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A B S T R A C T

Concrete is a quasi-brittle material and generally fails in mixed mode I-II fracture. The fracture
energy release in mode I and mode II during crack propagation is usually different. However,
the tensile test fracture toughness has generally been considered in most of the numerical
models to study fracture in concrete. In this paper, a phase field model is presented which
considers the fracture energy of mode I and mode II for mixed mode I-II fracture simulation in
concrete. In addition, it uses a fracture mode controlling parameter 𝜒 which, in a sense, controls
the governing failure criterion. The post-peak material response is modeled using a cohesive
zone approach. The effect of the length scale parameter, mesh size and 𝜒 is investigated. For
validation, a single-edge notch beam with a notch at various eccentricities is considered. It
is shown that the model is mesh independent for a sufficiently fine mesh in cracking region.
Also, the effect of the length scale parameter on global response is insignificant. It is observed
that 𝜒 ≥ 1 gives satisfactory results both for mode I and mixed mode I-II fracture in single edge
notch concrete beam. The numerical results for the load–displacement curve are compared with
the experimental data both qualitatively and quantitatively. It is concluded that the proposed
phase field model can simulate mode I and mixed mode I-II fracture in concrete with sufficient
accuracy.

. Introduction

Concrete is widely used in construction industry for building different types of engineering structures. It is quasi-brittle and
ostly fails in mixed mode I-II fracture under mechanical and environmental loading [1]. Understanding the crack mechanism and

uantifying its damaging effect on concrete structures is indispensable on part of engineers. Once a crack nucleates in concrete under
pplied load, a tension zone or fracture process zone (FPZ) forms where the material behavior is highly non-linear and involves
omplicated micro failure mechanisms. This mainly includes an inelastic toughening mechanism, for example micro cracking, crack
oalescence, crack deflection, and loss of material integrity [2,3]. The concrete behavior being highly non-linear in FPZ, the classical
heory of Linear Elastic Fracture Mechanics (LEFM) cannot be applied to study fracture in concrete. Moreover, the conventional
ensile test material fracture toughness is used to predict the damage in concrete, (see for example [4]). In reality, crack propagation
s caused by a particular combination of shear and tensile stresses. Consequently, modified crack initiation and damage criterion are

∗ Corresponding author.
E-mail addresses: ghufranullahkhattak@gmail.com (G. khan), awais.ahmed@uetpeshwar.edu.pk (A. Ahmed), yueliu@ustb.edu.cn (Y. Liu),

afsirojjaman@adelade.edu.au (T. Tafsirojjaman), aizazahmad815@gmail.com (A. Ahmad), mudassiriqbal@uetpeshawar.edu.pk (M. Iqbal).
vailable online 24 June 2023
013-7944/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.engfracmech.2023.109439
eceived 17 December 2022; Received in revised form 2 May 2023; Accepted 15 June 2023

https://www.elsevier.com/locate/engfracmech
http://www.elsevier.com/locate/engfracmech
mailto:ghufranullahkhattak@gmail.com
mailto:awais.ahmed@uetpeshwar.edu.pk
mailto:yueliu@ustb.edu.cn
mailto:tafsirojjaman@adelade.edu.au
mailto:aizazahmad815@gmail.com
mailto:mudassiriqbal@uetpeshawar.edu.pk
https://doi.org/10.1016/j.engfracmech.2023.109439
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engfracmech.2023.109439&domain=pdf
https://doi.org/10.1016/j.engfracmech.2023.109439
http://creativecommons.org/licenses/by/4.0/


Engineering Fracture Mechanics 289 (2023) 109439G. khan et al.

m
a
d
c
s
t
i
t

p
i
O
a

p
i
m
Á
f
f
m
w
z
t
c
c
a
g

T
s
f
o
m
s
t
c
m

f
t
s
s
d
o
a
i
l

e
g
u
I
i
i
c
m
m

required to accurately predict the global structural response. In this paper, a novel phase field model, based on smeared approach,
is applied to simulate mode I and mixed mode I-II fracture in concrete.

Numerical modeling of fracture in concrete has been the state-of-the-art research in the last decades. Most of the numerical
odels tend to avoid singularity encountered in the displacement fields due to cracks. In the technical literature, based on how
crack is represented, two modeling theories are generally used in computational failure mechanics: discontinuous approach or

iscrete crack model and continuous approach or smear crack model for modeling fracture in solids. In the discrete approach, the
rack is represented as an actual physical discontinuity within or between the elements of the finite element mesh. In addition, a
oftening law is used to define the non-linear behavior of material after peak-load [5,6]. On the other hand, in the smeared approach
he material is modeled as a continuum and a modified constitutive relation is used to account for the crack effects. The damage
n the material during crack propagation is defined using an internal state variable that acts on the elastic stiffness of the material
aking care of the post-peak strain softening as the strain increases [7,8].

The discrete approach is further subdivided into inter-element and intra-element models based on whether the crack is
enetrating the elements or going along the boundaries of the elements. The most commonly used inter-element model is the
nterface element method. It uses zero-thickness elements in regions where there is a probability of crack initiation and propagation.
n the other hand, in the extended finite element method (XFEM), the crack propagates across the element of computational mesh
nd is therefore the most widely used intra-element approach.

In the interface element method, a constitutive relationship based on cohesive interaction [9,10] is used to model the fracture
rocess. Many researchers have used the cohesive approach to investigate fracture in concrete. Graffe and Linero [4] used the
nterface element method to study fracture in a three-point beam with a notch in the center. A bi-linear softening law was used to
odel the post-peak behavior of concrete. The numerical results were validated with the experimental results of [11,12]. García-
lvarez et al. [13] used the interface element method in the framework of the cohesive zone model to simulate mixed mode I-II

racture in SEN beam with different notch offsets. A good agreement was observed between the numerical and experimental results
or load versus crack mouth displacement (CMD). Gudžulić et al. [14] applied the interface element method to investigate the
echanical response of high-performance plain and fiber-reinforce concrete under cyclic loading. A modified constitutive relation
as used to account for the sliding friction and crack opening/closing. Many other researchers have successfully used the cohesive

one-based numerical approaches to study fracture in solids, see for example [15–19]. The interface element is effective when
he crack path is known a priori [20]. Additionally, the crack can propagate only along the boundaries of the elements of the
omputational mesh. Consequently, the mesh orientation and mesh size dictate the crack path [21]. Also, the model is unable to
apture the multiaxiality in the FPZ ahead of the crack tip [22]. The adjustment in the stiffness matrix with the crack growth is
nother challenge to deal with while using this method. These limitations can be overcome using other approaches such as the
radient damage model in [23], a micro polar continuum model in [24] or non-local continuum models in [25].

