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A B S T R A C T

Industrial information models are standardised ways of representing industrial devices, equipment, and
processes together with the data collected from associated sensors and control systems. Companies invest
in such models to enable digitalisation and modular, reusable solutions. They also invest heavily in analytics
(e.g. machine learning) based on time series data sets to improve operations. Queries that use such context to
retrieve time series data can make industrial data sets more accessible to practitioners performing analytics
and application development. Moreover, they can enable scalable deployment of resulting analytical models.
Industrial availability constraints require that queries over context and time series should be portable in
general, as they should be able retrieve data for training in a cloud setting and production data for deployment
in an on-premise setting. Solving this problem is challenging with existing approaches as context and time
series data tend to exist in separate, specialised databases. We address the issue by proposing a hybrid query
engine, namely Chrontext, in the setting of a SPARQL database hosting the static model, and an arbitrary
time series database. We show how with a set of annotations in the knowledge graph, SPARQL queries can be
evaluated over such a hybrid architecture. We provide a proof showing that our approach correctly answers
SPARQL 1.1. queries. We implement our approach in Rust under the Apache 2.0 license, and use the Apache
Arrow-based Polars library together with configurable pushdowns to achieve high performance. We compare
the performance of Chrontext against Ontop, one of the most prominent virtual knowledge graph systems,
on a synthetic data set based on industrial standards. Data are stored in a S3 data lake and PostgreSQL with
the Dremio data lakehouse as the SQL integrator. We find that our approach performs 10× to 85× faster and
consumes much less memory than Ontop.
1. Introduction

Information models are ways of representing domains of interest
in a standardised way (Lee, 1999), and industrial information models
represent industrial devices, equipment, and processes. Uniformity and
consistency in information modelling is important in order to make the
most of industrial digitalisation efforts, as it enables greater scalability
for applications that consume the information model, and lessens the
burden on engineers. Firstly, in an industrial setting where there are a
multitude of ways of representing an instrument, e.g., valve and data
from valve instrumentation, it becomes much harder to write and inte-
grate reusable software used to monitor the instrument. For this reason,
companies, equipment vendors, and industry consortia have been in-
vesting in creating standards for information models (e.g. Bartusiak
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et al., 2022; Großmann & Diedrich, 2022; International Electrotech-
nical Commission, 2013, 2017, 2020; International Organization for
Standardization, 2009; MTConnect Institute, 2022; Tantik & Anderl,
2017). Secondly, companies are facing pressure to invest in analytics to
monitor, understand, and optimise the performance of their processes
and assets and decision making (Dehghani, 2022). Modern analytics
is highly dependent on large data sets. In industry, these data sets
are often collections of values at particular points in time (time series
data) produced by regular samples from sensors and events generated
by actuators. These data sets are stored in special purpose databases
called time series databases (Bader, Kopp, & Falkenthal, 2017), that are
optimised for the patterns found in generation of- and access to such
data. Data will typically be appended to a time series database and be of
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a uniform type per sensor. Users are often interested in the values from
one or more sensors in an interval, subject to an aggregation operation
such as min, max or mean. In this respect, information models can
help analytics application development produce scalable applications
with relatively uniform and standardised integrations with these time
series data sets. Yet, uniform and consistent representation and access
to industrial information models including static and time series data
is non-trivial and still an active research domain.

Semantic Web and linked data technologies have received much
attention for their role in representing, capturing, and integrating
industrial data (e.g., Giese et al., 2015; Kharlamov et al., 2017; Zheng
et al., 2022a). Ontologies are used for modelling domains and integrat-
ing data, using knowledge representation languages such as OWL and
RDF, while SPARQL is the key language in querying such integrated
data sets. Ontologies provide higher level abstractions closer to end
users’ understanding (Soylu et al., 2018), apart from their advantages
in terms of data integration and reasoning. Integrating and accessing
data through ontologies and related technologies is often referred to as
ontology based data access (OBDA) (Corcho, Priyatna, & Chaves-Fraga,
2020; Poggi et al., 2008). SPARQL databases are a good fit for models of
industrial assets and their processes, but are not optimised for the time
series data produced by the sensors and actuators in industrial assets
as storage is not optimised for sequential reads of timestamped values
(e.g. Bast & Buchhold, 2017) and serialisation/transport involves text-
based representations (World Wide Web Consortium, 2013b). Similarly,
time series databases lack features important for linked data. Queries
over linked data often involves random access (e.g. a piece of equip-
ment by name), which needs indices to perform well and heavily rely
on joins. Indices are not present in many time series databases, and
joins are not supported by time series databases such as InfluxDB (Bader
et al., 2017; InfluxData, 2022a). Neither general SPARQL databases nor
time series databases are well suited to support OBDA to contextualised
time series data. One particular approach in OBDA which has received
considerable attention is the notion of the Virtual Knowledge Graphs
(VKG) (Xiao et al., 2019). With VKGs, data are kept in an underlying
database, typically SQL, and queries written using SPARQL based on
an ontology are translated into equivalent SQL queries on demand in
order to improve the ease of data access. Using modern, cloud based
infrastructure, VKGs appear better suited to query contextualised time
series data.

Modern enterprises often use what are called data lakes using cloud
infrastructure to store their time series data in the column oriented
Parquet-format. Using distributed SQL query engines called data lake-
houses, users can use on-demand cloud infrastructure to process queries
over large data sets (Armbrust, Ghodsi, Xin, & Zaharia, 2021; Melnik
et al., 2010). This means that compute (query processing) is separated
from storage of data, which yields better utilisation of shared resources.
We will use the term time series databases somewhat loosely in this
article, and include modern data lake/data lakehouse architectures
with columnar storage, as these are well suited and commonly adopted
for time series data, even though they are more general. Like with
specialised time series databases, most data lakehouses lack support
for indices (Armbrust et al., 2021), but support joins and other op-
erations required to implement SPARQL. Hence, contextualised time
series querying using OBDA can be implemented on top of a data
lakehouse infrastructure. As we will shortly discuss, such infrastructure
is not always available in industrial settings. When integrating analytics
applications with industrial data, it is not always desirable nor possible
to do so in the cloud. This is due to the fact that for business critical
applications, an internet or cloud outage can present too high a risk
for operations (Lee, 2008). Besides, running an on premise data lake
may be too costly, time consuming for many companies. Even in these
situations however, the cloud has an important role to play in perform-
ing resource intensive training. Ideally, we want users to be able to use
OBDA to access data from the cloud in a training setting, and to use the
2

same queries to access data in a deployment setting using on-premise
infrastructure. We will use the term query portability to mean support
for executing the same queries across heterogeneous infrastructures.
To enable SPARQL-based access to industrial time series data in way
that supports query portability and leverages the capabilities of graph-
and time series databases, we propose a hybrid query engine, namely
Chrontext.

Chrontext relies on a set of annotations to a knowledge graph
representing the static aspects of an industrial asset. We will refer
to this graph as the context graph. These annotations allow nodes in
the context graph to be associated with time series in the time series
database. SPARQL enables queries over this architecture by a process
of rewriting the original query to a static rewrite appropriate for the
context graph, i.e., the static rewrite excludes time series information,
but includes the mentioned annotations necessary to retrieve it. Next,
the appropriate time series are retrieved from the time series database
and combined with the results from the context graph to produce
the query results. Chrontext partially follows virtual knowledge graph
approach, as time series data is kept in time series databases, but
static context data is provided by a SPARQL endpoint. Although hybrid
approaches (e.g., Bakken, 2021; Hu et al., 2016; Steindl, Frühwirth,
& Kastner, 2019) have been discussed in the literature previously, a
detailed description of the mechanics of a hybrid query approach does
not appear to exist. We provide such a detailed description of our
approach in this article. To show the validity of our approach, we
provide a detailed proof showing that our approach of rewriting queries
and combining their results leads to correct SPARQL 1.1 results.

The solution is implemented in Rust, and is based Polars (Vink,
2022b), a fast library for manipulating in-memory tables stored using
Apache Arrow. The solution does not implement a SPARQL endpoint,
but instead returns a Polars DataFrame. DataFrames are in-memory
tables, and are extensively used in data engineering and data sci-
ence. Chrontext currently supports SQL and OPC UA Historical Access
(HA) time series database APIs. When time series data is stored in
a data lakehouse, it is often accessible through SQL. OPC UA HA is
an API that is often used to access time series data in on premise,
industrial settings. When the time series database supports Apache
Arrow, serialisation costs can be reduced drastically compared to ODBC
connections (Ahmad, 2022). Our solution supports time series APIs
that are not SQL based, and adjusts the type of processing, which
is offloaded onto the time series database according to the specified
capabilities of the time series database. Supporting heterogeneous time
series databases allows us to support industrially relevant use cases in
on-premise environments without an SQL integrator. This means that
contextualisation and storage of time series data becomes decoupled,
allowing organisations to potentially develop analytical applications in
the cloud and deploy them on existing infrastructure on-premise, using
the same queries to access time series data, and realising the value of
standardised information modelling in a practical way.

In order to evaluate the performance of our approach, we compared
it against Ontop (Xiao et al., 2020), which is one of the most prominent
open source virtual knowledge graph systems. The data lakehouse
Dremio allows data lakes and databases to be made available using
a common SQL interface, and since it is supported by Ontop, allows
the VKG approach to work in hybrid architectures. We constructed a
synthetic data set based on a set of wind farms represented using the
Reference Designation System (RDS) for Power Systems (International
Organization for Standardization, 2022) based on an example wind
power case (RDS 81346 Technique ApS, 2022). The RDS can be applied
to a wide variety of industries and to building management. The queries
we use in the benchmark are fairly straightforward, and focus on the
core task of using an RDS information model to find and extract time
series. Comparing the performance of our solution to Ontop on twelve
different queries, we found that the memory consumption of the SQL
queries generated by Ontop causes Dremio to run out of memory in
one out of three queries. Chrontext completes all queries and uses very

little memory in Dremio. For queries completed by both solutions, our
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solution completes the queries between 10x and 85x faster than Ontop.
For the case of using a widely applicable and adopted information
modelling approach for industry, and extracting time series data in
a straightforward way using SPARQL, our approach outperforms the
leading open source VKG by a wide margin. The evaluations lead
us to suggest routes to improve performance for Dremio, Ontop and
Chrontext respectively.

The rest of the article is structured as follows. We begin by intro-
ducing background relevant to our work in Section 2. The background
section covers OPC UA, information modelling with ISO/IEC 81346
(RDS), column based data analysis with DataFrames and modern data
warehouse concepts of the data lake and data lakehouse. We discuss
related work on hybrid query systems and virtual knowledge graphs
in Section 3. We motivate and describe the problem of querying hybrid
architectures with SPARQL, describing our requirements and how exist-
ing hybrid querying and VKG solutions fail to meet them in Section 4.
We then describe the solution approach in Section 5, by elaborating
how the approach rewrites and processes one of the queries from the
benchmark. We describe the solution approach in mathematical detail
and prove the correctness of the approach in Section 6. Implementation
details can be found in Section 7, describing how we leverage existing
libraries, support for time series APIs as well as important optimisations
when the time series database is a SQL data lakehouse. We present the
set-up and discuss the results of our evaluations in Section 8, looking
in detail at why Chrontext outperforms Ontop. We conclude that our
solution approach and implementation meets our requirements in Sec-
tion 9. We discuss the novelty of our approach, the possible benefits for
application development. Finally, we discuss current limitations of the
approach and implementation, how they can be overcome and outline
future work.

2. Background

In this section, we introduce technologies, approaches and standards
underlying our work or used to put our work into relevant industrial
context. Semantic Web technologies and the SPARQL query language
are core technologies adapted in this work, while OBDA and VKGs
allow us to use ontologies and SPARQL as high level abstractions to
integrate and access data in existing databases. Given our industrial
focus, we extend our solution to support OPC UA, which is a well
known set of specifications for interoperability in industry. Addition-
ally, our industrial approach targets organisations that have created
standardised representations of their assets and processes. The ISO/IEC
81346 standard is an important and broadly applicable standard in
this respect, and it is used in our running example and evaluation.
We incorporate Apache Arrow into our solution in order to cater
for data engineers and data scientists and leverage the performance
improvements this technology can yield in analytic settings. Analytical
data is typically stored in data lakehouses, and understanding how
data lakehouses work is important to compare the performance of our
solution with that of a VKG.

2.1. Semantic Web technologies

Semantic Web technologies are a set of technologies for representing
and exchanging knowledge on the Web in standardised formats and
they allow data integration and reasoning (Hitzler, 2021). This vision
has for the most part not come to pass yet, although the technologies
developed are useful in developing data intensive applications (Klepp-
mann, 2017), including industrial and public data integration scenarios
(e.g., Soylu et al., 2022; Zheng et al., 2022b). A core Semantic Web
technology is the Resource Description Framework (RDF); it is a graph-
based data model and associates Uniform Resource Identifiers (URI)
with entities in a domain of interest, and describe these resources and
their relationships using triples. The first element of a triple is a URI,
called the subject. The second element is also a URI which denotes a
3

relationship or property that the URI has, and is called the predicate.
he third element of the triple is either a piece of data, or another
RI, and is called the object of the triple. Collections of such triples are
alled knowledge bases. Ontologies describing a domain of interest in
erms of concepts, properties, and relationships are another important
art of the Semantic Web, which employs languages such as RDFS and
WL for incorporating more meaning and reasoning power into RDF
raphs; there are multiple reasoning engines available (Singh, Bhatia, &
utharaju, 2020). Finally, SPARQL is a powerful query language used

o interrogate knowledge bases. SPARQL databases are also called triple
tores. There are multiple highly scalable commercial and open source
PARQL engines (see Ali et al., 2021).

.2. OBDA and VKGs

OBDA refers to the use of Semantic Web technologies to improve
he accessibility of data to users (Soylu et al., 2018). This is done by
bstracting away technical details connected to how data are stored
n databases. Instead, the domain is modelled using Semantic Web
echnologies, i.e., ontologies, with domain-oriented predicates, which
as a non-trivial relationship to the underlying data (typically in a
elational database). The specification of relationships between the
nderlying data and the ontology elements is known as a mapping (Xiao
t al., 2018). Using OBDA, users can formulate queries and explore
esults in a language that is closer to the domain using ontology terms
nd SPARQL, and then queries translated into the query language(s)
f the underlying (relational) database(s). An important distinction in
BDA is whether triples are materialised into a SPARQL database or
ot. The class of systems where triples are only virtual and only exist
mplicitly or as query results to users is called VKG (Xiao et al., 2019).
he open source software Ontop (Calvanese et al., 2017b) is among the
ost popular open source VKGs (Xiao et al., 2018).

.3. OPC UA historical access

OPC UA is a set of standards facilitating secure and interoperable
ommunication and semantics in industry (OPC Foundation, 2022).
n industrial automation, the life of protocols, software, and devices
s longer than in many information technology settings, and OPC UA
llows a myriad of legacy technologies to be abstracted away. It is a
arge standard covering many use cases (Schleipen et al., 2016) ranging
rom the field level in the automation pyramid to cloud deployments.
rucially, OPC UA supports information modelling allowing the mean-

ng and context of data from sensors and actuators to be preserved.
PC UA information models contain nodes that may be associated
ith historical data. OPC UA Historical Access allows clients to ask for
istorical data from such nodes which is either raw or aggregated (OPC
oundation, 2018a), but is agnostic with respect to how these data are
tored. That is, it is up to OPC UA service implementers to decide where
nd how to store data. Servers implementing OPC UA HA are often
alled historians, and may be used to support applications that rely
n historical data, such as dashboards and intermittent analyses and
eports.

.4. ISO/IEC 81346

The Reference Designation System (RDS) is an ISO and IEC standard
81346) for uniquely referring to components of an asset such as a
uilding, factory or power plant across the lifecycle of an asset (Inter-
ational Organization for Standardization, 2009). By describing how
ssets are organised along different aspects, they allow models of such
ssets to be relatively static, even if equipment realising important
unctions are replaced (Pfaffel, Faulstich, & Rohrig, 2017). Using mod-
ls based on RDS, one can navigate to equipment using such as the
ole it plays in achieving some function (e.g. producing power or
nsuring safe operations) or by where it is located physically, or by
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some combination of such aspects. There are several companies offering
products to structure static asset data in accordance with the RDS. The
Engineering Base product is a commercial collaborative engineering
tool sold by AUCOTEC (2022). It supports representing industrial assets
in RDS and is in use across multiple industries. Similarly, Keel Solution
focuses on using RDS to manage information in the energy sector,
including wind farms (Keel Solution, 2022). The existence of these
commercial offerings corroborate the industrial relevance of our RDS
wind power example presented later.

2.5. Column oriented DataFrames and Apache Arrow

Columnar data layouts have been found to perform better than row
based layouts for databases that perform analytical processing (Abadi,
2008; Kleppmann, 2017). When performing analyses locally, data sci-
entists use DataFrames, which are typically in-memory columnar data
structures. We assume that data scientists using our solution to extract
time series data will prefer to work with DataFrames.

Apache Arrow is a specification for laying out data in memory in a
column oriented way (The Apache Software Foundation, 2022a), to fa-
cilitate high performance analytical processing and efficient, zero copy
data exchange between processes on the same computer. For instance, a
database backed by Apache Arrow could execute procedures defined in
R or Python on its data without copying data. Apache Arrow serves as
the backend for multiple DataFrame-like interfaces (Neal Richardson
et al., 2022; The Apache Software Foundation, 2022d; Vink, 2022b).
Several analytically oriented databases have adopted Apache Arrow as
their native format, including Dremio and InfluxDB IOx (Dremio, 2022;
InfluxData, 2022b).

Data Scientists must often retrieve data using SQL from analytical
databases, which is made available through row based APIs. For in-
stance, the Open Database Connectivity (ODBC) API requires that data
is made available in a row oriented way. The target representation
for such queries is often a column oriented DataFrame. This process is
wasteful if the source database is column oriented, as the intermediary
row-based representation is superfluous. Apache Arrow Flight is a
specification for transferring Apache Arrow data over a network in
a column oriented way, avoiding the above problem. Apache Arrow
Flight has been found to drastically improve the throughput of database
connections in such cases (Ahmad, 2022).

2.6. Data lakes, Dremel and data lakehouses

Dremel is a massively scalable Google-internal distributed query
engine, which changed the way large data sets are queried (Kleppmann,
2017; Melnik et al., 2010). Before Dremio, querying large data sets
was done using MapReduce-based solutions that required coupling
of computation and data, as data must be loaded into the cluster
before queries can be run on the data set (Kleppmann, 2017). Such
coupling leads to inefficient resource usage. In contrast, Dremel allowed
what is termed ‘‘in situ’’ query processing, meaning that data can be
stored in a dedicated storage mechanism and rapidly accessed at query
time (Melnik et al., 2010). Such a passive data storage mechanism is
called a data lake.

Dremel has inspired a number of products for scalable SQL data
integration decoupling storage and compute layers, which are some-
times called data lakehouses (Armbrust et al., 2021). Data lakehouses
often rely on data stored in the columnar Apache Parquet (The Apache
Software Foundation, 2022b) file format, which are effectively con-
verted to Apache Arrow. Data lakehouses use data partitioning schemes
to limit the amount of data that must be processed instead of using
indices. One popular data lakehouse is Dremio (2022) (a play on
‘‘Dremel’’ Preimesberger, 2017), which is supported by Ontop. Relying
on the scalability of data lakehouses is one possible way to scale ODBA
4

generated SQL queries over time series and context models.
3. Related work

In this section, we discuss the related work on OBDA involving time
series data; support for queries that span context and time series data
in OPC UA; and, hybrid query architectures. We then summarise the
related work across various categories.

