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Abstract: In the modern world, new technologies such as artificial intelligence, machine learning, and
big data are essential to support healthcare surveillance systems, especially for monitoring confirmed
cases of monkeypox. The statistics of infected and uninfected people worldwide contribute to the
growing number of publicly available datasets that can be used to predict early-stage confirmed cases
of monkeypox through machine-learning models. Thus, this paper proposes a novel filtering and
combination technique for accurate short-term forecasts of infected monkeypox cases. To this end,
we first filter the original time series of the cumulative confirmed cases into two new subseries: the
long-term trend series and residual series, using the two proposed and one benchmark filter. Then,
we predict the filtered subseries using five standard machine learning models and all their possible
combination models. Hence, we combine individual forecasting models directly to obtain a final
forecast for newly infected cases one day ahead. Four mean errors and a statistical test are performed
to verify the proposed methodology‘s performance. The experimental results show the efficiency
and accuracy of the proposed forecasting methodology. To prove the superiority of the proposed
approach, four different time series and five different machine learning models were included as
benchmarks. The results of this comparison confirmed the dominance of the proposed method.
Finally, based on the best combination model, we achieved a forecast of fourteen days (two weeks).
This can help to understand the spread and lead to an understanding of the risk, which can be utilized
to prevent further spread and enable timely and effective treatment.

Keywords: monkeypox virus; short-term forecasting; machine learning models; time series models;
filtering and combining technique

1. Introduction

In today’s world, humans have made incredible advances in the fields of science, tech-
nology, and artificial intelligence (AI) by inventing remote-controlled drones, automated
responsive robots, and self-driving cars. However, they continue to face numerous natural
disasters challenges, such as floods, earthquakes, and droughts, as well as novel viral
diseases, including the coronavirus infectious disease 2019 (COVID-19) and the monkeypox
virus (MV). The COVID-19 pandemic was one of the worst disasters in human history and
caused 6.8 million deaths around the world as of 17 February 2023 [1]. Moreover, it is on the
decline and is in the endemic phase, while the world is about to face another crisis in the
form of a new viral disease outbreak of MV. MV is transmitted from one human to another
through physical contact with the one who is infected, with contaminated matter, or with
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infected animals. The symptoms of MV include a rash on the skin, a mucosal lesion, muscle
aches, headaches, back pain, fever, low energy, swollen lymph nodes, and a fever that can
last for around 2 to 4 weeks. It can be difficult to identify and distinguish MV due to its
similarity to other infectious diseases. It is important to differentiate MV from chickenpox,
bacterial skin infections, capsules, herpes, scabies, other sexually transmitted infections,
and medicine-related allergies. Therefore, diagnostic tests are necessary to distinguish it
from other similar diseases, to obtain treatment as soon as possible, and to stop the spread.
The most preferred laboratory diagnostic test for MV is the detection of viral DNA by
polymerase chain reaction. MV is an infectious disease caused by the MV, a species of the
Orthopoxvirus genus and a causative agent of smallpox. There are two different clades of
MV: Clade I and Clade II. MV was first detected in Copenhagen, Denmark, in 1958 [2,3].

Meanwhile, the first formally documented case was observed in a nine-year-old child
in the Democratic Republic of the Congo (DRC) in 1970 [4,5]. Initially, the MV outbreak
was limited to the continent of Africa but gradually spread to North America and Europe.
Furthermore, confirmed MV cases were recorded in African countries, including one case
in Cote d’Ivoire, one in Cameroon, three cases in Nigeria, four in Liberia, and thirty-eight
in Congo, between 1970 and 1979. In the year 1986, the total confirmed cases reached 400,
with a 10% mortality rate. Moreover, between 1991 and 1999, some small outbreaks were
also observed in West Africa and the equatorial central region, and Congo alone observed
500 cases. After that, the continent of Africa witnessed a decline and an endemic stage of
the MV outbreak [6,7]. Since 2005, thousands of suspected MV infectious cases have been
recorded every year in the DRC. In 2017, MV re-emerged and spread among the people of
Nigeria through travelers across the country. However, in May 2022, the sudden increase
and rapid spread of the MV outbreak were seen across Europe, America, and all six regions
of the WHO, with the reporting of around 87 thousand confirmed cases and 112 deaths in
110 countries. This variant of MV was due to Clade I of MV, and it was detected in a refugee
camp in the Republic of Sudan. Later, many countries on different continents, including
Asia, Australia, Africa, South America, North America, and Europe, witnessed the same
outbreak of MV.

The MV outbreak was declared a “public health emergency of international concern”
(PHEIC) by the World Health Organization (WHO) after reporting 82,000 confirmed cases
on 23 July 2022 [8]. Recently, the multi-country MV outbreak has attracted global attention,
as a cumulative total of 86,017 confirmed cases and 97 deaths have been reported as of
17 February 2023, worldwide in over 111 countries [9,10]. On 11 May 2023, the WHO
declared that the emergence of the MV outbreak of international concern in multi-countries
is over [11]. The WHO also published a response plan and guidance documents on
strategic preparedness to curb the spread of MV. The proper diagnostics, surveillance, risk
management, and engagement of the community are most important to stop the spread
and eliminate the human-to-human spread of MV. MV poses a major threat to global health
and the economy due to the non-availability of a dedicated vaccine, cure, and on-time
detection; therefore, it needs community awareness, the education of health workers, and
timely forecasting to prevent its spread [12]. For this purpose, time series and machine
learning models are needed for modeling and forecasting the daily cumulative deaths and
confirmed cases of MV to assist governments and stakeholders in controlling the spread.

