taken before this project started.

Docker and Kubernetes got introduced to us during the first year of the ACIT

master’s program. Container technology and orchestration management systems

were hard to grasp at first but after spending weeks debugging a Kubernetes clus-

ter, the technology and using Kubernetes as an orchestrator became more trans-

parent. Getting configuration management systems to work as intended is highly

satisfying. After applying for Intility’s master thesis proposal on awareness of Ku-

bernetes resources, the die was cast.

5

Chapter 2: Background 6

Several prominent yet typical issues within Intility’s Kubernetes cluster cen-

tered around the fact that some pods consumed excessive memory before shut-

ting down and restarting. A Kubernetes pod represents the smallest deployable

unit in the Kubernetes system, composed of one or more containers that share

the same network namespace and storage volumes. Each container requests CPU

and RAM, either a default value or a specified one. Although pod restarting is

standard practice for Kubernetes, it raised the question as to why this occurred so

frequently, which led to seeking permission to examine metrics related to CPU and

RAM usage. During this investigation, it was observed that many pods appeared

to be over-provisioned, utilizing only a small portion of the requested resources.

In summary, the findings were as follows: on the one side, there were pods restart-

ing due to insufficient resource requests, while on the other side, there were pods

using merely 10-20% of the allocated resources and not restarting. When inquir-

ing with colleagues about this phenomenon, the general response provided was

along the lines of:

"It is difficult to accurately predict the resources a deployment will require. To

ensure the smooth operation of the application, it is better to allocate more resources

than needed. In the event that our current node reaches its limit, we simply request

a new one from the cloud infrastructure team. Although performing our job should

be our main focus, it would be advantageous to develop the expertise to request and

allocate appropriate resources in a Kubernetes environment to optimize performance

and achieve cost savings".

The initial statement suggests that accurate resource allocation has been rel-

egated to be a desirable but unattainable feature due to the intricate nature of

resource prediction and the lack of opportunity from a developer’s standpoint.

Furthermore, their response suggests that it is challenging to accurately forecast

the resources required for a deployment, but at the same time, they understand

the advantages and the value of doing so if it were possible.

Fascinated by the response, a survey was created using Google Forms with

anonymous replies and sent to 90 developers at Intility through an email group.

Refer to Appendix A for the survey description, along with all questions and re-

sponses. This survey was designed and employed as a means to gain a deeper

understanding of the company developers’ perspectives on these issues. With a

Chapter 2: Background 7

response rate of 10%, or 9 developers, the turnout was relatively low. However, it

still provided valuable insights, as some of the answers to the questions displayed

noticeable similarities.

Figure 2.1: A depiction of the responses to a question about Kubernetes resource
allocation methods, revealing that 5 out of 9 participants rely on "best guess" or
"trial and error" approaches, indicating the challenge of determining the appro-
priate amount of resources required for optimal performance

One of the more interesting findings was a question about how the Kuber-

netes resource allocation decisions were made. In Figure 2.1 we see a question

asking how Kubernetes resources usually are allocated, and 5 out of 9 stated that

they are using best guess or trial and error as main approaches either personally

or have the impression that it is done this way throughout the organization. In

other words, the difficulty lies in figuring out how much resources are needed. If

they knew this, we can assume with some confidence that more correct resource

requests would take place. The survey conducted during the project, aimed at

mapping the resource allocation trends in Kubernetes environments, is located in

the Appendix A.

The need for a more efficient approach to specifying requested resources prompted

an investigation into workload profiling and statistical modeling techniques, aimed

at determining the optimal resource requirements for containerized environments.

However, before heading straight to the root of this problem, some further re-

search to get a broader picture of why this is a problem, how common it is, and

how to estimate the usage of CPU and RAM better, had to be examined. With that,

we conclude the starting point of our project and move on to the next part of the

chapter.

Chapter 2: Background 8

2.2 Cloud Computing

The cloud era and the technological advancements within cloud computing are

well accepted, and as we briefly mentioned in the introduction chapter, the ad-

vancements created a gold rush for organizations and largely solved the prob-

lems that an in-house IT infrastructure brought with it. The proverbial buffet had

opened, and companies who had the capacity to and were comfortable with tran-

sitioning to using cloud solutions did so [2]. The idea promoted by cloud solution

providers was that businesses should invest in new technology, specifically in the

cloud. Slogans such as "Accelerate your digital transformation" and "Transforming

Businesses and Shaping Innovation" were, and are still, popular among cloud solu-

tion providers [3–5].

Cloud computing fundamentally changed how computing resources were ac-

quired. Before the cloud era, one could defend buying powerful and expensive

servers by making sure that the unused resources of the hardware got used by

other applications or services, and thus the organizations often overestimated

their needs to make sure they were set for the years to come [6]. The over-

allocation was done for multiple sets of reasons. They had to have enough re-

sources for the future to make sure their applications would have sufficient re-

sources with their intended growth taken into consideration. Ordering more fre-

quently would be too time-consuming, because each time they had to get ap-

proval from management, thus providing detailed reports and numbers explaining

why resources needed to be expanded. The same mindset followed the organiza-

tions that had been thinking like this for many years into the cloud computing

paradigm. In other words, they were buying cloud resources as if they were buy-

ing physical hardware, thus over-allocating resources when there was no real need

to do so.

While companies continue to acquire more resources than necessary, the de-

gree of excess has been substantially diminished, leading to better energy effi-

ciency in data centers. The consolidation of computing power within data centers

has contributed to increased sustainability, as these facilities are highly proficient

in managing servers. Not shifting the computer power to the cloud would have

led to a very large portion of global electricity being consumed by data centers

[7].

The use of cloud-native technologies in application development presented

new opportunities. By building cloud-native applications, with the cloud in mind,

Chapter 2: Background 9

it became possible to implement dynamic scaling and disposable VMs or servers

as a design principle. This approach ensured that cloud-based services were used

with a focus on flexibility and cost-effectiveness, rather than vendor lock-ins and

long-term commitments.

2.2.1 Vendor Lock-In

In the context of the video gaming industry, there is a historically prevalent pat-

tern where consumers invest significantly in a particular console through the pur-

chase of an extensive collection of games and accessories specifically compatible

with that platform. The unique experiences each console provides, including high

scores and multiplayer battles, foster a sense of attachment and loyalty. Conse-

quently, when another console model with distinct features is introduced into the

market, consumers often find the prospect of abandoning their accumulated col-

lection and adapting to a new platform daunting. This scenario is a representation

of vendor lock-in, a sophisticated and enduring business strategy deeply rooted in

both financial and emotional considerations.

This same strategy is observable in the contemporary era of cloud solution

providers (CSPs). Businesses, analogous to gamers and their consoles, tend to

invest heavily in a specific CSP, becoming accustomed to its system and deeply

integrating it into their operational processes. The concept of transitioning to a

different provider, even if it offers unique features or advantages, often presents an

intimidating prospect, much like the transition to a new gaming platform. There-

fore, businesses often remain tethered to their initial provider not due to a prefer-

ence for their services, but because the perceived challenges and costs associated

with change are considered too formidable to undertake. This underscores the

effectiveness of vendor lock-in as a strategic tool in the digital age, transcending

industries, and technological advancements.

This has been a concern in cloud computing since the early days, and as the

popularity of the technology increased among businesses, the discussion about

vendor lock-ins grew [6]. Cloud solution providers (CSPs) offer a wide range of

services that allow businesses to run their applications and store data in the cloud.

However, each provider has its own set of tools, APIs, and technologies which can

make it difficult to switch to another provider without significant effort and cost.

Chapter 2: Background 10

For example, Google Cloud Platform (GCP) is known for its strength in data

analytics and machine learning, with services such as BigQuery, Cloud Dataflow,

and TensorFlow. GCP is also known for its focus on sustainability, with a com-

mitment to achieving carbon neutrality for its data centers and operations, as we

will see more of in Section 2.6. If your business is using many of these technolo-

gies, and their ESG1 rating is dependent on pursuing carbon neutrality and they

are expected to provide clear and concise data of their total energy consumption,

it could prove to be hard to find another CSP that matches the tools and their

vision. Another example is Microsoft Azure, which is known for its strong integra-

tion with Microsoft’s other products and services, such as Office 365 and Active

Directory. For developers, this means a shared codebase and APIs which leads to

easier development. For other employees, this seamless integration brings single

sign-on with the same user credentials for all Microsoft services, which simpli-

fies the user experience and improves security. This is all managed from a service

called identity management that Azure Active Directory provides. Removing this

seamless integration by switching providers would result in quite the migration

for the developers, and the user experience would be sure to decrease.

As a result, businesses that adopt a particular cloud provider’s services may

find themselves locked into that provider’s ecosystem, making it difficult to switch

to another provider or move their applications and data to an on-premises envi-

ronment. This can be a significant risk for businesses, as it can limit their flexibility

and increase their costs.

To mitigate the risk of vendor lock-ins, businesses can invest in multi-cloud

strategies to reduce the dependency on any single provider’s technology, pric-

ing, or service-level agreements. By using multiple CSPs the organization should

be more flexible and have more experience with different solutions and gener-

ally have more expertise in the field since they have to translate knowledge be-

tween the applications residing in different environments. This approach natu-

rally includes emphasizing portability along with keeping data separate from each

provider or by using third-party providers.

Another approach to reducing the risks of vendor lock-ins along with increas-

ing scalability, resilience, and flexibility is to introduce cloud-native technology to

1An ESG rating evaluates a company’s commitment when it comes to environmental, social,
and governance (ESG) issues, and how proactively the company manages ESG issues that are most
relevant to its business

Chapter 2: Background 11

the stack. Cloud-native technology is a set of principles, practices, and technolo-

gies that enable organizations to build and run scalable applications in modern,

dynamic environments such as public, private, and hybrid clouds. These cloud-

native projects are created with the cloud in mind and make it seamless to work

within multiple cloud environments. Some examples of this are Infrastructure as

Code (IAC), Containers, and Kubernetes. We will come back to these in Section

2.4. While using cloud-native technology can avoid vendor lock-ins, it also eases

development for software developers since the same principles and code trans-

lates well into other environments, opening up possibilities for using multiple

providers. Containers help with environment configurations and dependencies,

while Kubernetes creates a layer of abstraction between the cloud and their appli-

cation. In conclusion, organizations use cloud native technologies to ease devel-

opment between environments and different CSPs, thus reducing the impacts of

vendor lock-in and creating abstraction layers between the clouds and the appli-

cations.

2.2.2 Skepticism and Concerns Surrounding Cloud Computing

While cloud computing has gained widespread acceptance and adoption, there are

people and organizations that remain skeptical or wary of its potential benefits.

Their concerns often revolve around security, privacy, reliability, and the loss of

control over data and infrastructure.

One of the primary reasons for skepticism towards cloud computing is the po-

tential risk to security and privacy. Storing sensitive data on remote servers man-

aged by third parties can raise concerns about unauthorized access, data breaches,

and cyberattacks. High-profile incidents like the 2017 Equifax breach [8] or the

more recent AWS data breach in 2022 [9] have fueled these concerns and gener-

ated doubts about the security of cloud-based systems.

Another common concern is the loss of control over data and infrastructure

when migrating to the cloud. Organizations may worry about the reliability and

performance of their applications, as they become dependent on the cloud provider’s

infrastructure and uptime. Outages affecting major cloud providers, such as the

Amazon Web Services (AWS) outage in 2017 [10], have underscored these con-

cerns and highlighted the potential risks of relying on third-party infrastructure.

As discussed in the previous section about vendor lock-ins, considering avail-

ability and having a cloud exit strategy in mind are important concepts to with-

stand dependency and reduce the potential risks of relying on third-party infras-

Chapter 2: Background 12

tructure.

Lastly, we need to address the environmental impact of large-scale cloud in-

frastructure and the resource depletion and electronic waste that come with it.

While data centers greatly reduce the carbon footprint when compared with a mul-

titude of traditional in-house infrastructures, which we will come back to later in

this chapter, we still need to address the environmental impact of their operations.

While these concerns are important, we used this sub-section mainly to include

these perspectives to give a better picture of some concerns with cloud computing.

These findings will not be further considered in the project as it does not influ-

ence the project in any way, since we are not examining security, privacy, the loss

of control, and reliability of the data centers. However, the last point, regarding

the environmental impact is a crucial part of this project and will be revisited in

Section 2.6.

2.3 Cloud Trends and Challenges

Many tech companies are incorporating cloud technology into their strategy to

stay competitive in today’s market. By leveraging the cloud, businesses believe

they can achieve growth, respond quickly to changes, increase revenue, and meet

their objectives. Cloud usage has been growing for several years and was acceler-

ated even further by COVID-19 (Coronavirus Disease of 2019). During the pan-

demic, many businesses were forced to shift to remote work, and CSPs provided

a flexible and secure way for employees to access company resources and collab-

orate with each other. In the UK in April 2020 46.6% of people in employment

worked from home, and of those who did some work from home, 86.0% did so

as a result of the coronavirus [11]. There were also other factors responsible for

the rapid acceleration during the pandemic, such as an increase in demand for

online services and e-commerce which also got reflected well in the stock market

as investors recognized the growth potential of these businesses [12]. Lastly, the

uncertainty and unpredictability made organizations prioritize agility and scala-

bility, which the cloud is designed to provide.

To further examine different trends according to employees, let us take a look

at some surveys done in the field.

Chapter 2: Background 13

Flexera, a computer software company that is a part of IBM’s partner ecosys-

tem and has been around since 1988, recently published the eleventh edition of

their State of The Cloud Report (previously known as the RightScale State of The

Cloud Report) [13]. The report explores the thinking of 753 respondents from

a survey done worldwide in late 2021. The respondents worked in organization

sizes between 1-100 to 10,001+ employees, and in a broad range of industries,

such as healthcare, education, and retail to name a few. The roles of the respon-

dents were diversified between business, enterprise architect, development, cloud

architect, and IT/OPS. The company’s cloud usage was split into levels of light,

moderate, and heavy, based on the respondents’ answers.

This report highlights a massive uptake of cloud usage among small to mid-

sized businesses, having increased their spending by about 38% when compared

with the previous report from 2021. The article also mentions that some of the

top challenges, which were similar to last year, were assessing on-premise vs cloud

costs (44%) and rightsizing/selecting the best instance (42%). Both of these chal-

lenges shed light on our problem statements, as solving those will make it more

clear to assess costs and especially rightsize the instances. Another interesting

highlight is that the third-party tools that assist in areas, such as orchestration and

container management, are losing ground to native tools from the cloud providers

themselves. This information pushes our project towards having more focus on ex-

amining the use of native tooling to solve our problem statement if we were to go

in that direction.

In a survey done by StormForge in 2021, [14], 134 IT professionals with

knowledge of their organization’s cloud spending got surveyed. The key findings

showcase that on average an estimated 47% of all cloud spending is wasted. Also,

cloud spending and cloud waste are increasing for 75% organizations. Finally,

Resource optimization and efficiency are high priorities for 75% of organizations.

Organizations agree that cloud resources are being wasted, and they want to opti-

mize their resource usage. However, when asked why optimization is not a higher

priority, 37% replied that optimization is too difficult. The findings are similar to

the findings from the survey conducted on Intility, which can be found in Appendix

A. In this survey, 66% responded that cloud complexity makes it hard to estimate

how many resources are needed.

Chapter 2: Background 14

2.3.1 The Wasteful Consequences of Idle Resources

From the reports read so far, one new report from March 2023 from sysdig.com

[15], and the survey created and conveyed to Intility A, we see that overalloca-

tion is a normal thing to do when developers have an urge to scale quickly, little

knowledge of the containers to be run, lack of Kubernetes knowledge, and lack

of capacity planning. The study from sysdig shows that 49% of the reported con-

tainers have no memory limits set and 59% have no CPU limits set. For requests

on the other hand, we see from the study that as much as 82% of requested CPU

and 30% of request RAM may go unused, depending on the number of nodes. The

report from sysdig concludes that companies with more than 1000 nodes could

reduce their wasted resources by $10M per year.

Figure 2.2: A graphical representation of the relationship between power con-
sumption and CPU load percentage, ranging from 0% to 100%. The data demon-
strates that even at 0% load, the server consumes 57.14% of its power utilization
compared to a 100% load [16]

In a paper from Sarji et al. [16] a server’s power utilization was tested under

different load percentages. They concluded that with 0% load, the server is still

consuming 57.14% of the power when compared to being at 100% load. The pa-

Chapter 2: Background 15

per examines various scenarios in which virtual machines should either be turned

off, put into sleep mode, or left running during periods of low CPU utilization. In

this scenario, there are multiple parameters that impact the decision to be done

for the VM, including but not limited to, how often the server is idle, the time

it takes to shut down, and the energy required to turn on the server. Figure 2.2

shows the power consumption together with the CPU load percentage going from

0% to 100%. The measurements were done on a Fujitsu Siemens TX300 S2 server

with two cores and 2GB of RAM. Most servers in Intility’s data centers are of type

HPE DL380 with 36 cores and 1024 GB RAM. These servers have an idle wattage

of 290, and a production wattage of 420, which would give a similar curve as seen

in Figure 2.2. The former server was released in 2005. It goes without saying that

there has not been much change in the electricity consumption of idle hardware.

When we consider these numbers, we understand that idle hardware can play a

huge factor in total energy consumption.

What happens when applications receive more resources than necessary? Imag-

ine a server with two cores and 2 GB of RAM. There is a critical application that

the developers, based on their previous experience with similar containers, expect

to use approximately 1000 millicores (mCores) and 1000 MB RAM on average.

However, the actual average usage is 500 millicores and 500 MB. The developer’s

main priority is to ensure high uptime for the application. Although they possess

some knowledge of Kubernetes, they may not be experts in capacity planning.

Consequently, the container is allocated three times the resources it usually needs,

equating to 1.5 cores and 1.5 GB RAM, to accommodate potential surges in de-

mand. From the developer’s perspective, this appears to be only a 50% increase in

their estimated resource requirement. While this is considered an overallocation

of resources from a broader standpoint, the developers decide that it is crucial to

maintain high uptime for this essential application.

Assuming a situation where another application with a similar workload is to

be deployed, the initial server has only 500 mCores and 500 MB RAM available,

necessitating the launch of a new server for resource allocation. With each ap-

plication using approximately 500 mCores and 500 MB RAM, about 66% of the

assigned resources remain unused. Referring to Figure 2.2, it is observed that idle

hardware consumes around 57% of the resources compared to a fully utilized

server, indicating inefficiency in the current configuration. Allocating double the

requested resources, as opposed to triple, could have enabled the accommodation

Chapter 2: Background 16

of the second application on the same server, reducing idle hardware and poten-

tially allowing for a server shutdown. A calculation to estimate power consump-

tion in both scenarios was conducted using data from Figure 2.2. As demonstrated

in Equation 2.3, power consumption can be reduced by 44.23% by minimizing idle

hardware.

Scenario1 : 0.26kW + 0.26kW = 0.52kW (2.1)

Scenario2 : 0.29kW + 0.00kW = 0.29kW (2.2)

KwReduction=
(0.52kW − 0.29Kw)

0.52kW
∗ 100%= 44.23% (2.3)

In reality, the servers will often consist of multiple different applications and

workloads. Some applications move together and peak together, while others will

be completely stale. Critical applications will need to be made sure to have enough

resources at all times, while non-critical applications may have some room for high

latency at certain times. Unique workloads, criticality, and all that are unknown

make making decisions regarding resource allocation a much more complex task

than the given example. However, the point stands, it should be possible to reduce

power consumption by being more conservative with the allocation of resources.

2.4 Container Orchestration

Using containers and container orchestration tools is a promising approach to

reducing the environmental impact of computing. Containers are a solution to

reliably running software in any computing environment. The term and technol-

ogy called containers arrived from cargo ships that transport freight containers

from one place to another. Just like cargo ships that have multiple stacks of con-

tainers, computing environments can have multiple containers that are treated

equally without paying attention to their contents. Containers are transported or

run, and they operate independently as long as they are on the ship. This is in

contrast to deploying software without encapsulating the environment and de-

pendencies, which can be inefficient and wasteful. By using containers, resources

can be optimized, and energy efficiency can be improved, much like how cargo

containers on a ship are efficiently transported to their destination.

Figure 2.3 shows how we have gone from traditional deployment to container

deployment and their underlying features. The containers are similar to Vms, hav-

Chapter 2: Background 17

ing their own filesystem, and share of CPU, memory, and process space. However,

they are still considered lightweight, since they share the operating system among

the applications. One thing to notice in Figure 2.3 is that due to the operating sys-

tem and the virtual machine not being a part of the application deployment, see

the grey isolated boxes, we can separate the concerns that developers and system

administrators have. In other words, the applications are completely decoupled

from the infrastructure.

Figure 2.3: Illustration of the transition from traditional deployment to container
deployment, highlighting the key features of containerization. Containers, akin to
VMs, possess their own filesystem and a share of CPU, memory, and process space,
but remain lightweight by sharing the operating system among applications [17]

In light of the new containerization paradigm, the need for automated man-

agement, scaling, and maintenance of containers increased in importance. An-

other word for this is container orchestration. The most common orchestrator is

Kubernetes, which is the de facto standard at the time for managing containers.

We will be exploring more of Kubernetes and more of its features later in this

chapter’s next section.

Containers and orchestration tools offer numerous benefits, but managing

them can become challenging when deployments grow rapidly and cluster com-

plexity increases. It can be difficult to track the resource needs of containerized

applications due to the sheer number of deployments and their varying services

or functions. On top of this, Kubernetes and its pods add another layer to already

virtualized environments which were over-committed too. This situation can lead

to resource inefficiencies such as resource leaks and over- and under-allocation,

which we now should be familiar with. However, to emphasize the importance

of those two situations in our paper we will address them once more. Over-and

under-allocation can appear when the resource needs or workload of an appli-

Chapter 2: Background 18

cation is not well understood, either due to high complexity or the lack of data,

as we have seen reported in several surveys from Section 2.3. This may lead to

resources being allocated inappropriately, either providing too much or too little

for an application to function efficiently. Resource leaks, or zombie resources, are

forgotten deployments that continue to run even when they are no longer needed,

thus consuming valuable resources.

Managing resources efficiently as applications and services grow in complexity

is typically a major challenge for system administrators. There is already enough

to do just to ensure the stability and performance of the applications, and adding

balancing the need for optimal resource usage on top, could be challenging. If ca-

pacity planning and optimization could be done in an efficient manner, we could

more easily identify opportunities to reduce over- or under-allocation and adjust

resources accordingly.

2.5 Kubernetes

In this section, we will briefly introduce a more detailed view of Kubernetes and

its underlying components. In the subsection, we introduce an important concept

regarding resource usage of Kubernetes pods, which aligns well with the project.

This information is gathered from the official Kubernetes documentation [17] but

compressed to only include the parts of the framework that are needed to further

follow the thesis. We will therefore not go into detail on the Kubernetes control

plane and its components, such as etcd, kubelet, kube-proxy, scheduler, etc.

Figure 2.4 does a great job explaining a simplified Kubernetes architecture.

The nodes are machines or virtual machines that have a set amount of resources

available. Each time a pod gets deployed, the scheduler decides what node the

pod shall be deployed on if not anything else is specified in the configuration of

the pod. The Kubelet, which is responsible for spinning up deployments on each

node, only deploys the pod after the info regarding the new pod has been sent

and documented to the API server which updates the etcd database. If everything

is good so far, the new pod starts up in its designated node.

Chapter 2: Background 19

Figure 2.4: A simplified representation of the Kubernetes architecture, illustrat-
ing the process of deploying a pod. Nodes, which are machines or virtual machines
with allocated resources, are assigned pods by the scheduler that is located on the
master node [18]

2.5.1 Kubernetes Pods Resources: Requests

While the node has a set amount of resources, the pods do not necessarily have a

static amount of resources. This can be set in the declarative yaml file, also called

manifest. In the manifest one can specify the amount of CPU and RAM that should

be requested for the containers within the pod, this essentially means the number

of resources that will be reserved only for the respective pod’s usage. A pod can

for example request 1GB of RAM and only use 200MB, thus keeping an additional

800MB of RAM unavailable for other pods in the same node. The same goes for

the CPU. It is the Kubernetes Scheduler’s job to deploy the pod on a node that

can satisfy the request being made by the pod. In this case, if a node does not

have 1GB of unrequested RAM, the pod will not be scheduled on that node. It is

important to note that the pod’s resource usage (while running on the node) may

exceed the requested resources and will only be limited if a resource limit is set.

2.5.2 Kubernetes Pods Resources: Limits

In addition to resource requests, Kubernetes also allows the pods to have resource

limits. Limits decide how far the pod can stretch out its resource usage and is not

to be confused with the resource request. A container that exceeds the memory

limit set for the container will be forced to enter a "CrashLoopBackOff" state which

Chapter 2: Background 20

essentially means that it is shut down. This is known as the pod being killed by

going Out of Memory (OOM). Depending on the restart policy defined for the de-

ployment or pod, i.e., "Always", "OnFailure" or "Never" the pod will follow perform

the actions based on the restart policy. The default value is "Always". The same

goes for the CPU, but instead of shutting down the container when the requested

limit is reached the processes will start to slow down, lowering the CPU usage and

increasing the latency of the running processes. This is called CPU throttling and

will be a feature we will need to take into account and discuss during this project.

This happens since the set limit determines the maximum number of milliseconds

(ms) the container can use the CPU at a given time. To make sure to that the con-

tainer is within its limits it will throttle the container instead of shutting it down.

[19].

2.5.3 Specifying Resources for a Container

In Code Listing 2.1, a basic .yaml file example is presented, which, when executed

in a Kubernetes environment, would initiate an nginx container. This container

requests 64 Mebibytes2 of memory and 250 millicores of CPU. Additionally, the

.yaml file sets limits at twice the requested values, specifically 128Mi and 500m.

While it is not mandatory to define resource requests or limits in a standard Ku-

bernetes environment, doing so enhances performance, stability, and predictabil-

ity within the cluster. If not specified otherwise or if restrictions are not imposed

on the Kubernetes environment, a developer has the flexibility to remove memory

and/or CPU from the requests specification, and memory and/or CPU from the

limits specification, or all four specifications altogether.

In a case where the requests is not specified, Kubernetes assumes default val-

ues for the resources. When a pod doesn’t have resource requests defined, it is

considered as having zero resource requests (i.e., no guaranteed resources). This

means the pod can still be scheduled, but it won’t have any guarantees about the

CPU and memory resources allocated to it.

In such a case, the pod may be scheduled on any node with available resources,

but the scheduler won’t reserve any resources specifically for the pod. As a result,

2In the context of Kubernetes, we use Mebibytes (MiB) rather than Megabytes (MB) due to the
binary prefix standard. 1 MiB equals 220 bytes (1,048,576 bytes), while 1 MB equals 106 bytes
(1,000,000 bytes)

Chapter 2: Background 21

the pod may compete for resources with other pods on the same node, and if the

node becomes resource-constrained, it could lead to resource contention, affecting

the performance or stability of the pod and the node.

In addition to adding resources to the .yaml file, more specs can also be added

to the container such as labels, ports, and replicas to name a few. For the full list of

specs and other configurations that can be added to manifests, visit the Kubernetes

documentation [17].

