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Abstract: Due to the complex underwater environment, conventional measurement and sensing
methods used for land are difficult to apply directly in the underwater environment. Especially for
seabed topography, it is impossible to perform long-distance and accurate detection by electromag-
netic waves. Therefore, various types of acoustic and even optical sensing devices for underwater
applications have been used. Equipped with submersibles, these underwater sensors can detect
a wide underwater range accurately. In addition, the development of sensor technology will be
modified and optimized according to the needs of ocean exploitation. In this paper, we propose a
multiagent approach for optimizing the quality of monitoring (QoM) in underwater sensor networks.
Our framework aspires to optimize the QoM by resorting to the machine learning concept of diversity.
We devise a multiagent optimization procedure which is able to both reduce the redundancy among
the sensor readings and maximize the diversity in a distributed and adaptive manner. The mobile
sensor positions are adjusted iteratively using a gradient type of updates. The overall framework
is tested through simulations based on realistic environment conditions. The proposed approach
is compared to other placement approaches and is found to achieve a higher QoM with a smaller
number of sensors.

Keywords: underwater communications; quality of monitoring; diversity; detrimental point process

1. Introduction

Quality of monitoring (QoM) [1–4] of information in the underwater domain [5,6] is a
recent concept that has attracted the attention of researchers in the field of wireless sensors
and connected objects. In recent years, there has been an upsurge of interest in underwater
wireless sensor networks (UWSNs). UWSNs are made up of several autonomous sensor
nodes. These sensor nodes are scattered underwater to carry out detection tasks in order
to collect different properties related to underwater environments [6]. UWSNs admit a
large set of applications that includes, for instance, monitoring the living conditions of
fish, such as measuring temperature, humidity, pH, and CO2 concentrations, in order
to associate those metrics with the amount of fish produced under these conditions and
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relative to a given time. There are five types of wireless sensor networks, depending on the
environment. Terrestrial WSNs are used for communicating base stations efficiently and
comprise thousands of wireless sensor nodes deployed either in an unstructured (ad hoc)
or structured (preplanned) manner. In an unstructured mode (ad hoc), the sensor nodes are
randomly distributed within the target area that is dropped from a set plane [7]. In WSNs,
the battery power is limited; however, the battery is provided with solar cells as a secondary
power source. The conservation of energy of the WSNs is achieved by using low-duty
cycle operations, optimal routing, minimizing delays, and so on. In terms of deployment,
maintenance, equipment cost considerations, and careful planning, underground wireless
sensor networks are more expensive than terrestrial WSNs [8]. The underground wireless
sensor networks (UWSNs) comprise several sensory nodes that are hidden in the ground
to observe underground conditions. Additional sink nodes are located above the bottom to
transfer information from the sensor nodes to the base station. These underground WSNs
deployed into the ground are difficult to recharge. The sensor battery nodes equipped with
limited battery power are also difficult to recharge. Additionally, the underground environ-
ment makes wireless communication a challenge because of the high attenuation and signal
loss level [9]. More than 70% of the Earth is occupied by water. These networks contain
several sensor nodes and vehicles deployed underwater. Autonomous underwater devices
and vehicles are used to collect data from these sensor nodes. Challenges of underwater
communication may be a long propagation delay and bandwidth and sensor failures. Un-
derwater, WSNs are equipped with a limited battery that cannot be recharged or replaced.
The difficulty of energy conservation for underwater WSNs involves the development of
underwater communication and networking techniques [10]. Multimedia WSNs are pro-
posed to enable tracking and monitoring of events in the sort of multimedia, such as video,
imaging, and audio. These networks contain low-cost sensor nodes equipped with cameras
and microphones. These sensory nodes of multimedia WSNs are interconnected together
over a wireless connection for data retrieval, data compression, and correlation [11]. The
challenges with the multimedia WSNs include high bandwidth requirements, high energy
