
Citation: Srinivasan, S.;

Kumarasamy, S.; Andreadakis, Z.E.;

Lind, P.G. Artificial Intelligence and

Mathematical Models of Power Grids

Driven by Renewable Energy Sources:

A Survey. Energies 2023, 16, 5383.

https://doi.org/10.3390/en16145383

Academic Editor: Abu-Siada Ahmed

Received: 5 May 2023

Revised: 27 June 2023

Accepted: 6 July 2023

Published: 14 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Artificial Intelligence and Mathematical Models of Power Grids
Driven by Renewable Energy Sources: A Survey
Sabarathinam Srinivasan 1 , Suresh Kumarasamy 2 , Zacharias E. Andreadakis 3 and Pedro G. Lind 4,5,6,*

1 Laboratory of Complex Systems Modelling and Control, Faculty of Computer Science, HSE,
National Research University, Moscow 109028, Russia; saba.cnld@gmail.com

2 Centre for Computational Modeling, Chennai Institute of Technology, Chennai 600069, India;
sureshscience@gmail.com

3 Faculty of Technology, Art and Design, OsloMet—Oslo Metropolitan University, N-0130 Oslo, Norway;
zacharia@oslomet.no

4 Department of Computer Science, OsloMet—Oslo Metropolitan University, N-0130 Oslo, Norway
5 Artificial Intelligence Lab, OsloMet—Oslo Metropolitan University, N-0166 Oslo, Norway
6 NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Pilestredet 52,

N-0166 Oslo, Norway
* Correspondence: pedro.lind@oslomet.no

Abstract: To face the impact of climate change in all dimensions of our society in the near future,
the European Union (EU) has established an ambitious target. Until 2050, the share of renewable
power shall increase up to 75% of all power injected into nowadays’ power grids. While being clean
and having become significantly cheaper, renewable energy sources (RES) still present an important
disadvantage compared to conventional sources. They show strong fluctuations, which introduce
significant uncertainties when predicting the global power outcome and confound the causes and
mechanisms underlying the phenomena in the grid, such as blackouts, extreme events, and amplitude
death. To properly understand the nature of these fluctuations and model them is one of the key
challenges in future energy research worldwide. This review collects some of the most important
and recent approaches to model and assess the behavior of power grids driven by renewable energy
sources. The goal of this survey is to draw a map to facilitate the different stakeholders and power
grid researchers to navigate through some of the most recent advances in this field. We present
some of the main research questions underlying power grid functioning and monitoring, as well as
the main modeling approaches. These models can be classified as AI- or mathematically inspired
models and include dynamical systems, Bayesian inference, stochastic differential equations, machine
learning methods, deep learning, reinforcement learning, and reservoir computing. The content
is aimed at the broad audience potentially interested in this topic, including academic researchers,
engineers, public policy, and decision-makers. Additionally, we also provide an overview of the
main repositories and open sources of power grid data and related data sets, including wind speed
measurements and other geophysical data.

Keywords: power grids; renewable energy; systems monitoring; energy forecasting; complex
networks; machine learning; deep learning; reinforcement learning; Bayesian inference;
dynamical systems; stochastic data modeling

1. Introduction and Overview

The power grid is probably the largest man-made system ever, spanning from small
communities to vast continents, and showing a macroscopic behavior that often is not the
simple composition of the behavior of its parts, something that so-called complex systems
share. At the heart of the need for such a large and highly complex infrastructure lies the
paramount importance of energy production and management in nowadays’ world, with
an ever-growing population and more ambitious technology demands. Energy sources are
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generally classified into two types [1], conventional energy sources (CES) and renewable
energy sources (RES) [2], and to share it, large grids have been built, which connect the
production points and the locations where energy is needed, from cities to industries.
Figure 1 illustrates the different types of complexity shown by power grids, including the
different sizes of nodes where power production and consumption occur, the different
energy sources, and the different weights of its lines.

Figure 1. Overview of the different levels of complexity of a power grid, represented as a complex
network. Nodes represent the sources and sinks of power and can vary in size and nature, with
different energy sources and different consumption spots, including cities and industries. Edges vary
also in size and nature, depending on which nodes they connect, e.g., transmission and distribution
lines. Simultaneously, power grids are coupled to external systems, namely the energy stock markets,
which are influenced by, and influence, the functioning of power grids.

CES have been the dominant energy sources until the recent two decades.
Typically, CES comprehend fossil fuels and nuclear resources. Fossil fuels are basically com-
pounds of hydrocarbons comprising coal, natural gas, and oil, whereas nuclear resources
are typically radioactive isotopes, such as uranium or plutonium, which can provide energy
through their fission in a reactor, heating water into steam, which is used to turn a turbine
and generate electricity [3]. Fossil fuels are not sustainable and contribute to the increase
in the global temperature due to the resulting CO2 emissions that are produced during
consumption [4]. This global warming effect promotes the occurrence of abnormal floods
and rains, affecting agricultural and urban regions. The bitter truth is that the majority of
industries around the world still strongly depend on fossil fuels for electricity production
since they are very effective and controllable to comply with the fluctuating energy demand
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in different regions of the globe and during different seasonal conditions [3]. In recent
decades, however, different industries and governments have aimed to switch their strate-
gies of energy production and consumption towards more sustainable and clean solutions,
opening the stage for RES as a central source of energy for future societies [5].

RES are obtained from sources [6] such as the sun, wind, and the natural flow of
moving water, leading to several types of RES, namely solar, wind, hydro and tidal sources,
thermal sources, biomass, and fuel cells [7].

Recent papers have introduced a neural-network-based boost converter for fuel cell
systems; evaluated the techno-economic aspects of photovoltaic–hydrogen refueling sta-
tions in Tunisia and solar/wind energy systems for hydrogen production in Salalah, Oman;
and explored optimal sizing for photovoltaic systems in green hydrogen refueling stations
in Oman. A neural-network-based four-phase interleaved boost converter for fuel cell sys-
tems is introduced [8] to reduce current fluctuations and enhance fuel cell lifespan. A robust
and straightforward neural network controller is developed using Simulink in MATLAB to
regulate the output voltage under varying fuel flow rates, supply pressures, and temper-
atures. Reference [9] evaluates the techno-economic aspects of a photovoltaic–hydrogen
refueling station in Tunisia, demonstrating the potential of green hydrogen production in
the country. Furthermore, analysis and optimization of solar and wind energy systems for
hydrogen production have been conducted, focusing on Salalah, Oman [10]. The findings
highlight the economic viability and suitability of a hybrid energy system comprising
photovoltaic, wind turbine, fuel cell, and hydrogen tank systems to meet both electrical
and hydrogen production needs. Reference [11] explores the optimal sizing of photovoltaic
systems for green hydrogen refueling stations in Oman, examining different approaches
and providing insights into cost reduction and mitigation of carbon dioxide emissions.
These energy sources are typically limitless, nonpollutant, and clean. Therefore, RES are
taken as the best candidates for energy sources to cope simultaneously with the increasing
need for energy in modern societies and the necessary mitigation of environmental im-
pacts caused by anthropogenic factors, which we now know underlie the present climate
change situation.

European power supply systems, for example, have slightly more than 20% of the
electricity demand covered by RES, such as wind and solar power [12] and biomass [13],
and Europe’s plan is to increase this share of RES [14] of the total electricity produced and
distributed up to 75% [15]. In the USA, renewable energy technology investments [16]
have grown significantly in the past decade [17], from USD 11.4 billion in 2005 to about
USD 46.5 billion in 2018, boosting the renewable energy market with a “green” direction
in all sectors of the country [18]. There are recent developments in the US that we need
to mention, such as the inflection reduction act [19], which also is heavy-handed on clean
energy [20,21].

As for China, it is the largest energy consumer country worldwide since 2015, being
also the country with the highest CO2 emissions. Therefore, strategies based on renewable
energy are highly necessary to protect the environment without compromising economic
and social development [22]. The Chinese government announced official plans to increase
the share of renewable energy from 8% in 2006 to 15% in 2020 [23].

Similarly, India, also a significant player in global energy consumption, is determined
to establish itself as a leading producer of clean energy [24]. The Government of India has
already implemented several measures [25] and established specialized agencies to facilitate
the realization of this objective [26]. Currently, renewable energy sources, excluding
large hydro projects, account for 9% of the total installed energy capacity, equivalent to
12,610 MW. When combined with large hydro-power plants, the contribution rises to over
34% of the total capacity, exceeding 48,643 MW out of a total of 144,980 MW. It is noteworthy
that numerous developed and developing countries are also committed to increasing their
renewable energy capacity from 7% to 30% of their total energy capacity by 2025 [27]. For
further information, refer to [28–32].
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For these countries, a significant portion of renewable energy investments is allocated
towards the procurement of materials and personnel required for constructing and main-
taining the infrastructure, rather than relying on expensive energy imports. As projected
by the International Energy Agency (IEA), global electricity demand is expected to rise by
70% by 2040, with its share in final energy use increasing from 18% to 24% during the same
period. Various renewable energy scenarios for the period up to 2040 have been explored
in [13], and an overview is presented in Table 1. For researchers and stakeholders, it is
crucial to make informed choices regarding the selection of renewable energy sources (RES)
and the reasons behind those choices. Factors such as cost, stability, efficiency, and environ-
mental impact must be carefully considered to determine the optimal utilization of RES.
Differently from their conventional “cousins”, these sources present several challenges still
to be solved in order to guarantee achieving these goals. The main disadvantages of using
RES resources relate to their “nontunable”, desultory character. The strong fluctuations of
the available renewable power from different RES make them difficult to monitor, predict,
and adjust to the cycles and patterns of energy demand both in the short- [33] and long-time
horizons [34]. Injecting unbalanced power supplies in a power grid [35], may lead to the
malfunctioning or even failure of extensive regions of the power grid, and therefore, power
grids are a research area of utmost importance [36].

Table 1. Scenario of RES in 2001, 2010, and 2022, and estimates for 2030 and 2040. Data taken
from [13].

Year 2001 2010 2020 2030 2040

Total consumption (million tons oil equivalent) 10,038 10,549 11,425 12,352 13,310
Biomass 1080 1313 1791 2483 3271

Large hydro 22.7 266 309 341 358
Geothermal 43.2 86 186 333 493
Small hydro 9.5 19 49 106 189

Wind 4.7 44 266 542 688
Solar thermal 4.1 15 66 244 480
Photo-voltaic 0.1 2 24 221 784

Solar thermal electricity 0.1 0.4 3 16 68
Marine (tidal/wave/ocean) 0.05 0.1 0.4 3 20

Total RES 1365.5 1745.5 2964.4 4289 6351

Renewable energy source contribution (in %) 13.6 16.6 23.6 34.7 47.7

Research on RES commenced several decades ago. In 1977, Landsberg proposed a
simplistic model that allowed for the determination of economic viability conditions for
solar thermal or solar photovoltaic energy conversion [37]. In the early 1990s, Marchetti
and colleagues [38] presented a statistical hybrid model for solar and wind power, consid-
ering factors such as annual energy cost, battery autonomy function, sizing criteria, and
ecological constraints. Concurrently, optimization schemes were introduced to determine
optimal outcomes for hybrid renewable energy systems (HRES) such as solar–wind systems.
Hybrid RES systems are defined as systems that incorporate two or more energy sources,
with at least one of them being a renewable energy source.

In 1995, Consoli and colleagues [39] devised a solar–wind hybrid model that employed
long-term simulations to assess a system integrating diesel-generating sets with the two
RES. Bonanno et al. [40] introduced a logistical model for HRES to evaluate fuel and energy
savings. They highlighted challenges associated with the utilization of combined renewable
and conventional energy sources.

Research and discussion around the main challenges of power grids injected with
a large share of RES has now become a hot topic in different contexts and for different
audiences, ranging from basic science researchers in physics, mathematics, and artificial
intelligence, to engineering and applied sciences, public sector, and governance [41]. There
are several review articles on RES power grids, covering important related topics such
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as complex networks [42], renewable energy forecasting [43], grid intelligence [44], de-
mand response [45], wind energy [46–48], energy conversion systems [49], data mining
methods [50], biofuel research [51], energy economics [52], energy market [53], stochastic
models of power grid [54], dynamical systems approaches on complex networks [55],
energy storage and conversion [56], and energy management [57].

In this review, we present an updated sketch of the state of the art concerning modeling
and analyzing the different aspects of power grid dynamics and structure. More than
detailing each aspect of power grid research, we aim to provide a good “road map” to
researchers and stakeholders of a broad audience, intending to learn and investigate
particular aspects of power grid dynamics. Still, we hope to provide the main contributions
of the extensive literature that has been published in the different related fields, such as
engineering, natural science, and computer science. We start in Section 2 by introducing
the main research questions underlying power grid research with the injection of RES. In
Section 3, we present the details of power grid data, providing a list of the most used open
data sources available. In Section 4, we describe the main models and results related to
power grids for each research question and the different RES and power grid dynamics
aspects. Figure 2 presents an overview of the entire paper, including the main research
questions, data types, and modeling approaches. Finally, in Section 5, we discuss future
perspectives and challenges, giving some attention to those questions and methods that,
up to now, have not been investigated or developed as much.

Figure 2. Overview of the review covering the main research question about power grids, as well
as the different types of data involved in power grid analysis, and the main types of modeling
approaches to simulate the functioning and perform monitoring of power grids.

From a methodological perspective, the search for articles and data sources was carried
out on scientific repositories, namely Scopus, arXiv, PubMed, Mendeley, and GitHub, as well
as known research article search platforms such as Google Scholar, Web of Science, and Baidu.
The articles were selected according to two major criteria: (i) number of citations and
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(ii) year of publication. Articles that are not included in SCI nor in Scopus were excluded.
We also excluded articles older than 15 years.

We hope this review can assist both academia and industry, facilitating the literature
and data sources on power grid research activity.

2. The Research Questions Underlying Power Grid Research

When subjected to the injection of RES, the monitoring of power grids and the un-
derstanding of their functioning present many challenges. Important examples are the
detection and forecasting of frequency and voltage anomalies under changes in power
injection of grid topology, the forecasting and simulation of overloaded distribution lines,
or the demand and supply mismatch in specific geographic regions, subject to external
factors, such as migration tendencies and transitions in the economic sector.

The research questions addressing these challenges can be grouped into three distinct
types of questions:

• Questions related to the functioning of power grids;
• Questions related to the forecasting of the different properties, variables, and features

characterizing the power grids;
• Questions addressed through the exploration of hypothetical scenarios, which are

typically implemented in digital representations of the power grid.

Some of these questions are related to the main pros and cons of RES, summarized
below and in Table 2.

Table 2. Advantages and disadvantages of each one of the main RES, namely sun, wind, water,
biomass, and natural heat (see also Section 3.2).

Source Advantages Disadvantages

Sun
Unlimited energy source during periods of sunlight.