Code listing 2.1: An example of a basic .yaml file for initiating an Nginx container

in a Kubernetes environment, with specified resource requests and limits. The

container requests 64 MiB of memory and 250 millicores of CPU, while the limits

are set at 128 MiB and 500 millicores

1 apiVersion: v1

2 kind: Pod

3 metadata:

4 name: webserver1

5 spec:

6 containers:

7 - name: nginx

8 image: nginx:1.14.2

9 resources:

10 requests:

11 memory: "64Mi"

12 cpu: "250m"

13 limits:

14 memory: "128Mi"

15 cpu: "500m"

Although resource requests and limits are not enforced on Kubernetes pods,

the concept of when to include requests and limits is an ongoing discussion. How-

ever, in most cases, it is suggested that you should include requests and limits on

memory usage. While for the CPU it is generally recommended to include requests,

but to only use limits in certain circumstances [19–21].

2.5.4 CPU Throttling

Both OOM and CPU throttling are delicate matters to handle and how this will

be dealt with for memory and CPU usage will differ. While we generally want

to reduce the chance of pods getting killed due to the consumption of too much

memory, we still want to keep the requested resources as low as possible to fit

more pods into the node.

Chapter 2: Background 22

Figure 2.5: A depiction of a single-threaded application requiring 200ms of pro-
cessing time to complete a request without any imposed limits [22]

With CPU throttling, which is a technique used to manage a system’s perfor-

mance and prevent it from overheating, the processes will slow down instead of

restarting the container. Since the CPU limit decides how many ms the container

shall have of the available cores on the node, nearing the limit will reduce its

share of the CPU, while still processing the application. To further explain this

concept we have included two figures that were provided in a blog post on "in-

deed engineering" [22]. In Figure 2.5 we have a single-threaded application that

needs 200ms of processing time to complete a request. Without limits, it would

take 200ms for the application to finish its process as one would guess. However,

if we set the CPU limit to 0.4 CPU, which would mean that the application will

get 40ms of runtime for every 100ms period, the 200ms request would now take

440ms as shown in Figure 2.6. We can calculate this using Equation 2.4, where

T = Processing time without limits, R = actual runtime in each period (Derived

from CPU limit), P = period duration, and N = number of periods including a

partial period (T/R).

totalProcessingT imeWithLimits = N ∗ P − (P − R) (2.4)

5 ∗ 100ms− (100ms− 40ms)≈ 440ms (2.5)

Equation 2.4 is based on Figure 2.6 where the chosen process is run at the start

Chapter 2: Background 23

of every 100ms period, but in reality, the process can be run whenever during the

100ms time period, and therefore we can use "the fifth period" instead of 440ms.

However, since this is highly conceptual, we chose to withdraw the partial period.

Figure 2.6: An illustration of the same single-threaded application with a CPU
limit of 0.4, resulting in 40ms of runtime per 100ms period, causing the 200ms
request to take 440ms to complete [22]. The impact of CPU throttling on appli-
cation processing time can be calculated using Equation 2.4

The blog post from "indeed engineering" [22] presents a bug related to CPU

throttling which was introduced by the v4.18 release of the Linux kernel in a

commitment that was supposed to fix inadvertent throttling [23]. The issue was

that normal CPU usage and high throttling appeared simultaneously, which should

not have been possible. The bug has now been fixed.

Another post, originally published on Turbonomic.com [20], show an example

of a workload where the CPU usage is consistently around 25%, but as soon as

the CPU limit is halved the response time increases by 4 times, even though the

CPU usage stayed the same. They blame bad container configuration as the culprit

without going further into the details.

CPU throttling on running containers needs to be further investigated during

the project, as well as keeping an eye out for any irregularities regarding CPU

throttling. Finding out when and how often the different containers throttle, to-

gether with evaluating the criticality of the applications will be important aspects

to cover during the later stages of the project.

In light of our investigation into trends for determining resource requests,

which involved analyzing multiple surveys from various companies and exploring

the implications of underallocation discussed earlier, we can draw a conclusion.

Chapter 2: Background 24

It appears that developers are motivated to overallocate resources for Kubernetes

containers to avoid potential drawbacks associated with underallocation. By doing

so, they hope to ensure optimal performance and stability for their applications

within the container ecosystem.

2.6 Green Computing

This section will delve deeper into the topic of Green Computing, focusing specif-

ically on data center energy usage and power usage effectiveness (PUE). We will

also examine some measures that can be taken to optimize energy consumption

within data centers, with the goal of reducing their environmental impact. The

EU’s ambitious goal of becoming the first climate-neutral continent by 2050 [24]

adds even more urgency to this issue, making it necessary for all of us to think

about our energy usage and reduce consumption where possible. In this section,

we will explore the challenges and solutions associated with Green Computing,

including the latest worldwide statistics on PUE.

An important metric to consider when evaluating energy efficiency is PUE,

which is the ratio of energy used by the data center to the amount of energy used

by the IT equipment and is boiled down to total energy consumption / IT equip-

ment energy consumption. PUE was first introduced in 2006 by the non-profit

organization The Green Grid Association and has now become the most commonly

used metric for reporting the energy efficiency of data centers [25]. A PUE of 1.0

would indicate that all of the energy used by a data center is consumed by the

equipment. That is an unrealistic number since additional energy always will be

consumed by cooling systems, lightning, and other non-IT equipment. Organiza-

tions that are running their own data centers also need to test run the data centers

with an aggregate running on fuel in case of electricity deficiency. This is to ensure

uptime during a potential crisis where electricity deliverance is being affected.

Data centers have been employing various techniques to enhance their energy

efficiency and establish methods for monitoring power consumption. The list be-

low outlines a number of prevalent approaches adopted by data centers to achieve

these goals:

• Server virtualization: Allows multiple virtual servers to run on a single

physical server, reducing the need for multiple physical servers and the cor-

Chapter 2: Background 25

responding energy consumption.

• Cooling systems: Implementing cooling systems that are efficient at remov-

ing heat from servers, thus reducing the need for traditional air conditioning

systems.

• Power usage effectiveness (PUE): Measuring the overall energy efficiency

by comparing the amount of energy used by the IT equipment with the total

amount of energy consumed.

• Artificial intelligence and machine learning: Optimizing energy consump-

tion by predicting and controlling the power usage of servers.

The general placement of the data centers also affects the PUE. Some areas

allow for creative solutions such as using nearby water sources for cooling or

air-based economization in case of a generally cold climate. A country’s mix of

renewable energy is also something to consider. If the electricity used by the data

center has a high mixture of renewable energy, it will have a positive impact on

the PUE. In Intility’s sustainability report [26] we see that they have implemented

cold and hot aisle containment, water cooling from a fjord, and free cooling using

air-side economization.

As one can imagine, new data centers will likely have more smart solutions to

reduce the PUE as compared with older data centers. This was also stated in the

description of the report from Statista [27].

As mentioned in the introduction to the thesis, data centers are consuming

a substantial amount of electricity. In late 2020 the European Commission (EC3)

published a report that shows datacentres in the EU used an estimate of 76.8

TWh/a which accounts for using 2.7% of the electricity in demand [1]. We will

further on be referring to this number, which is 76.8 Twh/a, as the EU’s data cen-

ter consumption. By 2030 EU expect a 28% increase, which will result in total

usage of 3.2% of the EU’s electricity demand. It should go without saying that

the CSPs have done a tremendous job regarding optimizing energy consumption

in recent times. Between 2010 to 2018, the amount of computing done in data

centers increased fivefold, but the energy consumed by data centers only grew by

6 percent [28].

The EU’s total data center consumption is a huge number, and to put this into

3The European Commission is the executive of the European Union. It operates as a cabinet
government, with 27 members of the Commission headed by a President.

Chapter 2: Background 26

perspective, a regular household in Europe uses 3.7 MWh per year [29], which

is a small fraction compared to the EU’s data center usage. If we consider the

expected increase in data centers’ energy usage we are looking at an annual energy

consumption of roughly 25 million households in Europe. That is an incredible

amount of energy that has no signs of slowing down and low effort to mitigate

since the world is in need of computing resources. Therefore, we have to look for

solutions in other areas, such as PUE and optimizing energy consumption within

the data centers.

The EU has set an ambitious goal of making Europe the first climate-neutral

continent by 2050. In other words, using energy efficiently and reducing consump-

tion where it is possible, thus relying less on non-renewable is something we all

need to think about. Making sure data centers are efficient with their electrical

usage will therefore play a huge part in the EU reaching this goal in the decades

to come.

So far we have provided some numbers and discussed power usage in Europe’s

1500+ datacentres [30, 31]. Other countries in other regions are building new

data centers as well, with the USA being the leading country with over 2700 data

active data centers [32]. Further on, we will be investigating worldwide statistics

on PUE.

According to statista.com the average data center annual PUE was 1.55 in

2022 with a downward trend since 2007 with 2019 as an exception as seen in

Figure 2.7.

There are a couple of key takes from this graph, which consists of responses

from 669 respondents. First, we see that followed by the downward trend, the

graph has stabilized, only going down 0.2 points each year from 2020. Is this due

to the data centers not being able to do anything more in regard to the PUE? Have

they reached their limit? Google claims to be forward-thinking on power usage

efficiency as mentioned briefly in the section about vendor lock-ins, thus being

transparent with their energy usage. On their website, they list their continuous

PUE improvement that shows the PUE of all their data centers [33]. They reached

a PUE of 1.10 in 2020 with no new downward movements after that, just like the

worldwide average it seems to have stagnated. However, there is still a long way

from 1.55 to 1.10, so there is more to be done to lower the PUE on data centers

worldwide.

Secondly, it would be interesting to see the distribution of the data centers and

Chapter 2: Background 27

Figure 2.7: Data center average annual power effectiveness (PUE) worldwide
(2007-2022) [27]

not only the average, as the average can be quite deceiving in cases such as this

one. Are the recent data polluted due to new energy-efficient data centers and are

the more mature ones with older technologies still going on as they were? And

if this is the case, why would the statistics be presented in a way that showcases

a positive downward trend? This opens up more questions and should be further

inspected when resource data is acquired. That is however out of scope for this

project.

2.6.1 Energy Consumption vs. PUE

While PUE is important, it says more about the efficiency of the data center and

not necessarily anything about the efficiency of the running servers. EU’s goal of

reducing power usage does not only consider the data center’s PUE but also the

total consumed energy, which can be reduced by allocating resources to deploy-

ments more effectively.

Depending on the setup of the data center, the running servers may have a

good PUE ratio, and having partly idle servers may even add up to an even better

PUE since the power source into the data center is being used efficiently. However,

by using a stricter policy, fitting more containers in the servers, and thus reducing

Chapter 2: Background 28

the idle hardware, we may get empty servers that can be completely shut down.

While reducing the number of running servers will reduce the needed energy by a

fair amount, this may surprisingly enough have a negative impact on the PUE since

it only describes the ratio of the IT equipment’s energy usage versus the cooling.

Fewer servers would paradoxically lead to a higher PUE unless the cooling system

is adjusted also.

It is important to consider a data center’s fixed energy overhead, such as cool-

ing systems, power distribution, and lighting, which continue to consume energy

even when servers are turned off. If a significant number of servers are turned

off, the fixed energy overhead may represent a larger portion of the total energy

consumption, leading to an increase in PUE. Additionally, when servers are turned

off, the heat distribution within the data center can change, potentially leading

to inefficient cooling. This can cause cooling systems to work harder to maintain

the desired temperature, resulting in increased energy consumption and a higher

PUE.

By understanding this we can conclude that PUE not necessarily is the correct

way to evaluate the energy efficiency of the containers within the nodes/servers.

We need to evaluate this in another way by examining the actual resource usage

of the containers or the nodes in totality, thus calculating the power consumption

of the running idle hardware as briefly shown in The wasteful consequences of idle

resources in Section 2.3.1.

2.7 Statistical Modeling for Resource Usage

Having introduced cloud computing, the trends in the industry, and lastly green

computing, I will now move towards investigating the literature available on mod-

eling workloads on Kubernetes pods. Since we are going to forecast resource usage

and use the credibility of our predictions as part of our argument for lowering re-

source requests, the state-of-the-art within forecasting in the industry should be

examined. Statistical modeling can be used to predict resource usage by analyz-

ing data on resource consumption over time. Our goal is to build a model that

can accurately predict future resource usage based on past data and other rele-

vant factors. This involves collecting data on resource usage and other relevant

variables, such as day and time of day, type of resource, and size of the resource.

The data is then used to fit a mathematical model that describes the relationships

Chapter 2: Background 29

between resource usage and the relevant variables. This model will then be used

to make predictions about future resource usage.

Statistical modeling of resource usage by containers is not well represented

in the literature, especially not in the light of green computing. What is meant by

that, is that we have not come across any articles that examine the CPU and mem-

ory usage of active containers, their resource requests and limits, and attempt to

optimize them to minimize the environmental impact of unused resources. How-

ever, some articles are to be found on similar topics. One article suggests creating

a proactive autoscaling framework that uses time series analysis to predict the

number of pods needed in the future [34]. By predicting the request rate they can

remove a number of surplus pods, thus reducing over-allocation. To do this they

are using a bidirectional long short-term memory model (Bi-LSTM) on real trace

workload datasets from NASA and FIFA. They are also comparing their algorithm

to autoregressive integrated moving average (ARIMA) and long short-term mem-

ory (LSTM), with a 1-step approach and a 5-step approach. Their proposed system

design shows better performance in accuracy and speed than the default Kuber-

netes horizontal pod autoscaler (HPA) when provisioning and de-provisioning re-

sources. Finally, to evaluate their results they use mean square error (MSE), root

means square error (RMSE), mean absolute error (MAE), and coefficient of deter-

mination (R2). Their evaluation is based on two real web server logs: two months

of NASA web servers and three months of FIFA World Cup 98 web servers.

While the data analyzed here are a number of HTTP workloads and not the

CPU and RAM usage of containers, the predicted data still help to determine the

number of pods that should be run. Their goal is similar to ours, but they have a

horizontal approach which often is the case for scaling applications in Kubernetes

since Kubernetes excels in that kind of scaling. We will strive to use their findings

to better estimate the required resources for containers, which essentially is a ver-

tical approach to the problem.

Another article [35] proposes a self-directed workload forecasting (SDWF)

method to estimate the future of workload on cloud servers. Their primary con-

tributions to the work are twofold. First, the forecast error feedback is introduced

which enables the model to learn from its recent forecasting pattern. Second, a

population-based metaheuristic optimization algorithm, i.e., black hole (BH) is

improved for better learning of network weights to achieve more accurate fore-

Chapter 2: Background 30

casts. The black hole algorithm got introduced in [36], and is a nature-inspired

metaheuristic algorithm inspired by the black hole phenomenon. In that paper,

the method is applied to solve the clustering problems, while in [35] it is used to

estimate future workloads by first organizing the population into multiple clus-

ters or sub-populations, including both the local and global best information to

the process of generating the new solutions. The forecast accuracy of the proposed

method is evaluated using MSE, MAE, and mean absolute percent error (MAPE),

on different Prediction Window Sizes (PWS) which is the time interval between

two consecutive forecasts. For their method, they are using 6 different datasets:

HTTP weblogs from three different worldwide web servers, Google cluster traces

(CPU and memory), and CPU utilization traces from PlanetLab.

Facebook’s Prophet framework, which was first released in February 2017

[37], has proven successful in various recent studies. These studies range from

forecasting air temperature and COVID-19 outbreaks to predicting financial mar-

kets and Microsoft Azure virtual machine workloads [38–41]. As stated on its

website [42], Prophet works best with time series that exhibit strong seasonal

patterns and have several seasons’ worth of historical data. The results from these

studies show that the Prophet model can produce different results depending on

the time series being analyzed. For example, in a study using five-year daily time

series data [38], Prophet performed better at forecasting maximum temperature,

while LSTM performed better at estimating minimum temperature. However, the

difference was not substantial when evaluated using RMSE, putting the two meth-

ods at similar performance levels. In a study of COVID-19 cases in Saudi Arabia

from March to August 2020, Prophet had low accuracy in forecasting recovered

cases but high accuracy in forecasting deaths [39]. In a study of the price trend

of the Morgan Taiwan Index, using training data from January 2014 to Decem-

ber 2018, Prophet showed advantages in predicting future price trends [42]. In a

study of virtual machine demands [41], the authors used one month of resource

utilization data, such as maximum CPU utilization and total resource utilization,

to predict the next seven days and plotted daily and weekly patterns. The predic-

tions were evaluated using MAPE with a 10% rolling window size. This study used

a much shorter time period and produced positive results, which is promising for

our project involving short-lived containers, given Prophet’s ability to incorporate

daily or weekly seasonality.

Chapter 2: Background 31

2.7.1 Cross-Industry Data Forecasting

When discussing Facebook’s Prophet, various industries were touched upon. Nu-

merous articles discuss using different models to forecast future activities in di-

verse fields such as supermarkets, agriculture, oil prices, and stocks. Season-based

modeling is quite common in these industries, particularly when seasonal patterns

can be easily identified, such as harvest seasons. This enables the model to be more

accurate in its forecasts as it learns the seasons more effectively. Prophet tends to

favor STL-based modeling, but other methods like the Seasonal Trend Decompo-

sition (STL) [43] method and Extreme Learning Machine (ELM) [44] have been

used for a longer period with much success.

One notable paper, published in 2017 with over 110 citations, suggests using

a hybrid STL-ELM approach for forecasting agricultural commodity prices [45].

The paper highlights the excellent descriptions of the work conducted and the

data utilized, which makes it easy to follow for anyone new to the field of sta-

tistical modeling. It sets the seasonality to a 12-month cycle and uses data from

January 2002 to April 2014 to predict the prices of various vegetables in the fol-

lowing month. When compared to standalone ELM, Seasonal ARIMA with Kalman

Filter (SARIMA-KF), Time Delay Neural Network (TDNN), and Support Vector Re-

gression (SVR), the hybrid STL-ELM method outperforms its competitors in short,

medium, and long-term forecasting. As a result, this approach is acknowledged as

an effective tool for predicting the prices of highly seasonal vegetables.

After examining various models across multiple industries and diverse data

sets, a more comprehensive understanding of statistical modeling, evaluation tech-

niques, and the outcomes of predictions has been gained, including insights into

what works and what does not. In the context of the STL, it may be possible to

incorporate seasonal factors such as weekdays, time of day, or any other recur-

ring patterns that can be identified. While the applicability of these suggestions

remains uncertain, it is intriguing to observe that many similar algorithms with

varying parameters are employed across different data in various industries. At

this stage, we are prepared to develop an approach to address the problem state-

ments, obtain and further investigate the data, and subsequently explore the ap-

plication of statistical models on the data.

Chapter 3

Approach

The background chapter highlighted the required knowledge we would need to

be able to go forward with an approach. The choices taken in this approach are

established from the knowledge acquired in the previous chapter. We now revisit

the problem statements once more and provide a short introduction on what kind

of research we will be doing for this project. After that we continue by splitting

the approach into two phases; Data collection, processing, and modeling (Phase

I) and evaluating the efficiency of models across multiple containers (Phase II).

In accordance with the Introduction chapter, two research questions were estab-

lished:

Research Question 1 How can time series forecasting models be applied to predict

resource usage for individual containers in Kubernetes environments, and what are

the challenges and benefits associated with using these models to ensure prediction

accuracy across various container usage patterns?

Research Question 2 How can we effectively evaluate the impact of predictive mod-

els on resource allocation strategies in Kubernetes environments?

The first research question is an exploratory task and will point this project to-

ward exploratory research. This means that we will have a flexible approach to the

research process, opening up for modifying the problem statements and method-

ology as unexpected or exciting findings appear. Since we will not be bound by a

specific hypothesis, the project will allow for more creativity in the research pro-

cess. This type of research does not necessarily reach a conclusion as the goal can

keep changing based on what is discovered along the way. The second statement

is more about how well we are able to use statistical modeling to predict resource

32

Chapter 3: Approach 33

usage based on the investigation done in problem statement one. The project’s end

goal is to lower resource requests and limits and measure the benefits of doing so.

An appropriate measurement could in this case be the reduction of electricity or

costs.

While exploratory research often is time-consuming as it involves gathering

and analyzing a large amount of data, it is recommended as an approach for a

longer project, where the exploration often will be a part of the literature re-

view or pre-research. In some way, exploratory research can continue for all time,

with no end. It should be emphasized that utilizing such an approach for a short

project does not necessarily entail unfavorable outcomes. However, we will need

to be aware of certain risks. There will be a risk of getting "lost" in the research

process and losing sight of the original research questions since there can be a

lack of structure and focus if new findings appear frequently. Making crucial deci-

sions regarding the appropriate paths to discontinue researching, as well as which

results to utilize, will be critical judgments to make throughout the process. One

also needs to keep in mind that our sample size, which we will decide upon, will

limit the generalizability of the outcome. This means that the findings may not

apply to a broader population or context and only to our very specific situation.

This research approach opposed to confirmatory research or comparative re-

search is a much more flexible and creative approach. The confirmatory approach

is designed to test a specific hypothesis or theory using a pre-determined research

design, sample size, and data analysis plan. In contrast, comparative research

has the goal of comparing the research of others to discover similarities, differ-

ences, advantages, and disadvantages. This could for example be to compare mul-

tiple statistical modeling algorithms that were determined beforehand to examine

which one that gave the best result. Both of the two approaches have a road map

that will not change based on their findings since it is more or less defined in their

approach. This makes them well structured and easy to follow and stay on track as

compared to exploratory research. For the next section, we examine phase I and

phase II of our approach. A table summarizing the planned steps and activities is

found in the last section of phase II (3.2).

Chapter 3: Approach 34

3.1 Phase I: Data Collection, Processing, and Modelling

Before being able to do any computation we will need to acquire data. There are

several ways we could acquire data to use for this project. We could for instance

use datasets provided by Google or other companies. By doing this we could pos-

sibly get clean pre-processed data, which we could start working on immediately.

Additionally, the dataset may already have been used and processed by several

people, making it possible to get inspired for how to further process the data, or

stand on their shoulders to make further contributions. A similar approach would

be to use conclusions from other papers in similar fields and use their findings to

build this project. An example of that would be to immediately decide upon an

algorithm based on the success of that algorithm that was found in another study

on predicting resource usage. This approach could open up more time being spent

on the more practical approach, on how to implement the findings in a production

environment, and on the benefits of applying that exact model.

Given that this project is a collaborative endeavor with Intility, the findings will

be of greater relevance if we employ data provided by Intility. In circumstances

where it becomes necessary to request supplementary meta information or addi-

tional data, it is possible that certain colleagues may offer assistance by furnishing

the required data or providing guidance throughout the process. This also applies

to elucidating intricate workloads, pods, or the environment. Intility has ensured

that a majority of the data from their Kubernetes environment is accessible across

various platforms. It will be necessary to examine this environment in order to

determine the subsequent direction of the project. Nevertheless, it is anticipated

that the majority of Intility’s Kubernetes Nodes or namespaces are under surveil-

lance, and as such, the project’s phases will be planned accordingly, taking this

factor into account.

3.1.1 Processing a Single Container

We will start by investigating one single pod or container on a single node, be-

fore investigating multiple pods or containers. This is to ease the data process-

ing and create a slow and steady approach. Investigating multiple containers in

multiple nodes from the start may prove to be less time-consuming if the path is

set, but in an exploratory project like this, it could be of high risk to do a lot of

time-consuming data gathering in case some findings change the direction of the

Chapter 3: Approach 35

project.

Python will be used to import, process, and evaluate the data, due to the famil-

iarity with the programming language and its popularity of it among researchers

and data scientists. While we assume that we have the data available, we still

need to export it to our local machine and import it to our Python environment.

Depending on the output of the different datasets acquired from possibly different

platforms, we expect to spend some time finding relevant data for our project.

Further on, we will need to consider how far back in time we will gather data

and the time interval of the outputted data. Both of these factors will depend on

configurations set on the monitoring solutions. Another interesting aspect is to

see the aliveness of the containers. We may expect restarts or shutdowns during

the time interval for certain containers will need to be addressed. Also, handling

peaks and lows in memory and CPU usage will be important. We will need to be

able to find and pinpoint restarts, shutdowns, peaks, and lows in the acquired

dataset to handle the data accurately.

3.1.2 Data pre-processing

Since we are talking about containers we will expect to see gaps in the stream of

data. The gaps could indicate that the pod was either temporarily unavailable or

it may have been shut down or restarted. This could be due to a number of fac-

tors, including network connectivity issues, system failures, resource constraints,

or planned maintenance. We need to explore whether and how to calculate re-

source usage while accounting for downtime. If we only assess resource usage

without considering periods when the pod is down, the resulting resource usage

prediction may be inaccurate. Therefore, it is essential to factor in downtime dur-

ing the calculation process. This will be heavily dependent on how the monitoring

platform presents these restarts or shutdowns.

It might be valuable to explore further, particularly in differentiating between

out-of-memory (OOM) kills and abnormal restarts, by employing linear regression

to examine if the resource usage curve was continuously rising before abruptly

stopping. This could be contrasted with a stable resource usage line over a sig-

nificant period. The former visualization might potentially indicate an OOM kill

rather than a regular restart.

To determine the root cause of the data gaps, one may need to examine the

logs and events for the pod and the cluster or check for any relevant notifications

Chapter 3: Approach 36

or alerts. With that said, we will not examine the logs and events behind the gaps,

nor be evaluating and considering redundancy for this thesis. This could, how-

ever, be interesting to assess in the future in combination with creating statistical

models for the same dataset. Dealing with missing data will vary based on the

proportion of data that is absent. Several approaches can be used to address miss-

ing data, such as data imputation, data exclusion, or data augmentation. Each

method has its own set of benefits and drawbacks to consider. Additional irregu-

larities must also be identified and evaluated individually.

A final consideration is addressing changes made to pods. We have previously

discussed the scenario when a container simply restarts. However, when modifi-

cations are made to a pod or container’s configuration file, the running pod and

its container will receive a new name and id, in contrast to when a container just

restarts. This could result in the loss of extended data unless the monitoring plat-

form manages that data intelligently. Nonetheless, it might be appropriate to treat

a modified container as a new entity.

Other than gaps in data, restarted pods, and pods with new names or ids, we

will expect to notice short-lived pods and thus will need to decide if or how to

include or when to exclude these pods during the statistical modeling.

Moreover, depending on what meta information we have access to we may

need to do some normalization on the values, to make sure they are treated as

equal in the models to be used. This can be found by performing an exploratory

data analysis, which will give us a broader understanding of patterns, trends, and

anomalies in the dataset. This will be done by using plotting libraries like Mat-

plotlib or Seaborn, to create charts, such as line plots, histograms, or box plots.

3.1.3 Statistical Modeling

In this part of phase 1, we will research and implement different statistical mod-

els in Python for predicting a time series dataset. The chosen models will rely on

the type of acquired data and the available meta information. When choosing and

configuring the models we will need to decide upon a strategy, either being con-

servative or more liberal with assigning resources. Depending on the uptime and

availability expectations of the containers and their criticality we will make im-

portant decisions regarding request policies. These choices will also be influenced

Chapter 3: Approach 37

by the type of environment they are deployed in, such as test, development, or

production environments.