Another numerical technique that has attracted much attention in recent years is the extended finite element method (XFEM).
his method is mesh independent and can easily handle the discontinuities in the displacement field due to crack [26,27]. It does
o by using partition of unity (PoU) property proposed in Melenk and Babuška [28] to embed enrichment functions in the classical
inite element method at the local level. de Oliveira Pereira et al. [29] used the phantom node method for the parametric study
f mixed mode fracture in concrete. Power law [30] based on linear traction-separation law was used to model the damage in the
odel. Mougaard et al. [31] used XFEM with cohesive zone model to study the mixed mode crack propagation in doubled notched

pecimen and validated the numerical results with experimental tests of Jacobsen et al. [32]. Many other researchers have used
his method to simulate fracture in solids, see for example [33–36]. Although, the PoU-based methods are mesh independent and
an handle the strong discontinuities quite well, using them for modeling complex intersecting crack paths, friction and non-linear
aterial behavior are challenging and computationally inefficient.

The smeared crack modeling approach, in contrast to the discrete approach, smears the mechanical effect of the crack in a
inite volume and treats the whole body as a continuum with no voids or cracks. These methods can simulate complex crack
opologies and are easy to implement in the computational code. Many researchers have used the continuum damage model to
imulate crack growth in solids. Gao et al. [37] developed a non-local continuum damage model for brittle fracture and used it to
imulate crack growth in single and double-notched concrete beams. Brünig and Michalski [38] developed an anisotropic continuum
amage model to study damage in concrete. A modified elastic constitutive relation and damage criterion is proposed to predict the
nset and continuation of damage in concrete. Jirásek and Grassl [39] conducted a comparative study using isotropic, anisotropic,
nd rotating continuum damage models for concrete. Lee and Kim [40] proposed a visco-elastic damage model to study damage
n asphalt concrete. The model can successfully predict damage and healing in asphalt concrete under different loading rates and
oading modes.

In this work, a smeared approach is used to model fracture in concrete. Specifically, the phase field model proposed by Wang
t al. [41] is employed to investigate crack growth in a SEN beam under mode I and mixed mode I-II fracture. The phase field model
eneralizes Griffith’s theory and simultaneously looks for the displacement and crack path by minimizing the total potential energy
sing a variational approach [42,43]. Bourdin et al. [44] provided the roadmap for the numerical implementation of this approach.
n the phase field method, a sharp crack is replaced with a smooth crack having a localized damage band. A length scale parameter
s used to control the width of the damage band. A phase field variable is defined which ensures a smooth transition between the
ntact and damaged state of the material. Compared to Griffith’s criterion, which needs a pre-existing crack and cannot capture
urvilinear paths, the phase field model does not require any ad-hoc criteria for crack initiation and propagation. The phase field
odel for crack growth problems has evolved over time. Miehe et al. [45] proposed a thermodynamically consistent phase field
2

odel to study brittle fracture in solids. Hou et al. [46] and Ahmed and Khan [47] used the phase field model to simulate fracture
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Fig. 1. (a) Discrete crack (left) and phase field crack (right), (b) Discrete crack topology (left) and phase field crack topology (right).

in asphalt concrete at low temperatures. Zhang et al. [48] used a phase field model based on modified G-criterion to simulate mixed
mode fracture in rock-like solids. Wu [49] presented a phase field model to study fracture of brittle and cohesive cracks. Wang et al.
[41] proposed a unified phase field model to study mixed mode fracture in solids using modified failure criteria.

In this paper a phase field model is presented for the simulation of mode-I and mixed mode I-II fracture in concrete. The phase
field model of [41] is used and a unified tensile failure criterion [50] is utilized to predict crack initiation. A modified G-criterion
is used for the simulation of mixed mode fracture. To show the performance of the model, mode I and mixed mode I-II fracture
is simulated in single edge notch beam with different notch offsets.There are several novel features of the present contribution.
Typically, the maximum principal stress criterion is used for predicting crack initiation and propagation in most of the existing
phase field models. Whereas, in the present contribution a unified failure criterion [50] is employed, which uses a combination of
tensile and shear stress to predict crack growth in concrete. In addition to this, conventionally, fracture energy obtained from tensile
tests is utilized for predicting failure in SEN beams in most of phase field models. In this contribution a modified damage criterion
is utilized, which takes into consideration the fracture energy of both mode I and mode II fracture modes.

The paper is organized into sections as follows. In Section 2, the phase field model and its implementation in FEM code are
introduced. In Section 3, several experimental tests are reproduced to validate the model along with a parametric study. Finally,
the important conclusion and summary of the work is reported in Section 4.

2. Unified phase field model

This section contains the regularized framework of the unified phase field model for mixed mode I-II fracture in quasi-brittle
materials. Consider a solid body with domain 𝛺 ⊂ R𝑛 (𝑛 = 1, 2, 3) and initial reference configuration as shown in Fig. 1(a). The
external boundary is represented as a union of 𝜕𝛺𝑡 and 𝜕𝛺𝑢 such that 𝜕𝛺𝑡 ∪𝜕𝛺𝑢 = 𝜕𝛺. Also 𝜕𝛺𝑡 ∩ 𝜕𝛺𝑢 = ∅. The 𝜕𝛺𝑡 and 𝜕𝛺𝑢 are the
boundaries corresponding to the applied tractions 𝐭∗ and displacements 𝐮∗. The body contains a sharp crack represented by 𝛤 . In
the phase field model [49], the sharp crack 𝛤 is regularized over a localization band  (Fig. 1(b)). A diffuse continuous phase field
variable 𝜙(𝑥) ∈ [0 1] is used to predict damage in the localization band as shown in Fig. 1(b). A material is completely damaged
when the phase field, 𝜙(𝑥) = 1 and is completely undamaged when 𝜙(𝑥) = 0.