Low level of pollution, at least during
energy production.

Produces energy only during sunlight periods, with no energy
generation during the night or cloudy weather. More expensive
than other RES. Large geographical footprint, in particular for

massive energy production.

Wind

Wind turbines function with no need for fuel. No-fuel
functioning reduces overall costs for massive energy

production in large-scale wind farms compared to other
RES. One of the cleanest forms of energy. Last turbine

generations are already extremely efficient.

Poses danger to some wildlife. Usually, wind turbines are quite
noisy, so one has to install them where no people live and also
where the wind is good. Produces no energy when wind is not
blowing. Construction of massive structures are often hundreds

of feet tall and require substantial upfront investment.

Water A clean and abundant RES, at least close to large bodies
of water.

Requires construction of dams, which has some environmental
impact. In regions or situations that lack water, it has

natural limitations.

Biomass

Clean, abundant, and can be used without interruption.
Energy generation can be almost as controllable as

conventional energy sources. Enables an efficient use of
waste and reduces methane emissions for biogas.

Generates air pollution. Not very efficient. Can be seasonable
and competes with food production activity. Requires large

areas of landfill for biogas, at least when compared to
conventional power plants, and also generates considerable

amounts of pollution.

Geothermal
Energy

Environmentally very safe and friendly. Lifetime of the
source is very large (until earth life) and has huge

potential for energy. Very sustainable, nonfluctuating,
and reliable compared to other RES.

Implemented geothermal plan has accessible energy. During
digging, some gases stored under the earth’s surface may be

exploited. Long time investment and very costly. Maintaining
sustainability is very tough enough.

2.1. Monitoring the Functioning of Power Grids

In all the regions of the grid where power is generated and distributed, monitoring the
functioning of the grid is fundamental. Control protocols were established, aiming to moni-
tor the local power dynamics, focusing on the two main parameters of the electric power
system, namely the voltage and the frequency. Since the electrical devices we use operate
at a given voltage, the voltage provided by the grids must be kept within a short range of
admissible values, typically covering variations not larger than 6% of a mean voltage value.
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Otherwise, the devices will be subjected to operation errors, malfunctioning, and damage.
One of the main protocols concerns keeping the so-called nominal frequency at 50 Hz or
60 Hz, depending if we are in Europe, Asia, or North America. These choices are based on
technical compromises that happened during the building of the respective electrical power
systems (see, e.g., [58]). Deviations from the nominal frequency occur due to imbalances
between power (in this context also called load), generation, and consumption.

The admissible ranges of fluctuations should be preferably within 0.1 Hz, although this
range can vary from country to country. Beyond this range of fluctuations, one considers
the power system to enter emergency conditions, with ranges typically between 47.5 Hz
and 51.5 Hz for a nominal frequency of 50 Hz. In such cases, control strategies take place.
There are three levels of frequency control strategies [59], particularly important when
injecting highly fluctuating energy sources, such as several of the renewable sources.

The first level, the primary control, takes place in an automatic way within a response
time between 15 and 30 s, and aims to stabilize the frequency value, enabling the system to
generate the required additional power. In other words, primary control is implemented
to guarantee the stable condition of the electrical power operating system, clearing the
unbalance between generation and consumption. Moreover, this control protocol will re-
main for approximately 15 min, depending on the specific requirements of the transmission
system implemented.

Primary control is fundamental for all high-voltage power systems and presents
serious challenges to the so-called fluctuating energy sources, which are typically the
renewable ones. Indeed, when injecting RES into the grid, power generators must be
coupled to storage systems in order to compensate for the power, depending on the
frequency deviations from nominal frequency. In case over-frequency fluctuations occur,
the system can simply store or release the exceeding power, but under-frequency events can
be very difficult to handle since they imply a power increase, which is necessarily bounded
by the capacity of storage systems.

Shortly after primary control is triggered, the frequency value is still different from
the nominal one, and the power exchange between the different nodes in the grid is not the
predefined one. Therefore, a secondary control strategy is needed to restore the nominal
frequency and the predefined inter-nodal power exchange. Secondary control occurs after
200 s and lasts for two hours approximately using generators. If the frequency value is
less than the nominal one, generation capacity is started; otherwise, it is stopped unless a
corresponding load increase is observed.

The last level of control, the tertiary control, aims to restore the power reserve of the
generators used by the secondary control. It runs under the control of the grid operator,
typically after primary control stops, after approximately 15 min and during the time
needed until stabilization.

The main questions related to the monitoring of grid functioning, is directly related to
the implementation of these control strategies:

• What are the best properties to measure that can function as good precursors of the
system’s condition and operating status?

• What is the impact of fluctuating injected power on these properties?
• What are the best control protocols to stabilize the operating status at each con-

trol level?
• How can data be stored in an accessible format and best provide documentation with

a detailed description of the data?

Due to the remote nature of power plants, particularly those situated in offshore
areas, the implementation of reliable condition monitoring and control systems has be-
come imperative. These systems are essential for effectively managing valuable assets
located over long distances. Currently, there is a lack of established tools and techniques
for real-time grid monitoring and control, which are crucial for assessing the status of
renewable energy sources and making informed asset management decisions. The ab-
sence of such tools increases the risk of unexpected faults leading to complete or partial
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blackouts. While a few articles in the literature have proposed methods to enhance the
effectiveness of renewable energy sources and monitoring systems [60], there is ongoing
research on nonintrusive load monitoring strategies, particularly in the context of NILM sys-
tems [61]. For an up-to-date review of frequency control and forecast models, refer to [55].
Furthermore, an important aspect of grid monitoring is maintaining a balance between
power demand and supply in specific regions [62–64].

2.2. Forecasting Dynamical Features of Power Grids

For the planning and operation of a power grid, the understanding of the dynamical
features of all properties involved is fundamental. Understanding the dynamical features
of these properties is relevant in three different contexts:

• When assessing the evolution of (fluctuating) geophysical properties that drive one
specific RES. One example is the wind speed in front of wind turbines, whose statistical
properties are reflected in the highly fluctuating wind power production at wind farms.
Another example is the solar irradiance on the earth’s surface.

• When assessing directly the evolution of power and frequency at specific nodes of the
grid. Here, the dynamical features are of importance for the monitoring of the overall
stability of the grid (see previous subsection).

• When assessing the evolution of external factors that eventually influence the power
grid. One important example is the intrinsic demand for energy in cities, following
daily, weekly, and seasonal cycles, as well as industry demands in specific locations.
Other important examples are demographic and economic transitions, triggered by
sudden events, such as climate catastrophes and wars, which change abruptly estab-
lished patterns of production and consumption.

In each one of these contexts, one needs to define the time scale within which the
dynamical evolution of such properties should be analyzed. In particular, while averages
within windows of 10 or 15 min are standard in the wind energy industry, several properties
such as cumulative loads and extreme fluctuations are known to occur within short-term
intervals of a few seconds [65]. Short-term wind forecasts have been improving, but there
are still noticeable challenges, particularly in shoulder months when wind penetration
is higher. In this review, we briefly discuss several articles approaching these problems,
e.g., in forecasting problems reported in short-term load forecasting [66], multiple power
type prediction [67], renewable energy forecasting methods [43], hybrid energy forecasting
model [68,69], and forecasting of natural gas demand [70].

Short-term wind speed can be classified depending on time horizons, methods and
models, input data and forecasting data, and predicting objects. There are four types classi-
fied based on these factors,:(i) long-term (more than one week ahead years), (ii) medium-
term (48 h to one week ahead), (iii) short-term (30 min to 48 h), and (iv) very short-term
forecasting (seconds to 30 min ahead). In the literature, there are several articles devoted to
short-term wind speed models and forecasting. For specific target stations, using historical
data without considering factors such as the wind speed, wind direction, temperature,
pressure, and air density of the neighboring stations on the performance of the forecasting
model of the target station, many forecasting models have been reported [71–73]. Other
meteorological factors in forecasting models for short-term wind speed can be found
in [74–77].

As mentioned above (cf. Figure 1), dynamical and structural features of power grids
are related to each other. Therefore, to forecast the evolution of dynamical properties, it is
also important to assess the topological structure of the grid. Here, even the most simple
characteristics of the grid, such as the distribution of nearest neighbors among the nodes,
raise controversy. For instance, there are different studies about the specific grids, namely
the transmission system in the Western U.S [78–82], with some authors claiming that a
power-law distribution of the number of nearest neighbors is the best model, while some
studies support a pure exponential fit.
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2.3. Assessing Hypothetical Scenarios with Simulated Topological or Dynamical Features

Being probably the largest man-made system on earth makes the investigation of grid
behavior in extreme situations highly challenging. While there is no empirical knowledge
of how a grid would respond if such a scenario occurs, investigating grid behavior in such
situations enables the exploration of possible measures and improvements to prevent, or at
least mitigate, the critical impact on society.

To this end, researchers and engineers use a digital twin of a power grid [83,84],
i.e., a digital reconstruction of a power grid incorporating all features, ranging from
the topological structure, as well as the properties characterizing each node and edge.
Feeding in empirical data from different series of measurements of geophysical data, RES,
and demographic data, they can then “calibrate” this twin of the real power grid and
investigate its behavior when specific features are switched from their normal patterns to
critical ones.

The main questions that are addressed with power grid digital twins aim to understand
and uncover what changes in the grid functioning when the grid structure and dynamics
change, i.e., when nodes and/or edges are removed or new ones are added, or when the
features characterizing such nodes and edges are changed in terms of their size and nature
or type (see above). As known [85,86], the consequences of such changes, even when very
localized and of small proportions, such as the removal of one single distribution line, can
lead to broad outages, as in Germany in 2003 [87] and in India [88,89].

These changes have several possible causes, such as demographic migration [90,91],
new power plants [92,93], maintenance of distribution lines [92,94], and wars and energy
transition policies [95–97], particularly with the tendency of a renewable share increase.

3. What Data Are Power Grid Data?

The accuracy and applicability of energy systems modeling strongly depend on the
nature and quality of the input data available. Power grid data requirements strongly differ
from model to model and depend on the question being addressed. For example, in a
single-node power grid model, active power data of generation and demand are needed.
For the grid topology information, electric parameters are avoided for this kind of single-
node modeling. Differently from this simple model, trans-shipment models [98] require
active power of demand and generation over extensive areas, to distinguish between nodes
and power lines. Figure 2 shows an overview of the main types of data within power grid
data analysis and modeling, which can be grouped into three different categories: grid data,
including demographic data related to energy production and consumption; data series
of RES; and finance data related to the energy market. Figure 3 illustrates these different
types of power grid data.

3.1. Grid Data: Topological and Electrical Features Underlying the Grid

At a low level, grid data deal with what is usually known as the power grid topology,
including geographic positions of generators and loads, also called buses, and the lengths
of their corresponding lines or transformers. Figure 3 (first row, left) shows the IEEE-
300 bus grid structure from [99] with 300 buses (red bullets) and 409 lines (blue edges).
Representing as α the set of buses composing a power grid and as β the corresponding
lines or transformers, which are defined through the respective pair of joint buses, the
power grid can be represented as a mathematical object called a graph, G ∼ [α, β] [100–102].
This graph representation underlies the main mathematical object that enables the treatment
of the structure and dynamics of a power grid, which is its adjacency matrix. The adjacency
matrix A of a power grid has elements aij, which can take only the value 1 if buses i and j
are connected or 0 if they are not.

In case we only address how buses (nodes) are connected, the adjacency matrix can be
considered symmetric, i.e., aij = aji. If, for instance, the flow of power from power plants
(generators) to cities (loads) needs to be assessed, the underlying graph is directed, and
consequently, the adjacency matrix is not symmetric. Using this graph representation of a
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power grid, one can assess some of their structural properties, such as the distribution of
the number of nearest neighbors, also called the degree of a node i: ki = ∑N

j=1 aij, where N
is the total number of nodes (generators and loads together) in the grid. In the literature,
there are a few ways to predict the graph structures. The most useful are degree distribution
[103], characteristic path length [104], graph diameter [105], clustering coefficient [105], and
degree assortativity [103]. For a general overview of how to compute such properties from
the adjacency matrix, see also [106–108].

Figure 3. Illustrative example of the different types of data involved in power grid analysis (see text).

While the adjacency matrix provides the skeleton of a power grid, encoding its topo-
logical features, a proper description is only possible if one considers the adjacency matrix
together with the specific properties that make the grid a power grid. Therefore, at a
higher level, grid data also provide information about the type of nodes, i.e., generators
or consumers (loads), in the grid, as well as the type of edges, i.e., distribution lines or
transformers. Moreover, it is also typical to consider a weighted graph representation of
the power grid, where nodes and edges have different sizes. In particular, one indicates
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the amount of power produced (if generator) or consumed (if a load) and distinguishes
between them through a negative sign for loads, whereas distribution lines are character-
ized by their admittances, which are a measure of the electrical distance between buses
connected by this corresponding line [99].

Demographic data are also fundamental to simulate power grids. The growth of the
world population is directly reflected in the overall energy demand. Energy demands
are increasing proportionally to population growth [109]. The situation is even more pro-
nounced since 2006 and the advent of what scientifically is termed “the fourth industrial
revolution”. By the projections of this scenario, the energy demand will exponentially in-
crease depending on the population in the future. This situation will produce a tremendous
impact on energy demand, which is predicted to reach as high as 71,961 ZW in 2030. More-
over, detailed demographic data are useful to understand the heterogeneous patterns in
consumption and production of energy from country to country or even between different
regions in each country.

Countries classified as high income or “developed” by the United Nations are assumed
to have achieved a 100% electrification rate from the year they entered that category.
Therefore, the global increase in electrification rates has primarily been driven by improved
access in low- and middle-income economies. This trend is particularly noteworthy in
several countries. For instance, in India, access to electricity has risen from 43% to almost
85%. Indonesia is also nearing total electrification, with an access rate of nearly 98%, up
from 62% in 1990. In countries with significant population growth, these advancements in
expanding access to electricity are even more remarkable.

3.2. Renewable Energy Data: Geophysical and Energy Time-Series

Conventional sources of energy can be represented as nonrenewable sources of energy
and have been used for many years. Examples of these conventional sources are coal,
petroleum, and natural gas (fossil fuels) and data about the amount available of each of
these sources can be represented as a time series associated with the specific location of the
plant converting the source into injected power to the grid. In what concerns renewable
energy, the main sources are the sun, wind, water, biomass, and natural heat. The electricity
generation of each one of these sources from 2000 to 2020 is shown in Figure 3. The main
advantages and disadvantages of each of these RES are summarized in Table 2 above.
Next, we address the data describing each one of these sources.

Sunlight stands as one of the most abundant and readily accessible energy resources
on our planet. In just one hour, the solar energy that reaches the earth’s surface exceeds the
total energy needs of the entire planet for a full year. While this makes solar energy seem
like an ideal renewable energy source, its availability varies based on factors such as the
time of day, the season of the year, and the geographical location.