The choice of statistical model and the specific metrics used will depend on the

type of resource being analyzed and the goals of the analysis. For example, if re-

source usage varies significantly over time, a time series model may be used, while

if resource usage is influenced by several different factors, a regression model may

be used. The final model can then be used to make predictions about future re-

source usage and inform resource allocation decisions. However, it is also impor-

tant to consider the complexity and interpretability of the model when making a

final decision.

We must also determine how the algorithm should balance over-predictions

and under-predictions in relation to the container’s original resource usage. Specif-

ically, we need to decide if the algorithm should be penalized when it under or

over-predicts resource usage. The overall goal is to explore resource usage, learn

how to predict it, and lastly, reduce the allocated resources where applicable.

A less complex model will be the first one to be tested and evaluated. We start

off with a simple algorithm since we expect to build and learn from the first one

tested. As is the nature of our project. By doing this we possibly also save time by

not spending too much time on a complex algorithm that may be taking us in the

wrong direction.

The planned number of models is three for this project. This could be one

algorithm with three different variations or three completely different algorithms.

The choice will depend on the data acquired, the meta information available, and

the patterns of the data. We assume that some tweaks may be done to certain

algorithms during the modeling, without necessarily calling it a new model. Due

to the unfamiliarity of this kind of statistical modeling, we expect an approach

consisting of repeatedly trying, failing, and learning.

Now so far we have only mentioned processing a single container, but at this

point, we will evaluate the chosen models on multiple containers to get a better

view of the generally best algorithm before continuing over to phase 2. It exists

numerous ways to evaluate the results of the different models, and we will set out

to use multiple evaluations strategies to determine the best-fitting model.

Based on the predictions of the model we are hopefully able to set resource

Chapter 3: Approach 38

requests and limits accordingly in a more efficient manner. These requests and lim-

itations should take into account the container’s workload which includes peaks

and bottoms of resource usage over a longer period. This would be done differ-

ently for CPU and memory, as these two behave differently when reaching their

set limit as we thoroughly explained in the background chapter.

3.2 Phase II: Evaluating Efficiency of Models Across Mul-

tiple Containers

Based on the findings from Phase 1, we will use the best-fitted models and apply

them on a larger scale. Depending on the available data and on how applied In-

tility’s monitoring solution is we may be able to apply the pre-processing strategy,

processing, and modeling on multiple containers, a namespace, or multiple nodes.

We assume that this phase will be time-consuming, as the repeated process of

exporting, importing, and stitching data will take a while, in addition to the steps

of data processing. We may be able to create queries or scripts that ease this pro-

cess. This should be possible within Python in regard to data processing, but it is

less known at this stage, how this could be done on the monitoring platforms. The

best case scenario is that we have access to all nodes and the format is the same. If

we have enough time we could analyze and apply the algorithm to everything run-

ning in production, which could give us the potential savings for the entire cluster.

Different nodes and different containers may include other data, new features,

or missing data, which we did not face during phase 1. This could eventually lead

to changes that need to be done to the chosen algorithm. By clustering the con-

tainers that have similar workloads, and creating one master container that could

resemble that container with similar workloads, we could possibly reduce the time

spent on using the model on all containers by a good amount of time. Clustering

could also help with handling the nodes or containers that have unfamiliar data

that is not found on container01 on node01 (the first investigated container) since

then we can cluster up those containers as well and treat them as one unit. This

can be especially useful for containers that have very transparent usage such as

bursting over the same intervals over the same points of time, applications only

running at day/night time, or static applications using the same amount of re-

sources over a long period of time.

Chapter 3: Approach 39
Ta

bl
e

3.
1:

Im
pl

em
en

ta
ti

on
st

ep
s

an
d

ac
ti

vi
ti

es
du

ri
ng

Ph
as

es
Ia

nd
II

.T
he

sa
m

e
ab

br
ev

ia
ti

on
s

w
ill

be
us

ed
as

ch
ec

k
m

ar
ke

rs
th

ro
ug

ho
ut

th
e

re
su

lt
s

ch
ap

te
rs

St
ep

s
A

ct
iv

it
ie

s
A

bb
r.

Ph
as

e
I:

D
at

a
C

ol
le

ct
io

n
,P

ro
ce

ss
in

g,
an

d
M

od
el

li
n

g

1.
D

at
a

A
cq

ui
si

ti
on

a.
W

or
k

to
ge

th
er

w
it

h
In

ti
lit

y
to

ob
ta

in
pe

rt
in

en
t

da
ta

b.
D

ra
w

in
si

gh
ts

fr
om

re
la

te
d

re
se

ar
ch

st
ud

ie
s

c.
G

et
fa

m
ili

ar
w

it
h

th
e

da
ta

av
ai

la
bl

e
on

m
ul

ti
pl

e
pl

at
fo

rm
s

PI
-1

:
a,

b,
c

2.
In

ve
st

ig
at

in
g

D
at

a
a.

In
ve

st
ig

at
e

th
e

cl
us

te
r

an
d

de
ci

de
up

on
th

e
no

de
to

ex
pl

or
e

fo
r

ph
as

e
I

b.
C

ho
os

e
co

nt
ai

ne
rs

to
an

al
yz

e
an

d
ex

po
rt

th
e

da
ta

to
ou

r
lo

ca
le

nv
ir

on
m

en
t

c.
U

se
Py

th
on

to
im

po
rt

an
d

pr
e-

pr
oc

es
s

da
ta

PI
-2

:
a,

b,
c

3.
D

at
a

pr
oc

es
si

ng

a.
A

dd
re

ss
da

ta
ga

ps
,r

es
ta

rt
s,

an
d

an
om

al
ie

s.
b.

Ex
am

in
e

re
so

ur
ce

re
qu

es
ts

an
d

lim
it

s
in

co
nj

un
ct

io
n

w
it

h
re

so
ur

ce
us

ag
e.

c.
In

ve
st

ig
at

e
da

ta
di

st
ri

bu
ti

on
,c

or
re

la
ti

on
s,

an
d

pa
tt

er
ns

.
d.

Pr
es

en
t

fin
di

ng
s

us
in

g
pl

ot
s

an
d

fig
ur

es
.

PI
-3

:
a,

b,
c,

d

4.
St

at
is

ti
ca

lM
od

el
in

g
a.

R
es

ea
rc

h
an

d
im

pl
em

en
t

m
od

el
s

in
Py

th
on

.
b.

C
re

at
e

a
si

m
pl

e
m

od
el

fo
r

se
tt

in
g

re
qu

es
ts

an
d

lim
it

s.
c.

Te
st

,a
pp

ly
,a

nd
ev

al
ua

te
m

ul
ti

pl
e

pr
ed

ic
ti

on
-b

as
ed

m
od

el
s.

PI
-4

:
a,

b,
c

Ph
as

e
II

:
Ev

al
u

at
in

g
Ef

fi
ci

en
cy

of
M

od
el

s
A

cr
os

s
M

u
lt

ip
le

C
on

ta
in

er
s

5.
Pr

oc
es

si
ng

A
ll

C
on

ta
in

er
s

a.
A

cq
ui

re
da

ta
fr

om
al

lc
on

ta
in

er
s

on
no

de
01

.
b.

Pr
e-

pr
oc

es
s

an
d

pr
oc

es
s

al
lc

on
ta

in
er

s.
PI

I-
5:

a,
b

6.
M

od
el

Pe
rf

or
m

an
ce

Ev
al

ua
ti

on
a.

C
om

pa
re

th
e

pe
rf

or
m

an
ce

of
th

re
e

di
ff

er
en

t
m

od
el

s
on

al
lc

on
ta

in
er

s
b.

D
et

er
m

in
e

th
e

be
st

m
od

el
fo

r
pr

ed
ic

ti
ng

re
so

ur
ce

us
ag

e
PI

I-
6:

a,
b

7.
Fi

ne
-t

un
in

g
a.

R
efi

ne
m

od
el

s
ba

se
d

on
th

e
ev

al
ua

ti
on

.
b.

O
pt

im
iz

e
m

od
el

pa
ra

m
et

er
s

fo
r

be
tt

er
pe

rf
or

m
an

ce
.

PI
I-

7:
a,

b

8.
R

es
ou

rc
e

A
llo

ca
ti

on
a.

Im
pl

em
en

t
th

e
be

st
m

od
el

an
d

pr
op

os
e

ne
w

re
so

ur
ce

lim
it

s
an

d
re

qu
es

ts
.

b.
Ev

al
ua

te
th

e
pe

rf
or

m
an

ce
an

d
th

e
re

du
ct

io
ns
/s

av
in

gs
fr

om
us

in
g

th
e

m
od

el
.

PI
I-

8:
a,

b

Chapter 3: Approach 40

3.3 Scope and Limits

Due to the nature of the project, i.e., being exploratory, all new paths opening

up along the project within the explored field cannot be explored. This is further

enforced by this being a short thesis. With more time we would have liked to re-

search a couple of more things such as investigating multiple nodes in the cluster,

different scheduling algorithms, and increasing the resource usage of a container.

Especially resource optimization for containers, with having spent a lot of time on

mainly the over-allocating, we would benefit from this research, thus using it for

both up and down-scaling. By investigating more nodes in the cluster, including

dedicated nodes where requests and limits are more carefully assigned, we would

get more data to strengthen the support and confidence between the resource

usage across workload profiles throughout multiple nodes. We will also not inves-

tigate the possibilities of rescheduling pods between nodes to better utilize the

available resources tied up with the requested resources.

In some cases one may want to change the configuration for a running service

to let the service run on more threads, thus being able to utilize more of the avail-

able resources instead of shrinking the over-allocated resources. These scenarios

and where they can be applicable would be interesting to further examine in an-

other project or as a continuation of this project.

Chapter 4

Results - Phase I:

Data Collection, Processing, and

Modelling

In this chapter, an attempt is made to predict future CPU and memory usage by

employing a combination of time series forecasting methods and machine learning

techniques. A straightforward approach would be to examine the resource usage,

identify the maximum, set the request equal to the maximum, and limit a few

points above that. However, the goal is to set the request lower while maintaining

the same limit as previously suggested. This approach allows for the scheduling of

more pods on the same node while still accommodating peaks in resource usage.

It is hoped that an algorithm can be developed to predict future resource usage,

thereby potentially lowering CPU and Memory requests without negatively im-

pacting performance. This chapter begins with data gathering and pre-processing

to prepare the information for further analysis and meaningful feature extraction.

Several forecasting methods mentioned in the Background chapter will be further

explored, tested, and evaluated using appropriate metrics. Once resource usage

predictions are made, an assessment will be conducted to determine if it is possi-

ble to lower the CPU and memory requests for a number of pods on a node, based

on workload type and policy. The benefits of this approach will also be measured.

In the subsequent chapters, all diagrams and charts were produced using

Python scripts that utilized the matplotlib.pyplot library, abbreviated as plt. This

library facilitated the development of visually engaging graphs that clearly con-

41

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 42

veyed the findings. Despite considerable effort devoted to crafting and enhancing

these visualizations, the code for plotting the graphs shares significant similar-

ities throughout the result chapter. As a result, not all plotting of code will be

included, but a few examples will be provided at the beginning of this chapter.

The emphasis will be placed on presenting the actual algorithms and models em-

ployed, showcasing both their visual representations and base code. The plots will

mostly consist of the blue line that represents resource usage, black lines for orig-

inal resource request/limit, red lines for new request/limit, and orange lines for

predictions. Some graphs will also have a zoomed-in time frame, which is repre-

sented as an orange transparent box on a given time frame. We will come back to

all of this at several points during this chapter.

Considering that Phase II would involve running the majority of the algorithms

multiple times, efforts were made to ensure that the Python scripts and plotting

were created in a way that automated importing, data processing, running the

algorithms, plotting, and saving of figures by only changing input variables at the

beginning of the Jupyter Notebook. The table from the approach chapter including

steps and activities will be referred to throughout the beginning or the completion

of steps. This is done by providing the respective abbreviation, for example, Phase

I, step 1, activity a, will be referred to as PI-1a.

4.1 Data Collection

In the approach chapter, it was mentioned that data would be made accessible

to a certain extent. Throughout the project, access to a Dynatrace dashboard was

obtained, which included multiple nodes and their corresponding pods. Initially,

time was dedicated to exploring the data available on the Dynatrace platform.

Dynatrace is a software intelligence platform offering performance monitoring

and management solutions for cloud-based applications. Dynatrace agents can

be installed on nodes or directly injected into containers within a pod. Although

the resource usage of containers, such as CPU and RAM, was accessible, the set

resource requests and limits for the containers were not. This was true for the

majority of containers, necessitating the retrieval of this data from alternative

sources at a later stage.

The second challenge involved dealing with two distinct metric graphs for CPU

and memory. One graph illustrated CPU usage in terms of mCores (millicores) per

minute, while the other depicted the percentage of the node’s CPU utilized by the

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 43

container. Although these values appeared fundamentally similar, it was necessary

to ensure that the graphs were not measuring anything additional or distinct. To

confirm this, the percentage of usage was multiplied by the node’s CPU, resulting

in the correct number of mCores shown on the first graph. Additionally, the graph

incorporated CPU throttling in mCores, which is assumed to be a valuable metric

when recommending CPU requests. Generally, CPU usage can be further divided

into system usage and user usage. In this study, any mention of CPU usage refers

to the combined usage of both system and user usage. In other words, they will

not be analyzed or treated separately, as the primary focus is on the resource

consumption of each container at a more comprehensive level.

In the case of memory usage, there are two graphs: container memory us-

age and process memory usage. These two graphs do not exhibit similar trends

or workloads. It is essential to differentiate between them and understand the

significance of each metric. The former metric, container memory usage, likely

represents the total memory consumption of the container and is the metric con-

sidered by Kubernetes when managing resource requests and limits. Consequently,

this is the metric that will be taken into account when evaluating memory usage

in relation to requested resources. On the other hand, the latter metric, process

memory usage, has more dependencies and may encompass heap memory, stack

memory, and other process-specific memory allocations. In other words, process

memory usage might appear to consume more memory than the container’s total

memory usage, even if that particular process is only running on that single con-

tainer.

In order to address the absence of displayed resource requests and limits on

the Dynatrace platform, a senior architect was contacted to obtain the relevant

data (PI-1a). A Prometheus server was set up and began scraping resource re-

quests and limits from pods in an internal production environment – the same

environment accessible through Dynatrace. While connected to the company net-

work, the endpoint could be accessed with added arguments to retrieve limits

and requests. By examining the entries and labels in the Prometheus graphical

user interface (GUI), a query was formulated to acquire the necessary data for

the project’s continuation. Code listing 4.1 illustrates the endpoint and the query

used to obtain the resource limits for a single container in node01 over the past

12 weeks. The query employed in the code listing is identical to the one used in

the Prometheus GUI. The first node analyzed will be referred to as node01, which

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 44

is a node in a production environment, and the first container in node01 will be

denoted as container01 or c1. To obtain requests, the word "limits" would be re-

placed with "requests", and the same principle applies to swapping the resource,

such as CPU, with memory. This concludes.

Code listing 4.1: Prometheus setup for resource data retrieval with an example

query for a single container on node01

1 curl -g ’https://intiliy-url.no/api/v1/query?query=

kube_pod_container_resource_limits{node=~"node01",container=~"container01",

resource="cpu"}[12w] > node01_cpu_resource_limit.txt’

At present, a server displays requests and limits for most containers; however,

not every container has assigned requests and limits, as this assignment is not

strictly enforced.1. On March 26th, the Prometheus server was reset, resulting in

the loss of request and limit data gathered from the Kubernetes environment since

January 31st. Although this may appear to be a significant setback, the requests

and limits set rarely change, so it can be assumed that if the history of the same

container name is found in Dynatrace, the current request and limit number can

still be used when analyzing the container.

Figure 4.1: Visualization of memory request variations for 38 operational con-
tainers on Node01, with 14 distinct memory request lines displayed. All the lines
demonstrate a constant memory request

1During this project, Intility implemented a new policy, mandating developers to set requests
and limits on new deployments

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 45

In the past ten days, Node01 has had 38 operational containers, according to

Dynatrace metrics. The Prometheus server also displays 38 entries for CPU and

memory requests. It is worth noting that despite the large number of entries (38),

only a few lines are seen in Figure 4.1, since only memory requests and not CPU

requests were included in the query shown in the figure. In that figure, 14 col-

ored lines represent 14 different variations in memory request. When executing

the same query for CPU requests and memory limits, similar results are obtained,

but with even fewer variations of set resource requests. This is particularly true

for CPU limits, where there are 12 entries, with 3 different limits set: 1mCores,

0.5mCores, and 0.3mCores.

The lines appearing on top of one another in Figure 4.1 indicate identical

requests, rather than differing values. The findings suggest that the developers

rely on a specific set of numbers to estimate memory and CPU usage. This trend is

more pronounced in CPU than in memory, where variations are more extensive,

supporting our hypothesis that requests and limits are determined using numbers

from other similar deployments within the cluster, or by trial and error. Figure 4.1

also displays the lack of change of the requested resources for all containers. These

findings also tell us that the request and limits are constant and do not change

during the runtime for any container, at least on node01, and is most likely the

case for most nodes if not for the entire Kubernetes cluster. Lastly, CPU limits are

only configured for 59% of the containers, while memory limits are configured for

62% of entries.

Observation 1:

Neither memory nor CPU requests and limits are altered during a con-

tainer’s runtime, and the established resource requests and limits are strik-

ingly similar, despite the containers handling distinct workloads.

Data was also transferred from Dynatrace to the local environment, employing

a similar approach to that used with the Prometheus server. By exporting query

results from the Dynatrace GUI, access to a node and any container running on

that node was possible. Initially, the focus was on analyzing three distinct contain-

ers within a single node. However, while developing Python scripts for importing

and processing container resource usage, the code was designed in a way that

adding more containers to the existing script would necessitate minimal changes.

This method ensures code reusability for future research stages.

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 46

When accessing a container in Dynatrace, dashboards with existing queries

are available, and it is possible to open one of the visualizations and export it to a

.csv file to access the file locally and import it into the Python environment. Before

exporting the data, time intervals need to be addressed. As discussed in the ap-

proach, either short or long intervals must be chosen. Due to the project’s nature,

high-resolution intervals are not deemed necessary. Higher intervals are better

suited for real-time monitoring and short-term fluctuations. Dynatrace offers a

minimum 1m interval, with the next option being 5m. Therefore, a 5m interval

will be used, which is believed to be suitable for identifying trends and patterns

while reducing storage and processing requirements. To better detect resource us-

age peaks and maintain a conservative approach regarding overestimation, data

points will concentrate on the maximum value for the 5m interval instead of the

average value, which is usually Dynatrace’s default.

For the NASA and FIFA datasets from the paper on bidirectional short-term

model (Bi-LSTM [34] in the Background chapter, Section 2.7, a two and three-

month basis were used. While on the paper using the time series forecasting

method from Facebook (Prophet) [41], the time series data points are within a

one-month time period, which they classify as short-term load (PI-1b). Contain-

ers are typically short-lived, as discussed in the background chapter, with a few

exceptions. Dynatrace permits 5m intervals up to 21 days back in time; however,

when switching further back than 21 days the time interval for the entire time

series, the time interval gets capped at 1h. For containers with more than 21 days

of data, one can either use the last 21 days with a 5m interval and ignore the rest

of the available data, or use the entire data set from the last month.

Having worked together with Intility to obtain pertinent data, drawn insights

from related research studies, and gotten familiar with the data available on the

multiple platforms, we finish off step PI-1a-c.

4.2 Data Processing (PI-2a-c)

Before applying statistical models to the collected data, it is essential to perform

data processing. This section will address converting objects to float values, man-

aging missing information, standardizing the time format, addressing spikes, and

incorporating constant values such as request and limit. Data distribution, correla-

tion, and pattern identification will also be examined. Some of these preprocessing

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 47

steps are taken to fill data gaps and make the data suitable for algorithmic appli-

cations.

Data was collected from three containers on node01 (n1), referred to as con-

tainer01 (c1), container02 (c2), and container03 (c3). These containers and the

node were chosen randomly, ensuring there was some recent activity in terms

of CPU and memory usage for the selected container. At this stage, the types

of containers running on the node and the workload of the given container are

not considered. This aspect will be revisited when examining workload profiles.

Initially, these three containers are considered before analyzing the entire node.

This approach helps simplify the processing and ensures the framework works as

expected before investing significant time in collecting and pre-processing large

amounts of data. To further emphasize taking one step at a time, memory usage is

processed first, with the CPU being used as arguments or for finding correlations

during processing.

Data processing and modeling were coded in an interactive web-based envi-

ronment called Jupyter Notebook, popular among data scientists and researchers.

The notebook supports Python, among other libraries, and is the chosen program-

ming language for the remainder of the project due to the author’s familiarity with

the language and Python’s status as a scientific language. By employing 5-minute

intervals with the peak value, increased volatility can be anticipated in containers

that fluctuate due to processing workload in brief time frames, as opposed to ex-

amining the 5-minute mean. However, using the maximum value allows for better

and a more realistic comparison to the container’s limit, helping determine Out

of Memory (OOM) issues and explain potential CPU throttling.

Although data are available for when a container’s CPU throttles and how

many millicores it throttled, the Linux kernel’s throttling algorithm is quite com-

plex, making it difficult to predict the exact moment of throttling and the amount

it throttles.

After importing 14 days of data for c1, 15 days for c2, and 16 days for c3,

the pre-processing of .csv files for CPU and memory usage began. An in-depth

explanation of the pre-processing will not be provided here, but relevant code

with comments can be found in Appendix B.1.

The data processing will be divided into two sections: one for memory usage

and another for CPU usage, starting with memory usage. The pre-processing de-

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 48

scribed in the following two sections will be applied to all three containers, but

only the plots from c1 will be displayed in the first two sections. However, findings

from c2 and c3 will be discussed. In the section where the statistical models are

applied to containers c1-c3 (Section 4.3), the accompanying graphs and explana-

tory text for c1-c3 will be provided. This approach allows for the presentation of

resource usage for c2 and c3 without overloading the paper with excessive figures.

4.2.1 Analyzing Memory Usage

In Figure 4.2 we have the memory usage before processing the data for con-

tainer01. In the figure, it is observed that the missing data accounts for small

percentages (between 1-2%). The period of missing values can be due to an ex-

ternal restart of the pod or a restart performed by the container itself. External

restarts could be initiated by an administrator, the monitoring platform, or the

node itself if it needed to quickly shut down a container to keep another container

with higher priority alive. Determining the exact cause would require further ex-

amination of event logs. It is unlikely that these gaps are due to the memory limit

being reached, as there is no sudden peak in memory consumption. Moreover,

if the container were redeployed with changes in its configuration file, it would

receive a new ID connected to its name.

Figure 4.2: Memory usage over time for c1, showcasing periods with missing
data that account for small percentages (1-2%)

Since this container retains its ID, that possibility can be ruled out. While the

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 49

gaps do not necessarily indicate an anomaly, handling the missing data is crucial

to ensure the proper functioning of the algorithms.

For this first figure, we included the coding for the plot, subplot, and labels,

as seen in Code Listing 4.2. This is to show how the rest of the figures will be

plotted, with some adjustments. New lines, horizontal lines, and labels will be

added, however, the main frame will look like this code. In addition to plotting

the data, captions, and labels, this script saves the figure in our local environment

which makes it accessible in the exact same size as the rest of the containers will

be when re-running the script with a different .csv file. For the code regarding

importing and cleaning the .csv file, see Appendix B.1.

Code listing 4.2: Base plot for container resource data visualization with cus-

tomizable elements

1 import matplotlib.dates as mdates

2 import matplotlib.pyplot as plt

3

4 # PLOT

5 fig, ax = plt.subplots(figsize=(12, 6))

6 ax.set_xlabel(’Date’)

7 ax.set_ylabel(’Memory Usage (MB)’)

8 ax.set_title(f’Memory Usage Over Time container0{container}’)

9 ax.grid()

10

11 # Customize date ticks and format

12 ax.xaxis.set_major_locator(mdates.AutoDateLocator())

13 ax.xaxis.set_major_formatter(mdates.DateFormatter(’%Y-%m-%d’))

14 plt.setp(ax.get_xticklabels(), rotation=30, ha=’right’)

15

16 ax.plot(df1[’Date’], df1[’Containers: Memory usage’],label=f’Memory Usage c{

container}’)

17 ax.legend()

18

19 # Save and show the plot

20 plt.savefig(f’memory_usage_c{container}.png’, dpi=300, bbox_inches=’tight’)

21 plt.show()

We did not find any missing values on c2 and c3, however, this could be due

to that those data were collected at different times. We decided to use the mean

value of the total usage to contemplate the missing values. Figure 4.3 shows the

plot of c1’s memory usage after this had been done. What we notice in both of

these figures is that they both use a lot of resources at startup, but the usage

afterward differs. The memory usage goes down about 25% then keeps steady

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 50

with a slow rise. We will refer to this symptom as the L model, which resembles

the high startup phase followed by the immediate drop in resource usage. We do

not see the L model as clearly in c2 due to erratic behavior, but it is present in

c3. Nonetheless, a modest upward trend in memory usage is observed across all

three containers, and it is expected that the proposed models will account for this

trend.

Observation 2:

The memory usage exhibits an L model behavior which is represented by

high initial usage followed by a steady slow rise.

In order to address the missing data, we initially processed the imported .csv

file containing date and memory usage information. We then filled the gaps in the

data using the mean resource usage value. The date was standardized, and the

resource usage, represented as a string in GB, MB, or Bytes, was converted to a

float and adjusted to display in MB. Finally, we employed the mean value to fill

any missing data points (PI-3a).

Figure 4.3: Memory usage plot for c1, displaying the data after incorporating
mean values for missing data points

In Figure 4.4 we added the request and limit set on the container in addition

to custom thresholds. It is in this figure we for the first time see how big the differ-

ence is between the requested resources and the actual usage, which we conclude

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 51

with is Heavily Overallocated (PI-3b). The resource request and limit in this case

is set to the same number, that is 736MB, and is represented by the red line. The

blue line represents the same memory usage from Figure 4.3 but is seen with re-

spect to the resource request/limit.

Figure 4.4: Comparison of c1’s actual memory usage and the set resource re-
quest/limit, the distance between the solid red line and the solid blue line high-
lights the significant overallocation of resources

Before beginning with the optimization models we examined the distribution

of the recorded memory usage put into bins. Figure 4.5 shows the distribution fit

into 20 bins. The dataset has a skewness value of 1.01 which indicates a slightly

positive skewed distribution. In other words, the data has a longer tail on the right

side of the clustered distribution, and most of the values are clustered towards the

left. We also see that the median and mean values are almost identical, with the

mode being a bit more to the left. This tells us that the most common values are

lower than the average and median values. For c2 the median and mode have sim-

ilar values, while the mean is a bit more to the left. The skewness value is -0.68

which indicates that the distribution is slightly skewed to the left, meaning that

there are more values below the mean, than above. Lastly, on c3 we got a negative

skewness of -1.62, which indicates that the distribution is substantially skewed to

the left. Based on these distributions and the nature of our data, we can conclude

that standard deviation will not be considered as an evaluation method.

