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A B S T R A C T   

Mechanical metamaterials and metastructures exhibit superior effective mechanical properties, such as enhanced 
energy dissipation and resistance against impact loads, beyond those of natural materials. Metastructures with 
the ability to manipulate wave propagation are particularly desirable in numerous applications, such as actua-
tors, dampers, and lightweight impact resistant systems with structural tunability and recoverability. Specif-
ically, multi-stable structural forms have attracted considerable attention in the design of architected multi- 
materials, metamaterials, and morphing structures. To design such systems, a recently developed mechanical 
metamaterial/metastructure known as negative stiffness honeycomb, composed of arrays of curved double- 
beams (CDBs), is proposed. Here, we develop an analytical model to predict the dynamic response of the CDB 
metastructures, architected with a periodic array of the CDBs, and subjected to impact by a striker. The analytical 
model is developed using the Euler-Lagrange theorem and the snap-buckling phenomena in the honeycomb have 
been examined. The derived closed-form solutions were in good agreement with those of the numerical finite 
element model at different bistability ratios, defined as the ratio of beam apex height to its thickness. The 
findings demonstrated that the bistability ratio had a noticeable influence on the buckling response of the 
metastructure and the desired negativity in the stiffness matrix, while the snap-back buckling phenomena may be 
realised at high bistability ratios.   

1. Introduction 

The terms ‘metamaterial’ and ‘metastructure’, used interchangeably 
at times, refer to a broad class of structured materials and composites 
that can be tailored to have desired subwavelength characteristics not 
readily found in natural materials. The properties of metamaterials and 
metastructures stem from characteristics that pertain to their consti-
tuting unit cells rather than atomic or molecular micro- or nano-
structures. Auxetic, chiral, acoustic, labyrinthine, and phononic are 
classes of metamaterials, to name a few. In an acoustic metamaterial, for 
instance, the resonant frequency of the cells depends on their inertia and 
restoring force (stiffness) thus the relevant wavelength at the resonant 
frequency of the unit cell is of an order larger than its dimensions 
(Kochmann and Bertoldi, 2017; Ma and Sheng, 2016). Dependence of 
features on unit cell properties results in manifesting controllable 
characteristics such as in wave dispersion giving rise to functionalities 
such as chirality (Lakes, 2001; Frenzel et al., 2017), negative Poisson’s 

ratio (Wu et al., 2019; Zheng et al., 2021), doubly-negative meta-
material of effective mass density and bulk modulus (Brunet et al., 
2015), and energy entrapment (Shan, 2015) due to negative stiffness. 
These properties are related to classes such as auxetic (i.e. having 
negative Poisson’s ratio) (Baughman, 2003; Alderson and Alderson, 
2007; Chen et al., 2021, 2022; Jalali et al., 2022; Sareh and Guest, 2014, 
2015a, 2015b, 2015c; Lu et al., 2024), single- and multiple-resonator 
acoustic/phononic (Fallah et al., 2015; Gorshkov et al., 2017; Gorsh-
kov et al., 2021, 2023) (i.e. having negative effective mass density), and 
negative stiffness mechanical metamaterials (Fang et al., 2006; Lakes 
et al., 2001). Features like negative Poisson’s ratio and negative stiffness 
bring about enhanced toughness, improved in-plane transverse shear 
resistance, and augmented impact energy absorption and wave guiding, 
while negative stiffness establishes an essential feature of the multi- 
stable structural elements. Although the theoretical foundations for 
achieving these features have existed for a long time, the realisation is 
rather recent. 

The advent of advanced additive manufacturing technologies, 
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recently developed and commonly employed to fabricate multifunc-
tional structural frameworks of complex internal microstructures, has 
made it possible to create physical models of designs with desired fea-
tures such as bistability/multi-stability. The development of such multi- 
stable structural forms, alongside a better understanding of fundamental 
nonlinear theories of continuum mechanics (Truesdell and Toupin, 
1960; Toupin, 2013; Truesdell, 1968; Yavari et al., 2000; Yavari, 2008), 
has facilitated the fabrication of lightweight, impact-resistant structures 
with high load-bearing capacity composed of slender structural ele-
ments. These adaptive forms undergo shape change while providing 
appreciably high strength, thus offering a basis for the design of 
morphing structures. To this end, various methods exist to render multi- 
stability in structural elements feasible, such as through applying pre- 
stress (Daynes et al., 2008; Fulcher et al., 2014), introducing thermal 
effects (Jeong et al., 2019; Chen et al., 2023), or initial curvature (Street 
and Seffen, 2007; Chen et al., 2023). In this regard, Vangbo (Vangbo, 
1998) and Qiu and Lang (Qiu, 2003; Qiu et al., 2004) proposed an 
analytical model for mechanically-bistable curved beams with a pre-
fabricated geometric profile, similar to that of a conventional beam, 
which is deformed into the first Euler’s buckling mode when subjected 
to an external concentrated force (actuation) at its mid-span. Analytical 
investigations were validated by microscale experimental models using 
an actuator. Cazottes et al. (Cazottes et al., 2009) studied the same 
problem for a curved single-beam (CSB) with the force applied at 
different locations. Camescasse (Camescasse et al., 2013) investigated 

the static actuation of an arch with initial constant curvature. They 
discussed that for the reduced two degree-of-freedom model, the equi-
librium path in the transition from one stable equilibrium position to 
another follows an unstable region of bistable energy. Other experi-
mental studies on the CSB (Restrepo et al., 2015) and bistable CDB 
composites made of individual or bi-materials (Chen, 2020) investigated 
the bistability of the lattices under static loading conditions. 

Being no longer a tantalizing dream, microstructured materials with 
multi-stable states were printed to serve a variety of applications. Me-
chanical systems that exhibit bistability are ideal candidates for appli-
cations in areas such as autonomous systems and robotics (Sareh et al., 
2018; Mooney and Johnson, 2013; Alonso-Mora et al., 2015; Chen et al., 
2023) as well as product design (Lv et al., 2014; Sareh, 2019; Liu et al., 
2019). Experimental evidence has demonstrated that the desired bist-
ability in the CDBs provides two distinct stable positions. A mode 
transition that occurs in the buckled beam from one stable position to 
another is accompanied by the reduction of the force level which results 
in the release of the stored strain energy (Cazottes et al., 2009; Cames-
casse et al., 2013). This contributes to the tunability of such systems. 

Many composites are deemed untunable, meaning that their dy-
namic properties cannot be altered without changing the microstruc-
ture. In metamaterials of negative stiffness, tunable wave propagation is 
often achieved by constructing a periodic lattice of the constituent cells 
i.e., tessellating the unit cell incorporating bistable beams whereby the 
periodic boundary conditions and Bloch-Floquet principle may be used. 

Nomenclature 

Latin upper-case 
Aj,i Displacement field amplitude of the jth odd modes for the ith 

curved beam; [1]
Ak,i Displacement field amplitude of the kth even modes for the 

ith curved beam; [1]
A Closed surface Area; [m2]

Ci Integration coefficients; [1]
E Young’s Modulus; [Pa]
G Mass of the striker; [kg]
I Second moment of area; [m2] 
Lx Characteristic length of the structure; [m]

M Bending moment per unit length; [N]

Nx Membrane force per unit length; [N/m]

P Transverse load; [N]

P Dimensionless transverse load; [N]

Pt Reaction force at boundaries; [N]

T Kinetic energy; [J]
Ts Kinetic energy of the struts; [J]
Tb Kinetic energy of the curved beam; [J]
Tst Kinetic energy of the striker; [J]
Ub Bending strain energy; [J]
Um Membrane strain energy; [J]
Us Elastic potential energy; [J]
V Striker velocity; [m/s]
V0 Velocity of the striker at the onset of impact; [m/s]
W External work done; [J]
W0 Original configuration of the curved beam; [m]

Latin lower-case 
ai − bi Displacement coefficient; [1]
b Beam width; [m]

d Deformation of mid-span; [m]

f̂ (x,y, t) Pressure load; [Pa]
h Rise of the curved beam; [m]

h Bistability ratio; [1] 
ki Stiffness of the ith member; [N/m ]

l0 Beam span; [m]

m Mass of the lattice struts and buckled beams; [kg]
mb,i Inertia mass of the ith curved beam; [kg]
ps Scaled dimensionless load; [1]
p Membrane force; [N]

s Length of the curved beam after deformation; [m]

s0 Initial length of the curved beam; [m]

td,i Duration of the ith phase; [s]
t* Time scale for mass of the lattice; [s]
t*
1 Time scale for mass of the curved beam; [s]

wj Displacement field of the odd modes; [1]
wk Displacement field of the even modes; [1]

Greek upper- and lower-case 
Δ Dimensionless mid-point displacement of the curved beam; 

[m]

Δt Total dimensionless displacement of the structure; [m]

∊0 Perturbation parameter; [1]
κ Curvature; 

[
m− 1]

μ Mass per unit area; [kg/m2]

μs Mass per unit area of the beam; [kg/m2]

ρb Beam density; [kg/m3]

τ̂ Section thickness; [m]

τ Scaled time; [1]
τcb Horizontal stiffeners thickness; [m]

ψ Membrane Stiffness coefficient; [s− 2]

λ Perturbed vibration frequency of the beam; [Hz]
λ0 Vibration frequency of the beam; [Hz]
λ1 First vibration pseudo frequency of the beam; [Hz]
λ2 Second vibration pseudo frequency of the beam; [Hz]
ω0 Eigenvalues; [1]
ωj Modal frequencies of the jth mode; [1]
ωk Modal frequencies of the kth mode; [1]
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This is not the only way to achieve tunability in a composite as tunability 
in a heterogeneous medium may also be achieved through the intro-
duction of random inclusions. For example, Konarski (Konarski et al., 
2020) developed a multi-scale material model with randomly dispersed 
spherical negative stiffness inclusions for the dynamic behaviour of the 
matrix material against acoustic perturbations. Brunet et al. (Brunet 
et al., 2015) designed a new class of 3D negative acoustic index non- 
periodic metamaterial made of porous soft silicon rubbers, in which 
the negative acoustic index emanates from the low-frequency reso-
nances of sub-wavelength particles. 

Due to the desired recoverability and potential tunability, bistable 
beam structures could be integrated into mechanical systems that, 
sequentially, store and release energy elastically, with little or no energy 
dissipated plastically thus no damage incurred. Such properties provide 
resilience and robustness against repeated impacts, enabling them to 
recover from an initial impact and respond to subsequent impacts, hence 
increasing the life cycle of the structure. Under the circumstances of 
repeated impacts, the transverse displacement of the structural element 
approaches that which would have occurred if a load of equal magnitude 
had been exerted statically, a phenomenon referred to as the pseudo- 
shakedown (Jones, 2014). Examples of recoverable systems are the 
recently fabricated negative stiffness honeycomb metastructures 
(NSHM) which, when subjected to lateral unidirectional loads, exhibit 
close to zero Poisson’s ratio and negative stiffness as the most important 
attributes (Correa et al., 2015). NSHM refers to a decrease in the load 
magnitude following a jump in the displacement field of the honeycomb 
structure. While the response of the NSHM cells, as investigated by 
(Correa et al., 2015), was found to be similar to the hexagonal honey-
comb structure, the NSHM lattice featured considerably higher recov-
erability (i.e. negligible plastic deformation) compared to its 
conventional hexagonal honeycomb counterparts. Under the circum-
stances where frequent collisions are inevitable, a structure made of 
these cells can be a viable choice. 