2.1. Smoothing the sharp crack

To make the dissipation energy functional continuous, the sharp crack surface 𝐴𝑠 is regularized by replacing it with a diffused
functional 𝐴𝑑 , leading to

𝐴𝑠 = ∫𝛤
𝑑𝛤 = ∫

𝛾 (𝜙,∇𝜙) 𝑑𝑉 = 𝐴𝑑 (𝜙) (1)

in which 𝛾 (𝜙,∇𝜙) is the crack surface energy density function, a term proposed in [45], which characterizes the crack growth in the
spatial domain in terms of phase field variable 𝜙(𝑥) and its gradient ∇𝜙(𝑥). The generic form of the crack surface density function
is defined by [45]

𝛾 (𝜙; ∇𝜙) = 1
𝑐𝑜

[

1
𝑙0
𝛼(𝜙) + 𝑙0 (∇𝜙 ⋅ ∇𝜙)

]

(2)

with

𝑐𝑜 = 4∫

4

0

√

𝛼(𝛽)𝑑 (3)

in which 𝑙𝑜 is the length scale parameter that controls the width of the localized damage band near the crack. A sharp crack 𝛾 is
recovered for 𝑙𝑜 → 0 (Fig. 2(a)). Moreover, geometric crack function 𝛼(𝜙) ⊂ [0 1] is used to regularize the crack topology in the given
domain 𝛺. It is generally approximated by linear [51] or quadratic polynomial [42,52] as a function of phase field 𝜙 (Fig. 2(b)). A
family of such quadratic functions is given by [49]

𝛼(𝜙) = 𝜉𝜙 + (1 − 𝜉)𝜙2 (4)
3
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Fig. 2. Phase field function 𝜙(𝑥) = 1 − exp(|𝑥|∕𝑙𝑜) (left) and geometric crack growth functions (right).

2.2. Regularized strain energy functional

According to the first and second law of thermodynamics, the total potential energy 𝛱 of a solid body, subject to tractions 𝐭∗

and displacements 𝐮∗, is always equal to the sum of external potential energy 𝛱𝑒𝑥𝑡 and internal potential energy 𝛱 𝑖𝑛𝑡. For a crack
growth problem, the internal potential energy 𝛱 𝑖𝑛𝑡 is constituted by elastic strain energy and dissipation energy, such that

𝛱 𝑖𝑛𝑡 = 𝐸 (𝑢, 𝜙) +𝐷 (𝜙) (5)

in which 𝐸 is the strain energy and 𝐷 is the energy dissipated during crack propagation. The regularized strain energy of a body
can be written as

𝐸 (𝝐 (𝐮, 𝜙)) = ∫𝛺
𝜓(𝜙,𝐮)𝑑𝑉 = ∫𝛺

𝑔 (𝜙)𝜓𝑜(𝐮)𝑑𝑉 (6)

in which 𝝐 (𝐮, 𝜙) is the small strain tensor, 𝜓(𝜙,𝐮) is the modified strain energy density function and 𝑔 (𝜙) ∈ [0 1] is the
degradation/damage function that depends on the phase field 𝜙(𝑥). The variation of the modified strain energy density functional
is defined as

𝛿𝐸 = ∫𝜔

(

𝜕𝜓
𝜕𝝐

∶ ∇𝑠𝑦𝑚𝛿𝐮 +
𝜕𝜓
𝜕𝜙

𝛿𝜓
)

(7)

2.3. Dissipation energy functional

The dissipation energy functional is used to account for the energy released during crack propagation. It is given as

 (𝜙) = ∫
𝐺𝑐 𝛾(𝜙,∇(𝜙)) 𝑑𝑉 (8)

in which 𝐺𝑐 is the fracture energy. The variation of the dissipation function is then defined as

𝛿 = ∫
𝐺𝑐𝛿𝛾 𝑑𝑉 (9)

with 𝛿𝛾 being the variation of crack potential, given by

𝛿𝛾 = 1
𝑐𝑜

[

1
𝑙𝑜
𝛼(𝜙)′𝛿𝜙 + 2𝑙0∇𝜙.∇𝛿𝜙

]

(10)

The external potential energy 𝛱𝑒𝑥𝑡 of the body is given by

𝛱𝑒𝑥𝑡 = ∫𝛺
𝐛.𝐮𝑑𝑉 + ∫𝜕𝛺𝑡

𝐭∗.𝐮𝑑𝐴 (11)

in which 𝐛 is the body force and 𝐭∗ is the traction applied on the body. The variation of 𝛱𝑒𝑥𝑡 is given by

𝛿𝛱𝑒𝑥𝑡 = 𝐛𝛿𝐮𝑑𝑉 + 𝐭∗𝛿𝐮𝑑𝐴 (12)
4

∫𝛺 ∫𝜕𝛺𝑡
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2.4. Constitutive relation

Eq. (7) is supplemented with the two constitutive relations: (i) stress–strain relation, and (ii) energetic crack driving force. The
tress–strain relation is defined as

𝝈 ∶=
𝜕𝜓
𝜕𝝐

= 𝑔(𝜙)
𝜕𝜓𝑜
𝜕𝝐

(13)

or a linearly elastic and isotropic material, the elastic strain energy 𝜓𝑜 is given by

𝜓𝑜 =
1
2
𝝐 ∶ E ∶ 𝝐 = 1

2
�̄� ∶ C𝑜 ∶ �̄� with �̄� = E ∶ 𝝐 (14)

n which E and C are the elastic stiffness and compliance of the material, and �̄� is the effective stress tensor. Substituting Eq. (14)
n Eq. (13), the constitutive relation becomes

𝝈 = 𝑔(𝜙)�̄� = 𝑔(𝜙)E ∶ 𝝐 (15)

he non-thermodynamic force 𝑌 which drives the evolution of phase field 𝜙(𝑥) is defined as

𝑌 = −
𝜕𝜓
𝜕𝜙

= −𝑔′(𝜙)𝜓𝑜 = −𝑔′(𝜙)
𝜕𝜓
𝜕𝑔

= −𝑔′(𝜙)𝑌 (16)

n which 𝑌 = 𝜕𝜓
𝜕𝑔 is the effective crack driving force related to the strain tensor 𝝐. In order to achieve the convergence of

non-thermodynamics force 𝑌 to a finite value as 𝜙 → 1, it is necessary to satisfy the condition 𝑔 (𝜙)′ = 0.

