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a b s t r a c t 

Multi-object tracking (MOT) is a critical task in various domains, such as traffic analysis, surveillance, and 

autonomous vehicles. The joint-detection-and-tracking paradigm has been extensively researched, which 

is faster and more convenient for training and deploying over the classic tracking-by-detection paradigm 

while achieving state-of-the-art performance. This paper explores the possibilities of enhancing the MOT 

system by leveraging the prevailing convolutional neural network (CNN) and a novel vision transformer 

technique Locality. There are several deficiencies in the transformer adopted for computer vision tasks. 

While the transformers are good at modeling global information for a long embedding, the locality mech- 

anism, which learns the local features, is missing. This could lead to negligence of small objects, which 

may cause security issues. We combine the TransTrack MOT system with the locality mechanism in- 

spired by LocalViT and find that the locality-enhanced system outperforms the baseline TransTrack by 

5.3% MOTA on the MOT17 dataset. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

Multi-object tracking (MOT) has been utilized in many appli- 

ations that require human behavior analysis, traffic analysis, and 

cene analysis based on video feeds. It is essential that MOT, as a 

rior task before analysis, provides reliable and consistent tracking 

esults. 

Since MOT is a complex task consisting of object detection, clas- 

ification, and tracking, the tracking-by-detection algorithms are 

redominant because it is sensible to leverage models that are 

ood at each task and combine them together. Nonetheless, a mega 

odel would prolong the processing overhead. It would also be 

omplicated to train such a model, making the requirement of us- 

ng a tracking system harsher for those without enough computa- 

ional resources. 

While the joint-detection-and-tracking paradigm will be the 

uture trend of MOT, there emerge new algorithms that utilize 

he transformer and query-key mechanism. The new architecture 

howed us great potential to simultaneously produce the tracking 
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ounding boxes and classes. Transformers are good at modeling 

ong embeddings by the attention mechanism. Thus, they find the 

lobal dependencies among the image patches. However, there is 

o place for the intrinsic information interaction, which may cause 

rratic tracking results because of the movement and the scale of 

arget objects. Moreover, the spatial information is ignored inside 

he transformer after flattening the feature maps into embeddings. 

 new mechanism needs to be introduced for the attention mod- 

le. 

Inspired by the novel locality mechanism proposed by [1] , we 

pdate the transformer-based MOT system TransTrack with depth- 

ise convolutional layers added into the encoders of the trans- 

ormer. Similar to the original locality block and the MobileNet [2] , 

e substitute the feed-forward network with the inverted resid- 

al blocks in all transformer encoder layers to extract both global 

nd local features in encoders. In order to keep the spatial infor- 

ation of the feature maps, the embedding features will be con- 

erted to two-dimensional feature maps for convolutional layers, 

nd the output feature map will be restored to embedding fea- 

ures for the next encoder layer. Since TransTrack uses pyramid 

eature maps from the ResNet backbone, which are concatenated 

nto one embedding for the transformer, we process each fea- 

ure level separately, so each feature level has a dedicated locality 
lock. 

https://doi.org/10.1016/j.patrec.2023.04.016
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Experiments on the MOT17 validation set show that the 

ocality-enhanced architecture achieved a better MOTA score at 

2.4%, which is 5.3% higher than the baseline TransTrack [3] . 

. Related works 

Unfolding recent literature, we notice considerable work has 

een done in developing and advancing state of the art in multi- 

bject tracking approaches and systems. Among the proposed 

ethods, we can categorize three significant domains (Tracking by 

etection, joint detection and tracking, and global and local per- 

eption in transformer). 

.1. Tracking-by-detection 

As its name state, the tracking-by-detection is based on detect- 

ng and then predicting the location on the frame of the subse- 

uent detection. A good illustration of this approach is mentioned 

n work done in [4] . The presented method introduces a Region 

roposal Network (RPN) for sharing convolutional features of the 

ntire image with the detection network. In addition, the RPN ar- 

hitecture is a fully convolutional network with the ability to pre- 

ict the next position of the detected objects simultaneously. How- 

ver, the approach is more designed for accurate detection, not 

he tracking aspect, making it unclear to make a precise judgment 

bout tracking performance. 