In the past, several statistical and machine learning (ML) models have been widely
used by researchers for the prediction of various diseases and pandemics [13–19]. There
has been tremendous progress in the use of AI tools to detect, diagnose, and classify
diseases [20,21]. Hence, it is possible to implement AI models for the disease classifica-
tion, monitoring, and forecasting of MV outbreaks [22,23]. The researchers in [24] com-
paratively evaluated the performance of machine-learning-based multilayer perception
models (MLP) and (autoregressive integrated moving average) ARIMA models for the
forecasting of the cumulative confirmed cases of MV and found that MLP with a sigmoid
function outperformed the traditional ARIMA model in forecasting the actual cases of MV.
Further, the human historical monkeypox cases were used for the prediction of the MV
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transmission rate by the application of stack ensemble learning (SEL) and ML techniques
including random forest, adaptive boosting regression (Adaboost), and gradient boosting
(Gboost). The experimental results revealed that the SEL outperformed the other used
algorithms [25]. For seven-day forecasting of MV cases in the USA, the five ML and time se-
ries models, including ARIMA, long short-term memory (LSTM), prophet, neural prophet,
and a stacking model, were used, and 95% accuracy was achieved in the neural prophet
output [26]. The researchers in [27] proposed an optimized hybrid deep learning approach
based on the Al-Biruni earth-radius-based (BER) optimization technique and an optimized
LSTM for forecasting confirmed cases of MV outbreaks with high accuracy and low error.
Furthermore, researchers have analyzed the spread of MV across multiple countries by
using various ML models, including linear regression (LR), random forest (RF), elastic
net regression (EN), convolutional neural network (CNN), and artificial neural network
(ANN), and found the CNN outperformed the other methods used in forecasting MV
outbreaks. They have also used time series models, ARIMA, and seasonal autoregressive
integrated moving averages (SARIMA) to measure the events’ occurrence over time [28].
In further studies, the ARIMA and feedforward neural network (FFNN) were used for the
daily confirmed and death cases of MV outbreaks for the next two months; their forecasted
estimates were around 87,276 confirmed and 94 deaths up to 31 January 2023, with a
95% confidence interval [29]. The authors in [30] performed the sentiment analysis of
tweets related to the illness of MV by analyzing the three possible responses of positive,
negative, and neutral with 94% accuracy via the proposed hybrid deep learning approach
based on CNN-LSTM. The researchers in [31] conducted a study for a short-term forecast
for 10 weeks of calibration by applying n-sub-epidemic models and found an accurate
prediction of the declining trend in MPV cases globally and country-specific cases in the
last subsequent period of ten days. Their findings also revealed that the population with
behavioral modifications and increased immunity were at higher risk of being affected
by viruses. Further, the authors in [32] implemented a lag-correlation analysis, a gradient
causality test, and a vector autoregression model to forecast the monkeypox epidemic in
20 countries and found a robust association between 13 days of priority and daily confirmed
cases globally.

In this paper, we propose a novel filtering and combination technique for the accurate
and efficient short-term forecasting of cumulative confirmed cases of MV. The proposed
methodology is based on various filters and machine learning models. The steps of the
proposed methodology are as follows: First, we decompose the original time series of the
cumulative confirmed cases into new subseries, that is, the long-term trend series and
residual series, using the two proposed and one benchmark filter, including the regression
spline filter (RSF), smoothing spline filter (SSF), and the Hodrick–Prescott filter (HPF).
Then, to predict the decomposed subseries, we consider five well-known machine learning
models, including artificial neural network (ANN), support vector machine with two
kernels (linear (SVM1) and spline (SVM2)), random forest (RF), decision tree learning (DT),
and all their possible combination models. Hence, we combine the individual predictive
models directly to obtain the final predictions one day ahead of the cumulatively infected
cases of MV. The contributions of this work can be summarized as follows: A novel
filtering and combination approach is proposed based on different filters and various
combinations of ML models to improve the accuracy of the MV-confirmed-case day-ahead
forecasts. First, we verify the performance of the proposed filters compared to the standard
benchmark filter method using accuracy measures and a statistical test. Second, within the
proposed methodology, we compare the performance of the different combinations of the
considered machine learning models using two proposed filters and a benchmark filter.
Third, the proposed final combination model is compared with the standard time series
and the ML models, and the comparative results are noted. The noted results showed that
the proposed final model is highly accurate and efficient for forecasting the daily confirmed
cases of MV as compared to the benchmark models. Finally, the proposed methodology
can be generalized and tested for other datasets.
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The rest of the paper is organized as follows: Section 2 describes the general procedure
of the proposed filtering and combination forecasting methodology. Section 3 provides
an empirical application of the proposed modeling framework using the daily cumulative
time series of the MV. Section 4 comprises a discussion of the proposed best combination
model versus some of the best time series and machine learning models. Finally, Section 5
addresses the concluding remarks and future research directions.

2. The Proposed Filtering and Combination Technique

This section explains the proposed filtering and combination forecasting technique
for the short-term cumulative confirmed cases forecast. To achieve this, the time series
of the cumulative confirmed cases (Nt) is decomposed into two subseries: the long-term
nonlinear trend (Lt) and a residual subseries (Rt) using two new proposed filters and a
considered benchmark filter, including the regression spline filter, the smoothing spline
filter, and the Hodrick–Prescott Filter. The mathematical representation of the decomposed
subsequence is formulated as

Nt = Lt + Rt. (1)

Therefore, for the modeling and forecasting purposes, the long-run nonlinear trend Lt
is a function of time t and the residual subseries, which describes the short-run dependence
of the cumulative series and is obtained by Rt = (Nt − Lt). Therefore, the new proposed
filters and the benchmark filter are described in the following subsection.