The ability to modulate the material properties of a medium in time 
and space breaks parity-time symmetry, enabling non-reciprocal elastic 
wave phenomena (Goldsberry and Haberman, 2018). Examining the 
tunability of the NSHM made of the CDBs, the authors of (Goldsberry 
and Haberman, 2018) sought the Bloch wave solutions in the NSHM 
subjected to an affine, uniaxial macroscopic pre-strain values of β = 0, 
0.0101, 0.0207, and 0.0252, whereby the prescribed macroscopic 
deformation gradient Fij = ui,j +δij (with δij being the Kronecker delta) 

was expressed as F =

[
1 0
0 1 − β

]

, and showed that the size and extrema 

of the bandgap frequencies range decreased with the increase in pre- 
strain. Pre-strain below the point of instability in the NSHM lattice en-
ables the tunability of bulk elastic wave propagation. Chen et al. (Chen, 
2020) experimentally investigated the cyclic quasi-static and plate 
impact loading of the composite NS structural element, whereby the 
CDBs made of very soft material (Thermoplastic Polyurethane) were 
compounded with Polyamide bars. The former results revealed that the 
force threshold of the prototypes having a low thickness in the rigid 
elements was reduced by less than 5% after 10 cycles, offering high 
recoverability of the composite element. Furthermore, the compressive 
strength of the NSHM lattice made of two cells was higher than the 
combined compressive strength of the single-material negative stiffness 
structure. Considering the plate impact tests, the acceleration threshold 
causing the full compression was significantly amplified with the in-
crease of the impactor height beyond 0.45 m. Meaud (Meaud, 2018) 
examined the elastic wave propagation in a two-dimensional periodic 
lattice including alternative patterns of linear and nonlinear bistable 
springs. 

From the load–displacement viewpoint, the snap-through instability 
phenomenon is associated with the sudden jump in the displacement in 
the load-control curve. A counterpart phenomenon referred to as the 
snap-back, however, occurs in the displacement-control curve when the 

load reduces suddenly even without an increase in the prescribed 
displacement (Sun et al., 2019). The curved beam profile undergoing 
snap-back reverses from bulge down to bulge up. In the lattice made of 
multiple arrangements of the bistable beams in a modular pattern, the 
force landscape of the snap-buckling chain mechanisms exhibits erratic 
curves, altering between various equilibrium states leading to the evo-
lution of the energy entrapment. Subsequently, the lattice exhibits 
hysteresis upon loading–unloading cycles. 

Researchers (Sun et al., 2019; Rafsanjani et al., 2015) examined the 
instability of an RVE (representative volume element) mechanical sys-
tem comprising two or more cosine-shaped, curved beams paired 
vertically in series, wherein the top beam was thinner than the bottom 
one. The hysteresis of the structure was examined under displacement- 
control loading whereupon its difference with the load-control loading 
was elucidated. Upon stretching at the edges, the curvature of the top 
slim beam changed while that of the bottom beam remained relatively 
constant. For a lattice made of such an RVE, wherein the middle beams 
were shorter than the top and bottom ones, curvature reversing was 
observed in both the middle shorter beams and the top, thick, longer 
beam, while the shape of the bottom beam remained unchanged in the 
various loading scenarios. In a similar study (Chen and Jin, 2020), the 
snap-back phenomenon was observed in the thick hyperelastic columns 
where both force and displacement levels were reduced after the onset of 
loading. 

Recently, there has been a resurgence of interest in the structural 
mechanics of honeycomb structures, owing, not only to their superior 
relative high stiffness and strength but also to efficient specific energy 
absorption during accidental impacts (Gibson and Ashby, 2001; 
Tancogne-Dejean et al., 2016). These structures feature a large constant 
plateau in their stress-deformation path between the initial yield and a 
densification phase. Although the relative density is a prime factor 
(Tancogne-Dejean et al., 2016; Gibson and Ashby, 1997; Hu et al., 2018) 
in the mechanical performance of honeycombs, other factors such as cell 
wall angle, loading conditions, cell structure, and geometry also play 
important roles. For instance, hexagonal honeycomb structures sub-
jected to compressive loading exhibit different buckling modes 
depending on the loading condition. In uniaxial compression, two kinds 
of cell collapse appear and alternate in the loading direction as a result of 
cell wall buckling, while in biaxial compression the buckled cell pattern 
entails two orthogonal axes of symmetry (Okumura et al., 2002). 

A range of analytical (Okumura et al., 2002; Hu and Yu, 2010), 
experimental (Hou et al., 2012; Hou et al., 2011), and numerical (Hou 
et al., 2012; Zou et al., 2009) investigations have been carried out on the 
mechanical behaviour of hexagonal honeycomb structures. Zheng et al 
(Zheng et al., 2005) presented a finite element model for the dynamic 
crushing of hexagonal honeycomb structures. Hu et al. (Hu et al., 2013; 
Hu and Yu, 2013) investigated the same problem, experimentally as well 
as computationally, but with the influence of the cell wall angle and 
impact velocity on the crushing behaviour included. They showed that 
in the honeycombs experiencing high-velocity impacts, a localised 
crushing band occurs at the loading band normal to the impact direction, 
which propagates layer by layer to the supporting ends, while the 
honeycombs with increased cell wall angles, at impact velocities above 
40 m/s, undergo deformation modes similar to that of high-velocity 
impacts, regardless of the initial impact velocity. By assuming the 
beam element behaviour for the members, Ouyang et al. (Ouyang et al., 
2018) studied the stress concentration in defective octagonal honey-
combs (with missing cell walls along a row) subject to uniaxial tension. 
They found that the stresses in the cell walls decrease exponentially with 
increasing distance from the centre of the defect. 

Previous studies (Emam, 2002; Nayfeh and Emam, 2008) analysed 
the static post-buckling response and dynamic vibration of buckled 
clamped–clamped beams subject to harmonic excitations, theoretically 
and experimentally. Using the multi-mode Galerkin discretisation, the 
period-doubling bifurcation, snap-through, and quasi-periodic motions 
were examined. The effective nonlinearity, or the quotient of the 
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functional of displacement field over a closed surface to the vibrational 
frequency, remained negative below the critical buckling level (buckled 
displacement at mid-span). The latter work derived exact solutions to 
the post-buckling of the beams with different boundary conditions. Li 
et al. (Li et al., 2004) investigated the vibration of a thermally buckled 
beam with geometric nonlinear effects retained in the buckling and post- 
buckling analyses. 

Despite the interesting studies mentioned above, research on the 
dynamic response of the NSHM is still in its infancy, given most studies 
have focused on conventional honeycombs as lattice structures subject 
to static loading. This work proposes an analytical model to delineate 

the impact resistance of the NSHM with potential application in the 
design of recoverable protective structural forms. 

The dissemination of this paper is organised into five sections. 
Following this introduction, the fundamental mathematical expressions 
for the response of the bistable curved beam are developed. In Section 3, 
the equations of motion are derived using the extended Hamilton’s 
principle and an analytical solution is sought for an impact-loaded 
honeycomb structure, which is designed from the modular pattern of 
the CDBs with guided supports (zero rotations and free translations), 
using perturbation techniques on the derived conservation of energy 
equations. Section 4 develops the numerical Finite Element models to 

Fig. 1. (a) The schematics of NSHM composed of curved double-beams (CDBs) and straight stiffeners for analytical study. (b) Buckling modes of a curved single- 
beam (CSB) with axisymmetric boundary conditions. (c) Buckling modes of a CDB with a mid-point stiffener with axisymmetric boundary conditions. (d) Defor-
mation of a CSB subjected to a concentrated transverse load (Mehreganian et al., 2021). 

N. Mehreganian et al.                                                                                                                                                                                                                          



International Journal of Solids and Structures 279 (2023) 112389

5

examine the validity of the analytical model. Finally, Section 5 presents 
the conclusions of the study. 

2. Structural mechanics of the NSHM 

The metastructure model assessed here, as depicted in Fig. 1a, is 
composed of a finite collection of constituent cells with two cells located 
in each column (along the direction of the load) and an arbitrary number 
in each row. Each cell is architected with two pairs of curved beams, 
interconnected via horizontal stiffeners and vertical struts. The model 
design is similar to that proposed previously by researchers in the field 
(Correa et al., 2015; Goldsberry and Haberman, 2018). The symmetry of 
the model reduces the mathematical treatment to consideration of only 
one cell along the horizontal direction (perpendicular to the loading 
direction) but includes all the curved beam pairs along the loading 
direction. 

The structure is subject to an impact load by a striker of mass G and 
impact velocity V0. It is assumed that the structure remains purely 
elastic throughout the motion. Nevertheless, the influence of finite dis-
placements, or geometry changes, is retained in the analyses, which 
gives rise to the evolution of the membrane (catenary) forces. The so- 
emerged membrane forces resist out-of-plane deformation and alle-
viate its maximum displacement at the expense of higher in-plane 
stresses (Mehreganian et al., 2018). 

The so-fabricated curved beams have a sinusoidal profile that mimics 
a monolithic Euler-Bernouli beam buckled into its first Euler buckling 
mode (see Fig. 1b). Upon the application of the load, the curved beam 
pairs (CDBs) exhibit bistability (Qiu et al., 2004), i.e., they jump 
abruptly from mode 1 to 3 without undergoing mode 2 (see Fig. 1c). The 
bistability condition can be satisfied when the bistability ratio h is large 
enough (h > 2) and the curved beams are made into a pair by clamping 
at the centre (Qiu et al., 2004; Mehreganian et al., 2021). Therefore, the 
deformation of the CDBs may be assumed to be homogeneous with no 
relative displacements between the curved beams in the CDB. Further-
more, the pairing of the beams ensures that mode 2 is constrained and 
subsequently the influence of this mode can be ignored in the theoretical 
analyses. 

Under static loading, the deformation of the NSHM model, according 
to the experimental and numerical evidence (Correa et al., 2015), may 
be broken down into four distinct stages, namely (i) snap-through 
buckling of the upright beams at the top layer, (ii) downward move-
ment of the struts, while, simultaneously, the CDBs underneath the 
corresponding strut undergo transverse deformation, (iii) snap-through 
in the inverted beams of the upper row, and (iv) snap-through buckling 
of the upright CDBs in the bottom layer which is accompanied by full 
compression of the structure. At each stage throughout the motion, the 
kinematic admissibility of the displacement field and the stress state are 
ensured so that there are no ‘jumps’ in the deformation. 