3.1. Applications of OBDA to time series

OBDA has been applied to contextualised access to time series data
at Siemens by Kharlamov et al. (2014). The data in the Siemens case
mainly consist of time series data from instrumented power production
equipment such as turbines but also of important static data which con-
textualises the time series data. The authors employ a query language
for windowed streams of linked data called STARQL (Özçep, Möller,
& Neuenstadt, 2014) to support the unique requirements of their use
case, but use Ontop to transform such queries into SQL queries for the
underlying databases. The execution of these SQL queries are in turn
orchestrated across a distributed infrastructure. The use of OBDA for
accessing time series data from manufacturing to support analytics use
cases was proposed by Mörzinger et al. (2018). The feasibility of using
SPARQL to access such data is demonstrated, but an OBDA approach is
proposed instead of triple stores to handle large volumes of time series
data.

Mörzinger (2019) implements ontology based access to time series
data arising in manufacturing in order to perform analyses. Data is
stored in an SQL-database, and Ontop is used to access data using
SPARQL. Mörzinger (2019) argues on the basis of literature review
and interviews with subject matter experts that querying contextu-
alised time series is crucial in the manufacturing domain. Further-
more, Mörzinger finds that aggregation support in OBDA is insufficient
to cover the analyses of manufacturing data, and suggests a that a
domain specific language is required to meet these needs. Brandt et al.
(2019) also represents such an approach, and allows aggregations such
as those required by Mörzinger (2019) to be formulated. The language
is transformed into SQL queries and executed in a distributed way on an
Apache Spark cluster (The Apache Software Foundation, 2022c) which
supports user defined aggregate functions. Similarly, Güzel Kalayci
et al. (2018) extends OBDA to cover derived temporal relationships,
such as the validity of a statement in an interval, and map these rela-
tionships to SQL queries. Güzel Kalayci et al. (2018) provide benchmark
results on an open data set of hospital admissions which is loaded
into a PostgreSQL database. Calvanese et al. (2017a) focus on the
case of encoding higher order properties found in the field of process
mining (Van Der Aalst, 2012) as higher order abstractions that are
queryable using SPARQL. The field of process mining has produced
techniques for analysing log data, a type of time series data. As such,
it enables analysts engaged in process mining to pose queries on an
appropriate, non-technical level of analysis.

Brandt et al. (2019), Güzel Kalayci et al. (2018), and Özçep et al.
(2014) are the only examples we know of that benchmark OBDA for
time series data. Only Güzel Kalayci et al. (2018) provides a data set
that is openly available, and benchmarks provided by Brandt et al.
(2019) and Güzel Kalayci et al. (2018) concern features and aggrega-
tion functions that are not found in most OBDA solutions. Botoeva et al.
(2018) considers the extension of OBDA to NoSQL data sources, with
an implementation and benchmark for the case of MongoDB (2022),
while hybrid architectures are not discussed.

3.2. OPC UA query support

OPC UA inherently separates static data used to model static assets
from dynamic data generated by those assets. Instantiated information
models are static artefacts that are represented using formats such
as XML and JSON. These instantiated models describe which nodes
contain historical and real time values, but do not themselves contain
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them. The OPC UA Query service specifies a query API allowing the
use of information models as context to retrieve time series data. The
API however has been criticised for being highly verbose and for only
being accessible through an API (Schiekofer & Weyrich, 2019). There
are no known commercial vendors that support OPC UA queries.

An effort exists to transform OPC UA information model instances
to RDF (e.g. Schiekofer et al. (2019) and Perzylo et al. (2019)), so that
they can be queried using the SPARQL query language. This approach is
successful in querying the resulting information models. However, time
series data are not suitable for storage in most SPARQL engines. Steindl
et al. (2019) describe an approach for solving this problem based on the
custom property functions found in Apache Jena, which allow users
to implement functions that may be called as part of queries, and
exposed to query processing as data properties. Bakken (2021) instead
relies on SPARQL query rewriting to access time series data indexed
by OPC UA information models. The present work is an extension and
generalisation of this rewriting approach.

In a similar vein to OPC UA queries, Alvanou, Lytra, and Petersen
(2018) investigate SPARQL queries for contextualised access to data
from manufacturing equipment exposed by the MTConnect standard.
The MTConnect standard ‘‘... offers semantic vocabulary for manufac-
turing equipment to provide structured, contextualized data with no
proprietary format’’ (MTConnect Institute, 2022). There exists official
mappings from MTConnect to OPC UA available on the MTConnect
website. Alvanou et al. (2018) only conduct a feasibility study of
queries that span static context and time series data, and store small
example data sets (each less than 10 kB) in a triple store.

3.3. Querying hybrid architectures

Graube, Urbas, and Hladik (2016) describe a hybrid approach based
on combining a static SPARQL database with ‘‘rapidly changing tran-
sient data’’, for instance from OPC UA. The authors propose that the
SPARQL 1.1 Federated Query Extension (World Wide Web Consortium,
2013a) be used to integrate dynamic data with static data, and that
OPC UA servers are equipped with linked data adaptors allowing them
to form part of a federated query. The authors acknowledge that their
proposed architecture incurs a performance penalty, but argue that
scaling to large data sets is not critical for their use case which retrieves
a small snapshot of transient data in context.

The domain of building information modelling (Borrmann, König,
Koch, & Beetz, 2018) also contains work on querying hybrid archi-
tectures (Tang et al., 2019). Notably, Hu et al. (2016) describe an
approach for extracting building performance data, which relies on first
querying a SPARQL database to determine which data to extract from
one or more SQL databases. The data from SQL is then queried in a sec-
ond step. Hu et al. (2016) find that their two-step process outperforms
an approach which stores all data in a SPARQL engine. Petrova et al.
(2019) similarly combine SPARQL queries that determine appropriate
time series data, but instead of an time series database rely on a
HTTP endpoint per time series that accepts parameters such as the
time interval and a refresh rate. The approach is used to discover
associations between sensor data.

Donkers et al. (2021) use SPARQL to query static building context,
which is used to determine what data to extract from the time series
database InfluxDB (InfluxData, 2022a). InfluxDB does not provide SQL
support. The extracted time series data sets are used to compute proxies
for building performance and comfort. The approach by van Gool,
Yang, and Pauwels (2021) has similar goals but instead integrate a
building topology model in SPARQL and time series data in NoSQL
database MongoDB in order to compute the above proxies. Esnaola-
Gonzalez and Diez (2019) describe an architecture for querying data
pertaining to energy use in residential buildings. These data are to
be used for a mobile application for economical energy use. Esnaola-
Gonzalez and Diez (2019) rely on queries for InfluxDB that are stored in
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a SPARQL database. First, appropriate queries are retrieved by running
SPARQL queries, and then those queries are run to retrieve appropriate
data sets from InfluxDB. Performance is an important motivation for
using a hybrid architecture in most of the aforementioned work, as
SPARQL engines are not seen as appropriate for time series data.
Although several studies discussed contain benchmarks, the associated
data sets are not openly available.

3.4. Summary of related work

In summary, we see that there are heterogeneous time series data
sources such as SQL, non-standard HTTP endpoints, NoSQL time series
databases (InfluxDB and MongoDB) and OPC UA Historical Access.
There are also a variety of approaches to integrating time series data
with data stored in SPARQL, involving query rewriting (Bakken, 2021),
property value functions (Steindl et al., 2019), relying on SQL-based
data integration (Kharlamov et al., 2014), SQL based data lakehouses
such as Dremio (2022) and client side integration of data (e.g. Donkers
et al. (2021) and Hu et al. (2016)). In the field of OBDA, researchers
have focused on using queries to analyse time series data of various
types, extending OBDA or creating new languages to express these
properties and encoding them as SQL queries. The problem of time
series data extraction using SPARQL has received less attention.

Contextualisation is seen as important for extending the capabilities
of applications and in doing so in an automated way with less need
for engineering. For instance, contextualisation of time series data
using a specialised ontology allows (Donkers et al., 2021) to decide
automatically on which streams of sensor data are relevant to models of
building performance, and how they are relevant. Although proponents
of hybrid architectures have conducted benchmarks, these have been
done in comparison with storing all data in triple stores, and data sets
are not openly available. Benchmarks comparing the performance of
OBDA and hybrid architectures for query processing appear not to exist
in the literature.

4. Problem analysis

The aim of this work is to provide analysts and data engineers
with effective ontology based data access to data from industrial assets.
These are contextualised in standardised ways, leveraging and being
compatible with modern analytical technologies. In particular, we ar-
gue that it is time series data which represents both the main volume
and velocity of data in many industrial situations, while contextual
information is often of far smaller volume and less time sensitive.
We discuss a particular feature which we call query portability, which
is the notion that the same queries can be reused in cloud and on
premise infrastructure. We argue that query portability is of particular
importance in industrial settings. We then conclude with a set of
requirements as a result. Next, we discuss the limitations of existing
solutions to meet these requirements.

4.1. Motivation

In building management, manufacturing, and energy domains, there
have been persistent trends of increased digitisation in last decades
(e.g., Bucchiarone et al., 2019; Kanabar, McDonald, & Parikh, 2022;
Zheng et al., 2022c). The cost of sensor technology has decreased dras-
tically, and there has been considerable effort towards creating stan-
dardised models of physical assets (e.g., digital twins Intizar Ali et al.,
2021). In addition, these physical assets are equipped with sensors
and control systems. Therefore, it is essential to capture and represent
enormous amount of data being generated and enable convenient and
timely access.

Considerable amount of work has been done on scaling triple stores
to handle enormous sets of linked data (e.g., Abdelaziz et al., 2017;

Huang, Abadi, & Ren, 2020). Although models of physical assets can be
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very large and detailed in industry, the time axis can contain many or-
ders of magnitude more data. This means that industrial assets can only
grow so big due to commercial and physical limitations. For instance,
the Gansu wind farm in China was the biggest in the world in 2017
and has 7000 wind turbines (Hernández, 2017), but most wind farms
are much smaller due to limitations in the available area. The data
generated by sensors and control systems associated with the turbines
change very rapidly and accumulate over time. It is appropriate to think
of models of physical assets as static, as re-configuring an industrial
asset is a time consuming process, and even in demonstrators that
display extremes in flexibility, such changes takes several minutes (Kim
et al., 2020). We suspect that it is more common for changes to take
days, weeks or months. That is for instance the case in commissioning
of a new wind turbine. Improving the performance of SPARQL querying
for industrial applications should take into consideration the fact that
considerable amount of the data consists of time series.

For analysts and software systems that manage these physical assets,
it is often important to process historical data accumulated from sensors
and control systems. Examples include performance monitoring and
analytics involving prediction and optimisation. Such analyses and ap-
plications often involve the use of data from multiple, related sensors.
Analysts must extract sequences of such values, while keeping track
of the context. Advances in machine learning such as deep learning
mean that it is possible to improve prediction performance with ever
increasing sets of data. The last ten years have seen massive industrial
adoption of machine learning using these data-hungry approaches,
shifting demands more towards time series data. As has been discussed
extensively in the literature, OBDA can provide an integrated view of
asset and process models and historical sensor data, which is more
accessible to end users than querying technically oriented SQL schemas,
or worse, manually integrating data across systems containing static
and dynamic data. OBDA has the potential to speed up the development
of analytical applications, and if models are standardised, to improve
application reuse and ease of deployment. Moreover, OBDA can reduce
the need for costly data (re-)modelling (Kharlamov et al., 2014).

The last decade has seen important improvements in how analytical
data is stored and transferred. In particular, analytical data tends to be
stored in the binary, compressed, columnar formats (Bian & Ailamaki,
2022; Jin, Bian, Chen, & Du, 2022). With the advent of Apache Arrow
and Apache Arrow Flight, analytical data sets can also be transferred
in this way between processes and over networks (McKinney, 2019).
In-memory data processing with column oriented tables of data called
DataFrames is very popular among data scientists and data engineers.
The Pandas library has pioneered and popularised this approach (McK-
inney, 2010; The pandas development team, 2020). At the time of
writing, it had 98 million downloads in the last month from python
package repository PyPI. The requests-library, an essential library for
HTTP-requests in Python had 227 million downloads over the same
period. In order to be relevant in the world of analytics, linked data
approaches should support and incorporate recent technologies having
considerable use.

There are approaches that go in the direction of allowing users
to specify the analysis of time series data in the query language as
discussed in the related work section (e.g. Brandt et al., 2019). The
goal in this contribution is not for users to specify analyses in the
query language, but to make contextualised time series data available
to established tools that analysts already know how to use. We have
argued that there is a need for scalable SPARQL querying over data sets
containing both static context data as well as dynamical time series.
OBDA is an approach to SPARQL query processing that allows us to
utilise existing infrastructure. In particular, OBDA can allow SPARQL
users to utilise modern technologies for high performance extraction of
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time series data sets.
4.2. Query portability

A trend has been for companies to build cloud-based data lakes,
which may be queried using an SQL based data lake house. Given that
Ontop supports one such data lake house (Dremio) (Ontop VKG, 2022),
one may choose to realise OBDA for industrial time series in this way.
However, a fully cloud based OBDA deployment may not be compatible
with the availability constraints found in industry, and the full benefits
of OBDA may not be realised:

• First, if analytics applications have a critical role to play in
operations, plant managers may be reluctant make themselves
dependant on cloud based infrastructures and an operational
internet connection. Losses from lost production are typically
much larger than the compensation cloud vendors are prepared
to provide under standard service level agreements. These agree-
ments typically provide a refund for cloud costs in periods with
degraded service.

• Second, security considerations often mean that data tends to
move only to the cloud, but not necessarily back to the industrial
asset. Exposing the ability to influence physical processes to the
cloud is seen as a major security risk, particularly in an age where
security breaches have become highly profitable and common.

• Third, making all sensor data available to the cloud places enor-
mous demands on network infrastructure for upload, and may not
be economically feasible. In such situations, a subset of the data
may be uploaded to the cloud in order to rapidly develop ana-
lytics applications that are deployed then deployed to on-premise
infrastructure.

• Fourth, data lakehouses can also be deployed on premise. How-
ever, requiring such infrastructure artificially limits the set of
organisations which can use the solution both due to the cost
involved and limited support for industrial standards such as OPC
UA HA in data lakehouses.

Companies may still want to leverage the power of cloud computing
to rapidly train and prototype machine learning models. Once models
are trained however, the above considerations may well mean they
should be deployed on premise (cf. Pedone & Mezgár, 2018). To
accomplish this goal, data access should be possible with the same
queries across infrastructures. We will refer to this capability as query
portability. The notion of query portability requires that the query
engine is able to support a wide variety of interfaces to time series data
which do not necessarily support SQL. As discussed in the related work
section, many such varieties have been discussed in the literature. For
some time series interfaces, it is very important to limit the set of data
being queried. OPC UA allows federation (OPC Foundation, 2018b),
and in some cases this means that accessing data historical time series
data on a OPC UA server results in federated requests for data stored
OPC UA servers co-located with the equipment in question. If these
queries are too broad, federated queries may result in an infeasible
amount of data given network throughput constraints.

Following this discussion, we formulate a set of requirements; the
proposed solution must:

R1 support context based extraction of time series data using
SPARQL 1.1,

R2 achieve high throughput low latency time series data extraction,
R3 fit well into established data science and data engineering tools,
R4 support heterogeneous APIs for time series data, among them

OPC UA HA and SQL in order to provide query portability,
R5 and offload computation to the time series database whenever

possible in order to improve performance.

The first two requirements simply constrain the solution to existing
technologies with extensive tooling. This makes our work feasible in
terms of implementation and in terms of comparability with existing
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work. The third requirement constrains us to a highly interoperable and
performant data engineering tools, such as DataFrame. The final two
requirements allow us to support query portability that makes the most
of the computing resources at hand. In the next sections, we discuss
disadvantages of existing solutions with respect to these requirements.

4.3. Disadvantages of existing solutions

In this section, we first discuss how solutions that store all data in
triple stores lose out on the performance improvements gained by ex-
ploiting the structured nature of time series data in industrial settings.
Secondly, we discuss how fully virtual knowledge graphs lose out on
the performance improvements gained by representing static context
with indices and do not yet fully leverage columnar formats. While
these approaches offload processing to a secondary database, neither
of these approaches support query portability. Finally, we discuss the
property function approach, which supports portability, but represents
a procedural extension of SPARQL 1.1, and does not utilise modern
columnar formats.

4.3.1. General triple stores are not optimised for time series data
Graph databases typically build indexes to accelerate complex graph

queries. Such indices are costly to build and maintain, and decreases the
throughput performance of data inserts (Kleppmann, 2017). Moreover,
data insertion in SPARQL is text based, which creates a large serialisa-
tion and transport overhead cost. Time series data arising from sensors
can however arrive at very high rates. Although columnar storage has
been beneficial in SPARQL databases (Abadi, 2008; Albahli & Melton,
2016; Erling, 2012), this does mean that data are laid out sequentially
in memory according to timestamps.

Time series data can benefit greatly from sequential columnar stor-
age. This is because we tend to access- and perform computations
over intervals of time series data, and since storing data sequentially
makes it more amenable to compression (Kleppmann, 2017), greatly
increasing the amount of data that can be stored (see e.g. Villalobos
et al., 2020). In an industrial use case, we may poll the discrete state
of some sensor (e.g. valve open or closed) at regular intervals using the
Modbus (The Modbus Organization, 2012) protocol. Likely, there are
long periods where the discrete state (e.g. valve open) is identical, and
a database system laying out such values in sequence may be able to
compress them very efficiently.

Triple stores that can be configured to be especially suited for time
series data are of course possible, and the present work takes some steps
on how to construct such a database from a general triple store and a
time series database.

4.3.2. Disadvantages of existing VKGs
Virtual knowledge graphs are typically constructed by mapping data

from SQL databases via queries to triples based an ontology at query
time. It is possible to use virtual knowledge graphs such as Ontop to
query contextualised time series data either by storing both time series
and context in the same SQL database, or by using a SQL based data
integrator/data lakehouse such as Dremio. In order for SPARQL queries
to be performant, the database must maintain indices. Data lakehouses
often do not use indices but rely on partitioning and materialised
aggregations to speed up queries (Armbrust et al., 2021; Weintraub,
Gudes, & Dolev, 2021). These strategies do not support the flexible
access patterns possible with SPARQL well. VKGs implementing the
SPARQL 1.1 protocol (World Wide Web Consortium, 2013b) rely on
text-based transport of data, for instance using JSON or XML. Trans-
porting data as text entails a lot of overhead, on the order of 10 times
depending on the underlying data type. Data is harder to compress, and
incurs serialisation costs if the target structure is an analytics friendly
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columnar representation such as a DataFrame.
4.3.3. Disadvantages of property functions
The property function approach for querying hybrid architectures

described by Steindl et al. (2019) allows SPARQL databases to define
property functions with user defined implementations. Steindl et al.
(2019) implement property functions for accessing time series data
from the OPC UA historical data access service. The main issue with
property functions is that they mix imperative non-standard constructs
with a declarative query language, and makes it impossible to reach
R1. The longevity of declarative languages such as SQL and CSS is
explained in part by the fact that they are declarative (Kleppmann,
2017). Declarative SQL queries are powerful because they allow im-
plementations to be drastically rewritten and optimised without having
to make a single change to the query. Although performance improve-
ments certainly are possible for imperative languages, they are harder
to accomplish, since execution flow is fixed to a much greater degree.

5. Solution approach

This section describes the proposed solution approach with a run-
ning example, including the static rewriting process and how it applies
to the running example; the process of combining static query results
with time series query results; the process of preparing time series
queries and pushing down computation into the time series database;
and, pushdowns and time series execution for OPC UA and for SQL
databases.