• Regression Spline Filter

A regression spline is a general nonparametric approximation of Nt by a piecewise
mth degree polynomial, estimating a subinterval bounded by a series of m points (called
knots). Any spline function U(N) of order q can be defined as a linear combination of
functions Ui(N) called basis functions, whose formula is given by increase.

U(N) =
t+m+1

∑
i=1

αiUi(N). (2)

The unknown parameter is αi, estimated by the ordinary least squares method.
The most important choices are the number of nodes and their positions that define the
smoothness of the approximation. In this work, we used cross validation to estimate
these quantities.

• Smoothing Splines Filter

To meet the requirements for resolving the knot regions, spline features can be pre-
dicted using a least-squares penalty environment to limit the sum of squares. Hence,
the equation can be written as

N

∑
j=1

(Nt −U(N))2 + λ
∫

(U′′(N))2dt, (3)

where (U′′(N)) is the second derivative of U(N). The first term describes the goodness
of fit, and the second term penalizes the coarseness of the function by the smoothing
parameter λ. Moreover, the selection of smoothing parameters is a difficult task and is
performed by cross-validation methods in this work.

• Hodrick–Prescott Filter

To assess the performance of the two proposed filters, they are compared to a standard
benchmark filter, the Hodrick–Prescott Filter (HPF). The HPF is used to obtain a smoothed-
curve representation of a time series that is more complex for long-term than short-term
fluctuations. The adjustment of the sensitivity of the trend to short-term fluctuations is
achieved by modifying a multiplier λ. Let Nt (t = 1,2,. . . ., N) be denoted the time series data.
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The series Nt is made up of a trend component denoted by τt, and an error component,
denoted by ε; therefore, the equation is

Nt = τt + εt. (4)

Here, we insert this into in a long-term trend component that can be estimated by minimiz-
ing the following expression,

mint

(
M

∑
t=1

(Nt − τt)
2 + λ

M−1

∑
t=2

[(τt+1 − τt)− (τt − τt−1)]
2

)
. (5)

In the above equation, the first term is the loss function, and the second term is a plenty
term λ multiplied by the sum of the square of the trend component second difference,
which penalizes the variation in the growth rate of the trend component.

To graphically demonstrate the performance of the proposed filters and the considered
benchmark filter (HPF) presented above, the new subseries are shown in Figure 1. In each
subfigure, at the first position is a nonlinear increasing trend (Lt) subseries, and in the sec-
ond position is a residual (Rt) subseries. From the figure, we observe that the proposed and
the benchmark filters decomposed (Nt) and captured the long-term nonlinear trend well.
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Figure 1. World Monkeypox Virus Data: the daily confirmed cases of the monkeypox virus are
filtered by the two proposed filters: (top) RSF, (middle) SSF, and the benchmark filter HPF (bottom).
Within each subfigure, the top panel shows the long-term trend (blue curve-Lt), and the bottom panel
shows the residual part (red curve-Rt).

2.1. Modeling to Filtered Series

Once the filtered subseries are extracted from the time series of the daily cumulative
confirmed cases using the two new proposed filters and a benchmark filter, we estimate the
extracted subseries using five standard machine learning models, including artificial neural
network, support vector machine with two kernels (linear and spline), random forest,
and decision tree learning. Therefore, all the considered models are explained as follows:

• Nonlinear autoregressive neural network

A nonlinear autoregressive neural network (ANN) is a type of machine learning model
that is useful for forecasting the future values of an input variable. The ANN network
predicts the future values of a time series based on its history using a re-feeding mechanism,
in which an expected value can be used as an input for new predictions at later points
in time [33]. The network is built and trained in an open loop, using actual target values
as feedback to ensure greater training accuracy. The network is converted into a closed
loop after training, and the predicted values are used to supply new feedback inputs to
the network.

Mathematically, the model predicts the future values of a time series Nt based on its
historical values Nt−1, Nt−2, . . . , Nt−d, where d is the time delay parameter. The backprop-
agation algorithm is used to train the network, and the steepest descent method is used to
minimize the square error between the actual and predicted values.

• Support Vector Machine

The statistical learning theory and the concept of structural risk reduction, which were
first introduced by Cortes and Vapnik in 1995, serve as the foundation for the machine
learning algorithm known as support vector machine (SVM). One of the most widely used
methods for supervised learning, the SVM is used to solve classification and regression
issues [34]. The SVM is quick, easy to operate, consistent, and generates accurate results.
On the other hand, SVM models employ a variety of fundamental kernel operations.
The functions can be categorized as a polynomial, linear, sigmoid, and exponential radial
basis function and a radial basis function. Complex nonlinear decision boundaries can
be modeled by the SVM technique. In addition, the SVM model is effective in time series
forecasting because it can resolve issues with nonlinear regression estimates. The formula
listed below determines the SVM model for a given dataset.
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Consider an n set of data (x1, y1), . . . , (xn, yn), where xi is the ith input vector, and yi is
the corresponding desired output. Because i = 1, 2, . . . , n, where n is the size of the sample,
the estimating function assumes the following form:

δn = v.φ(δn) + µ, (6)

where v is the weight vector, µ is the bias, φ(δn) is the high-dimensional feature space
nonlinearly mapped from the input space, and (·) represents the inner product. This work
considers two kernels, the linear (SVM1) and spline (SVM2) kernels.

• Random Forest Model

A well-known machine learning algorithm that belongs to the supervised learning
class is called the random forest (RF). Random forest often referred to as random decision
forest, is an ensemble learning technique for classification and regression that operates by
putting several decision trees through training. The RF algorithm determines the outcome
based on the decision trees’ predictions [35]. The output of different trees is averaged to
produce forecasts. As the number of trees increases, the accuracy of the result increases.
The more trees in the forest, the more accurate it is, and the issue of overfitting is avoided.
To train tree learners, the random forest training algorithm employs the widely used
method of bootstrap aggregation or bagging [36]. Bagging repeatedly (M times) takes a
random sample with replacement of the training set and fits trees to these samples given a
training set Y = y1, . . . , yn with responses X = x1, . . . , xn.