It is straightforward to show that the original configuration of a 
curved beam fixed at each end must have the first Euler’s buckling mode 
profile, expressible as (Qiu et al., 2004): 

W0 =
h
2

(

1 − cos
(

2πx
l0

))

, (1)  

where h and l0 are the rise and the initial length of the beam, respec-
tively. Such a profile is a condition that can satisfy the bistability cri-
terion. The respective profiles of the beam in its original and deformed 
configurations are illustrated in Fig. 1d. 

The structural system may be regarded as a discrete, purely elastic 
system of n degrees of freedom representative of the deformations of the 
CDBs. Following (Qiu et al., 2004), the displacement field of the curved 
beam w is decomposed into a linear combination of modal displace-
ments, i.e. w =

∑
jwj +

∑
kwk, each component of which, upon using the 

mode superposition method, is expressible as: 

wj = hAj

(

1 − cos
(

ωjx
l0

))

(2) 

for the modal frequencies of ωj = 2nπ where j = 2n − 1, with n being 
an integer representing the mode number of the displacement profile, 
and 

wk = hAk

⎛

⎜
⎜
⎝1 −

2x
l0
− cos

(
ωkx
l0

)

+
2sin

(
ωkx
l0

)

ωk

⎞

⎟
⎟
⎠, (3)  

where ωk = 2.86π, 4.95π,⋯ for mode numbers k = 2, 4,6,⋯. The modal 
frequencies of even subscripts are calculated from the solution to the 
axial compression of a clamped straight beam to a stable position, i.e., 

the condition tan(ωk/2) = ωk/2. Thus, w =
∑∞

n=1Aj

(
1 − cos

(
ωjx
l0

))
. 

Such a curved beam with the profile of Eq. (2) is paired in each cell 
and restrained with roller boundary conditions whereby only transverse 
deformations are permissible throughout the motion, the CDB pair 
constrain rotations that would otherwise admit asymmetric modes from 
the solution, as the centre clamp transfers the rotational degree of 
freedom of either beam centre to an axial DOF of the lower beam. 

Interestingly, the consequence of pairing the curved beams is to 
disregard the mode shapes of even numbers in the mathematical anal-
ysis, hence simplifying the analysis significantly with consideration of 
Eq. (2) as the basis of the buckling response of the NSHM due to impact. 
Upon loading, the lateral displacement at the mid-span of the beam 
becomes d = W0(l0/2) − w(l0/2). Subsequently, the expression for 
bending and membrane strain energies, Ub and Um are, respectively, 
given by: 

Ub =
EI
2

∫ l0

0

(
∂2W0

∂x2 −
∂2w
∂x2

)2

dx, (4)  

Um = −

∫ l0

0
pds, (5)  

where the parameter s represents the arc length i.e., the new length of 
the curved beam upon deformation. To evaluate Eq. (5), by using the 

moderate deformations approximation ds = dx
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
( dw

dx
)2

√

≅ dx
(

1+1
2
( dw

dx
)2
)

, we have: 

s =
∫ l0

0

(

1+
1
2

(
dw
dx

)2
)

dx. (6) 

The initial length of the beam, i.e. s0 = (π2h2 + 4l20)/(4l0), is obtained 
by replacing w with W0 in Eq. (6). The membrane force induced by the 
change of beam length is determined as 

p = Ebτ̂
(

1 −
s
s0

)

. (7) 

Eqs. (2), (4)-(7) construct the basis for the mathematical procedure 
to verify the buckling response of the CDB. The relative displacements 
between the vertical struts and the curved beams are assumed negligible 
by postulating that they behave as inextensible struts. Furthermore, it is 
assumed that the horizontal stiffeners remain undeformed during the 
deformation. The presence of the horizontal stiffeners causes the CDB 
pairs to be tied on either side and to eliminate the lateral deformations in 
the system, thus rendering the deformations homogeneous. The down-
ward motion of the NSHM structure is thus solely associated with the 
local snap-through (snap-back) of the curved beam pairs in each layer. 
Based on the research by (Qiu et al., 2004; Correa et al., 2015; Nayfeh 
and Emam, 2008) and/or by applying Buckingham’s Π-theorem, a 
dimensionless set of parameters can be derived as follows: 
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wj =
wj

h
, l =

l0

h
, h =

h
τ̂, Ub =

Ubl3
0

EIh2, Um =
Uml3

0

EIh2, P =
Pl3

0

EIh
,

x =
x
l0
, Δ =

d
h
, s =

sl0

h2 , and p =
pl2

0

EI
.

(8a-j) 

The parameter h in Eq. (8b), developed by Qiu et al. (Qiu et al., 2004) 
and later adopted and used by others as Correa et al. (Correa et al., 
2015), represents the bistability ratio which permits a rational com-
parison between the amount of stored energy due to the deflections of 
different lattices to be made. It must be appreciated that although the 
elements in the set of dimensionless parameters may take different 
forms, the cardinality of the set of these parameters is unique. The 
relative significance of various dimensionless parameters may be found 
by other means (Li and Jones, 2000). Here, because of the importance of 
beam characteristic lengths, in particular, the beam apex height and 
thickness, the non-dimensional expressions for structural strength, 
stiffness, strain energies, and force, have been related to these 
parameters. 

Substituting Eqs. (8) Eqs. (4)-(7), the dimensionless parameters of 
Eqs. (8a-j) are calculated as: 

Δ = 1 − 2
∑

j=1,5,9,..
Aj, (9)  

s =

(

l2
+
∑∞

j=1

ω2
j A2

j

4

)

, (10)  

p =
3h2

s1

(
ω2

1

4
−
∑∞

j=1
ω2

j A2
j

)

, (11)  

where s1 = ω2
1

/
16l2

+ 1 = s0
/

l0. (12) 

It is assumed that the as-fabricated curved beam is stress-free at Δ =

0; therefore, the leading-order terms of Eqs. (4)-(5) are expressed, 
respectively, as: 

Ub =
ω4

1

4

(
1
2
− A1

)2

+
∑∞

j=2

ω4
j A2

j

4
, (13)  

Um =
12l2

0

τ̂2

(

s −
8s2

ω2
1 + 16l2

)

. (14) 

The expressions above establish the fundamental ingredients for 
solving the problem of curved beam buckling in the case of static 
loading. By utilising the Lagrange-Dirichlet theorem, the total potential 
energy Π which corresponds to the strain energies and the work done, 
considering every mode of deformation, is stable and has a strict mini-
mum (Bazant and Cedolin, 2010; Szilard, 2004; Wadee et al., 2020). 

Furthermore, the equilibrium expression of the system can be derived 
from the stationarity condition of the system. In the case of dynamic 
loading, however, the kinetic energy (corresponding to inertia force 
terms) must also be included in the formulation of the total energy Π. 
For a single beam, it can be demonstrated that the force–displacement 
and stiffness of the beam obey the following relations (Mehreganian 
et al., 2021) 

P =
π4Δ

( (
12(Δ − 1)(Δ − 2)h2

+ 16
)
+ 4π2

/
l2 )

8s1
, (15)  

k1 =

( (
4 + 3(3Δ2 − 6Δ + 2)h2 )l2

+ π2
)
π4

2l2s1

. (16) 

Fig. 2 illustrates the influence of the bistability ratio h and the 
transverse displacement of the single curved beam on its tangent stiff-
ness (Eq. (16)). 

For convenience, further dimensionless numbers are introduced as 
follows. 

t*2
=

ml3
0

EI
, t*1

2
=

mbl3
0

EI
, G =

G
m
, T =

Tl3
0

EIh2, g =
g
h
, Ẇ(i) =

Ẇ(i)

h
, m =

mb

m
.

(17a-h) 

The dynamic response of the NSHM during the impact loading con-
sists of the n main phases of motion, as expounded in detail in the sequel, 
where n represents the number of CDBs in the direction of the load. 

3. Striker impact on the NSHM 

This section deals with the analyses of the dynamic response in the 
NSHM due to the impact of a striker of a particular mass and geometry. 
The type of contact is assumed to be hard contact (normal behaviour) 
with penalty frictional formulation (tangential behaviour). In the 
following subsections, the distinct phases of motion are analysed in 
detail. 

A considerable body of literature exists on the dynamic response of 
plate and beam elements subjected to impact by a heavy mass striker 
(Jones, 2014; Johnson et al., 2009; Dean et al., 2011; Jones, 2012). For 
simplicity in the mathematical treatments, the material behaviour of 
such structural elements is, however, assumed to be either linear elastic 
or rigid-perfectly plastic (Mehreganian et al., 2018; Jones, 1989; Meh-
reganian et al., 2018; Jones, 2014). More often than not, the buckling of 
the structural members admits large displacements in which case the 
influence of finite displacements or geometry changes is non-negligible 
and nonlinear elastic analysis is required. 

Before proceeding to the impact analysis of the NSHM, it is note-
worthy to consider an arbitrarily shaped surface element bounded by an 
oriented closed path in the Cartesian coordinate system. Using Green’s 

Fig. 2. (a) Interaction of the bistability and deformation on the beam tangent stiffness. (b) Influence of the beam bistability ratio on the elastic strain energy of the 
beam expressed as U =

∫
PdΔ, derived from Eq. (15). 
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theorem, the equation of motion in its force vector field is converted into 
a functional of energy conservation, wherein the total internal energy 
rate Ḋ is at equilibrium with the external work rate Ė . As is customary, 
the overdot notation accounts for differentiation with respect to time. 
For an arbitrarily shaped plate (and a beam as a special case) when the 
shear strain and rotatory inertia effects are disregarded (Jones, 1989; 
Jones, 1971; Jones and Walters, 1983), we have: 

− GV̇ V −

∫

A
μw..ẇdA+

∫

A
f̂ (x, y, t)ẇdA =

∫

A
(M +Nxw)κ̇ dAc, (18)  

where Nx is the membrane force per unit length, and ẇ and V represent 
the velocities of the surface element and the striker, respectively. The 
expression on the left-hand side signifies the external work rate with the 
first term being the rate of change in the kinetic energy of the striker, 
and with the second and third terms giving the work due to pressure 
field f̂ (x, y, t) according to the Lagrange-D’Alembert principle’s inertia 
force. The expression on the right-hand side gives the strain energy rate 
in the continuous deformation fields due to bending and membrane 
actions, respectively. Eq. (1) reduces to the equilibrium equation for 
Euler-Bernoulli beams by considering the variation in the generalized 
coordinate y to be negligible. 

Given the impact duration is of the order much less than the natural 
period of the structure, the influence of viscoelasticity can be dis-
regarded. Thus, the motion unequivocally resembles the forced vibra-
tion of a system comprised of linear springs (horizontal stiffeners) and 
nonlinear bistable springs (CDBs) interconnected in a given topology. 
The viscoelastic forces alter the constitutive equations, inducing mode 
coupling in the formulation of the lattice energy balance equations. 
Furthermore, as the CDBs in the lattice are slender, the effects of shear 
deformations and rotatory inertia are negligible. 