consumption, processing, and compressing techniques. Additionally, multimedia contents
need high bandwidth for the content to be delivered properly and easily. Mobile WSNs
comprise a group of sensor nodes that can be moved on their own and can interact with
the physical environment. The mobile nodes can also compute sense and communicate
respectively. Mobile wireless sensor networks are much more versatile than static sensor
networks. The benefits of mobile WSNs over static WSNs include better and improved
coverage, superior channel capacity, better energy efficiency, and so on. Previous solutions
for terrestrial wireless sensor networks (TWSNs) cannot usually be applied in UWSNs,
as means for transmission using radio frequency (RF) and optical signals are inhibited in
underwater environments. Only acoustic signals are viable means for data transmission
in a marine environment [12]. The majority of monitoring solutions in both TWSNs and
UWSNs neglect the problem of redundancy and correlation among the different measure-
ments. Particularly within UWSNs, the energy cost of sending the data collected is very
high; therefore, it is essential to apply some intelligent computation techniques to minimize
redundancy and reduce the amount of unnecessary traffic. This is one of the main research
aspects in the field of QoM. Moreover, monitoring of the marine environment has gained
increasing attention, mainly due to the growing concerns about climate change [13]. In
many cases, it is desirable to deploy moving sensors to collect as much information as
possible and to optimize the QoM. The sensors need, in many applications, to submerge
for data collection. As opposed to this, the use of fixed sensors in buoys on the surface of
the water does not provide enough geographical coverage. The movement of sensors by
means of underwater robots has catalyzed significant research in robotics and constitutes
an enabler for novel schemes within the field of underwater communication. Figure 1
provides an overview of the AUVs used in UWSNs [14–17]. AUVs are categorized based
on their size, depth capability, onboard horsepower, and whether they are all-electric or
electrohydraulic, as follows: Micro-class AUVs are very small in size and weight. They can
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weigh less than 3 kg and are used as an alternative to a diver, specifically in places where a
diver might not physically enter, such as a sewer, pipeline, or small cavity. Mini-class AUVs
weigh around 15 kg. They are also used as a diver alternative. General-class AUVs have
less than 5 HP (propulsion), manipulators, grippers, and a sonar unit used on light survey
applications. The maximum depth is less than 1000 meters. Light-work classes typically
have less than 50 HP (propulsion). They carry manipulators and are made from polymers
such as polyethylene rather than conventional alloys. Heavy-work classes typically have
less than 220 HP (propulsion) with the ability to carry at least two manipulators. They
have a working depth of up to 3500 m. These networks contain multiple sensor nodes and
vehicles deployed underwater. Autonomous underwater vehicles and devices are used to
collect data from these sensor nodes, and different sizes and designs can be used depending
on the mission. Challenges of underwater communication can be long propagation delay
and bandwidth and sensor failures. UWSNs are equipped with a limited battery that
cannot be recharged or replaced. The difficulty of energy conservation for UWSN involves
the development of underwater communication and networking techniques [18–22].

Figure 1. Illustrative examples of AUV systems.

Monitoring in the underwater domain consists of evaluating the water quality, which
is a task of utmost importance. Water quality plays a vital role in fish farming. Good water
quality helps farmers ensure maximum fish growth, guarantees a high-quality product,
and minimizes the diseases and deaths rate. All these factors increase fish production
and consequently influence national and international economic growth. Water contains
many parameters that can judge its quality. In aquaculture, there are intervals of standard
values [23]; if a value of a parameter exceeds the limits, the water quality will be influenced.
The main parameters of aquaculture water are dissolved oxygen (DO), j (NH3, NH+

4 ),
nitrite (NO−2 ), nitrate, turbidity, pH, and temperature [24]. Many factors can influence
water quality such as biology, physics, and human activities; they make it a very complex,
nonlinear, and dynamic system. This kind of system cannot be managed with a classical
method. An outdated classification model does not help to achieve better results. Therefore,
the use of new technologies by introducing artificial intelligence and machine learning can
be an effective solution.