5.1. Overview of the solution approach

Our solution approach assumes that static context data and time
series data are stored separately. Static context data is assumed to
be available through a SPARQL 1.1 endpoint. We assume that time
series data are collections of timestamps and values. Time series data is
assumed to be made available through an endpoint where time series
can be accessed by their identifiers and by bounds on the timestamp.
Crucially, the SPARQL database is annotated with metadata such as the
identifiers of these time series, so that a compound, inferred graph may
be constructed. Our approach to processing hybrid SPARQL queries
is to rewrite the original SPARQL query into one or more SPARQL
queries that only concerns static context data, and one or more queries
for a time series database. Users should not have to know about the
annotation scheme in the SPARQL database, and should be able to make
hybrid queries transparently. The static queries are not merely frag-
ments of the original query, but are extended to retrieve the relevant
metadata about the time series. We denote the phase where we create
static and time series queries the rewriting phase.

The queries for the time series database are better thought of as
proto-queries that are translated into the appropriate API call for the
underlying time series database such as SQL or OPC UA HA. For
performance, it can be crucial to push operations such as filters or
aggregations into a time series database, since these typically have
greater computational resources than a client, doing so limits the
amount of data that has to be transmitted to the client. Therefore, we
have developed a method for pushing down parts of the query into
the time series database. However, not all database backends support
all pushdowns. For instance, OPC UA HA supports a limited set of
aggregation operations, but does not permit filtering on values prior
to aggregations. The method must therefore be configurable depending
on the characteristics of the time series database.

When there are multiple queries involved, the results from one
query should constrain the remaining queries where possible. One
obvious case is that the static queries extract time series identifiers
that are crucial for extracting the correct time series. However, other
constraining relations are also possible. We denote the phase where the
rewritten static queries and time series queries are executed, further
constrained and combined the combination phase. Fig. 1 shows the
dependencies between steps in query processing. In Fig. 2 we illustrate
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Fig. 1. Overview of query processing.

Fig. 2. Overview sequence diagram of the solution approach.

a possible sequence of executions of our solution approach. Note that
the rewriting phase is completed immediately after a query is received,
and that all subsequent processing is part of the combination phase.

It is necessary to define the scheme for metadata annotations to the
static SPARQL graph, and the implied RDF representation of the com-
posite graph, before we can discuss query processing. We discuss this
scheme, introduce the running example, and discuss query processing
using the running example in the following sub-sections.

5.2. RDF representation of time series

RDF representation of time series in queries is fundamental to our
approach. An example use of the RDF representation is given in Fig. 3.
We associate a resource with a time series using the
ct:hasTimeseries predicate. The property and the time series
resource is represented in a SPARQL database. The time series re-
source is always associated with a unique data type resource using
the ct:hasDatatype predicate, typically in the xsd-namespace. The
time series resource is also associated with a unique external identifier
using the ct:hasExternalId predicate. We have assumed for sim-
plicity that the external identifier is a string. This external identifier
is associated with a collection of timestamped values in an external
8

Fig. 3. Example use of the RDF representation for time series data.

database. Both the data type and the external identifier are stored in
the SPARQL database, but users should not query them explicitly.

Instead, the timeseries will virtually be associated with the times-
tamped values using the ct:hasDatapoint predicate. Each data-
point has a timestamp (ct:hasTimestamp) and a value
(ct:hasValue). The datapoints and the edges entering and leaving
it exist only virtually, and are not stored in the SPARQL database.
The timestamps and values are virtualized, and exist in the time series
database. Data points however, are merely a syntactic construction in
order to refer to pairs of timestamps and values.

5.3. Running example

At this point, we introduce the context graph used in our eval-
uation. Introducing this graph allows us to follow the processing of
an example query in the subsequent sections. Our example is based
on the Wind Power Example (RDS 81346 Technique ApS, 2022). It
contains a number of sites, each with a number of wind turbines. Each
wind turbine has a generator system, and the generator system has a
time series representing the power production measured in Watts. The
corresponding RDF graph is given in Fig. 4. In addition to representing
the power production facility, we have attached metadata pertaining to
the time series as described in Section 5.2. Note also that the technical
particulars of the RDS standard require us to create auxiliary functional
aspect nodes. The labels assigned to these nodes are strictly speaking
associated with the edges, and we have accommodated this fact in our
representation.

In the sections that follow, we will consider query processing for the
query given in Fig. 5. This query identifies all wind turbines (?wtur)
with functional aspect labels ‘‘A1’’–‘‘A10’’ belonging to the site labelled
‘‘Wind Mountain’’. We further identify the generators (?generator)
belonging to each wind turbine. From the generators, we identify the
‘‘Production’’ time series, and extract the mean of the production each
10 min interval between two points in time (?avg_val).

5.4. Static query rewriting

The rewriting approach operates on graph patterns introduced in
the SPARQL 1.1 algebra defined in the SPARQL 1.1 W3C recommen-
dation (World Wide Web Consortium, 2013c). This algebra allows the
semantics of SPARQL 1.1 queries to be defined. Many SPARQL 1.1
parsers, such as RDFLib in Python (Swartz et al., 2020) and Sparge-
bra in Rust (Tanon, 2022b) produce the SPARQL Algebra structures
corresponding to a query.
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Fig. 4. Part of wind power graph used in the evaluation.

A query is first rewritten into one or more queries intended for
the SPARQL database, when it is received. As the SPARQL database
does not store timestamped values, nor the datapoints that link these
to time series resource nodes, any references to data points, values and
timestamps or expressions and bindings where they take part must be
removed. The static queries must instead resolve the data types and
external identifiers necessary to retrieve the appropriate values and
timestamps from the time series database. These external identifiers
and data types must be projected (selected) in the static rewrites of the
query. Additionally, we must project any term stored in the SPARQL
engine which is necessary to fully evaluate the query once the time-
series data is available. To retrieve time series data, rewriting produces
one or more proto-queries intended for the time series database.

The rules governing when we need to split our query into multiple
queries to the static SPARQL database are covered in detail in Section 6.
Generally, this happens when not doing so will result in the potential
loss of a correct solution, or in potentially losing track of the correct
number of solution duplicates.

5.4.1. Rewriting basic graph patterns
Basic graph patterns (BGP) are the fundamental building blocks

of SPARQL queries, and correspond to collections of triple patterns.
The basic graph patterns introduce variables. Property paths and other
graph patterns can also introduce variables, but these are not discussed
here for simplicity. When the static rewriting procedure encounters a
basic graph pattern, the distinct time series variables, their associated
data point variables, values and timestamp variables are collected in
what we call a Basic Time Series Query (BTSQ). These are in fact proto-
queries, and will be completed with additional information once the
corresponding static query is evaluated and translated into the query
API of the time series database. Triples involving data points, values
and timestamps are removed from the basic graph pattern. Instead we
introduce triples with variables to extract the external id and data type
of the time series value. These variables are added to the BTSQ, and we
ensure they are projected out through the outermost select-statement.

The names of variables are in general not sufficient to identify an oc-
currence of a variable in a query. We also record the sequence of graph
patterns and expressions that contain the basic graph pattern when we
store the BTSQ, in order to uniquely determine what BGP it corresponds
9

Fig. 5. Grouped production query with ten wind turbines from the evaluation. The
query has been slightly rewritten for presentation purposes. It serves as our running
example.

to. We call this sequence the path. Fig. 6 shows the basic graph pattern
belonging to our running example and the rewritten example graph
pattern is given in Fig. 7. We note that logically speaking, this basic
graph pattern has become weaker. Our metadata requirements dictate
that any time series should have both an associated data type and
external id. A time series may however be empty. The basic time series
query which is created when rewriting the basic graph pattern is shown
in Fig. 8.

5.4.2. Extend graph pattern rewriting
The extend graph pattern contains an expression bound to a vari-

able, together with an inner graph pattern. Extend graph patterns
result from the BIND-keyword, but can also result from non-aggregating
expressions that are applied to a variable after the SELECT keyword,
e.g. ((?a + ?b) as ?absum). We keep the extend graph pattern
during rewriting only if all variables involved in the expression are
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Fig. 6. Basic graph pattern belonging to the running example query.

Fig. 7. Rewritten basic graph pattern belonging to the running example query.

Fig. 8. Basic time series query resulting from the basic graph pattern in our running
example.

Fig. 9. Extend patterns from the running example query.

present in the inner graph pattern after it has been rewritten. In the
case of the running example, there are five layers of extend graph
patterns, nested on top of the basic graph pattern discussed previously.
These extend patterns are shown in Fig. 9. All these extend patterns are
dropped in the static rewrite as the data are not available in the static
context graph.

5.4.3. Filter graph pattern rewriting
In the SPARQL algebra, a filter graph pattern is composed of an

inner graph pattern and a boolean-valued expression. They result from
the FILTER-keyword in SPARQL queries, which serves to limit the set of
solutions to the inner graph pattern according to some condition that
is specified immediately after the FILTER keyword. These conditions
can be highly complex, and even allow nested subqueries. When our
rewriting approach rewrites filter graph patterns, the expression must
be rewritten to remove any variable located in or derived from the time
series database. However, care must be taken to not create a rewritten
condition that is stricter than the original condition, because this can
cause us to lose solutions. For instance, a condition of the form:

? s > 2 | | ?v > 2

where ?v is a time series value and ?s is contained in the SPARQL
database, cannot be rewritten to ?s > 2, since we may lose solutions
from the SPARQL database. When rewriting conditions, we initially
10
Fig. 10. Filter expression from the running example query.

Fig. 11. Rewritten filter expression from the running example query.

Fig. 12. Group by graph pattern in the running example query.

require that the expression is unchanged or in case it is a logical expres-
sion, weaker. Processing the negation operator flips this requirement,
and we instead require that the negated expression is unchanged or
stronger. For instance, we are permitted to rewrite the expression:

OT(? s > 2 | | ?v > 2)

into

OT(? s > 2)

Composite expressions that are not logical operators generally must
have unchanged arguments. If any of the parts of such composite ex-
pressions are changed, we cannot ask the SPARQL database to evaluate
it, and must do it in a later stage. In the running example, we have a
filter graph pattern where the condition is given in Fig. 10. The filter
graph pattern is rewritten in Fig. 11. The rewrite in Fig. 11 is permitted
since the condition now has become weaker.

5.4.4. Group by graph pattern rewriting
Group by graph patterns are introduced to the SPARQL algebra by

the GROUP BY keywords. The group by is followed by the variables
one should group by, and requires that aggregation expressions such
as sum are applied other variables occur after the SELECT keyword,
much like in SQL. The group by graph pattern consists of an inner graph
pattern, variables to group by and aggregation expressions bound to
variables. During a rewrite, the group by graph pattern can potentially
lose information contained in its inner graph pattern, as it groups by
certain variables and performs aggregation operations which are in
general lossy. Any non-trivial rewrite of the contained graph pattern
of a group by operation will cause the group by graph pattern to be
dropped. In the case of the running example, we have a group by graph
pattern shown in Fig. 12.

We note that, in previous sections, we detailed several non-trivial
rewrites of the inner graph patterns contained in the WHERE-clause.
We must therefore drop the group by graph pattern and instead only
preserve the inner graph pattern when rewriting. In general, we must
create a sub query, when we encounter a group by pattern where the
inner graph pattern is non-trivially rewritten.
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Fig. 13. Projection graph pattern from the running example query.

Fig. 14. Detailed view of combining static queries and time series queries.

5.4.5. Project graph pattern rewriting
The project graph pattern is introduced by the SELECT keyword,

which is followed by a set of variables. Following the WHERE-keyword
is the inner graph pattern associated with the project graph pattern.
Any expression-defined variables are encoded in the SPARQL algebra
as aggregation expressions of an inner group by graph pattern, or as
Extend graph patterns nested inside the inner graph pattern.

When a subquery is created, we must create a projection pattern
for it to be executable in the static SPARQL endpoint. We should
project all variables that are necessary to process the entire query,
e.g. variables that occur in expressions or in the top level projection.
Additionally, if the subquery has been rewritten by our procedure,
e.g. a filter containing an expression not fully evaluated by the static
SPARQL endpoint, we may have to project additional variables that
will be used in the combination phase to complete the evaluation of
the subquery. It is also important to project any variables that we
introduced in the rewrite, as these contain important metadata for
querying and combining the results from the time series database with
the results from the static SPARQL endpoint.

In the case of the running example, following the principles de-
scribed above, a sub query with the projection given in Fig. 13 is
created.
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Table 1
Excerpt of solution mappings associated with the static query in the running
example.

site_label wtur_label ts_external_id_0 ts_datatype_0

Wind M. A1 ep1 xsd:double
Wind M. A2 ep2 xsd:double
... ... ... ...
Wind M. A10 ep10 xsd:double

Table 2
Excerpt of solution mappings after grouping pushdown modification.

site_label wtur_label Group

Wind M. A1 1
Wind M. A2 2
... ... ...
Wind M. A10 10

5.5. Combining static and time series queries

Recall that after rewriting the static query, we have one or more
static subqueries, indexed by the path where they occur in the original
query. Additionally, we have zero or more BTSQs. These BTSQs are
always associated with a given data point-variable inside a basic graph
pattern with a particular path. Fig. 14 zooms in on the process of
combining static queries and time series queries.

Initially, the process starts with an empty multiset of solution map-
pings, the map of static subqueries and the basic time series queries.
The combination process visits the nodes in the algebraic structure of
the SPARQL query in a depth first way. The procedure checks when
arriving at a graph pattern (as part of another graph pattern or nested
within an exists expression), if there is an associated static (sub)query.
If there is no static subquery associated with our graph pattern, we
recursively evaluate our procedure on the constituent graph patterns of
the present graph pattern. If there is a static sub query, it is amended
using the multiset of solution mappings to bind the overlapping vari-
ables that are in scope appropriately. We use the values-graph pattern
to accomplish this. Next, the amended static query is executed, and we
join the results with the existing solution mappings. At this point there
should be no more static queries associated with any deeper path in
the tree. In the running example, we recursively process the outermost
projection pattern and reach the group by pattern. We note that there
is a static query associated with this path. There is no existing solution
mapping, so we do not need to constrain the static query. For the
running example, the results from the static query are given in Table 1.

Having received the static query solution mappings, we are ready to
prepare the time series queries for the present sub-tree of the query. The
preparation step is discussed in detail in Section 5.6. The preparation
step also traverses the present sub-tree until it reaches a basic graph
pattern. We complete the time series query with the associated external
identifier information found in the solution mappings. It constructs
time series queries, where we push down as much of the nested
graph patterns as possible. From the preparation step, we receive a
map of time series queries, where the keys are paths to the highest
graph pattern pushed down into the time series query. In the running
example, time series query preparation produces a map which has one
entry, a time series query associated with the path of the group by
graph pattern. This time series query is shown in Fig. 15. Preparing the
time series query and discovering that we are able to push down the
group by graph pattern to the time series database, we also must update
the solution mapping with a grouping variable, since the grouping may
not be 1:1 with the external identifiers. The updated solution mappings
are given in Table 2.

Next, we check if the present path has an associated time series
query. If there is no static subquery associated with our graph pattern,
we recursively evaluate our procedure on the constituent graph pat-
terns of the present graph pattern. If there is an associated time series
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Fig. 15. Grouped Time Series Query corresponding to the running example query.

Fig. 16. The part of the filter which is pushed down into the time series query.

query, the time series query is executed and we join the results with the
solution mappings using the external identifier or the grouping column
(see Section 5.6) if we have pushed down a group by graph pattern.
At this point, there should be no time series query associated with a
deeper path in the tree, and we do not traverse further down. In the
running example, there is now a time series query associated with the
group by graph pattern. In the benchmarks, we use a SQL-backend, and
so the time series query will be translated to SQL before it is executed.
The results of executing the time series query in our example is given in
Table 3. We join these results to the existing solution mapping from the
static query and grouping column. If on the other hand the time series
queries are associated with deeper nodes in the tree, we recursively
evaluate our procedure on the constituent graph patterns. If there is
no static subquery associated with our graph pattern, we recursively
evaluate our procedure on the constituent graph patterns of the present
graph pattern.

Having reached the bottom of the tree or termination through
evaluating every time series query associated with a graph pattern,
we make our way up the tree, evaluating every graph pattern on
the solution mappings returned from processing the constituent graph
12
Table 3
Excerpt of time series query results.

Group Year ... sum_v

1 2022 ... 9.15E6
2 2022 ... 9.16E6
... ... ... ...
10 2022 ... 9.14E6

Table 4
Solution mappings after having joined time series solution results to the static solution
mappings.

site_label wtur_label Year ... sum_v

Wind M. A1 2022 ... 9.15E6
Wind M. A2 2022 ... 9.16E6
... ... ... ... ...
Wind M. A10 2022 ... 9.14E6

patterns. The details of this evaluation depend on the specific graph
patterns. For the running example, there are no more time series queries
after having executed and joined the time series query at the group
by pattern. We exit the recursive call associated with the group by
graph pattern, returning the solution mappings. We can now evaluate
the projection pattern, which produces no change, as we already have
exactly the variables we need. The result is identical to that of Table 4.

5.6. Time series query preparation

We further prepare the time series queries, once the static query
results are ready. The job of the TSQ preparation stage is to determine
which external identifiers the TSQ should query, the data type of the
time series value and to push down as much processing as possible
into the time series database. This functionality is important in order
to support the fourth requirement (R4) on query portability and the
fifth requirement (R5) on offloading computation to the time series
database. Since we projected both the external identifiers and the data
type of the time series value in the static query, we can gather these
from the static query results. The external identifiers of interest and
data type are added to the basic time series queries.

In order to push down processing into the time series database, we
again traverse the SPARQL algebraic structure corresponding to the
original query, starting from the graph pattern where we found an
associated static query.

There are four main pushdown types relevant to the benchmark
cases in the article.

• Filter pushdowns
• Extend pushdowns
• Synchronisation pushdowns, that push down multiple time series

queries with related timestamp variables
• Group by pushdowns

We discuss each kind of pushdown in turn below.
Filter conditions may be pushed down into the time series query,

such as those constraining the timestamp value by some literal or
constraining the value variable to be greater than some literal value.
Recall that in Section 5.4.3, we described how expressions in filters
are weakened, when these are rewritten. An analogous process happens
to expressions in filters that are pushed into the time series query. In
the running example, we will only push down the constraints on the
timestamp variable ?t into the time series database, as seen in Fig. 16.

We push down extend constructions into the time series query if
the database supports expression pushdowns. This broad criteria has
the weakness that it lets through expression types and variable types
that are not actually supported by the underlying database. For OPC
UA HA, it is only possible to push down those extend pushdowns that
are involved in constructing the periods on which to aggregate the
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Fig. 17. Group by pushdown into OPC UA is impossible since there is a condition on
the value variable.

time series. In the future, we plan to add support for specifying extend
pushdown support with better granularity, perhaps by a pushdown
validation function associated with the time series database interface
implementation. In the running example, we have no problems pushing
down the extend patterns, which we already listed in Fig. 9. We are also
able to translate these expressions into SQL.

A use case we are targeting with this solution is extracting related
time series values that are synchronised in time. One way in which
this situation occurs is if multiple basic time series queries share the
same timestamp variable within a basic graph pattern. If the time
series database supports joins, we detect this situation and create a
synchronised time series query. In practice, this only happens when the
time series database is SQL-based. The time series variables in question
may be identical, but situations also exist where we are interested in
two related time series values where the timestamps of one series is
shifted by some fixed duration. This case is currently not supported,
and we will get back to it in our discussion of limitations in Section 9.4.

In order for a group by pushdown to be correct, it is important that
the inner graph pattern is not in any way relaxed. In general, if the
time series database supports group by pushdowns, we attempt to push
down any group by pattern. The attempt fails if any part of the inner
graph pattern cannot be pushed down. For instance, if the inner graph
pattern contains a filter on a time series value, this part of the filter
cannot be pushed down into a OPC UA HA API. The result is that the
group by itself cannot be pushed down. Such a situation where a group
by pushdown is impossible is shown in Fig. 17. Additionally, we must
also be able to push down any aggregation function into the time series
database.