3.1. First phase of motion 
(
0 ≤ t ≤ td,1

)

Upon impact, the striker exerts a force on the top surface of the 
lattice at t = 0 and remains in contact with it for a duration of td = td,1, 
as the striker travels with the same velocity as the structure at the point 
of contact. Contrary to the buckling order in the static analysis, it turns 
out that the buckling of the CDBs initiates with the uppermost beams in 
the first (top) layer at the onset of impact loading. Subsequently, the 
CDBs buckle sequentially in order from the top to the bottom layer. Due 
to the geometry of the model, the induced axial deformation of the struts 
in each layer is associated with the buckling of the upright/inverted 
CDBs in the retrospective lattice column. The ensuing mathematical 
analysis may be pursued in two cases, namely: (i) the sequential buck-
ling of the beams leading to the partial or full compression of the NSHM, 
or (ii) the response of the structure being brought about by the simul-
taneous buckling of the CDBs. From the numerical observations of the 
moderate velocity impacts considered, it transpires that the deformation 
of the lattice was driven by the dynamic buckling of the CDBs at each 
stage, while the simultaneous vibrations of the CDBs in the other layers 
were comparatively insignificant. Thus, in this work, we examine the 
first case scenario which, while offering simplicity to the mathematical 
treatment, preserves the accuracy of the solution. 

With the mode-2 deformations and rotational degrees of freedom 
(DoFs) at each end of the CDB being constrained, the velocity profile of 
each would become independent of the other. Under such a circum-
stance, the governing equations of the multi-DoF system having n gen-
eral modes of vibrations boil down to those of n single-DoF systems. The 
buckling of the ith beam lasts for a duration of td,i from the time point of 
td, i− 1. At the point of transition in time between the buckling of each 
beam with the next one, the kinematic conditions of the velocity and 
displacement fields apply. 

It may be assumed that the vertical bars behave as rigid bodies with 
no axial elongation/compression during the motion. An idealisation of 
the structure renders it to be visualised as a system of four lumped 

masses and springs connected by these bars. As the striker collides with 
the metastructure, the velocity of each lumped mass is equivalent to that 
of the mid-point of the CDBs. 

Following D’Alembert’s principle, as discussed earlier, and using 
Green’s function on the principle of virtual velocities, the external forces 
(kinetic energy of the striker, inertia forces, and the work done by the 
striker) are equated, at every instant of time, to the total strain energy 
(bending and membrane) of the structure. The Lagrangian function Π is 
ensued, by enforcing a time integration of Eq. (1) and furnishing it into: 

Π
(

A(t), Ȧ(t), t
)
= U +Ts + Tst +Tb − W , (19)  

where U = Ub +Um represents the total strain energy of the meta-
structure assuming no energy is stored through the shear deformation, 
and Tst and Tb represent the kinetic energies as follows. The kinetic 

energy of the striker is given as Tst = 1
2Gt*2Δ̇2

t , where Δt =
∑n

i=1Δj 

denotes the total transverse displacement of the lattice. The total kinetic 
energy of the metastructure accounts for those of the interconnecting 
horizontal CDBs and vertical struts Ts and that of the curved beams Tb. 
The buckling of the curved beam in the lower layer induces two types of 
deformations: (i) the axial deformation of the vertical bars, and (ii) the 
rotation of the horizontal stiffeners at the joints between them, the 
curved beam, and the vertical bars. The vertical struts and horizontal 
stiffeners are assumed as rigid, inextensible elements, which travel at the 
same velocity as the curved beam in the lower layer. Hence, in the first 
phase of motion, the formulation of the kinetic energies considering the 
buckling of the CDB of the top layer accounts for the kinetic energies of 
the beam and striker only. Nevertheless, in the subsequent phases of 
motion, the mass of such rigid elements contributes to the kinetic energy 
formulations for the CDBs underneath. 

The kinetic energy of the ith curved beam is expressed as 

Tb,i =
h2

2

∫

As

ẇi
2μsdAs, (20)  

where μs = bρb represents the mass per unit area of the beam. Since 
dAs = τ̂ds0, ds0 is determined by replacing w with W0 in the expression 
of ds. Upon substituting Eq. (1) into Eq. (6) with the subsequent sub-
stitution of Eq. (2) into Eq. (20), we obtain 

Tb,i = mbh2
∑

j=1,5,9,
SjȦ

2
i,j, (21a)  

Sj =

⎧
⎨

⎩

(5s0 + l0)/8s0, j = 1
5/4 − l0/2s0, j = 3

3/4. j = 5, 7, 9,⋯
(21b)  

where mb = ρbs0bτ̂ and ρb are the mass and density of the CDBs, 
respectively. The parameter Sj for other modes can be determined by 
substituting Eqs. (1)-(3) into Eq. (20) and evaluating the integral. The 
work done by the striker due to the conservative force P is expressed as 
W i = PhΔi. Using Eq. (17a-h), the dimensionless form of the total work 
done, kinetic, and strain energies are, respectively, expressed as: 

W = PΔt, (22)  

Tb,i = mit*
2 ∑

j=1,5,9
SjȦ

2
i,j, (23)  

Tst,i = 2Gt*2 ∑

j=1,5,9
Ȧ2

i,j, (24)  

Ub,i =
ω4

1

4

(

A1,i −
1
2

)2

+
∑∞

j=2

ω4
j A2

j,i

4
, (25)  
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Um,i =
12l2

0

τ̂2

(

si −
8si

2

ω2
1 + 16l2

)

. (26) 

In Eq. (24), Tst,i represents the portion of the kinetic energy of the 
striker that induces the motion of the corresponding beam. Substituting 
Eqs. (22)-(26) into Eq. (19) yields:  

where the over-bar indicates the non-dimensional form of the quantity, 
while subscripts j and i refer to the mode and CDBs number, respectively. 
We may also drop the second index as the terms of displacement and 
velocities are identical for the CDBs in each layer. Using Hamilton’s 
principle, the requirement that the trajectory A(t) is a stationary point of 

the action functional L =
∫ t2

t1
Πidt is satisfied provided that δL = 0, the 

necessary and sufficient condition for which is the Euler-Lagrange 
expression as: 

∂Πi

∂Aj,i
−

d
dt

∂Πi

∂Ȧj,i
= 0, (28) 

such that 

∂(Π1)=

(( ω4
1 − pω2

1

)

2
A1+2P−

ω4
1

4

)

∂A1+
∑∞

j=5,9,13,⋯

(
ω4

j − pω2
j

2
Aj+2P

)

∂Aj.

(29) 

By applying Eq. (28), a number of nonhomogeneous ordinary 

Fig. 3. Influence of bistability ratio on (a) the membrane stiffness, and (b) the modal frequency of vibration.  

Fig. 4. (a) Phase-plane plot of the model given different bistability ratios. (b) Variation of the kinetic energy parameter Fu = 2psA(t) − [1/2ψA4(t) + λ2
0A2(t)] with h.  

Πi =
∑

j=1,5,9,

(
2G+miSj

)
t*2Ȧj,i

2
+
∑

j=1,2,3,..

1
4

(
ω4

j − pω2
j

)
Aj,i

2 + 2P
∑

j=1,5,9,⋯
Aj,i −

ω4
1

4
A1,i − 4P, (27)   
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differential equations (ODEs) are recovered with respect to every mode 
of deformation. From the results of numerical studies in the sequel, with 
the notion that mode 2 is constrained as assumed in (Mehreganian et al., 
2021) it transpires that the predominant mode of beam deflection in the 
CDB is the first mode (Qiu et al., 2004), thus the influence of higher 
modes may be neglected in the study. Notably, in the static analysis, 
modes 2 and 3 yield linear force–displacement curves independent of 
the bistability ratio. Similarly, the consideration of higher modes (j=
5,9,13,⋯) gave rise to a marginal difference in the theoretical results of 
(Qiu et al., 2004). Regarding the top beam buckling, the form of the first 
ODE (Eq. (28)) is furnished as: 

λ2
0A1(t) +A1

..(t) +∊0ψA1(t)3
= λ2

0ps, (30)  

where Q = h2
/s1, and 

ψ = −
24Qπ4

c2∊0
, (31)  

ps =
2 − P/π4

3Q − 4
, (32)  

λ0 = π2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

6Q − 8
c2

√

, (33)  

c2 = 2(2G+ S1m)t*2
. (34) 

The parameter ψ may be visualised as the (membrane) stiffness of the 
system. When ψ = 0, the theoretical solution boils down to a linearised 
ODE with a harmonic vibrational frequency of λ0. The case of ψ > 0 
corresponds to nonlinear hardening whereas for ψ < 0, the system is 
softening because with the increase in displacement, the system be-
comes softer (Feldgun et al., 2016). The former circumstance commonly 
occurs in the initially flat isotropic beams and plates subjected to 
transverse loading. The parameter ∊0 is a small perturbation number 
which may be chosen arbitrarily, herein selected as ∊0 = (h/l0)3. The 
influence of bistability ratio h on the modal frequency λ0 and membrane 
stiffness ψ is compared in Fig. 3. 

It turns out that the ODE in Eq. (30) represents the inhomogeneous 
form of Duffing equation, representing the nonlinear forced oscillation 
of a spring. Using the separation of variables, the form of ODE boils 

down to Ȧ2
(t) = 2psλ2

0A(t) − [1/2ψ∊0A4(t) + λ2
0A2(t)]+c with the inte-

gration constant being c = λ2
0

(
1

32λ2
0

ψ∊0 +a2
1 +

1
4 − ps

)
, determined from 

the kinematic conditions at the onset of impact. With ψ < 0, the phase 
plane forms a saddle at the midpoint (Fig. 4). 