In this paper, we resort to a multiobjective function to quantify the quality of monitor-
ing in underwater wireless sensor networks. The multiobjective function incorporates two
objectives: minimizing covariance of sensor readings in order to reflect the idea of reducing
redundancy, and maximizing the diversity among the sensor readings in order to reflect
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the idea of choosing positions that unveil novel information not described by the rest of the
sensors. In this sense, the QoM problem can be seen as an instance of an optimal sensor
coverage problem. The novelties in this paper revolve around the following:

• The first objective is to maximize the coverage of the sensor network by optimizing the
placement of sensors. This involves designing a distributed algorithm that enables the
sensors to communicate with each other and cooperate to achieve maximum coverage
of the area of interest.

• The second objective is to reduce the redundancy of the sensor network by not only
considering the correlation between sensors readings but also the diversity of the
readings using the concept of determinantal point process.

The closest work to ours is due to Weiler et al. [25]. The latter work investigates adjust-
ing the positions of sensors based on the gradient descent approach. The objective function
contains only one term that takes the inverse of the overall covariance between sensors and
points to sense. The reason for choosing the inverse is to penalize regions that are covered
by more than a sensor and thus better take into account the marginalcontribution of each
sensor. The objective function is intuitive; however, it does not have a sound physical
meaning. In our work, we take into account diversity as a new term in the objective function
without inverting the overall sum of covariance. Our framework contributes to filling this
gap in AUV solutions. In this study, we use AUV robots because of their ability to move
underwater without needing any external intervention. AUVs are underwater robots that
are typically used in mining areas, agriculture applications, and so forth [26]. They are one
of the most significant tools for the exploration and application of marine resources [27,28].
An AUV is a self-piloting vehicle that performs a task, and usually, it is equipped with
an onboard artificial intelligence system with a set of programmed commands, which can
be modified remotely by data or information broadcast by the vehicle’s sensors [29]. Our
network of AUVs is characterized by its ability to move horizontally by ejecting water, and
to move vertically, the AUVs use a buoyancy control system.

The remainder of the paper is organized as follows. In Section 3, the proposed solution
is detailed. A series of experiments and some simulation results are presented to show
the validity and relevance of the proposed approaches in Section 4. Section 5 gives some
results and comparisons with similar works, and Section 6 concludes this article while
giving some directions for future work. In our network, we consider that the AUVs move
in 2D; horizontally and vertically by implementing a GRN which is one of a widely used
set of methods in different fields such as swarm robotics [25–27].

2. Related Work

The application of advanced information and communication technology, such as
the Internet of Things (IoT) and the various machine learning methods to better manage
the behavior of autonomous underwater vehicles (AUVs), is becoming a trend for the
purpose of better QoM. For example, the processing and visualization of water quality
data can be carried out remotely and in real time using these AUVs. An example of this
application is presented in [30], where an underwater environment monitoring system
based on UWSNs is introduced. This system was conceived to be able to perform a
large quantity of uninterrupted collected data. Further work is presented in [31], which
introduces advanced wireless protocols developed for the IoT in order to highlight their
adaptability for the WSN application used in water quality monitoring. Many spatial
coverage algorithms are surveyed in [32], with a very detailed comparison. For instance,
the authors in [18] propose a top-down positioning scheme (TPS) for acoustic UWSNs
while ensuring the quality of service of the new reference nodes during the determination
phase of well-located nodes based on the gradient method. Furthermore, the latter work
presents a new method of estimating the 3D Euclidean distance to facilitate nonlocalized
nodes to find more reference nodes in order to become localized.