Another approach was presented in [5] . The technique uses a 

ransformer network with a set-based global loss, strengthening 

nique predictions via bipartite matching. This design allows for 

liminating hand-designed components and keeps comparable re- 

ults to the Faster R-CNN baseline; plus, the implementation is 

exible and easily extensible to other applications such as segmen- 

ation. However, the approach is not robust in detecting and track- 

ng small objects. To address this weakness, the work proposed by 

6] presented a deformable Transformer that relies only on a small 

et of key sampling points around a reference. The results obtained 

utperformed DETR. 

Furthermore, it is essential to point out that tracking-by- 

etection methods depend greatly on the detection performance 

o have a good tracking result. Moreover, the online aspect is cru- 

ial, especially for the real-life application of tracking systems. An 

xcellent example in this direction is [7] , where the authors ex- 

lored the usage of a combination of simple techniques to perform 

racking, such as the Kalman filter with deep learning method for 

he detection. The created framework showed the best results in 

ts class even though it had some identity switch cases. To address 

his aspect, [8] introduced measurement-to-track associations in 

isual appearance space using the nearest neighbor, while [9] pro- 

osed a hybrid track association algorithm. Both turn out to be 

ffective in reducing identity switches. However, there are many 

ther challenges in this section, such as data imbalance, which 

ffects the tracking significantly. To this end, the literature has 

any applications that tried to address this aspect by introduc- 

ng a data association approach based on spatial and temporal at- 

ention mechanism [10] . This aspect allows good handling of noisy 

etections and occlusion cases. 

.2. Joint-detection-and-tracking 

The second family domain is about joint-detection-and- 

racking, the tracking pipeline that performs object detection 

ollowed by temporal association. This is thanks to the appli- 

ations of deep networks, which open new opportunities and 

hallenges. Hence, many methods proposed are getting faster, 

ore accurate, and sometimes even more straightforward. For 

xample, [11] demonstrated the capability of going beyond the 
71 
lassical steps for tracking from detection to data association in 

n end-to-end fashion using an online model named Chained- 

racker (CTracker). The proposed solution relies on chaining paired 

ounding boxes regression output to identify-attention of the ob- 

ects. This has resulted in two novel aspects: the chained struc- 

ure and pairing attention regression with acceptable results. How- 

ver, some other approaches outperformed it, for example, in [12] , 

here the authors presented an end-to-end CenterTrack method. 

he process is point-based, meaning each object is represented as 

 point for tracking throughout time. In addition, the system works 

n online mode, and it gets greedy for object association over time. 

Furthermore, the use of deep learning and neural networks has 

pened the possibility of exploring shared objectives of detecting 

nd tracking simultaneously within one network. The work done 

n [13] is a good example. The MOT model is designed to simul- 

aneously learn target detection and appearance embedding in a 

hared model. The model incorporates a fast and straightforward 

ssociation model that works in union with the joint model. The 

esults were comparable to state-of-the-art. However, the recent 

aper about TransTrack [3] demonstrated interesting and signifi- 

ant outperformance especially concerning MOT17 challenges. The 

ethod is built based on a transformer, and its signature uses the 

earned object query as an input for both detection objects archi- 

ecture and the track query. 

.3. Global and local perception in transformer 

Finally, our last category is about the perception in the trans- 

ormer from a global and local point of view. It is essential to 

iscuss the first paper addressing global connectivity with a focus 

n attention. In this paper, [14] , the authors demonstrated how a 

ransformer model based only on attention could be trained faster 

nd outperform the state-of-the-art. Indeed, the application of the 

ew approach was made on machine translation, but it opened 

he door for application in tracking and detection. For example, 

he latest work done in this direction is [15] , which is about a 

ovel attention-based feature fusion network inspired by trans- 

ormer architecture using a Siamese-like feature extraction back- 

one (TransT). The outcome proved the approach has potential 

ince it achieved good results in different challenging datasets. 