In the running example, we are able to push down all filters and
all extend patterns. When pushing down the group by graph pattern
however, we must be careful to perform the grouping correctly. In
particular, the grouping is not necessarily done by each external id.
Instead, we associate each unique row of variables to be grouped
by with an integer. Next, we extend each involved basic time series
query with pairs of external identifiers and grouping identifiers. In the
time series database, grouping must be done based on this grouping
identifier.

6. Proof of correctness

In this section, we show that our solution approach preserves
SPARQL 1.1 correctness for a large subset of SPARQL 1.1. Showing
this, we are able to ensure that we meet the first requirement (R1)
to a large degree. We will consider only RDF graphs without blank
nodes. We omit blank nodes since this simplifies the proof, and since
the RDS based knowledge bases discussed here contain no blank nodes.
Additionally, we will only consider the case where a basic graph pattern
contains one time series variable. This is done since assuming otherwise
makes the presentation of the combination procedure considerably
more complicated and verbose. A further simplification is that we
do not consider the concept of active graphs, which arises when the
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GRAPH-keyword is used, and instead assume that a single graph is
active at all times. While the solution does support multiple time series
variables per Basic Graph Pattern (BGP), we do not currently support
blank nodes nor a concept of active graphs. Furthermore, we assume
that the graphs on which our queries are evaluated contain no duplicate
triples. We begin by defining some basic terms.

Definition 6.1 (Graph). A graph 𝐺 is a finite set of triples of the form
(s p o) where s (the subject) and p (the predicate) are IRIs and o
(the object) is either an IRI or a literal. We let 𝐺𝑁 be the set of all IRIs
and literals occuring in the triples of the graph.

Since a graph is a set, a subgraph 𝐺′ of 𝐺 is simply a subset of 𝐺,
.e. 𝐺′ ⊆ 𝐺.

efinition 6.2 (Context Graph). A context graph 𝐺𝑐𝑡𝑥 is a graph where
or all triples (s p o), p is not one of:

𝚝 ∶ 𝚑𝚊𝚜𝚃𝚒𝚖𝚎𝚜𝚎𝚛𝚒𝚎𝚜

𝚌𝚝 ∶ 𝚑𝚊𝚜𝙳𝚊𝚝𝚊𝚝𝚢𝚙𝚎

𝚌𝚝 ∶ 𝚑𝚊𝚜𝙴𝚡𝚝𝚎𝚛𝚗𝚊𝚕𝙸𝚍

𝚌𝚝 ∶ 𝚑𝚊𝚜𝙳𝚊𝚝𝚊𝚙𝚘𝚒𝚗𝚝

𝚌𝚝 ∶ 𝚟𝚊𝚕𝚞𝚎

𝚌𝚝 ∶ 𝚝𝚒𝚖𝚎𝚜𝚝𝚊𝚖𝚙

where the prefix ct refers to the namespace of chrontext, which we set
to the GitHub repository URL.

Definition 6.3 (Annotated Context Graph). Given a static context graph
𝐺𝑐𝑡𝑥, an annotated context graph 𝐺𝑎𝑛𝑛𝑜 is an extension of 𝐺𝑐𝑡𝑥 with N
> 0 sets of triples of the form:

(𝚗 𝚌𝚝 ∶ 𝚑𝚊𝚜𝚃𝚒𝚖𝚎𝚜𝚎𝚛𝚒𝚎𝚜 𝚜)

(𝚜 𝚛𝚍𝚏𝚜 ∶ 𝚕𝚊𝚋𝚎𝚕 𝚕)

(𝚜 𝚌𝚝 ∶ 𝚑𝚊𝚜𝙴𝚡𝚝𝚎𝚛𝚗𝚊𝚕𝙸𝚍 𝚎)

(𝚜 𝚌𝚝 ∶ 𝚑𝚊𝚜𝙳𝚊𝚝𝚊𝚝𝚢𝚙𝚎 𝚍)

𝐺𝑎𝑛𝑛𝑜 is subject to the constraint that every timeseries has exactly one
label, one external id and one data type.

∀𝑛, 𝑠 ∈ 𝐺𝑎𝑛𝑛𝑜𝑁 ∶ (𝑛 𝚌𝚝 ∶ 𝚑𝚊𝚜𝚃𝚒𝚖𝚎𝚜𝚎𝚛𝚒𝚎𝚜 𝑠) ∈ 𝐺𝑎𝑛𝑛𝑜 ⇒

(∃!𝑙 ∶ (𝚜 𝚛𝚍𝚏𝚜 ∶ 𝚕𝚊𝚋𝚎𝚕 𝑙) ∈ 𝐺𝑎𝑛𝑛𝑜

∧ ∃!𝑒 ∶ (𝑠 𝚌𝚝 ∶ 𝚑𝚊𝚜𝙴𝚡𝚝𝚎𝚛𝚗𝚊𝚕𝙸𝚍 𝑒) ∈ 𝐺𝑎𝑛𝑛𝑜

∧ ∃!𝑑 ∶ (𝑠 𝚌𝚝 ∶ 𝚑𝚊𝚜𝙳𝚊𝚝𝚊𝚝𝚢𝚙𝚎 𝑑) ∈ 𝐺𝑎𝑛𝑛𝑜)

Definition 6.4 (Time Series Database). Given a set of data types 𝐷,
a datatype-indexed family of identifier sets 𝐼𝑑∈𝐷, a datatype-indexed
family of value sets 𝑉𝑑∈𝐷, a time series database is a family of functions
𝑓𝑑∈𝐷 ∶ 𝐼𝑑 → (N, 𝑉𝑑 ). The set of natural numbers here represents a set
of timestamps.

Definition 6.5 (Implied Time Series Graph). Given an annotated context
graph 𝐺𝑎𝑛𝑛𝑜, and a time series database 𝑓𝑑∈𝐷 the implied time series
graph 𝐺𝑖𝑚𝑝𝑙 is an extension of 𝐺𝑐𝑡𝑥 with the minimal set of triples that
make the statements below hold:

∀𝑛, 𝑠, 𝑑, 𝑒 ∈ 𝐺𝑎𝑛𝑛𝑜 ∶

((𝑛 𝚌𝚝 ∶ 𝚑𝚊𝚜𝚃𝚒𝚖𝚎𝚜𝚎𝚛𝚒𝚎𝚜 𝑠) ∈ 𝐺𝑎𝑛𝑛𝑜

∧ (𝑠 𝚌𝚝 ∶ 𝚑𝚊𝚜𝙳𝚊𝚝𝚊𝚝𝚢𝚙𝚎 𝑑) ∈ 𝐺𝑎𝑛𝑛𝑜

∧ (𝑠 𝚌𝚝 ∶ 𝚑𝚊𝚜𝙴𝚡𝚝𝚎𝚛𝚗𝚊𝚕𝙸𝚍 𝑒) ∈ 𝐺𝑎𝑛𝑛𝑜)

⇒

((𝑛 𝚌𝚝 ∶ 𝚑𝚊𝚜𝚃𝚒𝚖𝚎𝚜𝚎𝚛𝚒𝚎𝚜 𝑠) ∈ 𝐺𝑖𝑚𝑝𝑙

∧ (𝑓𝑑 (𝑒) = (𝑡, 𝑣) ⇒
((𝑠 𝚌𝚝 ∶ 𝚑𝚊𝚜𝙳𝚊𝚝𝚊𝚙𝚘𝚒𝚗𝚝 𝑝𝑠,𝑡,𝑣) ∈ 𝐺𝑖𝑚𝑝𝑙



Expert Systems With Applications 226 (2023) 120149M. Bakken and A. Soylu

D
g

𝜇

𝜇

𝜇

∀

∧ (𝑝𝑠,𝑡,𝑣 𝚌𝚝 ∶ 𝚟𝚊𝚕𝚞𝚎 𝑣) ∈ 𝐺𝑖𝑚𝑝𝑙

∧ (𝑝𝑠,𝑡,𝑣 𝚌𝚝 ∶ 𝚝𝚒𝚖𝚎𝚜𝚝𝚊𝚖𝚙 𝑡) ∈ 𝐺𝑖𝑚𝑝𝑙)))

where 𝑝𝑠,𝑡,𝑣 is a unique URI associated with the tuple (𝑡, 𝑣) and time se-
ries 𝑠. We define utility functions 𝑣𝑎𝑙𝑢𝑒(𝑝𝑠,𝑡,𝑣) = 𝑣 and 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(𝑝𝑠,𝑡,𝑣) =
𝑡.

A SPARQL select query can be translated automatically into a
SPARQL algebra graph pattern (World Wide Web Consortium, 2013c)
We denote the set of variables occurring in the graph pattern 𝑃 by
𝑃𝑉 . The definition of solution mappings, their compatibility and the
merge operation are adapted from the SPARQL 1.1 W3C recommenda-
tion (World Wide Web Consortium, 2013c).

Definition 6.6 (Solution Mappings). Let 𝐺 be a graph and let 𝑃 be a
graph pattern. A solution mapping is a partial function:

𝜇 ∶ 𝑃𝑉 → 𝐺𝑁

Subject to criteria that are defined on the algebraic structure of a graph
pattern. The solution mappings associated with a graph pattern 𝑃 and a
graph 𝐺 are denoted by 𝛺(𝑃 ,𝐺), and is a multiset of solution mappings.
Multisets are just like sets, except each member can occur multiple
times. The number of times each member occurs is the cardinality of
the member in the multiset. The cardinality is denoted by |𝑚|, where
𝑚 is a member of a multiset.

For basic graph patterns it is required that the graph induced by
the solution mapping is a subgraph of 𝐺. We will discuss the criteria
for other graph patterns in the sections that follow. Later, we will
use the function dom to refer to the domain of a solution mapping 𝜇,
e.g. 𝑑𝑜𝑚(𝜇) = 𝑃𝑉 in the definition above.

efinition 6.7 (Compatible Solution Mappings). Given graphs 𝐺,𝐻 and
raph patterns 𝑃 ,𝑄 with solution mappings:

𝑃 ∶ 𝑃𝑉 → 𝐺𝑁

𝑄 ∶ 𝑄𝑉 → 𝐻𝑁

𝑃 and 𝜇𝑄 are compatible if:

𝑥 ∈ 𝑃𝑉 ∩𝑄𝑉 ∶

𝜇𝑃 (𝑥), 𝜇𝑄(𝑥) defined ⇒ 𝜇𝑃 (𝑥) = 𝜇𝑄(𝑥)

Definition 6.8 (Merge). Given graphs 𝐺,𝐻 and a graph patterns
𝑃 ,𝑄 with compatible solution mappings 𝜇𝑃 and 𝜇𝑄, their merge
𝑚𝑒𝑟𝑔𝑒(𝜇𝑃 , 𝜇𝑄) ∶ 𝑃𝑉 ∪𝑄𝑉 → 𝐺𝑁 ∪𝐻𝑁 is given by:

𝑚𝑒𝑟𝑔𝑒(𝜇𝑃 , 𝜇𝑄)(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝜇𝑃 (𝑥) if 𝑥 ∈ 𝑃𝑉 ∧ 𝜇𝑃 (𝑥) defined
𝜇𝑄(𝑥) if 𝑥 ∈ 𝑄𝑉 ∧ 𝜇𝑄(𝑥) defined
undef ined otherwise

6.1. Intuitive motivation

Intuitively, given a correct implementation of SPARQL semantics,
we can evaluate any query by evaluating its basic graph patterns. That
is, we can for each basic graph pattern (BGP) in a query create a
subquery that projects all of the involved variables. Producing correct
results in this case is simply a matter of evaluating SPARQL 1.1 starting
with correct solution mappings of any involved BGP. In our setting,
even this is not possible, since the triples in a given BGP live in
different databases. Going even further then, we can split every BGP
into at most two BGPS depending on the database where the predicate
belongs, projecting all variables. Next, we can evaluate the BGPs on the
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appropriate databases and join them to obtain the original BGP. Such
an approach would produce correct results in our situation, but would
be highly impractical. The core idea of our solution then, is that we
attempt to evaluate larger parts of involved queries starting from these
split BGPs in each database, and combine the results to obtain the result
of the original query.

To show that our approach produces correct results, we need to
prove that evaluating the original query on the implied graph gives
the same result as our approach. However, following the argument in
the above paragraph, it is enough to show identical solution mappings
for the subqueries, and assume that we have a perfect SPARQL 1.1
implementation which combines these multisets of solution mappings
into exactly those of the original query.

6.2. Structure of the proof

Let 𝑃 be any graph pattern which is associated with a static sub-
query in our approach. Let 𝑟(𝑃 ) be the associated static rewrite. We
must prove that the solution mappings 𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙) are identical to the
solution mappings obtained by evaluating 𝑟(𝑃 ) and any associated time
series queries according to our solution approach. In order to describe
the structure of the proof, we need to define the crucial compatibility
relation 𝐶.

Definition 6.9 (Relation 𝐶). Let 𝛺1, 𝛺2 be multisets of solution map-
pings. The relation 𝐶(𝛺1, 𝛺2) holds if and only if:

∀𝜇1 ∈ 𝛺1 ∶ ∃𝜇2 ∈ 𝛺2 ∶

𝜇1 is compatible with 𝜇2∧

|𝜇1| = |𝜇2|

We note that 𝐶 is reflexive by the reflexivity of = and compatibility.
In the proof, we will let the graphs 𝐺𝑎𝑛𝑛𝑜, 𝐺𝑖𝑚𝑝𝑙 be fixed, but arbitrary.
We will use the shorthand 𝐺𝑐𝑜𝑚𝑏 to denote the union of these graphs,
i.e. 𝐺𝑐𝑜𝑚𝑏 = 𝐺𝑎𝑛𝑛𝑜 ∪𝐺𝑖𝑚𝑝𝑙. We are now ready to describe the steps in the
proof. We let 𝑃 be the graph pattern corresponding to a subquery.

1. We show that for every solution mapping 𝜇𝑖𝑚𝑝𝑙 ∈ 𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙)
obtained when evaluating a graph pattern 𝑃 on the implied
graph 𝐺𝑖𝑚𝑝𝑙, there exists a compatible solution mapping 𝜇𝑎𝑛𝑛𝑜 ∈
𝛺(𝑟(𝑃 ), 𝐺𝑎𝑛𝑛𝑜) associated with the static rewrite 𝑟(𝑃 ). We will
thus have 𝐶(𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙), 𝛺(𝑟(𝑃 ), 𝐺𝑎𝑛𝑛𝑜)).

2. We show that when the combination procedure finishes pro-
cessing 𝑃 and produces a new multiset of solution mappings,
denoted by 𝛤 (𝑃 ,𝐺𝑐𝑜𝑚𝑏), it has the following properties:

• We have not lost any solutions, and so the property
𝐶(𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙), 𝛤 (𝑃 ,𝐺𝑐𝑜𝑚𝑏)) holds.

• We have not lost any variables in the solution mappings of
𝛤 (𝑃 ,𝐺𝑐𝑜𝑚𝑏).

• Every solution mapping is a real solution, i.e., 𝐶(𝛤
(𝑃 ,𝐺𝑐𝑜𝑚𝑏), 𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙)).

Taken together, we obtain exactly the same multiset of solution map-
pings as required. The first step is completed in Section 6.3. The second
step is completed in Section 6.4.

6.3. Query rewriting

This section proves the first step in the proof. Before we begin this
step of the proof, we discuss an excerpt of the code under discussion
in Section 6.3.1. This is done both to elucidate the structure of the
programme, and in order explain why the proof of the preservation of
the relation 𝐶 only needs to consider certain outcomes of rewriting. In
Sections 6.3.2 to 6.3.11, we prove the relation 𝐶 for each type of graph

pattern.
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Fig. 18. Simplified excerpt of rewriting procedure in Python-syntax.

6.3.1. The rewriting procedure and proof
An excerpt of the rewriting procedure (presented in Python for

simplicity), is given in Fig. 18. The rewriting procedure is called using
the query (a project graph pattern), with an empty path and with empty
dictionaries of basic time series queries and subqueries which will be
altered during processing. Paths are built as we traverse the tree in
a post-order sequence, and are used to index created subqueries and
basic time series queries. If rewriting produces a rewrite for the project
graph pattern which is not None, we add the rewritten project graph
pattern on the empty-path in the subqueries-dict (subqs). When the
rewriting procedure returns a graph pattern we will say that the rewrite
of the graph pattern exists. Otherwise (returns None) the procedure has
created one or more subqueries when processing the graph pattern. Our
proof will consider each matching rule in the procedure, and assume
the induction hypothesis that 𝐶 holds between the original constituent
and rewritten constituent graph pattern for each constituent graph
pattern. Next, we prove that the rewriting rule is such that 𝐶 now holds
between the original matching graph pattern and the rewritten graph
pattern. In our proof, we will be able to assume that no rewrite of the
constituent graph patterns or expressions produced a subquery.

The processing of the non-terminal filter graph pattern is represen-
tative for other non-terminals. The filter graph pattern processes the
inner graph pattern first, and then processes the condition expression
in light of the rewritten inner graph pattern. The rewrite_expr
function returns the rewritten expression e_rw – which is None case
if there are exists-expressions in the filter. If the inner rewrite is a
15
subquery, we return None. If the expression contained one or more
exists-expressions, the rewrite will have created a subquery, and so the
inner graph pattern too must be made a subquery if it exists. This is a
general pattern in our rewriting procedure. If rewriting a constituent
graph pattern or expression produces a subquery, then all constituent
graph patterns must be made into subqueries. Consequently we only
need to prove the relation 𝐶 for graph patterns 𝑃 where for every
constituent graph pattern 𝑃 ′ there exists a rewritten graph pattern
𝑟(𝑃 ′).

It is also the case that if the rewrite of a graph pattern is trivial,
producing no change, the relation 𝐶 holds by reflexivity. When rewrit-
ing any graph pattern 𝑃 , if all constituent graph patterns are trivially
rewritten, the rewrite of 𝑃 is also just 𝑃 , so 𝐶 holds. We consider only
non-trivial rewrites in the discussion below, as these lead us to have to
prove that 𝐶 is preserved.

6.3.2. Basic graph pattern rewriting
The Basic Graph Pattern (BGP) does not consist of other graph

patterns, and forms a basis condition for the proof. As mentioned, the
solution mapping 𝜇 of a BGP 𝐵 forms a subgraph of 𝐺. We can express
this as 𝜇(𝐵) ⊆ 𝐺, where 𝜇(𝐵) is the set of triples resulting from replacing
each variable 𝑣 occurring in a triple of 𝐵 with 𝜇(𝑣).