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 52

Figure 4.5: Memory usage distribution for c1, revealing slightly positive skewness
and the decision against using standard deviation for evaluation PI-3d

Something we did to investigate the possibilities of any hourly or daily patterns

in the memory resource usage was to split up the dataset into 24h splits, then

lay them on top of each other (PI-3c. This is displayed in 4.6, where each line

represents a day between 2 weeks of data from container01. By the visualization

itself, we can say that there is no immediate pattern to be found on either of

the containers. Similar output was also gotten from c2 and c3. With no patterns

being observed we will not be considering seasonal decomposition methods per

now, and therefore stray away from methods found in Section 2.7.1, where we

discuss findings of statistical methods from other industries, that focus more on

seasonality or trends. However, in phase II of the project, we do open up the

possibilities that more cyclic usage from certain containers may be found.

Observation 3:

Memory usage distributions show varying degrees of skewness, and no

clear patterns were found in the hourly or daily memory usage.

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 53

A code snippet from the function that splits and plots the 24-hour segments

is shown in Code Listing 4.3. The plot_24_hour_segments function takes in the

data frame and the resource usage as columns as arguments. The unique days are

stored in days, which we later loop through, extract data, and plot with a label

representing the day. The last full day is carefully calculated in regard to the first

timestamp. The full code along with code for plotting which is also in the same

function just described, can be found in Appendix B.1.4.

Code listing 4.3: Code snippet illustrating the ’plot_24_hour_segments’ function,

used to split and plot 24-hour segments for memory usage data

1 def plot_24_hour_segments(df, column, window_size=12):

2 first_timestamp = df.index[0]

3 days = df.index.normalize().unique()

4

5 # Calculate end date

6 last_full_day = df.index[-1].normalize() - pd.Timedelta(’1D’)

7 end_date = last_full_day + pd.Timedelta(hours=first_timestamp.hour, minutes=

first_timestamp.minute)

8

9 # Apply rolling average

10 df_smooth = df.rolling(window=window_size, center=True).mean()

11

12 plt.figure(figsize=(12, 6))

13

14 for day in days:

15 start_time = day + pd.Timedelta(hours=first_timestamp.hour, minutes=

first_timestamp.minute)

16 end_time = start_time + pd.Timedelta(’1D’) - pd.Timedelta(’5m’)

17

18 if end_time <= end_date:

19 day_data = df_smooth.loc[start_time:end_time, column]

20

21 if not day_data.empty:

22 times = [t.hour * 60 + t.minute for t in day_data.index.time]

23 plt.plot(times, day_data.values, label=day.date())

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 54

Figure 4.6: Overlapping 24-hour memory usage segments for container01, the
variations in each line illustrate the absence of clear hourly or daily patterns in
resource consumption

4.2.2 Analyzing CPU Usage

For the CPU for c1 (see Figure 4.7) we see a peak of almost 1000mCores followed

by an immediate drop to a relatively low value. Following the drop it may seem

like the usage goes on a steady course, with one small peak towards the end.

Figure 4.7: CPU usage plot for c1, displaying the data after incorporating mean
values for missing data points

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 55

For this plot, we have already done similar pre-processing that was done for

the plots of c1’s memory. The plot strengthens the theory of the L model, showing

high resource usage from the first seconds of runtime.

The decision was then made to incorporate and visualize the CPU request and

limit settings for c1, with the aim of assessing the difference between resource re-

quests and actual CPU usage. In Figure 4.8, we notice that the CPU request is set to

100mCores, significantly higher than the average CPU usage of around 5mCores

but much lower than the peak, which is close to 1000mCores. This container does

not have a set resource limit for CPU usage. We also included a zoomed-in plot

for the 27th of March in the same figure to closely examine the output (indi-

cated by the orange transparent rectangle). In the zoomed-in frame, we observe

highly fluctuating usage, including a peak reaching nearly 30mCores. Based on

these graph outputs, we start to think that predicting these values using any algo-

rithm may be challenging. In c2 and c3, we observe similar erratic behavior, with

more frequent peaks like the one that jumps from around 5mCores to a sudden

30mCores usage, as shown in the zoomed-in figure. However, unlike c1, they do

not exhibit extremely high consumption at the start of runtime. Additionally, none

of the containers appear to display a gradual increase in CPU usage, in contrast

to memory usage.

Figure 4.8: CPU usage for c1 with set CPU resource request indicated by the
dotted red line. The figure showcases overallocation since the requested resources
are high compared to the actual CPU usage. The plot in the top right corner zooms
in on the orange area and shows the erratic behavior of the c1’s CPU usage

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 56

While the code for this plot is more or less like the plots for memory usage in

the previous section, we see the inset plot with the orange square for the first time.

In Code Listing 4.4 we see the additions to our normal plotting. The start and end

dates are specified before we filter the data to only include the data between those

dates. Further on we fit the inset plot in the top right corner before we draw the

orange rectangle using the ax.add_patch with arguments based on start date, end

date, and height.

Code listing 4.4: Code snippet illustrating the addition of an inset zoomed-in

view (orange square) to the CPU usage plot

1 from mpl_toolkits.axes_grid1.inset_locator import inset_axes

2 # Create the inset plot

3 start_date = pd.Timestamp(’2023-03-27’)

4 end_date = pd.Timestamp(’2023-03-28’)

5

6 filtered_data = df2[(df2[’Date’] >= start_date) & (df2[’Date’] <= end_date)]

7

8 axins = inset_axes(ax, width="30%", height="40%", loc="upper right")

9 axins.plot(filtered_data[’Date’], filtered_data[’cpu’])

10

11 axins.xaxis.set_major_locator(mdates.DayLocator()) # Show only one date

12 axins.xaxis.set_major_formatter(mdates.DateFormatter(’%Y-%m-%d’))

13 plt.setp(axins.get_xticklabels(), rotation=30, ha=’right’, fontsize=8)

14 plt.setp(axins.get_yticklabels(), fontsize=8)

15

16 # Draw a rectangle on the main plot to indicate the zoomed-in region

17 rect_x1 = start_date

18 rect_x2 = end_date

19 rect_y1 = min(filtered_data[’cpu’])

20 rect_y2 = max(filtered_data[’cpu’])

21

22 new_height = (rect_y2 - rect_y1) * 2

23

24 ax.add_patch(plt.Rectangle((rect_x1, rect_y1), rect_x2 - rect_x1, new_height, fill=

True, color=’orange’, linestyle=’-’, linewidth=1, facecolor=(1, 1, 0, 0.3)))

Investigate Correlation (PI-3c)

Lastly, we calculated the correlation between the CPU and Memory usage as this

can prove to be important to consider when moving forward to statistical mod-

els. We used the Pearson correlation coefficient (see Equation 4.1), which is the

most common way to measure a linear correlation, to measure the relationship

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 57

between the CPU and Memory usage for this container. When using this formula

with x variable being the CPU and y being the memory usage. The correlation

coefficient we got was -0.09 which is a weak negative correlation between CPU

and memory usage. This means that as CPU usage increases, memory usage tends

to slightly decrease, but the relationship is not very strong. For c2 we got a corre-

lation coefficient of 0.37 and 0.02 for c3, which are both considered as relatively

weak coefficients in our field.

r =

∑n
i=1(x i − x̄)(yi − ȳ)

q

∑n
i=1(x i − x̄)2
q

∑n
i=1(yi − ȳ)2

(4.1)

Based on this correlation coefficient, it may still be beneficial to include the

CPU as an independent variable in a predictive model, as even a weak negative

correlation can provide some additional information to help predict memory us-

age. However, in this case, we decided not to move forward with using either

CPU or Memory as predictor values for calculating resource usage. One could

also consider other factors, such as the significance of the coefficient and the Vari-

ance Inflation Factor (VIF) values when deciding whether to include CPU in your

model, but neither of the two will be used further on in the project.

4.3 The Statistical Models

We have discussed various statistical modeling methods that could potentially be

applied to address the problems at hand, and in the following sections, we will

delve into the selected statistical model and explain why it is suitable for our

dataset. Based on the findings from the previous section, we have decided not to

include CPU usage due to its unpredictable nature and the presence of unforeseen

peaks, making it difficult to analyze. Based on research so far we do not see any

correlation between the two metrics either. By focusing solely on memory usage,

we can dedicate more time to refining the models, tuning, and evaluating before

commencing phase 2. By employing a statistical model in conjunction with work-

load profiles, which are averages of clusters containing similar services, we may

be able to predict the future resource usage for RAM. However, we must still take

into account edge cases and factors such as out-of-memory (OOM) errors, penal-

izing under-allocation, and allowing some room for sudden spikes, which we will

discuss further in this chapter.

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 58

4.3.1 Exploring Strategies for Resource Optimization

As our approach is not proactive, wherein we would constantly adjust request

limits and requests using the model, we cannot be certain if resource usage pat-

terns will change significantly over time. Considering the usage of container01, it

may be more effective to utilize percentiles like the 95th percentile of historical

usage, or alternative heuristic approaches such as optimization models like linear

programming and other linear algorithms. Therefore, we will begin with a sim-

ple linear programming approach. During Phase I, the models will not undergo

fine-tuning as the emphasis is on general characteristics. As the process advances

through multiple containers in Phase II, it becomes more appropriate and well-

founded to fine-tune the models.

Before diving into this, let’s restate our primary objective. By reducing resource

requests, we can eventually fit more deployments into their respective nodes, and

if we can accommodate enough deployments, we may be able to shut down a node

entirely. It’s important to see the bigger picture when evaluating these models. If

multiple developers each request 500MB more than necessary for their contain-

ers, and there are tens of nodes with thousands of containers, these figures will

accumulate into a significant amount. Considering the hundreds of servers under

Intility’s ownership, this could result in a considerable amount of saved electricity.

To further illustrate this example, let’s consider node01 and container01. By

examining the memory usage and request for c1 on node01, we can identify op-

portunities to improve efficiency and increase the number of containers that can

be hosted on the node.

In this case, we find that the memory request for c1 is set to 736MB, while its

actual usage is only around 170MB. By reducing the memory request to 180MB,

we could potentially decrease the resource allocation by 75.5%, freeing up more

memory for additional containers on node01. If we could reduce the memory

request by 50%, we could effectively double the number of containers running on

the node.

Taking this approach and reducing the memory request for c1 from 736MB to

180MB, we could potentially fit four times as many containers (266 containers)

on the same node, as we see in Figure 4.9. This increased efficiency could have

significant benefits in terms of cost savings, resource utilization, and overall sys-

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 59

tem performance. The other containers may vary significantly from container01’s

findings, and we do not expect to see a 556MB decrease in memory allocation for

other containers. Yet we wanted to provide a figure and finalize the concept of

over-allocation in a grander format.

Figure 4.9: The graphic displays the potential increase in container capacity on
node01 after optimizing the memory request for c1 from 736MB to 180MB. The
diagram indicates that by applying a similar reduction to multiple containers like
c1, the capacity for accommodating containers on the same node could potentially
quadruple, expanding from 65 containers to 266

It is important to note that this analysis focuses solely on memory allocation

and does not consider other factors such as CPU usage and its request/limits. To

ensure that the increased number of containers would still function effectively

on node01, we would also need to evaluate and optimize CPU requests and us-

age accordingly. By doing so, we can create a more efficient and well-optimized

Kubernetes cluster that can host a larger number of containers without overpro-

visioning resources.

From the next section and onward we will compare and discuss memory re-

quests and limits frequently. While the figures should be clear enough to explain

what lines represent the memory usage, previous request/limit, and new sug-

gested resource allocations. It is important to underline that the solid red lines

will always represent the suggested memory requests, and the red dotted lines

will represent the suggested memory limits unless else is specified. Both of these

types of suggestions will be based on the particular model which is applied. The

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 60

solid black lines will represent the original memory request and black dotted lines

will represent the original limit. All four lines will be drawn as constant lines go-

ing across the entire plot. Resource request and limit will sometimes be referred

to as R (request) and L (limit), and R/L, but the context of their usage will then

be strictly specified. An example would be if the resource request and limit are set

to 100MB and 200MB we could say R/L = 100MB/200MB.

Definition 1:

Solid black lines and dotted black lines represent the original resource re-

quest and original resource limit. While solid red lines and dotted red lines

represent new resource requests and new resource limits, as suggested by

the applied model. Resource usage will be represented as blue lines.

4.4 Linear Programming

For our first optimization model, we went for linear programming, which is a

solution that does not base the suggestions on any predictive analysis. This model

will be a part of PI-4a since it is the first model to be implemented in Python, while

also covering step PI-4b since resource allocation will be suggested after getting

the results from the model. We use the pulp library for this solution.

Figure 4.10: Visualization of c1’s original and new memory request and limit.
The zoomed-in plot shows that at one point the resource usage goes over the
requested memory, but still stays comfortably under the limit

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 61

The first step is to set a safety margin, because without a safety margin the

proposed resource request would be equal to the average or the median of the

data. In our case, it would be average, since we chose to use the average as a

plausible representation for our data. By only using the average to set the resource

requests we limit ourselves to a static trend. Realistically we would want a safety

margin, especially for containers running in a production environment. In our

case we set the safety margin, that is the resource limit, to be 10 percent over the

maximum memory usage observed in the 2-week period acquired. By doing this

we ensure that the high usage at the start of the container’s lifetime is considered

if we were to assign this limit to another container with a similar workload. This

is shown in lines 4 and 5 in Code Listing B.8. For the resource request, we used

the typical memory usage and increased the value with 5%. This model has been

inspired by the case study called Set Partitioning Problem which is found on PuLP’s

website [46].

The function pulp.LpVariable() takes the new values and sets them as lower

bounds for the variables for the problem. Further on we add constraints to the

problem, where the requests must be less than or equal to the memory limit.

Finally, The prob.solve() function retrieves the optimal values for the variables,

that is request and limit, that respects the boundaries. The set memory request

and limit based on this model can be seen in Figure 4.10. To begin with, c1 had

the request and limit set to 736MB as we saw in 4.4. With the model applied

we have R/L = 164/185. That is a 572MB reduction in request and a 547MB

reduction in limit.

Code listing 4.5: Implementation of linear programming to optimize memory

request and limit values

1 # Linear programming model

2 import pulp

3

4 safety_margin_percentage = 10 # Add. memory allocated as a percentage of max usage

5 safety_margin = max(df1[’Containers: Memory usage’])*(safety_margin_percentage/100)

6

7 # Calculate the typical memory usage (e.g., the mean or median)

8 typical_memory_usage = np.mean(df1[’Containers: Memory usage’]) * 1.05

9

10 # Defining the problem, and specifying that the objective is to minimize a function

11 prob = pulp.LpProblem("ContainerResourceAllocation", pulp.LpMinimize)

12 # Variables

13 x_request = pulp.LpVariable("x_request", lowBound=typical_memory_usage)

14 x_limit = pulp.LpVariable("x_limit", lowBound=max(df1[’Containers: Memory usage’])

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 62

+ safety_margin)

15 # Objective function

16 prob += x_request

17

18 # Constraints & solving the problem

19 prob += x_request <= x_limit

20 status = prob.solve()

For c2 the output is quite different then from c1. For c2 the set memory request

is way down from the actual resource usage which makes the service run purely

due to its high limit. Having a container and resource request set like c2 could be

damaging for the cluster as the container occupy memory that normally should

only be accessed when containers are experiencing extra load. In this case, we

have an underallocation rather than an overallocation, and therefore we will not

be able to consider the saved memory for this container. Here we actually increase

the memory request, but it is done to increase the healthiness of the cluster rather

than saving memory. However, we will still include the before and after values.

Before the model the R/L was set to 500MB/2GB, and after we set the R/L to

768MB/1017MB, which is a 53.6% increase in resource request and a 49.15%

decrease in limit.

Figure 4.11: Visualization of c2’s original and new memory request and limit.
Notice the jagged memory usage and exceedingly low original memory request

In a manner similar to c2, c3 is also underallocated, which leads our model to

recommend increasing its memory request. C3’s original request line is closer to

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 63

the actual allocation compared to c2, though it remains slightly underallocated.

Nonetheless, the original request limit is approximately 2000% higher than the

memory usage, which indicates an overestimation of the set limit. It’s worth not-

ing that setting a high limit by itself does not impact the cluster; however, having

multiple containers with limits close to 2000% peaking simultaneously could re-

sult in the shutdown of random pods to conserve memory, as the usage would far

exceed the requested memory. C3’s behavior is less erratic than c2’s and does not

exhibit an increasing pattern like c1’s. This makes c3 easier to model, and as a

result, the new request consistently hovers just above the request line at all times.

The original R/L was set to 50MB and 1.5 GB, and after running our LP model

the suggested R/L is 65MB/71MB. This is a 30% increase in requested memory

and a 95.26% decrease in requested limit.

Figure 4.12: Display of c3’s original and new memory request and limit. In terms
of fluctuations, c3 is more erratic than c1, but less than c2. Pay attention to the
heavy overallocation on the original limit as well as the underallocation of the
original request in the zoomed-in plot, much like c2

4.4.1 Evaluation of the Linear Programming Model

To evaluate performance, we’ve created a key performance indicator (KPI) called

the Memory Request Efficiency Index (MREI), which measures the percentage of

time data points (memory usage) are below the request line. A higher MREI is

desirable, but an overly high value may indicate overallocation during the given

period. The ideal target is set at 95%, with a margin of +/- 4%, which implies that

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 64

we allow some resource usage to be above the request line. The idea behind this

is that having the resource usage being above the request line 95% of the time

should account for a couple of containers peaking from time to time. This target

accounts for occasional memory usage spikes since we assume that peaks will not

happen across multiple containers at the exact same time while saving 10% of

resources compared to a higher target.

A memory request consistently above resource usage yields a 100% MREI, in-

dicating overallocation. One drawback of this KPI is that it only takes into account

whether the value is above or below the resource request, not the extent of the

deviation. For instance, a 100% score means the resource request is always above

actual memory usage, but MREI doesn’t reflect if the request line averages 1MB or

100MB above resource usage. In other words, MREI is more effective in revealing

a poor memory request rather than precisely how good it is.

However, the short-lived peaks and troughs we have observed thus far help

balance this out. The MREI allows us to discern performance differences, even in

instances of prior underallocation. If original requests were set lower than actual

usage, our model may appear to be increasing requests and limits, contrary to our

goal of reducing them. In cases of underallocated containers, the MREI will be

low, so when we increase the request and limit, the MREI will rise.

We will use a similar KPI for the predictive models, though the evaluation

method will vary slightly for those models.

Definition 2:

The Memory Request Efficiency Index (MREI) measures the percentage of

time the memory request line is above memory usage. The ideal MREI is

95%, with a margin of +/- 4%.

In addition to the MREI, we also include the original request/limit, the new

R/L, the difference between the old and new, going from old to new, and the dif-

ference in percentage. The combined evaluation of our linear programming model

for these 3 containers is shown in Table 4.1. A negative difference in the model

indicates resources saved, or a reduction of allocated memory, which is what we

want to achieve in this process unless the container is originally underallocated.

A positive difference would indicate that our model suggests an increase of re-

sources. Memory limits were evaluated as a supplementary KPI. However, reduc-

ing memory limits does not directly influence the Kubernetes cluster or decrease

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 65

allocated resources, making it a lower priority for this project.

The results in Table 4.1 offer a number of insights based on our analysis thus

far. This table does not encompass memory usage for individual containers. To

review memory usage, please refer to the plots for c1-c3 and the accompanying

text above. For c1, the MREI is reduced by 2%, bringing it closer to the optimal

MREI value of 95%. In this case, allocated memory is decreased by 572MB which

is a great feat. Both c2 and c3 require additional memory resources due to be-

ing heavily and mildly underallocated, respectively. C2’s MREI is capped at 44%,

indicating that the LP model may not be suitable for all container types, partic-

ularly those with significant fluctuations like c2. For such containers, increasing

the safety margin may be necessary to achieve a higher MREI.

The model appears to perform well for cases that exhibit a slight upward trend

and mild fluctuations, as it either touches or slightly surpasses the request line by

the end of the dataset, getting the MREI closer to 95% rather than 100%. For

mildly fluctuating containers without any trends, usage remains entirely below

the request line. In all instances, the requested limit was reduced by at least 49%.

Finally, the total MREI increased from 33% to 80%, demonstrating a significant

improvement in resource allocation as well as reducing the allocated resources by

a total of 289MB, even when handling underallocation for c2 and c3.

Table 4.1: Comparison of initial and updated request/limit for c1-c3 memory
usage (values in MB). The emphasized values demonstrate a significant increase
in MREI for c2 and c3, while c1 experiences a slight decrease but also exhibits a
substantial reduction in resource allocation. All percentages are rounded to the
nearest whole number

Orig. MREI New MREI Orig. R/L New R/L Diff. R/L % Diff. R/L

c1 100% 98% 736/736 164/185 -572/-547 -78/-75(%)
c2 <0.1% 44% 500/2000 768/1017 +268/-983 +54/-49(%)
c3 <0.1% 100% 50/1500 65/71 +15/-1429 +30/-95(%)

Total 33% 80% 1286/4236 997/1273 -289/-2951 -23/-70(%)

The linear programming model does not try to predict any values and bases

itself only on historical data using conservative margins to make sure the service

has enough resources. The LP model will even handle erratic behavior since the

limits should be able to handle the fluctuations while the average is handled by

the set resource request. The main weakness of this model is containers with an

exponential increase in usage since the average of the data points will not be able

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 66

to keep up with the increase, even though we have safety margins for the limit.

While the result from this model is static, it can be run at intervals such as every

other week, to re-calibrate the recommended request and limit to be set. In our

case, with 2 weeks of data, we could consider using the values gotten from the

model for the next 2 weeks, before re-running the model and getting variables to

use for another 2 weeks.

The safety margins set for this model are seen as quite conservative with a

lot of wiggle room. One could spend more time to make the model stricter by

lowering the safety margins, but that could go at the expense of the containers’

performance. It is important to keep in mind that lowering the allocated resources

should not affect performance to a high degree. The safety margin for limits is

based on the peaks in the data, and for containers that have high, but not frequent

peaks it would leave a lot of space or area between the limit line and the actual

usage. Therefore calculating the area between usage and the new set of requests

and limits should be used when estimating variations of this model, and should be

considered during the evaluation. However, at this point in the project, especially

with the data we have, that is not required since the resource allocation is already

quite overallocated, which would make lowering the safety margin even further

only achieve a few additional percentages, which in this case would be high risk

with low reward.

4.5 Auto Regressive Integrated Moving Average (ARIMA)

Having created a basic algorithm with safety margins set to certain percentages

shows promise, and reduces the allocation of plenty of MB of memory. However,

we want to be more dynamic with the set safety margins, and one approach to

this is to predict future usage, and set requests and limits accordingly. For this,

we discussed whether to use linear regression or ARIMA for our approach after

having analyzed the containers. This model and the following prediction models

as well as the evaluation of these statistical models will be fulfilling step PI-4c and

with that conclude Phase I.

While linear regression assumes a linear relationship between the dependent

variable and one or more independent variables, the ARIMA model does not rely

on the existence of independent variables. ARIMA only uses the time series data

itself (the past values and forecast errors) to make predictions, thus making it a

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 67

fitting model to predict our data.

ARIMA models consist of three components: autoregressive (AR), differencing

(I), and moving average (MA). The model is represented as ARIMA(p, d, q), where

p is the order of the autoregressive component, d is the degree of differencing, and

q is the order of the moving average component. Before building the model we

need to take care of the assumptions about the data and determine the parameters.

For this approach, a guide for building an ARIMA model was followed [47], with

adjustments being made throughout. Even though a guide was followed and the

ARIMA library was used, not everything worked out of the box, which resulted

in changes to the code. Edits were also made to how the figures were plotted, to

stay compliant with our plotting so far. Further on, p,d,q is discussed and plotted

for c1. However, for c2 and c3, we only include plots of when the ARIMA model

is applied.

4.5.1 Determining the Differencing (d)

To determine the order of differencing we checked the autocorrelation plot and

found out that the data was non-stationary and differencing had to be done. We

also did a mathematical test using The Augmented Dickey-Fuller (ADF) test which

aims to reject the null hypothesis that the given time-series data is stationary. It

calculates the p-value and compares it with a threshold value or significance value

of 0.05. Figure 4.13 shows our data with differencing going from 0-2 with the ADF

value on top of the top figures.

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 68

Figure 4.13: Order of differencing determination using autocorrelation plots and
ADF test. Each column features the original data after differencing (top) and its
corresponding autocorrelation (bottom). The font of the axes are small but the
most important point is the display of the patterns

The 1st-order differencing and the 2nd-order differencing are very similar,

and since our goal is to make the data stationary with the minimum amount of

differencing required we went for the 1st-order differencing. By using the 2nd

order of differencing we remove more information about the underlying data,

introduce additional noise, and make the model slower. Since the 1st and 2nd

order is so close in p-values, we stay conservative and conclude that there is more

value by using the 1st order and see how the model will perform.

4.5.2 Determining the Autoregressive (p) and Moving Average (q)

To decide upon these values we use the autocorrelation function (ACF) from the

previous section, as well as the partial autocorrelation function (PACF). These

functions provide us with an initial estimate for p and q. In Figure 4.14 we have

plotted the ACF and PACF for container01’s memory usage. From the figure, we

see that both the ACF and PACF plots show a significant spike at lag 1, after which

the values drop and mostly remain within the blue-shaded confidence interval.

This suggests that an initial value of "1" would be a good starting point for both p

and q. Based on the observations so far, we decided to start with an ARIMA model

with the following parameters p=1, n=2, q=1. Next, we will fit the ARIMA model.

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 69

Figure 4.14: ACF and PACF plots for c1’s memory usage

4.5.3 Fitting the ARIMA model

We applied the model to c1-c3 using the chosen parameters, resulting in vary-

ing outcomes. The algorithm can be found in Code Listing 4.6, while the com-

plete coding example is provided in Appendix B.3.2. We opted for an 80/20 train-

ing/test split, maintaining a consistent approach across all containers rather than

customizing splits for better alignment. This simple and blind approach has its

advantages in an exploratory context, such as this study.

Another take could be to first analyze each container’s usage before selecting

the train/test split to optimize a selection that accounts for individual container

characteristics. Expanding on this, multiple clusters with similar attributes could

share the same split. However, we did not pursue this approach, as optimizing

splits is beyond our scope. While creating clusters based on workload is within

our scope, time constraints prevented us from doing so in this case.

Further on c1-c3 is fitted into the ARIMA model and the results will be dis-

cussed after each plot and lastly evaluated together, much like what was done for

the LP model.

Code listing 4.6: Code snippet for running the ARIMA model

1 train_size = int(len(memory_usage) * 0.80) # 80% of the data for training

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 70

2 train_data = memory_usage[:train_size]

3 test_data = memory_usage[train_size:]

4

5 p,d,q = 1,2,1

6

7 model = ARIMA(memory_usage, order=(p, d, q))

8 results = model.fit()

9

10 predictions = results.predict(start=train_size, end=len(memory_usage) - 1, dynamic=

True)

For C1 (see Figure 4.15), the train/test split is unfortunate, as two peaks oc-

cur immediately after the training period, leaving the model unprepared. In this

specific case, a 90/10 split would yield better predictions. The forecast exhibits a

slight upward trend, which seems reasonable when looking at the training data.