Moreover, adopting a transformer architecture designed for lan- 

uage processing to vision raised several challenges. These chal- 

enges are mainly related to the differences between the two do- 

ains. For instance, compared to language processing, there are 

arge variations in the scale of visual entities and the impact of 

he high resolution of pixels in images. That is why not only do 

e find interest in exploring global points of view but also local 

nes. Hence, there are many works focused on researching the lo- 

ality aspect. A good example is proposed in [16] . The method has 

roven good performance and is based on a hierarchical Trans- 

ormer augmented with shifted windows for its representation. 

his aspect makes the process efficient in cross-window connec- 

ion, thanks to non-overlapping local windows due to the limiting 

elf-attention computation. 

As we mentioned, the transformer is particularly good at mod- 

ling global interaction, but the local one still lacks information 

xchange within the local region. To address this issue, one of 

he exciting research works that has been done is trying to bring 

ocality to vision as mentioned in [1] . The proposed design was 

one by introducing depth-wise convolution into the feed-forward 

etwork. This technique has allowed for increasing the accuracy 

erformance within 2% to 3%. Another approach dealing with the 

ame problem was mentioned in [17] , where the authors proposed 

 transformer in transformer architecture. This way, introducing 

 transformer within another one handles local patches and re- 

nforces the locality interaction. Of course, the method is greedy 
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Fig. 1. The pipeline of our locality-enhanced MOT system based on TransTrack. Two video frames are used to extract features. A locality-enhanced encoder will take the 

combination of two feature maps and find the correlations among the features, followed by two parallel decoders specialized for detection and tracking tasks. Both decoders 

will generate bounding boxes based on a trainable query and the features from the encoder. All bounding boxes are merged by an IoU matching technique to form the final 

object bounding boxes. 
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oncerning computational time in training, but it managed to 

chieve a 1.7% increase in accuracy compared to ImageNet. 

The possibility of exploring the locality domain in image trans- 

ormers is a valuable direction that could further broaden the limit 

f MOT systems. In this paper, we implement the state-of-the-art 

ocality mechanism on top of the novel transformer-based MOT 

odel. Additionally, our locality module leverages multi-scale fea- 

ure maps instead of only one feature map from the backbone 

odel. Moreover, a thorough quantitative and qualitative evalua- 

ion is conducted comparing with the vanilla model to demon- 

trate the improvements of the multi-scale locality module. 

. Methodology 

Fig. 1 visualizes the experimented MOT pipeline, which is based 

n the recently proposed TransTrack architecture. Unlike the im- 

ge classification transformers proposed recently, our MOT pipeline 

till keeps an encoder-decoder architecture for detecting, classify- 

ng, and tracking objects. Thus, we will first describe the pipeline 

f our system and introduce the locality later based on the seman- 

ic meanings of each component in the pipeline. 

.1. MOT pipeline 

The original MOT pipeline that we use consists of a convolu- 

ional neural network (CNN) backbone, a transformer encoder, two 

arallel transformer decoders, two learnable object queries, and a 

ounding box matching component. For the details of the imple- 

entation, please refer to the original paper [3] . 

Firstly, a conventional CNN, namely ResNet50, is used to extract 

eatures { X t , X t−1 } from two consecutive video frames { I t , I t−1 } .
ext, the features from two frames are concatenated and further 

rocessed by the encoder � to find the correlations of features (1) . 

n a query-key paradigm, the output embedding χθ from the en- 

oder will be projected into keys and values in decoders, where a 

rainable object query will be used to interact with the keys and 

he values. 