For m = 1, . . . , M :
1. m training instances from Y, X are sampled with replacement; they are referred to as

Ym, Xm.
2. On Ym, Xm, we train a classification or regression tree fm. After training, summing

the predictions from all the various regression trees on y′ can be used to make predictions
for the unseen samples y′:

f̂ =
1
M

M

∑
m=1

fm(y′). (7)

This bootstrap technique enhances the model performance by reducing the model variance
without increasing the bias. The majority vote is used in classification tree cases.

• Decision Tree Learning

Data mining frequently uses the decision tree learning technique [37]. The goal is to
develop a model that predicts the value of a target parameter given a set of input parameters.
A tree can be trained to learn by subdividing the source dataset depending on an attribute
value test [38]. With the use of a recursive partitioning process, a decision tree algorithm
divides a training dataset, Y = {Y1, Y2, . . . , YN}→ X = {X1, X2, . . . , XN}, to create a model.
Note that each observation Yi→ Xi could include M f features, Yi = (Yi1, Yi2, . . . , YiM f ).
If the data at node m are Q with Mm observations, then for each candidate partition
π = ( f , tm) consisting of a feature f and threshold tm, the data Q are split into Qle f t(π) and
Qright(π) subsets, such that

Qle f t(π) = (Y, X)|Yf < tm,

and
Qright(π) = Q\Qle f t(π).

The impurity at node n after each partition is defined as:

I(Q, π) =
Mle f t

Mm
G(Qle f t(π)) +

Mright

Mm
G(Qright(π)).
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G (. . .) is the impurity function in this situation.

G(Q) =
1

Mm
∑

i∈Mn

(Xi − X̄m)
2,

X̄n =
1

Mm
∑

i∈Mn

Xi.

By reducing the impurity I(Q, π), the decision tree model’s parameters are chosen.

π∗ = argminπ I(Q, π).

Recursively, the identical partitioning operation is carried out for the subsets Qle f t(π
∗)

and Qright(π
∗) up until the maximum permitted depth is reached, or there is only one

observation left (Mm = 1). The model may then be used to forecast the value of a target
variable (Xtest) based on the independent variables (Ytest) after the decision tree has been
trained with the training dataset, Y and X.

In the current study, we denote each combined model with each filter method by
RSFLt

Rt
, where the Lt at the top right is associated with a nonlinear trend subseries, and the

Rt at bottom right is associated to the residual subseries. In the forecasting models, we
assign a code to each model: “0” for the ANN, “1” for the SVM1, “2” for the SVM2, “3” for
the RF, and “4” for the DT. For example, RSF0

1 represents the estimate of the long-term trend
(Lt) with the ANN, and the residual series (Rt) estimated using the SVM1. The individual
forecast models are summed to obtain the final one-day-ahead cumulative confirmed cases
to forecast.

N̂t+1 =
(
L̂t+1 + R̂t+1

)
. (8)

2.2. Accuracy Measures

In the literature, many researchers have used various accuracy measures and statistical
tests to check the performance of predictive models [39]. However, in this work, we initially
use four accuracy mean errors for the proposed evaluation of all sixteen combination
models, such as the root mean square percentage error (RMSPE), the root mean square
error (RMSE), the mean absolute error (MAE), and the mean absolute error percentage
(MAPE). The mathematical equations for these mean errors are the following:

RMSPE =

√√√√ 1
T

T

∑
t=1

(
|Nt − N̂t|
|Nt|

)2

× 100, (9)

MAPE =
1
T

T

∑
t=1

(
|Nt − N̂t|
|Nt|

)
× 100, (10)

MAE =
1
T

T

∑
t=1

(
|Nt − N̂t|

)
, (11)

RMSE =

√√√√ 1
T

T

∑
t=1

(Nt − N̂t)2, (12)

where N is the number of observations in the dataset, (Nt) and (N̂t) are the Tth estimated
and observed data points, respectively.

The layout of the proposed filtering and combination technique is shown in Figure 2.
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Figure 2. A flowchart of the proposed filtering and combination technique.

3. Data Description and Case Study Results

The main aim of this work is to provide a short-term forecast of the cumulatively
infected cases of MV using a dataset from the entire world. The dataset (daily cumulative
confirmed cases) of MV was taken from the official website of “Our World in Data” from
7 May 2022 to 10 February 2023. The graphical presentation and the descriptive statistics of
daily and cumulative confirmed cases can be seen in Figure 3 and Table 1. Figure 3 (left)
shows the daily cumulative infected cases of MV, and Figure 3 (right) shows the daily new
infected cases of MV. Further, Figure 3 (left) shows an increasing nonlinear curve, while
Figure 3 (right) shows low infected cases at the start and end of the considered series and
high cases in the middle of the considered series. It was confirmed that at the start, MV had
a low number of infections, and with time, it gradually increased, but after that, it again
showed a gradual decline in the infected cases. On the other hand, the descriptive statistics
are tabulated in Table 1. This table shows that the minimum number of confirmed cases
of MV was zero, and the maximum number was 1814. Moreover, the average number of
infected cases was 300 throughout the world, while the variation among the infected cases
was observed by the standard deviation with a value of 406. Therefore, the complete dataset
of the daily cumulative confirmed cases covering 286 days was split; 7 May to 11 November
2022 (214 days) was used for model training, and 12 November 2022 to 10 February
2023 (72 days) was used for the one-day-ahead cumulative confirmed cases post-sample
(testing) forecasts.
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Figure 3. World Monkeypox Virus Data: the cumulative confirmed cases of monkeypox virus (left)
and the daily confirmed cases of monkeypox virus (right) from 7 May 2022 to 10 February 2023.
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Table 1. Descriptive statistics for the daily confirmed cases of the monkeypox virus dataset.