Wind is one of the most important and unlimited sources of clean energy on the earth.
Wind farms are progressively increasing in many countries. For example, one may cite the
UK, where wind energy production shows an ever-increasing contribution to its National
Grid. The UK installed over 11,000 wind turbines and produces 28 gigawatts (GW) on
average from on/off shores and will lead in the production of wind energy around the
world by 2023 [110]. Electricity is usually acquired from wind energy by utilizing turbines
to drive power generators, which again deliver the electricity to the grid. There are many
domestic wind energy generation systems available; however, not every land is able to
have a domestic wind instrument [111,112].

Hydropower is one of the RES with the largest commercial growth. Hydropower
generation systems can be established by setting up a barrier to make a large reservoir that
can be used to control the flow of water. The controlled flow of water will drive turbines
to generate electricity. Compared to other sources, hydropower energy sources are more
reliable than solar or wind power since they do not fluctuate so much. Hydropower can
be produced either in rivers, by constructing dams, or on the sea using tidal waves as a
source. Particularly in dams, one can control the amount of water flowing downriver and,
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consequently, drive the amount of electricity produced adjusting it to the demand and
supply needs of the grid.

Biomass, derived from the organic matter of plants and animals, is a renewable
energy source. It remains a significant fuel source in many countries, particularly for
co-oking and heating purposes in developing nations. Developed countries are increasingly
using biomass fuels for transportation and electricity generation to reduce carbon dioxide
emissions associated with fossil fuel use [113–115]. It is important to note that while
biomass energy has a relatively low environmental impact, its characteristics resemble
those of conventional energy sources. In essence, biomass energy involves converting
plant-based materials into electricity through combustion. However, modern biomass
energy production processes are cleaner and more energy-efficient.

In the context of biomass energy, there are two distinct sources of electricity. One is
acquired from forests and fields, including harvested wood and grass, which is burned
in industrial steam producers to feed turbines driving generators of electric energy. The
other is natural gas acquired by the controlled process of fermenting agricultural and/or
domestic waste. The end product is a biogas consisting mostly of methane and carbon
dioxide. Concerning this latter source, by converting agricultural, industrial, and domestic
waste into solid, liquid, and gas fuels, biomass power generation offers a more economically
and environmentally favorable option. As a result, we will exclude biomass energy from
this review.

Biogas energy is another RES source that typically yields methane from wastes such as
food waste, agricultural waste, green waste, etc. From this methane, electricity is produced
via biogas energy pyrolysis technology. Additional products are obtained such as RNG
fuels, hydrogen fuel, and CO2. Note that other wastes, i.e., wood waste, plastics, and
biosolids, cannot be employed in this method. Biogas is energy-efficient and replaces fossil
fuels, preventing the release of greenhouse gases.

Tidal power operates twice daily through tidal currents to run turbine generators. The
strong movement of ocean waters produces this tidal energy during the rise and fall of
tides. In most tidal energy generators, the turbines are placed in tidal streams. The tidal
stream is nothing but a fast-flowing body of water that is caused by tides. The turbine
machine converts the energy from the flow of fluid. Compared with the wind, water is
more dense, hence tidal energy is more powerful than wind energy. More importantly,
the tides are more predictable and stable than the wind or the sun. Although, from an
engineering perspective, tidal energy production is still in its inception, it is an important
renewable source of energy. More research on this field will facilitate the better use of tidal
power generation in the near future [116–118].

Finally, by utilizing the natural heat below the earth’s surface, geothermal energy
can be used to heat homes directly or to generate electricity. As per the report of the
International Geothermal Association [119], geothermal resources have been identified
in around 90 countries, and 79 of those have witnessed records of geothermal utilization.
Apart from electricity production, geothermal energy can be used in a wide variety of
applications, ranging from agriculture and aquaculture to the production of consumer
goods. Due to data protection, we did not present the electricity production plot in Figure 3.

3.3. Finance Data: The Energy Market

In recent times, the spending/investment to put countries on RES is increasing at an
unprecedented rate, with the main goal of achieving efficient pathways to zero emissions.
Developing countries are witnessing an emerging investment scenario in clean energy,
although their economies spent less than 8% (less than USD 150 B) in 2020. However, a
slight rebound was anticipated in 2021. To achieve the goal of achieving net-zero emissions
by 2050, these economies must increase their annual capital expenditure on clean energy
by more than seven-fold, surpassing USD 1 trillion by the end of the 2020s. This signifi-
cant surge in investment can bring substantial economic and societal benefits. However,
achieving this target will require comprehensive efforts to enhance the domestic environ-
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ment for clean energy investment within these countries, in conjunction with international
endeavors to accelerate capital inflows.

The transformation of the power sector and increased investment in the efficient uti-
lization of clean electricity are crucial components of sustainable development. The growth
of renewable energy investment varies significantly from country to country, encompassing
a wide spectrum ranging from the least developed nations to middle-income economies
and influential energy-producing nations such as India, Indonesia, and other major global
demand centers. These countries generally exhibit low per-capita energy consumption, but
their expanding economies and rising incomes offer substantial potential for future growth.
The challenge lies in identifying development models that fulfill the aspirations of their
populations while avoiding the carbon-intensive choices made by previous economies.
The declining costs of key clean energy technologies present an extraordinary opportunity
to pave a new path towards growth and prosperity with reduced emissions. Failing to
seize this opportunity and encountering obstacles in clean energy transitions within these
countries could become a significant obstacle in global efforts to combat climate change
and achieve sustainable development goals.

Figure 4 illustrates the investment trends in renewable energy sources (RES) world-
wide. In 2019, global financing for renewable capacity amounted to USD 282 billion, with
onshore and offshore wind leading the way at USD 138 billion, followed by solar at USD
131 billion. This achievement can be attributed to the advancement of technologies and
the declining costs associated with renewables. The chart above vividly portrays the
remarkable progress made. Renewable energy investments have already surpassed the
estimated USD 100 billion allocated to new coal and gas power projects in 2019. According
to research conducted by BNEF, by the end of 2020, the global installed capacity of solar,
wind, hydro, and geothermal power was projected to exceed 2600 GW, accounting for
38% of the total global capacity. Continued investments are expected to drive this number
to over 55% by 2030 and 74% by 2050. These statistics are based on data obtained from
the Global Landscape of Renewable Energy Finance 2020 report, jointly developed by the
International Renewable Energy Agency (IRENA) and the Climate Policy Initiative (CPI).
The report provides a comprehensive overview of global renewable energy investment
trends, including a breakdown of financial flows by region, sector, and technology. For
further information on the methodology used to track global renewable energy investment,
please refer to [120].

While energy prices can also be considered outside the scope of power grid research,
closer for instance to finance engineering and models of mathematical finance, they are
here taken as a type of power grid data. The main reason for such is that energy prices are
driven not only by economic and social factors, but also by the amount of energy consumed
and produced throughout a power grid. Particularly under scenarios where RES are not
negligible, the fluctuating nature of such renewable sources is reflected in the fluctuations
and uncertainty of the energy injected in the grid as well as in all variables down the chain
of energy consumption and production, including the energy market.

3.4. Where to Find Power Grid Data?

For the monitoring and evaluation of renewable energy policies, one needs accurate
and properly processed data. The different sources of data described above help analysts
and policymakers to make informed decisions and the academic community to conduct
research on renewable energy scenarios. Power grid data are available either as private
(payable) data sets or as open-source data sets. The open-source categories are commonly
used by researchers for the analysis and modeling and several initiatives have recently
made different databases available, providing data from specific RES. In this section, we
list some of the main openly available power grid data sets.
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Figure 4. Investment trends in renewable energy worldwide. Plot shows finance flow in renewable
energy sources. Information is available in the IRENA database and includes equity investment,
green bonds, investment funds, and project commitment. Source: IRENA portal [120].

Open Power System Data:

This platform aims to provide free and open data of European power systems, pro-
vided by single individuals and researchers, but also under the scope of research projects,
associations or companies. The data are openly available (see [121]), but may be of restricted
use to noncommercial applications.

IRENA:

The platform in question provides comprehensive information regarding renewable
energy capacity, power generation, and renewable energy balances. The data presented
are gathered directly from participants through the IRENA Renewable Energy Statistics
questionnaire, with additional research conducted when official statistics are unavailable.
The statistics pertaining to renewable power generation capacity are released on an an-
nual basis in March. Furthermore, datasets containing information on renewable power
generation and renewable energy balances are made available in July (see the web page
in [120]).
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Energy Map.info:

A database with all renewable-based power generators in Germany. The data are
available at [122].

Enipedia:

Collection of global power plant data sets, maintained by TU Delft University. Avail-
able at [123].

Global Power Plant Database:

The World Resources Institute (WRI) leads a collaborative effort to maintain an exten-
sive, open-source database of power plants worldwide. This database includes detailed
information on each power plant, such as its geographical location, capacity, generation,
ownership, and fuel type. As of April 2018, the database encompasses approximately
25,000 power plants from 162 countries. Available at [124].

OpenGridMap:

The platform utilizes crowd-sourcing techniques to collect comprehensive data on
electricity network components. By employing statistical methods and graph theory, these
data are used to infer a realistic network structure. You can access this platform at [125].

Paul-Frederik Bach:

Paul-Frederik Bach has made available a compilation of time-series data, which can
be accessed in [126]. This collection includes time-series data on wind, solar, load, energy
price, and cross-border flow for 11 countries. Some of the data in this collection date back
to 2006.

Power grid frequency database:

A series of recordings of power grid frequency data collected from the power grids in
Europe, the USA, and South Africa. Available at [127].

Renewables.ninja:

Stefan Pfenninger and Iain Staffell oversee a platform that generates wind and solar
profiles using MERRA weather data from various locations worldwide. This platform
employs R-codes to calculate wind power production based on MERRA-2 wind speeds
using the COPA model. It includes illustrative examples that guide readers through the
entire process of deriving wind power production from spatially distributed wind data,
along with an extensive collection of functions for vertical and horizontal interpolation of
wind speed and bias correction. Available at [128].

SciGRID:

This database includes grid topology data and is openly available. It was developed by
Next Energy and is derived from OpenStreetMap, published under ODbL. Available at [129].

FINO (I, II, and III):

The acronym FINO stands for Forschungsplattformen In Nord-und Ostsee, which trans-
lates to “Research Platforms in the North and Baltic Seas”. The primary purpose of these
platforms is to investigate and study the environmental conditions at their respective
sites, specifically focusing on the potential effects of offshore wind farms on the marine
ecosystem. The underlying data collected from these platforms are available upon request
through their individual websites, as listed below. There are three distinct platforms located
in the sea. FINO 1 is situated in close proximity to areas where wind farms are either under
construction or already operational. Detailed information about FINO 1 can be found
at [130]. The research funding provided by the Federal Ministry for Economic Affairs
and Energy aims to reduce wind energy costs, achieve economies of scale, and enhance
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the reliability of wind turbines. The measurement data collected at FINO 1 play a vital
role in optimizing the efficiency and effectiveness of offshore wind farms. The research
platform FINO 2 was established in the southwestern Baltic Sea in 2007 and is accessible
at [131]. FINO 3 serves as a valuable resource for obtaining meteorological, oceanographic,
and ecological data, contributing to numerous research projects. This platform plays a
crucial role in optimizing the construction of offshore structures, such as wind turbines and
substations, while also minimizing associated risks. More information about FINO 3 can
be found at [132].

ENTSO-E:

The European Network of Transmission System Operators (ENTSO) is composed of
39 electricity transmission system operators from 35 European countries. Available at [133].

Open-eGo:

This project aims at developing a grid planning tool, including inter-grid-level oper-
ation. It enables the investigation of different scenarios of grid expansion, with different
storage and redispatch options to assess their economic viability. Available at [134].

React Energy Lab:

This source provides visualization showcases of locations of renewable power plants
primarily based on Germany, with a specific emphasis on the renewable power plants. In
the initial view, the visualization displays the aggregated renewable capacity organized
by TSO. As users zoom in, subsequent levels reveal aggregated data based on DSO, and
further zoom levels provide information on individual plants. For more details, please
refer to the visualization available at [135].

Agorameter:

Agora Energiewende operates close-to-real-time charts that depict German power
generation and prices. These charts provide up-to-date information on the current state of
power generation and prices in Germany. Agora Energiewende also offers a comprehensive
documentation of the charts. For scientific purposes, the underlying data can be obtained
upon request through the provided link at [136].

Energy Charts:

This database includes time charts of German power generation and the respective
prices. It is operated by Fraunhofer ISE. Available at [137].

EU ETS Dashboard:

This interactive tool enables the user to analyze data from the European Union Emis-
sion Trading System. Available at [138].

SMARD:

This is another tool for time visualization of electricity market data, collected in
Germany and some other regions in Europe. It is operated by Bundesnetzagentur. Available
at [139].

Tmrow Electricity Map:

Data of CO2 emissions from electricity generation collected by several countries all
around the world. Available at [140].

WattTime Explorer:

Another data source of CO2 emissions from electricity generation, focusing in the
United States, collected by its balancing authorities. Available at [141].
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IAEE EDL:

Comprehends a list of energy data links of power grid data. It was compiled by the
International Association for Energy Economics. Available at [142].

Open Energy Modeling Initiative:

This a Wiki-based interface, listing different open energy data sources. Available
at [143].

Yahoo Finance:

This database includes financial data, stock price quotes and international market data
of energy. It also lists other source pages. Available at [144].

From the different RES listed above, there is a focus on wind and sun due to the highly
fluctuating nature of these sources, which may reflect in a stronger impact in the grid
functioning and triggering extensive blackouts.

4. Modeling Power Grid Functioning and Dynamics

In this section, we cover the core of our literature survey, covering the main types of
models chosen to address the research questions mentioned in Section 2 and using the data
types described in Section 3. The synopsis of the various models is presented in Figure 5
(top panel), giving brief statistics of the power grid models in general and for each one of
the main topics.

As per our earlier discussion, we classify the models into two categories: mathematically
inspired models and artificial intelligence (AI)-inspired models. For mathematically
inspired models, we group the articles into three different topics, namely

• Models based on dynamical systems and equations, as well as nonlinear methods;
• Models based on stochastic differential equations;
• Models based on Bayesian inference.

Dynamical system approaches assume that the system being considered is in a state
represented by a set of variables, which are functions of time and fulfill a time-evolution
(differential) equation [145,146]. When this equation includes stochastic terms describing
probabilistic features of variables’ time evolution, we have a stochastic differential equation
such as model [147,148]. As for Bayesian inference, the focus is less on the time evolution
of the relevant variables and more on the statistical properties of the different data sets
extracted from the power grid system, which can be inferred [149,150]. Mathematical
models of power grids address their modeling, using optimization schemes, performance
analysis, and stability (synchronization) regimes.