.5. Weak form

Using the variation of internal energy (Eq. (7)), dissipation energy (Eq. (9)), and external energy (Eq. (12)), the variation of the
otal potential energy can be written as

𝛿𝛱 = ∫𝛺

(

𝜕𝜓
𝜕𝝐

∶ ∇𝑠𝑦𝑚𝛿𝐮 +
𝜕𝜓
𝜕𝜙

𝛿𝜙
)

𝑑𝑉 + ∫
𝐺𝑐𝛿𝛾 𝑑𝑉 + ∫𝛺

𝐛𝛿𝐮𝑑𝑉 + ∫𝜕𝛺𝑡
𝐭∗𝛿𝐮𝑑𝐴 (17)

ubstituting the constitutive relations defined in Section 2.4, Eq. (17) can be rewritten as

𝛿𝛱 = ∫𝛺
(𝝈 ∶ ∇𝑠𝑦𝑚𝛿𝐮 − 𝑌 𝛿𝜙) 𝑑𝑉 + ∫

𝐺𝑐𝛿𝛾 𝑑𝑉 + ∫𝛺
𝐛𝛿𝐮𝑑𝑉 + ∫𝜕𝛺𝑡

𝐭∗𝛿𝐮𝑑𝐴 (18)

hich is further simplified into

𝛿𝛱 = ∫𝛺
(𝝈 ∶ ∇𝑠𝑦𝑚𝛿𝐮) 𝑑𝑉 + ∫

(−𝑌 𝛿𝜙 + 𝐺𝑐𝛿𝛾) 𝑑𝑉 + ∫𝛺
𝐛𝛿𝐮𝑑𝑉 + ∫𝜕𝛺𝑡

𝐭∗𝛿𝐮𝑑𝐴 (19)

ext, the multi-variable problem is written as a system of two homogeneous coupled variational statements by finding the variations
𝜙 and 𝛿𝐮 as following

− ∫𝛺
(𝝈 ∶ ∇𝑠𝑦𝑚𝛿𝐮) 𝑑𝑉 + ∫𝛺

𝐛𝛿𝐮𝑑𝑉 + ∫𝜕𝛺𝑡
𝐭∗𝛿𝐮𝑑𝐴 = 0 (20)

∫
(−𝑌 𝛿𝜙 + 𝐺𝑐𝛿𝛾) 𝑑𝑉 ≤ 0 (21)

.6. Strong form

Using integration by parts and then divergence theorem, Eqs. (20) and (21) become

−∫𝛺
(∇ ⋅ 𝝈 + 𝐛)𝛿𝐮 𝑑𝑉 + ∫𝜕𝛺𝑡

(𝐭∗ − 𝝈 ⋅ 𝐧)𝛿𝐮 𝑑𝐴 = 0 (22)

∫
(−𝑌 + 𝐺𝑓 𝜕𝜙𝛾) 𝑑𝑉 +

2𝑙𝑜
𝑐𝑜
𝐺𝑐 ∫𝜕

(∇𝜙 ⋅ 𝐧𝑠) ≤ 0 (23)

By applying the stationary condition i.e., 𝛿𝛱 = 0 for 𝛿𝐮 = 0 and 𝛿𝜙 > 0, and 𝛿𝛱 > 0 for 𝛿𝜙 = 0, the following strong form of
governing equations is obtained

∇ ⋅ 𝝈 + 𝐛 = 0 in 𝛺 (24)

and
⎧

⎪

⎨

⎪

𝑌 − 𝐺𝑐𝜕𝜙𝛾 = 0 �̇� > 0

𝑌 − 𝐺𝑐𝜕𝜙𝛾 < 0 �̇� = 0
(25)
5

⎩
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with the following Neumann-type boundary conditions

⎧

⎪

⎨

⎪

⎩

𝝈 ⋅ 𝐧 = 𝐭∗ on 𝜕𝛺𝑡

∇𝜙 ⋅ 𝐧𝑠 = 0 on 𝜕
(26)

where 𝑛𝑠 is the outward normal to the boundary 𝜕. These boundary conditions are obtained naturally from the weak form and
therefore their explicit imposition is not required in numerical implementation. Eqs. (25) and (26) is commonly called equilibrium
and phase field evolution equation.

2.7. Mixed mode I-II evolution equation

In this section, the mixed mode phase field evolution equation is presented. Using Eqs. (10) and (16), Eq. (25) can be rewritten
as

𝑔(𝜙)
𝜓𝑜
𝐺𝑐

≥
2𝑙𝑜
𝑐𝑜

∇2𝜙 −
𝛼′(𝜙)
𝑐𝑜𝑙0

(27)

The classical phase field evolution equation (Eq. (27)) [49,53] uses mode I fracture energy. Consequently, these models do not take
into account the mode mixity. In addition, the fracture angle is mostly between 𝜋∕4 and 𝜋∕2 in most of the engineering materials
which cannot be obtained using traditional G-criterion [41]. To account for the mode mixity, modified phase field models [48,54]
are used with a modified G-criterion [55]. In Wang’s model, the following mixed-mode phase field evolution equation is used

𝑔′𝐼 (𝜙)
𝜓+
𝑜𝐼

𝐺𝑐𝐼
+ 𝑔′𝐼𝐼 (𝜙)

𝜓+
𝑜𝐼𝐼

𝐺𝑐𝐼𝐼
≥

2𝑙20∇
2𝜙 − 𝛼′ (𝜙)
𝑐𝑜𝑙𝑜

(28)

where 𝑔′𝐼 (𝜙) and 𝑔′𝐼𝐼 (𝜙) are the degradation functions and 𝐺𝐼𝑐 and 𝐺𝐼𝐼𝑐 are the critical fracture energies of mode I and mode II,
etrospectively. The strain energies 𝜓+

𝑜𝐼 and 𝜓+
𝑜𝐼𝐼 are defined as [41]

𝜓+
𝑜𝐼 =

⎧

⎪

⎨

⎪

⎩

(𝜎𝑛𝑛)2
2𝐸 , 𝑖𝑓 𝜎𝑛𝑛 > 0

0, 𝑖𝑓 𝜎𝑛𝑛 < 0
(29)

𝜓+
𝑜𝐼𝐼 =

⎧

⎪

⎨

⎪

⎩

(𝜎𝑛𝑚)2
2𝜇 , 𝑖𝑓 𝜎𝑛𝑛 > 0

0, 𝑖𝑓 𝜎𝑛𝑛 < 0
(30)

where 𝑛 and 𝑚 indicate directions perpendicular and parallel to the crack surface, and 𝜎𝑛𝑛 and 𝜎𝑛𝑚(𝜏) are the normal and shear
omponent of effective stress tensor �̄�. In Eqs. (29) and (30) it is assumed that 𝜎𝑛𝑛 is the first major principal stress.

.8. Unified tension failure criterion

A unified failure criterion [50] is used to predict the crack initiation under mode I and mixed mode I-II fracture

𝜎2

𝜎2𝑡
+ 𝜏2

𝜏2𝑠
= 1 (31)

where 𝜎 and 𝜏 are the tensile and shear stress at the given point and 𝜎𝑡 and 𝜏𝑠 are the critical tensile and critical shear strength
fracture plane. Based on the particular value of 𝜒 = 𝜏𝑠

𝜎𝑡
, Eq. (31) gives different failure criteria (see [41] for more detail).