S.No Statistic Value

1 Minimum 0
2 First Quartile 27.00
3 Median 125.50
4 Mean 299.90
5 Variance 164,481.70
6 Standard Deviation 405.56
7 Skewness 1.76
8 Kurtosis 2.39
9 Third Quartile 381.00
10 Maximum 1814.00

To obtain the forecast for the daily confirmed MV cases a day ahead, using the filtering
and combination forecasting technique described in Section 2, the following steps were
followed: first, the new two proposed filters and a benchmark filter were used to obtain a
long-term nonlinear trend (Lt), and residual (Rt) time subseries. Second, the previously de-
scribed five well-known machine learning models were applied to each subseries. Thereby,
the models were estimated, and a day-ahead forecast for 72 days was obtained using the
rolling window method. The final daily confirmed MV cases day-ahead forecasts were
obtained using Equation (8). The accuracy measures RMSPE, RMSE, MPAE, and MAE
were then used to evaluate and compare the performance of the models.

The actual time series of the daily cumulative confirmed MV cases (Nt) was divided
into a long-term nonlinear trend (Lt) and a residual subseries (Rt), and two proposed filters
and a benchmark filter were used in this work. Forecasts for these subseries were obtained
using five machine learning models. To this end, combining the model and subseries
forecasts, there were (5Lt × 5Rt = 25) different combinations for each proposed filter. Thus,
there were two proposed filters (RSF and SSF) and one benchmark filter (HPF), for a total of
75 (3× 25) models. For these 75 models, the out-of-sample forecast accuracy measures for
one day ahead (RMSPE, RMSE, MPAE, and MAE) are tabulated in Tables 2–4. The results of
the performance measures showed that the RSF2

1 model produced a better prediction than
all the other models using the RS filter. The best forecasting model was RSF2

1, which produced
0.1452, 1.2083, 1010.7360, and 1207.9950 for the RMSPE, MAPE, MAE, and RMSE, respectively.
However, the RSF1

1 and RSF3
1 models produced the second and third-best results. On the other

hand, using the SS filter, the lowest forecast errors were found by the SSF2
1 model with the

values of 0.1415, 1.2162, 1020.2140, and 1182.9890 for the RMSPE, MAPE, MAE, and RMSE,
respectively. Notwithstanding, the second- and third-best results were achieved by the SSF1

1,
and SSF0

1 models, respectively. In contrast, the benchmark filter (HPF) was outperformed
by the proposed filters. Therefore, it was confirmed from Tables 2–4, within the proposed
filtered and benchmark filters, the RS filter produced the lowest mean errors. Moreover,
within all the possible combination models (5Lt × 5Rt = 25 = 75), the RSF2

1 was declared the
best model.

Table 2. World Monkeypox Virus Data: out-of-sample one-day-ahead mean forecast error for all
combination models using the RS filter.

S.No Models RMSPE MAPE MAE RMSE

1 RSF0
0 0.2442 1.9733 1642.6080 2022.8460

2 RSF1
0 0.2467 2.0019 1666.6090 2043.4370

3 RSF2
0 0.3258 2.9147 2434.1050 2706.2880

4 RSF3
0 0.2459 1.9922 1658.4570 2036.4830

5 RSF4
0 0.2445 1.9769 1645.6030 2025.4190
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Table 2. Cont.

S.No Models RMSPE MAPE MAE RMSE

6 RSF0
1 0.1540 1.3494 1139.0140 1303.5960

7 RSF1
1 0.1529 1.3401 1130.9040 1293.1590

8 RSF2
1 0.1452 1.2083 1010.7360 1207.9950

9 RSF3
1 0.1532 1.3428 1133.2750 1296.6320

10 RSF4
1 0.1539 1.3481 1137.8680 1302.2670

11 RSF0
2 0.4953 4.7261 3957.2110 4130.2120

12 RSF1
2 0.4981 4.7562 3982.5270 4154.4740

13 RSF2
2 0.5863 5.6693 4750.3480 4895.3990

14 RSF3
2 0.4972 4.7460 3973.9930 4146.2930

15 RSF4
2 0.4956 4.7298 3960.3820 4133.2500

16 RSF0
3 0.2988 2.6629 2255.5920 2539.5080

17 RSF1
3 0.2962 2.6345 2231.6820 2517.1330

18 RSF2
3 0.2203 1.8700 1585.7510 1874.4260

19 RSF3
3 0.2971 2.6441 2239.7430 2524.6700

20 RSF4
3 0.2985 2.6594 2252.5970 2536.7020

21 RSF0
4 0.2392 1.9147 1593.3890 1980.4850

22 RSF1
4 0.2416 1.9428 1616.9220 2000.8470

23 RSF2
4 0.3201 2.8522 2381.5920 2659.1560

24 RSF3
4 0.2408 1.9332 1608.8620 1993.9700

25 RSF4
4 0.2395 1.9182 1596.2950 1983.0290

Note: Regression spline filter (RSF). In the forecasting models, we assign a code to each model: “0” for the ANN,
“1” for the SVM1, “2” for the SVM2, “3” for the RF, and “4” for the DT. For example, RSF0

1 represents the estimate
of the long-term trend (Lt) with the ANN and the residual series (Rt) estimated using the SVM1.

Table 3. World Monkeypox Virus Data: out-of-sample one-day-ahead mean forecast error for all
combination models using the SS filter.