χt = Concat(X t , X t−1 ) 
χθ = �(χt ) 

(1) 

here χt is the concatenation of two feature maps X t and X t−1 . �

s a composite of N encoder layers, where each layer consists of a 

elf-attention module At t n (·) followed by a feed-forward network 

FFN) f (·) . Skip connection and layer normalization are used in 
�

72 
oth submodules as shown in Eq. (2) . 

at t n 
t,i 

= Norm (At t n (χt,i −1 ) + χt,i −1 ) , 1 < i ≤ N 

χt,i = Norm ( f �(χ at t n 
t,i 

) + χ at t n 
t,i 

) 
(2) 

Once the final encoder embedding is generated, two decoders 

 �α, �β} , each of which has M layers, will work simultaneously 

or the detection and tracking tasks, respectively. In the detection 

ecoder, detection proposals Z αt are produced based on a trainable 

bject query q αt along with the projected keys and values derived 

rom χθ . At first, a self-attention module is applied to the query, 

ollowed by a cross-attention module where key-value pairs are in- 

olved. In the end, an FFN adds non-linearity to the model and 

earns more features. The tracking decoder follows the same pro- 

ess except for the tracking object query q 
β
t , which is the detec- 

ion proposals Z α
t−1 

from the previous frame. Equation (3) shows 

he summary of the decoders. 

 

α
t = �α(χθ , q αt ) 

 

β
t = �β(χθ , q 

β
t ) 

 

β
t = Z αt−1 

(3) 

In the last box matching module, detection and tracking pro- 

osals will be further regressed into the detection and tracking 

ounding boxes { B αt , B βt } using an FFN, as shown in (4) . 

 

α
t = f �α

(Z αt ) 

 

β
t = f �β

(Z 
β
t ) 

(4) 

After obtaining the bounding boxes from both decoders, an IoU 

atching algorithm [18] is utilized for the final results. In this 

rocess, detection boxes are matched to tracking boxes, and the 

nmatched boxes will be new objects introduced in the current 

rame. 

.2. Locality 

It is common knowledge that the convolution operation utilizes 

 kernel as a sliding window to aggregate local features on an im- 

ge. The same mechanism is missing in transformers because the 

ttention operation only attends to the global information within 

he embedding. Hence, the complementary characteristics of CNNs 

nd transformers lead to a new experiment of adding convolu- 

ional layers into the transformer blocks. 

In our experimental MOT pipeline, only the encoder can be 

weaked for the locality mechanism since it is the only component 

hat works with feature maps ( X t ∈ R 

d×h ×w ) as an input source. 

ore specifically, χθ is the attended feature embedding containing 
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Fig. 2. The figure shows the tweaked encoder of our system, which leverages a lo- 

cality module (Inverted residual block) instead of a classic feed-forward network. 

Flattened 1D features are reshaped into a 2D feature map, and the convolutional 

layers will extract local features from it. 1 × 1 convolution and 3 × 3 depth-wise 

convolution operations are used to control the number of parameters compared 

with the FFN. The feature map will be flattened before the skip connection to re- 

store the original shape for the next iteration. 
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he global dependencies of an image. Later, χθ will be projected 

nto keys and values in the decoders. Nonetheless, decoders mainly 

egress on the object queries q t , which is a learnable parameter 

ontaining the information of tracked objects (e.g., features of hu- 

an bodies). If a key matches the query more, its value will get 

ore weight to form the output. In this way, it is reasonable to 

ntroduce the locality mechanism inside the encoder to enrich the 

eature representations. 

To be compatible with convolutional layers, the shape of the 

riginal feature map must be restored. Considering a feature em- 

edding χat t n 
t after the At t n (·) operation in the encoder �, χat t n 

t 

s reshaped to 2D feature map χ2 D 
t , which fits in the shape of 

d, h, w ) , where d is the number of channels, h = H/p and w =
/p, and p is the stride of this feature map while H and W are 

he shapes of the original image I. After the convolutional layers, 

he feature map χ2 D 
t must be converted back to its 1D shape χat t n 

t 

or the following encoder layers. Eq. (5) shows the process of con- 

erting a 1D embedding to a 2D feature map and vice versa. 