However, the prediction is deemed inadequate since it does not closely match

the test data for the majority of the time. Without using constant re-calibrations

throughout the fitting we see that ARIMA struggles with memory usage with an

upwards trend with peaks.

Figure 4.15: ARIMA plot for c1 illustrating the challenges faced due to an unfa-
vorable train/test split and the model’s struggle with upward trending memory
usage and peaks

C2’s predictions deviate more significantly from the actual values compared

to those of C1. According to Figure 4.16 our model forecasts a downward trend

in the coming days.

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 71

Figure 4.16: ARIMA plot for C2 highlighting the model’s significant deviation
from actual values, difficulty in capturing trends, and inability to predict the final
peak, resulting in poorer performance compared to C1

Although it might be difficult to discern from the plot, both the average and

density exhibit a downward trend. The model reflects this trend, as its predictions

also show a slight decrease. The model also entirely fails to capture the final peak

that emerges towards the end. Ultimately, similar to C1, our model struggles to

predict C2 accurately, and in this case, the performance is even poorer.

In the case of c3, seen in Figure 4.17, towards the end of the training set, there

is a decrease in the frequency of low points, which leads the model to predict

higher usage for the upcoming days. However, as observed in the test data, this is

not the case, as the low points start to appear more frequently again. Comparing

C3 with C1 and C2, the predictions for C3 are the most accurate, even though

they are still not ideal. In terms of resource allocation, basing it on C3’s prediction

would result in overallocation for the container, whereas relying on C1 and C2’s

predictions would lead to underallocation.

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 72

Figure 4.17: ARIMA plot for C3 showing a decrease in low points frequency in
the training set, leading to higher usage predictions

4.5.4 Evaluation of the ARIMA Model

To assess the performance of this model, we will use MAE, MAPE, RMSE, and the

Test Data Underprediction Rate (TDUR) as evaluation metrics, with TDUR and

MAPE serving as our main KPIs. MAPE is chosen as a co-KPI because it is well-

suited for datasets with varying scales, as it calculates the mean absolute error as

a percentage. Table 4.2 shows that the ARIMA model did not perform exception-

ally well, with an average TDUR of 49.1% and a MAPE of 6.7%. However, these

numbers present a somewhat better picture than the plots, as a MAPE of 6.7%

might be deemed acceptable in some cases.

For c1, a MAPE of 1.9% can be considered satisfactory, especially when taking

into account that it missed two consecutive peaks from the training data. This re-

sult might provide a foundation for further improvement, although the prediction

value is still above the test data only 34.6% of the time, according to the TDUR.

C2 is evidently the most challenging container to model, both for the LP model

and the ARIMA model, with a MAPE of 14.8% and a TDUR of 27.6%. This indi-

cates that the predictions frequently underestimate the actual resource usage, and

the prediction error is considerably higher compared to c1 and c3. C3’s TDUR of

85% is the highest among the three containers, making it the most suitable candi-

date for suggesting resource allocations. This is because its predictions are above

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 73

the actual resource usage most of the time, which ensures that the allocated re-

sources are sufficient to meet the requirements of the container.

In the case of c1-c3, we observe that the models perform quite well for the

first predicted day before becoming too static, going too high, or too low. Reduc-

ing the test duration could yield better results for the ARIMA method, making it

applicable if the algorithm were run daily to predict the next day. This may be an

acceptable routine to adopt, although we would still prefer to extend the time pe-

riods, as setting new requests and limits requires a container restart, which could

potentially lead to availability issues. Nevertheless, initiating daily analyses could

be a good starting point.

Additionally, examining c1-c3 in this model provided us with a clearer un-

derstanding, as request and limit lines that are either over or under the resource

usage do not interfere with the plot.

Table 4.2: Evaluation of ARIMA model performance for c1-c3 using MAE, MAPE,
RMSE, and TDUR

TDUR MAPE MAE RMSE

c1 34.6% 1.9% 3.1 4.0
c2 27.6% 14.8% 112.7 124.4
c3 85.1% 3.5% 2.1 2.6

Average 49.1% 6.7% 39.3 43.7

Unlike the LP model, we have chosen not to recommend request or limit values

for this predictive model, as the outcomes are quite diverse, and it is not feasible

to establish practical resource requests or limits based solely on the predictions.

Combining the predicted values with another model, such as our LP model, might

yield a suitable resource allocation, but devising a solution based on these three

containers appears to be somewhat of a stretch. We will reevaluate this approach

in Phase II after examining the results in a broader context.

Definition 3:

The Test Data Underprediction Rate (TDUR) measures the percentage of

time the prediction is above the test data and will act as a KPI for evaluating

the predictive models. This KPI has the same limitations as MREI which was

discussed during the LP model.

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 74

4.6 Facebook’s Prophet Model

The original plan involved the analysis of three predictive models. However, due to

time constraints, the fitting of a fourth model, including the LP model, could not be

completed during Phase I. To gain a deeper understanding of the Prophet model

beyond the knowledge acquired from the papers introduced in the background

chapter [38–40, 42], a guide found on kaggle.com was used as a starting point

for working with the model [48].

Without incorporating further adjustments to the dataset, such as seasonal-

ity, weekends, nighttime, and other regressors, a basic model was employed, as

demonstrated in Code Listing 4.7. Prophet also allows for features that alter the

uncertainty intervals and outliers. Further adjustments will be discussed in Phase

II after having applied and seen the results of the model from multiple containers.

In the coding example, the data is initially transformed to ensure compatibil-

ity with the model, using both date and memory usage. Subsequently, the same

train/test split is applied, and the model is trained on the training set. Finally, the

prediction is displayed using a 5-minute frequency, as the existing datapoints are

separated by this duration in terms of minutes between each datapoint.

Code listing 4.7: Request to Prometheus server

1 model = Prophet(changepoint_prior_scale=0.01)

2

3 df = pd.DataFrame({’ds’: df1[’Date’], ’y’: df1[’Containers: Memory usage’]})

4 df[’ds’] = pd.to_datetime(df[’ds’])

5

6 # Split the data into train and test sets

7 train_size = int(len(df) * 0.8) # 80% of the data for training, 20% for testing

8 train_df = df[:train_size]

9 test_df = df[train_size:]

10

11 # Fit the model on the training data

12 model.fit(train_df)

13

14 # Make predictions on the test data

15 future = model.make_future_dataframe(periods=len(test_df), freq=’5min’,

include_history=False)

16 forecast = model.predict(future)

For the Prophet model, we modified the visualization slightly for two primary

reasons: first, to provide a perspective on the previously examined datasets, in this

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 75

case, using observation points (represented by black dots); and second, to accom-

modate the uncertainty interval (indicated by the light blue shaded area). The

purple dots signify the test data, and the solid blue line represents the predicted

values. The conventional method of displaying this model is through a scatter

plot featuring observation points (the training set), as opposed to a line chart.

The complete script, including the plotting code, can be found in Appendix B.12.

The first forecast depicted in Figure 4.18 exhibits a slight downward trend,

which contrasts with the ARIMA model that displayed a minor upward trend. This

indicates that the two models have differing predictions for the future of c1 in the

coming days. The Prophet model is capable of detecting and fitting trend changes,

utilizing the frequency and magnitude of observed trend changes in the data’s

history for future predictions. This is why the uncertainty interval (represented

by the blue-shaded area) extends considerably and is able to capture the second

peak quite accurately. When only focusing on the forecast, represented by the solid

blue line, the model may not appear very effective. However, when considering

the uncertainty interval, the model’s potential usefulness becomes apparent.

Figure 4.18: Prophet model’s forecast for c1. The solid blue line indicates
Prophet’s forecast, black dots represent observations, and purple denotes test
data. Prophets uncertainty is observed as the light blue shade. The prediction
has a slight downward trend in contrast with the upwards trend of the test data.
However, the uncertainty interval nearly captures the highest observations of test
data

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 76

The forecast for C2 using the Prophet model presents a well-balanced average

line. Instead of leaning more towards the denser areas, it lies in between, taking a

cautious approach, which consequently creates a distance from all observations,

potentially leading to poorer performance with our evaluation metrics. It could be

argued that, in general, a model suggesting average data when the observations

are so split may not be suitable for server or container usage. However, in our

case, with the implementation of both request and limit parameters, the findings

might still be useful, particularly considering our previously established optimal

target of 95% +/- 4 ratio.

Figure 4.19: Prophet model’s forecast for c2. The plot shows a cautious prediction
line amidst split observations

Observation 4:

The uncertainty intervals generated by the Prophet model effectively cap-

ture the magnitude and frequency of trend changes observed in the training

data, allowing it to accurately account for most peaks in the test data

Similar to the ARIMA model, this prediction exhibits a slight downward trend,

which is not immediately evident in the figure based solely on the training set ob-

servations. The uncertainty interval extends significantly, encompassing most of

the highest observations, due to the presence of occasional peaks in the training

data. However, it does not quite reach the last peak. The prediction is somewhat

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 77

closer to the density of the upper observations but generally lies in the middle of

the two dense areas. The uncertainty interval’s ability to capture a wide range of

possible outcomes is particularly interesting, as it provides valuable insights into

the potential variability of the model’s predictions and helps to inform decision-

making under uncertainty.

For C3, including outliers in the plot creates a dense appearance, although

the observations are similar to those seen for C2, with two highly dense areas and

lower fluctuations, as the memory usage generally remains between 60MB and

65MB. The uncertainty interval is somewhat obscured by the test data; however,

it appears to capture the high values for this container as well. In contrast to the

ARIMA model for C3, which predicted a moderate increase in memory usage over

the next few days, the Prophet model’s prediction does not seem to indicate any

significant movement in either direction.

Figure 4.20: Prophet model’s forecast for c3. A dense appearance is observed due
to outliers from start-up phase, with average fluctuation of around 5MB (between
60MB and 65MB) amidst erratic observations

Overall, Facebook’s Prophet model revealed some intriguing insights, particu-

larly when considering the combination of the uncertainty interval and predicted

values. Prophet typically avoids leaning heavily towards increases or decreases, in-

stead maintaining a stable position based on more recent values, while using the

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 78

uncertainty interval to account for potential peaks and troughs. With the plain

model and without making too many adjustments, it would be interesting to base

the memory request on slightly altered prediction numbers and set the request

limit based on the peaks of the uncertainty interval, with appropriate safety mar-

gins. This combination works effectively, but our evaluation will focus primarily

on the actual prediction for this model. Nevertheless, the uncertainty interval will

be revisited as a compelling argument in favor of using the Prophet model.

he evaluation model employed for both ARIMA and Prophet will remain con-

sistent in order to maintain the sequence, utilizing TDUR and MAPE as key per-

formance indicators, as displayed in Table 4.3. In general, Prophet’s performance

for c1 was weaker, showing a 24.08% rise in MAPE (lower is preferred) and a

53.6% reduction in TDUR (higher is preferred). Conversely, for c2, Prophet out-

performed in all aspects, with MAPE decreasing from 14.8% (ARIMA) to 12.1%

(Prophet) and TDUR increasing from 27.6% (ARIMA) to 32.3% (Prophet). As for

c3, the lowest MAPE was observed across both models at 1.2% and an MAE of

0.7, which is deemed highly satisfactory. However, the TDUR experienced a 50%

reduction from the ARIMA model, diminishing the overall performance on c3.

In summary, ARIMA delivers a superior average in TDUR, while Prophet demon-

strates better results in MAPE. Each model excels with distinct usage patterns:

ARIMA is effective for containers with discernible trends regarding usage direc-

tion, while Prophet is better suited for more unpredictable containers where sea-

sonal variations are difficult to forecast.

Table 4.3: Evaluation of Facebook’s Prophet model performance for c1-c3 using
MAE, MAPE, RMSE, and TDUR

TDUR MAPE MAE RMSE

c1 16.1% 2.4% 3.8 4.9
c2 32.3% 12.1% 85.9 93.3
c3 39.2% 1.2% 0.7 0.9

Average 29.2% 5.3% 30.1 33.0

4.7 Summary: Evaluation of Models (PI-4c)

When evaluating the linear programming model, we use a KPI that measures the

distance between the original resource request/limit and the new suggested re-

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 79

source requests. For the Linear Programming (LP) model, we consider both re-

quests and limits. As a result, the KPI represents the decrease in resource request

achieved by the corresponding model. A decrease, denoted by a negative percent-

age, indicates that memory resources are being conserved, while a positive per-

centage signifies an increase in the resource request, allocating more resources

for the container. For our first model, the LP, we do not measure MAE or MAPE,

as it does not involve forecasting and has no other metrics to evaluate besides the

mentioned KPI.

Basing resource allocation solely on the LP model worked impressively well,

suggesting requests and limits that effectively managed underallocation and over-

allocation while providing a safety margin. However, it is essential to note that this

model appears advantageous from a perspective where resources were already either

under or overprovisioned. An already established resource allocation based on av-

erage usage with simple safety margins would not benefit from this model. There-

fore, either the model needs to become more advanced, thereby approaching the

actual resource usage and decreasing the gap between the request lines and the

usage, or it can be used in combination with a predictive model. For the predictive

models, we assess prediction accuracy using another KPI and the MAPE.

For the statistical models, we adopt a different approach and measure how

well they predicted the usage of the test data. One of the KPIs for predictive mod-

els is the number of times the prediction is above the resource usage, and we aim

for as high a number as possible. The higher the count, the better the model per-

formed on the container. Nevertheless, based on the performance of the models

on c1-c3, we have not yet decided to recommend resource allocation, as their per-

formance varies significantly and requires further evaluation. So far, both models

show potential. If we could recalculate and rerun the ARIMA model each day,

which seems to perform well on the first predicted day, it may provide sufficient

predictions with good performance for most containers, except for the most erratic

one, c2. Prophet, with its uncertainty interval, is also worth further investigation,

and using it in combination with our LP could be valuable for suggesting resource

requests for multiple containers.

Our findings throughout Phase I address our first research question: "How can

time series forecasting models be applied to predict resource usage for individual

containers in Kubernetes environments, and what are the challenges and benefits

Chapter 4: Results - Phase I: Data Collection, Processing, and Modelling 80

associated with using these models to ensure prediction accuracy across various con-

tainer usage patterns?" We have explored two forecasting algorithms, Prophet and

ARIMA, and one algorithm that suggests resource allocation based on historical

data and safety margins.

The performance of both Prophet and ARIMA varies significantly when pre-

dicting memory usage, with some containers showing excellent results while oth-

ers do not. This variation makes it challenging to recommend a single statistical

model for all situations. However, in a selective scenario, both models can provide

valuable insights.

Applying these models to multiple random containers may yield average or

poor results overall. Fine-tuning the models is also challenging since different

tuning approaches work better for specific types of containers. A potential solu-

tion could be to cluster containers based on their resource usage patterns and

apply tailored models to each cluster, thereby ensuring prediction accuracy across

various containers.

Chapter 5

Results - Phase II:

Evaluating Efficiency of Models

Across Multiple Containers

Phase II will build upon the knowledge and setup established during Phase I, ex-

panding it to a larger environment. In accordance with the table presented in the

approach chapter, we will process all containers with available resource requests

for a container on a single node within one month (PI-5ab), as long as the mem-

ory usage is at least one week old. Containers that restart periodically, with each

runtime lasting less than a week, will not be included in this case.

For containers that intermittently run, we do not check for potential changes

that may have occurred; therefore, in many cases, we cannot guarantee that the

same container has the same tasks for the new runtime period. Short-lived con-

tainers (less than one week of aliveness) that may be job-based or run only once

and never again during the one-month period will not be evaluated. The primary

reason for this exclusion is the limited value of evaluating such containers, as they

could be test runs or one-time jobs, which could differ significantly from other con-

tainers running for more than a week.

Both ARIMA and Prophet have demonstrated various strengths and weak-

nesses so far. In this phase, we will evaluate these models using the Test Data

Underprediction Rate (TDUR) and MAPE. By assessing the models on all contain-

ers within a specific time interval on a single node, we will complete step PI-6a,

and then determine the best model for predicting resource usage for given con-

81

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 82

tainers, thus fulfilling activity PI-6b.

5.1 Model Performance Evaluation for Predictive Models

The evaluation period for all containers spans from April 1st to April 30th. The

containers C1-C3 used in Phase I differ from those used in this Phase I. Table

5.1 demonstrates the performance of Prophet and ARIMA concerning the evalua-

tion metrics MAPE and TDUR. Throughout this month, most containers operated

for more than 21 days, surpassing the time frame that Dynatrace permits for 5-

minute data intervals. Consequently, data were aggregated into 1-hour intervals.

Although the maximum value for the interval can still be obtained, this may cause

the plots to appear different and less erratic. Alternatively, we could focus on new

containers that have been running for a maximum of 21 days. However, this ap-

proach would significantly reduce the number of available containers, resulting

in the loss of valuable data. Out of the 21 containers from which data was gath-

ered, only two containers, c4, and c23 provided 5-minute intervals, and both are

marked with an asterisk (*) in Table 5.1.

Table 5.1 presents mixed results, indicating that consistently using either method

will not achieve the desired outcomes. The average TDUR is not too poor, with

48.1% for ARIMA and 50.0% for Prophet. Nevertheless, while the average is de-

cent, and a few containers show models closely aligned with our ideal target,

several containers exhibit poor TDUR performance (c2, c7, c13, c15, c16, c17,

c18, c20). For MAPE, the overall results are satisfactory, although some contain-

ers stand out: c6 has over 20% for both models, and c18 and c20 have average

MAPE values of 12.2% and 8.1%, respectively.

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 83

Table 5.1: Comparison of ARIMA and Prophet model performance in terms of
TDUR and MAPE. Percentages are rounded to the nearest whole percentage. On
each row, the best result for each evaluation method out of the two models is
followed by an arrow pointing upwards. The table shows that the results are
varying between the two models and that there is no correlation between the
best result for TDUR and MAPE

TDUR MAPE

ARIMA Prophet ARIMA Prophet

c1 45.5% 59.5%↑ 0.5%↑ 0.6%
c2 3.6% 52.9%↑ 2.3% 1.4%↑
c3 66.4%↑ 58.6% 0.4%↑ 0.8%
c4* 100%↑ 77.9% 0.1% 0.1%
c5 18.4% 57.1%↑ 3.4% 3.0%↑
c6 93.6% 93.6% 29.5% 24.0%↑
c7 0.0% 0.0% 0.0% 0.0%
c8 95.7%↑ 65.0% 1.6%↑ 2.1%
c9 93.6%↑ 80.7% 0.3% 0.3%
c10 77.1%↑ 60.0% 0.9% 0.8%↑
c11 92.3%↑ 80.7% 2.4% 1.9%↑
c12 53.1%↑ 49.0% 1.4% 1.4%
c13 33.6%↑ 7.9% 0.4%↑ 0.9%
c14 78.6% 93.6%↑ 1.1%↑ 1.6%
c15 7.1% 60.0%↑ 4.4% 2.6%↑
c16 5.0% 74.3%↑ 1.3% 0.9%↑
c17 68.6%↑ 24.3% 0.2% 0.2%
c18 0.0% 0.0% 4.2%↑ 20.1%
c19 51.4%↑ 7.1% 0.5%↑ 1.2%
c20 0.0% 100%↑ 0.3%↑ 15.9%
c21* 100%↑ 72.4% +0.1%↑ 0.1%

Average 48.2% 50.1%↑ 2.5%↑ 2.6%

The models themselves exhibited only a 1.9% difference in TDUR and a 0.1%

difference in MAPE, making their average performance for predicting container

usage quite similar. As previously mentioned, they excel in different workloads,

and based on the table, a model may have a poor TDUR but still maintain a good

MAPE, or vice versa. We will further investigate certain containers that performed

well according to our evaluation metrics, as well as those that did not.

* Containers having a time interval of 5 minutes instead of 60 minutes

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 84

Figure 5.1: Accurate ARIMA model prediction for c3’s usage, demonstrating rare
yet effective pattern recognition and resource allocation. TDUR of 66.4% and
MAPE of 0.4% indicate satisfactory performance, despite minor deviations from
the 95% target of TDUR

Figure 5.1 showcases a successful prediction using the ARIMA model. It ac-

curately forecasts c3’s usage and lays a solid foundation for resource allocation.

Usage patterns like the one in this figure are rare but appear intermittently among

the more unpredictable containers. Table 5.1 indicates that c3 has a TDUR of

66.4% and a MAPE of 0.4%, which are considered very satisfactory values. The

TDUR is somewhat lower than our 95% target due to some spikes at the end of

the testing period, but the overall values are still good, taking into account the

safety margins that would be added on top.

Figure 5.2 presents another instance where the ARIMA model’s prediction de-

viates significantly from the test data, primarily due to a 25% drop in the middle of

the data set. This pattern seems to confound the ARIMA model entirely. Table 5.1

reflects this poor performance, with a TDUR of 0% and a MAPE of 4.2%, which are

considered exceptionally bad, especially for the TDUR. Prophet fared even worse,

with an identical TDUR and a MAPE of 20.1%. Predicting this type of usage is ex-

tremely challenging. In cases where usage throttles, it is more manageable since

we take previous peaks into account when setting resource requests. However, if

the usage had increased instead of decreased, we would need to implement high

safety margins and set a high request limit to accommodate such patterns.

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 85

Figure 5.2: Significant deviation of ARIMA model prediction from test data due
to a 25% drop, resulting in exceptionally poor performance (TDUR: 0%, MAPE:
4.2%). Illustrates the challenge in predicting and accommodating such usage pat-
terns

Figure 5.3: Prophet model’s accurate prediction for container c1, closely tracking
memory usage with a TDUR of 59.5% and MAPE of 0.6%. Uncertainty interval
captures most peak deviations, highlighting the model’s effectiveness in predict-
ing c1’s usage

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 86

For container c1, seen in Figure 5.3, the Prophet model closely tracks the mem-

ory usage, aligning well with the actual usage. Although it falls slightly short of

the peaks in the test dataset by a few megabytes, the uncertainty interval captures

most of them. Table 5.1 displays a TDUR of 59.5% and a MAPE of 0.6%, which

are considered good values for predicting c1’s usage. Again, capturing the highest

observation in the test set may be possible by incorporating safety margins.

We have included another example (see Figure 5.4) where the recent data

from the training set suddenly spikes, contrasting with the usage drop in Figure

5.2. In this situation, the Prophet model attempts to accommodate the change by

exhibiting larger fluctuations in its forecast and expanding the uncertainty inter-

val. While this is not the worst example, with a TDUR remaining at 100%, the

MAPE is at 15.9%. It is essential to consider such patterns when fine-tuning mod-

els, as they should be manageable since the peaks are often short-lived.

Figure 5.4: Sudden spike in training data contrasted with Figure 5.2, showcasing
Prophet model’s response through larger forecast fluctuations and expanded un-
certainty intervals. Emphasizes the importance of considering such patterns when
fine-tuning models, with TDUR at 100% and MAPE at 15.9%

Since the MAPE is reasonably acceptable for both models, we can proceed with

either of them. However, we must keep in mind the containers that are challenging

to predict, particularly those like c7 and c18, which both have TDUR values of 0.

The TDUR, representing the percentage of time the predicted value is above the

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 87

actual memory usage, can be managed by adjusting safety margins accordingly.

With the Prophet model, we also have uncertainty intervals that are not accounted

for in this evaluation table but will be considered during the fine-tuning of the

models. These intervals may be useful for adjusting safety margins as needed.

5.2 Prophet + Tuned LP Model (PI-7ab)

We have not yet taken into account the uncertainty interval for the Prophet model

in this evaluation, even though we mentioned its importance for determining re-

source allocation. Based solely on the prediction results, we decided not to pro-

ceed with either model alone. However, since the Prophet model showed a 1.9%

improvement in TDUR and we have its uncertainty interval, we will assess its

performance in contrast to setting resource requests based on the LP model. We

would have liked to explore creating uncertainty intervals for the ARIMA model

and potentially combining it with LP, similar to the Prophet and LP combination

if time allowed.

For this evaluation, we will determine resource requests for the LP model in a

similar manner to our container prediction approach, utilizing only the first 80%

of data from each container. This allows us to assess the value of predicting con-

tainers from node01 and suggesting resource allocation compared to just using

the LP model. Based on the results from Table 5.1, we will employ a slightly ad-

justed LP model capable of utilizing Prophet’s predicted values and its uncertainty

interval. We will name this new model the Prophet + Linear Programming model

(P+LP).

Tuning the model and optimizing its parameters fulfills step 7 PI-7ab, while

using the results from the fine-tuned model to propose new resource limits and

requests, and evaluating performance completes step 8 resource allocation PI-8ab.

The primary enhancements to the new model involve using the average of the

predicted value from the Prophet model and adding a 5% safety margin, similar

to the LP model, to set the resource request. In terms of memory limits, adjust-

ments have been made for both the LP model and the new P+LP model. For the

LP model, the memory limit has been set 15% higher than the highest observed

value from the training set. For the P+LP model, we first determine the higher

value between the uncertainty interval and the highest recorded value from the

training set. For the finalized P+LP including plotting see Appendix B.13.

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 88

All evaluations done in Table 5.2 is done on the test data for each container.

This table is similar to the table that evaluates the LP model in Results Phase I.

The KPI which is the Memory Request Efficiency Index (MREI) evaluates the per-

centage of time the resource usage is underneath the suggested resource request.

While a high KPI is good, a KPI that is 100& indicates overallocation. However,

we do not examine how much of an overallocation that is in place for an MREI

of 100%. The amount of overallocation would also be interesting to examine but

is indicated by how much we reduce the original request for the new set request.

A minus (-) difference indicates that the new resource request/limit is lowered,

which means that we have reduced the resource allocation, which initially is the

goal while maintaining a high MREI.

In Table 5.2, we observe the MREI and the difference in allocated resource

requests when applying the models to the 21 containers. Both LP and P+LP yield

good MREI results, with the exception of container c8 for LP and c18 for P+LP.

For c8 (see Figure 5.5), LP has an MREI of 0%, while P+LP has an MREI of 100%.

C8 is a heavily underallocated container, requiring a 78.5% increase in resource

requests to cover it. The figure shows that, due to the upward trend in Prophet’s

prediction, the resource request is set much higher than the LP, which uses the

average of the training set. We also notice differences in the limit lines: in this

case, since the uncertainty interval is higher than the highest observed value from

the training set, P+LP uses the maximum value of the uncertainty as a safety

margin threshold, compared to LP, which uses the highest observed value. The

green lines indicate P+LP’s request and limit, while the red indicates LP’s request

and limit.

For c18, LP achieves a better-set value compared to Prophet’s prediction due

to Prophet predicting a downward trend. In both edge cases, the high peaks in

the test data are confidently covered by the limits set, and with an MREI of 88.9%

(including the edge cases), those exceptions will be accommodated.