2.9. Characteristic functions for the cohesive crack

The unified phase field model is supplemented with two characteristic functions: (i) geometric crack growth function 𝛼(𝜙) and
(ii) energetic degradation function 𝑔(𝜙). These functions are postulated as follows

𝛼(𝜙) = 2𝜙 − 𝜙2 (32)

𝑔(𝜙) =
(1 − 𝜙)𝑝

(1 − 𝜙)𝑝 + 𝑃 (𝜙)
= 1

1 + 𝑞(𝜙)
, 𝑞(𝑠) =

𝑃 (𝜙)
(1 − 𝜙)𝑝

(33)

with

𝑃 (𝜙) = 1 + 𝑎2𝜙 + 𝑎3𝜙2

Where the exponent 𝑝 ≥ 2 and 𝑎1 > 0. The parameters 𝑝, 𝑎1, 𝑎2 and 𝑎3 are determined in terms of tensile strength 𝑓𝑡, critical crack
opening 𝑤𝑐 , and initial slope 𝑘𝑜 of the particular softening law. These parameter are calculated by [49]

𝑎1 =
4𝑙𝑐ℎ , 𝑎2 = 2(−2𝑘0

𝐺𝑐
2
)2 − (𝑝 + 0.5) (34)
6
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A

𝑎3 =

⎧

⎪

⎨

⎪

⎩

0, if 𝑝 > 2
1
𝑎2
[ 18 (

𝑤𝑐𝑓𝑡
𝐺𝑐

)2 − (1 + 𝑎2)] if 𝑝 = 2
(35)

where 𝑙𝑐ℎ is the internal length scale that controls the length of FPZ ahead of the crack tip. To get a convex free energy functional, it
is mandatory that the length scale parameter 𝑙𝑜 ≤

8𝑙𝑐ℎ
3𝜋 [56]. Mostly linear, bilinear or exponential softening laws are used to model

fracture in quasi-brittle materials. In this work, a linear softening law [49] is used with the following parameters:

𝑝 = 2.0, 𝑎1 =
4𝑙𝑐ℎ
𝜋𝑙𝑜

, 𝑎2 = −0.5, 𝑎3 = 0.0 (36)

2.10. Crack irreversibility

To ensure the crack irreversibility, the condition �̇� > 0 needs to be satisfied in the numerical implementation. In this
regard, history variables ℎ𝐼 and ℎ𝐼𝐼 are introduced at step 𝑖 and 𝑖 − 1 and the following algorithm is used to ensure the crack
irreversibility [41].

⎧

⎪

⎨

⎪

⎩

ℎ𝐼 (𝑖) =
𝜓+
𝑜𝐼 (𝑖)

𝐺𝑐𝐼
, ℎ𝐼𝐼 (𝑖) =

𝜓+
𝑜𝐼𝐼 (𝑖)

𝐺𝑐𝐼𝐼
, if 𝜓+

𝑜𝐼 (𝑖)

𝐺𝑐𝐼
+

𝜓+
𝑜𝐼𝐼 (𝑖)

𝐺𝑐𝐼𝐼
> ℎ𝐼 (𝑖 − 1) + ℎ𝐼𝐼 (𝑖 − 1)

ℎ𝐼 (𝑖) = ℎ𝐼 (𝑖 − 1), ℎ𝐼𝐼 (𝑖) = ℎ𝐼𝐼 (𝑖 − 1), if 𝜓+
𝑜𝐼 (𝑖)

𝐺𝑐𝐼
+

𝜓+
𝑜𝐼𝐼 (𝑖)

𝐺𝑐𝐼𝐼
≤ ℎ𝐼 (𝑖 − 1) + ℎ𝐼𝐼 (𝑖 − 1)

(37)

t initial step 0, ℎ𝐼 (0)+ℎ𝐼𝐼 (0) = max[ℎ𝑚𝑖𝑛,
𝜓+
𝑜𝐼 (0)

𝐺𝑐𝐼
+
𝜓+
𝑜𝐼𝐼 (0)

𝐺𝑐𝐼𝐼
], where ℎ𝑚𝑖𝑛 =

𝑓2𝑡
2𝐸 . The modified fracture energies 𝐺𝑐𝐼 and 𝐺𝑐𝐼𝐼 are defined

as
⎧

⎪

⎨

⎪

⎩

𝐺𝑐𝐼 = 𝐺𝑐𝐼∕𝑏𝐼 = 𝑐𝑜𝑙𝑜
2𝐸

𝑞′(0)
𝛼′(0)𝜎𝑡

𝐺𝑐𝐼𝐼 = 𝐺𝑐𝐼𝐼∕𝑏𝐼𝐼 = 𝜒2𝐸
𝜇 𝐺𝑐𝐼

(38)

where 𝑏𝐼 and 𝑏𝐼𝐼 are constants that can affect the fracture angle during crack propagation [41]. In this work, 𝑏𝐼 and 𝑏𝐼𝐼 are taken
equal to 1. Finally, Eq. (28) is written in terms of history fields as following

𝑔′𝐼 (𝜙)ℎ𝐼 + 𝑔
′
𝐼𝐼 (𝜙)ℎ𝐼𝐼 =

2𝑙20∇
2𝜙 − 𝛼′(𝜙)
𝑐𝑜𝑙𝑜

(39)

2.11. Discretized form

To discretize the governing equations given by Eqs. (20) and (39) using FEM, the displacement and phase field are approximated
as

𝐮 = 𝐍𝑢 �̂� (40)
𝜙 = 𝐍𝜙 �̂� (41)

in which �̂� and �̂� are the displacement and phase field values at the nodes, 𝐍𝑢 and 𝐍𝜙 are the shape function matrices defined as

𝐍𝑢 =
[

𝛷1 0 𝛷2 0 ⋯ 𝛷𝑖 0

0 𝛷1 0 𝛷2 ⋯ 0 𝛷𝑖

]

(42)

𝐍𝜙 =
[

𝛷1 𝛷2 ⋯ 𝛷𝑖] (43)

𝛷𝑖 represents the standard finite element shape function for the 𝑖th node. Next, the gradient operator matrices 𝐁𝑢 and 𝐁𝜙 are defined
for the displacement and the phase field as follows

𝐁𝑢 =
⎡

⎢

⎢

⎢

⎣

𝛷1
,1 0 𝛷2

,1 0 ⋯ 𝛷𝑖
,1 0

0 𝛷2
,2 0 𝛷2

,2 ⋯ 0 𝛷𝑖
,2

𝛷1
,2 𝛷1

,1 𝛷2
,2 𝛷2

,1 ⋯ 𝛷𝑖
,2 𝛷𝑖

,1

⎤

⎥

⎥

⎥

⎦

(44)

𝐁𝜙 =

[

𝛷1
,1 𝛷2

,1 ⋯ 𝛷𝑖
1

𝛷1
,2 𝛷2

,2 ⋯ 𝛷𝑖
2

]

(45)

Then the discretized form of the governing equations (Eqs. (20) and (39)) is derived as

𝐁𝑇 𝝈𝑑𝛺�̂� = 𝐍𝑇 𝐭∗𝑑𝐴 + 𝐍𝑢𝑇 𝐛𝑑𝑉 (46)
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Fig. 3. SEN beam with the notch in the center (left). (b) Discretized geometry of SEN beam.