A numerical scheme e.g. an iterative method may be pursued for the 
solution of Eq. (30) by initially disregarding the nonlinear term 
∊0ψA3

1(t), resulting in a general linearised solution with the displace-
ment field denoted as A(0)

1 (t). The next iteration is sought by the sub-
stitution of A(0)

1 (t) in lieu of the nonlinear component of Eq. (30). 
However, such a solution entails secular terms (such as tsin(t)), whose 
presence brings about in non-harmonic diverging vibrations, whereby 
an unbounded growth of the amplitude emerges over time. Thus, the 
closed-form solution, representative of the physical harmonic vibration 
of the beam, is sought via the Poincaré-Lindstedt method (Mehreganian 
et al., 2019). To this end, the displacement field A1(t) may be perturbed 
using 

A1(t) = ∊0
0A1

(0)(t)+ ∊1
0A1

(1)(t)+ ∊2
0A1

(2)(t)+O
(
∊3

0

)
, (35)  

where the superscript denotes the order of the perturbed term of the 
displacement field. Similarly, the time and frequency of vibration would 
be truncated as 

λ = ∊0
0λ0 +∊0λ1 +∊2

0λ2 +O
(
∊3

0

)
, (36)  

τ = λt. (37) 

The terms λi (i ≥ 1) denote vibration pseudo-frequencies as they 
harmonise the displacement field vibration by increasing the frequency 
of the perturbed terms thus reducing their amplitudes, the exact values 
of which are determined explicitly from the solution of the displacement 
field. Substituting Eqs. (36) and (37) into Eq. (35), and ignoring higher- 
order terms, yields a polynomial in terms of ∊1. To this end, the co-
efficients of the ∊(i)0 should vanish to satisfy the differential equation, 
which results unequivocally in three sets of ODEs expressed as: 

A1
(0)(τ)+A1

..(0)(τ) = ps, (38)  

∊1

(

λ2
0

(

A1
(1)(τ) + A1

..(1)(τ)
)

+ 2λ0λ1A1
..(0)(τ)+ψ

(
A1

(0)(τ)
)3
)

= 0, (39)  

∊2
1

(

3ψA1
(1)(τ)

(
A1

(0)(τ)
)2

+ 2λ0λ2A1
..(0)(τ)+ 2λ0λ1A1

..(1)(τ)+ λ2
1A1

..(0)(τ)

+ λ2
0

(

A1
..(2)(τ) + A1

(2)(τ)
))

= 0.

(40) 

The initial conditions at the onset of impact for the solution of Eq. 

(38) are A(0)
1 (0) = 0.5 and Ȧ1

(0) equal to the magnitude of the initial 
modal velocity. The initial modal velocity field is obtained by satisfying 
the conservation of linear momentum by equating the momentum of the 
striker having a velocity V0 = hV0 immediately before the impact with 
the combined total momentum of the striker and the metastructure 

immediately after the impact, i.e. Ȧ1
(0)
(0) = − GV0/[(2G − m)λ0]. The 

solution of Eq. (38) then gives the dimensionless displacement as: 

A1
(0)(τ) = ps(1 − cos(τ) ) − sin(τ)GV0

(2G − m)λ0
+

cos(τ)
2

. (41) 

Substituting Eq. (41) into Eq. (39), while making use of Eqs. (31)- 
(33), we determine the next term of the displacement field as: 

A1
(1)(τ) = 3

8λ2
0

((

a2
1 + 5p2

s − ps +
1
4

)

ψ −
8λ0λ1

3

)((

ps

−
1
2

)

sin(τ)+ a1cos(τ)
)

τ+C1cos(τ)+C2sin(τ)+ 1
64λ2

0

(

8
(
3a2

1

− p2
s + ps − 1

/
4
)
(

ps −
1
2

)

ψcos(τ)3
− 8
(

a1

(

a2
1 − 3p2

s + 3ps

−
3
4

)

sin(τ) + 8a2
1ps − 8p3

s + 8p2
s

− 2ps

)

ψcos(τ)2
− 24

(

ps −
1
2

)(
16
3

a1psψsin(τ) +
(

a2
1 − 5p2

s + ps

−
1
4

)

ψ +
8λ0λ1

3

)

cos(τ) − 16ψ
(
a3

1sin(τ) + 4a2
1ps + 12p3

s − 8p2
s

+ 2ps
)
)

,

(42)  

where a1 = − GV0/[(2G − m)λ0], while the integration constants are 
determined, by applying the initial kinematic conditions as: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C1 =

(
152a2

1ps + 136p3
s − 12a2

1 − 76p2
s + 22ps − 1

)
ψ

64λ2
0

,

C2 = −
a1
(
4ψp2

s + 4ψps − 16λ0λ1 + 3ψ
)

16λ2
0

.

(43) 

Obviously if a1 ∕= 0, or ps ∕=
1
2, the term 

( (
ps −

1
2

)
sin(τ)+a1cos(τ)

)
τ 

corresponds to a secular term. The condition to render the vibration 
harmonic is thus recovered by equating its coefficient to zero, giving: 

N. Mehreganian et al.                                                                                                                                                                                                                          



International Journal of Solids and Structures 279 (2023) 112389

10

λ1 =
3ψ
(
5p2

s − ps + a2
1 +

1
4

)

8λ0
. (44) 

Referring to Eq. (40), the second perturbed term is sought by 
substituting Eqs. (42) and (41) into Eq. (40) and applying the same 
procedure. The solution to the further term of the displacement field 
boils down to: 

A2
(2)(τ)=f (τ)+C4cos(τ)+C5sin(τ)+ 1

98304λ4
0

(

a2cos(3τ)+a3cos(2τ)

+b2sin(3τ)+a4cos(5τ)+a5cos(4τ)+b3sin(5τ)+b4sin(2τ)

+b5sin(4τ)+a6cos(τ)+b6sin(τ)+156672
(

181
17

p4
s − 10p3

s

+

(
110
17

a2
1+

143
34

)

p2
s +

(

−
46a2

1

17
−

29
34

)

ps+a4
1+

23a2
1

34
+

21
272

)

ψ2ps

)

,

(45)  

where the parameters a1 − a6 and b1 − b6 are expressed in Appendix A as 
Eqs. (A. 52)-(A. 61). The integration constants C4 and C5 are evaluated, 
in a similar fashion to the above, by dictating the kinematic conditions of 
the displacement and velocity fields at the onset of impact, as: 

C4 =
1

6144λ4
0

(
(
− 51912p5

s + 42444p4
s +

(
− 20448a2

1 − 16158
)
p3

s

+
(
10248a2

1 + 2973
)
p2

s −
(
9432a4

1 + 6354a2
1 + 366

)
ps + 300a4

1 − 69a2
1

− 3
)
ψ2 + 12752

(
95p3

s

797
−

541p2
s

1594
−

(

a2
1 −

221
3188

)

ps −
99a2

1

1594

+
33

6376

)

λ1λ0ψ + 3072
(

ps −
1
2

)

λ2
0

(

λ0λ2 +
λ2

1

2

))

,

(46)  

C5 = −
a1

128λ4
0

⎛

⎜
⎜
⎝

(

− 1157p4
s + 676p3

s −
(
1926a2

1 + 412
)
p2

s

+

(

232a2
1 +

143
2

)

ps + 15a4
1 − 6a2

1 −
15
16

)

ψ2

−
4λ0
(
9a2

1 + 1189p2
s − 581ps −

27
4

)
λ1ψ

3
− 128λ3

0λ2 − 64λ2
0λ2

1

⎞

⎟
⎟
⎠.

(47) 

The function entailing the secular term f(τ) is expressed as: 

f (τ) =
(

X1 −
(128ps − 64)λ2

128λ0

)

τsin(τ)+
(

Y1 −
a1λ2

λ0

)

cos(τ)τ, (48)  

where 

X1 = −
81

128λ4
0

⎡

⎢
⎢
⎣ψ2

(

a4
1ps +

5
54a4

1
+

350
27

a2
1p3

s −
131
27

p2
s a2

1 +
5

9psa2
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(50) 

Through algebraic manipulation, with X2 = X1 − (128ps − 64) λ2/

128λ0 = R0cos(ϕ) and Y2 = Y1 −
a1λ2

λ0
= R0sin(ϕ), while ϕ = tan− 1Y2/X2, 

the expression for the second vibration pseudo-frequency can be deter-
mined as (51). The interactions of the striker mass and load coefficient 
with the pseudo-frequencies are plotted in Fig. 5. 

λ2 =
4
(
X1ps −

1
2X1 + a1Y1

)
λ0

4a2
1 + 4p2

s − 4ps + 1
. (51)  

3.2. Subsequent phases of motion 
(
td,i ≤ t ≤ td,i+1

)

Following the full compression of the upper CDB at the top layer, at 
transition time td,1 the lower CDB of the top layer initiates buckling 
while the stiffness of the upper CDB is completely lost and its corre-
sponding energy components are eliminated from the Euler-Lagrange 
energy function L . It transpires that the form of the ODE (Eq. (30)) 
and the ensuing Poincaré-Lindstedt ODEs remain valid but entail the 
displacement field A1,2 in lieu of A1. It is assumed that the striker 

Fig. 5. Surface interaction of the load and striker mass with the pseudo frequencies of the CDBs: (a) the first, and (b) the second vibration pseudo-frequencies.  

N. Mehreganian et al.                                                                                                                                                                                                                          



International Journal of Solids and Structures 279 (2023) 112389

11

remains in contact with the lattice surface during the subsequent phases 
of motion, while its velocity V0 now accounts for the total velocity of the 
lattice CDBs underneath, or Δ̇(τ) = − 2λȦ1(τ). The kinematic conditions 
of the displacement and velocity fields between the two CDBs must be 
satisfied at the transition time td,1. In a similar manner, following the full 
snap-back of the inverted beam in the top layer at td,2, the CDB in the 
bottom layer undergoes buckling while its initial kinematic conditions 
are derived from those of the previously buckled CDB. The expression of 
the displacement field for the successive CDBs is derived by the substi-
tution of τi+1 = λ(t − td,i) in place of τ into Eqs. (41), (42), and (45). The 
total displacement of the lattice is defined as the cumulative displace-
ments of the CDB pairs in the post-buckled state. 

4. Numerical analysis and discussion 

The accuracy of the analytical model for the response of an indi-
vidual CDB pair underlies the response of the entire lattice. Several 
three-dimensional finite element (FE) models were thus set up in ABA-
QUS® Explicit to validate the analytical model, in two folds. In the first, 
we examined the response of the individual CDB considering the impact 
of a striker with velocities V0 = 0.5, 0.75, 1, 2, and 4 m/s, G = 1 and 2 kg, 
and a CDB apex height of 8 mm. In the second, the influence of the 
bistability ratio h = h/t on the impact resistance of the models was 
examined both numerically and analytically. 

The striker in both models was designed as a rigid capsule, having a 
10 mm radius of projection and a cylindrical height of 35 mm, which 
was discretised with 36 R3D3 discrete rigid elements. The striker com-
prises a hemispherical nose and a cylindrical extension of the body. The 
striker’s lateral motion and rotations were constrained and it was 
permitted to move in the vertical direction only. The particular choice of 
this shape is due to the fact that a point impact is more likely to occur 
than a distributed one, besides any nose shape could be plausible, but a 

simple one indicates a more suitable point of departure. In practical 
applications, the impact is seldom uniformly spread over the entire 
lattice surface and is normally restricted to a localised area. 