As for AI-inspired algorithms, we divide them into

• Machine learning algorithms;
• Deep learning algorithms;
• Reinforcement learning algorithms;
• Reservoir computing algorithms.

Machine learning (ML) [151–153] is a field focused on developing computational,
data-driven methods that learn from data sampling how a certain system functions, and is
therefore able to model or predict its behavior. Deep learning (DL) [154,155] has become a
field independent of ML, focused on extending the complexity of such learning architectures
to a level beyond human understanding, which sometimes raises new scientific challenges,
namely the ability to explain the underlying mechanisms justifying or explaining the
outcome of a specific prediction. It is mainly based on what is called neural network
architectures [156], in which computations are performed throughout a sequence of layers of
nodes and connections, evaluating specific functions and combinations of the different input
values used to train the model. Its internal structure is inspired by biological brain systems
composed of neurons (nodes) and synapses (connections among nodes). Reinforcement
learning (RL) [157] comprehends the family of approaches, merging the learning algorithms
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from ML and DL with optimization schemes that maximize the reward when “good”
results are obtained. Finally, reservoir computing (RC) [158] is a sort of generalization
of neural networks found in DL architectures that solves some of the drawbacks of the
neural networks, namely their computational cost. The paradigm behind RC is based on
a reservoir of a huge but fixed number of output units, each one producing one possible
result, which is then submitted to a selection criterion. In this way, RC avoids computational
costs associated with the optimization of parameters defining the model or the structure of
the learning architecture, e.g., NN-based.

Figure 5. Statistics of the literature survey in this paper with respect to the modeling approaches,
namely (a) mathematically-inspired models and (b) AI-inspired models. In (c) we plot the statistics
for each of the modeling approaches, and in (d) the statistics of each modeling approach with respect
to the different topics related to power grid research.

As shown in Figure 5 (top panel), all these approaches are evenly addressed in the
literature, with a dominance of dynamical system models, most probably due to its direct
connection to single-node dynamics, based on the balance between mechanical and electri-
cal power, described through the so-called swing equation [159,160]. We note that modern
AI approaches within reservoir computing seem to be not so ubiquitous in the context
of power grid research, showing one possible avenue to be more intensely investigated
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in future research (see also the absolute number of articles in our bibliography shown in
Figure 5 covering each type of modeling approach).

AI-inspired approaches are typically bottom-up methods, while mathematical mod-
eling tools follow from top-down approaches. In the middle ground between AI- and
mathematically inspired models, we also find approaches mixing algorithms from both
these groups. Such hybrid approaches aim at merging the pros of different algorithms,
avoiding their cons. In particular, there are two main features that usually lead to trade-off
decisions when selecting a model: accuracy versus explainability. High accuracy is often
obtained through the increase in complexity, something obtained using, e.g., DL architec-
tures. However, such complexity also leads to the loss of tangibleness of the mechanisms
leading to such outcomes. Mathematically inspired models, such as differential equations
of a dynamical system, are constructed in a way that enables grasping the mechanisms
driving the evolution of the properties being modeled.

As an example, we can think of a wind turbine, converting wind energy into electrical
power, which is then fed into the power grid. Modeled with, e.g., a stochastic differ-
ential equation, one typically decomposes the time evolution of wind power into two
parts [161,162]: one deterministic and another stochastic. The deterministic term describes
the functioning of the wind turbine itself, while the stochastic term describes the interaction
between the turbine and the (stochastic/turbulent) atmosphere. With such an approach,
it is possible, e.g., to inspect changes in the functional dependencies of the deterministic
term, which can indicate some malfunctioning of the wind turbine or characterize the
statistical fluctuations of the stochastic term to evaluate the long-term power production
or life expectancy of the turbine. However, in what concerns short-term predictive power,
e.g., power production in the next hour, such mathematical models would be of little use.
For that, the high-dimensional neural networks and other DL architectures achieve quite
reasonable results at the expense of losing the understanding of the different processes
underlying the series of power output, either within the engineering devices of the turbine
or its underlying interaction with the atmosphere. Hybrid approaches are therefore possible
avenues to explore how to better balance both the accuracy and the explainability of the
models used in power grid research.

Because of this apparent tension between these two schools of thought, one AI-driven
and the other mathematics-driven, in this section, we present our survey reflecting both
these sides. In the next section, we will come back to discuss more about these two schools
of thought and how they can work together to produce new “hybrid” approaches in power
grid research. Moreover, we present these modeling approaches within the following topics:

• Modeling of grid structures;
• Modeling of energy demand and supply;
• Modeling RES, namely wind power, solar power, and biomass power.
• Modeling the energy market, particularly in connection with the power grid function-

ing and monitoring approaches.

Towards the end of this survey, we will also examine literature covering some of the present
challenges in power grid research, namely in what concerns futuristic scenarios:

• Exploring scenarios of energy storage;
• Exploring scenarios of emission reduction.

Figure 5 (bottom) shows the statistical distribution of the number of works classed
according to subject and approach. Finally, there are several libraries already available in
different programming languages, namely

• In Python, there is the library PyPi [163];
• In R, there is the library renpow [164];
• In Julia, there are the libraries NetworkDynamics [165] and PowerDynamics [166].
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4.1. Modeling Different Grid Structures

Due to the increasing growth of RES around the world, electricity grid structures and
their operation are facing new challenges, namely related to grid saturation [167,168].

In the realm of mathematically inspired models, dynamical systems approaches are
frequently employed to explore hypothetical scenarios. In [169], the authors proposed a
hybrid approach that utilizes complex networks for structural vulnerability analysis of
power transmission networks. Yun and colleagues presented a small signal dynamical
model for grid-interfacing power quality compensation [170]. Barthelemy [42] discussed
how spatial constraints impact the structure and properties of networks, providing an
overview of recent empirical observations and significant models of spatial networks.
Lee introduced a method for identifying relevant buses in reduced models of power grid
networks described by a system of differential–algebraic equations [171]. Nishikawa
and co-workers employed dynamical systems to investigate inherent frequencies and
coupling structures in various models of power grid synchronization [172]. Battista et
al. addressed the dynamical variable structure involved in output power regulation of
fixed-pitch variable-speed wind energy conversion systems [173].

Suzuki and Mezic presented a data-based approach for stability assessment of power
systems without parametric models, utilizing Koopman mode analysis for nonlinear dy-
namical systems [174]. Huang et al. focused on understanding the structure of smart
power grids, studying their underlying network model, interactions, relationships, and
cascading failures in the system [175], proposing a model for smart power grids based
on interdependent complex network topologies. Van der Schaft and his team performed
modeling and analysis of power networks using the swing equation as an approximate
model for the power generator [176]. Cuadra et al. described an approach that optimizes
the structure of a smart grid with renewable energy generation by combining complex
network and evolutionary algorithm concepts [177]. Faza and colleagues modeled the
reliability of power grids, investigating the interdependencies between cyber and physical
failures and examining their effects on physical power flow in the grid [178]. The swing
equation has been extended and studied by other groups for scenarios involving decen-
tralized monitoring procedures [179] and control [180]. Other applications include the
prediction of cascading failures in electrical transmission networks [181], where a frame-
work accounting for network dynamics can identify critical lines and components of the
grid. The identification of critical lines and hidden units is also addressed in [182,183]. For
a comprehensive review of these topics, refer to [55].

Using a linearized version of the power flow equations, Schiel et al. [184] found
that overload probabilities vary strongly between different pairs of nodes in the grid
and, in particular, are affected by the spatial correlations of wind power fluctuations.
Interestingly, such standard approaches in electrical engineering are able to uncover para-
doxical behavior of power grids under RES injection, namely that increasing wind power
injection at one node can increase the power threshold at another node.

Several other works are worth noting. In [185], the authors presented what they
call a hybrid generation system of power control strategies of a grid-connected hybrid
generation system. Guan and co-workers presented a generalized mathematical model for
balanced and unbalanced grid conditions [186]. Ropp and co-workers introduced a full
gradient-based maximum power point tracking model, i.e., a single-phase grid-connected
model [187], and in [188], the authors reported a systematic investigation of microgrid
systems, using signal modeling.

The literature on approaches using stochastic differential equations is not as abundant
as for deterministic dynamical systems. Anghel and colleagues described the quasi-static
dynamics of an electric transmission network on a power grid under perturbations [189].
Wang and co-authors investigated the feasibility of a “green” power grid, addressing the
integration of solar photovoltaic panels and wind turbines into the grid for power supply
reliability with different renewable energy configurations [190]. Carrillo and co-workers
analyzed a family of stochastic differential systems modeling grid cell networks [191].
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Chau and colleagues applied the so-called stochastic grid bundling method to numerically
solve backward stochastic differential equations governing the local dynamics of the nodes
composing the grid [192]. Huifeng and co-authors proposed an adaptive grid based on
multiobjective Cauchy differential evolution for solving the so-called stochastic dynamic
economic emission dispatch (DEED) with wind power uncertainty [193]. DEED can be
formulated as an optimization problem aiming at minimizing the operating costs of a power
system, including environmental impacts (e.g., emissions), constrained to some operational
requirements, namely the balance between power supply and demand, distribution lines’
maximum capacities, and maximal power generation of the sources involved. Ren and
colleagues defined the load increment in the short-term time horizon, and introduced the
conditional risk value to help the distribution system operator in the incremental distri-
bution network [194]. Wang examined the fluctuations in power supply and demand and
applied stochastic network calculus to different configurations of renewable energy [195].
Alnowibet [196] presented a stochastic programming approach to address the so-called
wind power investment problem, i.e., the problem referring to the challenge of making
decisions about investments in wind power projects, namely the place to build wind power
converters, the type of converters, and the optimal time to do it, in order to maximize the
final profit, constrained to risk factors, which involve, e.g., meteorological patterns and
regulatory requirements. The author presented a bi-level framework that considers the im-
pact of grid strength on wind power investment decisions, using a stochastic programming
approach to model uncertainty and optimize investment strategies. More related to fre-
quency stability analysis, some stochastic modeling was done, using statistical approaches
beyond the assumptions of the central limit theorem, namely in the context of Lévy stable
statistics [197]. In this context, Wolff et al. uncovered the role of grid heterogeneities,
namely the amount of production and consumption, in the enhancing of non-Gaussian
features of power grids dynamics. Using linear response theory, Haehne et al. derived the
grid frequency measurements with non-Gaussian fluctuations, showing how they depend
on the wind power generation in the grid [198].

Approaches based on Bayesian inference are even less used when investigating hypo-
thetical scenarios than the other mathematical modeling approaches. Joshi and co-authors
introduced a new approach using Bayesian inference for stochastic differential equation
models in the grid-based incremental distribution network [199]. Chen and co-authors pro-
posed an adaptive construction and inference that is based on the genetic algorithm [200].
Ma and co-workers derived the frequency dynamics in a power grid, using Bayesian
statistics from real frequency measurements [201].

In the context of AI research, exploring energy scenarios with ML approaches is
becoming a hot topic since recent times, though it is still in its beginning. Rudin et al.
introduced a general process for transforming historical electrical grid data into models
that aim to predict the risk of failures for components and systems [202], using standard
ML models based on ranking algorithms. Anderson, in his patent, explained in detail about
the machine learning in power grid dynamics [203]. Vasseur et al. obtained a patent for a
machine learning algorithm in a network structure [204].

DL architectures have been utilized in various applications related to smart grids.
Rong et al. identified fundamental challenges in data communications for smart grids [205],
while Li et al. proposed a DL-based framework for detecting false data injection at-
tacks [206]. Runze et al. developed a stacked autoencoder neural-network-based DL
method for improving the accuracy of short-term load forecasting [66]. Wei et al. in-
vestigated DL-based approaches to predict multiple power types [67], and Wang et al.
provided a comprehensive review of renewable energy forecasting methods using DL [43].
Additionally, Huang reviewed the history of deep learning and introduced the basic
network structure and characteristics of deep neural networks in the context of grid intelli-
gence [44]. More recently, graph neural networks have been used to predict the ranges of
parameter values for which power grids are stable [207].
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For RL-based models, Mukherjee et al. presented a model-free optimal control power
system designed for electric power systems by using techniques of RL and adaptive–dynamic
programming [208]. Du et al. proposed an intelligent multimicro-grid energy management
based on deep neural network and model-free RL techniques [209]. Rivera et al. demon-
strated the standard RL models into smart grid devices to understand the dynamics of
smart grid devices, and characterized their behavior [210]. Sharma et al. emphasized RL
algorithms to simplify medium-level power grid problems [211]. Pu et al. reported a power
control framework combining edge computing and RL into power flow adjustment for
smart microgrid [212].

Ghasemkhani et al. proposed a robust deep RL algorithm to design a recommended
system (DeepGrid) [213]. Li reported recent exciting achievements of deep RL [214].
Liu proposed a novel multiagent RL method for job scheduling problems, especially for
realizing load balancing in grids [215]. Galstyan et al. studied a minimalist decentralized
algorithm for resource allocation in a simplified grid-like environment [216]. Peters et al.
showed how feature selection and regularization can be leveraged to smart electricity
markets using real-world energy market data [217]. Kuznetsova et al. reported a microgrid
for energy distribution and proposed a two-steps-ahead RL algorithm that plays a key role
in the achievement of consumer goals [218].

As for RC, Markovic et al. discussed how the cloud computing model can be used for
developing smart grid solutions [219]. Lukoševičius et al. proposed a brief introduction
and highlight some applications of RC on the power grid structure [220]. Zhou et al.
introduced the ResGrid of overview, architecture, and implementation status of the power
grid structures [221]. In general, we find a lack of literature exploring the potential pros
and cons of RC methods to simulate power grid scenarios.

4.2. Modeling of Energy Demand and Supply

The literature on modeling the supply and demand of RES is in general limited.
Verwiebe et al. conducted a systematic review of recent literature covering different aspects
of energy demand models, such as techniques, prediction accuracy, inputs, energy carriers,
sectors, temporal horizons, and spatial granularity [222].

In the dynamical system approach, Ochoa and van Ackere analyzed the capacity
expansion dynamics in the Swiss electricity market and the impact of policies such as
nuclear withdrawal and management of electricity exchanges [223]. Fu established a new
supply–demand system for energy resources in two regions of China [224], while Mei
et al. used nonlinear empirical research to identify the parameters of Shanghai’s energy
demand-supply system based on statistical data from 1999 to 2005 [225]. Matsypura’s dis-
sertation focuses on solutions for electric power supply chains, including power generators,
suppliers, transmission service providers, and consumer demands [226].

The use of stochastic differential equations in the context of demand and supply is
also limited. Song et al. developed a fuzzy stochastic model to predict such prices under
the effect of demand-related policy [227]. Ouyang et al. proposed the single-vendor and
single-buyer-integrated production inventory models [228]. Long et al. reported on a
stochastic inventory model based on the partial derivative equation for the supply–demand
problem [229].