We let 𝐵 be a Basic Graph Pattern. We let 𝑟(𝐵) be the rewritten
BGP for the annotated context graph 𝐺𝑎𝑛𝑛𝑜. If no triples are removed,
the relation 𝐶 holds by reflexivity. Assuming instead that a unique
(?node ct:hasTimeseries ?s) exists in the BGP, such a set of
related triple patterns 𝑅 to be removed will take the following form:

(?𝚜 𝚌𝚝 ∶ 𝚑𝚊𝚜𝙳𝚊𝚝𝚊𝚙𝚘𝚒𝚗𝚝 ?𝚙) (1)

(?𝚙 𝚌𝚝 ∶ 𝚟𝚊𝚕𝚞𝚎 ?𝚟) (2)

(?𝚙 𝚌𝚝 ∶ 𝚝𝚒𝚖𝚎𝚜𝚝𝚊𝚖𝚙 ?𝚝) (3)

Triple 1 will always exists in the set, and at least one of 2 and 3 exist,
otherwise we reject the query, as it is not supported. Let the deletion of
these triple patterns from 𝐵 be known as 𝐵𝑎𝑛𝑛𝑜, since this graph pattern
now only involves the annotated context graph 𝐺𝑎𝑛𝑛𝑜. If there are any
other triple patterns in 𝐵 involving the terms ct:hasDatapoint,
ct:value or ct:timestamp we declare the query void and abort.
We now add the triples below:

(?𝚜 𝚌𝚝 ∶ 𝚑𝚊𝚜𝙳𝚊𝚝𝚊𝚃𝚢𝚙𝚎 ?𝚍)

(?𝚜 𝚌𝚝 ∶ 𝚑𝚊𝚜𝙴𝚡𝚝𝚎𝚛𝚗𝚊𝚕𝙸𝚍 ?𝚎)

By construction, we know that in any case where there is a time
series ?s, there exist metadata making the above triples hold. After
adding these triples to 𝐵𝑎𝑛𝑛𝑜 we obtain 𝑟(𝐵). We make sure to name the
variables ?d and ?e so that no other variable in the query has the same
name, but use these single letter names here for simplicity.

Let 𝜇 ∶ 𝐵𝑉 → 𝐺𝑖𝑚𝑝𝑙 be a solution mapping. We observe that there
exists a restriction of 𝜇 to 𝜇𝑎𝑛𝑛𝑜 ∶ 𝐵𝑎𝑛𝑛𝑜𝑉 → 𝐺𝑎𝑛𝑛𝑜𝑁 . By construction
of 𝐺𝑖𝑚𝑝𝑙, this mapping will be a solution mapping for 𝐵𝑎𝑛𝑛𝑜. I.e. if
𝜇(𝐵) ⊆ 𝐺𝑖𝑚𝑝𝑙 then since we drop every triple pattern 𝑇 ∈ 𝐵 such that
𝜇(𝑇 ) ∈ 𝐺𝑖𝑚𝑝𝑙 ⧵ 𝐺𝑎𝑛𝑛𝑜, then 𝜇𝑎𝑛𝑛𝑜(𝐵𝑎𝑛𝑛𝑜) ⊆ 𝐺𝑎𝑛𝑛𝑜.

There will in general be 𝑁 solution mappings 𝜇1, 𝜇2, ..𝜇𝑁 having the
same restriction 𝜇𝑎𝑛𝑛𝑜, which we will recover in the combination phase.
There exists an assignment 𝜇𝑎𝑛𝑛𝑜(?𝚝) = 𝚝. By construction there exists
exactly one 𝚝_𝚍𝚝 ∈ 𝐺𝑎𝑛𝑛𝑜 and exactly one 𝚝_𝚎𝚒𝚍 ∈ 𝐺𝑎𝑛𝑛𝑜 such that:

(𝚝 𝚌𝚝 ∶ 𝚑𝚊𝚜𝙳𝚊𝚝𝚊𝚝𝚢𝚙𝚎 𝚝_𝚍𝚝) ∈ 𝐺𝑎𝑛𝑛𝑜∧

(𝚝 𝚌𝚝 ∶ 𝚑𝚊𝚜𝙴𝚡𝚝𝚎𝚛𝚗𝚊𝚕𝙸𝚍 𝚝_𝚎𝚒𝚍) ∈ 𝐺𝑎𝑛𝑛𝑜

We extend 𝜇𝑎𝑛𝑛𝑜 to 𝑟(𝐵) by the assignments:

?𝚍 ↦ 𝚝_𝚍𝚝
?𝚎 ↦ 𝚝_𝚎𝚒𝚍

The new mapping 𝜇𝑟(𝐵) ∶ 𝑟(𝐵)𝑉 → 𝐺𝑎𝑛𝑛𝑜𝑁 is a solution mapping

of 𝑟(𝐵) over 𝐺𝑎𝑛𝑛𝑜 whenever 𝜇𝑎𝑛𝑛𝑜 is a solution mapping over 𝐺𝑎𝑛𝑛𝑜
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and by extension whenever there exists a solution mapping 𝜇 that
estricts to 𝜇𝑎𝑛𝑛𝑜. Moreover 𝜇 is compatible with 𝜇𝑎𝑛𝑛𝑜. Since we made
o assumption about 𝜇 when constructing 𝜇𝑎𝑛𝑛𝑜, we conclude that the
elation 𝐶(𝛺(𝐵,𝐺𝑖𝑚𝑝𝑙), 𝛺(𝑟(𝐵), 𝐺𝑎𝑛𝑛𝑜)) holds. We do not have to consider
ardinalities as they are always 1 for BGPs.

.3.3. Filter rewriting
Syntactically, a filter Filter(𝐼, 𝑒𝑥𝑝𝑟) is composed of an inner graph

attern 𝐼 and an expression 𝑒𝑥𝑝𝑟. We recall the discussion at the start
f Section 6.3. I.e. if the rewritten inner graph pattern 𝐼 results in one
r more subqueries, we do not include the filter in these subqueries,
nd leave filter evaluation to the combination stage. Additionally, 𝑒𝑥𝑝𝑟
ay contain one or more exists-expressions, which themselves contain

raph patterns. Exists expressions always lead us to create one or more
tatic subqueries, and so we must also create a sub-query of the inner
raph pattern 𝐼 and postpone evaluation of the filter in this case.

We consider the case where neither rewriting 𝐼 nor rewriting 𝑒𝑥𝑝𝑟
eads to the creation of a static subquery, but rewriting 𝐼 leads to a non-
rivial rewrite 𝑟(𝐼). The multiset of solution mappings resulting from the
valuation of the filter has the following definition:

(Filter(𝐼, 𝑒𝑥𝑝𝑟), 𝐺) =

{𝜇|𝜇 ∈ 𝛺(𝐼, 𝐺) ∧ 𝑒𝑥𝑝𝑟(𝑚𝑢,𝐺) = true}

e assume that the induction hypothesis that:

(𝛺(𝐼, 𝐺𝑖𝑚𝑝𝑙), 𝛺(𝑟(𝐼), 𝐺𝑎𝑛𝑛𝑜))

or filters, our proof depends on the notion that rewritten expressions
nly depend on the actual contents of the graph 𝐺𝑎𝑛𝑛𝑜, which is guar-
nteed in the case where the expression contains no exists-expression.

If the rewrite of 𝑒𝑥𝑝𝑟 does not exist, we simply let 𝛺(𝑟(Filter(𝐼, 𝑒𝑥𝑝𝑟)),
𝐺𝑎𝑛𝑛𝑜) = 𝛺(Filter(𝑟(𝐼), 𝚝𝚛𝚞𝚎), 𝐺𝑎𝑛𝑛𝑜), which is a special case of the
argument below. If the rewrite of 𝑒𝑥𝑝𝑟 exists, then 𝑟(𝑒𝑥𝑝𝑟) may only
be weaker than- or equivalent to 𝑒𝑥𝑝𝑟. Given

𝜇 ∈ 𝛺(𝐼, 𝐺𝑖𝑚𝑝𝑙)

and

𝑟(𝑒𝑥𝑝𝑟)(𝜇,𝐺𝑖𝑚𝑝𝑙) = 𝚝𝚛𝚞𝚎

e know that

(𝑒𝑥𝑝𝑟)(𝜇𝑎𝑛𝑛𝑜, 𝐺𝑎𝑛𝑛𝑜) = 𝚝𝚛𝚞𝚎

or any 𝜇𝑎𝑛𝑛𝑜 ∈ 𝛺(𝑟(𝐼), 𝐺𝑎𝑛𝑛𝑜) where 𝜇𝑎𝑛𝑛𝑜 and 𝜇 are compatible,
since these agree on all variables in 𝑟(𝑒𝑥𝑝𝑟). Filters do not modify
cardinalities. It follows that as required:

𝐶(𝛺(𝐹 𝑖𝑙𝑡𝑒𝑟(𝐼, 𝑒𝑥𝑝𝑟), 𝐺𝑖𝑚𝑝𝑙),

𝛺(Filter(𝑟(𝐼), 𝑟(𝑒𝑥𝑝𝑟)), 𝐺𝑎𝑛𝑛𝑜))

Note that the loss of- or weakening of the expression 𝑒𝑥𝑝𝑟 can cause
there to be 𝜇𝑎𝑛𝑛𝑜 for 𝐼𝑎𝑛𝑛𝑜 that has no compatible counterpart for 𝐼
ue to the weakening of 𝑒𝑥𝑝𝑟. We will correct this situation in the
ombination phase.

.3.4. Join rewriting
Let 𝐿,𝑅 be the left hand side and right hand side graph patterns of

join graph pattern Join(𝐿,𝑅) where rewrites of 𝐿 and 𝑅 exist and are
ot subqueries. We assume the induction hypothesis that:

(𝛺(𝐿,𝐺𝑖𝑚𝑝𝑙), 𝛺(𝑟(𝐿), 𝐺𝑎𝑛𝑛𝑜))∧

(𝛺(𝑅,𝐺𝑖𝑚𝑝𝑙), 𝛺(𝑟(𝑅), 𝐺𝑎𝑛𝑛𝑜))

The semantic interpretation of the join is reproduced below:

(Join(𝐿,𝑅), 𝐺) = {merge(𝜇𝐿, 𝜇𝑅)|

𝜇𝐿 ∈ 𝛺(𝐿,𝐺) ∧ 𝜇𝑅 ∈ 𝛺(𝑅,𝐺) ∶

𝜇𝐿 compatible with 𝜇𝑅}
16
ardinalities are given by the product of the respective cardinalities of
𝐿 and 𝜇𝑅.
𝜇𝑟(𝐿) ∈ 𝛺(𝑟(𝐿), 𝐺𝑎𝑛𝑛𝑜) and 𝜇𝑟(𝑅) ∈ 𝛺(𝑟(𝑅), 𝐺𝑎𝑛𝑛𝑜) are compatible

henever 𝜇𝐿 ∈ 𝛺(𝐿,𝐺𝑖𝑚𝑝𝑙) and 𝜇𝑅 ∈ 𝛺(𝐿,𝐺𝑖𝑚𝑝𝑙) are, since any
ariables introduced in a BGP in 𝑟(𝐿) or 𝑟(𝑅) are disjoint. This means
hat:

erge(𝜇𝐿, 𝜇𝑅) ∈ 𝛺(Join(𝐿,𝑅), 𝐺𝑖𝑚𝑝𝑙)
⇒ merge(𝜇𝑟(𝐿), 𝜇𝑟(𝑅)) ∈ 𝛺(Join(𝑟(𝐿), 𝑟(𝑅)), 𝐺𝑎𝑛𝑛𝑜)

t follows from the induction hypothesis that:

𝜇𝐿| = |𝜇𝑟(𝐿)| ∧ |𝜇𝑅| = |𝜇𝑟(𝑅)|

Hence:

|𝜇𝐿| ∗ |𝜇𝑅| = |𝜇𝑟(𝐿)| ∗ |𝜇𝑟(𝑅)|

t follows that the cardinality of merge(𝜇𝑟(𝐿), 𝜇𝑟(𝑅)) equals the cardinality
f merge(𝜇𝐿, 𝜇𝑅). Now, we must show that

erge(𝜇𝐿, 𝜇𝑅) compatible with merge(𝜇𝑟(𝐿), 𝜇𝑟(𝑅))

n the case where 𝑥 ∈ 𝐿𝑉 ∩ 𝑟(𝐿)𝑉 , then by compatibility of 𝜇𝐿 with
𝑟(𝐿), it follows that 𝜇𝐿(𝑥) = 𝜇𝑟(𝐿)(𝑥), and consequently that:

erge(𝜇𝐿, 𝜇𝑅)(𝑥) = merge(𝜇𝑟(𝐿), 𝜇𝑟(𝑅))(𝑥)

f 𝑥 ∈ 𝐿𝑉 , 𝑥 ∉ 𝑟(𝐿)𝑉 and 𝑥 ∉ 𝑟(𝑅)𝑉 we have that compatibility holds
rivially since 𝑥 is not in the domain of merge(𝜇𝑟(𝐿), 𝜇𝑟(𝑅)). We consider
nstead 𝑥 such that 𝑥 ∈ 𝐿𝑉 but for which 𝑥 ∉ 𝑟(𝐿)𝑉 and 𝑥 ∈ 𝑟(𝑅)𝑉 .
ut for such a variable it must hold that 𝑥 ∈ 𝑅𝑉 , since we never

ntroduce variables that overlap with existing variable names in the
ewrite. It follows that 𝜇𝐿 and 𝜇𝑅 agree on 𝑥, and by compatibility
𝑅(𝑥) = 𝜇𝑟(𝑅)(𝑥). By extension:

erge(𝜇𝐿, 𝜇𝑅)(𝑥) = merge(𝜇𝑟(𝐿), 𝜇𝑟(𝑅))(𝑥)

ymmetric arguments can be made for 𝑥 ∈ 𝑅𝑉 . Hence, we have proved
hat as required:

(𝛺(Join(𝐿,𝑅), 𝐺𝑖𝑚𝑝𝑙), 𝛺(Join(𝑟(𝐿), 𝑟(𝑅)), 𝐺𝑎𝑛𝑛𝑜))

.3.5. Left join rewriting
The semantics of the left join is reproduced in a compact and

implified way below. ‘‘Diff’’ is an auxiliary construction used in the
PARQL 1.1 language recommendation to define the semantics of left
oin (World Wide Web Consortium, 2013c).

(Dif f(𝐿,𝑅), 𝐺) =
𝜇|∀𝜇′ ∶ merge(𝜇, 𝜇′) ∉ 𝛺(Join(𝐿,𝑅), 𝐺)∨

𝑒𝑥𝑝𝑟(merge(𝜇, 𝜇′)) = 𝚏𝚊𝚕𝚜𝚎}

he semantics of LeftJoin are given by:

(Lef tJoin(𝐿,𝑅), 𝐺) =
𝛺(Filter(Join(𝐿,𝑅), 𝑒𝑥𝑝𝑟), 𝐺) ∪𝛺(Dif f(𝐿,𝑅), 𝐺)

ssume that 𝜇𝑖𝑚𝑝𝑙 ∈ 𝛺(Dif f(𝐿,𝑅), 𝐺𝑖𝑚𝑝𝑙) with 𝜇𝑖𝑚𝑝𝑙 compatible with
ome 𝜇𝑟(𝐿) ∈ 𝛺(𝑟(𝐿), 𝐺𝑎𝑛𝑛𝑜). There can now exist 𝜇𝑟(𝑅) ∈ 𝛺(𝑟(𝐿), 𝐺𝑎𝑛𝑛𝑜)
ompatible with 𝜇𝑟(𝐿) such that the merge exists and:

(𝑒𝑥𝑝𝑟)(𝑚𝑒𝑟𝑔𝑒(𝜇𝑟(𝐿), 𝜇𝑟(𝑅))) = 𝚝𝚛𝚞𝚎

ince the expression can become weaker. In this case we have that:

𝑒𝑟𝑔𝑒(𝜇𝑟(𝐿), 𝜇𝑟(𝑅)) ∈
𝛺(Filter(Join(𝑟(𝐿), 𝑟(𝑅)), 𝑟(𝑒𝑥𝑝𝑟)), 𝐺𝑎𝑛𝑛𝑜)

his situation poses a problem for 𝐶, since the cardinality of 𝑚𝑒𝑟𝑔𝑒
𝜇𝑟(𝐿), 𝜇𝑟(𝑅)) is no longer equal to that of 𝜇𝑖𝑚𝑝𝑙 if |𝜇𝑟(𝑅)| > 1. To
meliorate the situation we would have to try to recover the original
ardinality in the combination phase. Trying to do so complicates
atters excessively. For instance, to be guaranteed to be able to recover

he cardinality, we could not permit the LeftJoin graph pattern to
e included in another LeftJoin, as this would potentially erase the
nformation required to recover the correct cardinality. For this reason,
e only allow trivial rewrites of the LeftJoin.
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6.3.6. Union rewriting
Let Union(𝐿,𝑅) be a union graph pattern, and assume the induction

ypothesis as above. The semantics of union are given by:

(Union(𝐿,𝑅), 𝐺)

= 𝛺(𝐿,𝐺) ∪𝛺(𝑅,𝐺)

ardinalities are preserved for solution mappings that are not present in
oth 𝛺(𝐿,𝐺) and 𝛺(𝑅,𝐺), and summed for elements present in both.
he rewriting procedure could potentially produce for distinct 𝜇𝐿 ∈

𝛺(𝐿,𝐺𝑖𝑚𝑝𝑙) and 𝜇𝑅 ∈ 𝛺(𝑅,𝐺𝑖𝑚𝑝𝑙) but identical 𝜇𝑟(𝐿) ∈ 𝛺(𝑟(𝐿), 𝐺𝑎𝑛𝑛𝑜) and
𝜇𝑟(𝑅) ∈ 𝛺(𝑟(𝑅), 𝐺𝑎𝑛𝑛𝑜) that are the only compatible solution mappings
for 𝜇𝐿 and 𝜇𝑅 respectively. We would be unable to retain the correct
cardinality. For this reason, we only permit trivial rewrites of Union.
If 𝑟(𝐿) ≠ 𝐿 or 𝑟(𝑅) ≠ 𝑅 we will produce subqueries of and produce
subqueries of 𝑟(𝐿) and 𝑟(𝑅) if they exist.

6.3.7. Ordering and distinct rewriting
Orderings are rewritten so as to exclude variables that are dropped

in the rewrite, but reordering must generally speaking be redone dur-
ing the combination phase, which we will rely on for correctness of
this type of graph pattern. We only keep the distinct graph pattern
Distinct(𝐼) if the rewritten contained graph pattern 𝑟(𝐼) has no changes
(trivial rewrite) in which case the relation 𝐶 holds by reflexivity.
Otherwise, we create a sub-query of the rewritten inner graph pattern
𝑟(𝐼) (if it exists).

6.3.8. Minus rewriting
Let Minus(𝐿,𝑅) be a minus graph pattern and assume the induc-

tion hypothesis holds as before. A simplified variant of the semantic
interpretation of the minus-pattern is given below.

𝛺(Minus(𝐿,𝑅), 𝐺) = {𝜇𝐿|𝜇𝐿 ∈ 𝛺(𝐿,𝐺) ∶

∀𝜇𝑅 ∈ 𝛺(𝑅,𝐺) ∶ 𝜇𝐿 not compatible with 𝜇𝑅}

If the rewrite of the right hand side has changed 𝑅 in any way,
we may lose solutions if we proceed with constructing a minus graph
pattern from 𝑟(𝐿) and 𝑟(𝑅). Similarly, since 𝜇𝑟(𝐿) ∈ 𝛺(𝑟(𝐿), 𝐺𝑎𝑛𝑛𝑜) may
not be defined for every variable that 𝜇𝑟(𝐿) ∈ 𝛺(𝐿,𝐺𝑖𝑚𝑝𝑙) is defined
for, it may inadvertently be compatible with all 𝜇𝑟(𝑅) ∈ 𝛺(𝑟(𝑅), 𝐺𝑖𝑚𝑝𝑙).
Hence, for cases where 𝐿 or 𝑅 have non-trivial rewrites, we must create
a subquery of 𝑟(𝐿) if it exists, and a subquery of 𝑟(𝑅) if it exists.