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 89

Figure 5.5: A comparison of suggested resource allocation between the LP and
P+LP models for container c8. The P+LP model effectively addresses the under-
allocation issue by setting a higher resource request based on Prophet’s upward
trend prediction. LP’s request line is below all of the test data (solid red line),
while P+LP’s request is comfortably over c8’s memory usage (solid green line)

We observed that only 8 out of 21 containers have set resource limits (see

multiple na’s in Table 5.2), meaning that 13 containers can consume as much

memory as needed This can be detrimental for a cluster, especially if a container

is already underallocated. First, resource usage may be underestimated due to

the underallocation, and not having a cap could lead to disastrous consequences,

such as consuming the memory of other containers that might require those re-

sources during sudden peaks. It is crucial to ensure that all containers follow the

same rules by setting requests and limits appropriately for this system to function

effectively.

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 90

Orig. LP P+LP

MREI MREI % Diff. R/L MREI % Diff. R/L

c1 100% 76.0% -77.9/-74.5↑ 100%↑ -76.9/-74.3
c2 100% 95.0% -76.1/na 95.0% -76.2/na↑
c3 100% 47.9% -17.6/-68.6↑ 100%↑ -13.2/-67.5
c4* 0% 100% +69.9/-93.8↑ 100% +70.9/-82.8
c5 100% 87.8%↑ -46.5/-97.8 83.7% -46.7/-97.8↑
c6 100% 93.6% -93.7/na↑ 93.6% -92.7/na
c7 100% 100% -98.1/na 100% -98.1/na
c8 0% 0% +66.4/na↑ 100%↑ +78.5/na
c9 0% 100% +80.0/na↑ 100% +80.2/na
c10 100% 100% +0.1/na↑ 100% +0.2/na
c11 0% 97.9% +54/na 97.9% +54/na
c12 0% 95.9% +68.9/na 95.9% +68.2/na↑
c13 0% 100% +19.2/na 100% +19.2/na
c14 100% 100% -58.1/na↑ 100% -57.6/na
c15 100% 91.4% -80.6/na 91.4% -80.6/na
c16 100% 100% -2.5/na↑ 100% -2.2/na
c17 100% 100% -6.0/na 100% -6.1/na↑
c18 0% 100% +105.1/-96.9 0% +61.7/-96.9↑
c19 9.3% 82.9% +2.6/-94.0↑ 100%↑ +4.9/-94.0
c20 0% 100% +10.2/-98.2↑ 100% +24.5/-98.2
c21* 100% 100% -45.0/-94.0 100% -45.0/-93.5

Average 48.1% 81.9% -43.0/-89.7↑ 88.9%↑ -39.3/-88.1

Table 5.2: Comparison of Original and New MREI for LP and P+LP. Each line
represents the results of the models being run on the corresponding container.
The table shows that P+LP is the model with the best MREI value while the LP
algorithm has the highest reduction of memory request and limit. The upwards
arrow display the best value for MREI and resource request between the LP and
the P+LP

In general, the two algorithms are quite similar, with noticeable differences

arising only from a few containers, as indicated by the upward arrow. Based on

MREI, the P+LP model is the better choice, but it is also important to consider

resource savings. In this regard, LP outperforms P+LP, achieving a 43% reduction

in resource requests and a 77% reduction in limits, compared to P+LP’s 39.3% and

75.6% reductions, respectively. Our results suggest that by using the P+LP model,

we can significantly improve the MREI compared to the original resource R/L

before applying any model, increasing it from 48.1% to 88.9%. This improvement

should contribute to greater stability for Kubernetes nodes, as running containers

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 91

will have access to the required resources most of the time. Simultaneously, we

can recommend a 39.3% reduction in allocated resources. While we do not delve

into the specifics of how many megabytes are saved on each container, Table 5.2

shows that resource allocations are suggested to decrease for all containers, if we

look away from the underallocated ones with a previous MREI close to 0.

5.2.1 Introducing a Performance Score

Even with the addition of Table 5.2, interpreting the results may be challenging,

particularly when considering both performance indicators: MREI and the differ-

ence between resource requests. To evaluate these values collectively, we intro-

duce a score variable that takes both MREI and the differences into account. This

is achieved by calculating the absolute difference between the MREI and the ideal

target of 95% +/- 4, which is then normalized to obtain the score factor for MREI.

We have determined that a performance score of 100, corresponding to a score

factor of 95, represents the highest score. This indicates that MREI is the domi-

nant factor in performance evaluation, with a weighting split of 70/30 between

the MREI and different components.

If the difference in resource requests is positive, indicating an increase in allo-

cation, the difference will be disregarded, and the model will only use MREI as the

target value. Finally, the buffer, which results from the +/-4 range, is accounted

for; any value exceeding a difference of 4 from 95 will be penalized by calcu-

lating the MREI factor polynomially, while values within the buffer will decrease

linearly. An equation with examples of how the performance score is calculated

will be provided after having introduced Equation 5.1. The Python code is also

provided at the end of the section in Code Listing 5.1.

In summary, this performance model prioritizes high MREI while still consid-

ering the difference in saved resources where applicable. The code can for this

can be seen in Code Listing 5.1 and found in Appendix B.14.

In order to thoroughly assess the work completed, we calculate performance

metrics across all containers to obtain what we consider the correct performance

score. This step enables us to better understand the relationship between the MREI

values and the difference in requests. In Table 5.3, we compare the performance

scores of the original MREI from the containers prior to any modifications, the

containers after applying the LP method, and finally, the containers after imple-

menting the combined P+LP method.

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 92

Since the original values from the containers do not involve any increase or

decrease in resource requests, our performance score function solely considers the

MREI value. Consequently, an MREI of 0 results in a performance score of 0. This

table does not include the original MREI values and differences, as they can be

found in Table 5.2. We observe that P+LP achieves a performance score of nearly

70%, which we regard as a strong result, particularly in comparison to the original

score of 35.6%.

Definition 4:

The performance score is determined based on the Memory Request Effi-

ciency Index (MREI) and the reduction of allocated resources. However,

any increase in resources is not taken into account when calculating the

performance score. A MREI of 95% corresponds to a perfect performance

score of 100.

Our findings are somewhat affected by the numerous containers that were ini-

tially underallocated, which we have chosen to address in this table, as described

with values of 62.8 in multiple rows. If we had overlooked the underallocated

containers and concentrated on reducing resource allocation for normally or over-

allocated containers, our results would have been considerably more favorable.

Nevertheless, addressing underallocated containers is a crucial aspect of creating

a sustainable environment for a Kubernetes node. By doing so, we ensure that

containers are allocated appropriate resources without risking the depletion of

resources by other containers due to a significant number of underallocated ones

that use more than expected. Considering these factors, our combined algorithms

still yield an impressive performance score, highlighting their effectiveness.

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 93

PERFORMANCE SCORE (Part 1) PERFORMANCE SCORE (Part 2)

Container Orig. LP P+LP Container Orig. LP P+LP

c1 62.8 68.2 85.9↑ c11 0 67.9 67.9
c2 62.8 100 100 c12 0 69.3 69.3
c3 62.8 23.1 66.8↑ c13 0 62.8 62.8
c4* 0 62.8 62.8 c14 62.8 80.3↑ 80.1
c5 62.8 73.7↑ 68.3 c15 62.8 91.6↑ 91.5
c6 62.8 97.1↑ 96.8 c16 62.8 63.6↑ 63.5
c7 62.8 92.3 92.3 c17 62.8 64.6 64.7↑
c8 0 0 62.8↑ c18 0 62.8↑ 0
c9 0 62.8 62.8 c19 0.7 53.3 62.8↑
c10 62.8 62.8 62.8 c20 0 62.8 62.8

c21* 62.8 76.3 76.3

Average Orig.: 35.6 Average LP: 64.0 Average P+LP: 69.7↑

Table 5.3: Comparison of performance scores across containers using original
MREI values, LP method, and combined P+LP method. This table illustrates the
improvement in performance scores after applying the LP and P+LP methods,
demonstrating their effectiveness in creating a more sustainable Kubernetes en-
vironment by addressing both overallocated and underallocated containers

In general, the performance score utilizing P+LP for each container was sat-

isfactory. However, an exception was observed for container c18, which was as-

signed a performance score of 0 as per Table 5.3. Contrastingly, when using LP

alone, it achieved a score of 62.8. This phenomenon is illustrated effectively in

Figure 5.6.

As depicted in the figure, Prophet forecasts a decrease in memory usage, while

the observed and test data trend upwards. This erroneous prediction results in the

P+LP request line (represented by the solid green line) falling below the entirety

of the test data.

On the other hand, LP, which averages the train data, generates a request line

that comfortably surpasses the test data, symbolized by the solid red line. How-

ever, given that the observed training data exceeds Prophet’s uncertainty interval,

our algorithm establishes the request limit (dotted lines) for both LP and P+LP at

an identical height, significantly above the test data.

Therefore, despite a performance score of 0, the request limit is still capable

of accommodating the increased usage for all containers upon which this P+LP

model is implemented.

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 94

Figure 5.6: Visual representation of Prophet’s downward prediction of memory
usage versus the upward trend of actual data for c18, and the successful adapta-
tion of the LP and P+LP request limit to handle increased memory usage despite
initial performance score discrepancies for P+LP

The formula behind the performance score can be described using a set of

equations, as seen in Equations (5.1) to (5.3). The first case in Equation 5.1

checks whether the MREI is equal to the ideal target and sets the performance

score to 100. If not, the performance score is calculated using the sum of the

mrei_component and the diff_component. The mrei_component is determined in

Equation 5.2, where the absolute difference between the MREI and the ideal tar-

get is calculated. If this difference is within the buffer, the mrei_component is

calculated linearly; otherwise, it is calculated polynomially, resulting in a lower

value for that component. This value is then normalized and multiplied by the

set mrei_weight. For the diff_component (see Equation 5.3), the value is set to 0 if

the resource request difference is positive, and otherwise, the value is set to the

absolute value of the difference multiplied by the set variable diff_weight.

By using this formula to calculate the performance score, a total of 6 variables

are needed. In our case, 4 of the variables were pre-determined before calculating

the performance score for all the containers on our running node. These variables

are ideal_target=95, mrei_weight=0.7, diff_weight=0.3, and buffer=4. The ideal

target and the buffer value were chosen early in Phase I based on what was consid-

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 95

ered a conservative middle ground for reducing resources while mainly focusing

on the quality of service, given the diversity of the containers. The weighting was

determined during Phase II, where we leaned more towards the idea of resource

reduction being more present, but still keeping MREI as the most important factor.

These values set on these variables should be challenged, and different values will

provide different results. If the ideal MREI target is 100 with 0 buffer, one should

set the variables accordingly. Another scenario is if resource reduction is more

important, one could change the difference between the weighting of MREI and

the difference in resources to 0.5/0.5. The last two variables are the mrei and the

resource_request_difference. These values are obtained from calculating the MREI

value of a container, which is done by examining the percentage of time the re-

source request is above the memory usage of the test data, and the latter variable

is found by taking the original resource request and finding the percentage of

difference for the new suggested resource allocation.

Consider container 14 with an MREI of 100% and a diff R of -57.6%. Since

the MREI does not equal the ideal target, the second line of Equation 5.1 comes

into play, requiring the calculation and summation of the MREI component and

the diff component. To calculate the MREI component: given that an MREI of 100

is more than 4 units (the buffer) away from 95 (the ideal target), the second case

in Equation 5.2is used with the following input: (1 − (|100−95|
95))2 × 0.7 × 100 =

62.8. Next, the diff component is calculated. In this case, since the reduction of

memory is written as a negative percentage, the calculation proceeds as follows:

|-57.6| × 0.3 = 17.3. Otherwise, a positive value would result in the added value

being 0, yielding a performance score of 62.8. Finally, referring back to the first

equation, these values are added together, resulting in a Performance Score of

62.8 + 17.3 = 80.1.

performance_score=







100, if mrei= ideal_target

mrei_component + di f f _component, otherwise

(5.1)

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 96

mrei_component =







































�

1− |mrei−ideal_tar get|
ideal_tar get

�

·mrei_weight · 100,

if |mrei − ideal_tar get| ≤ bu f f er

�

1− |mrei−ideal_tar get|
ideal_tar get

�2
·mrei_weight · 100,

otherwise

(5.2)

di f f _component =







































0,

if resource_request_di f f erence > 0

|resource_request_di f f erence| · di f f _weight,

otherwise

(5.3)

We have not extensively discussed or evaluated the reduction of resource lim-

its, which show over an 80% reduction using both LP and P+LP methods, and

most likely also ARIMA, although we did not further evaluate this method. These

results are important to consider but not as crucial as resource requests. Since we

have already significantly reduced the resource limits, they could potentially be

set even higher. Our considerable reduction still accounts for all peaks observed in

the analyzed containers, but as we have reduced them so much, we could afford

to increase them a bit to account for unexpected peaks that may appear surprising

based on historical data and catch the uncertainty interval off guard.

However, discussing limits is still important as not having limits or having ex-

cessively high limits could potentially consume resources from other containers

running concurrently, due to certain containers using many times their expected

usage (the memory request). This can happen due to a configuration fault or a

memory leak, which causes the container to continually increase its usage over

time. This can become dangerous when extremely high limits are set, as seen

when our reduction numbers are estimated to be more than 80%. Nevertheless, if

setting overly high limits for multiple containers, it can be challenging to accom-

modate multiple peaks of resource usage taking advantage of those high limits

and affecting the entire node in the process.

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 97

Code listing 5.1: Function that calculates the performance score Using the MREI

value, resource request difference, and set ideal target, buffer and weights

1 def calculate_score(mrei, resource_request_difference, ideal_target=95, buffer=4,

mrei_weight=0.7, diff_weight=0.3):

2 mrei_difference = abs(mrei - ideal_target)

3 score_factor = abs(1 - (mrei_difference / ideal_target))

4

5 if resource_request_difference > 0:

6 resource_request_difference = 0

7

8 if mrei == ideal_target:

9 performance_score = 100

10 elif mrei_difference <= buffer:

11 mrei_component = score_factor * mrei_weight * 100

12 diff_component = abs(resource_request_difference) * diff_weight

13 performance_score = mrei_component + diff_component

14 else:

15 mrei_component = score_factor **2 * mrei_weight * 100

16 print(mrei_component)

17 diff_component = abs(resource_request_difference) * diff_weight

18

19 performance_score = mrei_component + diff_component

20

21 # Clip the performance score to be between 0 and 100

22 performance_score = max(0, min(100, performance_score))

23

24 return performance_score

5.3 Summary: Addressing Research Question 2

During Phase II, we effectively address our second research question: "How can we

effectively evaluate the impact of predictive models on resource allocation strategies

in Kubernetes environments?". First, we utilize the KPI created in Phase I (MREI),

which offers insight into the quality of the suggested resource request and limit

values by applying them on the test data for each container. This evaluation helps

us understand how well the allocation would perform. Furthermore, we calcu-

late the differences in requested resources, indicating a decrease or an increase

if a container was underallocated with a suggested memory request below the

memory usage for the majority of the time.

Chapter 5: Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers 98

Ultimately, we create a performance score that takes into account both the

MREI value and the difference in resource requests. By comparing this score to

the original values before running any model, we can clearly see the impact that

the predictive models, in tandem with our LP algorithm, have on this arbitrary

node. Our solution enables us to decrease allocated resources by 39.3% and also

increases the amount of time the resource allocation covers the actual usage by

60% which is an exceedingly good result. The combination of the reduction of

resources along with the MREI gives us a performance score of 69.7 compared

with the original score of 35.6. This comprehensive evaluation approach enables

us to effectively assess the influence of predictive models and the LP algorithm on

resource allocation strategies within Kubernetes environments.

Chapter 6

Discussion

In this section, we aim to discuss the challenges and potential solutions for re-

source allocation and prediction. We will focus on aspects such as model selection,

data normalization, and the implications of using raw data in our algorithms. We

will also discuss the challenges we faced during the project and propose ideal

workflows to make use of our findings.

In the approach chapter, we proposed a two-phase strategy, with Phase II es-

sentially being an expanded version of Phase I. Everything in Phase I was carried

out with this expansion in mind. Investing time in creating reusable scripts that

generate plots with horizontal lines, prediction lines, labels, and legends proved

to be highly beneficial in facilitating the transition to a larger scale.

During the project, we realized that focusing on both CPU and memory us-

age was too much, so we chose to concentrate on multiple models for memory

usage instead. Incorporating a model for CPU usage would have added complexi-

ties when using multiple models, particularly in phase II. This decision is not seen

as a disadvantage; rather, we are shifting the task of applying various algorithms

to container CPU usage to a separate project. In the current project, memory is

regarded as the most important and easily accessible metric, as applications ter-

minate instead of merely slowing down when they reach their limits. We acknowl-

edge that a slowed-down container could still be critical, but it falls outside our

scope, especially when considering CPU throttling as part of the analysis.

99

Chapter 6: Discussion 100

6.1 Evaluating The Predictive Models

Before considering different models we specified the environment to investigate.

Whether to focus on understanding the resource usage of a specific set of appli-

cations or a namespace, or considering the resource usage of the underlying in-

frastructure, such as hardware resources like CPU and memory utilization. In our

case, this would translate to namespace level or node level. Both namespace and

node-level modeling can provide valuable insights and the choice of level for the

model would depend on the goals and objectives of the analysis. If performed in

conjunction with each other it would give a more complete picture of the resource

usage across the cluster. However, we chose to investigate the resource usage on

the node level to mainly focus on the resource usage of containers from multiple

namespaces that run on a single node.

The statistical models employed in our study offered moderate predictions on

the memory usage of the containers. We observed four distinct usage patterns

among the containers: steady, trending, seasonal, and bursty behavior. The con-

siderable variation in usage patterns makes it challenging to develop a one-size-

fits-all model, particularly for random bursty behavior. Both ARIMA and Prophet

models performed well in predicting steady, trending, and seasonal usage, as ev-

idenced by the favorable TDUR and MAPE values. Both models are employed

with minimal modifications from their default settings. Enhancing these models,

particularly Prophet, which offers numerous adjustable parameters, could provide

significant benefits. Additionally, clustering containers based on similar workloads

and then applying the most suitable configurations for each cluster could greatly

improve the models. This could lead to more accurate predictions and better sug-

gestions for resource allocation.

To address more erratic usage patterns, we focused on utilizing uncertainty

intervals and safety margins to account for such containers while maintaining re-

source requests and limits lower than the original values. This approach allowed

us to keep the model relatively simple, as well as the algorithm running on top.

The simplicity of concepts such as a 10% safety margin based on the highest ob-

served value makes it easy for users to comprehend, use, and improve upon the

model Adjustments can then be made easily, and their effects can be observed and

assessed accordingly.

Chapter 6: Discussion 101

During our project, the safety margins we set were relatively high, yet we

still achieved an average reduction of around 70% in resource usage with the

P+LP model when excluding the originally underallocated containers, for which

we increased resource requests. While it is possible to further optimize and reduce

resource usage, pushing the numbers down by a few additional percentages would

not significantly enhance the values already discovered in this project. Moreover,

it would increase the risk of underallocating resources, which is undesirable for

containers operating in a production environment.

In situations where high availability is not a priority, adjusting risk settings

could potentially lead to further resource reduction. Future work could explore

optimizing and fine-tuning resource allocation by building upon existing knowl-

edge and performance indicators. We identified a target MREI of 95% as ideal,

and directing the models and resource suggestions toward that target might yield

favorable results. Adjusting the ideal target could also be considered based on the

user’s familiarity with container usage or the prevalence of erratic containers.

Before adopting a more conservative approach to resource requests, engineers

responsible for creating containers should prioritize launching containers with fit-

ting resource allocations.

The evaluation table for the P+LP model in Phase II illustrates that resource

limits are often set quite high, indicating a lack of alignment with actual container

workloads in comparison to resource requests. This pattern suggests that develop-

ers tend to ensure their containers have sufficient resources by setting high limits,

while resource requests can be either too low or excessive. However, when this

scenario occurs on a larger scale, the cluster may face issues such as availability

and significant overprovisioning due to numerous containers having excessively

high limits. Consequently, the node’s available resources might be exceeded if

many containers operate beyond their requested resources and closer to their set

limits.

This situation likely explains why Intility maintains a considerable safety mar-

gin for virtual nodes, which ranges between 12% and 40% across different nodes.

By safety margin, we mean that only 12% to 40% of the node’s resources have been

requested. The infrastructure is presumably aware that some resources might be

underallocated, while limits are overallocated, making it difficult for administra-

tors to accurately predict resource allocation at any given moment.

By implementing our solution, we can achieve a significantly higher request

Chapter 6: Discussion 102

percentage, close to 90%, while still being confident in handling peaks and main-

taining a clear overview of the node. This is due to well-established resource re-

quests and limits that accommodate various peak scenarios.

6.1.1 Moving Forward with the KPIs

During the project, multiple KPIs are introduced. While some are well-known and

typically used to evaluate the performance of a predictive model, such as MAE,

MAPE, and RMSE, we introduce MREI and TDUR, as well as the Performance

Score, which considers the reduction of suggested allocated resources. By going

a bit further than what was done in this study, MREI can be implemented with

percentage margins, for example, being 5% within the margin of resource us-

age could still considered as data points with the MREI target, or one could even

define 5% below resource usage and 20% above resource usage. This approach

allows for strict under-allocation policies and targets excessive over-allocation as

well. These margins can be further adjusted depending on the desired outcomes.

In our case, we kept it simple as we introduced this concept for the first time and

proceeded with the MREI-based choices for the Phase II, before making things

too complicated. The same applies to the prediction of the models, where we use

TDUR, which is the percentage of time the prediction is below the test data. We

chose to handle both MREI and TDUR in a similar fashion for simplicity. Going

forward, one should test different strategies and margins for MREI and TDUR.

To assess the total impact of our framework on a Kubernetes node, we consider

the MREI of the suggested memory allocation along with the change in resource

allocation made to achieve this value, and call it the Performance Score. In this

process, we decide upon several variables that should be adjusted according to

what is deemed important, whether it’s quality of service, easy management, or

resource reduction. These variables include the ideal target for memory request

efficiency, a buffer, and the weighting of MREI and resource reduction. Adjusting

these variables can be valuable when dealing with clustered containers based on

similar workloads, namespaces, or different environments (development, testing,

or production).

It is pertinent to mention that despite meticulous calculations and sometimes

multiple iterations to confirm the accuracy of all evaluation methods, including

KPIs and performance scores, there could still be minor errors in the numbers

Chapter 6: Discussion 103

provided during the report. These may pertain to specific values or the summa-

tion of columns from tables. This is due to the fact that I solely conducted these

evaluations, without any cross-checking or validation from other individuals.

6.2 The Impact and Limitation of the Datasets

Given that containers are designed to operate for a limited duration before being

updated or redeployed for various reasons, we anticipated encountering a few

containers with datasets spanning several weeks. In addition to containers run-

ning for a couple of weeks or days, we saw that many containers were activated to

perform a specific task and then shut down, which is one of the numerous advan-

tages of utilizing containers. During phase II, we only investigated and examined

containers on node01 that contained over a week’s worth of data.

We made a decision to only include containers running between April 1st and

April 30th. By doing so, time intervals of 5-minuted, which were used in Phase I,

became 60-minute intervals for the most part. This was because containers with

resource usage spanning more than 21 days got aggregated, while some contain-

ers started in the early-middle of April they still got aggregated since the collection

took place early May which introduced the same issue. To address this, one could

be more flexible with the time period by using the current day of collection and

looking back 4 weeks instead of a specific one-month period (1st to 30th). This

would still result in many containers using 60-minute intervals due to their po-

tential 21+ days runtime, but more containers with 5-minute intervals would be

included.

However, we do not evaluate the impact of the time interval on our prediction

models, either conceptually or mathematically, although it likely has an effect. It

is not considered a significant issue since we use the maximum observed value,

a value that would not change whether we used 1-minute or 1-day intervals, for

setting safety margins. With more homogeneous resource usage, one could con-

sider daily or even weekly data for analysis, which might be a safer option for

considering peaks. However, not many containers run for multiple weeks without

changes being made or restarts occurring, so these kind of dataset might be lim-

ited.

It is worth noting the persistence of containers after they have been recon-

figured and assigned a new ID. By tracking the new IDs of a single container,

Chapter 6: Discussion 104

one could piece together data from several weeks or even months. We initially

intended to do this but found that scrutinizing the modifications proved too time-

consuming. In instances where changes were as simple as a name alteration, it

could be justifiable to track the new container as well. However, when updates in-

volve docker image changes, storage adjustments, network modifications, or other

configuration file alterations, it may not be appropriate or may become overly

complex to model the combined resource usage.

In numerous projects, normalizing the data to minimize variations or employ-

ing a moving average to mitigate highs and lows is a sensible approach. We could

have applied these methods to our data, which would have likely led to improved

model performance. However, the drawback of this approach is that while the

models may seem to perform better, the container still consumes the same amount

of resources. Consequently, suggesting request and limit adjustments would be

futile, as they would be based on normalized or smoothed data. Although some

calculations and analyses can still be conducted on normalized data before re-

verting to the original values, we did not find it useful in our case. A worst-case

scenario would involve a peer, student, or developer at Intility basing themselves

on findings from the normalized values to request resources, which might be sig-

nificantly below the actual usage peaks. By not using normalized data throughout

the project we also preserve the research quality and ensure that recommenda-

tions are based on accurate and representative information.

A crucial element in our project was to avoid under-allocation in order to

maintain uptime and stability for all containers. As a result, we opted to import

the maximum values of resource usage rather than the average value over the 5-

minute intervals. While utilizing the average of 5-minute intervals in contrary to

maximum values, might simplify resource usage prediction for the model, it would

be inappropriate to do so, as this approach could potentially truncate peaks, lead-

ing to fatal consequences for the containers.

6.2.1 Training/Prediction of Datasets

In many cases, the use of an 80/20 training/test split may not have been ideal

for predicting resource usage in containers. Adjusting the training or test sections

could potentially yield better results for specific containers. For instance, if we

were to use a 50/50 split for container c1, the prediction would closely resemble a

Chapter 6: Discussion 105

straight line that matches the resource usage well, up until the sudden peaks which

would diverge significantly from the prediction. Early in the project, we committed

to the 80/20 split rather than exploring alternative approaches or adapting the

split for individual containers based on their workloads.

A more flexible approach might have involved using different data splits or

even employing adaptive algorithms to determine the optimal split for each con-

tainer. This could have allowed for more accurate predictions that better account

for the variations in resource usage patterns among different containers. In future

projects, it may be beneficial to invest more time in identifying the most appropri-

ate data splits, taking into consideration the unique characteristics of each con-

tainer’s workload.

6.3 The Challenges of Predicting Containers

Initially, this project was designed as an exploratory endeavor, and it has success-

fully evolved in that matter over time. Our goal was to gain a deeper understand-

ing of container resource usage, and we can now effectively describe the data,

particularly with regard to memory usage. The ability to comprehend and de-

scribe resource usage was always going to be a part of our conclusion as well. We

employed well-known and established algorithms, which require data in a specific

format. Typically, ARIMA would not anticipate data to begin at an unusually high

point, sometimes tens of times greater than the average, and then suddenly drop

to zero at another point. We suspect that fluctuations and abrupt peaks negatively

impacted the performance, suggesting that our data may not be suitable for such

algorithms unless it is exported or obtained differently.