Finally, using Bayesian inference models, Poole et al. proposed a sampling importance
resampling (SIR) algorithm initially for invertible models, and then extended it to the more
difficult, and more typical, case of noninvertible models [230]. Gupta et al. estimated spatial
Bayesian vector autoregressive models for six metropolitan areas of South Africa [231],
based on the first-order spatial contiguity and the random walk averaging priors. More
details on these methods and concepts from Bayesian statistics can be found in [232].

The price of electricity in the spot market is influenced by various factors related to
supply and demand, such as profits, energy security, and risk management. In addition to
the cost of energy production, the price of electricity is determined by the dynamic interplay
between supply characteristics and consumer demand. To address these complex dynamics,
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AI-based models have become more prevalent compared to traditional mathematically
inspired models.

The maintenance of energy consumption is an important task to obtain a sustainable
environment and can be automated with the help of machine learning services and solu-
tions. Khan et al. presented a hybrid energy forecasting model based on machine learning
techniques [68]. Jia et al. proposed a piecewise linear stochastic approximation algorithm
showing that the achieved growth rate cannot be reduced by any piecewise linear pol-
icy [233]. Macdougall et al. proposed a black box approach for investigating the longevity
of aggregated response of a virtual power plant using historic bidding and aggregated
behavior with machine learning techniques [69]. Sharma et al. examines techniques for the
accurate forecasting of natural gas demand [70].

With respect to the DL approaches, Paterakis et al. delved into the realm of deep
learning methodologies to effectively predict the aggregated energy consumption in their
research [234]. Coelho et al. devised a novel mechanism employing evolutionary computing
and GPU parallel function evaluation for forecasting household electricity demand using
low-frequency data [235]. In their study, Polson et al. proposed the utilization of deep
spatiotemporal models and extreme value theory to capture the influence of load spikes,
particularly focusing on the tail behavior [236]. Paudel et al. presented an innovative
approach through a context-aware architecture aimed at energy-saving techniques [237].
Petkovic et al. put forth a deep learning model based on spatiotemporal convolutional
neural networks to address the challenges related to gas flow forecasting in a complex
high-pressure transmission network [238].

In the RL approaches, Lu et al. proposed a dynamic pricing deep reinforcement algo-
rithm for energy management in a hierarchical electricity market that considers both service
provider’s profit and customers’ costs [239]. Similar approaches can be found in [240].
Bao et al. proposed a deep transfer RL algorithm for large-scale power systems [241].
Wen et al. studied RL utilized to explore the optimal incentive rates at each hour, which
can maximize the profits of both energy service providers [242]. Munir et al. studied
a risk-aware energy scheduling problem for a micro-grid-powered MEC network [243].
Vazquez-Canteli et al. used RL for demand response applications in the smart grid [45] and
a similar study in [244].

Finally, in the context of reservoir computing, Colla et al. presented a novel application
of the modeling of industrial processes in energy management [245]. Orang et al., in their
paper, reported a time-series forecasting technique composed of a group of randomized
high-order FCM models labeled R-HFCM using an RL algorithm [246].

4.3. Modeling Wind Power

Several reports and tools are available that provide modeling, mapping, and opti-
mization for wind energy, evenly distributed among the different modeling approaches.
Mathematical approaches in this context are already widely used. They mainly focus on
wind integration into power systems, analyzing and forecasting the effects on grid stability
and reliability.

With dynamical system approaches, Song et al. reported an overview of the latest
developments in modeling and control of wind power generation systems [247]. Hilbert et
al. reviewed the wind resources assessment models, site selection models, and aerodynamic
models including wake effect [46]. Pulgar-Painemal et al. presented a dynamic model
appropriate for power system analysis [248]. Akhmatov presented a PhD thesis carried out
within the areas of electric power engineering and grid connection of wind power [249].
Muljadi et al. illustrated the process of a dynamic model for validations of wind turbine
generators and wind power plants with the available data [250]. Guo et al. proposed a
nonlinear control design technique for wind generation systems based on a high-order
nonlinear dynamical system [251]. Li et al. dealt with the stochastic characteristic of the
wind speed and provided an autoregressive moving-average (ARMA) model for wind
speed subjected to particular power spectral density [252]. In order to consider high-order
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statistical moments, such as heavy tails, other authors have tried coupled integrated ARMA
(ARIMA) processes to model the wind speed fluctuations [253].

Stochastic differential equation-based approaches have shown significant advance-
ments in predicting temporal wind speed patterns that exhibit statistical properties resem-
bling real-world observations. Moller et al. introduced an innovative methodology for
wind power forecasting by employing logistic-type stochastic differential equations [254].
Iversen et al. proposed a modeling framework for short-term probabilistic wind speed
forecasting [255]. Wang et al. incorporated variable wind power into a dynamic model
to analyze the long-term stability of power systems [256]. Olsson et al. presented proba-
bilistic models to assess the potential impact of large-scale integration of wind power [257].
Sauhatas et al. utilized historical electricity price data to evaluate the viability of construct-
ing wind energy farms in a specific region [258]. Zarate et al. proposed two general proce-
dures for developing wind speed models based on stochastic differential equations [259].
Verdejo et al. discussed uncertainties in electrical power system analysis and presented a
systematic methodology using stochastic equations [260]. Su et al. developed a stochastic
equation-based model to maximize the utilization of wind turbine gearboxes [261]. Louka-
tou et al. proposed a continuous-time model incorporating the longer-term daily cycle of
wind speed [262]. Jiang et al. presented a novel approach for modeling power systems
with integrated wind power using stochastic differential equations [263].

Inspired by concepts from statistical physics out of equilibrium involving evolution
equations of distributions of stochastic variables—so-called Fokker–Planck equations—Peinke
and Friedrich [264,265] introduced a framework to derive deterministic and stochastic con-
tributions of stochastic processes. This framework was then extensively applied to different
stochastic processes, beyond the scope of wind power [266]. Specific applications of this
framework in the context of wind data include the assessment of power performance of
wind turbines [267,268], modeling of short-time fluctuations of wind and solar power [269]
as well as 10-min averages wind power curves [270], the torque of wind turbines [271],
fatigue loads on wind turbines [272] and wind turbine vibrations [273].

The deterministic and stochastic contributions of such equations may describe, re-
spectively, the dynamics of the wind turbine functioning and its interaction with the
turbulent atmosphere.

However, measurements and records of wind speed, wind power, and other power
grid data may be subjected to so-called measurement noise. This measurement noise, also
known as observational noise, spoils the data series by hiding the underlying stochastic pro-
cess. Several approaches have been published to overcome this challenge, with results that
are of interest to other research communities, e.g., in signal processing. Böttcher et al. [274]
and Lind et al. [275] introduced a method that allows the estimation of the different terms
in SDEs to model wind stochastic processes in the presence of strong, delta-correlated Gaus-
sian measurement noise. An alternative approach was presented by Lehle [276,277], which
enables one to deal with large amplitude of exponentially correlated Gaussian noise, and
in [278], the method was extended to a nonparameterized form of the different terms in the
SDE, in order to distinguish between two superposed signals in the series of measurements.

The main framework to derive both deterministic and stochastic contributions were
already implemented in open-source routines in R [279], with extensions to more gen-
eral stochastic processes such as jump-diffusion processes (in Python) [280] and with the
derivation of entropy-based measures (in MATLAB) [281]. Reviews of these frameworks
and methods in stochastic differential equations can be found in [266] and more recently
in [282].

Chen et al. proposed a discrete Markov model for wind speed and power time series
using Bayesian inference models [283]. Li et al. provided a comprehensive review of
Bayesian methods applied in wind energy conversion systems, summarizing the basic
theories and examining the literature on their applications [49]. Xie et al. proposed
a short-term wind power probabilistic forecast that captures the dynamic behavior of
the underlying physical wind power stochastic process under various meteorological
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conditions using nonparametric methods [284]. Haslett et al. focused on estimating
the long-term average power output from a wind turbine generator [285]. Chiodo et al.
investigated the characterization of destructive wind forces, particularly extreme winds,
also using a Bayesian model [286]. Ning et al. proposed a data-driven adaptive robust
optimization framework for integrating wind power into smart grids [287]. Pesch et al.
presented a novel statistical approach based on Markov chains that can reproduce wind
power time series by incorporating a variable second lag [288]. Mbuvha explored the
application of Bayesian neural networks for one-hour and day-ahead forecasting of wind
power generation in his thesis [289].

From the AI side, the modeling of wind energy is more related to (high) accuracy of
weather forecasts, as well as with the support plant monitoring and maintenance proce-
dures. By leveraging artificial intelligence, the major players in the energy market aim to
optimize the strengths of wind power generation while minimizing its limitations.

ML models give better results/predictions than classical statistical models, especially
in the form of feature extraction and model generalization. Demolli et al. studied long-term
wind power forecasting based on daily wind speed data using ML [290]. Negnevitsky et al.
reviewed the main forecasting techniques used for power system applications, focusing on
loads, energy prices, and wind power prediction [47]. Heinermann et al. investigated the
use of machine learning ensembles for wind power prediction [291], and similar studies are
presented in [291–294]. Other authors proposed novel algorithmic solutions using various
forms of machine learning techniques in multistep ahead wind power generation (see,
e.g., [48,295–297]). A stochastic-based machine learning model is proposed for short- and
midterm forecasting of solar and wind power [298,299]. Singh et al. proposed to improve
the forecasting accuracy of short-term wind energy generation in Turkish wind farms,
using gradient descendent schemes of tree-based methods trained with wind speed and
direction [300].

For wind time series, DL approaches focus mainly on the long short-term memory
(LSTM) network and the convolutional neural network (CNN), with outstanding perfor-
mance. Mishra et al. conducted short- and long-term multivariate predictions using five
deep learning models [301] and Wang et al. proposed a method to advance point of proba-
bilistic wind power [71,302]. However, some comparative studies [273] have shown that
ANN implementations in general are not as effective in grasping the statistical features of
wind data sets as other mathematically-based models such as SDEs described in some of
the previous paragraphs of this section.

A new lower upper bound estimation (LUBE) model based on gradient descent opti-
mization method for short-term interval prediction of wind is proposed by Li et al. [303].
Tao et al. reported the hidden rules of wind power patterns based on deep belief net-
works, extracted from historical data collected at wind farms [304]. Hossain et al. reported
very short-term forecasting of wind power generation by using DL architectures [305]
and similar works are found in [306,307]. Wang in his article reviewed the various DL
technologies being used in wind speed and wind power forecasting [308], and similar
works are presented in [309,310].

Articles on RL approaches to model wind power and wind data deal mainly with
forecasting models of energy production at wind power plants from single wind turbines
and also with wind farm control. Zhang et al. studied the control performance of automatic
generation control for wind power ramping using deep RL [311]. Moreover, they also
proposed a two-step wind power prediction method for long-time-scale coarse prediction
and short-time-scale fine correction [312]. Yin et al. proposed a wind power prediction
model based on ensemble reinforcement learning [313]. Dong et al. provided a com-
prehensive review of the development and most recent advances in wind farm control
technologies [314]. Malik et al. proposed an adaptive self-learning wind speed predicting
model using fuzzy reinforcement learning [315]. Wei et al. presented a self-dispatch model
for wind speed based on deep RL [316]. Zhong et al. studied dynamic pricing demand
using Weber–Fechner law and clustering algorithms [317]. Kuznetsova et al. use reinforce-
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ment learning algorithms [218] to propose a battery scheduling, which plays a key role
in the achievement of the consumer goals. Li et al. adopted an agent-based simulation
approach to investigate the bidding optimization of a wind generation company in the
deregulated day-ahead electricity wholesale markets [318], and a similar study is presented
in [319].

Finally, with respect to the reservoir computing models in the wind power prediction,
Moreno et al. investigated wind power ramp events, aiming at predicting them, based on
reservoir computing methodology [320]. Similar approaches can be found in [321–324].
Wang et al. introduced a novel forecasting system that can perform deterministic and
probabilistic forecasting of wind power [325], using dynamic reservoir RNN, which the
authors show to outperform standard gradient descent algorithms. Hu et al. proposed
a new forecasting approach to estimate the wind power prediction intervals to quantify
the prediction uncertainty [326]. Mammedov et al. proposed a weather prediction RC
method divided into two models for wind speed and atmospheric system forecasting [327].
Ferreira et al. introduced what they call the reservoir computing and design training, which
simultaneously optimizes reservoir parameters, topology, and weights, avoiding some
of the drawbacks of RC implementation, namely spectral radius rescaling [328]. A new
method for attack detection of smart grids with wind power generators using reservoir
computing was introduced by Hamedani et al. [329].

4.4. Modeling Solar Power

Solar power is an RES that has been developed for longer than wind power. Modeling,
forecasting, simulating, and analyzing solar power are, however, as challenging as wind
power due to its strong fluctuations, mainly driven by cloud cover and wind speed patterns.

In the field of dynamical systems, Chaabene et al. proposed a dynamic model that
predicts the thermal performance of low-temperature solar power plants [330].
Similar research has been reported in other studies such as [331–335]. Bessa et al. introduce a
spatial–temporal forecasting method based on the vector autoregression (VAR) framework
that utilizes data from smart measurement devices and distribution transformer controllers
to predict solar generation patterns [336]. A similar study can be found in [337]. Farrokhfal
et al. concentrated on the integration of solar energy generators into the electrical grid
through the use of energy storage systems (ESS) [338]. Chong et al. discussed the validation
process of dynamic real-time monitoring system (RMS) models by comparing simulations
with actual plant responses and assessing the accuracy requirements set by the Australian
Energy Market Operator (AEMO) [339].

Bayesian inference models have also been utilized in solar power modeling.
Panamtash et al. proposed a Bayesian approach based on copulas to enhance solar power
forecasting, using the joint distribution between solar power and ambient temperature [340].
Similar works can be found in [341–343]. Short-term predictions of photovoltaic (PV) power
in solar power technologies were reported by Buwei et al. in [344], and a review of data
mining methods for solar power data is presented in [50]. Sheng et al. proposed a weighted
Gaussian process regression approach as an innovative method for solar power prediction,
where data samples with higher outlier potential have a lower weight in the modeling
process [345]. Oluwafemi et al. presented a nonlinear autoregressive exogenous neural
network (NARX) model to predict solar power in Nigeria [346]. Gondalia et al. reviewed
the work published in the field of solar power forecasting, highlighting the best tools and
techniques to better predict the plant load factor [347].

In the realm of SDE-based models, much of the existing literature focuses on gaining
empirical insights into generating and assessing stability and reliability within the energy
grid. Iversen et al. proposed an SDE model of the uncertainty associated with solar
irradiance [348]. Badosa et al. derived forecast frameworks, based on SDE, of the daily
solar irradiance [349]. Similar studies can be found in [254,255,350,351].