A distributed coverage control scheme is described in [33], where a density function
describing frequency random events with mobile sensors operates within a restricted range



Sensors 2023, 23, 3877 5 of 19

specified by a probabilistic model. The algorithm used in this work is based on the gradient,
which needs local information on each sensor and maximizes the probabilities of detection
of common random events. For a coverage control problem, costs of communication are
calculated according to two scenarios of data collection: the first takes the network as a
network that collects data from a single source, and the second one identifies the network
with multisource data.To model the cost of communication, the authors use the same form
of energy consumption.

Our work builds on the work by Detweiler et al. [34], where the authors deployed a
gradient-based decentralized controller that dynamically adjusts the depth of a submarine
sensor network to improve the QoM. In contrast to our work, which also uses the concept
of diversity, the latter work only involves optimizing a particular redundancy function
based on the correlation between the different sensors. This solution was implemented
to solve the problem of monitoring chromophoric dissolved organic matter (CDOM) in
the Neponset River, which feeds into Boston Harbor. The study proved that the controller
converges to a local minimum. This controller is adapted to a network of submarine
sensors capable of adjusting their depths. The results of simulations and experiments
verified the functionality and performance of this system and the algorithm presented. The
SALMON (Sea Water Quality Monitoring and Management) [35] presented a concept of a
guidance system using AUVs to detect and perform automated analysis of several water
quality parameters.

In order to model the quality of surveillance, ref. [36] focused on the theoretical
study of spatial and temporal correlations due to the various physical phenomena of
wireless sensor deployment in nature. Two schemes were proposed to reveal the time
and space dependence under centralized and distributed settings to maximize the overall
QoM based on sensing scheduling. The same authors proposed another study in [37]
using the nondecreasing submodular function to measure the QoM, but this time they took
into account the correlation in the detected data in order to define distributed scheduling
schemes that are used to determine a high QoM in a ring cycle sensor array.

In [25], the authors proposed RDBF, which is a relative remote routing protocol that
takes into consideration energy saving while minimizing delays in transmission. This work
was based on the use of an aptitude factor to determine the degree of relevance of a node
to participate in transmitting packets. This aptitude test helps reduce needless transfers by
the nodes, which helps reduce power consumption and end-to-end delay, in addition to
reducing redundancy by controlling transfer time of multiple senders. However, none of
the existing studies use the concept of diversity from machine learning to deal with issues
of quality of monitoring in the underwater environment.

In recent years, the need for controlling robots based on artificial intelligence and, more
particularly, machine learning instead of programming has increased. Several methods
have addressed this demand using genetic algorithms, neural networks, and other artificial
intelligence (AI) or machine learning methods to control some of the functionality of
robots [28]. The majority of mutlirobot systems rely on a default programmed algorithm,
something that cannot be applied in a dynamic environment characterized by unpredictable
change; therefore, the robot system has to adapt with the environmental changes and take
into account the local perception of the robot. The authors of [29] proposed the Hierarchical
Gene Regulatory Network (H-GRNe) for Adaptive Multirobot Pattern Formation, which
is a two-layer gene regulatory network (GRN) model that adapts the generation and
formation of multirobot patterns. In this model, the adaptation part of pattern generation
is conducted in the first layer and then these generated patterns will drive the robots in
the second layer with a decentralized control mechanism. The authors accompanied their
study with simulation in a changing environment that proved the efficiency of H-GRNe to
form the desired pattern, and also a strong adaptation to robot failure. The AUVs used in
this network apply the cellular adhesion molecules (CAM) combined with GRN controllers
proposed by [33]. This model is based on the control of GRN-CAM hydrons, which refers,
in our case, to a group of AUVs.
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3. An Optimization Function for Water Quality which Minimizes Sensor Redundancy
and Maximizes Diversity

This section provides the details of the proposed solution, with the additional aim of
highlighting the characteristics of the proposed architecture and how it is implemented. We
consider N AUVs at locations Pi(xi, yi, zi) with i = 1, . . . , N. We assume that the sensors
move in a two-dimensional plane defined by the x and z axes, with a fixed y coordinate, as
seen in Figure 2, reducing the three-dimensional positioning to pi(xi, zi).