S.No Models RMSPE MAPE MAE RMSE

1 SSF0
0 0.2453 1.9858 1653.0550 2031.8290

2 SSF1
0 0.2457 1.9904 1656.9690 2035.2010

3 SSF2
0 0.2732 2.3178 1932.1830 2265.4930

4 SSF3
0 0.2440 1.9712 1640.8210 2021.3110

5 SSF4
0 0.2449 1.9812 1649.2080 2028.5190

6 SSF0
1 0.1439 1.2690 1067.9890 1211.4960

7 SSF1
1 0.1438 1.2680 1067.0680 1210.6070

8 SSF2
1 0.1415 1.2162 1020.2140 1182.9890

9 SSF3
1 0.1442 1.2722 1070.8680 1214.3620

10 SSF4
1 0.1440 1.2700 1068.8940 1212.3830

11 SSF0
2 0.4928 4.7009 3936.0090 4109.9020

12 SSF1
2 0.4933 4.7058 3940.1540 4113.8720

13 SSF2
2 0.5248 5.0340 4216.1620 4378.9440

14 SSF3
2 0.4914 4.6855 3923.0550 4097.4980

15 SSF4
2 0.4924 4.6960 3931.9360 4106.0020

16 SSF0
3 0.2833 2.4950 2114.1720 2408.0140

17 SSF1
3 0.2828 2.4904 2110.2570 2404.4040

18 SSF2
3 0.2549 2.2077 1871.5680 2168.3610

19 SSF3
3 0.2846 2.5095 2126.4060 2419.3060

20 SSF4
3 0.2837 2.4996 2118.0190 2411.5630

21 SSF0
4 0.2392 1.9151 1593.7240 1980.7790

22 SSF1
4 0.2396 1.9197 1597.5240 1984.1050

23 SSF2
4 0.2668 2.2426 1868.9750 2211.8310

24 SSF3
4 0.2380 1.9010 1581.8500 1970.4030

25 SSF4
4 0.2388 1.9107 1589.9910 1977.5130

Note: Smoothing spline filter (SSF). In the forecasting models, we assign a code to each model: “0” for the ANN,
“1” for the SVM1, “2” for the SVM2, “3” for the RF, and “4” for the DT. For example, SSF0

1 represents the estimate
of the long-term trend (Lt) with the ANN and the residual series (Rt) estimated using the SVM1.
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Table 4. World Monkeypox Virus Data: out-of-sample one-day-ahead mean forecast error for all
combination models using the HP filter.

S.No Models RMSPE MAPE MAE RMSE

1 HPF0
0 0.2476 2.0125 1675.5110 2050.9090

2 HPF1
0 0.2468 2.0035 1667.9020 2044.5200

3 HPF2
0 0.3663 3.3588 2807.5720 3046.5700

4 HPF3
0 0.2474 2.0105 1673.7750 2049.4510

5 HPF4
0 0.2478 2.0152 1677.7820 2052.8180

6 HPF0
1 0.1530 1.3411 1131.7320 1294.3660

7 HPF1
1 0.1533 1.3435 1133.9060 1297.5640

8 HPF2
1 0.1605 1.2661 1055.2190 1329.2900

9 HPF3
1 0.1531 1.3416 1132.2280 1295.0920

10 HPF4
1 0.1529 1.3403 1131.0830 1293.4200

11 HPF0
2 0.4966 4.7406 3969.4040 4141.8950

12 HPF1
2 0.4958 4.7313 3961.5770 4134.3950

13 HPF2
2 0.6269 6.0870 5101.5360 5236.8690

14 HPF3
2 0.4964 4.7384 3967.6180 4140.1840

15 HPF4
2 0.4969 4.7434 3971.7400 4144.1340

16 HPF0
3 0.2952 2.6241 2222.9010 2508.9300

17 HPF1
3 0.2960 2.6329 2230.2930 2515.8350

18 HPF2
3 0.1884 1.6163 1369.1300 1602.0430

19 HPF3
3 0.2954 2.6261 2224.5880 2510.5050

20 HPF4
3 0.2950 2.6215 2220.6950 2506.8700

21 HPF0
4 0.2423 1.9511 1623.9360 2006.8410

22 HPF1
4 0.2416 1.9423 1616.5440 2000.5240

23 HPF2
4 0.3603 3.2943 2753.3300 2996.6570

24 HPF3
4 0.2421 1.9491 1622.2500 2005.3990

25 HPF4
4 0.2425 1.9537 1626.1420 2008.7290

Note: Hodrick–Prescott Filter (RSF). In the forecasting models, we assign a code to each model: “0” for the ANN,
“1” for the SVM1, “2” for the SVM2, “3” for the RF, and “4” for the DT. For example, HPF0

1 represents the estimate
of the long-term trend (Lt) with the ANN and the residual series (Rt) estimated using the SVM1.