χ2 D 
t = SeqT oImg(χ at t n 

t ) , χ2 D 
t ∈ R 

d×h ×w 

χ at t n 
t = ImgT oSeq (χ2 D 

t ) , χ at t n 
t ∈ R 

j×d 

where j = h × w 

(5) 

Similar to Li et al. [1] , inverted residual blocks are used as our

ocality module to substitute the feed-forward network f �(·) in- 

ide the encoder because of its efficiency and lightweight in com- 

utation. As shown in Fig. 2 , the locality module �� includes a 

 × 1 convolutional layer to expand the number of channels to 

d, a 3 × 3 depth-wise convolutional layer that greatly reduces the 

umber of parameters compared with the classic one, and another 

 × 1 convolutional layer to restore the original number of chan- 

els to d, which allows the skip connection across the whole block. 

ence, the tweaked layer of an encoder �′ is described in Eq. (6) . 

at t n 
t,i 

= Norm (At t n (χt,i −1 ) + χt,i −1 ) , 1 < i ≤ N 

χt,i = Norm (ImgT oSeq (��(SeqT oImg(χ at t n 
t,i 

))) + χ at t n 
t,i 

) 
(6) 

here �� is the convolutional layers of the locality module. Since 

he aim of using FFN in the original encoder is to enhance the la- 

ent features and create local dependencies [14] , a convolutional 

etwork could do this task better. The combination of global at- 

ention and local convolution leads to more comprehensive feature 

epresentations. 

.3. Multi-scale features 

In addition to the tweaked encoder with a locality module, the 

xperimented MOT system also features a multi-scale attention 

odule, which leverages feature maps in different scales instead 
73 
f the output of the last layer from the backbone. Let { X l t } L repre-

ents the multi-scale output at time t from the backbone, which 

ontains L levels. { X l t } L are flattened and concatenated into χt for 

he attention module (review [6] for attention module details). 

Similarly, we deploy L locality modules for each level of fea- 

ure maps. The attended feature χat t n 
t is split by the spatial shapes 

nd levels into { χ l 
t } L , and passed to a dedicated locality module 

l 
�

separately to find the local correlations in different scales. In 

he end, the output features are flattened and concatenated again 

or the next layer in the encoder �′ . Equation (7) summarizes the 

ulti-scale locality module. 

χ at t n 
t,i 

= Norm (At t n (χt,i −1 ) + χt,i −1 ) , 1 < i ≤ N 

 χ l 
t,i 
} L = Split(χ at t n 

t,i 
) 

χ l 
t,i 

= ImgT oSeq (�l 
�(SeqT oImg(χ l 

t,i 
)) , ∀ l ∈ L 

χ L 
t,i 

= Concat(χ l 
t,i 

, . . . ) 

χt,i = Norm (χ L 
t,i 

+ χ at t n 
t,i 

) 

(7) 

Because we tweak the module in the encoder while keeping the 

ame pipeline and training target, the same loss function (8) could 

e applied to this architecture. 

 = λcls · L cls + λL 1 · L L 1 + λgiou · L giou (8) 

here L cls , L L 1 , and L giou are focal loss [19] of predicted object 

lasses, L1 loss of predicted object bounding boxes, and general- 

zed IoU loss [20] of the bounding boxes, respectively. λ is the co- 

fficient of the corresponding loss value. 

. Experiments 

This section will discuss the experiment details about the 

atasets, training schemes, and different architecture variants, as 

ell as their comparisons and evaluations. With the help of the 

ocality mechanism, we are able to push the MOT task boundary 

urther. Both advantages and disadvantages of the transformer in 

he system will be covered and analyzed to give a comprehensive 

nsight into its capacities. 