Zhang et al. in their paper focused on the prediction of PV output power in dif-
ferent seasons and overcomes the uncertainty of PV power generation [352] using SDE.
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Qui et al. proposed an ultra-short-term stochastic generation control method for cascaded
hydropower to mitigate solar power volatility [353]. Zhang et al. reviewed concentrated
on solar power plants technologies and solar tower collectors, addressing the pros and
cons of each one and describing the use of the predictions in simulating the required
plant configuration of an optimum STC [354]. Moreover, Peinke and Friedrich [264,266],
described the modeling of wind power to solar power, e.g., in [269], to quantitatively assess
the power fluctuations of RES.

AI-based approaches have been investigated as a means of learning key information
about solar power in the multidimensional information domain, rather than relying on
complex rules and classical models. For classical models, long time-series data such as solar
radiation, temperature, or wind data are required to better simulate the design, control,
and operation of solar energy systems. However, such long-term measurements are often
not available for most locations or, where available, may suffer from various shortcomings
such as poor data quality or insufficient length. AI techniques offer a promising solution to
overcome these challenges.

In the domain of ML approaches, Munawar et al. presented a framework for quantita-
tively evaluating various models and feature selection methods for short-term solar power
forecasting [355]. Amarasinghe et al. applied several ML algorithms for solar power fore-
casting in the Buruthakanda solar park in Hambantota, Sri Lanka [356], and similar studies
have been conducted for other locations worldwide [357,358]. Jawaid et al. performed a
comparative analysis of ANNs and standard regression algorithms for forecasting [359].
Sharma et al. explored site-specific prediction ML models automatically created from a
framework for solar power generation using weather service forecasts. Similar works
can be found in [337,360]. Ramadhan et al. compared the accuracy of physical and ML
models for solar power generation at different stages [361]. Guher et al. estimated solar
power based on hourly meteorological data from a specific location using various ML
algorithms [362]. Ibrahim et al. evaluated the performance of different ML schemes for
anomaly detection in photovoltaic components [363]. An overview of ML-based forecasting
methods for solar irradiation can be found in [364].

Complementary to ML, DL approaches are used, particularly in situations where big
data sets exist. Torres et al. introduced a DL approach based on feed-forward NN for big
data series of solar energy [365]. Similar works can be found in [366–369] from long- to short-
term solar power forecast [370,371]. Wen et al. presented an investigation of the residential
power load and PV power output, which are forecasted using the input of the microgrid
optimization model. The adoption of EVs and ESS in microgrids contributes to 8.97% cost
reduction [372]. Chang et al. introduced weather forecasts using DL techniques [373].
Torres et al. proposed a new approach based on deep learning for the task of solar PV
power forecasting [374]. Zaouali et al. applied an autoconfigurable middleware based on
an LSTM model for several forecasting time dimensions to choose the significant time scale
for the learning scheme [375]. Poudel et al. also presented an LSTM network to predict
solar power output. The results obtained from the comparison of LSTM NNs and moving
averages (MAs) indicate that the LSTM approach is reasonable for short-term solar power
prediction [376].

In the realm of RL approaches, Leo et al. utilized RL to derive an optimal management
strategy for a grid-connected solar microgrid system, considering a consumer, a solar
photovoltaic system, and a battery [377]. Raju et al. also focused on a grid-connected
solar microgrid system comprising a local consumer, a solar photovoltaic system, and a
battery [378]. Singh et al. introduced deep RL with a fuzzy reward mechanism to track
the maximum power point and improve the translation of continuous space into different
levels of abstraction [379]. Heidari et al. proposed a control framework based on RL that
considers the water usage behaviors, solar power generation, and weather conditions,
aiming to strike a balance between energy use, occupant comfort, and water hygiene in a
solar-assisted space heating and hot water production system [380].
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Finally, approaches using RC have been also proposed. Hu et al. proposed a new
forecasting approach to estimate the wind power prediction intervals to quantify the
prediction uncertainty [326]. Basterrech used the so-called echo state networks model to
predict solar power output [381]. This model is a variant of RNN often used for solving
temporal learning problems. In their work, the authors base their implementation on a
generalization of swarm optimization named geometrical particle swarm optimization.
These methods of reservoir computing, and particularly the echo state network model,
show the potential to significantly improve the accuracy of power grid monitoring and
veer towards allowing real-time decisions for avoiding disruptions in the power grid.
However, both ML and RC models are not very ubiquitous yet in the research literature of
solar power modeling.

4.5. Modeling Biomass Power

Biomass power is produced based on the huge amount of waste produced, whose
calorific value is what can be used as a part of formed fuels. However, while it can mitigate
the impact of fossil fuels on the environment, it also leads to significant environmental
impact due to its combustion generating greenhouse gasses.

In the domain of mathematically inspired models, Macek et al. developed long-
term optimal maintenance strategies that leverage the dynamics of boiler efficiency and
anticipated heating demand, derived from empirical data, for improved performance [382].
Moraes et al. investigated the impact of biomass burning in the Amazonian forest on
absorbed solar radiation and net radiation fluxes at the surface, highlighting the effects
of this perturbation [383]. The transient basin stability is examined through deterministic
quantities such as the escape probability and the mean first exit time, providing insights
into system dynamics [384]. Ludovici et al. focused on simulating the dynamic behavior
of biomass power plants, specifically considering the utilization of an externally fired
micro-gas turbine for electricity generation [385]. Jadhav et al. proposed the application of
fractional calculus theory to derive a compact model of a gas turbine used in the conversion
of biomass into electrical power, aiming to enhance the understanding and analysis of the
system [386].

As for Bayesian inference models, Spinti et al. proposed the implementation of a
digital twin for analyzing biomass energy systems [387]. Nicoulaud-Gouin et al. addressed
biomass dynamic models of evergreen forests in order to improve biomass growth dynamic
assessment at the regional scale [388]. Hou et al. [389] illustrated the procedures of Bayesian
inference calibration of the so-called building energy models. Xie et al. proposed a Bayesian
approach applied to develop two additive biomass model systems [390]. Hilborn et al.
considered Bayesian methods for decision-making procedures using uncertainty measures
associated with biomass data [391]. Khorri et al. developed a probabilistic risk assessment
model for an empty fruit bunch boiler using a Bayesian network approach [392]. Chiu et al.
used a Bayesian model to examine the effects of extreme weather and the invertebrate
grazer community on epilithic algal biomass dynamics over 10 years [393].

Stochastic differential equation models are more limited in the literature on biomass
modeling than the other mathematical approaches. Shabani et al. developed a two-stage
stochastic optimization model to estimate the uncertainty of biomass supply [394], and
Titi et al. provided a general framework for analyzing the optimal harvest of a renewable
resource [395].

Our survey shows that, for the large-scale assessment of biomass energy, mathematical
modeling approaches are limited due to stock variability, conversion economics, and
supply chain reliability. In recent decades, AI-based models have been applied to bioenergy
systems to address these challenges.

With ML approaches, Elmaz et al. employed regression techniques to predict different
compound outputs, such as CO, CO2, CH4, H2, and HHV, which result from the biomass
gasification process [396]. Umenweke et al. also reported advances in the application of
ML to biomass prediction and management [397]. Zuocai Dai et al. appleid feed-forward
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ANNs to estimate biomass efficiency [387,398]. Xing et al. proposed three ML approaches
estimating specifically the biomass compound HHV [399]. Tao et al. proposed a method
based on infrared spectroscopy and ML models [400]. Han et al. used structural and
spectral information, provided by remote sensing from aerial vehicles, in combination with
ML methods to predict maize biomass [401].

In what concerns DL models, Zhang et al. developed an approach to estimate biomass
by integrating LiDAR and Landsat-8 data through a DL framework, including autoen-
coders [402]. Li et al. presented a methodology for predicting NOx emissions, which is
based on the combustion process of biomass [403,404]. Kartal et al. introduced a circulating
fluidized bed gasifier model as a tool to create a huge amount of data sets for the training of
a DL model to predict the lower heating value of the biogas [405]. Nam et al. in their report
analyzed DL model forecast electricity demand and renewable energy generation [406].
Here, the authors suggest that renewable energy scenarios guide the energy policy for Jeju
Island. Ardabili et al. reviewed different DL techniques applied to biofuel production and
consumption, as well as their environmental impacts [51]. Ferrag et al. proposed a novel
DL framework for smart grids, entitled DeepCoin. The proposed approach is composed of
an intrusion detection system, using RNNs for detecting network attacks and fraudulent
transactions in the blockchain-based energy network [407].

Finally, with respect to RL models, less literature is available. Kozlov et al. dealt
with the control and optimization problems combining solar and specific biomass sources,
namely diesel power plants [408]. Obafemi et al. reviewed the different ANN models
for predicting biomass thermal value, identifying some research gaps in this topic [409].
It seems that reservoir computing approaches were still not applied to biomass power
modeling, and SDE- and ML-based approaches also still lack to a significant extent.

4.6. Modeling the Energy Market: from Power Grid Data to Energy Prices

Mathematically inspired models for energy market forecasts mainly focus on electricity
markets and carbon emission factors that drive energy prices. Several reports are available
in the literature and some important articles are presented here.

Through the application of dynamical systems approaches, researchers have made sig-
nificant contributions to understanding energy markets and related dynamics. Wang et al.
introduced a nonlinear system model that incorporates energy prices, supply, and economic
growth, allowing for the analysis of the dynamic behavior of the overall system and its
subsystems [410]. Similarly, Duan et al. investigated a dynamic grey time delay model
for energy price prediction, focusing on the detailed examination of the effects of time
delay [411]. In the realm of risk assessment, Cao et al. proposed a method that considers
the uncertainty and dynamic correlation of energy prices, providing insights into effective
risk management [412]. Zhou et al. delved into the stability conditions of wholesale electric-
ity markets by analyzing real-time retail pricing and incorporating realistic consumption
models with memory [413]. Other studies have explored various aspects of energy price
dynamics, such as volatility in power grids [414], empirical analysis of electricity consump-
tion in commercial and industrial sectors [415], nonlinearities and stochasticity in asset
price dynamics [416], real-time retail pricing models [417], and the influence of carbon
emission factors [418]. Additionally, within the framework of stochastic modeling of wind
data, a stochastic analysis of power output in wind farms has been conducted to identify
the principal wind turbines that characterize the overall output of these farms [419].

Muller et al. presented a novel Bayesian estimation method for modeling electricity
prices [420]. Dehghanpour et al. proposed an agent-based model to address short-term
strategic bidding in conventional energy generation.

SDE models have also proven valuable in valuing derivative contracts and conducting
financial simulations for energy risk management. In this regard, Lewis provided an
overview of commonly used stochastic processes in these applications, emphasizing their
relevance in evaluating derivative contracts and simulating energy-related risks [421]. For
Brazilian energy prices, a novel SDE model was applied in [422] to identify the optimal
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SDE representation. Simon et al. introduced a nonlinear stochastic continuous-time model
that effectively captures the key characteristics of price dynamics [423]. Garrido et al.
focused on numerically evaluating swing options in electricity markets using a two-factor
model [424]. Ecclesia et al. presented models describing the dynamics of spot prices
for energy commodities and their associated forward curves [425]. Yin et al. utilized
a stochastic differential method to provide long-term price guidance for flexible energy
service providers, addressing the challenges posed by long-term market imbalances [426].
Benth et al. modeled spot prices in energy markets using exponential non-Gaussian
Ornstein–Uhlenbeck processes, discussing the pricing of forwards and options, as well as
the determination of the market price of risk in incomplete markets [427].

AI-based methods are capable of uncovering hidden relationships within data, al-
though they may have certain limitations. In the field of price forecasting, machine learning
(ML) techniques have experienced rapid development. Ghoddusi et al. provided a review
of ML techniques in energy economics and highlighted the potential for improved crude
oil and electricity price predictions using different datasets [52]. Herrera et al. described
datasets spanning nearly four decades, containing monthly prices of six major energy
commodities [428]. Sheha et al. presented various models for the proactive prediction of
energy demand in entire cities [429]. Castelli et al. focused on improving the accuracy
of electricity price forecasting by employing machine learning techniques that combine
standard regression techniques with genetic algorithms [430]. Additional studies on this
topic can be found in [406,431–434]. Mosavi et al. provided a comprehensive overview
of ML models utilized in energy systems, along with a novel taxonomy of models and
applications [435]. Antonopoulos et al. offered an overview of AI methods applied to
demand–response decisions [436].

In the realm of deep learning (DL) approaches, Lago et al. proposed a novel model-
ing framework for electricity price forecasting [437], with similar work being presented
in [438,439]. Alameer et al. introduced a DL-based method for forecasting coal
prices [440,441]. Brusaferri et al. proposed a novel methodology utilizing Bayesian DL
techniques for probabilistic energy price forecasting [442]. Mari et al. discussed a DL-based
approach to model the complex dynamics of commodity prices observed in real mar-
kets [443]. Scholz et al. presented and analyzed a novel approach for predicting the energy
price in the continuous intra-day market at the European power exchange spot [444].

RL-based algorithms have been developed and applied to diverse energy price
datasets, offering valuable insights. Xu et al. addressed the challenge of determining
both energy bids submitted to the electricity market and energy prices charged in the
retail electricity market using RL techniques [445]. Nanduri et al. presented a solution
framework based on RL and nonzero sum stochastic game theory, enabling the assessment
of market power in day-ahead markets [446]. Kim et al. investigated dynamic pricing and
energy consumption in the context of microgrids, employing RL methods to tackle these
problems [317,447]. Mocanu et al. pioneered the utilization of deep RL approaches in the
context of smart grids, exploring their benefits [448]. Lu et al. proposed a dynamic pricing
RL algorithm for effective energy management in hierarchical electricity markets [449].
Jogunola et al. provided a comprehensive review of consensus algorithms combining
blockchain and deep RL for energy trading decision-making [53]. Jiang et al. applied
RL techniques to optimize the performance of heating, ventilation, and air-conditioning
systems in building construction, highlighting potential control strategies [450].

Finally, there are only a few papers on RC. One of them is [451], where the authors
propose the unscented reservoir smoother, a model that unifies both the deep sequential
model and the state-space model to achieve both frameworks´ superiority.

5. Future Perspectives

This section extends some of the topics from the previous section and closes the paper
by putting in perspective the state of the art of the different modeling approaches covered
in our survey. In particular, we will first extend the survey to recent research on topics of
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energy sustainability, namely covering exploratory approaches to more futuristic scenarios.
We will focus on the modeling of the different strategies for energy storage and emission
reduction. In the end, we will come back to the tension between the two schools of thought
on which this survey is based.

5.1. Exploring Scenarios of Energy Storage

Exploring different energy storage scenarios includes the modeling of grid operation,
planning, and resource adequacy of different storage strategies, as well as their challenges
with respect to physical and financial constraints of energy storage and the range of services
that those strategies can provide. Energy storage systems give high stability and flexibility
in the variations of supply and demand of microgrids, especially in RES-based grids. The
variety of energy storage systems and their contribution to the power grid performances
are tabulated in Table 3.