∫𝛺
2𝑙𝑜
𝑐𝑜

𝐁𝑇𝜙𝐁𝜙𝑑𝛺�̂� + ∫𝛺
1
𝑐𝑜𝑙𝑜

𝛼′(𝜙)𝐍𝑇𝜙𝑑𝛺 + ∫𝛺
[𝑔′𝐼 (𝜙)ℎ𝐼 + 𝑔

′
𝐼𝐼 (𝜙)ℎ𝐼𝐼 ]𝐍

𝑇
𝜙𝑑𝛺 = 0 (47)

The loading is increased incrementally and in each loading step Eqs. (46) and (47) is solved. Mostly monolithic [57] or
staggered [41,45] schemes are used to solve the governing equations. In this work, a monolithic scheme is employed. However,
a diagonal stiffness matrix is used in this work with zero coupling terms and solved through the Newton–Raphson method [58].
Ignoring coupling terms may compromise the convergence rate, but not as severe as in staggered scheme. However, the use of a
diagonal stiffness matrix does not affect the accuracy of the model itself and requires a smaller time step to get accurate results [58].

3. Numerical examples

In this section, the modeling ability of the phase field model in simulating diffusive fracture in concrete is demonstrated. Using
an open-source JIVE library, the model is programmed in in-built C++ finite element code. The simulations are performed using
two-dimensional, linear quadrilateral elements. To ensure adequate resolution of the damage field within the localization band 𝑙𝑜,
a sufficiently fine mesh with a mesh size of 𝑠𝑚 = ( 15 ∼ 1

10 )𝑙𝑜 is used. [49]. In order to obtain converged results for the system
of nonlinear equations, a Newton–Raphson iterative scheme is employed. The iterative scheme uses a convergence tolerance of
0.0001. Compression failure is ignored in this contribution. In particular, crack growth under mode I and mixed mode I-II fracture
is simulated in a single-edge notched concrete beams. The notch in the beams is considered at various eccentricities. In all the
simulations (if not mentioned explicitly), a linear traction-separation law is used and the plane strain conditions are assumed.
Additionally, a parametric study related to the length scale parameter, 𝑙𝑜, and the ratio of critical shear strength to critical tensile
strength, 𝜒 = 𝜇𝑠∕𝜎𝑡, is carried out.

3.1. Mode I single edge notch beam

To simulate mode I fracture in concrete, a single-edge notch beam is considered. The geometry of the beam, along with boundary
conditions, is shown in Fig. 3(a), with the geometric dimensions given in mm. The beam geometry is discretized using Gmsh software.
To obtain accurate results, a relatively fine mesh is used where the crack is likely to propagate i.e the vertical strip shown in Fig. 3(b).
The beam geometry is discretized with 7524 linear quadrilateral elements with a mesh size of 0.8 mm in the center of the beam and
6 mm in the remaining region. The boundary conditions of the support, including roller and hinge, are imposed on a singular node
in close proximity to the support. Conversely, the boundary condition that corresponds to the applied load is applied on a group
of nodes over a span of 1.6 mm. A MATLAB code is used to generate a mesh file, compatible with the in-house built finite element
code, that includes nodal coordinates, node connectivity, and nodes corresponding to the applied point load and supports. The elastic
material properties are Young’s modulus 𝐸 = 32.8 GPa and Poisson’s ratio 𝜈 = 0.21 [59]. To calibrate the linear traction-separation
law, fracture energy 𝐺𝑐 = 100 J∕m2 and tensile strength 𝑓𝑡 = 2.7 MPa is considered. It should be noted that the literature [59] lacks
definitive values for tensile strength and fracture energy. Therefore, the phase field model is first calibrated for tensile strength and
tensile fracture energy for pure mode I fracture test. For the remaining simulations, the same values of these parameters were used.
The 𝜒 parameter is taken equal to 1.

The simulations are performed with length scale parameter 𝑙𝑜 = 5 mm which is smaller than the 8𝑙𝑐ℎ
3𝜋 = 373 mm. A displacement-

controlled setup is used and displacement 𝑢 is applied at the top center of the beam. To avoid the dynamic effect of the load, the
displacement is applied incrementally with step size 𝛥𝑢 = 0.001 mm in 300 steps with a total displacement of 0.3 mm.

The numerical results for load versus crack mouth opening displacement (CMOD) are compared with experimental results of [59]
in Fig. 4(b). The damage pattern is shown in Fig. 4(a). It can be seen that the numerical results agree quite well with the experimental
results for mode I fracture in the SEN beam with the notch in the center. It is to note here that the softening behavior of concrete
is very complicated. It involves friction at crack interfaces, crack locking and crack kinking. These effects can be included in a
model considering microstructural details. Alternately, more advanced softening laws, considering microstructural effects, can be
utilized to get more accurate results with the present phase field model. Using a softening curve with a bi-linear type of softening,
characterized by a steeper initial descent and a stronger tail, can help to improve the prediction of the softening branch [17]. Fig. 5
shows the damage evolution at different displacements/CMOD. The crack initiates at the notch tip and then propagates along the
beam center line. The mechanical behavior is approximately linear up to the peak load, after which the damage zone form and the
loading capacity begin to decrease with increasing strain.
8
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Fig. 4. (a) Damage evolution under mode I and (b) Comparison of the numerical and experimental load–CMOD curve.

Fig. 5. Damage evolution in single edge notch beam. (a) u = 0.08 mm (CMOD = 0.0642 mm), (b) u = 0.16 mm (CMOD = 0.0642 mm), (c) u = 0.24 mm
(CMOD = 0.2434 mm) and (d) u = 0.30 mm (CMOD = 0.3073 mm).