.1. Datasets 

MOT17 dataset [21] , which includes 7 training sequences and 7 

esting sequences with 3 sets of detected bounding boxes, is used 

n our experiments. The dataset focuses on pedestrians only, and 

nly pedestrians are annotated in the ground truths. Due to that 

here is no official train-validation split, and it is suggested to fine- 

une the model using the training set. Thus, we divide it into two 

alves for training and validation similar to Sun et al. [3] . The vali-

ation set is used for model comparison during the evaluation pro- 

ess for three reasons. Firstly, it is suggested to use the validation 

et for fine-tuning. Secondly, the testing set does not provide any 

round-truth label. Thirdly, provided detections are recommended 

o be leveraged for evaluating a tracking system online. 

In addition to MOT Challenge Dataset, CrowdHuman dataset 

22] is also used for pre-training the model. There are 470K human 

nstances in the dataset, including 150 0 0 training images, 4370 

valuation images, and 50 0 0 testing images. The human instance 

ensity and diversity of the images make CrowdHuman a suitable 

ataset to pre-train a pedestrian tracking system. 

.2. Metrics 

Various tracking metrics [21,23] are used while evaluating and 

esting the model. MOTA (Multiple Object Tracking Accuracy, in 

quation 9 ) is the main metric among all other metrics, which 

escribes the overall accuracy between true positives (TP) and all 
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Table 1 

The table shows a full comparison of all available models. Three locality-enhanced variants are listed as well as three 

models trained with TransTrack architecture. Our best locality-enhanced model outperforms all other models in many 

metrics, such as MOTA, MOTP, MT, ML, and FN, while the other metrics are also comparable with other models. 

Model MOTA MOTP MT PT ML FP FN IDs 

TransTrack 66.5% 83.4% 39.5% 42.5% 18.0% 2.9% 30.1% 0.6% 

TransTrack ∗ 67.1% 83.5% 41.9% 39.8% 18.3% 3.1% 29.4% 0.5% 

TransTrack-mix 72.0% 85.2% 49.3% 37.8% 13.0% 2.0% 25.5% 0.4% 

Locality 68.5% 85.2% 45.1% 37.8% 17.1% 1.5% 29.6% 0.5% 

Locality + 72.4% 85.4% 54.0% 36.6% 9.4% 3.8% 23.1% 0.7% 

Locality + 72.1% 85.5% 54.3% 36.6% 9.1% 4.4% 23.0% 0.6% 
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Table 2 

The table compares computational complexity 

and the number of parameters for the original 

FFN and the locality module in the encoder. 

Module #param Mac 

Locality 1.06M 0.42G 

FFN 0.53M 0.41G 

Table 3 

The table compares the performance of the models trained by a mixed 

dataset and only the MOT17 training partition. 

Dataset MOTA MOTP MT PT ML 

Mixed 68.5% 85.2% 45.1% 37.8% 17.1% 

data 

MOT17 60.8% 83.5% 33.0% 44.5% 22.4% 
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p

ther false detections, including false positives (FP), false negatives 

FN), and ID switches (IDSW). 

OT A = 1 −
∑ 

t (F P t + F N t + IDSW t ) 
∑ 

t GT t 
(9) 

here TPs are the detected instances which are also ground truths, 

Ps are the invalid instances detected, FNs are the missed instances 

hat should be detected, IDSWs record the tracking ID switches, 

nd GTs are the ground truths. 

Other MOT metrics are assessed, including MOTP (Multiple Ob- 

ect Tracking Precision, in Eq. (10) ), mostly tracked (MT), mostly 

ost (ML), and partially tracked (PT). MT counts the trajectories 

racked over 80% of the ground truth, while ML counts those 

racked less than 20%, and all trajectories in between are PT. The 

nal results of all metrics are averaged for all video sequences that 

ave been tested. 