On the other hand, from the proposed filters (RSF and SSF) and the benchmark filter
(HPF), one best combination model from each filter was selected and compared. The mean
of the accuracy measures numerically are listed in Table 5 and graphically presented in
Figure 4. From both presentations, it was confirmed that the RSF2

1 produced the lowest
values (RMSPE = 0.1452, MAPE = 1.2083, MAE = 1010.7360, and RMSE = 1207.9950) among
the best combination models. Finally, it was concluded that the proposed filter (RSF)
resulted in more accurate forecasts than the other proposed filter and a benchmark filter.
On the other hand, the RSF2

1 was confirmed as the best model.
Once the accuracy measures were calculated, the next step was to evaluate the domi-

nance of these results. For this purpose, many researchers in the literature have performed
the Diebold and Mariano test (DM) [40–43]. In this work, to verify the superiority of the
proposed filtering and combination forecasting system results (accuracy measurements)
presented in Tables 2–4, we performed tests by Diebold and Mariano (DM) on each pair
of models [44]. The DM test results (p-values) are shown in Table 6. In contrast to the
alternative that each entry in the table is p and that the column/row predictor accuracies
are more accurate than the column/row predictor values of the hypothesis system, the null
hypothesis was that there was no predictor. This table shows that among all the combina-
tion models, in Tables 3–5, the RSF2

1, SSF2
1, and SSF2

1 models were statistically superior to
the others at the 5% significance level. In the same way, from the proposed filters (RSF and
SSF) and the benchmark filter (HPF), one best model from each combination of filters was
selected, and their accuracy error is listed in Table 5. Moreover, to verify the superiority
of the best-selected models, the DM test results (p-values) are shown in Table 6; it was
confirmed that the RSF2

1 was statistically superior to the others at the 5% significance level.
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Table 5. World Monkeypox Virus Data: the best final combination models results of the out-of-sample
cumulative confirmed day-ahead mean forecast error.

S.No Models RMSPE MAPE MAE RMSE

1 RSF2
1 0.1452 1.2083 1010.7360 1207.9950

2 SSF2
1 0.1455 1.2162 1020.2140 1222.9890

3 HPF2
1 0.1605 1.2661 1055.2190 1329.2900

Table 6. World Monkeypox Virus Data: results (p-value) of the DM test for the null hypothesis that
the two models on the rows and columns are equally accurate and the alternative hypothesis that the
model on the columns is more accurate than the model on the rows (using the loss square function).

Models RSF2
1 RSF2

1 RSF2
1
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1 - 0.18 1.00
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1 0.82 - 0.99

HPF2
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Figure 4. World Monkeypox Virus Data: accuracy measurement plots: MAPE (1st), MAE (2nd),
RMAPE (3rd), and RMSE (4th), for all combination models using two proposed filters and a bench-
mark filter.

Finally, the graphical representations of the performance measures for all 75 models
are also shown in Figure 4, for the MAPE (1st), MAE (2nd), RMSPE (3rd), and RMSE (4th).
In these plots, we can see that the proposed filters produced the highest accuracy (MAPE,
MAE, RMSPE, and RMSE) when compared with the considered benchmark filter (HPF).
However, within the proposed filters, the RSF obtained the highest accuracy. Moreover,
within all the possible combination models (75), the RSF2

1 was declared as the best model.
Therefore, from the descriptive statistics, statistical tests, and graphical results, we can
conclude that the proposed forecasting methodology is highly accurate and efficient for
the daily cumulative confirmed cases of MV forecasting. Additionally, the proposed filters
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had high accuracy and resulted in efficient forecasts when compared with the considered
benchmark filter. Within the set of proposed filters, the RS filter produced a more precise
forecast when compared with the alternatives. Moreover, it was confirmed from these
visualizations that the RSF2

1 was statistically superior to the others (Figure 5).
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Figure 5. World Monkeypox Virus Data: accuracy measurement plots for the best three models,
(left) (MAPE-red circle and RMSPE-purple triangle) and (right) (MAE-blue star and RMSE-green
square) for the best three final models using the two proposed filtering methods and a benchmark filter.

4. Discussion

According to the results (the descriptive statistics, statistical test, and graphical anal-
ysis), the conclusion is that the final best combination model was the RSF2

1, which was
highly accurate and efficient for the daily cumulative confirmed cases of MV. Hence, it is
important to note that reported mean accuracy errors (RMSPE, MAPE, MAE, and RMSE) in
this work were, for the best combination model (RSF2

1), relatively lower than the considered
times series and machine learning benchmark models. The considered benchmark models
were the following: three standard time series models: the autoregressive (AR), nonpara-
metric autoregressive (NPAR), and autoregressive moving integrated average (ARIMA)
models, and four popular machine learning models: ANN, SVM, DT, and RF. An empirical
comparison of the proposed work‘s best model with the other considered benchmarks (AR,
ARIMA, NPAR, ANN, SVM, DT, and RF) models are presented numerically in Table 7.
As we can see from Table 7, the proposed best combination model (RSF2

1) in this work ob-
tained significantly lower accuracy mean errors as compared to the time series and machine
learning models. Additionally, to confirm the superiority of the proposed best combination
model mentioned in Table 8, we performed a statistical test using the DM on each pair
of models. The results (p-values) of the DM test are reported in Table 8, showing that the
proposed models among all the considered time series and machine learning models were
outperformed by our best model at the 5% significance level. To conclude, based on all of
these results, the accuracy of the proposed forecasting methodology is comparatively high
and efficient when compared with all the considered competitors.

Once the best models were assessed through descriptive statistics, statistical tests,
and graphical analysis, we proceeded to future forecasting with the superior model. We
used the RSF2

1 for the confirmed cases of MV, and forecast from 15 February to 26 February
2023 (two weeks) for the cumulative confirmed cases of MV. The forecasted values of the
cumulative and daily confirmed cases from the MV are tabulated in Table 9. This table
reveals that the daily confirmed cases increased in the first two days but decreased in
the following three consecutive days, while on the rest of the days, there was an average
increase of 45 per day. Furthermore, we predicted that during the next fourteen days
(15 February to 26 February 2023), a total of 642 new cases of MV would be added globally.
However, these forecasts continued to support an overall declining trend in the number
of newly infected cases of MV around the world. Finally, to justify the superiority of the
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proposed final best model forecasting performance, we compared the cumulative infected
cases of MV with the forecasted case by the proposed best model. To achieve this, we
computed the percentage forecast error (PFE); the PEF is defined as PEF = (|forecasted
value − actual value|/|actual value|) × 100. The values of the PFE are listed in the
last column of Table 9. From this column, one can see that the forecasted values were
relatively close to the actual values in terms of a low PFE. Therefore, our results offer
valuable information to policymakers to guide the continued allocation of resources and
inform mitigation efforts. Moreover, the forecasting exercise will help to understand the
spread and lead to an understanding of the risk, which may be used to prevent further
spread and enable timely and effective treatment.