3.2. Effect of mesh size

To study the effect of mesh size on the numerical results, crack growth is simulated in mode I SEN beam with three different mesh
sizes: MeshA, MeshB, and MeshC, having a finite element mesh size of 0.6 mm, 0.8 mm and 1 mm in the region with high-stress
gradient i.e mostly near the crack. The material properties used in Section 3.1 are considered in the analysis.

The numerical results for load versus CMOD are shown in Fig. 6(b). It is observed that, for the given beam, the numerical results
converge for mesh size 𝑠𝑚 ≤ 1 mm. The MeshB is used in the rest of the simulations that follow.

3.3. Effect of length scale parameter

To investigate the effect of length scale parameter 𝑙𝑜 on damage zone and numerical results, the SEN beam is analyzed with
different length scales, i.e. 𝑙𝑜 = 3 mm, 5 mm, 7 mm and 9 mm with a mesh size of 0.8 mm near the crack.

The effect of the length scale on the load–CMOD curve is shown in Fig. 6(a). It is noted that the peak load varies slightly for
sufficiently small value for length scale parameter i.e for 𝑙𝑜 < 5 mm while there is a negligibly small effect on the softening part. This
is analogous to the convergence that is obtained by using a sufficiently fine mesh. The length scale parameter is merely regularizing
the crack path and controlling the width of the localized damage band (see Fig. 7).

3.4. Mixed mode single edge notch beam

To simulate mixed-mode I-II fracture in concrete, a single-edge notch beam is considered with a notch at various eccentricities.
By slightly varying the eccentricity of the notch, the contribution of a shearing fracture mode can be increased or decreased. This
allows investigation of the mixed-mode fracture in concrete. For higher notch offsets, there is a significant contribution of mode
II, which dictates the fracture angle. Depending on the notch eccentricity, the fracture angles is mostly between 𝜋∕4 and 𝜋∕2.
Consequently, failure occurs under mixed mode I-II. Moreover, the SEN beam with varying notch eccentricity provides some useful
9
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Fig. 6. (a) Effect of length scale parameter on the load–CMOD curve, (b) Effect of mesh size on the load–CMOD curve.

Fig. 7. Damage evolution under different length scales. (a) CMOD = 0.3 mm, 𝑙𝑜 = 5 mm, (b) CMOD = 0.3 mm, 𝑙𝑜 = 7 mm.

Fig. 8. (a) SEN beam having notch at eccentricity 𝛾 = 1/6. (b) Discretized geometry of the SEN beam.

insight into the beam behavior under external loading. First, the strength of the beam varies with the notch eccentricity. Second, the
crack does not initiate always at the notch tip; for a notch very close to the support, the crack begins to nucleate from the center.
Third, the failure criterion based on 𝜒 ≥ 1 (Maximum principal stress criterion) mostly governs throughout the beam.

To analyze mixed mode I-II fracture, the mixed mode single edge notch specimen used in [59] is considered. The eccentricity
of the notch is increased incrementally by a factor of 1/6 to investigate its mechanical effect on the global response. Fig. 8 shows
one such beam having a notch with eccentricity 𝛾 = 1/6 along with the discretized geometry. The material properties used in
Section 3.1 are considered. They are Young’s modulus 𝐸 = 32.8 GPa, Poisson’s ratio 𝜈 = 0.21, tensile strength 𝑓𝑡 = 2.7 MPa and
fracture toughness 𝐺𝑐 = 100 J∕m2. A relatively fine mesh with an element size of 0.8 mm is employed near the crack. All simulations
are performed using length scale parameter 𝑙𝑜 = 5 mm.

The analysis is performed on beams with notch eccentricity 𝛾 = 1/6, 2/6, 3/6, and 4/6. The eccentricity 𝛾 of the notch is defined
as

𝛾 = 2𝑋
𝐿

(48)

where 𝑋 is the notch distance from the center line of the beam and 𝐿 is the span length of the beam. Fig. 9 shows the crack pattern
obtained numerically for beams with different notch eccentricities. It is observed that for 𝛾 = 1/6, 2/6, and 3/6, the stress gradient
is substantial near the notch tip, and thus crack initiates at the crack tip, following the beam center line to the top of the beam. In
addition, the crack inclination increases with an increase in notch eccentricity. This is because the model-II contribution increases
as the notch eccentricity increases resulting in mixed mode I-II fracture. The numerical investigation indicates that the model can
accurately predict changes in failure modes and crack initiation angle in response to change in stresses. The numerically obtained
crack patterns appear smooth, but in reality, they are irregular with kinks and branches. This is partly because a smooth crack
10
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Fig. 9. Damage evolution under mixed mode for beams with eccentric notches. (a) 𝛾 = 1/6, (b) 𝛾 = 2/6, (c) 𝛾 = 3/6 and (d) 𝛾 = 4/6.

potential is used in the model to approximate the crack topology and partly because the concrete medium is assumed homogeneous.
In reality, concrete is composed of a hard matrix of cement and coarse and fine aggregate which can have multiple weak irregular
fracture planes and thus have kinks and branches in the crack pattern. Fig. 9(d) shows the damage evolution for the notch with
eccentricity 𝛾 = 4/6. It can be seen that the crack nucleates from the center of the beam and grows along the beam center line to
the top. The crack pattern indicates that failure is purely under mode I with no mode mixity. It is observed that for 𝛾 ≥ 0.66, the
crack tip is no more the center of the high-stress gradient and fracture flash point. Similar observations are reported for asphalt
concrete in [47].

Fig. 10(a) shows the plot of peak load versus eccentricity of the notch. The numerical results are in good agreement with the
experimental results of [59]. It can be seen that the peak load increases with an increase in the eccentricity of the notch for 𝛾 ≤
0.66, beyond which variation in strength is insignificant. This indicates that the mechanical effect of the notch is relevant only when
it is away from the support.

Fig. 10(b) shows the numerical results for load versus CMOD for the mixed mode beam with different notch offset validate
against the experimental results of [59]. It can be observed that the numerical results agree quite well with the experimental
results. To improve the prediction of the softening behavior, a bi-linear traction-separation law could be employed [17]. A slight
underestimation of the softening response can be attributed to the fact that the numerical model does not consider the effects of
friction behavior and cracking locking, which can result in a stronger response in the tail region. It is worth noting that the model
can effectively predict the change in softening behavior as the eccentricity is varied.