6.3.9. Extend rewriting
The extend graph pattern Extend(𝐼, 𝑉 , 𝑒𝑥𝑝𝑟) has semantics repro-

duced below:

𝛺(Extend(𝐼, 𝑣, 𝑒𝑥𝑝𝑟), 𝐺) =

{𝜇 ∪ {𝑣 ↦ 𝑒𝑥𝑝𝑟(𝜇)}|𝜇 ∈ 𝛺(𝐼, 𝐺)}

If 𝑒𝑥𝑝𝑟 can be rewritten with no change, then we are certain that
all relevant variables still exist in the domain of 𝜇𝑟(𝐼) ∈ 𝛺(𝑟(𝐼), 𝐺𝑎𝑛𝑛𝑜).
Moreover, if 𝜇𝐼 ∈ 𝛺(𝐼, 𝐺𝑖𝑚𝑝𝑙) is compatible with some 𝜇𝑟(𝐼) then
𝑒𝑥𝑝𝑟(𝜇𝑟(𝐼)) = 𝑒𝑥𝑝𝑟(𝜇𝐼 ) (provided the expression is deterministic) and so
𝜇𝑟(𝐼)(𝑣) = 𝜇𝐼 (𝑣) which implies that the relation 𝐶 is preserved. If 𝑟(𝑒𝑥𝑝𝑟)
does not exist, or 𝑟(𝑒𝑥𝑝𝑟) ≠ 𝑒𝑥𝑝𝑟 then we create a subquery of 𝑟(𝐼).

6.3.10. Group by rewriting
Let GroupBy(𝐼, 𝐴, 𝑉 ) be a group by graph pattern, where 𝐼 is the

inner graph patterns, 𝐴 is a set of aggregation expressions each bound
to a variable and 𝑉 is a set of variables to group by. We may only
keep the group by graph pattern if 𝑟(𝐼) = 𝐼 , 𝑟(𝐴) = 𝐴, i.e. if the
rewrite is trivial, in which case the relation 𝐶 holds by reflexivity. In
any other case we create a subquery based on 𝑟(𝐼), but associate it with
GroupBy(𝐼, 𝐴, 𝑉 ).
17
6.3.11. Projection rewriting
Let Project(𝐼, 𝑉 ) be a projection pattern with 𝐼 an inner graph

pattern and 𝑉 a list of variables to project. If the rewrite of 𝐼 is non-
rivial, we will create a subquery of 𝑟(𝐼). We surround all subqueries 𝑃
ith trivial projections of 𝑟(𝑃 )𝑉 , in order to execute them and extract
ll the necessary information from the triplestore. Such a projection
oes not change any cardinalities and leaves all solution mappings
ntact.

.4. Combination

A simplification of the combination function is presented in Fig. 19.
he function combine is called for each subquery 𝑃 with the so-

ution mapping variable (sm) set to None. subqs and btsqs are
he subqueries and the basic time series queries from the rewriting-
unction. tsqs will be initialised with prepared time series queries
uring processing by the prepare-function, and is initially called with
one. When combination processing is done for the subqueries, we
ay use ordinary SPARQL 1.1 processing to algebraically construct the

uery results. The submap(map, path) utility-function restricts the
ap to only those keys occurring on an extension of the path, and

s necessary to ensure that we reach a condition where both subqs
nd tsqs are empty and we may return sm. Time series preparation
prepare) attempts to push down as much of the graph pattern
s possible into the time series database, conditional on the level of
upport the database provides, it is discussed in Section 6.4.1. Applying
ombine to the graph pattern 𝑃 and produces a result we denote
(𝑃 ,𝐺𝑐𝑜𝑚𝑏). When starting processing of a subquery, 𝚜𝚖 = 𝙽𝚘𝚗𝚎 and

we immediately reach the case where:

𝚜𝚖 = 𝚎𝚡𝚎𝚌_𝚜𝚞𝚋𝚚𝚞𝚎𝚛𝚢(𝑝𝑎𝑡ℎ)

We may denote this resulting sm by 𝛺(𝑟(𝑃 ), 𝐺𝑎𝑛𝑛𝑜). Two cases are
possible in this case. If there is no time series query-part to the subquery
𝑃 , in which case 𝑟(𝑃 ) = 𝑃 , and it follows immediately that:

(𝑃 ,𝐺𝑖𝑚𝑝𝑙) = 𝛤 (𝑃 ,𝐺𝑐𝑜𝑚𝑏)

and by the reflexivity of 𝐶 that

𝐶(𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙), 𝛤 (𝑃 ,𝐺𝑐𝑜𝑚𝑏))∧

𝐶(𝛤 (𝑃 ,𝐺𝑐𝑜𝑚𝑏), 𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙))

This forms the first basis condition for our inductive proof. Otherwise,
there are one or more time-series queries associated with the subquery
𝑃 . There may be a single time series query associated with a group
by graph pattern (identical to 𝑃 ), or one or more time series queries
associated with basic graph patterns contained in (or equal to) 𝑃 . We
will in any case arrive at exec_tsq, either directly in the present
function call in case the group by has been pushed down, or through
zero (𝑃 may be a BGP) or more recursive calls to combine in case the
time series query/queries are associated with one or more BGPs. We
let 𝑅 be the value of gp passed to combine when we call exec_tsq
for the first time. We show in Section 6.4.2 that the result of this call
produces 𝛤 (𝑅,𝐺𝑐𝑜𝑚𝑏) with the properties:

(𝛺(𝑅,𝐺𝑖𝑚𝑝𝑙), 𝛤 (𝑃 ,𝐺𝑐𝑜𝑚𝑏))∧
∗(𝛤 (𝑃 ,𝐺𝑐𝑜𝑚𝑏), 𝛺(𝑅,𝐺𝑖𝑚𝑝𝑙))

his forms the second basis condition for our inductive proof. We must
nnotate the second 𝐶 with ∗ to denote the fact that Join-patterns
nclosing 𝑅 in 𝑃 can cause cardinalities to be too large by a factor. This
roblem is corrected after we have finished the combination procedure
or the topmost Join in 𝑅, and so we write 𝐶∗ to mean that 𝐶 will hold

eventually. We discuss this problem in detail in Section 6.4.2.
Additionally, we show that 𝚎𝚡𝚎𝚌_𝚝𝚜𝚚 preserves these relations when

𝚎𝚡𝚎𝚌_𝚝𝚜𝚚 is called for a basic graph pattern 𝐵 at a later time when
executing combine for the subquery 𝑃 . This forms the first part of the

inductive step in our proof. We also show that the combination function
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Fig. 19. Simplification of combining function in Python-syntax.

preserves these properties for Filter, Extend and Join in Sections 6.4.3–
6.4.5. Additionally, we note that the processing of Join will eventually
lead to correct cardinalities, and the removal of ∗.

The real combination procedure is slightly more advanced. Instead
of always using 𝚜𝚖 = 𝙽𝚘𝚗𝚎 when processing a subquery, we allow 𝚜𝚖

to be a multiset of solution mappings that will constrain and be joined
to the solution mappings. In particular, we pass solution mappings sm
o exec_subquery and rewrite the static subquery to be compatible
ith these solution mappings using Join and Values-graph patterns
here we encode the permissible solution mappings, and join the

esults of exec_subquery to sm. To keep the proof relatively simple,
18

e do not cover these advanced optimisations.
We move now to discussing time series query preparation, which is
important for proving that the result of combing the solution mappings
with the results of the time series query is correct.

6.4.1. Preparing time series queries
Time series preparation starts at the level of the static subquery.

Fig. 20 contains a simplified excerpt of time series query preparation.
We only consider the basic graph pattern and the group by graph
pattern in this figure. We consider only the case where a single (not
multiple) basic time series query (BSTQ) is associated with a given BGP.
A BSTQ is originally created when rewriting a BGP (c.f. Fig. 18). We
illustrate here only how time series queries pushing down filter and
group by work, and assume the time series database has support for
group by pushdowns but not for all expression types.

When Time Series Query (TSQ) preparation considers a group by-
pattern, it first tries to prepare the inner graph pattern in a special
mode where preparation terminates if information is lost. For filters,
preparation fails in this grouping mode if the conjunction of the rewrit-
ten expression and the prepared expression is weaker than (i.e. not
equivalent to) the original expression. This could for instance happen
if some parts of the filtering expression are not supported in the time
series database. We also must be able to push down bindings (extend-
graph patterns) contained in the inner graph pattern of a group by to
complete the group by pushdown. Currently, joins always return None
in grouping mode, as we have not yet implemented pushdowns for
joins. Finally, we must be able to keep every aggregation operation
in identical form (prepare_aggregations), which is conditional
on support in the time series database. If we successfully complete
these steps, a grouped time series query is associated with the path
of the group by pattern. The function filter_by_variables will
filter out the grouping variables that do not originate in the time series
database from the group by variables (b). Instead, we will associate the
time series identifiers with a grouping variable (cf. Section 5.5) with
the function add_grouping_map. This happens both to the solution
mappings sm and to the grouped time series query group_tsq. Oth-
erwise, we prepare the inner graph pattern without trying to include it
in a group by pushdown.

Note that in the non-grouping mode, we allow filter pushdowns
that are not jointly (with the rewritten expression) equivalent to the
original expression. The filter pushdown is in this case associated with
the original path (the path of a basic graph pattern 𝐵).

6.4.2. Combining time series queries
There are two cases where we combine the solution mapping with

the results from the time series query. One is if there are some sequence
of nested extend and filter graph patterns containing a basic graph
pattern, where some of these graph patterns are pushed down into a
time series query. We noted in Section 6.4.1 that these results will be
attached at the contained BGP, and we discuss this case of time series
combination here.

Let 𝐵 be a basic graph pattern embedded in the graph pattern 𝑃
which corresponds to a static subquery, and let 𝐵 be the attachment
point of a time series query. We let 𝛬(𝐵,𝐺𝑐𝑜𝑚𝑏) be the input solution
mapping in the combination after entering combine for 𝐵 and if
applicable executing an associated static subquery (exec_subquery).

If we are processing a leftmost BGP, we the equality that: 6.4:

𝛬(𝐵,𝐺𝑐𝑜𝑚𝑏) = 𝛺(𝑟(𝑃 ), 𝐺𝑐𝑜𝑚𝑏)

his equality allows us to conclude that:

(𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙), 𝛬(𝐵,𝐺𝑐𝑜𝑚𝑏))

e must also show the basic condition that:

(𝛬(𝐵,𝐺𝑐𝑜𝑚𝑏), 𝛺(𝐵,𝐺𝑖𝑚𝑝𝑙))
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Fig. 20. Simplified excerpt of the time series query preparation procedure in
Python-syntax.

We may substitute using the equality above, and can show instead the
equivalent statement that:

𝐶(𝛺(𝑟(𝑃 ), 𝐺𝑐𝑜𝑚𝑏), 𝛺(𝐵,𝐺𝑖𝑚𝑝𝑙))

and 𝑟(𝑃 ) consists of a combination of a Join, Filter, Extend, BGP
ogether with any trivially rewritten graph pattern. Since Extend is not
llowed to shadow any variable, a variable 𝑣 that exists in both 𝐵𝑉 and
(𝑃 )𝑉 originates in one of the solution mappings of 𝐵 over 𝐺𝑖𝑚𝑝𝑙, and
ust be bound. Let:

∈ 𝛺(𝐵,𝐺 )
19

𝐵 𝑖𝑚𝑝𝑙
n particular, for the set of variables in 𝑟(𝑃 ) that occur in 𝐵 there is a
olution mapping:

𝑟(𝑃 ) ∈ 𝛺(𝑟(𝑃 ), 𝐺𝑐𝑜𝑚𝑏)

uch that:

𝑣 ∈ 𝐵𝑉 ∩ 𝑟(𝑃 )𝑉 ∶ 𝜇𝑟(𝑃 )(𝑣) = 𝜇𝐵(𝑣)

n other words, 𝜇𝑟(𝑃 ) is compatible with some 𝜇𝐵 . The variables in 𝑟(𝐵)
ntroduced by the rewriting process are guaranteed not to occur in 𝐵,
nd so impose no constraints on the compatibility. However, each Join
n which 𝑟(𝐵) is included in 𝑟(𝑃 ) potentially multiplied the cardinality
f 𝜇𝑟(𝑃 ) by some factor ≥ 1. When the combination procedure is finished
rocessing this join, we will have the correct cardinality, but at the
evel of 𝐵 we can only show that the relation 𝐶 holds up to the factors
ntroduced by the Joins in which 𝑟(𝐵) is embedded in the subquery 𝑃 .

e denote this weaker variant of 𝐶 by 𝐶∗:
∗(𝛬(𝐵,𝐺𝑐𝑜𝑚𝑏), 𝛺(𝐵,𝐺𝑖𝑚𝑝𝑙))

If we are not in the leftmost BGP, we may simply assume as our
nduction hypotheses:

(𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙), 𝛬(𝐵,𝐺𝑐𝑜𝑚𝑏))∧
∗(𝛬(𝐵,𝐺𝑐𝑜𝑚𝑏), 𝛺(𝐵,𝐺𝑖𝑚𝑝𝑙))

For a given 𝜇𝑐𝑜𝑚𝑏 ∈ 𝛬(𝐵,𝐺𝑐𝑜𝑚𝑏), we introduce a set of solution
appings combined(𝜇𝑐𝑜𝑚𝑏, 𝑓𝑑∈𝐷), where 𝑓𝑑∈𝐷 is a time series database.
o simplify the proof, we only consider the case where there is one time
eries variable in 𝐵, but can be generalised by iteratively applying the
onstruction below for each time series variable. Let ?𝚜 be the time
eries variable in 𝐵𝑉 ∩ 𝑟(𝐵)𝑉 . The datapoint variable corresponding
o ?𝚜 will be denoted by ?𝚙, the datatype variable by ?𝚍 and the
xternal identifier variable by ?𝚎. We assume here that ?𝑑 has a unique
ssignment common to all 𝜇𝑐𝑜𝑚𝑏. As discussed above, there is no way
n which 𝜇𝑐𝑜𝑚𝑏(?𝑡) is unbound.

We construct combined(𝜇𝑐𝑜𝑚𝑏, 𝑓𝑑∈𝐷) using the corresponding data-
oints in the time series database. Given 𝜇𝑐𝑜𝑚𝑏 ∈ 𝛬(𝐵,𝐺𝑐𝑜𝑚𝑏), and
∈ 𝑓𝜇𝑐𝑜𝑚𝑏(?𝑑)(𝜇𝑐𝑜𝑚𝑏(?𝑒)) we define a solution mapping 𝜇𝑐𝑜𝑚𝑏,𝑝:

𝑐𝑜𝑚𝑏,𝑝(𝑥) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

value(𝑝) 𝑥 = ?𝚟
timestamp(𝑝) 𝑥 = ?𝚝
𝑝 𝑥 = ?𝚙
𝜇𝑐𝑜𝑚𝑏(𝑥) otherwise ∧

𝑥 ∉ {?𝚎, ?𝚍}
undef ined otherwise

ow we can define the new set of solution mappings.

ombined(𝜇𝑐𝑜𝑚𝑏, 𝑓𝑑∈𝐷) =

{𝜇𝑐𝑜𝑚𝑏,𝑝|𝑝 ∈ 𝑓𝜇𝑐𝑜𝑚𝑏(?𝑑)(𝜇𝑐𝑜𝑚𝑏(?𝑒))}

his construction respects compatibility and thus 𝐶, since we are
imply mirroring the construction of 𝐺𝑖𝑚𝑝𝑙 when we extend each 𝜇𝑐𝑜𝑚𝑏.
(𝐵,𝐺𝑐𝑜𝑚𝑏) is given by the union of all such sets:

(𝐵,𝐺𝑐𝑜𝑚𝑏) =
⋃

(combined(𝜇𝑐𝑜𝑚𝑏, 𝑓 ))

𝜇𝑐𝑜𝑚𝑏 ∈ 𝛬(𝐵,𝐺𝑐𝑜𝑚𝑏)

he cardinality of the members of 𝛤 (𝐵,𝐺𝑐𝑜𝑚𝑏) is inherited by the
riginal cardinalities of the 𝜇𝑐𝑜𝑚𝑏 from 𝛬(𝐵,𝐺𝑐𝑜𝑚𝑏) used to generate
hem. This preservation of cardinality respects 𝐶. We conclude that:
∗(𝛤 (𝐵,𝐺𝑐𝑜𝑚𝑏), 𝛺(𝐵,𝐺𝑖𝑚𝑝𝑙))

ince we have only enforced conditions that must be met by 𝜇𝑖𝑚𝑝𝑙 ∈
(𝑃 ,𝐺𝑖𝑚𝑝𝑙), we preserve the corresponding relation:

(𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙), 𝛤 (𝐵,𝐺𝑐𝑜𝑚𝑏))
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In the above proof, we have not considered pushdowns directly. We
sketch how these pushdowns can be handled in what follows. Pushing
down an Extend pattern or a Filter, works well with the proof above.
The variable introduced by Extend will be determined by other values
in the solution mapping, and can be treated in the very same way as
combining Extend graph patterns in the discussion in Section 6.4.4.
Similarly, the variable introduced by Extend does not overlap with 𝐵𝑉 .
n sum, both 𝐶-relations are preserved. For Filters, none of the solutions
liminated by eagerly evaluating the expression and filtering will have
ade it into 𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙), so pushing down filters also preserves 𝐶.
elated time series queries attaching to the same BGP can be pushed
own into a single time series query. A proof would have to show
hat the iterative combination described above is equivalent to jointly
valuating them in the time series database. A grouped time series
uery is associated with a group graph pattern. We have seen that these
ime series queries contain all the information necessary to evaluate the
roup by graph pattern. Assuming that the time series database does so
aithfully, we only have to join the results from the time series database
ith the solution mapping on the grouping column.

.4.3. Combining filter graph patterns
Let Filter(𝐼, 𝑒𝑥𝑝𝑟) be a filter graph pattern contained in a graph

attern 𝑃 which is rewritten as a subquery. We call combine using
and sm:

𝚖 = 𝚌𝚘𝚖𝚋𝚒𝚗𝚎(𝚐𝚙 = 𝐼, 𝚜𝚖 = 𝚜𝚖, ..)

e denote sm by 𝛤 (𝐼, 𝐺𝑐𝑜𝑚𝑏). We can now assume the induction
ypotheses that:

(𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙), 𝛤 (𝐼, 𝐺𝑐𝑜𝑚𝑏))∧
∗(𝛤 (𝐼, 𝐺𝑐𝑜𝑚𝑏), 𝛺(𝐼, 𝐺𝑖𝑚𝑝𝑙))

he combining procedure will simply enforce the filter expression per
PARQL 1.1 semantics, i.e.:

𝚖 = 𝚏𝚒𝚕𝚝𝚎𝚛(𝚜𝚖, 𝑒𝑥𝑝𝑟)

e let sm be denoted by 𝛤 (Filter(𝐼, 𝑒𝑥𝑝𝑟), 𝐺𝑐𝑜𝑚𝑏), since this is what
we return after running combine for Filter. Since solution mappings
lost when processing inner graph patterns of 𝑃 never reappear in
𝛺(𝑃 ,𝐺𝑐𝑜𝑚𝑏), the solution mappings lost from 𝛤 (𝐼, 𝐺𝑐𝑜𝑚𝑏) after filtering
could never have had a compatible mapping in 𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙) to begin
with. Second, if any 𝜇𝑖𝑚𝑝𝑙 ∈ 𝛤 (𝐼, 𝐺𝑖𝑚𝑝𝑙) has 𝑒𝑥𝑝𝑟(𝜇𝑖𝑚𝑝𝑙) = 𝚏𝚊𝚕𝚜𝚎 then
this surely applies to any compatible 𝜇 ∈ 𝛺(𝐼, 𝐺𝑐𝑜𝑚𝑏) also. Hence we
have as required that:

𝐶(𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙), 𝛤 (Filter(𝐼, 𝑒𝑥𝑝𝑟), 𝐺𝑐𝑜𝑚𝑏))∧

𝐶∗(𝛤 (Filter(𝐼, 𝑒𝑥𝑝𝑟), 𝐺𝑐𝑜𝑚𝑏),

𝛺(Filter(𝐼, 𝑒𝑥𝑝𝑟), 𝐺𝑖𝑚𝑝𝑙))

6.4.4. Combining extend graph patterns
Let Extend(𝐼, 𝑣, 𝑒𝑥𝑝𝑟) be an extend graph pattern contained in a

graph pattern 𝑃 which is rewritten as a subquery. We compute an
updated set of solution mappings:

𝚜𝚖 = 𝚌𝚘𝚖𝚋𝚒𝚗𝚎(𝚐𝚙 = 𝐼, 𝚜𝚖 = 𝚜𝚖, ..)