Figure 2. AUV system coordinates.

We will assume that the correlation between pairs of sensors decreases, not necessarily
isotropically, with their distance as a Gaussian function. Consequently, we can postulate
that the covariance between two sensors i and j is given by

Cov(pi, pj) = exp

(
−
(xi − xj)

2

2σ2
x

−
(zi − zj)

2

2σ2
z

)
(1)

where σx and σz have the meaning of (spatial) correlation decreasing rates in the x and z
directions, respectively.

3.1. Gradient Based on Covariance

Since we want to maximize redundancy among the sensors, we need to minimize
the overall pairwise correlation between sensors. In other words, we minimize the follow-
ing function:

H(p1, . . . , pN) =
N

∑
i=1

N

∑
j=i+1

Cov(pi, pj) . (2)

The minimum of H(p1, . . . , pN) fulfills the equations

∇xi ,zi H(p1, . . . , pN) ≡
(

∂H
∂xi

,
∂H
∂zi

)
= 0 , (3)

for i = 1, . . . , N, yielding(
N

∑
j=i+1

Cov(pi, pj)
(xi − xj)

σ2
x

,
N

∑
j=i+1

Cov(pi, pj)
(zi − zj)

σ2
z

)
= 0 . (4)
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3.2. Gradient of Diversity

Minimizing the function H(p1, . . . , pN) alone leads to a solution which indeed min-
imizes redundancy, but does not guarantee that one covers the maximum amount of
information in the system. In other words, one also needs to take into account the diversity
covered by the set of sensors. Assuming all the information of the system can be encoded
in the linear correlations observed in the systems, the determinant of the covariance matrix
L between pairs of sensors is a proper measure of such a total amount of information, since
it reflects the total variance of the data collected by the set of sensors. The idea of using the
determinant as a measure of diversity is found also in the the theory of determinantal point
processes. We therefore consider the covariance matrix L with elements Lij = Cov(pi, pj),
as defined in Equation (1), and seek its maximum, which is a solution of

∇xi ,zi det(L) ≡
(

∂ det(L)
∂xi

,
∂ det(L)

∂zi

)
= 0 , (5)

which can be written as(
det(L)

σ2
x

tr(L� L−T dG
dxi

),
det(L)

σ2
z

tr(L� L−T dG
dzi

)

)
= 0 , (6)

where G is a matrix with elements Gij = Gji = −(xi − xj)
2 − (zi − zj)

2 and � denotes the
Hadamard product, for the full derivation of Equation (6).

3.3. Weighted Objective Function

We now combine both the redundancy H and diversity L in the same weighted
objective function F, defined as

F = w
H − Hmin

Hmax − Hmin
− (1− w)

det(L)− det(L)min

det(L)max − det(L)max
, (7)

where we consider the normalization of both function H and L to have values between 0
and 1, and introduce a parameter w which tunes how much the function H dominates over
the function L.

For simplicity, we define

NH = Hmax − Hmin
NL = det(L)max − det(L)min

ζ =
1−ω

ω

NH
NL

reducing the minimization problem

∇xi ,zi F ≡ 0 (8)

to (
∂H
∂xi
− ζ

∂ det(L)
∂xi

,
∂H
∂zi
− ζ

∂ det(L)
∂zi

)
= 0 . (9)

Equation (9) together with Equations (4) and (6) close the optimization problem for
extracting the set of locations (xi, zi) of the N sensors, which optimizes the redundancy and
diversity together. Note that the gradient controller in Equation (9) converges to a critical
point of F.

At this juncture, we are ready to present our multiagent algorithm for optimizing the
above objective function. From Equation (9), the numerical implementation of the opti-
mization problem can be performed through a simple Newton–Raphson scheme. Namely,
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let t denote a discrete time instant. We shall update the positions of sensor i recursively.
The position at time t + 1 is given by

xi(t + 1) = xi(t)− λ
∂Fζ

∂xi
, (10a)

zi(t + 1) = zi(t)− λ
∂Fζ

∂zi
. (10b)

where λ is a learning parameter.