To investigate how the beam mechanical behavior changes with the eccentricity of the notch, the numerical load versus
displacement curve for 𝛾 = 0, 1/6, 2/6, 3/6, 4/6, and 5/6 are compared in Fig. 11(a). It is noted that for a large offset of the
notch, the peak load is high but the loss of strength is very rapid. In other words, the concrete behavior is more like a brittle one
for higher notch offsets. The load–displacement curves for 𝛾 = 4/6 and 5/6 are nearly identical. This is because for these beams
the crack initiates at the center which gives a similar peak load and softening behavior. Fig. 11(b) compares the energy dissipation
curve for different eccentricities. It is evident from Fig. 11(b) that the beam stiffness increases only up to the critical eccentricity,
beyond which there is no significant increase in the stiffness. Moreover, the energy gradient changes gradually for smaller notch
offsets but abruptly once the eccentricity exceeds the critical value i.e 𝛾 = 0.66, indicating a shift from quasi-brittle to brittle fracture.
Fig. 11(b) also indicates that the total energy dissipated increases with the increase in notch eccentricity. These observations are
consistent with the experimental finding in [59]. Similar observations were reported for asphalt concrete by Ahmed and Khan [47].

3.5. Effect of 𝜒

The 𝜒 parameter in Wang’s model, in a sense, control the crack initiation criterion and different crack initiation criterion can be
recovered based on a range of 𝜒 values. To find out its effect on the numerical results and identify the suitable 𝜒 value for mode I
and mixed mode I-II fracture simulation in concrete, an extensive study is carried out. In this regard, the pure mode I (𝛾 = 0) and
mixed-mode I-II (𝛾 = 1/6) fracture in single edge notch (SEN) beam is simulated using different 𝜒 values i.e. 𝜒 = 0.01,0.3,0.5 and
1. The material and geometric properties in Section 3.1 are considered. The computational time increases sufficiently for 𝜒 < 1 and
the simulation truncates at different stages of the load–CMOD curve (mostly close to the peak load). However, the results can be
used to judge the suitable value of 𝜒 for analyzing fracture in the SEN beam.

Fig. 12 compares the numerical load–CMOD curve for 𝜒 = 0.01, 0.3, 0.5, and 1 with the experimental results. It is observed that
the numerical results over estimate the actual member response significantly for 𝜒 < 1 both in mode I (Fig. 12(a)) and mixed-mode
I-II (Fig. 12(b)). This is because 𝜒 < 1 gives a shear-based failure criterion. Consequently, the shear stresses need to exceed the
critical shear strength 𝜇𝑠 of concrete for failure to occur. In reality, the damage region is dominated by tensile stresses and has
negligible shear stresses. This results in premature truncation and over estimation of member response under loading. The 𝜒 = 1
11
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Fig. 10. Comparison of numerical and experimental results. (a) Peaks load-eccentricity and (b) Load–CMOD.

Fig. 11. Load–displacement (left) and energy dissipation curve (right) for different notch eccentricities.

gives more accurate numerical results which can be attributed to the fact that for 𝜎𝑡 = 𝜇𝑠, the maximum principal stress criterion
governs which better suits the nature of stresses in the damaged region. It is further observed that within the range 1 ≤ 𝜒 ≤ 10, the
𝜒 parameter has no effect on numerical results. García-Álvarez et al. [13] noted that the ratio 1 ≤ 𝐺𝑐𝐼𝐼∕𝐺𝑐𝐼 ≤ 100 can be used for
SEN beam with an eccentric notch, which is consistent with our observations. Both statements are equivalent because 𝜒 parameter
is related to the ratio 𝐺𝑐𝐼𝐼∕𝐺𝑐𝐼 by

𝜒 =
√

𝐺𝑐𝐼𝐼∕𝐺𝑐𝐼 (49)

In Fig. 13, the damage patterns obtained using different 𝜒 values are shown for mode I (𝛾 = 0) and mixed mode (𝛾 = 1∕6)
beam. When 𝜒 = 0.01 for both beams, a well-shaped damage pattern is obtained (Fig. 13(a),13(c)), which is inconsistent with the
experimental observations [59]. However, for 𝜒 ≥ 1, a single crack initiates at the notch tip and propagates to the top of the beam
(Fig. 13(b),13(d)). This indicates that for 𝜒 ≥ 1, both the damage pattern and numerical results are consistent with the experimental
observations in [59].

4. Summary and conclusions

A phase field model is used to simulate mode I and mixed mode I-II fracture in concrete. The damage is smeared over a localized
band whose width is controlled by the length scale parameter. A phase field variable 𝜙 is used to indicate the damage in the
material. Its values vary between 1 and 0, 𝜙 = 1 shows a completely undamaged while 𝜙 = 1 shows a completely damaged state
of the material. The model is mesh independent, computationally efficient, and does not require a crack-tracking algorithm. This
makes it easy to implement it in a finite element code. A linear softening law is used to approximate the nonlinear behavior ahead
of the crack tip. The model is implemented in in-house built finite element code using the C++ JEM library.
12
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Fig. 12. Load–displacement curve and energy dissipation curve for different notch eccentricities. (a) 𝛾 = 0, and (b) 𝛾 = 1∕6.

Fig. 13. Damage pattern in mode I and mixed mode beam using different 𝜒 values. (a) 𝛾 = 0, 𝜒 = 0.01, (b) 𝛾 = 0, 𝜒 = 1, (c) 𝛾 = 1∕6, 𝜒 = 0.01 and (d) 𝛾 = 1∕6,
𝜒 = 1.

The model is used to investigate fractures in concrete, specifically under mode I and mixed mode I-II in a SEN beam. The
numerical results show good agreement with the experimental results both qualitatively and quantitatively. The effect of length
scale parameter 𝑙𝑜, mesh size and 𝜒 is studied. It is observed that the length scale parameter has very little effect on the global
response as long as it mimics the sharp crack. A mesh sensitivity analysis revealed that the model is mesh independent. Moreover,
it is concluded that for a single edge notch concrete beam, the critical tensile strength is always equal or smaller than the shear
strength i.e. 𝜒 = 𝜇𝑠∕𝜎𝑡 ≥ 1. Simulations performed using different notch offset revealed that the beam behavior changes from
quasi-brittle to brittle as the notch moves close to the support. Moreover, beyond a certain limit of notch eccentricity, the crack
nucleates in the center of the beam and fracture is purely under mode I. The phase field model is utilized to study concrete fracture
under quasi-static loading. In future work, the model can be extended to analyze fracture under dynamic and cyclic loading by
integrating the effect of rate in the regularized constitutive laws.
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