If we had chosen to further examine CPU usage, the correlation between mem-

ory and CPU, and investigate daily patterns for all containers in Phase II, the re-

sults might have been different, but probably not significantly so. Workload profil-

ing was initially considered as part of Phase II but was eventually omitted. While

conducting all these analyses would have been ideal, the scope of the project be-

came too extensive. Nonetheless, our project stands well on its own without these

additional analyses. However, it would certainly be interesting to explore these

aspects in future work

Chapter 6: Discussion 106

Kubernetes and similar container management systems like Docker Swarm of-

fer considerable flexibility and features, such as automated rollouts and CI/CD.

From a high-level perspective, everything generally runs smoothly and efficiently.

However, upon examining container usage, what might be considered anomalies,

with regard to resource usage, in other machines or servers are actually normal for

these containers. The substantial startup peaks experienced by some containers,

the sudden 5x spikes, and random drops to zero usage are all typical, as the envi-

ronment is designed to manage these situations through quick restarts, launching

new containers on the same or another node within seconds, and utilizing repli-

cas to balance the load. While these systems function effectively, the inherently

unpredictable nature of each individual container makes developing a predictive

model on this level quite challenging.

6.4 Suggested Workflow for the Framework

So far, we have developed a script that, when provided with a dataset from a

container, suggests a new resource request and limit for the container. It also cal-

culates the MREI, difference in resources, and performance score before and after

the adjustment. The next step involves manually editing the .yaml deployment

file with the new values, which restarts the container. This process can be time-

consuming, taking 5-10 minutes depending on the developer’s familiarity with the

platforms.

To streamline the process, the next step is to create a semi-automatic applica-

tion where the developer or system admin can approve or decline changes. The

application can run at specific intervals, suggest adjustments, and log the actions

taken by the human. This provides a controlled approach with human input and

a paper trail. The application could run as a service on the node it evaluates, al-

lowing for node-specific variables, making it possible to use different allocation

strategies and policies for different nodes. The application would need access to

the Dynatrace API for resource usage, the Prometheus API for current request and

limit, our Python script, write access to all containers on that node.

Determining how often the script should run depends on the desired bal-

ance between frequent adjustments and avoiding unnecessary changes. If certain

thresholds are reached, the system could alert a team’s communication channel,

prompting the developer to review the suggestions. Based on our approach, we

Chapter 6: Discussion 107

predict 20% of the total dataset ahead, which equates to a maximum of 6 days for

a 30-day dataset. Since we have 6 days as testing period, a weekly evaluation of

certain nodes could be conducted to review the suggested resources and approve

or decline significant changes. This should be tested on a non-production node to

evaluate the suggestions and weekly performance.

For testing environments, variables can lean more towards green IT as con-

tainer restarts are generally not a major concern. A monthly review could be in-

troduced where all new suggested allocations are considered, and even minor

changes are applied. This serves as a monthly cleanup where historical adjust-

ments are evaluated in collaboration with the deployment owner.

6.4.1 The Lack of Incentives for Reducing Resources

In the early chapters of this study, it was discussed that there is a lack of incentive

for reducing resources. Developers are primarily focused on ensuring that applica-

tions or services are up and running with high availability. To encourage a shift in

mindset, resource allocation should be introduced as a company policy, building

on Intility’s existing promotion of green computing.

The change could start at an earlier stage, such as during university education,

coding courses, or certifications, where resource allocation could be a focal topic.

There is currently a lack of collaboration between Kubernetes and sustainability

efforts, and it would be beneficial for Kubernetes to promote sustainable practices

to a greater extent. Gradually, this will encourage developers to consider resource

allocation, even if it requires a small portion of their development time.

Implementing this mindset will take time, but it is essential to start thinking

about programming and using Kubernetes more sustainably. In the long run, it

could save companies significant resources, especially if processes like these can

be automated.

In the midst of the project (mid February), Intility used an admission controller

to enforce all namespaces with the exception of certain system crucial applications

to specify CPU and memory requests and memory limit, before this a container

could be spun up without specifying any resoruces at all. The goal of this is to get

a better overview of the resource bindings of the underlying nodes. The change

made this project even more relevant since now every developer has to, in some

way, set the resource usage of their deployments and pods. It will also be inter-

esting to follow the resource request in the months to come, now that developers

Chapter 6: Discussion 108

are starting to be a bit more conscious about the requests to be made.

Chapter 7

Conclusion

The objective of this project was to investigate the application of time series fore-

casting models for predicting individual container resource usage in a Kubernetes

environment, as well as to identify the challenges and benefits of employing these

models to ensure accurate predictions across diverse usage patterns. Throughout

the project, two models, ARIMA and Prophet, were applied to predict resource

usage for various containers, and challenges and advantages associated with each

model were discussed.

Resource usage data was gathered from Dynatrace and resource requests from

Prometheus while preprocessing and processing were carried out using Python

prior to implementing the ARIMA and Prophet models. In addition, an algorithm

(LP) was developed for suggesting resource allocation based on average usage

and safety intervals, which was subsequently combined with the Prophet predic-

tion model. A key performance indicator (KPI) was devised to evaluate the per-

formance of the LP algorithm, measuring the percentage of time the suggested

resource request surpassed the actual memory usage (MREI).

Higher-level memory usage in containers that would be more suitable for the

algorithms was anticipated. However, it was observed that in most cases, predict-

ing erratic and highly fluctuating memory usage was necessary. The algorithms

worked exceptionally well for some containers, while for the more erratic ones,

the uncertainty interval from the Prophet model was utilized in combination with

safety margins. The predictive models were evaluated similarly to the LP algo-

rithm’s KPI, with the TDUR score indicating how often the predicted value was

above memory usage.

Additionally, the aim of the project was to effectively evaluate the impact of

109

Chapter 7: Conclusion 110

predictive models on resource allocation strategies in a Kubernetes environment.

Although the models demonstrated average performance across containers, com-

bining the predictions with the algorithm from Phase I (LP) and safety margins

resulted in a successful solution for suggesting resource requests and limits. This

allowed for accommodating unforeseen peaks while cutting down on allocated

resources.

By using the suggested framework, Kubernetes environments without strict

policies or gatekeeping for setting resource requests and limits will see significant

reductions in allocated resources, leading to a greener environment and reduced

electricity costs. The framework can still yield positive results in more conservative

environments as well by adjusting variables such as ideal targets, buffers, safety

margins, and weighting. The P+LP is scripted in a way that it can be fine-tuned

and tested to fit various allocation strategies.

The green impact of the framework is substantial, as it suggests managing con-

tainers in a sustainable manner by maintaining control over resource usage and

requests for all containers. The framework involves data collection from multiple

containers, preprocessing, processing, and running the model with the LP algo-

rithm to recommend resource requests and limits for all containers. The frame-

work, when applied to node01, resulted in an average reduction of 39.3% in allo-

cated resources and a 60% increase in memory usage coverage. An equation that

linked the reduction of resource allocation and the MREI value before and after

applying the framework to the node showed a 95.8% improvement, highlighting

the effectiveness of this approach.

7.1 Future Work

Due to the exploratory nature of this project, it is not possible to investigate all

new paths that emerge within the researched field, especially considering the

constraints of a short thesis. Given more time, we would have liked to explore

additional aspects, such as examining more nodes in the cluster, evaluating dif-

ferent algorithms and fine-tuning the existing ones, and further analyzing CPU

usage. Using the framework and the same variables for multiple arbitrary nodes

in Kubernetes environments would give great insight to how well the framework

performs.

By investigating more nodes in the cluster, including dedicated nodes with

Chapter 7: Conclusion 111

carefully assigned requests and limits, we could obtain more data to strengthen

the correlation between resource usage across various workload profiles through-

out multiple nodes. Although prediction algorithms struggle to analyze container

usage, we believe that fine-tuning these algorithms and using request limits as

a safety net could be a promising approach when applying other algorithms and

especially during their fine-tuning.

Regarding CPU usage, in some cases, it might be beneficial to modify the con-

figuration of a running service to allow for more threads, enabling the service

to utilize available resources more efficiently rather than merely reducing over-

allocated resources. Exploring these scenarios and their applicability would be an

interesting topic for a follow-up project or as an extension of this study.

Additionally, one could investigate the possibility of rescheduling pods be-

tween nodes to optimize resource utilization tied to requested resources. How-

ever, this approach would need to be compatible with the existing Kubernetes

scheduler.

Bibliography

[1] European Commission, Directorate-General for Communications Networks,

Content and Technology, F. Montevecchi, T. Stickler, R. Hintemann, and S.

Hinterholzer, Energy-efficient cloud computing technologies and policies for

an eco-friendly cloud market : final study report. Publications Office, 2020.

DOI: doi/10.2759/3320.

[2] Zhang, Qi and Cheng, Lu and Boutaba, Raouf, “Cloud computing: State-

of-the-art and research challenges,” Journal of Internet Services and Appli-

cations, vol. 1, no. 1, pp. 7–18, 2010, ISSN: 1869-0238. DOI: 10.1007/

s13174-010-0007-6. [Online]. Available: https://doi.org/10.1007/

s13174-010-0007-6.

[3] Alibaba Cloud. “Transforming businesses and shaping innovation.” (2023),

[Online]. Available: https://eu.alibabacloud.com/en?utm_key=se_

1012200419%5C&utm_content=se_1012200419. (accessed: 07.03.2023).

[4] Google Cloud. “Why google cloud.” (2023), [Online]. Available: https:

//cloud.google.com/why-google-cloud. (accessed: 07.03.2023).

[5] D. Weiss (neuroflash). “Historic slogans and claims of it and computer

brands.” (2021), [Online]. Available: https://neuroflash.com/blog/

slogans-claims-of-it-computer-brands/. (accessed: 08.03.2023).

[6] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud Computing Principles and

Paradigms. Wiley Publishing, 2011, pp. 3–10, ISBN: 9780470887998.

[7] Ryan Kap et al. (desosa 2021). “Kubernetes and sustainability.” (2023),

[Online]. Available: https://2021.desosa.nl/projects/kubernetes/

posts/2021-03-29-kubernetes-sustainability-analysis/. (accessed:

14.03.2023).

112

https://doi.org/doi/10.2759/3320
https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1007/s13174-010-0007-6
https://eu.alibabacloud.com/en?utm_key=se_1012200419%5C&utm_content=se_1012200419
https://eu.alibabacloud.com/en?utm_key=se_1012200419%5C&utm_content=se_1012200419
https://cloud.google.com/why-google-cloud
https://cloud.google.com/why-google-cloud
https://neuroflash.com/blog/slogans-claims-of-it-computer-brands/
https://neuroflash.com/blog/slogans-claims-of-it-computer-brands/
https://2021.desosa.nl/projects/kubernetes/posts/2021-03-29-kubernetes-sustainability-analysis/
https://2021.desosa.nl/projects/kubernetes/posts/2021-03-29-kubernetes-sustainability-analysis/

Bibliography 113

[8] Federal Trade Comission. “Equifax data breach settlement.” (2022), [On-

line]. Available: https://www.ftc.gov/enforcement/refunds/equifax-

data-breach-settlement. (accessed: 22.03.2023).

[9] Michael X. H. (Firewall Times). “Amazon web services (aws) data breaches:

Full timeline through 2022.” (2022), [Online]. Available: https://firewalltimes.

com/amazon-web-services-data-breach-timeline/. (accessed: 22.03.2023).

[10] Y. Sverdlik. “Aws outage that broke the internet caused by mistyped com-

mand.” (2017), [Online]. Available: https://www.datacenterknowledge.

com/archives/2017/03/02/aws-outage-that-broke-the-internet-

caused-by-mistyped-command. (accessed: 22.03.2023).

[11] Office for National Statistics (UK), Labour Market. “Coronavirus and home-

working in the uk: April 2020.” (2020), [Online]. Available: https://www.

ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/

bulletins/coronavirusandhomeworkingintheuk/april2020. (accessed:

11.01.2023).

[12] Fareeha Ali, Digital Commerce 360. “Early estimates: Us ecommerce grows

44.0% in 2020.” (2021), [Online]. Available: https://www.digitalcommerce360.

com/2021/01/29/early-estimates-us-ecommerce-grows-44-0-in-

2020/. (accessed: 01.02.2023).

[13] Flexera. “State of the cloud report 2022.” (2022), [Online]. Available: https:

//info.flexera.com/CM- REPORT- State- of- the- Cloud. (accessed:

17.01.2023).

[14] StormForge. “Stormforge 2022 kubernetes & cloud waste survey.” (2022),

[Online]. Available: https://www.stormforge.io/survey-report/stormforge-

2022-kubernetes-cloud-waste-survey-thank-you/. (accessed: 28.02.2023).

[15] Javier Martinez. “Millions wasted on kubernetes resources.” (2023), [On-

line]. Available: https://sysdig.com/blog/millions-wasted-kubernetes/.

(accessed: 24.01.2023).

[16] I. Sarji, C. Ghali, A. Chehab, and A. Kayssi, “Cloudese: Energy efficiency

model for cloud computing environments,” Energy Aware Computing (ICEAC),

2011 International Conference on, 2011. DOI: 10.1109/ICEAC.2011.6136680.

[17] Kubernetes. “Overview.” (2023), [Online]. Available: https://kubernetes.

io/docs/concepts/overview/. (accessed: 17.03.2023).

https://www.ftc.gov/enforcement/refunds/equifax-data-breach-settlement
https://www.ftc.gov/enforcement/refunds/equifax-data-breach-settlement
https://firewalltimes.com/amazon-web-services-data-breach-timeline/
https://firewalltimes.com/amazon-web-services-data-breach-timeline/
https://www.datacenterknowledge.com/archives/2017/03/02/aws-outage-that-broke-the-internet-caused-by-mistyped-command
https://www.datacenterknowledge.com/archives/2017/03/02/aws-outage-that-broke-the-internet-caused-by-mistyped-command
https://www.datacenterknowledge.com/archives/2017/03/02/aws-outage-that-broke-the-internet-caused-by-mistyped-command
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/bulletins/coronavirusandhomeworkingintheuk/april2020
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/bulletins/coronavirusandhomeworkingintheuk/april2020
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/bulletins/coronavirusandhomeworkingintheuk/april2020
https://www.digitalcommerce360.com/2021/01/29/early-estimates-us-ecommerce-grows-44-0-in-2020/
https://www.digitalcommerce360.com/2021/01/29/early-estimates-us-ecommerce-grows-44-0-in-2020/
https://www.digitalcommerce360.com/2021/01/29/early-estimates-us-ecommerce-grows-44-0-in-2020/
https://info.flexera.com/CM-REPORT-State-of-the-Cloud
https://info.flexera.com/CM-REPORT-State-of-the-Cloud
https://www.stormforge.io/survey-report/stormforge-2022-kubernetes-cloud-waste-survey-thank-you/
https://www.stormforge.io/survey-report/stormforge-2022-kubernetes-cloud-waste-survey-thank-you/
https://sysdig.com/blog/millions-wasted-kubernetes/
https://doi.org/10.1109/ICEAC.2011.6136680
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/

Bibliography 114

[18] S. H. Perveez. “Understanding kubernetes architecture and its use cases.”

(2023), [Online]. Available: https://www.simplilearn.com/tutorials/

kubernetes-tutorial/kubernetes-architecture. (accessed: 17.03.2023).

[19] E. Khun. “Kubernetes: Make your services faster by removing cpu limits.”

(2020), [Online]. Available: https://erickhun.com/posts/kubernetes-

faster-services-no-cpu-limits/. (accessed: 18.03.2023).

[20] Dina Henderson (Turbonomic.com/IBM community). “Kubernetes cpu throt-

tling: The silent killer of response time – and what to do about it.” (2022),

[Online]. Available: https://community.ibm.com/community/user/

aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-throttling-

the-silent-killer-of-res. (accessed: 24.02.2023).

[21] N. Yellin. “For the love of god, stop using cpu limits on kubernetes.” (2022),

[Online]. Available: https://home.robusta.dev/blog/stop-using-cpu-

limits. (accessed: 18.03.2023).

[22] D. Chiluk. “Unthrottled: Fixing cpu limits in the cloud.” (2019), [Online].

Available: https://engineering.indeedblog.com/blog/2019/12/unthrottled-

fixing-cpu-limits-in-the-cloud/. (accessed: 25.03.2023).

[23] X. Pang. “Sched/fair: Fix bandwidth timer clock drift condition.” (2018),

[Online]. Available: https://git.kernel.org/pub/scm/linux/kernel/

git/torvalds/linux.git/commit/?id=512ac999. (accessed: 26.03.2023).

[24] European Commission. “A european green deal.” (2021), [Online]. Avail-

able: https://commission.europa.eu/strategy-and-policy/priorities-

2019-2024/european-green-deal_en. (accessed: 11.01.2023).

[25] V. Avelar, D. Azevedo, A. French, “Pue™: A comprehensive examination of

the metric,” Report, 2012. [Online]. Available: https://www.thegreengrid.

org/en/resources/library-and-tools/237-PUE%5C%3A-A-Comprehensive-

Examination-of-the-Metric, (accessed: 06.02.2023).

[26] Intility. “Sustainable platform: Report on sustainability for 2021.” (2021),

[Online]. Available: https://intility.no/wp-content/uploads/2021/

12/Intility_Sustainable-platform-2021.pdf. (accessed: 12.01.2023).

[27] statista. “What is the average annual power usage effectiveness (pue) for

your largest data center?” (), [Online]. Available: https://www.statista.

com/statistics/1229367/data-center-average-annual-pue-worldwide/.

(accessed: 28.02.2023).

https://www.simplilearn.com/tutorials/kubernetes-tutorial/kubernetes-architecture
https://www.simplilearn.com/tutorials/kubernetes-tutorial/kubernetes-architecture
https://erickhun.com/posts/kubernetes-faster-services-no-cpu-limits/
https://erickhun.com/posts/kubernetes-faster-services-no-cpu-limits/
https://community.ibm.com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-throttling-the-silent-killer-of-res
https://community.ibm.com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-throttling-the-silent-killer-of-res
https://community.ibm.com/community/user/aiops/blogs/dina-henderson/2022/06/29/kubernetes-cpu-throttling-the-silent-killer-of-res
https://home.robusta.dev/blog/stop-using-cpu-limits
https://home.robusta.dev/blog/stop-using-cpu-limits
https://engineering.indeedblog.com/blog/2019/12/unthrottled-fixing-cpu-limits-in-the-cloud/
https://engineering.indeedblog.com/blog/2019/12/unthrottled-fixing-cpu-limits-in-the-cloud/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=512ac999
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=512ac999
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
https://www.thegreengrid.org/en/resources/library-and-tools/237-PUE%5C%3A-A-Comprehensive-Examination-of-the-Metric
https://www.thegreengrid.org/en/resources/library-and-tools/237-PUE%5C%3A-A-Comprehensive-Examination-of-the-Metric
https://www.thegreengrid.org/en/resources/library-and-tools/237-PUE%5C%3A-A-Comprehensive-Examination-of-the-Metric
https://intility.no/wp-content/uploads/2021/12/Intility_Sustainable-platform-2021.pdf
https://intility.no/wp-content/uploads/2021/12/Intility_Sustainable-platform-2021.pdf
https://www.statista.com/statistics/1229367/data-center-average-annual-pue-worldwide/
https://www.statista.com/statistics/1229367/data-center-average-annual-pue-worldwide/

Bibliography 115

[28] Yevgeniy Sverdlik (DataCenter Knowledge). “Study: Data centers responsi-

ble for 1 percent of all electricity consumed worldwide.” (2020), [Online].

Available: https : / / www . datacenterknowledge . com / energy / study -

data-centers-responsible-1-percent-all-electricity-consumed-

worldwide. (accessed: 14.03.2023).

[29] Odyssee Mure. “Sectoral profile - households.” (2021), [Online]. Avail-

able: https://www.odyssee-mure.eu/publications/efficiency-by-

sector/households/electricity- consumption- dwelling.html. (ac-

cessed: 01.02.2023).

[30] Cloudscene. “Datacenters in europe.” (2023), [Online]. Available: https:

//cloudscene.com/region/datacenters-in-europe. (accessed: 08.03.2023).

[31] Data Center Map. “Western/eastern/middle europe.” (2023), [Online]. Avail-

able: https://www.datacentermap.com/western- europe/. (accessed:

08.03.2023).

[32] Statista. “Number of data centers worldwide in 2022, by country.” (2022),

[Online]. Available: https://www.statista.com/statistics/1228433/

data-centers-worldwide-by-country/. (accessed: 08.03.2023).

[33] Google. “Efficiency.” (2023), [Online]. Available: https://www.google.

com/about/datacenters/efficiency/. (accessed: 11.03.2023).

[34] N.-M. Dang-Quang and M. Yoo, “Deep learning-based autoscaling using

bidirectional long short-term memory for kubernetes,” Applied Sciences,

vol. 11, no. 9, p. 3835, 2021, ISSN: 2076-3417. [Online]. Available: https:

//www.mdpi.com/2076-3417/11/9/3835.

[35] J. Kumar, A. K. Singh, and R. Buyya, “Self directed learning based work-

load forecasting model for cloud resource management,” Information Sci-

ences, vol. 543, pp. 345–366, 2021, ISSN: 0020-0255. DOI: https://doi.

org/10.1016/j.ins.2020.07.012. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0020025520306782.

[36] A. Hatamlou, “Black hole: A new heuristic optimization approach for data

clustering,” Information Sciences, vol. 222, pp. 175–184, 2013, ISSN: 0020-

0255. DOI: https://doi.org/10.1016/j.ins.2012.08.023. [Online].

Available: https://www.sciencedirect.com/science/article/pii/

S0020025512005762.

https://www.datacenterknowledge.com/energy/study-data-centers-responsible-1-percent-all-electricity-consumed-worldwide
https://www.datacenterknowledge.com/energy/study-data-centers-responsible-1-percent-all-electricity-consumed-worldwide
https://www.datacenterknowledge.com/energy/study-data-centers-responsible-1-percent-all-electricity-consumed-worldwide
https://www.odyssee-mure.eu/publications/efficiency-by-sector/households/electricity-consumption-dwelling.html
https://www.odyssee-mure.eu/publications/efficiency-by-sector/households/electricity-consumption-dwelling.html
https://cloudscene.com/region/datacenters-in-europe
https://cloudscene.com/region/datacenters-in-europe
https://www.datacentermap.com/western-europe/
https://www.statista.com/statistics/1228433/data-centers-worldwide-by-country/
https://www.statista.com/statistics/1228433/data-centers-worldwide-by-country/
https://www.google.com/about/datacenters/efficiency/
https://www.google.com/about/datacenters/efficiency/
https://www.mdpi.com/2076-3417/11/9/3835
https://www.mdpi.com/2076-3417/11/9/3835
https://doi.org/https://doi.org/10.1016/j.ins.2020.07.012
https://doi.org/https://doi.org/10.1016/j.ins.2020.07.012
https://www.sciencedirect.com/science/article/pii/S0020025520306782
https://www.sciencedirect.com/science/article/pii/S0020025520306782
https://doi.org/https://doi.org/10.1016/j.ins.2012.08.023
https://www.sciencedirect.com/science/article/pii/S0020025512005762
https://www.sciencedirect.com/science/article/pii/S0020025512005762

Bibliography 116

[37] B. Letham, Prophet: Automatic forecasting procedure, https://github.

com/facebook/prophet, 2017.

[38] T. Toharudin, R. S. Pontoh, R. E. Caraka, S. Zahroh, Y. Lee, and R. C. Chen,

“Employing long short-term memory and facebook prophet model in air

temperature forecasting,” Communications in Statistics - Simulation and

Computation, vol. 52, no. 2, pp. 279–290, 2023, doi: 10.1080/03610918.2020.1854302,

ISSN: 0361-0918. DOI: 10.1080/03610918.2020.1854302. [Online]. Avail-

able: https://doi.org/10.1080/03610918.2020.1854302.

[39] M. Khayyat, K. Laabidi, N. Almalki, and M. Al-zahrani, “Time series face-

book prophet model and python for covid-19 outbreak prediction,” Com-

puters, Materials & Continua, vol. 67, no. 3, 2021, ISSN: 1546-2226. DOI:

10.32604/cmc.2021.014918.

[40] W.-X. Fang, P.-C. Lan, W.-R. Lin, H.-C. Chang, H.-Y. Chang, and Y.-H. Wang,

“Combine facebook prophet and lstm with bpnn forecasting financial mar-

kets: The morgan taiwan index,” in 2019 International Symposium on Intel-

ligent Signal Processing and Communication Systems (ISPACS), IEEE, pp. 1–

2, ISBN: 1728130387.

[41] M. Daraghmeh, A. Agarwal, R. Manzano, and M. Zaman, “Time series fore-

casting using facebook prophet for cloud resource management,” in 2021

IEEE International Conference on Communications Workshops (ICC Work-

shops), pp. 1–6, ISBN: 2694-2941. DOI: 10 . 1109 / ICCWorkshops50388 .

2021.9473607.

[42] Facebook Opensource). “Prophet: Forecasting at scale.” (2023), [Online].

Available: https://facebook.github.io/prophet/. (accessed: 22.03.2023).

[43] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “Stl: A

seasonal-trend decomposition,” J. Off. Stat, vol. 6, no. 1, pp. 3–73, 1990.

[44] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory

and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489–501, 2006,

ISSN: 0925-2312.

[45] T. Xiong, C. Li, and Y. Bao, “Seasonal forecasting of agricultural commodity

price using a hybrid stl and elm method: Evidence from the vegetable mar-

ket in china,” Neurocomputing, vol. 275, pp. 2831–2844, 2018, ISSN: 0925-

2312. DOI: https://doi.org/10.1016/j.neucom.2017.11.053. [Online].

Available: https://www.sciencedirect.com/science/article/pii/

S092523121731812X.

https://github.com/facebook/prophet
https://github.com/facebook/prophet
https://doi.org/10.1080/03610918.2020.1854302
https://doi.org/10.1080/03610918.2020.1854302
https://doi.org/10.32604/cmc.2021.014918
https://doi.org/10.1109/ICCWorkshops50388.2021.9473607
https://doi.org/10.1109/ICCWorkshops50388.2021.9473607
https://facebook.github.io/prophet/
https://doi.org/https://doi.org/10.1016/j.neucom.2017.11.053
https://www.sciencedirect.com/science/article/pii/S092523121731812X
https://www.sciencedirect.com/science/article/pii/S092523121731812X

Chapter : Conclusion 117

[46] PuLP. “A set partitioning problem.” (2009), [Online]. Available: https://

coin-or.github.io/pulp/CaseStudies/a_set_partitioning_problem.

html. (accessed: 1.04.2023).

[47] Param Raval. “A set partitioning problem.” (2023), [Online]. Available:

https://www.projectpro.io/article/how-to-build-arima-model-

in-python/544. (accessed: 5.04.2023).