3.4. Derivation of the Gradient of Diversity

From Equation (1), it is easy to obtain

∂Li,j

∂xi
= − 1

2σ2
x
(xi − xj)Li,j

Therefore,
∂L
∂xi

=
1
σ2

x
L� dG

dxi

We apply the Jacob formula:

∂ det(L)
∂xi

= det(L)tr(L−1 ∂L
∂xi

)

= det(L)tr(L−1 1
σ2

s
L� dG

dxi
)

=
det(L)

σ2
s

tr(L−1L� dG
dxi

)

=
det(L)

σ2
s

tr(L−1L� dG
dxi

)

and we obtain
∂ det(L)

∂xi
=

det(L)
σ2

s
tr(L� L−T dG

dxi
) (11)

We used that the diagonal entries of (A ◦ B)CT and (A ◦ C)BT coincide and we also

used the fact that dG
dxi

T
= dG

dxi
because of symmetry.

The matrix R =
(

L� L−T) is commonly known in the field of control theory as the
relative gain array and admits many applications in the latter field.

Similarly,
∂ det(L)

∂zi
=

det(L)
σ2

d
tr(L� L−T dG

dzi
) (12)

3.5. Proof of the Convergence of the Gradient Controller

We define the gradient controller as

Fζ = H − ζdet(L) (13)

To prove that our gradient controller (Equation (13)) converges to a critical point of Fζ ,
we must verify the following four properties:

1. Must be differential;
2. Must be locally Lipschitz;
3. Must have a lower bound;
4. Must be radially unbounded or the trajectories of the system must be bounded.
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While this assures convergence to a critical point of Fζ , small perturbations to the
system will cause the gradient controller to converge to a local minimum and not a local
maximum or saddle point of the cost function.

H and det(L) verify properties 1, 2, 3, and 4.
We use also the sum of two Lipschitz functions asLipschitz.
Therefore, Fζ verifies all the four properties [33].

4. Numerical Implementation and Experiments

To test the performance of our algorithm, we adopt the same environment parameters
describing the concentration of CDOM specific to the depth of the Neponset River caused
by the tide found in [25]. Each underwater environment is characterized by σs and σd.
Although those parameters were not explicitly given by the authors in their studies [25,34],
we resort to a separability in the exponential function describing the covariance in order to
extract them directly from Figure 4 in [34] via curve fitting.

For this first environment used in [34], we have σs = 2.074 as covariance according to
X, and σd = 0.917 as covariance according to Z.

We use a grid size of length 8 km along the X direction and 3 m along the Z direction.
Furthermore, we use a learning rate λ = 0.1. Choosing an excessively large value of
the learning parameter λ gives a wrong convergence and can make the system oscillate.
However, choosing a too-small value λ makes the convergence sluggish.

Now, we report the experimental results for different number of sensors. Our second
environment is characterized by σs = 1.977 as covariance according to X, and σd = 1.198
as covariance according to Z. We obtain similar results to environment 1. For the sake of
brevity, we merely report the results for the second environment in Appendix A. Although
we conducted a large set experiments for different sets of sensors and different parameters
of the multiobjective function, we merely report a few representative results for the sake of
brevity as the conclusions are similar for the different experiments. When it comes to the
objective function, we report results for two representative cases: ω = 0.8, which describes
a case where the multiobjective function weights the covariance minimization term more,
and ω = 0.2, which describes a case where the multiobjective function favors the diversity
maximization term more.

4.1. Case of 10 Sensors

In this scenario, we deploy 10 sensors initially at uniformly random positions and
we run our scheme using ω = 0.8 and ω = 0.2. Note that according to the multiobjective
function, ω = 0.8 places more weight on the covariance, while ω = 0.2 places more weight
on the diversity.