In the realm of storage scenarios, mathematically inspired models cover various
aspects such as planning, optimization, maintenance, and control. Within the context of
dynamical system approaches, Ortega et al. proposed a generalized model for energy
storage systems to analyze voltage and angle stability [452]. Sidorov et al. provided a
comprehensive review of battery energy storage methods and offer an example of battery
modeling for renewable energy applications, focusing on an adaptive approach to solve
the load-leveling problem [453]. Calero et al. developed a dynamical system model for
battery energy storage [454], and a similar work can be found in [455]. Gallo et al. proposed
a procedure to determine battery model parameters by fitting experimental data and
integrating it into a real-time smart grid management system alongside energy source
and load models [456]. Berrada et al. introduced a modeling framework for the operation
of hybrid renewable energy systems [457], while Raccanello et al. analyzed the behavior
of single-tank configurations of thermal storage involving mass transfer [458]. Yu et al.
utilized the lumped parameter method to develop models for different thermal energy
storage systems [459]. Maton et al. explored dynamic models for compressed air and
hydrogen energy storage systems [460], and Bird et al. presented a reduced-order dynamic
model of a power system incorporating sensible thermal energy storage in the form of a
stratified hot water tank [461].

In the context of Bayesian inference, Chiodo et al. reported the application of mul-
ticriteria analysis to design batteries energy storage systems [462]. Jacob et al. used
such approaches to identify the parameters of a fractional order battery system [463].
Suharto introduced Bayesian causal maps to predict wind power generation and assess
storage strategies [464]. Khan et al. developed a hierarchical Bayesian network to estimate
residential energy storage degradation, which is trained using experimental results of
lithium iron phosphate batteries [465].

With mathematically inspired models based on SDEs, Ortega et al. described a variety
of deterministic techniques to model energy storage devices [466], and Barreiro-Gomez et al.
presented simulations of a microgrid, exploring different energy storage strategies [467].
Johnson et al. reported a method based on partial differential equations, using the stochas-
tic differential equation for stochastic electricity selling price [468]. Ortega et al. offered
a comprehensive stochastic analysis of the influence of energy storage systems on the
transient stability of transmission grids, shedding light on this topic [469,470]. Bayram et al.
introduced a sharing-based architecture for energy storage systems, where the stochastic
nature of customer demands is taken into account. This architecture enables the accommo-
dation of aggregate demand by utilizing a combination of power drawn from the grid and
the storage unit when the demand surpasses the grid capacity [471].

Durante et al. introduced a new model that has some hidden complexity, defining
henceforth a partially observable Markov decision process [472]. Emereuwa models energy
storage systems using integrated mathematical homogenization theory and stochastic
models [54]. Chaychizadeh et al. introduced a stochastic dynamic simulation of a hybrid
system, combining a thermal-compressed carbon dioxide storage system with RES, namely
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wind power, reporting that it is capable of smoothing RES output even in a scenario of
random production [473]. Finally, a combination of dynamical systems approaches and
SDEs has been used to explore different scenarios of integrated electrical storage units [474].

Table 3. The different energy storage systems and their effect on the power grid performances.

Energy Storage Systems Effect on Power Grid Performances

Supercapacitors (store electrical
energy directly and thus do not

need to convert to other
energy forms)

Supercapacitors, an alternative form of battery, find application in power grids, particularly microgrids, to
stabilize voltages during periods of power peaks. They are well suited for addressing short and medium

transient events due to their high specific power. By dampening peaks and ripples in both loads and sources,
supercapacitors contribute to voltage stability. Moreover, they enhance the flexibility of microgrids as they enable
better adaptation to varying sources and demands across a wider current range, provided effective management

is in place.

Hydrogen tanks

Hydrogen storage is considered a viable option for mitigating production plant outages and managing demand
fluctuations. It serves as an effective energy storage approach and contributes to the balancing of power grids.

The utilization of hydrogen presents a promising solution for distributing generated renewable energy.
Introducing hydrogen into microgrids can significantly impact their behavior, particularly in terms of the peak
electrical energy transfer between the microgrid and utility grid. As the level of hydrogen penetration increases

within the microgrid, the peak of electrical energy transfer decreases, indicating the potential for reduced
dependency on the utility grid.

Flywheels (store energy in the
form of mechanical energy)

Stabilizes the frequency and degree of power grids and serves as short-term compensation storage. Flywheel
storage power plants are available in the ranges of KWh to tens of MWh, similar to battery storage power plants.

Thermal energy storage systems
(convert electrical into thermal

energy; the storage medium can
be solid or liquid)

Thermal energy storage systems find utility in both small-scale applications for heating purposes and large-scale
applications for electrical energy generation. In large-scale applications, these systems utilize stored heat energy
to generate electricity during periods of high power demand. They exhibit a rapid response capability, making
them suitable for meeting short-term high-load demands. Furthermore, thermal energy storage systems offer the
advantage of low initial investment and maintenance costs. However, it is important to note that these systems

need to be specifically designed according to the intended application area to ensure optimal performance
and efficiency.

Pumped hydroelectric storage
(PHES; makes use of

gravitational potential energy to
store energy, managing upper

and lower reservoirs)

Due to its gravitational potential energy of flow, whenever the power peak demands the elevation reservoirs
open the turbines. For low power demand/cheap power, the operations are reversible, i.e., the water is pumped
up. PHES allows more electricity sold for peak demand and increases revenue. The applications of PHEs are low
operational cost, immediate operations, handling large load variations, high-pressure operations, and compact

storage volume.

Compressed air energy storage
(CAES; electromechanical device
that produces electrical energy

converted from
mechanical energy)

CAES is a technology that involves storing high-pressure air in a tank and then expanding it through a turbine
connected to a generator to produce electricity. It serves as an alternative to pumped hydroelectric storage for

medium-term energy storage. During the compression process, the air temperature increases, while during the
expansion, the pressurized air removes heat from the system. Storing the heat generated during the compression

phase significantly enhances the efficiency of the energy storage process. There are two main types of CAES
systems: diabatic and adiabatic. Each type employs different approaches to manage the heat produced during

compression. Additionally, there is a third type called isothermal CAES that aims to maintain a constant
temperature throughout the process.

Batteries
The batteries stabilize the microgrid voltage (DC bus) to store large amounts of energy during the narrow voltage
operation. It is increasing the cost reduction, improvement in performance, and specific energy in mobile and

stationary energy applications.

AI approaches have shown promise in improving the accuracy and performance of
energy storage systems. Rangel-Martinez et al. presented an extensive overview of the
current state of ML applications in the manufacturing sectors that impact sustainability
and renewable energy systems [475]. Similar works focusing on storage strategies can
be found in [429]. Chen et al. utilized ML approaches to introduce basic procedures for
energy storage strategies, covering areas such as catalysis, batteries, solar cells, and gas
capture [476]. Artrith reported on the recent progress of ML approaches in computational
modeling of material interfaces [56]. Gao et al. provided a comprehensive review of recent
advancements, concepts, approaches, and applications of ML implementations in various
energy storage systems, including battery energy storage, hybrid energy storage, grid and
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microgrid systems, pumped-storage systems, and thermal energy storage systems [477].
Zitnick et al. introduced the challenges in finding suitable electrocatalysts and utilized the
Open Catalyst Project (OC20) dataset for model training [478]. Henri et al. presented a
supervised ML approach for predicting and operating residential PV battery systems [479].
These studies highlight the potential of AI and ML techniques in optimizing energy storage
systems and improving their operational efficiency.

In the realm of deep learning (DL) approaches, Zsembinszki et al. presented a DRL
architecture capable of handling the complexity of an innovative hybrid energy storage
system to achieve optimal efficiency in terms of energy consumption [480]. Hafiz et al.
introduced a framework for energy management, combining optimization and control
schemes [481]. Jang et al. proposed a DL-based energy storage system management method
for energy-efficient private residencies [482]. Miao et al. introduced a control strategy for
battery energy storage systems using a DL adaptive–dynamic algorithm for optimiza-
tion [483]. Chuttar et al. developed ANN-based prediction tools [484], and Kim et al.
proposed an energy storage algorithm based on the optimization of water filling followed
by a load forecasting based on LSTM neural networks [485]. These studies demonstrate the
application of DL techniques in optimizing the operation and management of energy stor-
age systems, leading to improved efficiency, cost-effectiveness, and prediction capabilities.

In the realm of RL models, Wang et al. introduced a novel temporal arbitrage policy
for energy storage that maximizes its efficiency [486]. Henze et al. evaluated the operation
of electrically driven co-ol thermal energy storage systems in large commercial buildings
using a model-free RL control algorithm [487]. Cao et al. proposed a model-free deep
RL method that optimizes battery energy arbitrage while considering accurate battery
degradation models [488]. Oh et al. investigated an RL-based energy storage system
operation strategy that effectively manages the uncertainty associated with wind power
generation [489]. Gorostiza et al. proposed a deep RL-based approach for multielectrical
energy storage systems, enabling them to provide frequency response services to the power
grid [490]. Shang et al. developed an RL solution that combines Monte-Carlo tree search
with domain knowledge expressed as dispatching rules [491]. Sun et al. proposed a sparse
neural-network-based RL scheme to optimize the control system structure for enhancing
the transient stability of power grids with energy storage systems [492]. Nyong-Bassey et al.
proposed RL-based hybrid energy storage systems aimed at mitigating load demand and
addressing the stochastic variability of renewable energy sources (RES) [493]. Yang et al.
proposed a deep RL-based energy management strategy specifically for supercapacitor
energy storage systems in urban rail transits [494]. Additionally, Zhou et al. proposed an
adaptive and lightweight algorithm to obtain the optimal scheduling strategy for energy
storage systems [495].

Finally, reservoir computing approaches are also being explored for energy storage sce-
nario exploration, although further research is required to fully understand their potential
in this domain.

5.2. Exploring Scenarios of Emission Reduction

The modeling of emissions and reductions can be based on various conditions, which
need to be assumed or established when conducting simulations. These conditions include
the power consumption of the whole society, wind power, PV and other technologies, as
well as energy storage capacity, emission factors of the power industry, carbon sink quota
of the power industry, and the carbon sink which is provided by various sink repositories,
such as the so-called LULUCF (Land Use, Land-Use Change and Forestry) and the CCUS
(Carbon Capture, Utilisation and Storage).

Mathematically inspired models have been employed in various domains, with dy-
namical systems serving as a valuable tool. Fang et al. applied a dynamical systems
approach to explore the dynamic evolution of energy-saving and emission reduction pat-
terns in response to energy construction adjustments. They developed a three-dimensional
spatial energy-saving model to analyze these patterns [496,497]. Xu et al. utilized a dynamic
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simulation model to forecast China’s CO2 emissions and gross domestic product develop-
ment under different energy structure adjustment plans and carbon intensity constraints
from 2008 to 2020 [498]. Song et al. developed a dynamic optimization model based on a
dynamic input-output approach, enabling the examination of regional economic, energy,
and environmental impacts [499]. In the context of a low-carbon environment, Zhou et al.
formulated a differential game involving a manufacturer and a retailer in a dual-channel
supply chain [500]. Barros et al. discussed greenhouse gas emission targets in Argentina
and proposed an emission target formulation considering macroeconomic and sectoral
projections, along with potential mitigation options [501]. Wang et al. introduced a complex
system model that integrates multiagent-based models and system dynamics models to
address carbon dioxide emission reduction policies [502]. These mathematically inspired
models provide valuable insights into the dynamic behavior and interactions of energy
systems in various contexts.

With respect to Bayesian inference models, Nadimi et al. used an econometrics ap-
proach to forecast the energy consumption of Japan until 2030 [503]. The current issues
existing in model predictive control power management strategies are identified and an-
alyzed by Huang et al. [504]. In the field of nonintrusive load monitoring, Zhuang et al.
conducted a comprehensive survey of effective systems in this area. Their survey cov-
ers various aspects, including algorithms, load signature models, datasets, performance
metrics, and commercial applications such as demand response. They also discuss the
challenges and future research directions in nonintrusive load monitoring [61]. Qader
et al. focused on forecasting CO2 emissions in Bahrain and applied several forecasting
methods to address this task [505]. Brun et al. employed remote sensing maps of land use
to analyze changes in deforestation patterns in Indonesia between 2000 and 2010. They
compared the performance of different Bayesian computational models and assessed the
effectiveness of protected areas in mitigating deforestation [506]. Zhang et al. explored the
applications of big data analytics in smart grids, highlighting the potential benefits and
opportunities in this area [507]. Heo et al. proposed a probabilistic approach for supporting
large-scale investments in energy retrofit of buildings. Their methodology is based on
Bayesian calibration of normative energy models, taking into account uncertainties asso-
ciated with energy retrofit projects [508]. These studies contribute to the advancement of
nonintrusive load monitoring, CO2 emission forecasting, analysis of deforestation patterns,
utilization of big data analytics in smart grids, and probabilistic approaches for energy
retrofit investments, respectively.

SDEs are not so used for investigations on emission reduction scenarios. Cai et al.
apply regression theory to European CO2 emissions prices and obtain the point and in-
terval estimations for the parameters of their SDEs [509]. Carmona et al. introduced
forward–backward SDE models to explain the evaluation of CO2 emission allowances [510].
Yu et al. proposed co-operative and non-co-operative stochastic differential game models to
describe greenhouse gas emissions for decision-making in both developed and developing
countries [511].

Since AI-based algorithms are useful for predicting and providing insight for making
recommendations and decisions, they are natural candidates for modeling and assess-
ing emission reduction scenarios. In the context of ML models, researchers deal mostly
with the reduction of greenhouse gases and carbon emissions as well as other pollutants.
Tan et al. addressed the reduction of NOx by using ML and reported a high-quality and
stable solution for optimizing operational parameters [512]. Lacoste et al. presented a
tool for our community to better understand the environmental impact of training ML
models [513]. Mardani et al. proposed an efficient multistage methodology that utilizes
clustering techniques to predict carbon dioxide emissions. Their approach is based on en-
ergy consumption and economic growth, and aims to provide accurate predictions of CO2
emissions [514,515]. Pallonetto et al. conducted an assessment of control algorithms for the
implementation of demand response strategies in the residential sector. Their study focuses
on evaluating the performance and effectiveness of these algorithms in enabling demand
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response actions [516]. Akhshik et al. focused on modeling greenhouse gas emissions
and utilized machine learning techniques to derive optimal values for hyperparameters.
Their research aimed to improve the accuracy of greenhouse gas emission predictions by
optimizing the model’s hyperparameters using machine learning methods [517]. These
studies contribute to the development of methodologies for predicting carbon dioxide emis-
sions, assessing control algorithms for demand response strategies, and utilizing machine
learning techniques for modeling greenhouse gas emissions.