We assume the induction hypotheses that:

𝐶(𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙), 𝛤 (𝐼, 𝐺𝑐𝑜𝑚𝑏))∧

𝐶∗(𝛤 (𝐼, 𝐺𝑐𝑜𝑚𝑏), 𝛺(𝐼, 𝐺𝑖𝑚𝑝𝑙))

We now modify the solution mappings according to the SPARQL 1.1
specification for Extend, computing the value of 𝑣 using 𝑒𝑥𝑝𝑟 applied
to each solution mapping. Strictly speaking, we may skip this step if
𝑟(𝑒𝑥𝑝𝑟) = 𝑒𝑥𝑝𝑟, as this will produce no change.

𝚜𝚖 = 𝚎𝚡𝚝𝚎𝚗𝚍(𝚜𝚖, 𝑣, 𝑒𝑥𝑝𝑟)
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We will call this updated multiset of solution mappings sm 𝛤 (𝐸𝑥𝑡𝑒𝑛𝑑(𝐼),
𝐺𝑐𝑜𝑚𝑏), as this is the one we return after processing Extend. Since we
are ignoring the topmost projection in 𝑃 , and assume deterministic
expr, any solution mapping in 𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙) will continue to be compati-
ble with an extended solution mapping in 𝛤 (Extend(𝐼, 𝑣, 𝑒𝑥𝑝𝑟), 𝐺𝑐𝑜𝑚𝑏).
The second relation 𝐶 is obviously preserved, since extensions are
deterministic. Hence we have as required that:

𝐶(𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙), 𝛤 (Extend(𝐼, 𝑣, 𝑒𝑥𝑝𝑟), 𝐺𝑐𝑜𝑚𝑏))∧

𝐶∗(𝛤 (Extend(𝐼, 𝑣, 𝑒𝑥𝑝𝑟), 𝐺𝑐𝑜𝑚𝑏),

𝛺(Extend(𝐼, 𝑣, 𝑒𝑥𝑝𝑟), 𝐺𝑖𝑚𝑝𝑙))

6.4.5. Combining join graph patterns
Let Join(𝐿,𝑅) be a filter graph pattern contained in a graph pattern

𝑃 which is rewritten as a subquery. Join graph patterns starts with
computing first an updated multiset of solution mappings sm.

𝚜𝚖 = 𝚌𝚘𝚖𝚋𝚒𝚗𝚎(𝚐𝚙 = 𝐿, 𝚜𝚖 = 𝚜𝚖, ..)

We call this updated value 𝛤 (𝐿,𝐺𝑐𝑜𝑚𝑏). We may now assume the
induction hypothesis:

𝐶(𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙), 𝛤 (𝐿,𝐺𝑐𝑜𝑚𝑏))∧

𝐶∗(𝛤 (𝐿,𝐺𝑐𝑜𝑚𝑏), 𝛺(𝐿,𝐺𝑖𝑚𝑝𝑙))

ext we call combine for 𝑅 with the updated solution mappings sm.

𝚖 = 𝚌𝚘𝚖𝚋𝚒𝚗𝚎(𝚐𝚙 = 𝑅, 𝚜𝚖 = 𝚜𝚖, ..)

We call this updated value 𝛤 (𝑅,𝐺𝑐𝑜𝑚𝑏). Assuming combine has the
desired properties, it follows that:

𝐶(𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙), 𝛤 (𝑅,𝐺𝑐𝑜𝑚𝑏))∧

𝐶∗(𝛤 (𝑅,𝐺𝑐𝑜𝑚𝑏), 𝛺(𝑅,𝐺𝑖𝑚𝑝𝑙))

rom Section 6.4.2, we see that the process of combining time series
ueries is in fact a join (or iterated joins if there is more than one time
eries variable). There is nothing more to do in join processing, and so
e have that:

(𝑅,𝐺𝑐𝑜𝑚𝑏) = 𝛤 (Join(𝐿,𝑅), 𝐺𝑐𝑜𝑚𝑏)

e can use this identity to rewrite our induction hypothesis to the
equired conclusions.

(𝛺(𝑃 ,𝐺𝑖𝑚𝑝𝑙), 𝛤 (Join(𝐿,𝑅), 𝐺𝑐𝑜𝑚𝑏))∧
∗(𝛤 (Join(𝐿,𝑅), 𝐺𝑐𝑜𝑚𝑏), 𝛺(Join(𝐿,𝑅), 𝐺𝑖𝑚𝑝𝑙))

f we are finishing the combination procedure for the topmost Join in
ur subquery, we can write as the second conclusion without ∗:

(𝛤 (Join(𝐿,𝑅), 𝐺𝑐𝑜𝑚𝑏), 𝛺(Join(𝐿,𝑅), 𝐺𝑖𝑚𝑝𝑙))

. Implementation

In this section, we describe our implementation of the solution ap-
roach, called Chrontext. The implementation is open source software,1
nd has a permissive Apache 2.0 license. At the time of writing, it is a
rototype which has support for a large part of SPARQL 1.1.

Chrontext is a system for portable, high performance ontology based
ata access to contextualised time series data using SPARQL. Chrontext
equires that the static graph (context) is augmented with metadata
inking nodes to time series in the time series database as described
n Section 5.2. It currently supports both OPC UA Historical Access
HA) and SQL APIs for accessing time series data, and is extensible
o other APIs by interpreting an intermediary format for queries over
ime series data. As OPC UA Historical Access tends to be found in on-
remise deployments, and SQL tends to be found in cloud deployments,

1 https://github.com/magbak/chrontext.

https://github.com/magbak/chrontext
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the solution offers a portable query interface across infrastructures.
Depending on time series API capabilities, Chrontext pushes down data
processing such as filters and aggregations in order to optimise query
performance. It is especially developed for situations where the main
use of context is to select appropriate time series data from very large
data sets. As such, it only supports select-queries. Chrontext exploits
this situation by always querying static context data before time series
data in order to retrieve a minimal part of the time series data set.

The implementation is based on the Rust programming language,
and uses the Polars (Vink, 2022b) library for in-memory columnar data
processing. To maximise performance, Chrontext supports SQL over
Arrow Flight. We use a Python wrapper, and transfer data from the
Rust binary to Python by reference using Arrow Flight IPC. This is
important in order to meet the second and third requirements (R2 and
R3). Moreover, the Polars library features support for lazy evaluation
of common data set manipulation operations such as filters and joins.
When evaluation is required, Polars optimises the sequence of opera-
tions. We utilise this feature whenever it is possible. Chrontext uses
the Spargebra library (Tanon, 2022b) to parse SPARQL and manipulate
SPARQL graph patterns and expressions. It makes heavy use of the
oxrdf-library (Tanon, 2022a) to represent concepts in RDF. Admittedly,
Pandas Dataframes are more popular, but are not optimised to reduce
serialisation costs. Polars Dataframes can however easily be converted
to the more popular Pandas Dataframe, meeting R3.

In order to execute the original query, Chrontext creates one or
more static SPARQL queries, which are run on the SPARQL engine.
Chrontext then creates one or more time series queries (TSQ), an
intermediate structure. The TSQs are transformed into API calls of the
type appropriate for the underlying time series database, e.g. SQL.
Additional time series APIs such as OSIsoft PI (OSIsoft, 2022) and
InfluxDB (InfluxData, 2022a) can be supported by translating the in-
termediary TSQs to API-calls and providing expected results as Polars
dataframes. Chrontext does not implement a SPARQL 1.1 HTTP end-
point, but is a client library where SPARQL queries result in an in-
memory Apache Arrow backed result set called a Polars DataFrame
in either Rust or Python. In the result set, variables are represented
natively using Apache Arrow datatypes. It does not currently support
result sets where a variable has multiple data types. Supporting such
result sets is in principle possible by casting to the string-representation
of the RDF term. Such functionality would however increase the com-
plexity of Chrontext in many parts of the solution. We rely on fast,
column based operations from Polars to perform almost all SPARQL
expression-computations using native data types that are uniform in a
single column, but this does not work for columns with heterogeneous
data types represented as strings. Adding support for heterogeneous
types likely requires a separate implementation of all SPARQL expres-
sions. As benchmarking the core functionality of Chrontext was possible
without this functionality, we have not prioritised it.

There are two supported time series APIs, SQL and OPC UA HA. In
case the time series database is an OPC UA HA service, we must limit
what is pushed down into the time series query. The historical access
service supports raw access to time series data within an interval or
aggregated access to time series data with a limited set of aggregation
functions. We only create grouped pushdown queries if filters on time
series data only involve to- and from constraints on the timestamp. In
other cases we fall back to raw access, and perform aggregations client
side.

It is possible to enable all pushdowns discussed in Section 5.6 with
the SQL backend, but users can configure a reduced set of pushdowns
according to the level of SQL support available and the performance
characteristics of the database. With Chrontext, if the SQL backend is
configured with partitions by year, month and day, we automatically
rewrite the builtin SPARQL functions to select these columns instead,
and to rewrite any filters on timestamps to exploit this partitioning in
a way similar to what is done in Fig. 24. Additionally, in the presence
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of year, month and day partitioning, Chrontext rewrites join conditions
Fig. 21. Join on timestamp column before partition optimisation.

Fig. 22. Join on timestamp column with partition optimisation.

on timestamps to also join on these partitioning columns. For instance,
assume that we are joining subqueries q1 and q2 on a common
timestamp column t. Such a query is given in Fig. 21. We ensure that
the partitioning columns year_col, month_col and day_col are
found in q1 and q2 respectively. This allows us to rewrite the join
condition; the result is given in Fig. 22.

8. Evaluation

In this section, we evaluate whether our solution meets the second
requirement (R2) of providing high throughput low latency access
to contextualised time series data by comparing our solution to the
popular open source virtual knowledge graph Ontop. We first introduce
the scenario, the data set, and data lake with lakehouse infrastructure.
Both the static context and time series data are accessible through a
common SQL interface. We describe how we map this data to Ontop
and present the Chrontext configuration along with a set of four queries
used in the evaluation.

8.1. Experimental setting

In this section, we describe scenario, infrastructure, data set, and
queries used in the experiments. To construct the evaluation scenario,
we use the stOttr terse syntax for the Ottr templating language (Skjæve-
land, 2022; Skjæveland et al., 2021) to define templates for a wind farm
with very simple instrumentation. The wind farm is modelled according
to the Reference Designation System — Power Systems as described
part 10 of the in ISO/IEC 81346-10:2022. The scripts used to create the
scenario are available in an associated repository.2 Fig. 4 in Section 5.3
displays part of this graph.

In the evaluation benchmark, we use an AWS Elastic Kubernetes
Cluster consisting of EC2 m6i.2xlarge instances using third generation
Intel Xeon processors. These instances have eight cores and 32 GB of
RAM each. An S3 bucket is used for the time series data. The time
series data consists of generated data for 400 wind turbines. Each
wind turbine is associated with double-valued wind speed (m/s), wind
direction (degrees) and production (Watts) and with a boolean valued
operational status. Generated data are available for a 72 h period and is
sampled every ten seconds. The information model in our experiment
is straightforward and contextualises a limited set of time series data
that nonetheless represents a potential real world scenario. It can thus
be seen as a baseline example for evaluating the core task of using
information models to access time series data. This data is stored in
an Apache Hive format, with the following folder structures generated
by the PyArrow library (The Apache Software Foundation, 2022e):

2 https://github.com/magbak/chrontext_benchmarks.

https://github.com/magbak/chrontext_benchmarks
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Table 5
Query types in the benchmark.

Query Tme series Aggregation

Production Production Raw
Grouped production Production Mean 10 min.
Grouped multiple value Production, Wind

Direction, Wind Speed
Mean 10 min.

/timeseries_boolean/year/month/day/id/part-i.parquet
/timeseries_double/year/month/day/id/part-i.parquet

In Dremio, these directory names (except for the top one which names
the table) are exposed as columns dir0, dir1 and so on in increasing
depth. Filtering on these directory names exploits the inherent parti-
tioning, and reduces the amount of data Dremio must fetch. The S3
bucket is in the same region as the Kubernetes cluster. Our Dremio
deployment uses one node for the coordinator, three executor nodes
and three nodes for ZooKeeper.3 We allocate one node to a PostgreSQL
Database containing tables with the static model. Two other nodes are
allocated for the Ontop endpoint and running the benchmark queries
respectively. Dremio is connected to both the S3 bucket and the Post-
greSQL database. The folders containing time series data are promoted
to queriable data sets in Dremio. All AWS resources are located in the
same region.

There are three query types, which are run with changes to their
filtering to extract time series data for 1, 10 100 and 400 wind turbines
respectively. The production queries extract the raw time series data
for production for the given turbines. The grouped production queries
extract the mean production for each 10 minute interval for the given
turbines. The grouped production query for ten wind turbines was
already shown in Fig. 5. The grouped multiple value queries extract
averaged production values together with averaged weather values
(wind direction and speed) for each 10 minute interval for the given
turbines. Originally, the grouped multiple value queries also included
a filter on a boolean value indicating whether or not a turbine was
operating, but these queries produced an unknown error in Ontop
which we were unable to diagnose. The queries in our benchmark are
straightforward and simply navigate to the time series data to extract
it, possibly in aggregated form. They can be seen as a core, baseline
case for the kind of queries that should be performed by query systems
supporting contextualised access to time series data in industry. The
three query types are summarised in Table 5.

8.2. Ontop configuration

Ontop is configured to connect to Dremio, which makes available
both the time series data in S3 and the data in Postgres in a single
SQL interface. Additionally, Ontop must be configured to interpret the
results of predefined SQL queries as RDF triples in an OBDA mapping
file. Mapping the PostgreSQL tables is trivial, as there is exactly one
table for each property type in the static part of the model. Mapping
time series data is more elaborate. Ontop does not support blank nodes
in mappings. This means that we either must construct an identity (IRI)
for data points, or that we must create one and include it along with
the value and timestamp in the parquet files. We have opted for the
second alternative, due to concerns that query-time data point identity
construction could impact Ontop query performance negatively.

In order to exploit partitioning, we associate each data point with
its year, month and day found in the dir0, dir1 and dir2 columns
respectively. Fig. 23 contains the relevant part of the Ontop mapping.
The Ontop variants of the benchmark queries are written to use these
predicates to derive the year month and day of a timestamp instead

3 https://zookeeper.apache.org/.
22
Fig. 23. Ontop time series data mapping. The mapping has been rewritten for
readability in a narrow format, at the cost of breaking Ontop syntax rules.

Fig. 24. Ontop partitioning workarounds.

of the built-in SPARQL functions. In order to apply the partitioning
scheme to filters, we need to expand filters on timestamps to allow
the partitioning to be exploited. Fig. 24 illustrates how the filter in the
grouped production query extracting data from ten wind turbines is
rewritten.

To run the queries in Ontop, we use the SPARQLWrapper-library
(Herman, Fernández, Alonso, & Zakhlestin, 2022), which produces
a Python dict (a dynamically typed map) with the results. SPAR-
QLWrapper is a thin wrapper around the requests-library used for

https://zookeeper.apache.org/
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HTTP-requests. Ideally, the results should be converted to DataFrames.
However, we chose to keep the Python-native format in order not to
inadvertently introduce poor performance in a DataFrame-conversion
step. Our hypothesis is that Chrontext will outperform Ontop, and
eliminating the conversion step only makes this task more difficult for
Chrontext.

8.3. Chrontext configuration

We have created a Python wrapper for Chrontext. Query execution
happens in Rust, but the resulting Polars DataFrame is passed by ref-
erence to Python using Apache Arrow IPC. We configure Chrontext to
enable all pushdowns and partitioning on dates. Chrontext is configured
to use Ontop as a SPARQL endpoint and Dremio as the SQL backend.
The required metadata is added to PostgreSQL and mapped in Ontop.
When running the static rewrite of the SPARQL query then, Chrontext
sends the query to Ontop, which generates an SQL query to Dremio,
which then forwards the query to PostgreSQL. Performance would
likely improve with a dedicated triple store and by removing Dremio
from static SPARQL processing, but using Ontop with Dremio allows us
to compare performance on identical infrastructure.

After having run the benchmark we investigated strongly nonlinear
performance found in the first set of queries and found that it was due
to a costly join. In particular, after executing the time series query, the
results must be joined with static context on the client side. After the
benchmark was run, we became aware of an important feature in the
Polars library, allowing for sorted merge joins (Vink, 2022a), which
have been used to parallelise and speed up SPARQL query processing
in distributed settings (e.g. Groppe & Groppe, 2011; Przyjaciel-Zablocki
et al., 2013). The main cost of a sorted merge join is the phase where
the tables to be joined are sorted on the join columns (Albutiu, Kemper,
& Neumann, 2012). By adding an order by-clause to the SQL to the time
series database, we were able to offload part of the cost of the join to
the Dremio database and achieve a large performance improvement.
The optimisation is now part of Chrontext. We keep both results so as
to not cherry pick data. We also verified that query processing times
in this second run for the unaffected queries were highly similar for
Chrontext, and that the result sets were identical (up to ordering). This
verification strongly indicates that the improvement is not due to a
misconfiguration in the second run.

8.4. Results

We present the results of the evaluation benchmarks below. Recall
that there are three query types (c.f. Table 5) and that each query
type has variants extracting data from 1,10,100 and 400 wind turbines,
making 12 query instances. Raw data is presented in scatter plot. We
jitter data horizontally, to display the points individually. In reality, all
points (𝑥, 𝑦) have 𝑥 ∈ {1, 10, 100, 400}, where 𝑥 is the number of wind
turbines we extract data for. Note that the 𝑥 axis has a 𝑙𝑜𝑔10 scale.

8.4.1. Production queries
In Production Query 1, one of the 10 runs for Ontop crashed due to

an error during query processing in Dremio. We have not attempted
to diagnose the cause of this error. This data point was dropped.
In Production Query 4, the SPARQL Python client (SPARQLWrapper)
used for Ontop ran out of memory before the query could complete.
Looking at the query log in Dremio, we were able to see that the 400
wind turbine query took 240 seconds in Dremio for Ontop. Since this
number is not directly comparable, we have not included it in our plots.
Chrontext completed every query. The raw results are plotted in Fig. 25.
Summary statistics can be found in Table 6.

Investigating production queries with 100 and 400 wind turbines
for Chrontext revealed that Dremio query processing and data transport
completed quickly, and that most of the time was spent processing the
23

results from Dremio. In contrast, Ontop processing time was mainly
Table 6
Summary statistics for processing times (seconds) for the production queries by the
number of wind turbines and solution used.

Turbines Solution N Mean St. Dev.

1 Ontop 9 32.87 6.21
1 Chrontext 10 0.41 0.02
1 Chrontext Opt. 10 0.43 0.03
10 Ontop 10 37.23 4.69
10 Chrontext 10 2.43 0.06
10 Chrontext Opt. 10 2.29 0.06
100 Ontop 10 91.23 6.43
100 Chrontext 10 39.52 1.02
100 Chrontext Opt. 10 6.53 0.04
400 Ontop 0 – –
400 Chrontext 10 557.95 0.53
400 Chrontext Opt. 10 17.49 0.13

Fig. 25. Production queries.

spent waiting for query processing in Dremio. As discussed in Sec-
tion 8.3, Chrontext processing time was drastically improved after
applying optimisations.