Figure 3 shows the covariance after running our algorithm for 104 iterations. We
can clearly see that in the case of ω = 0.2 we obtain the minimal covariance and fastest
convergence rate.

Figure 4 shows that the corresponding diversity is largest for ω = 0.2. We therefore
conclude that by choosing ω = 0.2, we obtain both lower covariance and higher diversity.
In other terms, introducing the diversity term permits also to reduce the covariance as it
seems that the diversity permits the optimization system to avoid some local minima.

The final positions are depicted in Figure 5. We visually observe that the positions
with ω = 0.2 give a total coverage of the sensors, while with ω = 0.8, the sensors are
positioned only in the middle and at the top of the network.
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Figure 3. Covariance for ω = 0.8 and ω = 0.2 for the case of 10 sensors.

Figure 4. Diversity for ω = 0.8 and ω = 0.2 for the case of 10 sensors.
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Figure 5. Final positions for ω = 0.8 and ω = 0.2 for the case of 10 sensors.

4.2. Case of 20 Sensors

Now, we describe the experiment for 20 sensors. We use the same values of ω = 0.2
and ω = 0.8 and show the graphs for covariance, diversity, and final positions.

The covariance is depicted in Figure 6 where the convergence speed seems faster for
ω = 0.2 compared to ω = 0.8. The rate of diversity is depicted in Figure 7 for both values
ω = 0.2 and ω = 0.8. We can see that ω = 0.2 gives a higher value for the diversity.
The final position of this case study is presented in Figure 8 and we can visually verify
the adequate positioning of the sensors with ω = 0.2, despite the increase in the number
of sensors.

Figure 6. Covariance for ω = 0.8 and ω = 0.2 for the case of 20 sensors.
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Figure 7. Diversity for ω = 0.8 and ω = 0.2 for the case of 20 sensors.

Figure 8. Final positions for ω = 0.8 and ω = 0.2 for the case of 20 sensors.

5. Further Discussion

As mentioned in Section 4, the convergence speed seems faster for ω = 0.2 compared
to ω = 0.8 for both cases (10 and 20 sensors). By comparing the performances of two
environments, we donate that for ω = 0.2, the diversity seems to be faster than for ω = 0.8
and the covariance seems to be minimal. In the performance comparison between two
cases of study, 10 and 20 sensors and for ω = 0.2 and ω = 0.8, we notice that the covariance
decreases rapidly only for the value ω = 0.8, and for the diversity, the case ω = 0.2 is more
impacting than the case of ω = 0.8. The positions of the sensors at the end show that for
the value 0.2, we have more coverage of the study area than in the case of 0.8.
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In Table 1, we give an overview of several papers published on quality of monitor-
ing (QoM) in underwater sensors, each proposing a different approach and method for
optimizing sensor placement and data collection in underwater environments.

Table 1. Qualitative comparison of related works.

Reference Used Approach Optimization Algorithm Objective Function

[25] Multiagent approach Gradient descent

Objective function based on
the inverse of the sum of

covariance between measured
signals at sensors and points

of interest

[38] Algorithm based on Wolf
Search Wolf Search

Network coverage in terms of
detection probability while

accounting obstacle avoidance

[39] Genetic algorithm-based Elitist nonselective genetic
algorithm (NSGAII)

Difference between measured
signals and real signal
generated by a known

trajectory and a
ferromagnetic object

[40]
DABVF, a distributed node

deployment algorithm based
on virtual forces

Virtual forces

Improve network coverage,
reduce node energy

consumption, balance node
residual energy, and optimize

node distribution

[41] Multiagent target search
method (MATSMI)

Multiagent deep deterministic
policy gradient (MADDPG)

method

Reward function per agent for
finding target which decreases

for longer discovery time

[42] Range-based whale
optimization algorithm

Whale optimization algorithm
(WOA)