Interestingly, DL models are limited in the literature of this topic. For forecasting the
emission and reduction model, Nam et al. used DL-based forecasts of electricity demand
and renewable energy generation and analyzed scenarios with 100% renewable energy,
evaluating their associated economic and environmental costs [406]. As for NOx emission
models from biomass power production, Li et al. presented a methodology for predicting
such emissions, using DL architectures [403]. Bakay et al. forecasted greenhouse gas
emissions using different DL implementations, and observed an increment of 3% for such
emissions and of 6% for electricity production per annum in Turkey [518].

Finally, Yu et al. conducted a comprehensive review of smart building energy man-
agement using reinforcement learning (RL) models. They discussed unresolved issues and
identified potential future research directions in energy emission reduction, highlighting the
importance of RL in optimizing energy management systems [57]. Adams et al. proposed a
deep RL optimization framework for determining the optimal operating conditions of a
commercial circulating fluidized bed power plant. Their approach aimed to strike a balance
between performance and environmental concerns, optimizing the plant’s operations for
improved efficiency and reduced environmental impact [519]. Cheng et al. presented a
combustion optimization system for coal-fired boilers. Their system incorporated a trade-
off between emissions control and boiler efficiency, aiming to achieve optimal combustion
performance while minimizing emissions [520,521]. Qi et al. utilized deep RL, specifi-
cally the deep Q-network, to design a management system for hybrid electric vehicles.
Their system autonomously learned the optimal fuel/electricity splits based on interactions
between the vehicle and the traffic environment, contributing to efficient energy usage in
hybrid electric vehicles [522]. Zhong et al. investigated the uses of the Weber–Fechner
law and a clustering algorithm to construct quantitative response characteristics models.
Their research focused on developing models that capture the relationship between stimuli
and responses, enabling better understanding and prediction of system behaviors [317].
Zhang et al. studied a real-time pricing strategy for a multienergy generation system.
Their research aimed to optimize the pricing strategy to achieve a balance between sup-
ply and demand, considering various energy sources and generation technologies [523].
These studies highlight the application of RL models in various domains, such as smart
building energy management, power plant optimization, combustion control, hybrid elec-
tric vehicle management, and pricing strategies for multienergy systems.

5.3. Final Remarks and Conclusions

In this review, we offered a comprehensive survey of previous research work on
renewable energy sources models, covering a broad panoply of different approaches.
The main goal was to highlight the importance of articles and data sources around the
topic of power grids with RES, covering the main modeling approaches of its different
aspects, ranging from its structure to specific dynamics of renewable energy production,
energy market, and futuristic sustainable scenarios of reduced emissions and optimized
storage strategies. The survey can therefore be of use to researchers, policymakers, and
stakeholders dealing with RES developments. While it is not exhaustive, we presented an
extensive survey on the main developments of mathematical models as well as AI-based
approaches to address different RES, different grid structures, the energy market, and
hypothetical scenarios of emission reduction and energy storage. An overview of the
survey is given in Figure 5.
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In what concerns the most and least used approaches in the field of AI, we observed
that in all topics covered above, reservoir computing (RC) approaches are the least selected
by the research community, especially for modeling biomass power and energy prices and
investigating energy storage and emission reduction scenarios. This lack of interest might,
in part, be related to RC’s infancy stage, compared to the other approaches, particularly
in what concerns available open-source routines for different programming languages.
However, we believe this lack of attention will be filled up with new investigations. It
is known that one major advantage of RC compared to its “cousins” in the family of AI-
based models concerns a remarkable combination of fast learning rate together with a
low training cost with respect to the amount of data. It is therefore a promising source of
models for future power grid research in particular when addressing monitoring protocols
and control of power grid functioning. If the research and stakeholder community around
power grids becomes more aware of the recent advances RC is making in physical systems,
more advances in some of the present challenges might be observed in the near future.
For a review on RC approaches to physical systems, see [524].

As for mathematically inspired models, the majority of studies are available within
topics in dynamical and nonlinear systems, followed by stochastic differential equations.
This preference is not surprising. On the one hand, standard equations borrowed from
electrical engineering on power grids, such as swing equations, can be easily handled with
techniques from dynamical systems theory. On the other hand, one of the most typical
features of RES is their stochasticity, something that underlies the main reasons why they
are so challenging to forecast and why they introduce additional risks to the stability of
power grids. Both these aspects were already covered above with several examples from the
literature, cf., e.g., Sections 4.1, 4.3 and 4.4. The lack of attention to Bayesian inference may
be due to its limitations when dealing with dynamical aspects, something that approaches
based on differential equations provide in a straightforward way. However, Bayesian
inference may be of importance in topics where measures of uncertainty are necessary,
namely when assessing the risk of overloaded lines or extreme events in the stability of
the grid.

Another important aspect not directly related to the models being applied deals with
the availability of data. As one knows, several of the data addressed in Section 3 are data
subjected to confidentiality and protected by energy companies and stakeholders due to
finance and political interests. With the aim of developing AI-based models, not depending
on the availability of specific data sets, AI developers have been developing frameworks in
what is now called transfer learning: the model is implemented and trained using other
data sets, available to the developers, to make a first tuning of model parameters before
using the target data. Given their considerable importance in power grid research, transfer
learning strategies become particularly relevant when addressing rare or extreme events.
In such cases, there are strategies to arrange large amounts of labeled data, for instance,
complex DL architectures. A review of transfer learning techniques in AI approaches,
discussing also its advantages and limitations in recent years, can be found in [525].

Also related to the availability of data, it is important to notice the needed co-ordination
of different stakeholders holding different data sources, each one committed to confiden-
tiality protocols, and simultaneously needing to share knowledge to properly explore
future scenarios of a complex system such as a power grid. To attend to this challenge,
AI researchers have developed in recent years approaches, which enable the training of
their models—ML, DL, RC, etc.—in a decentralized way. In other words, while different
stakeholders can train the same model for the power grid they all are using, each one
trains with its own data sets, without sharing that information with the other stakeholders.
Federated learning has gained broad popularity in the research community, in particular
with the possibilities for data collection using smartphones and IoT devices. Moreover,
the development of federated learning techniques has promoted the enhancement of trust-
worthiness in AI-based approaches in general [526]. A review of the applications and
techniques in federated learning can be found in [527].
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Finally, a last word on the structure we have followed throughout this survey, namely
in what concerns considering the two schools of thought, one, perhaps more traditional,
focused on mathematical frameworks, such as differential equations, and another more
AI-based oriented. We agree that such structuring of a survey can introduce some biased
assumptions, and as can be seen from Section 4, several articles and studies cover more
than one approach, and often from both these schools of thought. It is not difficult to pick
good and bad examples from each school of thought for each topic related to power grid
functioning. However, it is also true that, probably not without some merit, AI-based
models have gained dominant attention and easily are taken as benchmarks in which
researchers tend to take for granted its superior performance compared with other (perhaps
older) approaches. This is indeed a tendency that should be avoided. We have provided
examples, e.g., when reproducing statistical features of wind power where simple stochastic
modeling approaches surpass the performance of neural networks [273]. More recently,
investigations in other domains have proven that century-old mathematical approaches,
such as Markov chains, can still outperform very sophisticated DL implementations such
as generative adversarial networks [528].

All in all, particularly for a system as complex as a power grid, two important direc-
tions should be considered in parallel. On the one hand, it is necessary to extend such
comparative analysis of different approaches in a more systematic way, to better expose the
pros and cons typical of each one. By gaining a deeper understanding of the strengths and
limitations inherent in each approach, the power grid stands to reap significant benefits in
the near future through the exploration of hybrid approaches. These innovative solutions,
which harmoniously blend the finest elements of mathematical models with the power of
AI, have the potential to revolutionize the way we optimize and manage the power grid.
We hope that with such a survey we have pointed the reader in that direction.
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Abbreviations

The following table lists abbreviations and acronyms used throughout the review manuscript.

AI Artificial Intelligence
AEMO Australian Energy Market Operator
ANN Artificial Neural Network
ARMA Auto Regressive Moving Average
ARIMA Autoregressive Integrated Moving Average
CES Conventional Energy Sources
CKLS Chan–Karolyi–Longstaff–Sanders
CNN Convolutional Neural Network
CPI Climate Policy Initiative
DAE Denoising Autoencoders
DL Deep Learning
DEED Dynamic Economic Emission Dispatch
DeepCoin Deep Learning and Block chain-based Energy Framework for Smart Grids
DR Demand Response
ELM Elaboration Likelihood Model
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EPEX European Power Exchange
ESS Energy Storage System
EUs European Unions
FCMs Fuzzy Cognitive Maps
GARCH Generalized Autoregressive Conditional Heteroskedasticity
GPU Graphics Processing Unit
HVDC High-Voltage DC Transmission
HEVs Hybrid Electric Vehicles
IEA International Energy Agency
IRENA International Renewable Energy Agency
LUBE Lower-Upper-Bound-Estimation
LSTM Long Short-Term Memory
LiDAR Light Detection and Ranging
MA Moving Averages
MMC Modular Multilevel Converters
ML Machine Learning
MLP Multilayer Perceptron
MPC Model Predictive Control
MPPT Maximum Power Point Tracking
NARX Nonlinear Autoregressive Model that has eXogenous inputs
NILM Nonintrusive Load Monitoring
PV Photo Voltaic
RES Renewable Energy Sources
RL Reinforcement Learning
RMS Root Mean Square
RC Reservoir Computing
R-HFCM Randomized High-Order Fuzzy Cognitive Maps
SIR Sampling Importance Re-Sampling
SCADA Supervisory Control and Data Acquisition
SDAE Stacked Denoising Autoencoders
STC Star Tracker
SVM Support Vector Machine
VAR Vector Auto-Regression
WPP Wind Power Plant
WTG Wind Turbine Generator
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518. Bakay, M.S.; Ağbulut, Ü. Electricity production based forecasting of greenhouse gas emissions in Turkey with deep learning,
support vector machine and artificial neural network algorithms. J. Clean. Prod. 2021, 285, 125324. [CrossRef]

519. Adams, D.; Oh, D.H.; Kim, D.W.; Lee, C.H.; Oh, M. Deep reinforcement learning optimization framework for a power generation
plant considering performance and environmental issues. J. Clean. Prod. 2021, 291, 125915. [CrossRef]

520. Cheng, Y.; Huang, Y.; Pang, B.; Zhang, W. ThermalNet: A deep reinforcement learning-based combustion optimization system
for coal-fired boiler. Eng. Appl. Artif. Intell. 2018, 74, 303–311. [CrossRef]

521. Fu, J.; Xiao, H.; Wang, H.; Zhou, J. Control strategy for denitrification efficiency of coal-fired power plant based on deep
reinforcement learning. IEEE Access 2020, 8, 65127–65136. [CrossRef]

522. Qi, X.; Luo, Y.; Wu, G.; Boriboonsomsin, K.; Barth, M. Deep reinforcement learning enabled self-learning control for energy
efficient driving. Transp. Res. Part C Emerg. Technol. 2019, 99, 67–81. [CrossRef]

523. Zhang, L.; Gao, Y.; Zhu, H.; Tao, L. Bi-level stochastic real-time pricing model in multi-energy generation system: A reinforcement
learning approach. Energy 2022, 239, 121926. [CrossRef]

524. Tanaka, G.; Yamane, T.; H’eroux, J.B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A. Recent advances
in physical reservoir computing: A review. Neural Netw. 2019, 115, 100–123. [CrossRef] [PubMed]

525. Iman, M.; Arabnia, H.R.; Rasheed, K. A Review of Deep Transfer Learning and Recent Advancements. Technologies 2023, 11, 40.
[CrossRef]

526. Upreti, R.; Lind, P.G.; Elmokashfi, A.; Yazidi, A. Trustworthy machine learning in the context of security and privacy. 2023,
submitted. Preprint provided by authors.

527. Banabilah, S.; Aloqaily, M.; Alsayed, E.; Malik, N.; Jararweh, Y. Federated learning review: Fundamentals, enabling technologies,
and future applications. Inf. Process. Manag. 2022, 59, 103061. [CrossRef]

528. Lencastre, P.; Gjersdal, M.; Gorjão, L.R.; Yazidi, A.; Lind, P.G.L. Modern AI versus century-old mathematical models: How far
can we go with generative adversarial networks to reproduce stochastic processes? Phys. D Nonlinear Phenom. 2023, 133831.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jclepro.2020.122620
http://dx.doi.org/10.1016/j.egypro.2017.12.224
http://dx.doi.org/10.1016/j.jpowsour.2016.11.106
http://dx.doi.org/10.1007/s11356-021-16960-2
http://dx.doi.org/10.1016/j.gloenvcha.2015.02.004
http://dx.doi.org/10.1186/s42162-018-0007-5
http://dx.doi.org/10.1016/j.enbuild.2011.12.029
http://dx.doi.org/10.3390/su9020207
http://dx.doi.org/10.1214/12-AAP865
http://dx.doi.org/10.1155/2013/312585
http://dx.doi.org/10.1016/j.energy.2015.11.020
http://dx.doi.org/10.1016/j.jclepro.2020.122942
http://dx.doi.org/10.1016/j.apenergy.2020.115527
http://dx.doi.org/10.1016/j.apenergy.2019.02.020
http://dx.doi.org/10.1016/j.susmat.2021.e00370
http://dx.doi.org/10.1016/j.jclepro.2020.125324
http://dx.doi.org/10.1016/j.jclepro.2021.125915
http://dx.doi.org/10.1016/j.engappai.2018.07.003
http://dx.doi.org/10.1109/ACCESS.2020.2985233
http://dx.doi.org/10.1016/j.trc.2018.12.018
http://dx.doi.org/10.1016/j.energy.2021.121926
http://dx.doi.org/10.1016/j.neunet.2019.03.005
http://www.ncbi.nlm.nih.gov/pubmed/30981085
http://dx.doi.org/10.3390/technologies11020040
http://dx.doi.org/10.1016/j.ipm.2022.103061
http://dx.doi.org/10.1016/j.physd.2023.133831

	Introduction and Overview
	The Research Questions Underlying Power Grid Research
	Monitoring the Functioning of Power Grids
	Forecasting Dynamical Features of Power Grids
	Assessing Hypothetical Scenarios with Simulated Topological or Dynamical Features

	What Data Are Power Grid Data?
	Grid Data: Topological and Electrical Features Underlying the Grid
	Renewable Energy Data: Geophysical and Energy Time-Series
	Finance Data: The Energy Market
	Where to Find Power Grid Data?

	Modeling Power Grid Functioning and Dynamics
	Modeling Different Grid Structures
	Modeling of Energy Demand and Supply
	Modeling Wind Power
	Modeling Solar Power
	Modeling Biomass Power
	Modeling the Energy Market: from Power Grid Data to Energy Prices

	Future Perspectives
	Exploring Scenarios of Energy Storage
	Exploring Scenarios of Emission Reduction
	Final Remarks and Conclusions

	References