[48] Prashant Banerjee. “Tutorial: Time series forecasting with prophet.” (2021),

[Online]. Available: https://www.kaggle.com/code/prashant111/tutorial-

time-series-forecasting-with-prophet. (accessed: 5.04.2023).

https://coin-or.github.io/pulp/CaseStudies/a_set_partitioning_problem.html
https://coin-or.github.io/pulp/CaseStudies/a_set_partitioning_problem.html
https://coin-or.github.io/pulp/CaseStudies/a_set_partitioning_problem.html
https://www.projectpro.io/article/how-to-build-arima-model-in-python/544
https://www.projectpro.io/article/how-to-build-arima-model-in-python/544
https://www.kaggle.com/code/prashant111/tutorial-time-series-forecasting-with-prophet
https://www.kaggle.com/code/prashant111/tutorial-time-series-forecasting-with-prophet

Appendix A

Survey Sent to Developers at

Intility

Appendix B consists of all questions and answers from the survey sent out to devel-

opers at Intility. Below is the description of the survey which was sent out together

with the survey

Hello, my name is Håkon Borgersen Ay. I work part-time at the developer in-

frastructure team and will be starting full-time as a trainee in August 2023. Right

now I’m writing my master thesis with the working title: "Optimizing Resource Uti-

lization in a Kubernetes Cluster: Investigating and Automating Resource Allocation

using Workload Profiles".

I am conducting an anonymous survey to gather information about resource uti-

lization and cloud waste associated with cloud resources. Your input will help me

identify areas of improvement and potential cost savings.

The term Cloud is in this case used to describe Kubernetes clusters. Consider the

resource usage vs. the allocated resources of clusters, nodes, and pods when answer-

ing. When the word resources are used I’m referring to the allocated CPU and RAM.

Please note that while some of the data collected through this survey may be

used in my master thesis, certain information may be kept confidential due to policy

constraints. I appreciate your participation.

118

Chapter A: Survey Sent to Developers at Intility 119

Figure A.1: Survey Sent to Developers at Intility: Question 1

Figure A.2: Survey Sent to Developers at Intility: Question 2

Chapter A: Survey Sent to Developers at Intility 120

Figure A.3: Survey Sent to Developers at Intility: Question 3

Figure A.4: Survey Sent to Developers at Intility: Question 4

Answers from Figure A.4

Reduces our profitability

Makes IT look bad to the rest of the organization

Makes us less competitive

Difficulty staying within budget

Can’t hire resources we need due to budget constraints

Bad for the environment

Clutter, unused capacity

Chapter A: Survey Sent to Developers at Intility 121

Figure A.5: Survey Sent to Developers at Intility: Question 5

Figure A.6: Survey Sent to Developers at Intility: Question 6

Answers from figure A.6:

Cloud complexity makes it hard to estimate how many resources are actually

needed Over-provisioning to ensure applications perform well

Maintaining more environments than needed

Developers have no incentive to run apps efficiently

Not enough attention or management oversight of cloud spend

No visibility into actual resource utilization vs. what we’re paying for

Controlling cloud spend is not a priority for us

Ensuring we are ready for a potential surge in demand

Applications are configured for high availability, causing us to run more resources

than actually needed

Chapter A: Survey Sent to Developers at Intility 122

Figure A.7: Survey Sent to Developers at Intility: Question 7

Figure A.8: Survey Sent to Developers at Intility: Question 8

Answers from Figure A.8

Relying on defaults from vendors or service providers

Optimization based on machine learning

Best guess / Trial and error

Don’t know

Kubectl top pods and guesses

Using statistics from previously running workloads, while over-provisioning to en-

sure application performance

Best practices from vendor for 3rd party applications, best guess for in-house de-

veloped applications

Chapter A: Survey Sent to Developers at Intility 123

Figure A.9: Survey Sent to Developers at Intility: Question 9

Figure A.10: Survey Sent to Developers at Intility: Question 10

Appendix B

Python Code

B.1 Pre-processing Code

B.1.1 Reading and pre-processing .csv files

Code listing B.1: Reading and appending .csv files

1 # Reading and appending .csv files (ram)

2

3 container=1

4 df1 = pd.read_csv(f’B{container}.csv’,

5 sep=’,’,

6 low_memory=False)

7

8 orig_name= df1.columns[1]

9 df1 = df1.rename(columns={orig_name: ’Containers: Memory usage’})

10

11 # Find the index of the last non-null value

12 last_non_null_index = df1[’Containers: Memory usage’].last_valid_index()

13

14 # Remove rows with missing values after the last non-null value

15 df1 = df1.loc[:last_non_null_index]

16

17 # Counting missing values and find the percentage

18 #df1.info()

19 #print(df1[’Containers: Memory usage’].value_counts())

20 #print(df1[’ bytes - collector-xcfsq collector | collector’].value_counts())

21

22 # Standardized date format

23 df1[’Date’] = pd.to_datetime(df1[’Date’])

24

124

Chapter B: Python Code 125

25 # converting n/a’s to mean value

26 df1[’Containers: Memory usage’] = df1[’Containers: Memory usage’].apply(

convert_memory_to_float)

27 df1[’Containers: Memory usage’] = df1[’Containers: Memory usage’].fillna(df1[’

Containers: Memory usage’].mean())

28

29 fig, ax = plt.subplots(figsize=(12, 6))

30 ax.set_xlabel(’Date’)

31 ax.set_ylabel(’Memory Usage (MB)’)

32 ax.set_title(’Memory Usage Over Time container01’)

33 ax.grid()

34

35 # Customize date ticks and format

36 ax.xaxis.set_major_locator(mdates.AutoDateLocator())

37 ax.xaxis.set_major_formatter(mdates.DateFormatter(’%Y-%m-%d’))

38 plt.setp(ax.get_xticklabels(), rotation=30, ha=’right’)

39

40 #plt.savefig(f’memory_usage_c{container}.png’, dpi=300, bbox_inches=’tight’)

41 plt.show()

B.1.2 Converting memory to float

Code listing B.2: Converting memory to float

1 def convert_memory_to_float(value):

2 # Check if the value is already numeric

3 if isinstance(value, (int, float)):

4 return float(value)

5

6 # If value is a string, check the unit

7 if isinstance(value, str):

8 unit = None

9 number = value.strip()

10 if ’B’ in value.upper() and ’MB’ not in value.upper() and ’KB’ not in value

.upper():

11 unit = ’B’

12 number = value[:-1].strip()

13 elif ’KB’ in value.upper():

14 unit = ’KB’

15 number = value[:-2].strip()

16 elif ’MB’ in value.upper():

17 unit = ’MB’

18 number = value[:-2].strip()

19 elif ’GB’ in value.upper():

Chapter B: Python Code 126

20 unit = ’GB’

21 number = value[:-2].strip()

22

23 # Convert the numeric part to a float

24 value = float(number)

25

26 # Convert the value to MB based on the unit

27 if unit == ’B’:

28 value = value / (1024 * 1024)

29 elif unit == ’KB’:

30 value = value / 1024

31 elif unit == ’GB’:

32 value = value * 1024

33

34 return value

B.1.3 Calculating skewness

Code listing B.3: Calculating skewness in container

1 column_name = "Container: Memory usage"

2

3 skewness = df1[’Containers: Memory usage’].skew()

4

5 print(df1[’Containers: Memory usage’].median())

6 # Create a histogram with 10 bins and a density plot

7 fig, ax = plt.subplots()

8 ax.hist(df1[’Containers: Memory usage’], bins=20, density=True, alpha=0.5, color="

blue")

9 ax.set_xlabel(column_name)

10 ax.set_ylabel("Density")

11

12 ax.set_xlim(100, max(df1[’Containers: Memory usage’]))

13

14 # Add a vertical line at the median, mean, mode, and skewness value

15 ax.axvline(df1[’Containers: Memory usage’].median(), color="red", linestyle="--",

label="Median")

16 ax.axvline(df1[’Containers: Memory usage’].mean(), color="orange", linestyle="--",

label="Mean")

17 ax.axvline(df1[’Containers: Memory usage’].mode()[0], color="green", linestyle="--"

, label="Mode")

18 ax.axvline(skewness, color="purple", linestyle="--", label="Skewness: {:.2f}".

format(skewness))

19

Chapter B: Python Code 127

20 # Add a legend and title

21 ax.legend()

22 ax.set_title("Distribution of memory usage")

23

24 # Display the plot

25 #plt.savefig(f’memory_usage_distribution_c{container}.png’, dpi=300, bbox_inches=’

tight’)

26 plt.show()

B.1.4 Script for showing daily memory usage during a 2 week period

Code listing B.4: Script showing daily memory usage for a 2 week period

1

2 def plot_24_hour_segments(df, column):

3 days = df.index.normalize().unique()

4

5 plt.figure(figsize=(12, 6))

6

7 for day in days:

8 day_data = df.loc[day:day + pd.Timedelta(’1D’) - pd.Timedelta(’5m’), column

]

9 plt.plot(day_data.index.time, day_data.values, label=day.date())

10

11

12 df_days=df1

13 df_days = df_days[[’Date’,’Containers: Memory usage’]]

14 df_days[’Date’] = pd.to_datetime(df_days[’Date’])

15 df_days.set_index(’Date’, inplace=True)

16

17

18

19 def plot_24_hour_segments(df, column, window_size=12):

20 first_timestamp = df.index[0]

21 days = df.index.normalize().unique()

22

23 # Calculate end date

24 last_full_day = df.index[-1].normalize() - pd.Timedelta(’1D’)

25 end_date = last_full_day + pd.Timedelta(hours=first_timestamp.hour, minutes=

first_timestamp.minute)

26

27 # Apply rolling average

28 df_smooth = df.rolling(window=window_size, center=True).mean()

29

Chapter B: Python Code 128

30 plt.figure(figsize=(12, 6))

31

32 for day in days:

33 start_time = day + pd.Timedelta(hours=first_timestamp.hour, minutes=

first_timestamp.minute)

34 end_time = start_time + pd.Timedelta(’1D’) - pd.Timedelta(’5m’)

35

36 if end_time <= end_date:

37 day_data = df_smooth.loc[start_time:end_time, column]

38

39 if not day_data.empty:

40 times = [t.hour * 60 + t.minute for t in day_data.index.time]

41 plt.plot(times, day_data.values, label=day.date())

42

43 plt.xlabel(’Time of Day’)

44 plt.ylabel(’Memory Usage in MiB’)

45 plt.legend()

46 plt.title(’Daily Memory Usage Patterns (Smoothed)’)

47

48 one_day_minutes = 24 * 60

49 plt.xlim(0, one_day_minutes)

50

51 # Set x-axis ticks and labels

52 x_ticks = np.arange(0, one_day_minutes + 1, 2 * 60) # Every 4th hour in

minutes

53 x_labels = [f’{t // 60:02d}:00’ for t in x_ticks]

54 plt.xticks(x_ticks, x_labels, rotation=45)

55

56 plt.savefig(’daily_memory_usage_patterns.png’, dpi=300, bbox_inches=’tight’)

57 plt.show()

58

59

60 plot_24_hour_segments(df_days, ’Containers: Memory usage’)

B.2 Linear programming

Code listing B.5: The Linear Programming Model

1

2 # Linear programming modeling

3 import pulp

4

5 safety_margin_percentage = 10 # Additional memory allocated as a percentage of the

max usage

Chapter B: Python Code 129

6 safety_margin = max(df1[’Containers: Memory usage’]) * (safety_margin_percentage /

100)

7

8 # Calculate the typical memory usage (e.g., the mean or median)

9 typical_memory_usage = np.mean(df1[’Containers: Memory usage’]) * 1.05

10

11 # Defining the problem, and specifying that the objective is to minimize a function

12 prob = pulp.LpProblem("ContainerResourceAllocation", pulp.LpMinimize)

13

14 # Variables

15 x_request = pulp.LpVariable("x_request", lowBound=typical_memory_usage)

16 x_limit = pulp.LpVariable("x_limit", lowBound=max(df1[’Containers: Memory usage’])

+ safety_margin)

17

18 # Objective function

19 prob += x_request

20

21 # Constraints

22 prob += x_request <= x_limit

23

24 # Solve the problem

25 status = prob.solve()

26

27 # Print the results

28 #print("Status:", pulp.LpStatus[status])

29 req_value = pulp.value(x_request)

30 lim_value = pulp.value(x_limit)

31 print("Request limit for Container 1:", pulp.value(x_request))

32 print("Memory limit for Container 1:", pulp.value(x_limit))

33

34 fig, ax = plt.subplots(figsize=(12, 6))

35 ax.plot(df1[’Date’], df1[’Containers: Memory usage’])

36 ax.set_xlabel(’Date’)

37 ax.set_ylabel(’Memory Usage (MB)’)

38 ax.set_title(f’Memory Usage Over Time container0{container}’)

39 ax.grid()

40

41 # Customizing date ticks and format

42 ax.xaxis.set_major_locator(mdates.AutoDateLocator())

43 ax.xaxis.set_major_formatter(mdates.DateFormatter(’%Y-%m-%d’))

44 plt.setp(ax.get_xticklabels(), rotation=30, ha=’right’)

45

46

47 ax.axhline(y=req_value, color=’r’, linestyle=’--’, label=’Request’)

48 ax.axhline(y=lim_value, color=’b’, linestyle=’--’, label=’Limit’)

Chapter B: Python Code 130

49

50 ax.legend()

51

52 # print plot

53 plt.savefig(f’memory_usage_linear_programming_c{container}’, dpi=300, bbox_inches=’

tight’)

54 # Show the plot

55 plt.show()

B.2.1 Calculating The MREI

Code listing B.6: Calculating the MREI

1 def calculate_kpi(df, request_value):

2 """

3 Calculate the percentage of container usage memory datapoints under the set

request.

4

5 :param df: DataFrame with container memory usage data

6 :param request_value: Request limit for the container

7 :return: KPI as a percentage

8 """

9 under_request = df[df[’y’] < request_value]

10 percentage = (len(under_request) / len(df)) * 100

11 return percentage

B.3 ARIMA

Determining Differencing

Code listing B.7: Determining differencing for the ARIMA model

1

2 adf_p_value_0 = sm.tsa.stattools.adfuller(df1[’Containers: Memory usage’])[1]

3 adf_p_value_1 = sm.tsa.stattools.adfuller(df1[’Containers: Memory usage’].diff().

dropna())[1]

4 adf_p_value_2 = sm.tsa.stattools.adfuller(df1[’Containers: Memory usage’].diff().

diff().dropna())[1]

5

6 # Create a single figure with the desired layout

7 fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(18, 8))

8

9 # Without Differencing

Chapter B: Python Code 131

10 axes[0, 0].set_title(f’Without Differencing (p={adf_p_value_0:.2e})’)

11 axes[0, 0].plot(df1[’Containers: Memory usage’])

12 sm.graphics.tsa.plot_acf(df1[’Containers: Memory usage’].dropna(), ax=axes[1, 0])

13

14 # 1st Order Differencing

15 axes[0, 1].set_title(f’1st Order Differencing (p={adf_p_value_1:.2e})’)

16 axes[0, 1].plot(df1[’Containers: Memory usage’].diff())

17 sm.graphics.tsa.plot_acf(df1[’Containers: Memory usage’].diff().dropna(), ax=axes

[1, 1])

18

19 # 2nd Order Differencing

20 axes[0, 2].set_title(f’2nd Order Differencing (p={adf_p_value_2:.2e})’)

21 axes[0, 2].plot(df1[’Containers: Memory usage’].diff().diff())

22 sm.graphics.tsa.plot_acf(df1[’Containers: Memory usage’].diff().diff().dropna(), ax

=axes[1, 2])

23

24 plt.savefig(f’memory_usage_plots_with_adf_c{container}.png’, dpi=300, bbox_inches=’

tight’)

25

26 # Show the plots

27 plt.show()

B.3.1 ACF and PACF

Code listing B.8: Calculating ACF and PACF for ARIMA

1 stationary_data = df1[’Containers: Memory usage’].diff().dropna()

2 # Create ACF and PACF plots

3 fig, axes = plt.subplots(2, 1, figsize=(12, 8))

4

5 sm.graphics.tsa.plot_acf(stationary_data, lags=40, ax=axes[0])

6 sm.graphics.tsa.plot_pacf(stationary_data, lags=40, ax=axes[1])

7

8 plt.savefig(f’memory_usage_plots_PACFnACF_c{container}.png’, dpi=300, bbox_inches=’

tight’)

9 plt.show()

B.3.2 Fitting the ARIMA model

Code listing B.9: Fitting the Arima model

1

2 memory_usage = df1[’Containers: Memory usage’]

Chapter B: Python Code 132

3

4 train_size = int(len(memory_usage) * 0.80) # 80% of the data for training

5 train_data = memory_usage[:train_size]

6 test_data = memory_usage[train_size:]

7

8 p,d,q = 1,2,1

9

10 model = ARIMA(train_data, order=(p, d, q))

11 results = model.fit()

12

13 predictions = results.predict(start=train_size, end=len(memory_usage) - 1, dynamic=

True)

14

15 # Plot the training data, test data, and predictions

16 fig, ax = plt.subplots(figsize=(12, 6))

17 ax.set_xlabel(’Date’)

18 ax.set_ylabel(’Memory Usage (MB)’)

19 ax.set_title(f’Memory Usage Over Time with ARIMA Predictions for c{container}’)

20 ax.grid()

21

22 # Customizing date ticks and format

23 ax.xaxis.set_major_locator(mdates.AutoDateLocator())

24 ax.xaxis.set_major_formatter(mdates.DateFormatter(’%Y-%m-%d’))

25 plt.setp(ax.get_xticklabels(), rotation=30, ha=’right’)

26

27 ax.plot(df1[’Date’][:train_size], train_data, label=’Training Data’)

28 ax.plot(df1[’Date’][train_size:], test_data, label=’Test Data’)

29 ax.plot(df1[’Date’][train_size:], predictions, label=’Predictions’)

30

31 ax.legend()

32

33 # Save and show the plot

34 plt.savefig(f’arima_memory_usage_c{container}.png’, dpi=300, bbox_inches=’tight’)

35 plt.show()

B.3.3 Test Data Underprediction Rate (TDUR)

Code listing B.10: Calculating TDUR

1

2 def calculate_kpi_predictions(df, predictions):

3 """

4 Calculate the number of container usage memory datapoints under the predicted

values.

Chapter B: Python Code 133

5

6 :param df: DataFrame with container memory usage data

7 :param predictions: Predicted values from the ARIMA model

8 :return: Number of datapoints under the predicted line

9 """

10 test_data = df[-len(predictions):] # Get the test data corresponding to the

predictions

11 under_prediction = test_data[test_data[’Containers: Memory usage’] <

predictions]

12 percentage = (len(under_prediction) / len(test_data)) * 100

13 return percentage

14

15 # Assuming the ’predictions’ variable contains the ARIMA model predictions

16 kpi = calculate_kpi_predictions(df1, predictions)

17 print(kpi)

B.3.4 MAE, MAPE and RMSE

Code listing B.11: Calculating MAE, MAPE, and RMSE

1

2 def mean_absolute_percentage_error(y_true, y_pred):

3 y_true, y_pred = np.array(y_true), np.array(y_pred)

4 return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

5

6 mae = np.mean(np.abs(predictions - test_data))

7 mape = mean_absolute_percentage_error(test_data, predictions)

8 rmse = np.sqrt(np.mean((test_data - predictions) ** 2))

B.4 Facebook’s Prophet Model

Code listing B.12: Facebook’s Prophet Model

1 model = Prophet()

2

3 df = pd.DataFrame({’ds’: df1[’Date’], ’y’: df1[’Containers: Memory usage’]})

4 df[’ds’] = pd.to_datetime(df[’ds’])

5

6 # Split the data into train and test sets

7 train_size = int(len(df) * 0.8) # 80% of the data for training, 20% for testing

8 train_df = df[:train_size]

9 test_df = df[train_size:]

Chapter B: Python Code 134

10

11

12 # Fit the model on the training data

13 model.fit(train_df)

14

15 # Make predictions on the test data

16 future = model.make_future_dataframe(periods=len(test_df), freq=’5min’,

include_history=False)

17 forecast = model.predict(future)

18

19 # Plot the forecast

20

21 fig = model.plot(forecast)

22 ax = fig.gca()

23 ax.set_title(f’Prophet Forecast for c{container}’)

24 ax.set_xlabel(’Date’)

25 ax.set_ylabel(’Memory Usage (MB)’)

26

27 # Plot the test data

28 ax.scatter(test_df[’ds’], test_df[’y’], color=’purple’, label=’Test Data’,s=10)

29

30 # Add a legend

31 ax.legend([’Observed’, ’Forecast’, ’Uncertainty Interval’, ’Test Data’])

32 plt.savefig(f’prophetC{container}.png’, dpi=300, bbox_inches=’tight’)

33

34 plt.show()

B.5 P+LP

Code listing B.13: Finalized P+LP model, included plotting

1 model = Prophet(changepoint_prior_scale=0.01)

2

3 df = pd.DataFrame({’ds’: df1[’Date’], ’y’: df1[’Containers: Memory usage’]})

4 df[’ds’] = pd.to_datetime(df[’ds’])

5

6 orig_req=15

7 orig_lim=15

8

9 # Split the data into train and test sets

10 train_size = int(len(df) * 0.8) # 80% of the data for training, 20% for testing

11 train_df = df[:train_size]

12 test_df = df[train_size:]

Chapter B: Python Code 135

13

14 # Fit the model on the training data

15 model.fit(train_df)

16

17 # Make predictions on the test data

18 future = model.make_future_dataframe(periods=len(test_df), freq=’60min’,

include_history=False)

19 forecast = model.predict(future)

20

21 # Plot the forecast

22 fig = model.plot(forecast)

23 ax = fig.gca()

24 ax.set_title(f’P+LP Forecast for c{container}’)

25 ax.set_xlabel(’Date’)

26 ax.set_ylabel(’Memory Usage (MB)’)

27

28 # Plot the test data

29 ax.scatter(test_df[’ds’], test_df[’y’], color=’purple’, label=’Test Data’, s=10)

30

31 # Calculate the new request and limit lines

32 new_request = np.mean(forecast[’yhat’]) * 1.05 # Adding 10% safety margin

33

34 max_observed = max(train_df[’y’])

35 max_predicted = max(forecast[’yhat_upper’])

36 higher_value = max(max_observed, max_predicted)

37 new_limit = higher_value * 1.15 # 10% over the higher value

38

39 # Old request and limit lines calculation

40 safety_margin_percentage = 15 # Additional memory allocated as a percentage of the

max usage

41 safety_margin = max(train_df[’y’]) * (safety_margin_percentage / 100)

42 typical_memory_usage = np.mean(train_df[’y’]) * 1.05

43

44 # Define the problem

45 prob = pulp.LpProblem("ContainerResourceAllocation", pulp.LpMinimize)

46

47 # Variables

48 x_request = pulp.LpVariable("x_request", lowBound=typical_memory_usage)

49 x_limit = pulp.LpVariable("x_limit", lowBound=max(train_df[’y’]) + safety_margin)

50

51 # Objective function

52 prob += x_request

53

54 # Constraints

55 prob += x_request <= x_limit

Chapter B: Python Code 136

56

57 # Solve the problem

58 status = prob.solve()

59

60 # Get the old request and limit values

61 req_value = pulp.value(x_request)

62 lim_value = pulp.value(x_limit)

B.6 Performance Score

Code listing B.14: Calculating Performance Score

1 def calculate_score(mrei, resource_request_difference, ideal_target=95, wiggle_room

=4, mrei_weight=0.7, diff_weight=0.3):

2 mrei_difference = abs(mrei - ideal_target)

3 score_factor = abs(1 - (mrei_difference / ideal_target))

4

5 if resource_request_difference > 0:

6 resource_request_difference = 0

7

8 if mrei == ideal_target:

9 performance_score = 100

10 elif mrei_difference <= wiggle_room:

11 mrei_component = score_factor * mrei_weight * 100

12 diff_component = abs(resource_request_difference) * diff_weight

13 performance_score = mrei_component + diff_component

14 else:

15 mrei_component = score_factor **2 * mrei_weight * 100

16 print(mrei_component)

17 diff_component = abs(resource_request_difference) * diff_weight

18

19 performance_score = mrei_component + diff_component

20

21 # Clip the performance score to be between 0 and 100

22 performance_score = max(0, min(100, performance_score))

23

24 return performance_score

25

26 # Example usage

27 mrei = 100

28 resource_request_difference = +80

29 score = calculate_score(mrei, resource_request_difference)

30

Chapter B: Python Code 137

31 print(f"Performance Score: {score}")

	Abstract
	Preface
	Acknowledgments
	Contents
	Tables
	Figures
	Code Listings
	Abbreviations
	Introduction
	Research Questions
	Objectives of The Paper
	Results & Outline

	Background
	Motivation
	Cloud Computing
	Vendor Lock-In
	Skepticism and Concerns Surrounding Cloud Computing

	Cloud Trends and Challenges
	The Wasteful Consequences of Idle Resources

	Container Orchestration
	Kubernetes
	Kubernetes Pods Resources: Requests
	Kubernetes Pods Resources: Limits
	Specifying Resources for a Container
	CPU Throttling

	Green Computing
	Energy Consumption vs. PUE

	Statistical Modeling for Resource Usage
	Cross-Industry Data Forecasting

	Approach
	Phase I: Data Collection, Processing, and Modelling
	Processing a Single Container
	Data pre-processing
	Statistical Modeling

	Phase II: Evaluating Efficiency of Models Across Multiple Containers
	Scope and Limits

	Results - Phase I: Data Collection, Processing, and Modelling
	Data Collection
	Data Processing ([tab:implementation]PI-2a-c)
	Analyzing Memory Usage
	Analyzing CPU Usage

	The Statistical Models
	Exploring Strategies for Resource Optimization

	Linear Programming
	Evaluation of the Linear Programming Model

	Auto Regressive Integrated Moving Average (ARIMA)
	Determining the Differencing (d)
	Determining the Autoregressive (p) and Moving Average (q)
	Fitting the ARIMA model
	Evaluation of the ARIMA Model

	Facebook's Prophet Model
	Summary: Evaluation of Models ([tab:implementation]PI-4c)

	Results - Phase II: Evaluating Efficiency of Models Across Multiple Containers
	Model Performance Evaluation for Predictive Models
	Prophet + Tuned LP Model ([tab:implementation]PI-7ab)
	Introducing a Performance Score

	Summary: Addressing Research Question 2

	Discussion
	Evaluating The Predictive Models
	Moving Forward with the KPIs

	The Impact and Limitation of the Datasets
	Training/Prediction of Datasets

	The Challenges of Predicting Containers
	Suggested Workflow for the Framework
	The Lack of Incentives for Reducing Resources

	Conclusion
	Future Work

	Bibliography
	Survey Sent to Developers at Intility
	Python Code
	Pre-processing Code
	Reading and pre-processing .csv files
	Converting memory to float
	Calculating skewness
	Script for showing daily memory usage during a 2 week period

	Linear programming
	Calculating The MREI

	ARIMA
	ACF and PACF
	Fitting the ARIMA model
	Test Data Underprediction Rate (TDUR)
	MAE, MAPE and RMSE

	Facebook's Prophet Model
	P+LP
	Performance Score