In order to better understand the reasons for the difference in per-
formance, we extracted number of rows scanned, total memory usage
and query execution time in Dremio manually. We provide one sample
for solution and each number of wind turbines, and these runs were
separate from the runs in the experimental procedure. The results are
presented in Figs. 26–28. We were able to include results for the 400-
wind turbine case for Ontop in this case, as the out of memory-error
happened client-side.

8.4.2. Grouped production queries
Ontop and Chrontext both completed all grouped production

queries. The raw results are shown in Table 7, and plotted in Fig. 29.
Chrontext and Ontop processing times are dominated by query process-
ing in Dremio for the most demanding queries with 100 and 400 wind
turbines. We carried out identical checks for rows scanned, memory
consumption and execution time in Dremio as for the production
queries. For the grouped production queries, there is a similar rela-
tionship between the number of rows scanned and memory use for
Chrontext and Ontop in Dremio. Chrontext scans 25 thousand rows
when there is one wind turbine, and 10 million rows when there are
400 being queried. Ontop scans 207 millon rows in all cases. Chrontext
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Fig. 26. Production queries: number of rows scanned in Dremio. For the case with
one wind turbine, Chrontext scans 25920 rows, which are effectively not rendered due
to the comparatively large scale of the 𝑦-axis.

Fig. 27. Production queries: Total memory use in Dremio.

uses 87 MB of memory for one wind turbine, 1 GB for 400 wind
turbines. Ontop uses 58 GB of memory in all cases. Dremio time use
ranges from below 1 s (GUI does not show precise number) in the one
turbine case to 7.39 s in the 400 turbine case for Chrontext. For Ontop,
Dremio query time ranges from 53.13 s in the one turbine case, 62 s in
the 100 turbine case and 57.6 seconds in the 400 turbine case.

8.4.3. Grouped multiple value queries
Ontop did not complete any of these queries due to out of memory-

errors in Dremio. The raw results are plotted in Fig. 30 and summary
statistics are given in Table 8. Both Chrontext and Ontop processing
24
Fig. 28. Production queries: Total execution time in Dremio. Query execution times
were below the threshold of one second to be reported in the Dremio GUI for chrontext
in the one and ten-turbine cases, and have been entered as taking 0.5 seconds each.

Fig. 29. Grouped production queries.

times are dominated by query processing in Dremio for the most
demanding queries with 100 and 400 wind turbines.

8.5. Discussion

In the production queries, Chrontext outperforms Ontop in all
queries that complete on both solutions. These queries download the
largest data sets of all the queries from Dremio. We expected the
difference in query processing times for the production queries to
be especially high as it reflects the expected increased deserialisation
cost of Ontop. However, the difference between Chrontext and Ontop
shrank as the size of the data set to be returned by the query grew. We
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Table 7
Summary statistics for processing times (seconds) for the grouped production queries
by the number of wind turbines and solution used.

Turbines Solution N Mean St. Dev.

1 Ontop 10 51.77 4.02
1 Chrontext 10 0.61 0.07
10 Ontop 10 59.83 13.71
10 Chrontext 10 1.46 0.09
100 Ontop 10 79.76 28.78
100 Chrontext 10 2.54 0.22
400 Ontop 10 56.20 4.65
400 Chrontext 10 5.69 0.56

Table 8
Summary statistics for processing times (seconds) for the grouped multiple value queries
by the number of wind turbines and solution used.

Turbines Solution N Mean St. Dev.

1 Chrontext 10 1.80 0.10
10 Chrontext 10 1.74 0.04
100 Chrontext 10 4.98 0.17
400 Chrontext 10 28.16 0.51

found the cost of the local join operation to be the most likely cause.
The local join was indeed the main cause as the performance after
turning this join into a sorted merge join with offloading on Dremio
improved performance by a factor of 32 for 400 wind turbines. After
correcting the Chrontext join-problem, the bulk of the difference in
query execution times was due to the speed with which Dremio could
execute the respective queries.

We note that it is possible to push the join entirely into Dremio, at
the cost of transferring more data. In a cloud-based Kubernetes setting,
there is a great deal of bandwidth available, and a strategy of pushing
the entire join into the SQL database may lead to better performance.
In settings with less bandwidth however, it may perform worse. An
evaluation under different bandwidth conditions is necessary to iden-
tify the best strategy. The downloaded data set for 400 wind turbines
was only about 700 MB when exported as comma separated values
(CSV), but still SPARQLWrapper ran out of memory. SPARQLWrapper
relies on the performant requests-library to query a SPARQL-engine
using HTTP, but converts the results to classes found in rdflib. This
conversion is likely inefficient, and may confound findings comparing
the deserialisation costs of Chrontext and Ontop. Further work on
comparing the deserialisation costs of HTTP and Arrow for SPARQL
results should better control for such issues.

The performance of Ontop is quite similar across the number of
turbines, and we can see from the Dremio-extracted data that Dremio
is processing equal amounts of data independently of whether we are
querying one or 400 wind turbines. This finding strongly contrasts
with the time series SQL query of Chrontext, which better constrains
the Parquet-files that need to be scanned. The SQL query created by
Chrontext requires that the identifier of the time series be a member
of a collection of literals, and can straightforwardly be used to identify
correct partitions. The SQL query created by Ontop however is querying
the static tables in PostgreSQL for this information. Dremio appears
not to use static information found in PostgreSQL to constrain which
partitions of time series data to scan. In fact, Dremio even scans the
boolean values, which are not required by any query in the bench-
mark. We observed both during the benchmark setup and during the
benchmark that Dremio would occasionally produce an error when
processing queries generated by Ontop. This happened when executing
the Ontop-generated SQL query for one wind turbine. The SQL queries
generated by Ontop are very large, and may be challenging for Dremio
to execute reliably.

Regarding grouped production queries, Chrontext performs one to
two orders of magnitude better than Ontop for the grouped production
queries. Dremio is again unable to use static context from PostgreSQL
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Fig. 30. Grouped multiple values queries.

to constrain which partitions of time series data are scanned. The
Chrontext-queries scan exactly as much data as in the production
queries, but uses somewhat more memory. However, the amount of
data scanned and memory consumption in the grouped production
queries when processing the Ontop queries has doubled. The grouped
multiple values queries lead to out of memory errors in Dremio for
Ontop. Note that the database only contains 905 MB of time series data,
and that there are three executor nodes with 32 GB each in the Dremio
cluster. For Chrontext, Dremio uses a total of 2.71 GB of memory to
complete the time series SQL query in the 400 turbine case, indicating
that we are nowhere near an intractable query memory-wise.

8.5.1. Generalisability
The performance of Dremio on the queries generated by Ontop may

be due to the particular infrastructure combination of PostgreSQL and
Dremio. Dremio may underestimate the cost of querying PostgreSQL,
and make query plans that query PostgreSQL in parallel with S3.
To investigate this possibility, we added Parquet-files corresponding
to tables in PostgreSQL to AWS S3 instead, and rewrote the Ontop-
mapping accordingly. We found very similar performance both for
Ontop and Chrontext, and very similar numbers of rows scanned and
memory use by Dremio when processing the queries. These results
are available in the benchmark repository. Another possibility is that
Dremio must be configured in a special way unknown to us to perform
well in such situations.

Even if Dremio does not handle the Ontop-generated queries well,
other data lakehouses may perform much better. However, Dremio is
currently the only data lakehouse supported by Ontop. Our findings on
using virtual knowledge graphs to query contextualised time series data
is limited to this combination of software. For Chrontext, we have rea-
son to believe that our findings on performance are more general. The
queries generated by Chrontext involve literals constraining partitions
with respect to time and the identifier, and any data lakehouse should
be able to use such literal information to directly limit which partitions
are scanned. Not being able to limit which partitions are scanned by
using the literals in the query would lead any data lakehouse with a
sufficiently large data lake to be practically useless.
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8.5.2. Summary
The main difference between Ontop and Chrontext was the fact

that Dremio was unable to limit the number of rows of the time series
data being scanned when executing SQL queries generated by Ontop.
This led to very similar execution durations across the number of wind
turbines for Ontop. Additionally, the Ontop SQL queries led to much
higher memory consumption, and were intractable for the grouped
multiple values queries given our resource constraints. We predict that
these problems would get worse when the size of the time series data set
grows. Further research should identify if other data lakes are similarly
affected.

For Chrontext, bounds on partitions were encoded as literals in
SQL queries, and Dremio was able to limit the amount of time se-
ries data being scanned. We have good reason to believe that other
data lakehouses will perform well with the SQL queries generated by
Chrontext. Future research should attempt to corroborate these claims,
and attempt to identify if there are queries generated by Chrontext
where data lakehouses perform worse than expected. The effect of using
Apache Arrow in the transport layer was not effectively investigated by
this study. It should be studied further in a setting where deserialization
of HTTP-based transport of SPARQL-results are better controlled and
where bandwidth is more constrained.

9. Conclusion and future work

In this section, we summarise our findings and conclude that Chron-
text meets the requirements we have outlined. Our work implies that
Ontop, Dremio and Chrontext can be improved in order to perform
better when processing time series queries. Finally, we suggest di-
rections where Chrontext could be extended in order to better meet
industry needs and discuss limitations of our work along with potential
solutions.

9.1. Summary of findings

We have presented Chrontext, a hybrid OBDA approach for query-
ing time series data contextualised by data behind a SPARQL endpoint.
The approach enables practitioners to query time series data stored in
heterogeneous databases using the same query, which we call query
portability, meeting the fourth requirement (R4). The approach is
further able to exploit the computational power of heterogeneous time
series APIs to push down parts of query execution appropriate for
the capabilities of that database, meeting the fifth requirement (R5).
Query portability in turn, can make it easier to train or estimate
analytical models and deploy them in a new way, while respecting
the availability constraints in industry. This type of analytical query
portability using a declarative approach is not possible with existing
tools. Query portability is enabled by an approach to query rewriting
which has not been described in detail in the literature before. We
further contribute a proof of the correctness of the query rewriting
approach, meeting the first requirement (R1).

We have implemented the approach using state of the art technology
as the open source software library Chrontext, providing strong evi-
dence that the approach is practically feasible. Chrontext has support
for large parts of the SPARQL 1.1 language. By using the Polars-library,
it is indirectly based on Apache Arrow, and supports Apache Arrow
Flight SQL backends for time series data. This lays the groundwork for
meeting requirement two (R2). It exposes data to the user using Polars
data frames, which can easily be converted into Pandas data frames,
meeting the third requirement (R3). By supporting OPC UA HA and
SQL time series databases, and with an extensible framework to support
other time series databases, we meet the fourth requirement (R4) on
supporting query portability also in an implementation. We are able
to configure the degree to which we offload computations to the time
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series databases, and are able to push down group by graph patterns
with aggregations into both OPC UA HA and SQL time series databases
— meeting the fifth requirement (R5).

We have compared our solution with the OBDA approach of Ontop
in an openly available industrially relevant scenario. We found that
Chrontext outperforms Ontop by a factor that varies from 10-85x,
and that the memory requirements of the Ontop generated queries
mean it cannot complete one third of the benchmark. We attribute the
difference in performance to the query execution strategy employed by
Dremio, since Chrontext uses exactly the same infrastructure, but in
a two step process. These results support the claim that our solution
meets the second requirement (R2) on high throughput low latency
time series data extraction in a data lakehouse setting. As we exploit
core features of any data lakehouse, there is reason to believe that the
high performance of Chrontext also extends to other data lakehouses.

The novelty of our contribution, compared to Bakken (2021) is
that the approach is generalised to any industrial information model
and any time series database satisfying elementary requirements, not
just OPC UA information models and OPC UA HA, and that it is
proven to be correct for a large part of SPARQL 1.1. Additionally, we
describe and implement a novel approach to pushing down parts of the
SPARQL query into the time series database, which can offload resource
intensive query processing to a distributed query engine and reduce
the amount of data that has to be transferred. Compared to the VKG
approach of Ontop (Xiao et al., 2018), we are able to support a wider
array of infrastructures that are relevant to industrial applications
that consume time series data, and query time series data with much
higher performance. Chrontext can thus help industry realise more of
the benefits of the use of standardised information models. Chrontext
makes it possible to use the cloud and on premise infrastructure to
scale applications consuming time series across a portfolio of industrial
assets, by leveraging existing models of these assets.

9.2. Improvements to ontop, dremio and chrontext

Our research suggests ways of improving Ontop performance when
the SQL engine is a data lakehouse through improved partition sup-
port. The data lakehouse Dremio can likely improve its performance
when processing the queries produced by Ontop in this scenario by
first resolving low latency contextual data sources before low latency
data lakes with large amounts of data. In future work, we plan on
generalising the metadata representing external data sources to over-
come the limitation that data of a given type are always stored in
the same SQL table in the same database of the same type. Allowing
time series queries to span multiple databases of heterogeneous types
introduces new challenges and opportunities in query sequencing and
parallelisation.

We have expended little effort optimising the combination phase of
query processing, and have simply relied on best practice guidelines
on using Polars without investigating performance empirically. It is
therefore likely that there are multiple opportunities to improve per-
formance in the combination phase. With a hybrid architecture, there
is also an opportunity to cache static query results which is not so
easily exploited in a purely virtual OBDA approach. This opportunity
is twofold. Static query results may be cached, particularly if the static
context graph is only updated through a batch job. Second, if time
series data tends to be monotonically increasing, we may also cache
aggregates spanning intervals that are no longer subject to change. As
exploratory data analyses become static artefacts and are deployed on
recurring intervals, such a caching mechanism will likely be able to
improve performance significantly.

9.3. Extensions to chrontext

OBDA approaches generally do not implement access control to
virtual knowledge graphs (Cima et al., 2020). Since our approach

imposes no virtualisation constraints on the static query graph, it is
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possible to employ a materialisation and query rewriting approach to
access control (Abel et al., 2007; Padia, Finin, Joshi, et al., 2015).
In data lakehouse solutions, such features are typically coarse grained
(e.g. Google Cloud Platform (2022)) or part of an enterprise feature set
(e.g. Dremio (2022)). Extending our OBDA-approach, we can granular-
ity to such solutions. Role based access control to time series data can
be accomplished by extending the metadata annotations and rewriting
rule for basic graph patterns involving time series data, including a
check that the user has the appropriate role to access the given time
series.

Streaming is another area to which the hybrid architecture may be
applied. There is however far less consolidation of standards in the
streaming domain, and multiple competing approaches arising from
different communities exist. When accessing contextualised time series
data, SPARQL can significantly simplify the data access procedure.
However, as Mörzinger (2019) points out, formulating these queries
still requires considerable expertise. We believe it is possible to capture
an industrially relevant and comprehensive set of queries for time series
data extraction using a domain specific language, and plan on studying
such an approach to further improve time series data accessibility for
industrial practitioners.

9.4. Limitations

In this section, we describe the current limitations of the approach
and implementation, together with ways of overcoming them if possi-
ble.

9.4.1. Timeseries variables must be introduced in the same BGP
Our rewriting procedure currently assumes that a timeseries vari-

able and related variables occur in the same basic graph pattern. I.e.,
we require that the timeseries variable (?ts) in Fig. 5, the data-point
variable (?dp), value variable (?val) and timestamp variable (?t) all
occur in the same BGP. Placing one or more of ?dp, ?val and ?t in
their own Optional-clause is not currently supported. This limitation
will be removed in a future release.

9.4.2. Limitations on pushdowns
Our rewriting approach is currently able to bundle time series

queries that extract time series with identical timestamps (cf. synchro-
nised pushdowns in Section 5.6). In the ‘‘grouped multiple value’’ query
in the benchmark, our solution creates a single SQL query extracting
multiple time series with identical timestamps. We may however be
interested in extracting multiple time series where:

• one time series lags after the other by some time duration
• where measurements are not available for identical timestamps,

but we would like to extract mean values from both time series
for intervals where samples are available

• one time series occasionally has missing data, but we would
nonetheless like to extract those time series that have data (i.e. us-
ing SPARQL Optional)

These use cases involve joins which it would be preferable to push
down into a Data Lakehouse, but we are not able to do so yet. It is
highly likely that the current approach can be extended to cover these
cases, and we plan on doing so in the future.

9.4.3. No support for custom functions for time series data
Our implementation lacks support for custom functions for time

series data, such as those discussed by Mörzinger (2019). Missing
support for such functions is a limitation of the implementation. We
have assumed that analysts already are familiar with tools that can
perform such analyses such as Python and R, and have not prioritised
them. Users wanting to query time series data with custom functions
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or aggregations applied to time series data may do so in the current
implementation by using Chrontext to extract relevant data sets, com-
puting results with tools of choice and then uploading the updated time
series data and updating the metadata linking static context to those
computed time series, possibly with provenance data.

9.4.4. One datatype per variable
The current implementation assumes that each variable is associated

with exactly one datatype, but the solution approach has no such
limitation. In many cases, the single datatype assumption is correct for
time series data. If the time series database is SQL, this assumption
holds for those values. Industrial standards for information modelling
(e.g. International Electrotechnical Commission (2020)) also tend to
contain such constraints.

However, users may still construct queries that combine solution
mappings that bind the same variable to values with two or more data
types. This can for instance be done with the union-construction. In this
case our implementation returns an error. In the future, we may choose
to cast such data to their RDF representations as strings, and return a
warning that such queries may reduce performance by slowing down
the evaluation of expressions and increase memory use by foregoing
native Apache Arrow data types.

9.4.5. One time series database and one SQL table per datatype
The metadata annotating our static query graph currently assumes

that there is only one time series database, and in the SQL case,
that each datatype is associated with only one table. We have seen
in Section 3 that hybrid approaches have been proposed with many
different time series backends (e.g. HTTP: Petrova et al., 2019 and In-
fluxDB: Esnaola-Gonzalez & Diez, 2019). We plan to lift this limitation
and introduce a way of specifying the time series database back-end
and associated metadata (e.g. a particular table) in future releases.

Supporting multiple time series databases, while supporting access
control in a uniform way as suggested in Section 9.3 could be a way
of creating what are called ‘‘domain analytical data interfaces’’ in the
Data Mesh Architecture, for which there are no mature implementa-
tions (Dehghani, 2022, p. 149, 168). The Data Mesh architecture is
a proposal for an organisational and technical architecture to enable
agile analytics at scale. A key feature of domain analytical interfaces
in Data Mesh is to be free of vendor lock-in and provide a layer of
semantic interoperability to enable other teams to understand and reuse
the analytical data set. It is possible that the extensions proposed here
can meet important requirements of analytical data products. We leave
the exploration of this possibility to further work.

9.4.6. No support for optimal sequencing of time series queries
Certain types of queries spanning a static context and time series

database require carefully sequenced multiple roundtrips to be per-
formant. In the process industry, analysts are sometimes interested in
high resolution data that coincide with rare but important events. For
instance, high resolution data on valve pressure (millisecond) around
the time of valve adjustment is highly important to identify problems.
Such a query fundamentally requires us to identify valves of interest,
identify time periods associated with valve movement, and to retrieve
high resolution pressure data from these time periods. Ideally then,
we should first extract data on valve movement and use this data
to constrain the amount of high resolution pressure data retrieved. A
similar problem occurs for SPARQL engines implementing the SERVICE
construction (cf. Buil-Aranda, Arenas, and Corcho (2011)), as evalu-
ating a federated query with a loosely bound or free variable may
be infeasible. We currently do not guarantee a particular execution
sequence, which could lead to unpredictable behaviour. The feature
can however be added in the combination phase by correspondingly
choosing to process first the constituent graph pattern or associated
time series query (in case we are processing a BGP with multiple time

series) which contains the prioritised database or table.
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