Both the single beam and the lattice were made of polyamide 11 with 
Young’s modulus of 1582 MPa, a Poisson’s ratio of 0.33, and a mass 
density of 1.04 g.cm− 3. This material is favourable as it is classified as a 
lightweight, isotropic, ductile, and highly flexible material. The models 
here were assumed to be perfectly elastic with the prescribed geometric 
nonlinearities. The FE models were discretised with a minimum element 
size of 0.7 mm of S4R shell elements and a thickness of 15 mm. This gave 
a total of 34,564 S4R elements for the lattice, and the element length-to- 
beam thickness ratio as one-third. The S4R elements are general, doubly 
curved shell elements with reduced integration and hourglass control for 
which 17 Simpson integration points through the thickness were pre-
scribed. These elements’ deformation was controlled with finite mem-
brane strains. The relevant geometric parameters of the CDB were the 
same in both models, as stated in Table 1. A penalty contact type with a 
coefficient of friction of 0.3 was assumed for each contact pair of the 
structural elements in both models. By default, the shell offset and 
thickness were accounted for by contact constraints in ABAQUS. The 
models using conventional S4R shell elements and continuum shell el-
ements (SC8R, which are 8-node hexahedron shell elements with finite 
membrane strains (Corp, 2005) exhibit a faster rate of convergence than 
those modelled with C3D8R continuum elements (which are 8-node 
linear elements, referred to as the ‘brick’ elements) or M3D4R mem-
brane elements (Mehreganian et al., 2021). 

The lattice structure was designed with three constituent cells in the 
horizontal direction and two in the vertical direction, the configuration, 
and dimensions of which are set out in Fig. 6. The NSH lattice was 
subject to an impact loading by the (same) striker but with a 5-kg mass 
and the impact velocity of 2 m/s in a Dynamic/Explicit model, to yield a 
momentum equivalent to a high-velocity projectile with a 20-g mass and 
a 500-m/s speed thus provided the strain rate sensitivity effects are 
discarded, the choice of the impactor highlights two purposes, ((i) the 
validity of the analytical model due to impact by the ‘local’ (conforming) 
impactors, and (ii) a benchmark analysis for the impact response of the 
NSHM due to the striker impacts of various velocities. For the individual 
CDB, the beam pair was clamped at either side, while the lattice was 
fixed at the bottom. The sides of the lattice were prescribed symmetric 
boundary conditions. 

According to the static analyses conducted by researchers (Restrepo 
et al., 2015; Correa et al., 2015; Mehreganian et al., 2021), the force-
–deformation landscape of the lattice is characterised by three regimes. 

Table 1 
Characteristic dimensions of the NSHM models.  

Parameter Magnitude (mm) Parameter Magnitude (mm) 

Hd 16.5 l0 57 
Ha 24 lb 16.5 
Hw 3 τs 2.5 
h 4,6,7,8,10,12 τcb 1.75 
hcb 3 τb , τd 2 
hb 12 τw 3  

Fig. 6. (a) Geometric parameters of the NSHM lattice. (b) Schematics of the finite element model (with h = 3).  
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Regimes I and III are governed by positive stiffness as they are attributed 
to the deformations in stable configurations, with the potential energy at 
the point of local minima. Regime II corresponds to the negative slope 
which corresponds to the phase transition from mode one to three (see 
Fig. 7a). As the configuration of the CDB during this phase is unstable, it 
immediately transforms into the stable equilibrium phase (regime III) 
with the CDB profile reversing. This lattice was loaded transversely at 
the top surface with a loading rate of 0.01 mm/s, in line with the static 
analyses performed experimentally (Correa et al., 2015). 

For microscale periodic lattices, the Representative Volume Element 
(RVE) can be prescribed with the periodic boundary conditions (PBC), 

which is specified by displacement differences of the pair of two oppo-
site parallel boundary surfaces of a repeated unit cell (Al Kassem and 
Weichert, 2009; Tian et al., 2019; Bouaoune et al., 2016), and may be 
applied on the surface node of the model through a linear multi-point 
constraint. The displacement difference on a pair of parallel opposite 

kth boundary surfaces can be written as uk+
i − uk−

i = ε0
ij

(
xk+

j − xk−
j

)
=

ε0
ijΔxk

j , with the indices k+ and k − identifying the kth pair of two 
opposite parallel boundary surfaces of an RVE composite, when each 
point xk+

j on a boundary ∂ϕ+ of the RVE is associated with a unique point 
xk−

j on the opposing part ∂ϕ− of the RVE (Tian et al., 2019). 
It can be postulated from Fig. 7 that, despite the relatively coinci-

dental curves of the NSHM lattices with the PBC to those without PBC, 
the latter aids minimisation of vibration jumps in the structure (at 
Δt 1.35), a phenomenon which occurs due to the residual vibrations of 
the beams in the lower layers in the first stage of deformation, while 
these beams’ buckling is yet to emerge. At the same time, snap-through 
buckling of the beams in other layers initiates. In the force–displacement 
plots of the structure, this is characterised by a sudden fluctuation in the 
force without any changes in the deformation. For the simulations of the 
dynamic problem of the RVE composite using the Explicit FE solver, 
Garoz et al (Garoz et al., 2019) prescribed dummy nodes of prescribed 
mass and the associated PBC linear constraints were applied. These 
nodes were detached from the model and served as reference points. 

In addition, similar to the results of (Al Kassem and Weichert, 2009), 
the difference between the PBC and the results with homogenous 
boundary conditions (HBC, our case in dynamic impact analysis) is 

Fig. 7. (a) Force-displacement of the NSHM lattices with periodic boundary conditions (PBC) and symmetric (Symm.) boundary conditions. Regime I corresponds to 
the initial deformation of the lattice, regime II represents the initiation of the phase transformation from mode 1 to 3, while regime III is characterised by the snap 
through to the inverted beams. (b) Influence of the number of unit cells on the lattice with PBC response. 

Fig. 8. Comparison of the analytical and numerical results of the normalised 
maximum deformation Δt for an individual CDB pair. 
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minimal. As the cases have marginal differences, the homogeneous 
boundary conditions are still valid for the structures of meso- and higher 
length-scales such as the model under consideration here. It should also 
be noted that the models with HBCs are more computationally efficient 
and less time-consuming to run than those with the PBCs, particularly 
when dealing with dynamic problems which must be solved using the 
conditionally stable Explicit solver. 

The influence of the number of unit cells included on the response of 
the NSHM lattice to the transverse load is depicted in Fig. 7, where the 
notation “mbn” denotes the structural arrangement with m constituent 
cells in the horizontal direction and n cells in the vertical direction. 
Except for the first peak, the magnitude of the load and the associated 
displacement for all lattice sizes virtually converge to the same curve. 
While the displacement associated with the first peak of different lattice 

sizes reduces with the increase in the number of constituent cells in the 
horizontal direction, the first peak magnitudes of the load remain rela-
tively unaltered. It should further be noted that the displacement dif-
ference boundary conditions for the PBC may not always guarantee the 
traction continuity conditions (Al Kassem and Weichert, 2009). Despite 
the differences in the FE solver computations due to the influence of 
mesh size and element type, the force–displacement convergence is still 
satisfied. 

Finally, in the case of mass impact problems, specifically, those 
associated with the striker impacts, the PBC will become irrelevant, as it 
ensures the stress continuity at parallel opposite boundaries, while due 
to the localisation of the impact and distinguishably different stress 
evolution at the contact interface compared to other types of laterally 
induced motion by loading the NSHM statically or via periodic dynamic 

Fig. 9. Analytical versus numerical force–time histories of models with (a) h = 3, (b) h = 4, and (c) h = 5.  
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excitations continuity is violated more often than not. 
As plotted in Fig. 8, the analytical model captures the maximum 

displacement field in the individual CDB pair with high precision. In the 
case where the greatest difference between the two models emerges, 
beyond the striker’s initial momentum of the 2 N.s, the striker induces 
saddle-node bifurcation (snap-through) wherein the CDB undergoes a 
phase transformation from a stable state to an unstable one. In the lower 
bound of the abscissa in the figure (Δt< 0.5), however, small dynamic 
perturbations occur, and the first peak in the displacement history oc-
curs at the first phase of motion. 

In Fig. 9a-c, we compare the analytical versus numerical predictions 
of the force–time histories of the lattices with h = 3,4, and 5, respec-
tively. The analytical plots account for three phases of motion while the 
striker is in contact with the lattice. Although the frequencies of the 
response curve from the two plots (Analytical vs FE) differ, apart from 
the first 3 ms of the model with h = 3, the force–time histories are 
consistent. The captured peak force from the FE models also shows good 
agreement with that of the analytical one, with the percentage of error 
being 6.3%,7.9%, and 2.6% for h = 3,4, and 5, respectively, which is 

bounded to 8% in all cases. It should, however, be recognised that the 
response in the lattice is more complex and the CDBs in each constituent 
cell undergo residual vibrations erratically, leading to the erratic shape 
of the ordinate in Fig. 9. However, the analytical model can capture the 
generic trend of the first peaks in the initial phase followed by the re-
sidual ones in subsequent phases. In the lattice with a CDB of a lower 
bistability ratio, it is interesting to observe more irregular force 
fluctuations. 

A comparison of the acceleration of the CDBs with those of the 
analytical results is drawn in Fig. 10. Except for the initial estimation of 
the ordinate during the first cycle (the first 1 ms), the transient inertia 
from the analytical model corroborates favourably with the numerical 
counterparts. The analytical model predicts the critical points (peaks) of 
the inertia with good precision. Notably, as discernible from Fig. 11, due 
to the increase in stiffness, the magnitude of the permanent displace-
ment (Δt) of the structure reduces as the initial curvature (bistability 
ratio) increases. The ordinate of Fig. 11 is determined from the deriva-
tive of the total elastic strain energy of the lattice with respect to Δt, 
which is then normalised and scaled by the number of the CDBs. The 

Fig. 10. Comparison of the lattice acceleration determine analytically with the numerical one for (a) h = 5 and h = 6, and (b) h = 3.5 and h = 4.  
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Fig. 11. Numerical FE results of the force–displacement plots for various bistability ratios, where the abscissa and ordinate represent the total displacement of the 
lattice and the strain energy derivative (applied force), respectively. (a) Force-displacement plots of models with h = 2 and 3.5, with captured logarithmic strains at 
the peak load. (b) Force-displacement plots of models with h = 4 − 6. (c) Force-displacement plots of the 2 × 2 cell models with h = 3 − 6. (d) Force-displacement 
plots of models with h = 5, with and without the horizontal stiffeners. 
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general trends in Fig. 11a-c is a smooth approach of the force to a local 
maximum the position of which shifts to the left at the expense of a high 
h, followed by an oscillatory reduction. Interestingly, the local maxima 
of the force Pt reach a maximum limit up to 187 N with the increase of 
the bistability ratio, up to h = 4; though Pt attenuates subsequently as h 
increases further. Such a trend may be elucidated with reference to the 

magnitude of the curved beam stiffness as presented in Fig. 2. 
As illustrated in Fig. 11, significant fluctuations in the magnitude of 

the force are observed within a small variation of the displacement field 
in the vicinity of the maximum displacement limit for h = 2,3.5, and 4 in 
Fig. 11a and h = 4 − 6 in Fig. 11b; the oscillations in Pt diminish in the 
models with amplified h. These variations may have arisen because of 