OT P = 

∑ 

t,i d t,i ∑ 

t c t 
(10) 

 = 1, where d t,i are the overlapped bounding boxes between de- 

ected ones and the ground truths in time frame t for all instances, 

nd c t is the number of those matched bounding boxes in time 

rame t . This metric only shows the precision of detected boxes, 

gnoring whether the detection is correct. 

.3. Training details 

During our experiments, feature maps with strides ×8 , ×16 , 

32 are fetched from our ResNet50 backbone for each time frame 

. The locality module is deployed in the encoder with the expan- 

ion ratio set to 4. Batch normalization is added after every con- 

olution. Dropout layers are removed, which were initially used 

n the FFN. H-swish activation [24] is selected for all convolu- 

ions, and squeeze-and-excitation (SE) module [25] is added be- 

ween depth-wise convolution and the last convolution. We in- 

estigate three variants of locality modules – shared-weight local- 

ty, multi-scale locality, and locality with more layers. Other mod- 

ls are evaluated and compared, including the original TransTrack 

ystem, both shared publicly and self-trained, using 4 Tesla-V100 

PUs. 

The other details are set to match [3] regarding the optimizer, 

atch size, learning rates, as well as image augmentation tech- 

iques. In addition to the classic training with two consecutive 

rames or two randomly selected frames within a short time dif- 

erence, it is also possible to train the MOT system by randomly 

ropping and scaling a single image from the sequence. 

.4. Evaluation 

When we modify the components of a network, we barely in- 

rease the computational cost because the tracking system is al- 

eady quite complex and large compared with other single-task 

odels. Hence, the inverted residual block is a good candidate for 

his purpose. 
74 
Table 2 shows the computational complexity and number of pa- 

ameters for both the locality module and the FFN inside the en- 

oder. We use MultiplyAccumulate operation (Mac) to demonstrate 

he calculations needed for such a module since a convolutional 

ayer contains a matrix multiplication operation (op) and an addi- 

ion op. However, some metrics count it as two ops, while some 

ardware can combine two ops into one, so we only count the 

ombination of multiplications and additions. 

The locality module has a doubled amount of parameters com- 

ared with the original FFN mainly because of the SE layer, which 

as nearly half of the total parameters. Nonetheless, the SE layer 

s very efficient that only takes 0.001 GMac because it only pools 

he input to size 1 to calculate a scaling factor and scale the orig- 

nal input. Two convolutional layers (the first and the last) take 

p almost all Mac due to the change of channels for the feature 

aps. The computational cost of the locality module mainly de- 

ends on the expansion ratio between the convolutions. Consider- 

ng our purpose of not increasing the model’s complexity, we set 

he ratio to 4, which costs almost the same as the original FFN. 

During the experiments, we verified that training with a mixed 

ataset of Crowdhuman and MOT17 training partition could im- 

rove overall performance. As shown in Table 3 , the MOTA per- 

ormance of our system boosted drastically after mixing the train- 

ng datasets. MT increased to 45.1% from 33.0%, showing that the 

rowdhuman dataset does help the system recognize pedestrians 

etter. There are larger volumes, more crowded, and higher quality 

ictures of pedestrians in the Crowdhuman dataset, providing good 

uality learning features. When using only the MOT17 training par- 

ition, more trajectories are partially tracked. Due to the lack of 

edestrian variety and sample quantity, a system with a MOT17 

ataset can hardly fully track pedestrians. Nevertheless, MOTP im- 

roved by 1.7% means that the detected bounding boxes’ qual- 

ty is almost the same. However, more objects are detected and 

racked, which indicates that the variety and volume of new sam- 

les helped. 
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Fig. 3. Screenshots show the missed objects. The scene on the top is captured from the MOT17-02 sequence, and the bottom is captured from the MOT17-04 sequence. 