Best localization coverage,
delivery ratio, delay,

and energy

[43]
A nature inspired algorithm

called underwater salp swarm
algorithm (USSA)

Salp swarm algorithm
Maximize the number of
localized nodes among

nonlocalized ones

[44] A hybrid optimization
technique

Butterfly optimization and
quaternion-based

backtracking search
optimization (QBSA)

Reducing the localization
error based on the received

signal strength indicator
(RSSI), battery energy, and

distance parameters

This Work Multiagent system approach Gradient descent
Overall covariance among

measured signals by sensors
and a diversity term

These papers demonstrate that there are various approaches and methods for opti-
mizing QoM in underwater sensor networks, and the performance of these methods can
depend on factors such as the optimization algorithm, the network topology, and the envi-
ronmental conditions. It is important to carefully consider these factors when designing
and deploying underwater sensor networks and to evaluate the performance of different
approaches using appropriate metrics and benchmarks.

6. Conclusions and Future Work

In this paper, a new optimization algorithm based on covariance and diversity is
presented to optimize the QoM. Moreover, we presented the challenges associated with each
of these blocks and how they were tackled by several relevant papers in the literature. This
was performed in a systematic way, by focusing on the methods, conclusions, and higher
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level decisions of each paper. More specifically, we can conclude the following. (1) Input
features should convey useful information about the propagation problem at hand, while
also having small correlation between them. (2) Dimensionality reduction techniques can
help identifying the dominant propagation-related input features by removing redundant
ones. (3) Increasing the number of training data by presenting the ML model with more
propagation scenarios improves its accuracy. As future work, we propose to investigate
different aspects:

• The impact of varying the number of agents on the performance of the system: While
our approach showed promising results in improving the performance of QoM, it
is important to understand how the number of agents affects the overall system
performance. Future work could focus on varying the number of agents and evaluating
the resulting impact on the performance of the system.

• Agent selection: Future work could explore the development of a more efficient
algorithm for agent selection that reduces computational costs while still achieving
high-quality optimization results.

• Evaluating the impact of environmental factors on the performance of the system:
The performance of underwater sensor networks is often affected by various envi-
ronmental factors such as water temperature, salinity, and turbidity. Future work
could investigate how these environmental factors affect the performance of the multi-
agent diversity-based gradient approach optimization and identify ways to mitigate
their impact.

• Extending the optimization to other QoM metrics: The multiagent diversity-based
gradient approach optimization has been mainly focused on optimizing the energy
efficiency of underwater sensor networks. Future work could explore the extension
of the optimization approach to other QoM metrics such as latency, throughput, and
reliability. As future work, we could also try to jointly optimize the communication
cost and quality of monitoring.

• Machine learning techniques such as reinforcement learning and deep learning have
shown promising results in optimizing various aspects of underwater sensor networks.
Future work could explore the integration of these techniques with our optimization
approach to further improve the performance of the system.

• Three-axis models: To improve our study and move close to the real world, a three-axis
model will be considered in future works.
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Appendix A. Environment 2

Our second environment was obtained from [34] and is characterized by
σs = 1.97786755059 as covariance according to X and σd = 1.19859333137 as covariance
according to Z. We obtain similar results to environment 1.
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Figure A1. Covariance for an alternative environment, namely with ω = 0.8 and ω = 0.2 and
10 sensors.

Figure A2. Diversity for an alternative environment, namely with ω = 0.8 and ω = 0.2 and
10 sensors.
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Figure A3. Final positions for an alternative environment, namely with ω = 0.8 and ω = 0.2 and
10 sensors.

Figure A4. Covariance for an alternative environment, namely with ω = 0.8 and ω = 0.2 and
20 sensors.
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Figure A5. Diversity for an alternative environment, namely with ω = 0.8 and ω = 0.2 and
20 sensors.

Figure A6. Final positions for an alternative environment, namely with ω = 0.8 and ω = 0.2 and
20 sensors.
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