Fig. 12. Schematics of the lattice profile 
shape and Mises stresses in the lattice with 
h = 2: (a) the initial curvature change and 
buckling; (b) the snap-back of the lower 
CDB in the first layer; (c & d) the snap- 
buckling of the inverted beams of the 
lower layer; (e & f) the full snapping 
deformation of the top beams in the lower 
and upper levels; (g & i) the full 
compression of the NSH lattice with de-
formations and Mises stresses of the 
model, respectively. (h & j) the deforma-
tion and Mises stress distribution in the 
lattice with h = 3.5 at the point of middle 
beams snapping phenomena, respectively.   
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the small vibrations of the CDBs in the top layer at the associated time 
points without undergoing snap-through/snap-back. The magnitude of 
the strain energy, although escalating monotonically in all models, os-
cillates temporarily due to such vibrations. Furthermore, some non- 
homogeneous deformations of the CDBs arise during the lattice defor-
mation inducing relative displacements within the CDBs, particularly in 

the models of higher h. The buckling order of the beams varies accord-
ingly and at the initial velocity of 2 m/s, only the uppermost beams of 
metastructures with h > 4 experience buckling. Upon the impact of the 
striker, the presence of deformation modes other than modes 1 and 3 is 
discerned in the lattice employing 2 × 2 cells, analysed in Fig. 11c for 
the sake of comparison. This was primarily associated with the buckling 

Fig. 13. Transient reaction force plots Pb in the boundaries of the lattice, where the contour legends represent the Mises stress magnitudes of the lattice. (a) Force- 
displacement plots of h = 2 and 3.5 models. (b) Force-displacement plots of h = 4 and 5 models (the two schematics at 0.005s and 0.02s of sub-figure ‘a’ share the 
same legend, and so do those of sub-figure ‘b’). 
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of the beams across the central (vertical) axis of symmetry, while the 
CDBs of the lowest level remained undeformed. Such a response would 
induce rotations in the horizontal and vertical struts on either side of the 
central axis. While the rotation of the vertical struts may be associated 
with mode 2 being not fully constrained, this rotation was only observed 
in one model. Evidently, the height of the centre clamp can affect the 
degree of constraints imposed on the CDBs in each layer, while the in-
crease in the height of the centre clamp also indicates the overall in-
crease in the lattice height. In the region close to the two stable 
positions, the motion of the CDBs is independent of the centre clamp 
height. Nevertheless, according to (Qiu et al., 2004), the force-
–displacement plots of the CDBs with mode 2 fully constrained, i.e. with 
the optimised gap between the beam pairs, the stiffness and geometry of 
the centre clamp, and the beam length/thickness ratios, are very close to 
the ones in which mode 2 is partially-constrained. Thus, while further 
studies are required to investigate the optimum lattice topology to 
eliminate the interference of other modes with the predominant mode of 
vibration, the analytical results developed in the previous section can 
provide a sound assessment of the lattice response. Lastly, with an in-
crease in cell numbers in parallel to 3 and more, the CDBs at the bottom 
layer remained intact and thus the overall elastic vibrations of the CDBs 
in the bottom layers (unbuckled beams) due to the impact on the upper 
layers are bounded. 

The bistability of the lattice also aids in higher energy entrapment of 
the structure. The boundary conditions and the number of cells do not 
influence the sub-wavelength energy entrapment trends with the bist-
ability ratio, a common feature of multistable architected meta-
materials/metastructures (Shan, 2015). 

Fig. 11d draws comparisons of the lattices made of 2 × 2 cells with 
and without the horizontal beams. The response of the latter model is 
characterised by a monotonic increase of the load whilst that of the 
former undergoes a snap-back buckling response, in tandem with a 
pronounced reduction of the maximum transverse displacement at the 
expense of the higher loading magnitude. In contrast to the general 
pattern of the loads with the stiffeners, the loading distinctively in-
creases monotonically in the model without them, while the path of the 
load curve reveals infinitesimal vibrations. The presence of stiffeners is 
therefore crucial for the desired phenomena of snap-back and snap- 
through which aid in energy entrapment in the metastructure. 

The profile shapes and Mises stresses of the 2 × 3 lattice with h = 2 
(the only model that underwent full compression) is illustrated in 
Fig. 12. Within the initial time limit of 10 ms, the uppermost CDBs 

undergo a curvature reverse while the remaining CDBs retain their 
original shape or will be on the verge of buckling. By time t = 13.2 ms, 
the loading would have reached its maximum limit, followed by the 
snapping back of the inverted double-curved beams of the top level. The 
transfer of the dilatational waves from the contact interface between the 
striker and the lattice forces snap-back buckling in the inverted beams of 
the lower level until full compression at t = 23.2 ms occurs. Clearly, due 
to the flexibility of the lattice, the contact point of the striker with the 
lattice exhibits some deformations giving an initial conical profile shape. 
The captured axial deformation of the curved beam relative to the 
transverse counterpart was considerably diminutive. 

In Fig. 13, the non-dimensional reaction force Pb captured at the 
midpoint of the bottom support is compared for various bistability ra-
tios. Such a parameter is likewise scaled according to the number of 
CDBs. The lower the bistability ratios (h < 4), the higher the number of 
fluctuations of reaction forces over the time history of motion, The 
models with elevated Pb exhibit a higher oscillation frequency as well. 
The time point of the separation of the striker from the structure was 
monitored as 265 ms for h = 3.5 and 2 ms for h = 4. As such, higher 
bistability ratios yield higher lattice stiffness which in turn lowers the 
duration of the impact. Upon detachment of the striker from the lattice, 
the stored energy is released and results in the residual vibrations in the 
CDBs (Fig. 13b) hence the spectrum of the force oscillates about zero 
(the local minimum of the equilibrium point) before all the stresses 
within he system vanish. As observed, the duration of such oscillations is 
prolonged with the models of lower h. According to Fig. 13b, at the time 
points of 5 ms and 18.6 ms, respectively, snap-back buckling occurs for 
the models h = 5 and h = 4, although the top beam of the lower level 
and the inverted beams of the top level of the latter design undergo 
snapping at t = 13.4 ms, corresponding to the minimum magnitude of 
the force. The highest displacement in the CDBs is associated with the 
middle-inverted beam of the top level. Interestingly, except for the 
model h = 2, no CDBs in the lowest level exhibited curvature change. 

As the striker and the lattice remain in contact up to rest, the striker’s 
kinetic energy is fully transferred to the strain energy of the lattice which 
manifests in its transverse deformations, until all the kinetic energy of 
the striker is transferred and its momentum vanishes. Thereafter, the 
unloading phase initiates (Fig. 14), when the lattice relieves the stored 
energy and recovers to its original shape, pushing the striker back (up-
wards) in the opposite direction. This is depicted by the reduction of the 
reaction force to zero but with fluctuations around this stable position 
(Fig. 13). 

Fig. 14. The loading–unloading cycle of the lattice response upon striker impact for h = 4 and h = 5.
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5. Concluding remarks 

This work deals with the impact resistance of a metamaterial lattice 
structure referred to as the Negative Stiffness Honeycomb Metastructure 
(NSHM) model made of isotropic material. Utilising the Euler-Lagrange 
equations of motion and the Poincaré-Lindstedt perturbation technique, 
analytical solutions were derived and compared against parametric 
finite element numerical models. It was shown that the CDBs would 
generally experience bistability due to a transition from mode 1 to mode 
3. The transient dynamics of the forces revealed higher oscillations in 
the magnitude and frequency of vibration with the models having lower 
bistability ratios. The profile shape of such models (e.g., h = 2) 
remained symmetric with full compression under impact load. The 
response of the models was also characterised by infinitesimal vibrations 
without buckling, corresponding to the models of high h. 

Although higher modes of deformations were ignored in the study, 
the analytical models showed reasonable corroboration with the nu-
merical models for the lattice and higher degree corroboration for the 
individual CDB pair. The force–time histories of the analytical and nu-
merical FE models were consistent, and the captured peak force of the 
latter was 8% different from the former one on average. The response of 
the lattices having the lower bistability ratio was more erratic due to the 
residual vibrations and saddle-node bifurcations of the CDB at different 
layers. Small perturbations of the CDB in the lower beams occurred 
simultaneously with the deformation of the CDB in the upper layers, 
which leads to the discrepancy in the time of occurrence of the peak 

forces throughout the motion. 
The overall response of the lattice structure made of such beams 

becomes more complex as relative displacements between the beams 
may occur which correspond to other deformation modes. It should also 
be emphasised that, in practice, the buckling phases are interspersed 
with rotations and displacements of the beams. Thus, introducing a 
more sophisticated model by retaining the higher modes would be at the 
expense of higher levels of mathematical complexity and simulation 
time. Such an approach would give rise to an infinitesimal improvement 
of the model accuracy while rendering the analyses unnecessarily 
complicated. 
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Appendix 

Appendix A 

The parameters of Eq. (45) are given as. 
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Analytical and numerical studies. J. Sound Vib. 513, 116413 https://doi.org/ 
10.1016/j.jsv.2021.116413. 

Mooney, J.G., Johnson, E.N., 2013. A Collision-resilient Flying Robot. J. F. Robot. 31 (4), 
496–509. https://doi.org/10.1002/rob.21495. 

Nayfeh, A.H., Emam, S.A., 2008. Exact solution and stability of postbuckling 
configurations of beams. Nonlinear Dyn. 54 (4), 395–408. https://doi.org/10.1007/ 
s11071-008-9338-2. 

Okumura, D., Ohno, N., Noguchi, C., 2002. Post-buckling analysis of elastic honeycombs 
subject to in-plane biaxial compression. Int. J. Solids Struct. Sci. 39 (13–14), 
3487–3503. https://doi.org/10.1016/S0020-7683(02)00165-8. 

Ouyang, S., Deng, Z., Hou, X., 2018. Stress concentration in octagonal honeycombs due 
to defects. Compos. Struct. 204 (March), 814–821. https://doi.org/10.1016/j. 
compstruct.2018.07.087. 

Qiu, J., 2003. An Electrothermally-Actuated Bistable MEMS Relay for Power 
Applications. Massachusetts Institute of Technology. 

Qiu, J., Lang, J.H., Slocum, A.H., 2004. A curved-beam bistable mechanism. 
J. Microelectromechanical Syst. 13 (2), 137–146. https://doi.org/10.1109/ 
JMEMS.2004.825308. 

Rafsanjani, A., Akbarzadeh, A., Pasini, D., 2015. Snapping Mechanical Metamaterials 
under Tension. Adv. Mater. 27 (39), 5931–5935. https://doi.org/10.1002/ 
adma.201502809. 

Restrepo, D., Mankame, N.D., Zavattieri, P.D., 2015. Phase transforming cellular 
materials. Extrem. Mech. Lett. 4 (September), 52–60. https://doi.org/10.1016/j. 
eml.2015.08.001. 