Table 7. World Monkeypox Virus Data: comparison of the proposed best model versus the considered
time series and machine learning benchmark models: out-of-sample cumulative confirmed day-ahead
mean forecast error.

S.No Models RMSPE MAPE MAE RMSE

1 RSF2
1 0.1452 1.2083 1010.7360 1207.9950

2 ANN 0.2470 2.0055 1669.6410 2045.9800
3 SVM 0.4868 4.6378 3882.9750 4059.1410
4 RF 0.2826 2.4879 2108.1850 2402.4950
5 DT 0.2400 1.9241 1601.2560 1987.3760
6 AR 0.2556 2.1090 1756.6180 2117.7440
7 NPAR 0.2482 2.0205 1682.1830 2056.4220
8 ARIMA 0.2502 2.0441 1702.1040 2072.7490

Table 8. World Monkeypox Virus Data: the best final model and the considered time series and
machine learning benchmark models: results (p-value) of the DM test for the null hypothesis that the
two models on the rows and columns are equally accurate and the alternative hypothesis that the
model on the columns is more accurate than the model on the rows (using the loss square function).

Models RSF2
1 ANN SVM RF DT AR NPAR ARMA

RSF2
1 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ANN 0.00 - 1.00 0.93 0.00 1.00 1.00 1.00
SVM 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00

RF 0.00 0.07 1.00 - 0.04 0.12 0.07 0.09
DT 0.00 1.00 1.00 0.96 - 1.00 1.00 1.00
AR 0.00 0.00 1.00 0.88 0.00 - 0.00 0.00

NPAR 0.00 0.00 1.00 0.93 0.00 1.00 - 1.00
ARMA 0.00 0.00 1.00 0.91 0.00 1.00 0.00 -

Table 9. World Monkeypox Virus Data: the forecasted cumulative and daily confirmed cases of the
monkeypox virus using the best-proposed model over two weeks.

S.No Date CC DC PFE

1 11 February 2023 84063 77 2.129
2 12 February 2023 84,140 77 2.051
3 13 February 2023 84,189 49 1.994
4 14 February 2023 84,225 36 1.976
5 15 February 2023 84,264 39 1.956
6 16 February 2023 84,309 45 1.908
7 17 February 2023 84,356 47 1.857
8 18 February 2023 84,402 46 1.920
9 19 February 2023 84,448 46 1.866
11 20 February 2023 84,492 44 1.815
12 21 February 2023 84,537 45 1.769
13 22 February 2023 84,583 46 1.748
14 23 February 2023 84,628 45 1.777

Note: cumulative confirmed cases (CC), daily confirmed cases (DC), and percentage forecast error (PFE).
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On the other hand, actual-time forecasting in epidemic emergencies provides action-
able information that governments can use to anticipate medical needs and strategize the
intensity and composition of public health interventions. This study provides and evaluates
accurate real-time short-term forecasts of monkeypox cases worldwide, with much higher
case numbers reported in most epidemics. Our model continues to predict a slowdown
in MV incidence globally. Overall, our model has proven useful in making short-term
forecasts and capturing slowdowns and peaks in growth with reasonable accuracy.

5. Conclusions

The main aim of this work was to forecast the short-term transmission rate of the
monkeypox virus. For this purpose, we proposed a novel filtering and combination
forecasting approach to accurately forecast the daily cumulative confirmed monkeypox
virus cases using the publicly updated monkeypox virus dataset. To this end, we first
filtered the original time series of the cumulative confirmed cases into new subseries, that
is, the long-term trend series and residual series, using two proposed and one benchmark
filter. Then, to predict the decomposed subseries, we considered five well-known machine
learning models and all their possible combinations. Hence, we combined the individual
predictive models directly to obtain the final predictions for newly confirmed cases one day
ahead. To verify the performance of the proposed filtering and combination methodology,
four mean errors—two absolute errors, two relative errors, and a statistical test—were
considered. The experimental results showed the efficiency and accuracy of the proposed
filtering and combination forecasting system. Overall, this work was compared within the
proposed forecasting technique with three filters: two proposed and a benchmark filter.
Among these three filtering methods, the regression smoothing spline filter outperformed
the rest. On the other hand, within all the possible combination models, the (RSF2

1), (SSF2
1),

and (HPF2
1) were the first-, second-, and third-best models. In addition, the proposed final

combination model (RSF2
1) had superior results (accuracy mean errors, graphical analysis,

and statistical test) when all the time series and machine learning models were considered.
Finally, based on the best-selected model (RSF2

1), we provided a forecast of the next fourteen
days (15 February to 26 February 2023), which will help to understand the spread and lead
to understanding the risk, which may be used to prevent further spread and enable timely
and effective treatment.

As this study used only cumulatively confirmed monkeypox data, it could be extended
to other variables (such as daily new infected cases and daily and cumulative death counts)
to evaluate the performance of the proposed forecasting technique. Further, it could be
used for the short-term forecasting of daily and cumulative COVID-19 confirmed cases,
death counts, and recovered cases. On the other hand, the proposed forecasting techniques
used only machine learning models; in the future, they will be extended by time series
models, such as parametric autoregressive, nonparametric autoregressive, autoregressive
integrated moving average models, etc.
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