Fig. 4. A visual comparison between the Locality+ model (upper row) and the TransTrack ∗ model (lower row). 
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As mentioned in Section 4.3 , three MOT models with locality 

odules are trained. All models leverage multi-scale feature maps 

ince the output resolution in the last layer of the backbone would 

e too small to detect small objects. The difference comes from 

he locality module, where the first one shares the weights of 

he locality module for the multi-scale feature maps; the second 

ne adopts dedicated locality modules for the multi-scale feature 

aps; and the third one, which is based on the previous one but 

dded more layers for the ablation study (namely Locality, Local- 

ty+, and Locality++ in Table 1 respectively). 

Besides, three models from TransTrack architecture (listed in 

able 1 ) have been tested to compare with our models. TransTrack 

s the default model trained with suggested training proce- 

ures and parameters. TransTrack ∗ is the model trained and pro- 

ided publicly by the author, which is also our baseline model. 

ransTrack-mix is the model trained with a mixed training set like 

ocality+. 

From the experiment results in Table 1 , the Locality+ achieved 

he best overall MOTA performance, which bolsters the effect of 

he locality mechanism. Compared with the locality models, the 

ne with dedicated locality modules advances nearly all metrics. It 

s because the shared weights locality module could not robustly 

xtract features from different scales. When using dedicated lo- 

ality modules for multi-scale feature maps, local features from 

ll levels are extracted and combined to enrich the original fea- 

ures. Locality+ gets the best mostly-tracked result and the least 

ostly-lost result among all competitors, showing the effectiveness 

f leveraging local features to track objects. 

Compared with the TransTrack-mix model, Locality+ outper- 

orms it by 0.4% in MOTA, but Locality+ is much better in track- 

ng objects regarding the MT and ML results. False negative is also 

n essential metric in traffic, which determines whether an object 

ill be detected or not. Locality+ achieves a much lower FN rate 

y trading off the FP rate, which is still comparable with the base- 

ine model. However, the ID switch rate is above the average due 
75 
o the higher number of detections, which also increases the FP 

ate. MOTP defines how accurate the detected bounding boxes are, 

nd both locality-enhanced models got an over 85% MOTP accu- 

acy, while only one TransTrack model achieved this. Besides the 

elp of the mixed dataset, convolutions also contributed to the de- 

ection accuracy. 

In the Locality++ model, we added one more 3 × 3 convolu- 

ional layer in the locality module. However, there is no significant 

mprovement using the same dataset. The additional convolutional 

ayer contributes to many metrics, such as MOTP, MT, ML, FN, and 

Ds, which show better tracking precision but not overall accuracy. 

n other words, the inverted residual block is optimal in this struc- 

ure. 

Figure 4 shows a visual comparison between the Locality+ 

odel and the TransTrack ∗ model. In general, Locality+ tracks more 

edestrians compared to the original TransTrack, especially those 

ho are far away and occluded. It is crucial to detect pedestrians 

n advance if we deploy the system on an unmanned vehicle. Ad- 

itionally, Locality+ works well for pedestrians in different scales. 

In our experiments, there are still some occasions people are 

ot detected, such as sitting people in the MOT17-04 sequence and 

iding children in the MOT17-02 sequence (shown in Fig. 3 ). Those 

ndetected people usually are in different poses other than stand- 

ng or walking. The training process should pay more attention to 

are cases, which will be our future work for investigation. 

. Conclusion 

In this paper, we experimented with the possibilities of com- 

ining novel transformers with classic convolutional networks. This 

ay, local features could be learned from locality modules (convo- 

utions) while the global features are exchanged in the multi-head 

ttentions. The inverted residual block module is selected for the 

ocality module and deployed in every encoder layer. Our tweaked 

odel with multi-scale locality modules achieved 72.4% in MOTA 
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nd 85.4% in MOTP on the MOT17 validation set, which outper- 

orms the baseline TransTrack. The results show the potential of 

everaging convolutions to extend the limit of transformers in MOT. 
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