Sareh, P., 2019. The least symmetric crystallographic derivative of the developable 
double corrugation surface: Computational design using underlying conic and cubic 
curves. Mater. Des. 183, 108128 https://doi.org/10.1016/j.matdes.2019.108128. 

Sareh, P., Chermprayong, P., Emmanuelli, M., Nadeem, H., Kovac, M., 2018. Rotorigami: 
A rotary origami protective system for robotic rotorcraft. Sci. Robot. 3 (22), 1–13. 
https://doi.org/10.1126/scirobotics.aah5228. 

Sareh, P., Guest, S.D., 2014. Designing symmetric derivatives of the Miura-ori. In: 
Advances in Architectural Geometry 2014. Springer International Publishing, Cham, 
pp. 233–241. 

Sareh, P., Guest, S.D., 2015. Design of isomorphic symmetric descendants of the Miura- 
ori. Smart Materials and Structures 24 (8), 085001. 

Sareh, P., Guest, S.D., 2015. Design of non-isomorphic symmetric descendants of the 
Miura-ori. Smart Materials and Structures 24 (8), 085002.Chicago. 

Sareh, P., Guest, S.D., 2015. A framework for the symmetric generalisation of the Miura- 
ori. International Journal of Space Structures 30 (2), 141–152. 

Shan, S., et al., 2015. Multistable architected materials for trapping elastic strain energy. 
Adv. Mater. 27 (29), 4296–4301. https://doi.org/10.1002/adma.201501708. 

Street, T., Seffen, K.A., 2007. ‘Morphing’ bistable orthotropic elliptical shallow shells. 
Proc. R. Soc. A Math. Phys. Eng. Sci. 463 (2077), 67–83. https://doi.org/10.1098/ 
rspa.2006.1750. 

Sun, S., An, N., Wang, G., Li, M., Zhou, J., 2019. Snap-back induced hysteresis in an 
elastic mechanical metamaterial under tension. Appl. Phys. Lett. 115 (9), pp. 
https://doi.org/10.1063/1.5119275. 

R. Szilard, Theories and Applications of Plate Analysis. 2004. 
Tancogne-Dejean, T., Spierings, A.B., Mohr, D., 2016. Additively-manufactured metallic 

micro-lattice materials for high specific energy absorption under static and dynamic 
loading. Acta Mater. 116 (June), 14–28. https://doi.org/10.1016/j. 
actamat.2016.05.054. 

Tian, W., Qi, L., Chao, X., Liang, J., Fu, M., 2019. Periodic boundary condition and its 
numerical implementation algorithm for the evaluation of effective mechanical 
properties of the composites with complicated micro-structures. Compos. Part B 162 
(June 2018), 1–10. https://doi.org/10.1016/j.compositesb.2018.10.053. 

Toupin, R., 2013. Elastic materials with couple-stresses To cite this version : HAL Id : hal- 
00852443. Arch. Ration. Mech. Anal. 11 (1), 385–414. 

Truesdell, C., 1968. The Elements of Continuum Mechanics. Springer, Berlin Heidelberg 
NewYork. January.  

C. Truesdell and R. Toupin, “The Classical Field Theories,” in Principles of Classical 
Mechanics and Field Theory / Prinzipien der Klassischen Mechanik und Feldtheorie, S. 
Flügge, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1960, pp. 226–858. 

Vangbo, M., 1998. An analytical analysis of a compressed bistable buckled beam. Sensors 
Actuators, A Phys. 69 (3), 212–216. https://doi.org/10.1016/S0924-4247(98) 
00097-1. 

Wadee, M.A., Hadjipantelis, N., Bazzano, J.B., Gardner, L., Lozano-Galant, J.A., 2020. 
Stability of steel struts with externally anchored prestressed cables. J. Constr. Steel 
Res. 164, 105790 https://doi.org/10.1016/j.jcsr.2019.105790. 

Wu, W., Hu, W., Qian, G., Liao, H., Xu, X., Berto, F., 2019. Mechanical design and 
multifunctional applications of chiral mechanical metamaterials: A review. Mater. 
Des. vol. 180, no. June, 107950 https://doi.org/10.1016/j.matdes.2019.107950. 

Yavari, A., 2008. On geometric discretization of elasticity. J. Math. Phys. 49 (2), 1–36. 
https://doi.org/10.1063/1.2830977. 

Yavari, A., Sarkani, S., Moyer, E.T., 2000. On applications of generalized functions to 
beam bending problems. Int. J. Solids Struct. 37 (40), 5675–5705. https://doi.org/ 
10.1016/S0020-7683(99)00271-1. 

Zheng, X., Guo, X., Watanabe, I., 2021. A mathematically defined 3D auxetic 
metamaterial with tunable mechanical and conduction properties. Mater. Des. 198, 
109313 https://doi.org/10.1016/j.matdes.2020.109313. 

Zheng, Z., Yu, J., Li, J., 2005. Dynamic crushing of 2D cellular structures: A finite 
element study. Int. J. Impact Eng. 32 (1–4), 650–664. https://doi.org/10.1016/j. 
ijimpeng.2005.05.007. 

Zou, Z., Reid, S.R., Tan, P.J., Li, S., Harrigan, J.J., 2009. Dynamic crushing of 
honeycombs and features of shock fronts. Int. J. Impact Eng. 36 (1), 165–176. 
https://doi.org/10.1016/j.ijimpeng.2007.11.008. 

N. Mehreganian et al.                                                                                                                                                                                                                          

https://doi.org/10.1016/j.tws.2011.09.006
https://doi.org/10.1016/j.ijimpeng.2013.05.003
https://doi.org/10.1016/j.ijimpeng.2013.10.009
https://doi.org/10.1016/0020-7462(83)90040-9
https://doi.org/10.1115/1.4037966
https://doi.org/10.1103/PhysRevE.101.022215
https://doi.org/10.1103/PhysRevE.101.022215
https://doi.org/10.1016/S0020-7403(00)00100-4
https://doi.org/10.1038/35069035
https://doi.org/10.1038/35069035
https://doi.org/10.1007/s004199900072
https://doi.org/10.1007/s004199900072
https://doi.org/10.1080/01495730490486352
https://doi.org/10.1080/01495730490486352
https://doi.org/10.1038/s41467-019-11935-x
http://refhub.elsevier.com/S0020-7683(23)00286-X/optjkz4pAm1RP
http://refhub.elsevier.com/S0020-7683(23)00286-X/optjkz4pAm1RP
http://refhub.elsevier.com/S0020-7683(23)00286-X/optjkz4pAm1RP
https://doi.org/10.1038/srep05979
http://refhub.elsevier.com/S0020-7683(23)00286-X/h0250
http://refhub.elsevier.com/S0020-7683(23)00286-X/h0250
https://doi.org/10.1016/j.jsv.2018.07.032
https://doi.org/10.1016/j.jsv.2018.07.032
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000645
https://doi.org/10.1016/j.ijmecsci.2018.09.017
http://refhub.elsevier.com/S0020-7683(23)00286-X/h0270
http://refhub.elsevier.com/S0020-7683(23)00286-X/h0270
http://refhub.elsevier.com/S0020-7683(23)00286-X/h0270
https://doi.org/10.1115/1.4049954
https://doi.org/10.1115/1.4049954
https://doi.org/10.1016/j.jsv.2021.116413
https://doi.org/10.1016/j.jsv.2021.116413
https://doi.org/10.1002/rob.21495
https://doi.org/10.1007/s11071-008-9338-2
https://doi.org/10.1007/s11071-008-9338-2
https://doi.org/10.1016/S0020-7683(02)00165-8
https://doi.org/10.1016/j.compstruct.2018.07.087
https://doi.org/10.1016/j.compstruct.2018.07.087
http://refhub.elsevier.com/S0020-7683(23)00286-X/h0305
http://refhub.elsevier.com/S0020-7683(23)00286-X/h0305
https://doi.org/10.1109/JMEMS.2004.825308
https://doi.org/10.1109/JMEMS.2004.825308
https://doi.org/10.1002/adma.201502809
https://doi.org/10.1002/adma.201502809
https://doi.org/10.1016/j.eml.2015.08.001
https://doi.org/10.1016/j.eml.2015.08.001
https://doi.org/10.1016/j.matdes.2019.108128
https://doi.org/10.1126/scirobotics.aah5228
http://refhub.elsevier.com/S0020-7683(23)00286-X/optBArmZnX3CP
http://refhub.elsevier.com/S0020-7683(23)00286-X/optBArmZnX3CP
http://refhub.elsevier.com/S0020-7683(23)00286-X/optBArmZnX3CP
http://refhub.elsevier.com/S0020-7683(23)00286-X/optga2mVsFPYG
http://refhub.elsevier.com/S0020-7683(23)00286-X/optga2mVsFPYG
http://refhub.elsevier.com/S0020-7683(23)00286-X/optsZPREeXWpF
http://refhub.elsevier.com/S0020-7683(23)00286-X/optsZPREeXWpF
http://refhub.elsevier.com/S0020-7683(23)00286-X/optdRwVG4mf77
http://refhub.elsevier.com/S0020-7683(23)00286-X/optdRwVG4mf77
https://doi.org/10.1002/adma.201501708
https://doi.org/10.1098/rspa.2006.1750
https://doi.org/10.1098/rspa.2006.1750
https://doi.org/10.1063/1.5119275
https://doi.org/10.1016/j.actamat.2016.05.054
https://doi.org/10.1016/j.actamat.2016.05.054
https://doi.org/10.1016/j.compositesb.2018.10.053
http://refhub.elsevier.com/S0020-7683(23)00286-X/h0365
http://refhub.elsevier.com/S0020-7683(23)00286-X/h0365
http://refhub.elsevier.com/S0020-7683(23)00286-X/h0370
http://refhub.elsevier.com/S0020-7683(23)00286-X/h0370
https://doi.org/10.1016/S0924-4247(98)00097-1
https://doi.org/10.1016/S0924-4247(98)00097-1
https://doi.org/10.1016/j.jcsr.2019.105790
https://doi.org/10.1016/j.matdes.2019.107950
https://doi.org/10.1063/1.2830977
https://doi.org/10.1016/S0020-7683(99)00271-1
https://doi.org/10.1016/S0020-7683(99)00271-1
https://doi.org/10.1016/j.matdes.2020.109313
https://doi.org/10.1016/j.ijimpeng.2005.05.007
https://doi.org/10.1016/j.ijimpeng.2005.05.007
https://doi.org/10.1016/j.ijimpeng.2007.11.008

	Impact response of negative stiffness curved-beam-architected metastructures
	1 Introduction
	2 Structural mechanics of the NSHM
	3 Striker impact on the NSHM
	3.1 First phase of motion 0≤t≤td,1
	3.2 Subsequent phases of motion td,i≤t≤td,i+1

	4 Numerical analysis and discussion
	5 Concluding remarks
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix Acknowledgements
	Appendix A 

	References


